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Abstract

Phred is a visual parallel programming language in which programs can be statically analyzed for
deterministic behavior. This paper presents the Phred language, techniques for analyzing the language, and
a programming environment which supports Phred programming. There are many methods for specifying
synchronization and data sharing in parallel programs. The Phred programmer uses graph constructs for
describing parallelism, synchronization and data sharing. These graphs are formally described in this paper
as a graph grammar. The use of graphs in Phred provides an intuitive and visual representation for parallel
computations. The inadvertent specification of nondeterministic computations is a common error in
parallel programming. Phred addresses the issue of determinacy by visually indicating regions of a
program where nondeterminacy may exist. This analysis and its integration into a programming
environment is presented here. The Phred programming environment supports the specification, analysis
and execution of Phred programs. The distribution of the programming environment itself over several
workstations is also described.

This work was supported by NSF Grant CCR-8802283.
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1 Introduction

The proliferation of parallel and networked computer systems continues to outrace
our ability to construct effective software to control such systems. The difficulty
can be related to the increased complexity of writing parallel programs compared to
that required for writing sequential programs. The added complexity is rooted in the
requirement for managing the activity of simultaneous threads of computation, e.g., see
(7].

In this study, we concentrate on three aspects of the problem. The first aspect is
related to intuitive mechanisms for perceiving the parallelism in the computation. The
philosophy of our approach used is similar to that proposed by Gelernter and Camero
(16] in that we develop a coordination languagewhich is orthogonal to the computation
language. The second aspect is in analyzing the resulting program to determine if it
is guaranteed to be deterministic and in identifying the parts of the program that
contribute to potential nondeterministic behavior. Finally, we focus on tools to support
the programming mechanisms and analysis techniques we have developed.

We have designed a visual parallel programming language, Phred, and a support
environment that allows a software designer to create Phred programs, to statically
analyze them for determinacy, and to interpretively execute them. Phred employs
the visual aspects of graph models to specify functionality, and to help control the
creation, destruction, and interaction of tasks by illustrating points of synchronization
and information sharing among tasks. The formal aspects of the graph model provide an
unambiguous specification of the interactions that can be analyzed to detect conditions
under which the interactions are not guaranteed to be deterministic.

1.1 The Importance of Determinacy

Determinacy is important in parallel programming; LeBlanc and Mellor-Crummey [ 18]
state:

Since parallel programs do not fully specify all possible execution se-
quences, the execution behavior of a parallel program in response to a
fixed input may be indeterminate, with the results depending on a particu-
lar resolution of race conditions existing among processes.

If a computation is specified for a parallel machine, there are chances for interference
between the parallel tasks specified by the program. Much effort in designing parallel
languages is spent providing useful mechanisms for ensuring determinate behavior of
parallel programs. In fact the different mechanisms for ensuring determinacy provided
by parallel languages, to a great extent, distinguish such languages from each other.

Although correct program behavior does not necessarily imply deterministic behav-
ior, nondeterministic programs can contain extremely subtle errors. If a programming
system can notify the programmer of potential nondeterminacies. the programmer has a
much better chance of avoiding the pitfalls of bugs stcmming from such race conditions.
The Phred system provides such determinacy information to the programmer. Various
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source analysis techniques have been developed for finding nondeterminacies in par-
allel programs. Taylor's static analysis techniques for Ada programs can be found in
[24]. Techniques developed by Callahan and Subhlok [10] improve on those of Taylor

by eliminating potentially exponential behavior. In [14], Emrath and Padua classify
various kinds of nondeterminacy and present source analysis techniques for detcting
nondeterminacies.

The issue of determinacy can also addressed from the standpoint of debugging
parallel programs. Debugging parallel programs can be difficult. If race conditions exist
in a parallel program, the debugging task becomes even more complicated. Multiple
runs of a nondeterministic program on the same input set can produce different output
sets. One solution to this problem is to trace program execution and ensure that race
conditions are resolved in the same order during replay in debugging mode as during
the original program exeution. Methods for deterministic replay of nondeterministic
programs can be found in [11, 19, 17].

1.2 Related Systems

Phred is similar to several other visual parallel programming environments, namely
Code [9, 20], HeNCE [4, 5], Paralex [1. 2], and Schedule [12]. However, Phred is
unique in its graph structures and its emphasis on determinacy. The intent is to develop
a parallel programming environment which .ncourages deterministic programs without
requiring programs to be deterministic.

In this paper, we describe the language (Section 2), the analyst; mechanism (Section

3), and Phred programming environment.

2 The Language

A Phred program is composed of a control flow graph, a data flow graph, and a

set of node interpretations. The visual component of Phred is a view of the control
and data flow graphs created directly by the programmer, using a mouse-based graph
editor The node interpretations are represented by procedure specification (using the
C programming language in the current implementation).

Arcs in the control flow graph represent disjunctive (OR) and conjunctive (AND)
control flow. Thus a Phred control flow graph represents the sequential flow of control.
alternation, parallelism, and synchronization.

Tokens represent the flow of control by marking nodes and edges within the control
flow graph. In a sense, tokens are the instruction pointers of a Phred graph. A
token residing on a task node represents a process executing the corresponding node
interpretation (also called the node procedure). Tokens also carry data from task node
to task node through the control flow graph. When a token arrives at a node, the node
procedure is invoked by passing the data contents of the token to the procedure as
parameters.
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A data repository is a data storage unit that may be accessed by procedures connected
to the repository. Therefore, data sharing between procedures is explicitly represented
by the data flow graph. Data repositories can be viewed as external variables whose
scope is explicitly delimited by the arcs in the data flow graph.

