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1. INTRODUCTION

1.1 Purpose of the Report

This report describes the development and applications of a computer model that simulates
steady flow inside a turboprop engine test facility. This model was developed using the
Structured Finite Volume (SFV) code [1,2], a general purpose computational fluid
dynamics (CFD) code. The report provides details of the mathematical model and reviews
the results obtained from the computations. This work was undertaken by Adaptive
Research Corporation, for the Naval Facilities Engineering Command, under Contract
Number N47408-91-C-1228.

1.2 Background

U. S. Navy aircraft engines completing maintenance or repair are operated in test cells
where they must meet performance specifications before reinstallation. Test cells are fully
enclosed, sound absorbing hangers. The principle function of these facilities is to provide
repeatable, specific test conditions. In the process, the test cells must attenuate the jet and
propeller noise sufficiently for personal to carry out normal activities near the facility, cool
and control the engine exhaust flow to the point that cell components are not damaged,
and meet environmental standards.

The Navy has recently completed construction of the prototypes of a new generation of test
cells designed for turboprop and turboprop ~ngines. These test cells, located at the Marine
Corps Air Facility, Camp Pendleton, California, and the Naval Air Station, Sigonella, Italy
are scheduled to begin operating shortly.

1.3 Qbjective of the Study

The objective of this work is to provide a computational fluid dynamics model, employing
the SFV code, of these prototype engine test cells for use in performance evaluation and for
troubleshooting.




1.4 Qutline of the Report

This report consists of six main sections. Following this introduction, Section 2 presents
the geometric details of the turboprop test cell along with operating conditions. Next,
Section 3 contains information about the mathematical basis of the numerical model. In
Section 4, the numerical details of the model such as boundary conditions are presented.
The results of the present study are presented in Section 5, and the conclusions drawn are
given in the final section.




2. DESCRIPTION OF THE SIMULATED PROCESS

2.1 Geometry

Details of the geometry are provided in Appendix A. The engine with propeller is placed in
a retangular test bay. Air is drawn into the test bay through the plenum. This air, for the
most part, then enters an orifice before contact with the propeller. The two rows of intake
vanes, plenum, and orifice provide a smooth, low velocity, low angle of approach airflow to
the propeller. Exhaust from the engine, along with some cooler test bay air entrained by
the exhaust jet, leave the facility through the augmenter tube, discharging to a chimney
and then to the atmosphere. The rest of the through flow is discharged through a set of
baffles on the back side of the test bay. A set of acoustic baffles are also located at the top
of the chimney.

The engine considered in this modeling effort is the T56 turboprop engine manufactured by
Allison Corporation. The operating conditions for the engine are listed in Table 1. The
ambient conditions outside the cell were 29.92 mm Hg (1.01325 x 10° N /m2), 77 F (25 C),
and a dry bicomponent atomsphere (76.83 wt per cent N 2).




TABLE 1. T56 Turboprop Engine Operating Conditions

Exhaust Flow 32.41b/s
14.7 kg/s
Fuel Flow 0.833 1b/s
0.375 kg/s
Average Exit Temperature o 1100 F
600 C
Exhaust Composition (wt%) 0.7479 N,
0.1411 02
0.8100 C02
0.3000 HZO
Prop Speed 1021 RPM
Power Output 4591 SHP




3. MATHEMATICAL FORMULATION

3.1 The Structured Finite Volume (SFV) Mathematical Formulation

The SFV computer code is a general-purpose CFD code in wide use throughout
government, industry, and academia. It can model two— or three—dimensional, laminar or
turbulent, single— or two—phase fluid flows in arbitrary geometric flow domains. SFV
solves the conservation equations for mass, momentum, and energy. The details of this
solution procedure follow. '

3.1.1 T verni ion

The flow field in a given geometry can be described by the conservation equations for mass,
momentum, and energy. These equations can be expressed in the following form

ST (pV)=0 1)
—5@"’ i +V(VV)==Tp + V(4 V) (2)

2%@+V(pVh)=VE+#eﬂw+‘3{’-+WP 3)

where

v - is the time—mean velocity;
p - is the gas density;

- is the static pressure;
off is the "effective" viscosity;

=

- is the enthalpy;
is the diffusive energy flux; and

h
q -
@ - is the dissipation function.




