
Form Approved5MTI PAGE OM No 0704-C088

1.AEC S NL Laeba K tV IL .tvAiuTE 13.REPORT TYPE AND DATES COVERED7 GE CY Uý O L ( eae la k MAY 1993I THE FU DN INS/BERS
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

A Modified Two-Fluid Model of Conductivity for
uperconducting Surface Resistance Calculation

6. AUTHOR(S)

Derek S. Linden

7. PERFORMING ORGANIZATiON NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

AFIT Student Attending: Massachusetts Institute of AFIT/CI/CIA- 93-077
Technology

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING ,'MONITORING

DEPARTMENT OF THE AIR FORCE AGENCY REPORT NUMBER
AFIT/CI D IC
2950 P STREET

11. SUPPLEMENTARY NOTES 
oww C

12a. DISTRIBUTION I AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for Public Release IAW 190-1
Distribution Unlimited
MICHAEL M. BRICKER, SMSgt, USAF
Chief Administration

13. ABSTRACT (Maximum 200 words)

93-18071

S14. SUBJECT TERMS 15. NUMBER OF PAGES14. UBJCT TRMS130

it. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

NSN 7540-01-280-5500 Standard -arrm 298 (Rev 2-891



Abstract

Title: A Modified Two-Fluid Model of Conductivity for Superconducting Surface
Resistance Calculation

Author: Derek S. Linden

Rank and branch: 2d Lt, USAF

Date: 1993

Number of pages: 130

Degree awarded: Master of Science in Electrical Engineering and Computer Science

Institution: The Massachusetts Institute of Technology

The traditional two-fluid model of superconducting conductivity was modified to

make it accurate, while remaining fast, for designing and simulating microwave devices.

The modification reflects the BCS coherence effects in the conductivity of a

superconductor, and is incorporated through the ratio of normal to superconducting

electrons. This modified ratio is a simple analytical expression which depends on

frequency, temperature and material parameters. This modified two-fluid model allows

accurate and rapid calculation of the microwave surface impedance of a superconductor in

the clean and dirty limits and in the weak- and strong-coupled regimes. The model

compares well with surface resistance data for Nb and provides insight into Nb3 Sn and

Y1Ba2 Cu 3 O7 _5. Numerical calculations with the modified two-fluid model are an order

of magnitude faster than the quasi-classical program by Zimmermann [1], and two to five

orders of magnitude fa ter than Halbritter's BCS program [2] for surface resistance.

Accesior For

Bibliography N TIS CRA&I
fC TAB

"-1Ow-raed 0

I ~
[1] Zimmermann, W., E.H. Brandt, M. Bauer, E. Seider and L. Genzel. "Optical
conductivity of BCS superconductors with arbitrary purity." Physica C. Vol 183, pp. 99-
104, 1991. I,,, I

A ,,cddiuity (7.i ,dts

D7?.C •Tt."y "'" 3 r~T-7qT::'f:.T) *3 A, ,i ,o• • ... )lqt"•HtCIAa



Abstract

Title: A Modified Two-Fluid Model of Conductivity for Superconducting Surface
Resistance Calculation

Author: Derek S. Linden

Rank and branch: 2d Lt, USAF

Date: 1993

Number of pages: 130

Degree awarded: Master of Science in Electrical Engineering and Computer Science

Institution: The Massachusetts Institute of Technology

The traditional two-fluid model of superconducting conductivity was modified to

make it accurate, while remaining fast, for designing and simulating microwave devices.

The modification reflects the BCS coherence effects in the conductivity of a

superconductor, and is incorporated through the ratio of normal to superconducting

electrons. This modified ratio is a simple analytical expression which depends on

frequency, temperature and material parameters. This modified two-fluid model allows

accurate and rapid calculation of the microwave surface impedance of a superconductor in

the clean and dirty limits and in the weak- and strong-coupled regimes. The model

compares well with surface resistance data for Nb and provides insight into Nb3 Sn and

Y 1Ba2 Cu 3 O7 _,. Numerical calculations with the modified two-fluid model are an order

of magnitude faster than the quasi-classical program by Zimmermann [1], and two to five

orders of magnitude faster than Halbritter's BCS program [2] for surface resistance.

