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Abstract

An O(loglogm) time lgsll‘!fé"m—-processor CRCW-PRAM algorithm for the string
prefix-matching problem over a general alphabet is presented. The algorithm can
also be used to compute the KMP failure function in O(loglogm) time on 1’—:311%55-%
processors. These results improve on the running time of the best previous algorithm for
both problems, which was O(log m), while preserving the same number of operations.

1 Introduction

String matching is the problem of finding all occurrences of a short pattern string P[1..m] in
a longer text string 7 [1..n]. The classical sequential algorithm of Knuth, Morris and Pratt
{12] solves the string matching problem in time that is linear in the length of the input
strings. The Knuth-Morris-Pratt [12] string matching algorithm can be easily generalized to
find the longest pattern prefix that starts at each text position within the same time bound.
We refer to this problem as string prefiz-matching.

In parallel, the string matching problem can be solved in O(log log m) time on a Togleam®
processor CRCW-PRAM as shown by Breslauer and Galil [7). However, the best parallel
algorithms for the string prefix-matching problem and for computing the KMP failure func-
tion were simple derivations of Galil’s [11] O(log m) time n-processor string matching algo-
rithm. (The KMP failure function is a table that is computed in the pattern processing step
of the Knuth-Morris-Pratt string matching algorithm and is used to guide that algorithm
when comparisons fail.) These bounds are over a general alphabet where the only access
an algorithm has to the input strings is by pairwise symbol comparisons. In fact, Galil’s
(11] algorithm can be implemented using only lo;m processors if the size of the alphabet is
a constant.

This paper presents a new algorithm for the string prefix-matching problem over a general
alphabet. The algorithm takes O(log log m) time on a ﬁg‘lﬂ%-processor CRCW-PRAM. It is
also shown that this algorithm can be used to compute the KMP failure function of a string

P[1..m] in O(log logm) time on ZIE™ processors.
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A parallel algorithm is said to achieve an optimal speedup if its time-processor product is
the same as the running time of the fastest sequential algorithm. The new algorithms that
are presented in this paper are still a factor of logm processors away from optimality, but
they have the same time-processor product as the best previous parallel algorithms [11] for
the two problems. Both algorithms are the fastest possible with the number of processors
used as implied by a lower bound that was given by Breslauer and Galil (8] for the string
raatching problem. Note that both problems can be solved even in a constant time if more
processors are available.

The string prefix matching algorithm follows techniques that were used in solving several
other parallel string problems (1, 2, 5, 6, 9]. In particular, it uses the parallel string match-
ing algorithm of Breslauer and Galil [7] as a procedure that solves several string matching
problems simultaneously and then combines the results of the string matching problems into
an answer to the string prefix-matching problem.

The paper is organized as follows. Section 2 overviews some parallel algorithms and tools
that are used in the new algorithms. Section 3 describes the prefix-matching algorithm and
Section 4 shows how to use that algorithm to compute the KMP failure function.

2 The CRCW-PRAM Model

The élgorithms described in this paper are for the concurrent-read concurrent-write parallel
random access machine model. We use the weakest version of this model called the common
CRCW-PRAM. In this model many processors have access to a shared memory. Concurrent
read and write operations are allowed at all memory locations. If several processors attempt
to write simultaneously to the same memory location, it is assumed they always write the
same value.

The prefix matching algorithm uses a string matching algorithm as a procedure to find all
occurrences of a given pattern in a given text. The input to the string matching algorithm
consists of two strings, pattern[l..m] and tezt[l..n], and the output is a Boolean array
match[l..n] that has a “true” value at each position where an occurrence of the pattern
starts in the text. We use Breslauer and Galil’s [7] parallel string matching algorithm that
takes O(loglogm) time on a foglegm Processor CRCW-PRAM. This algorithm is the fastest
optimal parallel string matching algorithm possible over a general alphabet as shown by
Breslauer and Galil {8].

We also use an algorithm of Fich, Ragde and Wigderson [10] to compute the minima of
n integers from the range 1---n in a constant time using an n-processor CRCW-PRAM. We
use this algorithm, for example, to find the first occurrence of a string in an other string;
After all the occurrences are computed by the string matching algorithm mentioned above,
the minima algorithm is used to find the smallest ¢ such that match[i] = “true”.

For the computation of the KMP failure function we use an algorithm that computes the
prefix maxima of a sequence. Berkmen, Schieber and Vishkin (3] noticed that the parallel
maxima algorithm of Shiloach and Vishkin [14] can be modified to find the maxima of each
prefix of an n element sequence in O(loglogn) time on a m—{‘;ﬁ—;processor CRCW-PRAM.

2

:_




One of the major issues in the design of a PRAM algorithms is the assignment of proces-
sors to their tasks. We ignore this issue in this paper and use a general theorem that states
that the assignment can be done.