The effective viscosity is defined by the reiation

2
- c =0 K
Begr=ptmy i w=Cpe

where 4 is the molecular viscosity and By the turbulent viscosity, is deduced by employing

a turbulence model. SFV employs the two—equation k—¢ turbulence model (3). This
treatment of turbulence requires the solution of two additional partial differential equations

I
Qg;L“MV(pVK):v[g—SVk + P, —pe (4)
m
Upe) 1 y(o¥e) = v[‘f?“ Vel + £ [c1 P, - pCQe] (5)
€
where
k —is the turbulence kinetic energy;
€ —is the dissipation rate of turbulence kinetic energy;

Cl’ C2, 000y - are model constants; and
Pk —is the volumetric production rate of k, defined by

av. av.]av.
1 1
Py= “a[ax—j + 3)_(‘1]}37]

When single~phase three—dimensional flow is under consideration, the dependent variables
that require solution are

— the static pressure;

u — the horizontal—direction velocity component;
v - the vertical—direction velocity component;

w - the axial--direction velocity component;

k,¢ — turbulence quantities (described above);

h — the static enthalpy;




C1 — the mass fraction of engine gases.

3.1.2 General Form of the Governing Equations

The governing equation for each dependent variable (¢) can be reduced to a single general
form which can be succinctly represented in vector notation as

8
—(';?+v,[pvw+3w]=s¢ (6)

The source term S 0 includes both sources and sinks of dependent variable () plus any

other terms beyond those which appear on the left~hand side of the equation.

Because of the generality of the SFV code, a standard gradient—diffusion law is provided
for the diffusion flux, namely

0= —P‘pV(o (7)

Where diffusion of the conserved quantities does not follow the standard form of Equation
7, compensating terms are added to the source term § o In that equation, I 0 is the

exchange coefficient for the variable ¢, defined as

(8)

where ¢ o.eff is the effective Prandtl/Schmidt number governing diffusive transport of the

variable ¢.




The exception to the general form given by Equation 6 is the continuity (mass
conservation) equation. The pressure, p, has been classified as a dependent variable, but
does not appear as the subject of a transport equation. Instead, the pressure is associated
with the continuity equation which can be manipulated to derive a pressure—correction
equation. SFV employs a variant of the SIMPLE pressure—correction procedure [4]. The
transport coefficient T’ @ and source term S o 8re provided for each dependent variable in

Table 2.
TABLE 2. Transport Equations and Turbulence Model Constraints

@ r S

14 4
Continuity Momentum: 1 0 0
x—direction u Begg - gg
y—direction v Bt - gg
z—direction w Bt - gg
o L’
Kinetic Energy k . ;; P -pe
Dissipation Rate € it- £(C, P, =C, pe)
v, k\W&vY1tk 2
Byl
Enthalpy h E+ ;t-) 0
. '”t
Concentration C (g + =) 0
%
Cy =0.09, Cl = 1.44, C2 = 1.92, o = 1.0, v, = 1.314

3.1.3 General Form of the Finite—Domain Equations

Integration of the generalized conservation equation (6) vields a finite—difference analog for
each dependent variable p, for each control cell into which the flow geometry is divided.
The integration process is carried out, and the terms in the finite—domain equations are

8




assembled in the manner described in many standard texts on numerical analysis [5].
For each simulation performed, the SFV program will assemble and then solve a set of
simultaneous coupled equations of the general form (for point P)

aP“’P=aE¢’E+a’W¢W+N“’N+aS¢S+3H"H';'3L¢L+S¢
(9)

where the subscripts E, W, N, S, H, and L represent the neighbor points in space. The
coefficients, ay and others, represent the effects of convection and diffusion. S p is the

linearized source term. The central coefficient ap is defined as
ap=ap+ayt+aytagtagtar (10)

The set of equations (9) are assembled and solved for each dependent variable in sequence.
The solution of the flow field then proceeds iteratively to steady—state.

3.14 Auxliar lations

To complete the mathematical formulation of a problem the specification of additional
information is required: namely, fluid properties and boundary conditions.