Bibliography

[1] Zimmermann, W., E.H. Brandt, M. Bauer, E. Seider and L. Genzel. "Optical
conductivity of BCS superconductors with arbitrary purity." Physica C. Vol 183, pp. 99-
104, 1991.



[2] Halbritter, J. Kemforschungszentrum Karlsruhe Externer Bericht 3/70-6 Karlsruhe:
Institute flier Experimentelle Kemphysik, Juni 1970.

[3] J.G. Bednorz and K.A. Mueller. Z. Phys. B. Vol 64, p. 189, 1986.

[4] Hammond, Robert B., Gregory L. Hey-Shipton and George L. Matthaei. "Designing
with Superconductors." IEEE Spectrum. Vol 30, no 4, pp. 34-39, April, 1993..

[5] Withers, Richard S. "Wideband Analog Signal Processing" Superconducting Devices.
Steven T. Ruggiero and David A. Rudman, ed. Boston: Acad. Press, Inc., 1990. pp. 228-
272.

[6] Griffiths, David J. Introduction to Electrodynamics. 2nd ed. New Jersey: Prentice
Hall, 1989.

[7] Orlando, Terry P. and Kevin A. Delin. Foundations of Applied Superconductivity.
Reading, Mass.: Addison-Wesley Publishing Co., 1991.

[8] Kittel, Charles. Introduction to Solid State Physics. 6th ed. New York: John Wiley and
Sons, Inc., 1986.

[9] Tinkham, Michael. Introduction to Superconductivity. Malibar, Florida: Robert E.
Krieger Publishing Co., 1980.

[10] Hinker, Johann H. Superconductor Electronics: Fundamentals and Microwave
Applications. Berlin: Springer-Verlag, 1988.

[ 11] Muehlschlegel, Bernhard. "The Thermodynamic Functions of the Superconductor."
Zeitschrififuer Physik. Vol 155, pp. 313-327, 1959.

[12] Mattis, D.C. and J. Bardeen. Phys. Rev. Vol 111, p. 412, 1958.

[13] Abrikosov, A.A., L.P. Gor'kov and I.M. Khalatnikov. Eksp. Teor. Fiz. Vol 35, p.
265, 1958. [Soy. Phys.-JETP Vol 8, 1959. 182.]

[14] Tumeaure, J.P., J. Halbritter and H.A. Schwettman. "The Surface Impedance of
Superconductors and Normal Conductors: The Mattis-Bardeen Theory." Journal of
Superconductivity. Vol 4, no 5, pp. 341-355, 1991.

[15] Tumeaure, J. PhD Dissertation. Stanford University, 1967.



[16] Abrikosov, A.A., L.P. Gor'kov, and I. Yu. Dzyaloshinskii. Quantum Theoretical
Methods in Statistical Physics. New York: Pergamon Press, 1965.

[17] D.C. Carless, H.E. Hall and J.R. Hook. "Vibrating Wire Measurements in Liquid
3 He: II. The Superfluid B Phase." Journal of Low Temperature Physics. Vol 50, Nos 5/6,
pp. 605-633, 1983.

[18] Ashcroft, Neil W. and David N. Mermin. Solid State Physics. Philadelphia: W. B.
Saunders Co., 1976.

[19] Gorter, C.J. and H.G.B. Casimir. Phys. Z., Vol 35, 1934. 963.[21] London, F.
Superfluids: Macroscopic Theory of Superconductivity. Vol 1. Dover Pulications, Inc.,
1961.

[20] Puempin, B., H. Keller, W. Kuendig, W. Odermatt, I.M. Savic, J.W. Schneider, H.
Simmler, P. Zimmermann, E. Kaldis, S. Rusiecki, Y. Maeno and C. Rossel. "Muon-spin-
rotation measurements of the London penetration depths in YBa2 Cu 3 06.9 7 ." Physical
Review B. Vol 42, no 13, pp. 8019-8029, 1 November 1990.

[21 ] London, F. Superfluids: Macroscopic Theory of Superconductivity. Vol 1. Dover
Publications, Inc., 1961.