Theorem 2.1 (Brent [{]) Any synchronous parallel algorithm of time t that consists of a
total of z elementary operations can be implemented on p processors in [z/p] + t time.

This theorem can be used for example to slow down a constant time p-processor algorithm
to work in time t using p/t processors. Coming back to the example above, that finds the
first occurrence of one string in another, one sees that the second step of finding the smallest
index of an occurrence takes a constant time on n processors, while the call to the string
matching procedure takes O(loglog m) time on Iogicgm ProcCessors. By Theorem 2.1 the
second step can be slowed down to work in O(loglogm) time on Toglegm Processors.

As mentioned in the introduction, the string prefix matching prof;lem can be solved faster
if more processors are available.

Theorem 2.2 The string prefiz-matching problem takes a constant time on a nm-processor

CRCW-PRAM.
Proof: The following trivial string prefix matching algorithm takes a constant time.

e Assign m processors to each text position to find the length of the longest pattern
prefix that starts at that position. Each of the m processors simultaneously compares
the symbols of the pattern with the corresponding symbols of the text.

e Find the position of the first comparison that failed in each group of m comparisons
that were assigned to specific text position. The successful comparisons up to the first
comparison that failed correspond to the longest pattern prefix that occurs starting at
this text position.

This step takes a constant time ou m processors using the Fich, Ragde and Wigderson
[10] integer minima algorithm.

Since there are m processors assigned to each of the n text positions the total number of
processors used is nm. O

3 The Prefix-Matching Algorithm

We describe an algorithm that given the text string 7{1..n] and the pattern string P{i..m]
will compute the longest pattern prefix that occurs starting at each text position. The
output will be an array ®[1..n] such that T[i..i + ®[:] — 1} = P[1..9[4]] and if ®[:] < m, then
T[i + ®[i]) # P[®[:] + 1). Using this notation, if ®[:] = m, then a complete occurrence of the
pattern starts at text position i.

DTIC QUALITY INSPECTED 3




Theorem 3.1 There exist an algorithm that given the input strings T[l..n] and P[l..m],
will compute the longest pattern prefir that starts at each text position in O(loglogm) time
on ﬁ% processors.

Proof: To simplify the presentation assume without loss of generality that the algorithm
can access indices of the input strings which are out of the string boundaries and that all
comparisons to these symbols fail. All entries of the output array ®[1..n] are initialized to
be zero.

The algorithm will proceed in independent stages which are computed simultaneously.
In stage number , 0 < n < |log m], the algorithm computes all entries ®[z] of the output
array such that 2”7 < ®[¢] < 2"*'. Note that the each stage computes disjoint ranges of the
output array values and that all possible values are covered.

We denote by T, the time it takes to compute stage number 7 on P, processors. The
number of operations in stage 7 is O, = T, P,. In the next section it is shown that each stage
n can be computed in T, = O(loglog?2”) time and O, = O(n) operations using Breslauer
and Galil’s [7] parallel string matching algorithm.

Since the stages of the algorithm are computed simultaneously, the total number of oper-
ations performed in all stages is 3, O, = O(nlogm) and the time is max T, = O(log logm).
By Theorem 2.1 the algorithm can be implemented in O(loglogm) time on l—;‘;—‘l’fg—% proces-
sors. -0

3.1 A Single Stage

This section describes a single stage 7, 0 < n < |logm], that computes all values of the
output array ® that are in the range 27---27*! — 1, in O(loglog?2") time and n operations.

Stage number 7 starts with a call to a string matching algorithm to find all occurrences
of the pattern prefix P[1..27] in the text. Note that a pattern prefix which is long enough to
be in the range that has to be computed by this stage can only start at these occurrences.
In the rest of this section we show how to find efficiently the maximal length of the pattern
prefixes that start at each of these occurrences or to verify that the prefixes are long enough
to be computed by another stage.

If an occurrence is found starting at some text position ¢, then the algorithm knows that
a p-ttern prefix whose length is at least 27 starts at that text position. Similarly to Theorem
2.2, using only 2" processors, the algorithm can find in a constant time the length of the
pattern prefix that starts at text position ¢ or it can conclude that the prefix is at least of
length 27*! and therefore out of the range that has to be computed by this stage.

This last step is very efficient. However, since there can be many occurrences of P[1..27]
in the text, repeating this step for all these occurrences can be too costly. We restrict our
attention to a small part of the text string and solve the problem simultaneously in each
part. This allows us to use some periodicity properties of strings which are described below.

We partition the text string 7[1..n] into consecutive blocks of length |277!| + 1 each.
For the rest of this section we restrict our attention to a single block. Let ¢;, i = 1..r, be




the indices of all occurrences of the pattern prefix P[1..2")] that start at text positions in one
such block.

