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NUMERICAL SOLUTION OF SUPG FINITE-ELEMENT

METHOD FOR SUPERSONIC VISCOUS FLOW

Xu Guoqun and Zhang Guofu

Nanjing Aeronautical College, Nanjing 210016

Abstract: A streamline upwind/Petrov-Galerkin (SUPG)

weighted residual formalism was developed in the paper for the

quasi-simplified Navier-Stokes equations. Numerical computations

were made for Burger's equation, the nonviscous shock wave

reflection problem, as well as supersonic laminar flow over a

flat plate and compression corner flow by using the method. The

results of the computations show that this method is accurate,

convergent, and stable.

Key words: Navier-Stokes equations, supersonic viscous flow,

finite-element method, SUPG method.

I. Introduction

When the convection flow term is present, the differential

operator is nonself-adjoint; the coefficient matrix in the

Galerkin method is nonsymmetric. The method lacks the advantage
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of optimal approximation. Often this situation causes

fluctuations in the numerical solution. For problems involving

high Pe numbers or large Re numbers, this phenomenon is

especially serious. To control convection of each element, the

mesh can be made finer; however, in this case a large amount of

internal memory will be used. In 1979, Hughes and Brooks [I]

proposed the SUPG method. The method has better stability and

higher accuracy, capable of effectively processing high-speed

flow problems, including the problem in which the interruption

plane lies in the flow plane. The present authors verified that

the SUPG method and the PG (Penalty Galerkin) method developed by

Baker [2] are somewhat equally effective for high-speed viscous

flow problems. However, expansion and application of the SUPG

method is more promising than the PG method [3]. In references

[4, 5], the SUPG finite-element method is used to solve for the

incompressible Navier-Stokes equation set. In reference [6], the

Euler equation set is solved. However, up to now the authors did

not find any report in which the SUPG finite-element method was

used in solving problems of supersonic viscous flow.

II. Model Equations

Below, Burgers' equation is discussed:

ow+VRfa * f '-0, 1<x<1, ,>0 1

1 1x~ (1).(0,.) F X. -1,< X,

- 0.5, u(s,,i) -- 0.5, ,>0

Define the weighted function W. in the element as

2



- N, + P, (2)

In the equation, Ni is the interpolation function, a C0 function,

which is continuous at the element boundary. Pi is the

perturbation of the weighted function, a C-1 function, which is

discontinuous at the element boundary. Then, we write out the

Petrov-Galerkin expression form of Eq. (1) as

a Nj (L + -- /-)- k --- IM dD
81 e OX ax

+U + - - o (3)

In the equation, nel is the number of elements; in this paper,

the linear interpolation value is taken as u. Therefore, there

is no second-order derivative term in the second integration term

of Eq. (3). In the SUPG finite-element method, the perturbation

Pi of the weighted function can be taken as

P) - (4)

Here, 0C is the algorithm parameter, and At is the duration of

the time step.

Use Eq. (3) to solve for the above-mentioned problem of a

specific solution. Fig. 1 shows the results of computations when

k = 10". Fig. 1(a) and (b) are, respectively, the results when

a- 0 and when o = 0.3. The numerical solutions shows

fluctuations upstream and downstream of the shock wave; this is a

nonphysical solution, which fails to satisfies the entropy-

increase condition [7] expressed in the second law of

thermodynamics. Fig. 1(d) shows the solution when or = 1.0. The

solution appears as an excessive divergence in the neighborhood
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of the shock wave, thus showing lower accuracy. Fig. 1(c) shows

the results when a= 0.5. At this point, the virtual fluctuation

of the finite-element solution in the neighborhood of the shock

altogether disappears; in addition, accuracy is also ensured.

0.6 0.6 ~ 0.6 0.6 H~T

--0-.-2O 06I -,-06 •061 -•-06 02061-0.2 o J i4 -0.2 .-0.2

-0.6 -0.6 _L -13 -0.6. -0.6
- 1.0 -0.6- 0.2 0.2 0.6 1.0 -1.0-0.6 0.2 06 .0 -1.0-0.6 0.2 0.6 1A0

-1.0r-0.6-0.20.ooO.6 i . ... -0.2 -0.2
S " S

(a) am-O (b) 0-- .3 (C) a -- 0.5 (d) a-w-1.8

Fig. 1. Solutions of Burgers' equation
when k = i0-4 given in computations

accurate solution
e -- numerical solution as given in the paper

Fig. 2(a) and (b) show, respectively, the numerical results
-2

when k = 0 and when k = 10 2 From the figure, we can see that

the numerical solution and the accurate solution are in good

agreement. In addition, when k is less than or equal to 10-4,

the shock wave travels only one mesh point. The method exhibits

high discriminability for a shock wave.