Figure 1 shows the graph of a simple Phred program. When a token is placed on
the Start node, the program is interpreted by assigning a process to the token, and
having the process execute the node interpretation for each task on which the token
comes to rest. In the example, the start node procedure initializes the Tot al repositor'
to be zero. The token is then sent to the Ge- a number node causing it to execute
a procedure that reads an integer. i.e., it prompts the user for an integer. The integer
is then placed in a token and sent to the Odd or Even node. If the integer in the
token is odd it is sent to the Double node. otherwise it is sent to the Half node. since
the interpretation for Odd or Even results in a specific control flow path selection
based on the data in the token. Double and Half multiply or divide the integer by
two respectively. The output node reads the contents of the Total repository, adds

the integer from the token to the the value from the repository, outputs the sum, and
writes the new sum back into the Total repository. The Continue node (procedure)

decides whether or not to send the token back for another trip through the loop or to

send the token on to the Stop node which will terminate the program. Continue can
make this decision in an arbitrary manner, based on the data available to it (token data
in this example). This example demonstrates how Phred components (nodes. tokens,
and repositories) are used to represent sequential process execution. It contains only
disjunctive logic, and has only a single token circulating on the graph at a time.

Phred supports complex structures for parallelism, primarily by specifying how

multiple tokens may flow through the graph. Generally Phred can be used to program
many parallel algorithms. Both static and dynamic algorithms have been programmed
in Phred. For instance, dynamic load balancing is achieved in Phred by allowing
multiple tokens to flow through a Phred graph. The tokens represent processes which

obtain pieces of work from a queue and then operate on those those pieces in parallel.
The tokens eventually store their results and return for more work from the work queue.
A wide variety of example programs can be found in [3] and a in companion paper [6]
where we give an in-depth description of numerical algorithms programmed in Phred.

Based on the intuitive description of Phred semantics. we now turn to a more formal
presentation of the components.

2.1 The Building Blocks of Phred

Phred extends the ideas used in the Bilogic Precedence Graph (BPG) model [21 ], so that

they can be applied to visual parallel programming in an MIMD environment. BPGs
describe parallel systems and Phred programs define parallel computations. Phred
provides several types of nodes, each with various semantics. (See Figure 2 for the
Phred node types.) When the graph is executed. tokens are sent through the control flow

graph. 'Alien a token reaches a node, the interpretation is executed. Modifications to the
data on an incoming token are unrestricted, with the resulting data from a computation
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Start.

Get a number.

Odd or Even? 0

Double. Half.

0 0
Output. Total

Continue?

Stop.

Figure 1: Sequential Phred program graph.
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Figure 2: Legal Phred nodes.



potentially being added to the token and routed to the node's successors.
Nodes in the control flow graph only have access to the data embedded in tokens and

in repositories which are connected to a control flow node. Access to these repositories
is specified through the data flow graph. A data repository is a node in the data flow
graph that contains shared variables which can be read or written by any node properly

connected to the repository in the data flow graph.
Data repositories are read only before a node procedure is executed and written

only after the procedure exits. In addition, two subtypes of repositories, shared and
local, are defined. Shared repositories may be accessed from any node in the program.
Local repositories are dynamically created and can only be accessed within the ellipsis
constructs described in Section 2.3. The access patterns for data repositories are
essential for analyzing the determinacy of a Phred program.

2.2 Graph Grammars

Phred can be formally specified as a graph language using a graph grammar. The
following definitions are based on those used by Ehrenfeucht, Main, and Rozenberg in
[13]. If f is a finite alphabet, then G,_ denotes the set of all finite directed graphs with
nodes from f. If o, is a graph and i is a node of,, of type X, then we call i an X-node.
The graph grammar used here is formally defined as follows.
Definition. A graph grammar is a four-tuple (f..-. P. S), where

"* f is a finite set of nodes,

"* -- is a proper subset of _f, called terminal nodes.

"• P is a finite set of productions; each production has one of the forms:

1. X - ,

2. X-- Seq*(,

3. X -,Par- r, :,

where X is a nonterminal node (X - .A), and ,: are terminal nodes

(- .- : E:..-), and i is a graph from G,-,

"* S is a special nonterminal called the start symbol,

Let G = (1:. -A.P.S) be a grammar as defined above. Production 1 of P, X - -, is
applied as follows:

1. Start with a graph it and a specific occurrence of an X-node in ,. This node is
called the mother node. The set of nodes directly connected to the mother node
is called the neighborhood.

2. Delete the mother node in the graph it, and call the resulting graph i'.
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3. Add to it' a copy of the graph (i. This new occurrence of ,i is called the daughter
graph.

4. For each node Z in the neighborhood with no outgoing edges, connect a directed
edge from Z to every node Y in the daughter graph with no incoming edges.

5. For each node Y in the daughter graph with no outgoing edges. connect a directed
edge from Y to every node Z in the neighborhood with no incoming edges.

Production 2 of P, X - Seq .- . is applied as the production X -- except with
the following changes to Step 3. Instead of adding one copy of the graph , to It'. n
copies of the graph , are added to j' where n '_; 0. The daughter graph consists of
graphs , i .... i, connected as follows:

-7 i :_ [I.n - I), connect each nodeZ in ,o, with no outgoing arcs by a directed
edge to each node Y in rl,÷- with no incoming arcs.