[22] Orlando, T.P., E.J. McNiff, S. Foner and M.R. Beasley. "Critical fields, Pauli
paramagnetic limiting, and material parameters of Nb3 Sn and V3 Si." Phys. Rev. B. Vol
19, no 9, pp. 4545-4561,1 May 1979.

[23] Bonn, D. A., P. Dosanjh, R. Liang and W.N. Hardy. "Evidence for Rapid
Suppression of Quasiparticle Scattering below Tc in YBa 2 C3 0 7.5.'" Physical Review
Letters. Vol 68, no 15, pp. 2390-2393,13 April 1992.

[24] Berlinski, A. John, C. Kallin, G. Rose and A.-C. Shi, at the Institute for Materials
Research and Department of Physics and Astronomy, McMaster University, Hamilton,
Onterio. "Two-Fluid Interpretation of the Conductivity of Clean BCS Superconductors."
Submitted to Phys. Rev. B. on 5 March, 1993.

[25] Siebert, William McC. Circuits, Signals and Systems. Cambridge, MA: The MIT
Press, 1986.

[26] Andreone, Antonello and Vladimir Z. Kresin. "On Microwave Properties of High-Tc
Oxides." Presented at the Applied Superconductivity Conference, Chicago, August 1992.

[27] Piel, H. and G. Mueller. "The Microwave Surface Impedance of High-Tc
Superconductors." IEEE Trans. onMag. Vol 27, no 2, pp. 854-862, March 1991.



[28] Lyons, W. G. "Surface Resistance (After Piel, U. Wuppertal)" Internal Slide for MIT
Lincoln Laboratory #2325B TCLGS/aml.

[29] Werthamer, N. R., in Superconductivity. R. E. Parks, ed. New York: Marcel Dekker,
1969. Vol 2, p. 321.



Addendum: The author hereby grants to the United States Air Force permission to
reproduce and to distribute publicly copies of this thesis document in whole or in part.



A Modified Two-Fluid Model of Conductivity for Superconducting Surface
Resistance Calculation

by

Derek S. Linden

B.S., Applied Physics
United States Air Force Academy

1991

Submitted to the Department of
Electrical Engineering and Computer Science

in Partial Fulfillment of the Requirements
for the Degree of

Master of Science
at the

Massachusetts Institute of Technology
May, 1993

© Derek S. Linden 1993
All rights reserved

The author hereby grants to MIT permission to reproduce and to
distribute publicly copies of this thesis document in whole or in part.

Signature of Author
Department of Elect•rical Engineering and Computer Science

Certified by ij .

/, :' / Profosgor Terry P. Orlando
/,-.....• / "' / /.- Thesis Supervisor

Accepted by

Z .. ha .m•an, D Campbell L. Searle
-- L., / hairman, Departmental Committee



2



Abstract

A Modified Two-Fluid Model of Conductivity for Superconducting Surface
Resistance Calculation

by

Derek S. Linden

Submitted to the Department of Electrical Engineering and Computer Science
on May 7, 1993 in partial fulfillment of the requirements

for the Degree of Master of Science in Electrical Engineering and Computer Science

The traditional two-fluid model of superconducting conductivity was modified to

make it accurate, while remaining fast, for designing and simulating microwave devices.

The modification reflects the BCS coherence effects in the conductivity of a

superconductor, and is incorporated through the ratio of normal to superconducting

electrons. This modified ratio is a simple analytical expression which depends on

frequency, temperature and material parameters. This modified two-fluid model allows

accurate and rapid calculation of the microwave surface impedance of a superconductor in

the clean and dirty limits and in the weak- and strong-coupled regimes. The model

compares well with surface resistance data for Nb and provides insight into Nb3 Sn and

Y1Ba2Cu 3074. Numerical calculations with the modified two-fluid model are an order

of magnitude faster than the quasi-classical program by Zimmermann [1], and two to five

orders of magnitude faster than Halbritter's BCS program [2] for surface resistance.