SFV allows the arbitrary specification of fluid properties. The models resulting from this
study will employ fluid properties typical of the conditions present in the Naval Air
Station, Sigonella, Italy test cells. SFV also ailows several different types of flow and
thermal boundary conditions. These will be appropriately chosen so as not to sacrifice the
fidelity of the models and also to allow for easy modification in the course of the
parametric studies.




4. NUMERICAL DETAILS AND PHYSICAL MODELS

4.1 Introduction

This section of the report describes the various aspects of the modeling method necessary
to simulate the flow and heat transfer inside the test facility. First, the computational grid
employed in this simulation is described. Next, the physical properties are defined. This is
followed by a discussion of the boundary conditions used in the computational model.

4.2 rid Description

The first step in setting up a numerical model is the specification of the computational
grid. For this study a three dimensional Body—Fitted Coordinate (BFC) grid was
employed. The grid for this modeling effort is quite complex. In order to simplify the grid
generation, a procedure has been developed to allow for relatively easy modifications of the
test cell configuration.

In this method the user specifies various geometric quantities. The standard input files
then create a set of data files for the EasyMesh [6] program which is a two dimensional
BFC package. The user must then run this grid generation package to create a set of two
dimensional grids. The standard input files are then re—executed to produce the final grid
by stacking, blending, and rotation of the two dimensional grid planes.

The final computational grid for this study is shown in Figure 1. This grid has 34 cells
across the test bay, 36 cells in the vertical direction, and 75 computational cells in the axial
direction. The grid is clustered in areas of geometric changes, areas of expected high
shearing action, and areas of heat transfer. In Figures 2 through 4 outlines of the internal
components are presented.

4.3 Properties of the Fluid

The properties of the gases mixture inside the test cell were calculated based on the local
conditions. The local heat capacity was computed using the gas mass fraction and the cell




temperature using JANNAF [7] polynomial expressions. The gas density was calculated
using the ideal gas law (requiring local pressure, molecular weight, and temperature). The
laminar kinematic vigcosity was assumed to have a constant value of 1.08 x 1()-4 ft“/s (1.0
x107° m2/s). The turbulent viscosity, which tends to dominate, was calculated from the
local turbulence quantities.

Heat transfer through the augmenter tube wall required the specification of the material
thermal conductivity. Inside the room the thermal conductivity of mineral fiber with a
value of 0.22 Btu/ft—s—R (0.38 W/m-K), was used. In the chimney the conductivity of
steel was used. The value of steel was taken to be 26 Btu/ft—s—R (45 W/m-K).

4.4 Boundar nditions

For this model, the boundary conditions requiring specifications were

o the engine,

. the propeller,

. inlet into test cell,

. outlets of test cell and chimney,

. wall boundaries, and

. heat transfer through the augmenter wall.

These boundary conditions and sources are discussed in the following sections.

4.4.1 Engine

The engine is modeled as a hollow cylindrical shape with a variable cross sectional area.
Inside this region a plate of computational faces were blocked. On the intake side a mass
sink is applied which corresponded to the exit mass flow minus the fuel intake.

On the exhaust side a mass source was applied to account for the engine mass flow. Other

boundary conditions applied the appropriate sources for the momentum, enthalpy,
turbulence, and concentrations. The exit turbulence quantities were caiculated assuming a




15 per cent turbulence intensity from the following equations:

k=1/2 (vI,) . (11)
_ 1.5
e =0.1643k"°/1 (12)
where
It — is the turbulence intensity and
1,  —is the mixing length (based on a gap distance or inlet radius)
44.2 Propeller

The propeller was modeled using an actuator disk model, where in all of the net results of
the propeller (wash, swirl, turbulence) are modeled as source terms in the momentum and
turbulence equations. The three aspects of the propeller which were modeled were thrust
(axdial flow generation), swirl (swirling flow generation) and turbulence (turbulence
generation by the whirling blades). The actual methodology of modeling each of these
three physical characteristics is now detailed.