If n = 0 then the daughter graph will have no nodes. In this case each node Z in the
neighborhood with no outgoing arcs is connected to each node Y in the neighborhood
with no incoming arcs.

Production 3 of P, X - -, Par' - t.:. is also applied as the production X - except
with the following changes to Step 3. Instead of adding one copy of the graph, to t.
n copies of the graph , are added to it'. where n _ 0. a!.)ne with nodes - and :. Thus.
the daughter graph consists of graphs ., along with nodes - and : connected
as follows:

* i -E [1.n], connect a directed edge from the node - to each node in ,, which
has no incoming edges.

* -' i -- [1 . n], connect a directed edge from each node in ,, which has no outgoing

edges to the node ;.

If n = 0, then the daughter graph has only two nodes, - and:. In this case the daujohter
graph is (-,. ,), the two nodes with a directed edge from - to

2.3 The Phred Graph Grammar

We now use the graph grammar mechanism to describe Phred. Let PhredCF =

(f .-I.P.S) be a graph grammar. The elements of PhredCF. _2 .P - and S are

defined as shown in Figure 3.
The PhredCF grammar describes the legal control flow graphs in Phred. Several

observations should be made about graphs in PhredCF. All graphs are single entry,
single exit graphs. All statements are also single entry, single exit graphs. The result
is that Phred is a highly structured language. All Phred programs must begin with a
Start node and end with a Stop node. Sequences of tasks may be placed wherever a
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f Prog. Conj. Disj. Stmi. Pipe. Loop ý U -3.
S - Prog

Prog - Stimi

Stmnt - Seq - Stmc:ConliDisjiPipe loopt Q

Conj - 0Par -Sim: St 7

D~ij- 0_ Par -Stint 0 0j Stimi

Pope - SItin LOOP - SItin Stint

Figure 3: Phied grammar.



statement is legal. The null statement is a legal Phred statement. Repeat-until loops
and While loops may be constructed with the loop construct.

The Pipe construct allows statements within it to be pipelined. Multiple tokens
are emitted ;rom the Begin Pipe node. These tokens may cause several tasks within
the Pipe construct to execute in parallel, even though there is an edge in the control
flow graph between them. Therefore within a Pipe construct, the control flow graph
no longer represents precedence. but simply the pipelined flow of tokens through the
statements within the construct.

There are two types of conjunctive constructs. The Manual Conjunctive construct
allows the programmer to place a fixed number of (possibly different) statements within
the construct. This is useful for specifying a small number of statements that may
execute in parallel, i.e. functional parallelism. The Dynamic Conjunctive construc:
allows the programmer to specify a number of copies of the same statement to execute
in parallel. The number of statements to execute is determined at run-time by calling
a function from the diverging conjunctive node. The ellipsis node in the Dynamic
Conjunctive construct indicates the body of the construct will be replicated multiple
times. This is part of the interface (described in [3]) between the node routines and the
graph.

The disjunctive constructs are similar to the conjunctive constructs. The Manual
Disjunctive construct allows the programmer to specify several branches which may
be taken. This could be used for a conditional if or case statement. The Dynamic
Disjunctive structure will allow the programmer to dynamically specify the number
of branches to create at run-time. As with the Dynamic Con ldnct.vc coistruct. the
ellipsis node indicates the body of the Dynamic Disjunctive construct will be replicated
multiple times If this construct were put within a pipe construct, the diverging Or node.
at the beginning of the construct, could decide to create a branch for each token in the
pipe structure, providing data parallelism within the pipe structure.

A Phred graph may contain repository nodes which are connected to the control
flow graph. PhredCF describes the structure of the Phred control flow graphs. The
Phred dataflow graphs have less structure than the control flow graphs. Any number
of repository nodes may be added to a Phred graph. Directed edges may connect
a repository node to any nodes in the control flow graph. Edges may not connect
repository nodes to each other. An edge from a repository to a control flow node
indicates data in the repository may be read by the control flow node. An edge to a
repository from a control flow node indicates data may be written to the repository by
the control flow node.

As string grammars are used to describe which strings are in a particular language,
graph grammars are used to describe which graphs are in a language. Now that we
have described the Phred grammar we have defined the Phred language. A graph is in
the Phred language if it can be derived using the the Phred grammar. Figure 4 is an
example derivation of a graph in the Phred language. Various productions are applied
to the nonterminal start symbol P rog. The nonterminal symbol P rog is first replaced
by the Stmnt . onterminal bounded by a Start node and an End node. The Strut is
then replaced by a Con j nonterminal and so on, resulting in the final graph.
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Prog [Z Stmstint Con j C OD Stimt

OCO Loop C OD Stint Stmral >

Figure 4: Example graph derivation.
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2.4 An Example Parallel Program

The following example ties these concepts together. Figure 5 shows a Phred graph
complete with data repositories. This program computes the values for the vector x as
a solution to Ax = b, where A and b are matrices, using the successive overrelaxation
technique. When this Phred program is executed, a token is placed on the Start node.
After the Start node executes, the And node labeled input executes. This node writes
the matrices A and b to repositories A and b. Since these repositories are accessed by
the input node, which is not dynamically created. A and b are shared repositories.
The code for input also specifies that n copies of the loop containing the SC?. node be
created, one to compute each element of x. Note that n x repositories will be be created
along with each copy of the loop. This is done in the node procedure by making a
call to the create-tokens () routine. Thus Phred program graphs may dynamically
change at run-time. A token is then dispatched to each copy of the loop. This token
traverses the body of the loop, executing the SOR node each time. The SOR node reads
the A, b, and x repositories and computes a new value for its element of the x vector.
If the test node determines that another iteration is necessary, the loop will continue.
Otherwise, the loop terminates and the token is sent to the output node. When tokens
from all the test nodes arrive at the output node, it executes, outputting the results of
the computation, i.e. the elements of the x vector. The token is then sent to the Stop
node and the program terminates.