Definition 3.2 A string S has a period u if S is a prefiz of u* for some large enough k.
The shortest period of a string S is called the period of S. Alternatively, a string S[1..m)]
has a period of length « if S[i] = S[t + 7], fori=1..m — .

Lemma 3.3 (Lyndon and Schutzenberger [18]) If a string of length m has two periods of
lengths p and q and p + ¢ < m, then it also has a period of length gcd(p, q).

Lemma 3.4 Assume that the period length of a string A[1..l] is p. If A[l1..l] occurs only
at positions py < p; < --- < pi of a string B and pr — p1 < [4], then the p;’s form an
arithmetic progression with difference p.

Proof: Assume k > 2. We prove that p = p;y1 — pi, for : = 1---k — 1. The string A[1..]]
has periods of lengths p and ¢ = pi31 — pi. Since p < ¢ < [%], by Lemma 3.3 it also has a
period of length ged(p, q). But p is the length of the shortest period so p = ged(p,q) and p
must divide ¢. The string B(pi..pi+1 + 1 — 1] has period of length p. If ¢ > p, then there must
be another occurrence of A at position p; + p of B; a contradiction. O

Lemma 3.5 The sequence {g:}, which is defined above, forms an arithmetic progression
with difference w, where 7 is the period length of P[1..27].

Proof: The sequence {g;} lists the indices of all occurrences of P[1..27] that start in a text
block of length |27~'| + 1. By Lemma 3.4 the ¢;’s form an arithmetic progression with
difference 7, the period length of P[1..27]. O

The sequence {¢;} can be represented using three integers: the start, the difference, and
the length of the sequence. This representation can be easily computed from the output of
the string matching problem using Fich, Ragde and Wigderson’s [10] minima algorithm in a
constant time and 27 processors.

Let ¢ be the position where the period P[1..x] of P[1..2"] terminates in the pattern prefix
P[1..27*1]) and 27*! +1 if it does not terminate in this prefix. Let 0 be the position where the
period of P[1..27] terminates in the text substring 7 [g,..q- +2"*! —~ 1] and ¢, 427! if it does
not terminate in this substring. By terminated periodicity we mean that Pfl..p — 7 — 1] =
Plr + 1.4 — 1] and Py — 7] # P[¢] and that T{g..0 — 7 — 1] = T[g; + 7..6 — 1] and
T [0 — 7] # P[0]. The indices ¥ and 8 can be computed in a constant time on 2" processors.

If the sequence {¢;} has only a single element ¢y, the algorithm can find the length of the
pattern prefix that starts at text position ¢, using the approach which is described before.
Otherwise, if the sequence {¢;} has more than one element, the algorithm finds the length
of the pattern prefixes that start at text positions in {¢;} as described next in Lemma 3.6.
The algorithm might still be required to use the approach that was described before to find
the length of the pattern prefix that starts at one of the {q;} text positions.




Lemma 3.6 Let A = min(f — ¢;,% — 1). Then, the longest pattern prefiz that starts at text
position g; is at least of length A\. Furthermore,

1. If 0 — q; # v — 1, then the length of that prefiz is ezactly .

2. If 0 —q; = —~1, then that prefiz can continue to any length and it is necessary compare
more symbols to compute its length.

Note that at most one of the ¢;’s can fall under this category.
Proof: Both the pattern prefix P[1..9p — 1] and the text substring 7[g;..0 — 1] have period

P{l..x], the period of the pattern prefix P[1..27]. Therefore, it is clear that P[1..\] =
T[q,'..q,' +A- 1]

1. If 0 — ¢; # ¢ — 1, then either,
PA+1]=PA—7+1] and TG+ N #Tg+ A —7)
or,
PA+1]#PA-n+1] and Tlg;+ A =T[g;i + X — 7).
| Since A > 2" > 7 and P{A — 7+ 1} = T[g; + A — 7], in both cases P[A + 1] # T{g; + A]

proving that the length of the pattern prefix that starts at text position g¢; is exactly
A.

2. If 0 — ¢; =1 — 1, then it suffices to compare P[1..2"*] to T[g;..q; + 2"*! — 1] to find
the length of the pattern prefix that starts at text position ¢; or to conclude that the
prefix is at least of length 2"*! and therefore out of the range that has to be computed
by this stage.

The extra comparisons are necessary since, if A < 271, then P[A + 1] # P[A — 7 + 1]
and T'[g; + A] # T(g; + A — x] and it is possible that P[A + 1] = T{g + A].

g

‘The computation in stage n proceeds in each text block of length {27~! | +1 simultaneously
and can be summarized as follows:

1. Find all occurrences of the pattern prefix P[1..2"] in the considered text block and
compute the {g;} sequence.

2. Compute the period length 7 of the pattern prefix P[1..27].
3. Compute 8 and .
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Figure 1: If § — ¢; < ¥ — 1, then all pattern prefixes that start at text positions
{qi} terminate at the same text position.