44.2.1 Thrust

The thrust of the propeller was modeled as an momentum source in the axial—direction
momentum equation. The actual expressions used were supplied by Hamilton Standard
Corporation, the manufacturer of the propeller being modeled. The performance of a
propeller is characterized by correlating the ratio of the thrust coefficient (CT) versus the

power coefficient (CP). These coefficients are defined as:

Cp = P/mD (13) -
with

P ~ power absorbed by propeller,

p - reference fluid density,

n ~ rotational speed of propeller, and




D - diameter of propeller:

Cy = T/m’D!

(14)
with
T — thrust produced by the propeller.

All quantities are assumed to be in consistent units. The propeller is characterized by a
plot of CT/CP versus Cp. This plot was also supplied by Hamilton Standard (see

Appendix B). Thus, the user of the numerical model supplies shaft horse power SHP
(which gives power), RPM (which gives n), and prop diameter. The code converts all of
these to MKS units and evaluates a CP’ The prop characteristic curve is coded into

GROUND by data statements and the code interpolates as required to generate CT/ Cp.

With the evaluation of CT the thrust is calculated from Equation 14.

The average axial induced velocity of the propeller is given as

= ' T '
with
Ap — area of whirling prop (71 D2/4).

The code computes W__ as a check on prop model performance only, it is not otherwise

p
needed. The thrust per unit—mass—of—air within the envelope of the propeller is given as:

T ~ _ w2
T/mass = T/pVd = T/pA 6, = SWZ/6 | (16)

where 6p is the thicknest of the grid cells in the axial direction where the prop is located.

This is how the source is actually implemented in the code for numerical consistency with
the rest of the discretized equations.

13




4422 Swirl

The integrated swirl generated consumes a certain percentage of engine power. This
petcentage is calculated by having the user specify the percentage of total power which is
assumed to be wasted generating turbulences (%k). The percentage used to generate
thrust (%w) is known from the thrust calculation as follows. The power used to generate
thrust, PT is given as:

Then the percent of power used in thrust is PT/P‘IOO.

It is assumed that all engine power absorbed by the prop is used to do one of three things,
namely thrust, swirl, and turbulence, and knowing %w, and %k, the percentage used for
swirl (%u) is calculated. The power used by the swirl (Pu) is %ou*P. It is assumed that

the power used in swirl generation is distributed evenly over the face of the propeller. This
power is equal to the torque used in swirl generation times the angular speed of the prop:

Pu = Tn (18)

This torque is equal to the local force of the prop on the air in the direction of swirl times
the distance from the center of the prop to the location under consideration.

T=Fr (19)

This force is assumed to be constant in r; thus .

Pu = Fmn (20)




or F, the magnitude of the propeller on the air locally, is given as

IFT =P /rn (21)
The code computes local unit vectors for the prop swirl force F, then supplies Fféu as the
local swirl source for the u and v momentum equations, where éu is the local unit vector

for the u and v momentum equations, available from the code.

4.4.23 Turbulence

The turbulence of the propeller is assumed to be proportional to local prop speed squared:

S=CV2 (22)
The power used to generate, turbulence, (Pk = %k*P) is assumed to be distributed over

the radius of the propeller such that the integrated power dissipated is equal to Pk' Thus
2r R

r
p. =S S cvlrards (23)
k o 0

The constant C is evaluated by completing the integral and solving for C to give

64 Pk

2r n
and the local turbulence sources are evaluated as

S, = C(rn)2 (turbulence kinetic energy) (25)

and

S, = 5§ fi (dissipation of turbulence kinetic energy). (26)




44.3 Inlet

At the inlet a fixed pressure was applied which corresponded to the ambient pressure.
From this and the other boundary conditions the mass flow was computed. Since this mass
flow varies during the solution process, the momentum source was continually updated
according to the computed inflow. The enthalpy and concentrations were considered to be
ambient. A turbulence intensity of 2 per cent was used i0 calculated the incoming
turbulence values. A constant velocity of 3.3 ft/s (1.0 m/s) was used in the turbulence
calculations. '

The baffles located at the inlet and chimney were not directly modeled. These effects were
modeled by calculating the momentum loss through the baffles from

ap =105 I(pv2
where
K is a loss coefficient.