Thus, we have illustrated how Phred may be used to write both sequential and par-
allel programs. and we have given a precise definition of the Phred graphical language.
The next section describes analysis theories and tebhniques which are used by the Phred
programming tools.

3 Analysis of the Language

The Phred grammar and semantic model allow one to analyze a program for correct
syntax and for determinacy. The graph parsing algorithm is a relatively straight-forward
recursive descent with the exception that there is ambiguity in the way Or nodes can
be used in a Phred program. The parscr must be able to determine if an Or node is part
of a loop construct or a case statemen. The pser analyzes the graph for dominance
relationships to make this determination. Details of the parser are described in [3]. In
this section, we describe the determinacy analysis of Phred graphs. This analysis is
similar to the technique described by Taylor [24] for analyzing Ada programs.

3.1 Remarks about Determinacy

When we learn to program, the idea of determinacy begins to develop. We expect our
programs, no matter how unusual, to be faithfully executed by the computer. If we
run a program over and over on the same input set, we expect it to produce identical
output. This becomes a fundamental property for debugging programs and for using
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Figure 5: Parallel Phred program graph.
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computers in general. Loosely defined, a system is determinate if each time it is run on
an input it produces the same output. This is the same as the mathematical definition
of a function: a unique output set is defined for each input set.

What are some of the advantages and disadvantages of determinacy? It may
be possible to construct more efficient nondeterministic programs than deterministic
ones, i.e., requiring a system to be determinate may result in an efficiency loss. This
follows from the possibility that determinacy may require unnecessary synchronization
in the program, resulting in costly blocking delays. Although nondeterminacy may
seem advantageous in terms of efficiency, it can make the programming task more
difficult. What are the consequences of nondeterministic programs or systems in
general? Bernstein and Schneider [8] state "programs that do not exhibit reproducible
behavior are very difficult to understand and validate." It is, indeed, easy to see the
problems in debugging a nondeterminate ("time dependent") program or system. It
may be very difficult to isolate a bug that is not easily reproducible.

Testing is a related issue. How does one test a system that is nondeterminate? If the
program is allowed to output different answers each time it is executed then. not only
will it need to be tested on many different inputs, but it will in fact need to be tested
many times on the same input. Even then, there is no assurance that the program is
correct for a specific input set. In general, nondeterminacy may be conceptually useful
or a practical necessity, but there are certain costs associated with nondeterminacy
which should be considered.

Determinacy can be formally defined in terms of mutually noninterfering tasks. A
pair of tasks are mutually noninterfering if they either 1) do not execute in parallcl or 2•
do not violate Bernstein's conditions. These conditions are the necessary and sufficient
conditions needed to ensure determinate operation of a pair of parallel tasks. They
state that tasks which can execute in parallel could be nondeterministic if they use or
change a shared resource. Normally the shared resource is memory or a file system.
Theorem 1 shows the necessary and sufficient conditions for a set of tasks to execute
deterministically. The line marked with the dagger (t) identifies Bernstein's conditions.
A formal proof of the following theorem can be found in [23].
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Theorem 1 Conditions for mutually noninterfering tasks.

"* Let t and t' be tasks which may run in parallel.

"* Let W, be the write set of a task t.

"* Let R, be the read set of a task t.

"* Tasks t and t' are said to be noninterfering either:

- t is the successor or predecessor oft' or

- (W, R. W, = 04) ,.' (R, 7 W, = 0A) . (W, :-!R = 0)÷

A set of tasks {t1 ..... t, ý is determinate • t, and tj are mutually noninterfering
V i.j E [1.in] wherei =j.

Nondeterminacy among parallel tasks may result from a violation of Bernstein's con-
ditions. An example of this would be when two tasks write different values to a
shared memory location in parallel. This may be the result of some precedence rela-
tion being accidentally omitted or an intentional nondeterministic action deliberately
placed in the program. While the interference of parallel or concurrent tasks is the
crux of nondeterminacy, such actions may not necessarily cause nondeterminacy. For
instance, if two parallel taskzs write the same value to a shared location in parallel it
is a violation of Bernstein's conditions yet the tasks are still determinate. Therefores
the violation of Bernstein's conditions indicates the possibility of nondeterminacy but
does not guarantee that nondeterminacy is present. That is, all nondeterministic tasks
violate Bernstein's conditions, but not all violations of Bernstein's conditions result in
nondeterminacy.

3.2 Identifying Nondeterminacy in Phred Programs

Determinacy can be viewed in terms of task access to shared repositories. In Phred.
nondeterminacy may occur when tasks that may execute in parallel share repositories
in ways which violate Bernstein's conditions (Theorem 1). More precisely, if the set
of tasks which make up a Phred program are mutually noninterfering according to
Theorem 1, the program is determinate. If this is not the case, then the program may or
may not be determinate. If independent tasks violate Bernstein's conditions they may
still be determinate. (Two tasks may write the same value to the same location, violating
the conditions yet remaining determinate.) Algorithm 1 finds tasks and repositories
which may make a Phred program nondeterminate.

Algorithm 1 Checking for determinacy.

* Let P be the set of sets of nodes that couldpossibly execute in parallel.
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* Let Rep be the set of all repositories.