III. Quasi-simplified Navier-Stokes Equations and

Their Variation Form

Assume that t stands for time, u and v are components of the

gas flow velocity in the x and y axes. p, T, and /t are the

pressure, density, temperature, and viscosity coefficients of the
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gas; and v is the adiabatic index. To simplify the computations,

the second-order derivative terms in the x-direction (along the

direction of the object surface) can be neglected in supersonic

and hypersonic problems. Then in the case of dimensionless

nonsteady state for an ideal gas at constant specific heat, the

Navier-Stokes equation set can be simplified as

P__oU- + A, aU + A, LU- + oo_.. + 0,-o()
at ax -• y W.

Here, U, a , and are vectors; A1 and A2 are the matrixes

Ps 0 0

u-: Amt 0 -

OPM 0
0 (v- I)pT 0 ps

PU 0 0?

A2
4  0 P .

0 0 (v-- I)pT p,

€i-.0, ax- P Os
Re., 08Y

e,_ 04 - pi aT
3 j;. O Re.,Pr ay

*,--•- -S--01 .02 04 TO\

C.Re,.3 (+ )
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.-- 0.4 : -0.4'

,.-1&o -0.2.2o 0.6 1.0 -1-0o -0.20.2' 0.6 14o
-0.6 Z -0.6 z

(a) k - 0 . (b) k - 10-1

Fig. 2. Calculated solutions of Burgers' equation
when oc= 0.5

accurate solution * - numerical solution
as given in the paper

To bring the equation set to a closure, the state equation

and the viscosity law equation should be added. The state

equation is
V l,--. or(6y

There is also the constant-volume specific heat equation,

cp./(v--) . The viscosity equation adopts the Sutherland

relationship
S+ S'IT'. (7)

In the above-mentioned equation, Re,., is the Reynolds number of

the incoming flow, and Pr is the Prandtl number (taken as 0.72 in

the paper). When calculating S , S' - 114K.

The weak solution is taken for Eq. (5). In addition,

Green's formula is used, thus we establish the variation equation

in the following form:
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[Ni ( O + A, k-+ A, -2U +d

as O.x dQ

"++ ^( gO- +A 2-U + A,-++. ) -D+C, .1 le as •+^ + ax a

r Nads (8)

In Eq. (8), I is the 4 x 4 element matrix. Ni is the fundamental

function of the interpolation value, which is continuous at each

element boundary. In the paper, the interpolation values of four

nodal points are taken for e, u, v, and T:

U- • NUj (9)

Assume that the natural boundary conditions are homogeneous

in Eq. (8) for spatial divergence. We have the semi-divergence

finite-element equation

MO + (C + F)U- 0 (10)

In the equation, M - M(Ut), which is the mass matrix.

C = C(Ut), which is the rigidity matrix (or the convection

matrix). F is the divergence matrix; and U is the derivative of

U with respect to time. The matrix in Eq. (10) is the

aggregation of each element.

IV. Selection of Perturbation of Weighted Function

In the SUPG finite-element method, the perturbation Pi of a

weighted function is related to the fraction matrix of the first-

order derivative terms. Now, Pi is written as
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P,- rIA, -0- N + A, AN, -

In the equ -ion, T • Al, and T 0' A2are, respectively, the

artifi-'.al viscosity coefficients along the x and y directions.

Jn the paper, Ir is taken as related to the duration of the time

step. Experience with computations proves that this approach is

effective.

I -- a.• (12)

In the equation, Or is the algorithm parameter. There are

different values to be taken for equation sets of different

kinds. According to reference [61, the steady-state time-step

duration dt of the entire computation can be estimated by using

the following equation.

A: - min( 10h;/ai) (not solving for the sum) (13)

In the equation, the subscript i indicates the coordinate

direction; the superscript e indicates the compilation number

of the elements; h0 is the length of element e along the
i.

direction xi (refer to Fig. 3); ai is the spectrum radius of A

(the maximum absolute value for the characteristic value).
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4 4=+!

Fig. 3. Finite element of equal parameters

V. Estimation and Revision Algorithm

Write out Eq. (10) as the all-implicit form
,, + CU..,, - 0 (14)

In the above equation, the subscript is the time step and the

superscript is the number of iterative substitutions of the

corresponding time step a~i-d"+', . Now let us assume

a - 0 +' (15)

and assume that d is the relaxation factor. Then Eq. (14) can

be written as

M*aa - R (16)

In the equation

M*- M.+,a* + p&As(C'.'+, + F.:1 ) (17)

R - G) -(CM...M + F(0.' .)Ul (18)

We can see from Eq. (16) that if M* is considered as mass

and R is the driving force, then 4or corresponds to acceleration.