Supplied with pressure drop across the baffles along with gas density and velocity an
accurate determination of K is possible. Pressure data from the turboshaft test cell
indicated a k—Joss factor of 0.2. Because the pressure drop in the test cell was under
predicted a value of 1.0 was used in this simulation.

4.4.4 Qutlet

At the two 'outlets’ a fixed pressure was used. If no recirculation occurs this is all that is
required. However, in the chimney, the possibility of recirculation at the exit was
extremely great. Mcmentum and energy sources were supplied if and when recirculation at
the exit plane was calculated. The momentum source was based on the amount oi mass
being brought into the domain and the energy source was based on ambient gas conditions.

44.5 Wall Boundaries

At the wall boundaries the wall function approach [3] was used to account for momentum
losses. This condition is not applied directly to the wall but rather at a point outside the
viscous sublayer, where the logarithmic law of wall prevails. This is where turbulence is

assumed to be in local equilibrium (i.e., the generation and dissipation of turbulence energy
16




are equal). Heat transfer was not considered except through the augmenter tube wall.
446 H Iou menter T

To compute the heat transfer through the augmenter tube, a composite heat transfer
treatment was used. Surface heat transfer coefficients on both surfaces (inside and outside)
were calculated using the standard SFV wall friction treatment. The overall heat transfer
conductance between the fluid cell adjacent to the inner wall and the one adjacent to the
outer wall was evaluated using these two surface coefficients (in the form of a heai transfer
resistance) and the assumed thermal resistance through the tube wall. This last resistance
was evaluated using a conductivity of insulation and thickness of insulation provided by
the Navy. In the chimney, where there was no insulation, the conductivity and thickness
of the augmenter tube wall was used for the solid contribution to the overall heat transfer
conductions.




5. DISCUSSION OF RESULTS
This report presents the results obtained from one computational run. At the time of this
report there were no experimental data for comparison purposes.

5.1 Velocity

The velocity vectors are presented in Figures 5 through 10. A cross sectional view to the
vectors are shown in Figure 5. This plot provides a good overall display of the major flow
patterns within the calcuiation domain. Two plots of velocity around the propeller are
shown in Figures 6 and 7. The first one again shows a side view. In this plot the air
movement through the orifice and propeller is presented. The effect of the reduction gear
is noted as the flow of air is forced around the unit. Large recirculation zones at the top
and the bottom of the test cell downstream of the prop are also shown. In Figure 7
(x—view) the velocity vectors one computational cell down stream of the propeller are
plotted. The highest magnitude of velocity is located at the center cf the prop. This is
from the assumption that a free vortex type propeller was used as noted in Section 4.4.2

Figure 8 shows the velodity vectors at the end of the engine and start of the augmenter
tube. There is entrainment of surrounding gases into the tube at this cross section. A later
temperature plot will indicate if there is any flow coming out of the augmenter opening.
The maximum velocity of the engine is 721 ft/s (218 m/s). The velocity in the chimney
section is shown in Figure 9. The augmenter tube is circular down the full length. The
axial momentum propels the gases inside the augmenter tube to the aft side of the bend
section. The gases do not have enough time to spread the entire cross section of the
chimney. This causes a recirculation zone at the exit of the calculation.

The final vector plot (Figure 10) shows a top side view of the velocity vectors entering into
the test cell. The entrance velocity is approximately 23 ft/s (7 m/s). The inlet section of
the turboprop facility covers the full width and height of the test bay.

5.2 Temperature

Temperature plots are provided in Figures 11 through 15. The overall temperature field is
shown in Figure 11. In this model the engine is the only heat source. The temperature
around the exit of the engine is shown in Figure 12. The exit temperature of the engine is

1100 F (600 C). This temperature reduces as the engine gases mix with entrained air and
18




propeller wash in the augmenter tube as shown in Figure 12. The plot of temperature at
the exit of the augmenter tube is given in Figure 13. At this point the temperature ranges
from 602 F to 626 F (317 C to 330 C). The average temperature is approximately 615 F
(324 C). The narrow range in temperature indicates a good level of mixing in the
augmenter tube. In Figure 14 the temperature at the exit of the chimney section is
plotted. A small zone of recirculation is noted by a region where the temperature is 83 F
(28 C) which is close to ambient conditions of 77 F (25 C). During the iterative solution
process, intermediate unconverged results indicated that a flow was exiting the entrance of
the augmenter tube. In Figure 15 a plot of the temperature in the first cell in the
augmenter lip is provided. It shows no recirculation of hot gases out of the lip region.