* Let r E Rep

* Let Rr be the set of tasks that read repository r.

* Let W, be the set of tasks that write repository r.

Let T, - 0 and R. - 0.

For each r -- Rep and each p P:

Let X - (W, rA p) J (Rr, p)

T f T. U (W.,-'p) if i W,;p-! > 1
- ". ,, ,X if (w, r-Ap (A) A,, (R, :p 0) X (i > 1)

.Rn RR, Jr} if 11 W, ,-ip 11 >
R. UJr) if(Wrfp= 0) A (R,:rýp=0) A (Q X 1 > 1)

The goal is to find the tasks and repositories, if any, that might cause nondeterminacy
in a program. Algorithm 1 builds two sets. T, is the set of independent task nodes
in the program that are involved in a violation of Bernstein's conditions and thus may
contribute to any noadeterminacy. R, is the set of repositories in the prg-am th'.: ma-:
be involved in nondeterminacy. The algorithm chooses a particular repository and a
set of tasks that may execute in parallel. If any subset of these tasks violate Bernstein's
conditions in their access of the repository then they are possibly nondeterminate. If
tasks access a repository in this manner then they are added to T, and the repository is
added to R,. The elements of P are themselves sets. Each set, p - P, contains tasks that
may execute in parallel. The algorithm checks each repository, r -:_ Rep, against the
elements of P. The set X contains task nodes of p that read or write a given repository
r. If there is more than one task from p that writes r, then those tasks are added to
T,. If there is at least one task in p that writes to r and at least one task in p that reads

from r and these tasks are not the same (1! X 1 > 1), then these tasks are added to T.,
Repositories are added to R, under the same conditions. Thus. the set T, contains the
task nodes that could contribute to any nondeterminacy and R. the repositories involved
in this possible nondeterminacy.

There are three assumptions made with respect to determinacy checking:

1. The set of sets of tasks that could possibly execute in parallel, P, can be found.

2. Tasks do not share any resources other than repositories.

3. The task nodes are deterministic.

15



Assumption 2 forbids the user code associated with task nodes from sharing data
through means other than those specified by the graph. Assumption 3 excludes the

possibility of the programmer including nondeterministic code within a task node. i.e.,
the use of uninitialized variables.

Theorem 2 A Phredprogram is determinate -- T, =

Theorem 1 states that a set of tasks is determinate (mutually noninterfering) if and

only if the tasks that may execute in parallel neither write a shared resource in parallel
nor do they read and write a shared resource in parallel. Since T, is the set of tasks that
either write a shared resource in parallel or read and write a shared resource in parallel.
one can conclude from Theorem I that a Phred program is determinate if and only if
T,, = 0 after all (r.p) E Rep • P have been analyzed.

Theorem3 T.= 0 .- R,,= 0.

Both T. and R, are initially the empty set and elements are added to both sets under
the same conditions, namely when parallel tasks access a repository in a manner which
violates Bernstein's conditions. Therefore T,, = 0 : Rn = 0 and R' = 0 =. T" = 0, so,
TO= -" R,, = 0.

Theorem 4 If a Phredprogram is not determinate then 7,, is the set of tasks that cause

the nondeterminacy.

Tasks are in the set T. precisely because they violate Bernstein's conditions. Thus
it can be seen that Theorem 4 is also true.

Theorem 5 If a Phred program has no repositories, then it is determinate.

If a program has no repositories (Rep = 0), then we can also infer that R. =

since R,, - Rep. If R,, = Vi then by Theorem 3, T, = 6. Hence, by Theorem 2, the
program with no repositories is determinate since T,, = 0. Therefore Theorem 5 is true.
Intuitively one can see that Theorem 5 is true; if a program has no repositories, then

there is no shared resource to be accessed nondeterministically by parallel tasks.
It has now been shown that Phred programs may be tested for nondeterminacy.

Furthermore, the tasks and repositories involved in the nondeterminacy will be identified

by the process. Next it must be shown that P, the set whose elements are sets of tasks
that may execute in parallel, can be found (Assumption 1).

3.2.1 Finding Parallel Tasks

The goal is to find all sets of nodes that could possibly run in parallel, that is. the

set P from Algorithm 1. In general, tasks that are on different branches of the same
disjunctive node could possibly run in parallel. Nodes within a pipe construct may
also run in parallel, but this case is dealt with later. Tracing the path to a node through
its conjunctive ancestors is the determinative feature of the algorithms presented here.
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Algorithm 2 is used to mark the nodes of a graph with labels that will be used by
Algorithm 3 to test if two nodes may execute in parallel.

Algorithm 2 Marking Phred graphs.

mark(n,s)

if n is already marked /* n,,, = 0 */

return

if n is a diverging conjunctive node
/* # inarcs = 1 and# outarcs > 1 *I
n.,* - s - concat(s.id)
for i - 1 to number-outarcs

mark(succ,, concat(s,i))
return

if n is a converging conjunctive node
/* # inarcs> 1 and # outarcs = *

n,, = head(s, length(s)-])
mark(succ., head(n,,.rk, length(n,.rk)-I))
return

if n is a terminator/* #outarcs = 0*/
n..r• = s

return

/* otherwise mark this node and its successors with s */
=~r s

for i= 1 to number-outarcs
marktsucci, s)

return

Algorithm 2 recursively traverses the graph, marking each node in the graph with
a string. This string is generated by the conjunctive branches taken to arrive at a node.
Thus. this string is in one sense a history of the branches a token must have taken to
reach a particular node. In Algorithm 2. succ (i) is the node at the end of the i'r out
arc. Also, id is the unique id of the node being marked.