The iterative substitution of each time step ensures the phase
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equilibrium between inertial force and driving force. Also from

Eq. (18) we know that if a convergent solution exists at a time

step, then driving force R should gradually approach zero (the

residue approaches zero) with the process of iterative

substitution; therefore, the acceleration Ago also gradually

tends to zero.

By combining Eqs. (15) and (16), we have the following

estimation-revision algorithm:

(1) i- o (i Jftit) a

(2) U*- U. + A,(1 -- )a.}(fr)
( 3 ) -' " - -0 

b

(4) R - (Mmt) cI
(5) M*Aa -R
(6) a.'*,' -a',+' +.&~a QUEY)d
(7) U+"" - U(.!'" +

KEY: a - (i is the number of iterative substitution)
b - (estimation stage)
c - (residual force)
d - (revision stage)

If a further step of iterative substitution is required, the

computation returns to step 4. In this paper, the nonsymmetric

linear equation sets are found by using this algorithm; the wave

matrix technique is used to solve the equation sets. The

condition for convergence for each time step is
m=xlal <#, (19)

a-10-' . Since there is an estimation stage, generally

speaking the revision times are not many, only three or four

times to satisfy Eq. (19). A method with too many revision times

is not desirable. When the number of revision times is too many,
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the time step duration should be shortened.

The convergence criterion for the entire solving process is

max 1U.- 1-UI (20)

In the equation a,- -o-' •

When the initial field is under consideration in the paper,

the physical values at the boundary points are taken as given

values. Thus, the inherent boundary condition of step 5 becomes

&a-0 (21)

VI. Computation Examples and Discussion

Since the convection terms in Eq. (8) are not separately

integrated, mention of the natural boundary conditions of the

exit boundary is appropriate. In the following computation

examples, all conditions at the exit boundary are taken as

--0, -p,u,tT (22)
5-x

1. Reflection of nonviscous shock wave at solid wall

As one of the computation examples, in the paper the shock

wave reflection problem is the first to be calculated (Mach

number of incoming flow Md, - 2.9, and the included angle between

the incident direction and the horizontal direction is 290). In

the computations, the number of elements is 44 x 11; the

homogeneous flowfield is the initial condition.

11



Fig. 4. Equal-Mach-number curves for shock
reflection at solid wall U-. 2.9,A-M.0.0666

Fig. 4 shows the distribution of equal-Mach-number curves

found by computation; the figure clearly exhibits the incident

and the reflection shock waves. Fig. 5 shows the pressure

distribution at y = 0.5 given in the computations. In three

zones, all the results in the paper are quite consistent with the

accurate solution. The shock wave positions from the

computations are slightly to the rearward compared to those in

reference [7].

0.5

II

4 *3
10. j- S,

.'-UO 0J-0.3 1 0.3 ci 1O.S

Fig. 5. Pressure distribution Fig. 6. Region of computation
at y - 0.5 KEY: * - conditions of incoming
0 - results given in the paper flow

- reference [8]

2. Flat-plate laminar flow
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Fig. 6 shows the region of solution. In the combining layer

zone at the front fringe of the flat plate, the velocity drift

and temperature jump are neglected. Thus, the boundary

conditions of the entire wall surface at y = 0 can be written as

M - V - 0 '
V- I M2 (23)

2

In the equation, the wall surface temperature is taken as the

total temperature of the free incoming flow.

Fig. 7 shows the pressure distribution at the wall surface.

We can see from the figure that the results of computation in the

paper are relatively consistent with the results given by the

weak interference theory in reference [8]; in addition, there is

no fluctuation phenomenon in the numerical solution at the front

fringe of the flat plate. As revealed in the numerical

experiments, at the front fringe of the flat plate when the step-

duration Reynolds number Reax < 50, there is no fluctuation in

the numerical solution.

Fig. 8 shows the velocity and temperature profiles at

x/L = 1.0. From the figure, we can see that the boundary layer

is approximately at y/L - 0.25, and the front-edge shock wave is

approximately sited at y/L = 0.57. This conclusion is to be

expected. x/L - 1.0 is sited downstream of the front-fringe

combined layer. Strong interference disintegrates as weak

interference. In Fig. 8(b), the negative temperature gradient is

exhibited in the neighborhood of the wall surface. This

indicates heat absorption is needed from the wall surface. Given
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by Eq. (23), the wall surface temperature is the total

temperature of free flow as the adiabatic wall temperature when

Pr = 1. However, in the case of air with Pr = 0.72, the

restoration coefficient R is always smaller than 1. In other

words, the adiabatic wall temperature should be smaller than the

wall temperature given in Eq. (23). Therefore, in this case the

flat plate should serve as the adiabatic wall surface.