Thesis Supervisor: Terry P. Orlando
Title: Professor of Electrical Engineering

3



4



Contents

1 Introduction 17
1.1 M otivation ......................................................................................... . . 17
1.2 Surface R esistance ............................................................................... 19

2 The BCS Model Programs 23
2.1 Introduction ......................................................................................... 23
2.2 BCS Conductivity and Surface Impedance Calculations ........................ 25

2.2.1 The Zimmermann Program .................................................... 26
2.2.2 The Halbritter Program ........................................................... 31

3 The Two-Fluid Models 35
3.1 Introduction ......................................................................................... 35
3.2 Two-Fluid Models-Overview ............................................................. 35
3.3 The Traditional M odel ........................................................................ 40
3.4 The Modified Two-Fluid Model .......................................................... 42

3.4.1 Param eter Relationships ......................................................... 43
3.4.2 The Temperature Dependence of X2 (T) .................... 45
3.4.3 The Cutoff Frequency ........................................................... 46
3.4.4 The Normal-Total Electron Ratio iQ(o,T) .............................. 47
3.4.5 The Sum Rule and Kramers-Kronig Relationships .................. 52

4 Surface resistance results 57
4 .1 Introduction ....................................................................................... . . 57
4.2 Comparison to BCS Calculations .................................. 57

4.2.1 Surface Resistance Comparison of BCS and MTF Models .......... 60
4.2.2 Surface Reactance Comparison of BCS and MTF Models ......... 68

4.3 Comparison of BCS and MTF Models to Another Model ..................... 77
4.4 Com parison to N iobium ........................................................................ 79
4.5 C om parison to N b3 Sn .......................................................................... 83
4.6 Comparison to Y1Ba 2 Cu 3 O7 . .............................. . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 87

5 Summary 91

B ib lio g ra p h y ................................................................................................................ 9 3
Appendix A: Comprehensive List of Eouations for the MTF Model ............................ 97

5



Appendix B: Pascal Code Translation of Zimmermann Program [1] .......................... 101
Appendix C: FORTRAN and C code for Halbritter's BCS Surface Impedance

P ro gram [2 ] ....................................................................................... 10 7
Appendix D: The Transport Scattering Time and Normal-Total Electron Ratio from

T he Sum R ule .................................................................................... 127

6



List of Figures

1. 1 Electromagnetic wave in linear media incident to superconductor. X refers to
the magnetic penetration depth of the superconductor .......................... 19

2.1 Comparison of Pascal program to FORTRAN program output from [1]. Input
parameters to both programs are identical, and listed above. Figures are from
[1]................................................................................. 28

2.2 Anomalous output of Zinmmermann program. Frequency dependence is on a
logarithmic scale; temperature dependence is on a linear scale. Material
parameters: A0 = 7.6meV, Ac/kBTc = 1. 75, ao = 8 * 10 (p-m)1, and E,0/1
= 1/35.16 .......................................................................... 30

3.1 Lumped Circuit Representation of the Two-fluid Model. LPF =low pass filter
(ideal), HPF = high pass filter (ideal)............................................. 39

3.2 'i1MTF((o,T), 11BCS(oQ,T) from [11 and i'p(T) versus (o. (oc=6.Tfz,
T=0. STc, mean free path I = 2nm, coherence length 40=2n1Th penetration
depth X(0) =l4Onm, Ac,/kBTc=l .75............................................. 42

3.3 Various theoretical temperature dependencies of X2(0)/A.2(T) (after
Figure 9 in [20])................................................................... 46

3.4 Tj(o),T) of the MTF model vs. temperature and frequency........................ 48

3.5 ijmF(o,T), 114(),T) [10] and 1nTF(T) versus T. Frequency = IGHz, mean free
path I =2rnm, coherence length 40 =2nm, penetration depth X(0) = 140rnm,
AO/kBTc=1.75 ..................................................................... 50

3.6 %TF(oi),T), TIH((j,T) [10] and T1TF(T) versus Co. Coc=6. 4THz, T=0.5Tc, mean
free path I = 2nni, coherence length 40=2nm, penetration depth X(0)=
l4Onm, Ao/kBTcl1. 7 5 .......................... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

7



4.1 "Parameter space" representation of the comparisons of the MTF model with
the BCS calculations. Each point indicates a set of parameters where a
comparison was made. Each point with a circle around it corresponds to a
figure graphically comparing the BCS and MTF model calculations for that
set of param eters ...................................................................................... 59