The key to understanding the marking algorithm is that diverging conjunctive nodes
arc the only nodes that may specify parallelism (excluding pipe nodes which are dealt
with differently since pipe nodes remove precedence temporarily within th,"ir scopc).
The algorithm marks a node with a string indicating the branches from its ancestral
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conjunctive nodes that were taken to reach the node. For instance, the marking A1B2D2
indicates several things. A node with such a marking has conjunctive nodes A, B and
D as ancestors. Furthermore node A is an ancestor of node B and node B is an ancestor
of node D. A node with such a marking can be found on the first branch from node A
followed by the second branch from node B and the second branch from node D. Figure
6 illustrates this marking scheme. Diverging conjunctive nodes themselves are marked
with their predecessor's marking plus their unique node label, but no branch indicator
(since a conjunctive node is not on any of its own branches). A converging conjunctive
node is labeled in the same manner as its matching diverging conjunctive node. All
other nodes are simply marked with the same string as their immediate predecessor.

Once all nodes in a Phred graph are marked in the manner described here, the
question of whether two nodes may run in parallel can be answered. Algorithm 3
checks two nodes to see if they might be executed in parallel. The marking strings
for the nodes are compared from left to right, one character at a time. If the node
identification string is different, then the two nodes cannot run in parallel since the
nodes do not share a common conjunctive ancestor, and the checking may stop. If the
node id is the same then the checking must continue with the branch number. If the
node id is the same, but the branch number is different, then the nodes could execute
in parallel. If the node id is the same and the branch is the same then checking must
continue with the next node id and branch number. If there are no more markings left
to check and the question of parallel execution has not been decided. then the nodes
cannot execute in parallel.
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A: al

B:alb

:albl D:alb2d

E: albl F: alb2d1 G: alb2d2

H:albl (S D I,J,K:alb2d2

L: alb2dl

M:alb2d2

N:albl L b :alb2d

Q: aib

R:al

Figure 6: Example Phred graph with markings based on conjunctive node branches.
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Algorithm 3 Testing for Parallel Execution

/* a and b are the marking strings for two nodes *1

/* check each character in the strings a and b *1
i--O
while i < min(length(a),length(b))

/* if the node is different */
if a, =b

return SERIAL /* then return SERIAL */
-- i+l

/* if there is no more string left to check */

if i > min(length(a),length(b))
return SERIAL /* it must be SERIAL */

/* if the node is the same but
the branch is different */

if ai , bi
return PARALLEL /* it must be PARALLEL *1

-- i+l
/* it must be serial */

return (SERIAL);

Algorithms 2 and 3 will find nodes that may run in parallel because they are on
different branches of a common conjunctive node. This is not enough to tell if two
nodes may run in parallel. Nodes must be checked to see if they are within the same
pipe construct as well. This can also be done by marking the graph and then comparing
marking strings. Such a marking scheme can be carried out since pipe constructs are
always properly nested. Nodes in the graph are marked with a string showing which
pipe constructs contain the node. For instance, a node X with a marking of ALB would
indicate that the node is nested within pipe constructs A, L. and B. In such a case X
could possibly execute in parallel with any node whose pipe marking was a prefix of
ALB. Similarly any node which has ALB as a prefix of its marking could also execute
in parallel with X. Figure 7 shows a Phred graph containing nested pipe structures and
the pipe marking strings. Since the label for node C, b, is a prefix of the label for node
E, bd, it is possible for nodes C and E to run in parallel. Special rules apply to Begin
Pipe and End Pipe nodes. If the marking of a Begin Pipe or End Pipe node have the
exact same label as another node, then the nodes cannot run in parallel. For example in
Figure 7, nodes B and C cannot run in parallel since B is a Begin Pipe and C is a node
within its structure. If the marking for a Begin Pipe or End Pipe node is a prefix of the
marking for another node, then these two nodes cannot execute in parallel either. In
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A:

B:b : : F: :b H:b

NODE:pipemark

Figure 7: Example labels for pipe marking.

Figure 7, node H cannot run in parallel with node E since H is an End Pipe node and E
is a node within its structure. These rules are consistent with the definition of the Pipe
construct.

Using the pipe marking scheme in conjunction with Algorithms 2 and 3, the set
P, a set of sets of tasks which may run in parallel, can be found for a Phred graph.
Note that the conjunctive marking and the pipe marking can be carried out in a single
recursive pass over the graph. Once P has been found, Algorithm I can be used to find
any nondeterministic tasks and repositories in the Phred program.

Three assumptions were stated at the beginning of Section 3.2. The first assumption
is that the set P can be found. Methods for building P are given previously. The second
assumption is that Phred nodes do not share any resources other than those shown
in the Phred graph as a repository access. Since control flow nodes in the graph
represent procedures in a conventional language, it is possible that these procedures
call system routines that would violate assumption two. For instance, if two node
interpretations share variables through some low level system calls, all analysis at
the graph level is meaningless. The programmer must use only Phred constructs for
specifying parallelism and sharing data. The third assumption, that the task nodes are
determinate, is equivalent to good programming habits in serial code. This assumption
essentially states that use of uninitialized variables and the like may invalidate the
determinacy checking at a higher level. Therefore, we have now shown that given
several reasonable assumptions, Phred programs can be shown to be determinate.