100

• 4 2

f 0.2 0.4 0.6 0.810.2 0.4 0.6 0O9 Ia. 1

(a) Re_.L 1000 (b) Re._. 6000

Fig. 7. Pressure-distribution at wall surface
LEGEND: 0 - results in the paper

- reference [9]

0.8 0.
jyL _ yL

0.6 - si.t 0.6 -

0.4 0.4

Sr,
0.2 0.2 0

0
0

0.5 1.0 .0 2 LO 30
X/ V. -1 TT.

Fig. 8. Parameter profile for the case when
ReOL 1 1000 at x - 0.1
LEGEND: o - results in the paper

- reference [101
(a) Velocity distribution (b) - Temperature
distribution
KEY: 1 - shock wave 2 - boundary layer
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We also see from Fig. 8 that the velocity distribution from

the computations in the paper are in relatively close agreement

with the values in [9]. However, the temperature distribution

shows certain discrepancies within the boundary layer. On the

one hand, this is because the distribution rule of wide-direction

density in the vicinity of the wall surface described in

reference [9] makes specifications; on the other hand, this is

because only the viscosity terms that are larger than the

magnitude of O(Re;:) are retained in the quasi-simplified

Navier-Stokes equation set used in this paper. Obtained from

this form of the equation set, the temperature distribution in

the vicinity of the wall surface often shows larger discrepancies

from the solution obtained from the entire Navier-Stokes equation

set.

3. Supersonic compression corner laminar flow

The foregoing method is used in the paper to calculate the

flow at the two-dimensional compression corner flow of M,, - 3

and Re.L-- 6 X I0' . Fig. 9 shows the region of solution of the

problem; the boundary conditions of the wall surface are shown in

.Eq. (23).

In the paper, the position of the left boundary is located

at x - 0.3571; the physical value at the boundary is taken from

the computation result of flat-plate flow mentioned previously.

The number of matched points is 35 x 26; the matching mesh along

the x and y directions is equally spaced, respectively, at

x - 0.0428 and y - 0.0035.
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Fig. 9. Region of solution and boundary for
compression corner supersonic flow
KEY: 1 - Front edge shock wave 2 - Extrapola-
tion of simple wave 3 - Upstream condition is
based on the flat-plate solution in the paper
4 - Downstream condition 5 - Wall surface
condition

Fig.~ ~ ~ ~~~ I0. Wall. sura pesre dsrbto

Fig. 9.- Reinofsltinad5onar o
copessinD cornersupersoni tfelaoe
KEY 1- Frotedgen socwve0 ... -nonvrapola-

base o hefatpate solution i~h ae

Fig 4 -0 s Downs trea codtowall surfaceprsued tibto

2.2

IA

1.0
0 0.2 ;A 0.6 0.8 1.0 11 1A I IA 2.

Fig. 10. Wall surface pressure distribution
when O) - 7.50

LEGEND: 0 -results in the paper
- r .erence (10] 1 nonviscous

accurate solution

Fig. 10 shows the wall surface pressure distribution

obtained from computation when (a - 7.50. For comparison, the

figure also shows the numerical results of Carter's difference
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method [9]. From the figure we can see that the pressure

continues to drop within a certain distance beginning from the

left boundary. This indicates that the influence of the upstream

has been taken into account. Because of the loss due to a shock

wave of a nonviscous flow, the wall surface pressure of the

downstream region thus calculated is higher than the nonviscous

flow pressure.

VII. Conclusions

In the paper, the SUPG finite-element method is developed

and applied to computations of supersonic viscous flow in

obtaining relatively satisfactory numerical results. From the

computations in one-dimensional and two-dimensional problems, the

SUPG method certainly can restrict the fluctuations in a shock

wave both downstream and upstream& However, there is a problem

of selecting the free parameters. Therefore, it is necessary

that we further develop the finite-element format of nonfree

parameters that do not show fluctuations.

The first draft of the paper was publicly read at the Fifth

Session of the All-China Computational Fluid Mechanics Conference

in April 1990, at Huangshan Mountain. Xu Guoqun is currently

working at the Jiangsu Provincial Investment Corporation. The

paper was received for publication on 4 September 1990.
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