4.2 Weak-clean comparison to BCS calculations (using [2]) from 0.022Tc to
0.9 4 Tc. Penetration depth temperature dependence is proportional to
(I-(T/Tc) 3 -T/Tc)-1/ 2 . Ao/kBTc= 1.75, .(0) = 140nm, ýo= 2nm, 1 = 200nm,
Frequency = 10G H z .................................................................................. 60

4.3 Weak-dirty comparison to BCS calculations (using [2]) from 0.0 2 2 Tc to
0.9 4 Tc. Penetration depth temperature dependence is proportional to
(I-(T/Tc)3-T/Tc)-l/2. Ao/kBTC= 1.75, .(0) = 140nm, o-= 2nm, I = 0.02nm,
Frequency = 10G H z .................................................................................. 61

4.4 Strong-clean comparison to BCS calculations (using [2]) from 0.022Tc to
0.9 4 Tc. Penetration depth temperature dependence is proportional to
(I-(T/Tc) 3 -T/Tc)-l/ 2 . Ao/kBTc= 2.75, ),(0) = 140nm, ýo= 2nm, I = 200nim,
Frequency = 10G H z .................................................................................. 61

4.5 Strong-dirty comparison to BCS calculations (using [2]) from 0.022Tc to
0.9 4 Tc. Penetration depth temperature dependence is proportional to
(I-(T/Tc) 3 -T/Tc)-l/ 2 . Ao/kBTc= 2.75, ,(0) = 140rnm, to= 2nm, I = 0.02rim,
Frequency = I 0G H z .................................................................................. 62

4.6 Mid-range comparison to BCS calculations (using [2]) from 0.0 2 2 Tc to
0.9 4 Tc. Penetration depth temperature dependence is proportional to
(I-(T/Tc) 3 -T/Tc)-l/ 2 . Ao/kBTc= 2.25, X(0) = 140nm, ýo= 2nm, I = 2nm,
Frequency = 10G H z .................................................................................. 62

4.7 MTF model surface resistance/BCS surface resistance mean comparison for
clean to dirty and strong to weak parameters. The mean is taken across a
temperature range from 0.0 2 2 Tc to 0.94T Penetration depth temperature
dependence is proportional to (I-(T/Tc)3-/c)- 1/2. X(0) = 140nm, ý0=
2nm , Frequency = 10GHz ......................................................................... 63

4.8 Weak-clean comparison to BCS calculations (using [2]) from 0.0 2 2 Tc to
0.9 4 Tc. Penetration depth temperature dependence is proportional to
(I-(T/Tc) 4 )-I/ 2 . Ao/kBTc= 1.75, X(0) = 140nm, 4o= 2nm, I = 200nm,
Frequency = I 0G H z .................................................................................. 64



4.9 Weak-dirty comparison to BCS calculations (using [2]) from O.022Tc to
O.94TC. Penetration depth temperature dependence is proportional to
(1-(T/Tc) 4 )-1 /2 . AcAkBTc= 1.75, X(0) =l4Onm, to 2nm, 1 = 0.O2nm,
Frequency = 10OGHZ ................................................................ 65

4.10 Strong-clean comparison to BCS calculations (using [2]) from O.O22TC to
O.94 Tc. Penetration depth temperature dependence is proportional to
(1-(T/Tc) 4 )I1/2 . Ao/kBTc= 2.75, X(0) = l4Onm, to= 2nm, 1 = 200nim,
Frequency = 10GHZ ................................................................ 65

4.11 Strong-dirty comparison to BCS calculations (using [2]) from O.O22TC to
O.9 4 Tc. Penetration depth temperature dependence is proportional to
(I1-(T/Tc) 4 )- 1/2. Ao/kBTC= 2.75, X(0) = l4Onm, to= 2nm, I1= 0.O02nm,
Frequency = 10OGHz ................................................................ 66

4.12 Mfid-range comparison to BCS calculations (using [2]) from O.O2 2Tc to
O.9 4Tc. Penetration depth temperature dependence is proportional to
(1-(TITc) 4 )-1/2 . Ao~/kBTc 2.25, X(0) = l4Onm, to= 2nm, 1 = 2nm,
Frequency = 10GHz ................................................................ 66