5.3 Other Quantities

In Figure 16 the pressure field located approximately 2 ft (0.6 m) {rom the right side
looking into the cell is displayed. In this plane there is both cell depression and cell
pressurization. The values range from —1.2 to 1.4 inches of water.

Figure 17 shows the turbulence kinetic energy (TKE) at the exit of the engine. The largest
values occur in the shear region between the top of the engine and the top of the augmenter
lip. In Figure 18 the TKE is plotted one cell down stream of the propeller. The largest
values occur near the tip of the prop. ’

There was one global number calculated from this model. This was the pumping ratio of
the engine. The calculated value was 1.08.

Heat transfer through the augmenter tube was at the rate of 1.6 BTU/s (1680 J/s).
Approximately 55 per cent of this occurred in the uninsulated section of the chimney.

19




6. CONCLUSION

A 3—dimensional turboprop model of a Naval test cell facility has been developed. This
model allows the user to investigate various parameters of interest including variations in
geometry, ambient conditions, and boundary conditions. The results of this study show

an engine pumping ratio of 1.08;

cell depression and pressurization that range between —1.2 and 1.4" of water;
an augmenter tube average exit temperature of 615 F; and

recirculation at the exit of the chimney section.

There were no experimental values to compare with predicted values.
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document(s) you want to receive fisted on the back of this card.

Foid on line, staple, and drop in mail,

Nava Civil Engineenng Laboratory
560 Laborsiory Orive
Port Husneme CA 83043-4328
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NCEL DOCUMENT EVALUATION
You are number one with us; how do we rate with you?

We at NCEL want to provide you our customer the baest possible reports but we need your help. Therefore, | ask you
to please take the time from your busy schedule to fill out this questionnaire. Your response will assist us in providing
the best reports possibie for our users. | wish to thank you in advance for your assistance. | assure you that the
information you provide will help us to be more responsive to your future needs.

/Wﬁu-v

R. N. STORER, Pb.D, P.E.

Technical Director
DOCUMENT NO. TITLE OF DOCUMENT.
Date: Respondent Organization :
Name: Aclivity Code:
Phone: Grade/Rank:
Category (please check).
Sponsor User Proponent Other (Specify)

Please answer on your bebalf only; not oo your organization's. Please check (use an X) only the block that most closely
describes your attitude or feeling toward that statement:

SA Strongly Agree A Agree 0 Neutral D Disagree SD Suoogly Disagree

SAANDSD SAANDSD
1. The technical quality of the repon () (Y () () ()| 6. Theconclusions and recommenda- () () () () ()
is comparable to most of my other tions are clear and directly sup-
sources of techaical information. : ported by the conteuts of the
report.
2. The report will make significant OO0
improvemeots in the cost and or 7. The graphics, tables, and photo- OOOO0O0
performance of my operation. graphs are well done.
3. ‘The report acknowledges related OO0
work accomplisbed by others. Do you wish to continue getting | [ S |
NCEL reports? YES NO
4, The report is well formatted. O0O000

Please add any comments (e.g.. io what ways can we
improve the quality of our reports?) on the back of this
form.

5. The report is clearly written. OO0O00




Comments:

Foki on line, staple. and drop in masl.

DEPARTMENT OF THE NAVY ‘
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580 Laboratory Orive !
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NO RQSTAGE
Official Business NECESSARY
Penalty for Private Use, $300 " "7?"&%0
BUSINESS REPLY CARD AT T
; FIRST CLASS PEAMIT NO. 12503 WASHD.C. ]
| ]
POSTAGE WILL BE PAID BY ADDRESSEE P
RS
-
]
]
4
COMMANDING OFFICER »

CODE L03

560 LABORATORY DRIVE

NAVAL CIVIL ENGINEERING LABORATORY
PORT HUENEME CA 23043-4328




" END |
* FILMED
[ 8-93