The theories and algorithms developed in this section are used in the Phred pro-
gramming environment described next.
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4 The Phred Support System

4.1 Goals of the Tool

Phred is a useful programming language for expressing distributed programs, since
it inherently defines the architecture of the computation as well as the detaiis of the
computation. A window-based graphic tool has been designed and implemented to
provide a visual programming facility to be used with Phred. and to analyze Phred
programs as they are created.

The goals of the tools are to

"* implement an interactive Phred graph editor.

"* provide facilities to automatically analyze the graph for determinacy,

"* provide an execution environment for Phred programs.

Our prototype system meets these goals by implementing the programming en-
vironment in the context of the Olympus architecture [221, specifically using several
aspects of the BPG-Olympus implementation [21].

The Phred tool is itself a distributed program that provides a unique syntax-directed
editor that bypasses many of the annoyances ordinarily associated with syntax-directed
editors.

4.2 The Architecture

The Phred tool is designed as a collection of single backend and several frontend
modules that interoperate using message-passing protocols. The backend stores the
program as it is defined, and also provides a Phred execution environment. Node
interpreters extend the backend functionality by executing procedural declarations
associated with task nodes in the model.

A frontend performs an arbitrary filtering operation on the program stored in the
backend. The most obvious example of a frontend is an interactive editor for creating
and viewing the Phred graph. A frontend may also implement other functionality such
as parsing and analysis of the Phred program. compilation of the program, and s" on.

The frontend and the backend communicate over a general network using a spe-
cialized protocol. The protocol can be easily explained through a specific example:
suppose the editor in the frontend intends to define a node in the model (in behalf of the
user interacting with the editor). Then the editor uses the protocol to send a message
to the backend. specifying that a node should be added to the model. The backend
performs the action, then acknowledges the request by broadcasting a similar message
to all frontends indicating that a node should be added to the model. This causes the
editor portion of the frontend to physically display the node. Other frontends may use
this information as they see fit. Thus. each operation by the frontend is acknowledged
by the backcnd, once the backend has completed its side of the operation (storage. in
this case).
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There are several interesting properties from this design. First, the backend keeps
an internal representation of the model created by the fiontend that is separate from the
presentation used by the frontend (Figure 8(a)). For example, the frontend need not even
be a graphical frontend if that is not desirable. It may also use an arbitrary user interface
and visual representation scheme. The logical interpretation and the presentation of
the model and its execution are separated into model syntax and semantics. The model
syntax - the appearance of the model at a workstation screen - is implemented wholly
within the frontend, while the the model's semantics - the logical behavior of the model
- is implemented wholly within the backend.

Secondly, the frontend operation is asynchronous with respect to the operation of
the backend (Figure 8(b)). This allows one to construct a frontend that is independent
of the mode in which the backend operates. Editing operations can be performed at any
time, resulting in a message being sent to the (storage portion of the) backend.

Third, the backend makes few assumptions about the state and operation of the fron-
tend (Figure 8(c)). While it is convenient to describe the frontend process as we have
done above, the backend makes no assumption about the ultimate functionality imple-
mented in a frontend. For example, one frontend may simply send storage commands
to the backend. ignoring all acknowledgements; another may send a limited number of
commands to the backend, e.g.. console commands, yet act upon all commands that are
sent by the backend.

Fourth, the backend can simultaneously support multiple frontends (Figure 8(d)).
A configuration may have two or more frontends connected to a single backend. For
example, two identical frontends (running on distinct machines) might be connected
to a single, remote backend. Now each editing command by either frontend is echoed
to both frontends, allowing each frontend to represent the current state of the model
stored in the backend.

The components in the Phred tool are an editor-console frontend, a static analyzer
frontend (called the critic), inspired by work of Fischer and his colleagues [15], and
a backend execution environment for Phred programs. The tool takes advantage of
the multiple user capability of the backend by creating a second frontend process at
the user's workstation. The critic process is independent of the normal editor-console
frontend, and may be executed within " . same window system on the editor-console
machine (as indicated in Figure 9), or at any site on the network.

The Editor-Console Frontend The Editor-Console provides a mechanism for view-
ing and editing Phred graphs. In general, neither the editor nor the backend check the
syntax of the graph that is constructed by the user. Instead, the critic frontend accepts
program descriptions as they are echoed back to the editor, and constructs and analyzes
the resulting Phred graph.

The Critic The determinacy analysis is of fundamental importance to the utility of
Phred. It is also an aspect of the language that needs to be checked constantly, much
as one checks the syntax of the language. However, checking should not be intrusive,
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Figure 8: Views of the Olympus Architecture
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since its utility will quickly become more of a hindrance than an aide.
Syntax-directed editors for conventional programming languages have similar con-

straints (although the constraints are magnified in Phred due to the complexity of the
analysis); while they force users to construct syntactically correct programs, they tend
to be slow and annoying while the program is in an interim state of completion.

The editor incorporates a minimum amount of syntax-directed operation, e.g., if the
user draws an arc between a task node and a data flow node. the editor will determine
that the arc is a data flow arc rather than a control flow arc. However, the editor has no
knowledge of determinacy. or of the Phred graph syntax.

The critic is an asynchronous process that is able to analyze a formal graph to
determine if it is a syntactically correct Phred graph, and to assess its determinacy
properties.

An essential element of the Phred language is the ability to statically analyze the
control and data flow graphs for determinacy. The critic has been designed to:

"* Parse the graphs to determine if they are syntactically correct

"• Analyze syntactically correct graphs for determinacy

The critic infers the graph structure as it is being created by an editor. Whenever
the graph changes, the backend echoes the change to the editor and the critic. The
critic begins parsing the graph (the editor is a separate process, so this parsing operation
is independent of the editor - visually and with respect to monopolizing the editor
process). If, during analysis, the user changes the graiph. then the :,date will be
observed by the critic, causing it to begin parsing the program.