4.13 MTF model surface resistancefBCS surface resistance mean comparison for
clean to dirty and strong to weak parameters. The mean is taken across a
temperature range from 0.0 2 2T, to 0. 94Tc, Penetration depth temperature
dependence is proportional to (1-(TITc) 4 ) 1 2 .X(0) = l4Onm,to= 2nm,
Frequency= 10OGHZ ................................................................ 67

4.14 Weak-clean comparison to BCS calculations (using [2]) from 0.0 2 2Tc to
O.9 4Tc. Penetration depth temperature dependence is proportional to
(1_(T/Tc) 3 ..T/Tc)..l/ 2 . Ao/kBTc= 1,75, X(0) = l4Onm, to= 2nm, I = 200nm,
Frequency = 10GHZ ................................................................ 69

4.15 Weak-dirty comparison to BCS calculations (using [2]) from O.O2 2Tc to
O.9 4 Tc. Penetration depth temperature dependence is proportional to
(I -(T/Tc)3 -T/Tc)- 1/2. Ao/kBTe 1,75, X(0) = l4Onm, to= 2nm, I = 0.O2nm.,
Frequency= 10OGHZ ................................................................ 69

4.16 Strong-clean comparison to BCS calculations (using [2]) from O.O22 Tc to
O.94 Tc. Penetration depth temperature dependence is proportional to

(I1-(T/Tc) 3 -T/Tc)- /2 . Ao/kBTc= 2.75, X(0) = l4Onm, to= 2nm, I = 200nm,
Frequency = I10GHZ................................................................170

4.17 Strong-dirty comparison to BCS calculations (using [2]) from O.O2 2 Tc to
O.9 4Tc. Penetration depth temperature dependence is proportional. to

(1_(T/Tc)3 ..T/Tc)-l/ 2 . Ao/kBTc= 2.75, X(0) = l4Onm, to 2nm, I = 0.O2nm,
Frequency = 10OGHZ ................................................................ 70

9



4.18 Mid-range comparison to BCS calculations (using [2]) from 0.022TC to
0.9 4 Tc. Penetration depth temperature dependence is proportional to

(1-(T/Tc)3-T/Tc)-1/2. Ao/kBTc= 2.25, X(0) = 140nri,, o= 2nm, 1 = 2nm,
Frequency = 10G H z .................................................................................. 71

4.19 Weak-clean comparison to BCS calculations (using [2]) from 0.0 2 2 Tc to
0. 9 4 Tc. Penetration depth temperature dependence is proportional to
(1-(T/Tc)4 )-1 /2 . Ao/kBTc= 1.75, X(0) = 140ni, to= 2nm, 1 = 200nm,
Frequency = 10GH z .................................................................................. 72

4.20 Weak-dirty comparison to BCS calculations (using [2]) from 0.0 2 2 Tc to
0.94TC. Penetration depth temperature dependence is proportional to
(1-(T/Tc) 4 )-1/ 2 . Ao/kBTc= 1.75, X(0) = 140nm, to= 2rn, 1= 0.02nm,
Frequency = 10G H z .................................................................................. 73

4.21 Strong-clean comparison to BCS calculations (using [2]) from 0.02 2 Tc to
0.9 4 Tc. Penetration depth temperature dependence is proportional to
(1-(T/Tc) 4 )-1 /2 . Ao/kBTc= 2.75, X(0) = 140nm, to= 2nm, 1 = 200nm,
Frequency = 10G H z .................................................................................. 73

4.22 Strong-dirty comparison to BCS calculations (using [2]) from 0.022Tc to
0.9 4 Tc. Penetration depth temperature dependence is proportional to
(1-(T/Tc) 4 )-l/ 2 . Ao/kBTc= 2.75, X(0) = 140nm, to= 2nm, 1 = 0.02nm,
Frequency = 10G H z .................................................................................. 74

4.23 Mid-range comparison to BCS calculations (using [2]) from 0.02 2 Tc to
0.9 4 Tc. Penetration depth temperature dependence is proportional to
(I-(T/Tc) 4 )-1 /2 . Ao/kBTc= 2.25, X(0) = 140nmi, to= 2nmi, I = 2nm,
Frequency = 10G H z .................................................................................. 74