4. Find the length of the pattern prefix that starts at each text position ¢;. By Lemma
3.6 the length is given by 6 and 1 except for at most one of the ¢;’s that has to be
found separately.

If the length of the pattern prefix that starts at text position ¢; is out of the range that
.has to be computed by this stage do not update the output array entry ®[g] since it
will be updated in another stage.

Lemma 3.7 Stage number n correctly computes all entries of the output array ®[1..n] that
are in the range 2" --- 27! — 1. [t takes O(log log2") time and a total of n operations.

Proof: The calls to Breslauer and Galil’s [7] string matching algorithm take O(log log 27)
time and n operations.

The sequence ¢; can be represented by three integers which can be computed from the
output of the string matching algorithm (that is assumed to be a Boolean vector representing
all occurrences) in a constant time and 27 operations in each block. The rest of the work in
each block also takes a constant time and 27 operations.

There are blocks and thus, stage n takes O(loglog 27) time and O(n) operations.

n
[EIESY
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4 The KMP Failure Function

The Knuth-Morris-Pratt [12] string matching algorithm computes in its pattern preprocess-
ing step a table that is used later to guide the text processing step when comparisons fail.
This table is often called the KMP failure function.

Knuth, Morris and Pratt {12] actually define two function: F[1..m] and nezt[l..m]. Both
function can be used to guide the comparisons that fail, but the nezt[] function has more
information and therefore it is more efficient. In this section we show that using the string
prefix-matching algorithm one can compute both functions efficiently.

7




Both the F[] and the next[] functions are strongly related to the periods of the pattern
prefixes and are actually a simple shift of the II[] and H[] functions of the pattern that are
defined next:

e Given a string S[1..m], the function II[1..m] is defined for S[1..m] such that II[¢] is the
period length of the prefix S[1..1].

e Given a string S[1..m], the table I1[1..m] is defined for S[1..m] such that 11[i] is the
length of the shortest terminated period at position i of S{1..m] if such a period exists.

That is, IIji] is the length of the shortest period of S[1..i — 1] that is not a period of
S[1..3). If all periods of S[1..i — 1] are also periods of S[1..7] then 11{i] is undefined.

Theorem 4.1 The function II[1..m] can be computed in O(loglogm) time on a E‘ﬁ—;
processor CRCW-PRAM.

Proof: The algorithm will start by solving a string prefix-matching problem with the input
string S[1..m] given as both pattern and text. The output of the string prefix-matching
problem contains essentially all the information needed for the II{1..m] function. Note that
an integer k is a period length of all prefixes S[1..7] such that k < ¢ < k+®[k+1]. Therefore,

I[:)=min{k | 1 <k <i<k+Pk+1]}.

We show that II[1..m] can be computed on a CRCW-PRAM in O(loglogm) time on jo—
processors if ®[1..m] is given. The computation follows three steps:

1. Compute a function K[1..m] such that,
K[z = nklgx{k + &k +1]}.

Using this notation an integer ¢ is the period length of all prefixes S[1..k] such that
K[:-1] < k and k£ < K[z].

2. Compute a function B[1..m] such that B[K[i —1]+1] = ¢ if K[¢] > K[i —1] and B[k] =0

otherwise.
3. Compute the TI{l..m] function.
I[i] = max{B[k]}.

Note that both maxima computations can be done by Berkman, Schieber and Vishkin’s {3
prefix maxima algorithm. O

For the computation of the H[l .m] function we use a more powerful CRCW-PRAM
model which is called the priority CRCW-PRAM. In this model each processor has a pre-
assigned priority and simultaneous writes of different values to a memory cell are allowed.
The actual value written is that of the processor with the highest priority.
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Theorem 4.2 The function II[1..m] can be computed in O(loglogm) time on a ﬁll—‘;iﬂm-
processor priority CRCW-PRAM.

Proof: The algori*' m will start by solving a string prefix-matching problem with the input
string S[1..m] given as both pattern and text. The output of the string prefix-matching
problem contains essentially all the information needed for the II{1..m] function. Note that
a period of length k terminates at position k+®[k+1]+1 of the input string S[1..m]. Thus,

I1[i] = min{k | i = k + ®[k + 1] + 1}.

The II[1..m] array can be computed in a constant time on a priority CRCW-PRAM once
that ®{1..m] is given:

1. Initialize all entries of the [I[1..m] array to be undefined.

2. For each integer k£, 1 < k < m assign a processor with priority k that attempts to write
the value & into II{k + ®[k + 1] +1].

If the write conflict are resolved in such a way that the processor with the smallest
priority value succeeds in writing at each memory location, then the computation of II{1..m]
is complete. O
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