Once the critic has successfully parsed the graph, and there are no pending updates
to the graph from the backend, it analyzes the graph for determinacy. This analysis in-
volves checking for mutual noninterference under both the pipeline and the conjunctive
control flow conditions as described in Section 3.2.

Both the parsing and analysis are nontrivial algorithms - ones that would debilitate
the editor or the backend had they been implemented in either place. By implementing
parsing and analysis in an asynchronous frontend process, the editor and backend can be
used without irritating delays for analysis. In the simple case, the critic process may be
running on the same machine that implements the frontend or the backend. However.
since the system is implemented on top of sockets, the critic can be running on a third
machine, independent of the CPU cycles used by either the frontend or backend.

Execution Environments The prototype Phred execution environment is the BPG-
Olympus backend (21 ]. The Phred editor uses the unaltered BPG-Olympus backend to
store Phred graphs. Since a subset of Phred graphs are also legal BPGs, the backend can
be used execute this subset of Phred. Specifically ellipsis, pipe, and local repository
nodes are not supported by the prototype execution environment. Since the BPG
backend makes few assumptions about the frontends, it is unaware that the frontend
editor is a Phred editor instead of a BPG editor
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The backend is a two-level interpreter. At the first level, it interprets the token flow
in the control flow graph. At the second level, it executes the C node procedures. This
is accomplished by using the Sun RPC facility to bind the C procedure to the graph
interpreter We have used the low level RPC mechanism to allow the backend to initiate
a task procedure when the graph interpreter determines that this should happen, and to
accept the return from the RPC as a callback when the C procedure returns. This allows
the graph interpreter to support concurrent procedure execution across the control flow
graph.

However, the program is still interpreted at the token-graph level. Our preliminary
work indicates that it is possible to construct a compiler for Phred programs that will
translate the data structure stored in the backend into an equivalent procedural program
(with appropriate calls to operating system concurrency support primitives).

4.3 Using the Tool

The tool relies on the multiwindowing environment to take advantage of the critic for
syntax-directed editing. The graph server, editor, and critic are separate Unix processes
that may execute on any machines accessible over a network. The editor and critic each
have their own display windows.

Figure 9 illustrates a typical screen image when the editor and critic are running.
and in which the user has constructed a deterministic Phred graph. The editor window
is the larger window on the left, and the critic window is the top-level window on the
right. Since the windows are built in NEWS, it is easy to scale their contents. As a
result, the critic window can be made to be very small, or "full sized."

Suppose that the editing session resulted in the graph being illegal, i.e.. not satisfying
the grammatical rules for a well-formed Phred graph. Then the critic will determine
the condition and provide feedback to the user via its own window, see Figure 10.
The concentric circles drawn in the critic window tell the user that the graph is not
syntactically correct. This version of the Phred critic does not indicate where the
syntax error occurs.

Finally, suppose that the graph constructed in the editor window was legal but
possibly nondeterministic. Then the critic highlights the nodes involved in the possible
nondeterminacy. When the critic is running on machine with a color display, the
determinate portion of the graph is drawn in green on a black background and the
questionable nodes are drawn in red. Figure 11 is clipped image of the monochrome
representation of this case; the possibly nondeterminate nodes are drawn with dashed
lines.

5 Conclusions

The importance of determinacy in parallel programs can easily be overlooked by
programmers moving between the worlds of sequential and parallel programming.
In certain cases, algorithm designers rely on nondeterminacy to avoid unnecessary
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decision making (and synchronization), in cases where it is known that a correct result
can be obtained without retaining functional behavior Selecting a particular strategy
in a game-playing algorithm is an example of this approach.

However, we believe that determinacy is generally desirable. Race conditions
in nondeterministic situations are a major intellectual stumbling block for parallel
programmers, much as pointers are a major stumbling block for C programmers. Just as

strongly-typed languages attack the pointer problem, Phred attacks the nondeterminacy
problem.

In Phred, the graph model is the basis of the determinacy analysis. It also provides
a natural user interface for visual programming. Here. we believe that the top-down
approach of designing control and data flow (prior to supplying interpretations) is
naturally supported by the Phred graph. We expect that the software designer can

use the graphs to explore algorithms qualitatively, then annotate the graphs to produce
deterministic programs.

Phred has been carefully designed to incorporate components that are useful for
encoding parallel algorithms, and that can be combined in a manner that allows us
to check the program for determinacy. We do not make any strong argument for the
completeness of the language, except to point out that it incorporates primitives found
in many other parallel languages. Previous papers [3. 6] illustrate Phred's utility by

presenting a variety of parallel programs expressed in Phred.
The Phred system was built as a prototype, the software was not developed to the

state where it could be distributed to users. A similar follow on system. HeNCE [4. 51
is freely available. Ho,.vevcr, ihe HENCE system does not yet support determir:a.'y
checking features or the data flow graph provided by Phred.

This paper describes the Phred programming language, determninacy analysis tech-

niques, and the realization of these concepts in the Phred programming environment.
Phred is unique in its combination of a visual parallel programming language. a determi-
nacy analysis critic, and a distributed implementation of a programming environment.
We hope that the concepts demonstrated by the Phred system will somc day make it

into production tools for parallel and distributed programming.
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