4.24 Comparison of BCS calculations of [2] to MTF and model presented by

Andreone and Kresin [26]. l<<,o (i.e. dirty limit), Frequency = 10GHz and
gap frequency = 7THz. Ao/kBTc = 1.76 ................................................... 78

4.25 Comparison of Nb data to BCS model [2]. Ac/kBTc=1.97, Tc=9.2K,

X(0)=28.3nm, XL,0= 2 1.7nm, p0 =0.32pfl-cm, 1=56. 1nm, ,o=39nm. Data
from [2 7] ................................................................................................. . . 80

4.26 Comparison of Nb data to BCS model, TTF model and MTF model.

Ao/kBTc=l.97, Tc=9.2K, X(0)=28.3nm, XL,0= 2 1 .7nm, po=0.32)fl-cm,
1=56. lnmn, .,0 =39nm . Data from [27] ........................................................ 81

10



4.27 Fit of TTF model to Nb data from [27]. Given parameters into TTF model:
Ao/kBTc=I.97, Tc=9.2K, ýo=39nm. Adjusted to fit data: X(0)=50nm, 0o=

40* 108 (Q-m) 1 (or po=0.025iifl-cm), 1=361 nm .................................... 82

4.28 Nb3 Sn compared with BCS theory, the TTF model, and MTF model.
Ao/kBTc=2 .2, Tc=18K, X(0)=75.9nm, XL,0=29.3nm, po=100pf-cm, 1=1nm,
4o=5. 7nm. Data and parameters from [27], except for X(0), which was
derived from [I] and the other parameters ................................................. 84

4.29 Attempt to fit Nb3Sn data from [27] with BCS theory, the TTF model, and
MTF model. Inputs are: Ao/kBTc=l.88, Tcl8K, X(0)=75.9nm,
XL, 0=2.48nm, po=10ptl-cm, 1=0.0061nm, ý0 =5.7nm ............................. 85

4.30 Nb3 Sn compared with BCS theory, the TTF model, MTF model and
Adjusted MTF model using (4.1) for il((o,T). Ao/kBTc=2.2, Tc=18K,
X(0)=75.9nm, XL,0=29.3nm, po=10j.tfp-cm, l=lnm, 4o=5.7nm. Data and
parameters from [27], except for X(0), which was derived from [1] and the
other param eters ....................................................................................... 86

4.31 Comparison of MTF model to BCS model, TTF model, and data from
Lincoln Laboratory, et al. [28] Numbers used for calculations: Tc = 91.8K,
Ao/kBTc = 1.75, X(0)= 140nm, p = 71.4 1A2-cm, 40= 2.0nmn, 1 = 2.55nm.
After Piel and M ueller [27] ...................................................................... 87

4.32 Transport scattering time vs. temperature from Bonn, et al. and MTF model
to give fit in Figure 4.33 .......................................................................... 89

4.33 Surface resistance data from Bonn, et al. compared with TTF, MTF and
MTF with scattering time in previous figure. Parameters used for curves: Tc
= 91.5K, Ao/kBTc = 1.76, XL,0(0)= 58nm, p(91.5K) = 49.5 p.f)-cm,
penetration depth temp. dependence proportional to (I-(T/Tc) 3-T/Tc)- 1/2 ..... 89

D. I X(0) / XL,0 versus 4o / 1, using four methods of finding this relationship:
Tinkham's equation (equation (3.25)), the Gor'kov relations [29], the sum
rule method, and Zimmermann's BCS program (from [1]). The ratio of 0 / I
goes from clean to dirty going left to right. At larger ýo / I, the Zimmermann
and Tinkham methods are nearly identical, as are the sum rule and Gor'kov
m etho d s . ...................................................................................................... 12 9

D.2 Comparison of l((o,T) from sum rule method and from TTF model. 4o/1 for
the clean limit is 0.0124, while for the dirty limit it is 12.4 ............................. 130

11



12



List of Tables

4.1 MTF model surface resistance/BCS surface resistance mean comparison for
clean to dirty and strong to weak parameters. The mean is taken across a
temperature range from 0.0 2 2 Tc to 0 94T Penetration depth temperature
dependence is proportional to (1-(T/Tc)3T/Tc)"1/2. X(O) = 140nm, to=
2rm , Frequency = I 0GH z .......................................................................... 71

4.2 MTF model surface resistance/BCS surface resistance mean comparison for
dirty to clean (left to right) and strong to weak parameters. The mean is
taken across a temperature range from 0.0 2 2 Tc to 0.94T Penetration depth
temperature dependence is proportional to (1-(T/Tc)4)"/2. X(O) = 140nm,
to= 2nm , Frequency = 10GHz ................................................................... 75

13



14



Acknowledgments

I would like to thank Professor Terry P. Orlando for his consent to be my thesis advisor,

his intrerest in me even before graduating from the Academy, and his constant support and

patience. I thank him for sending me to the Applied Superconductivity Conference and the

American Physical Society conference, and giving me a place to go for Thanksgiving. I am

indebted to him for his able assistance and interest in this academic research and many

other areas of my life. I would also like to thank Dr. W. Gregory Lyons of Lincoln

Laboratory who was a great help in guiding my research and in writing it down, and gave

me excellent advice and resources at the lab.

I thank the Fannie and John Hertz Foundation for providing the funding for my

education at MIT, and their excellent staff who made sure the money came in on time. In

addition, this work was conducted under the auspices of the Consortium for

Superconducting Electronics with partial support by the Defense Advanced Research

Projects Agency (Contract No. MDA972-90-C-0021).

I would like to thank the Air Force for allowing me the time to work on a Master's

Degree while on active duty, and I acknowledge the excellent staff at AFIT/CISS,

especially both of my program managers: Lt Col Waller and Maj Hogan.

I would like to thank the truly professional technicians at Lincoln Laboratory,

particularly Rene R. Boisvert and Robert P. Konieczka. I thank Rene for his help in

teaching me how to operate the lab equipment and computer programs, and for taking

time out to help me when I got stuck. Thanks to Robert for helping with the lab

equipment and fixing items that were not working.

Thanks to Dr. Kevin A. Delin who freely gave me advice on how to get along at

MIT when I first arrived. Thanks, too, to Rebecca, my fiancee, who supported and

encouraged me, and helped to edit this document. I thank my Mom and Dad who gave me

15



my start in life and the support and excellent advice which allowed me to end up here.

Finally, I acknowledge God who not only loaned me the talent and abilities

necessary to complete this degree, but put me in the right circumstances so that I am

where I am today. He is, at the root, responsible for all the acknowledgements above. In

addition, He has provided for an eternity spent with Him through the death and

resurrection of His Son, which is infinitely more than I deserve.

16



Chapter 1

Introduction

1.1 Motivation

Research and development performed on superconducting devices has accelerated since

the discovery of high-temperature superconductors in 1986 [3]. One goal of this research

is to develop devices which will have lower losses and better operating characteristics than

normal metal devices. While the technology to fabricate such devices is new, expensive,

and difficult to use with consistently good results, many devices are being designed, built

and tested. As with other fabrication technologies, it is desirable to simulate these devices

before they are actually built to save time and money [4].

One area in which simulation is particularly desirable is in microwave devices.

Though resistive losses are much lower in superconducting microwave devices than in

normal devices [5], they are not negligible. A value for the surface impedance, when

coupled with the geometry of the device, tells the designer the expected resistive loss and

reactive inductance and thus much about its expected performance. However, the surface

impedance changes with the material parameters, the operating temperature, and the

operating frequency.

Any model which will be used to determine the surface impedance must to be

accurate over a wide range of material parameters, temperatures and frequencies in order
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to be useful to Computer Aided Design (CAD). In addition to accuracy, speed is required

so that the design can proceed at a reasonable rate. Thus, a means of calculating the

surface impedance both accurately and quickly over a wide range of frequencies,

temperatures, and material parameters is necessary.

Until now, no models existed that were both fast and accurate over a wide range

of material parameters, temperatures and frequencies. The traditional two-fluid model,

described in Chapter 3, is widely used as a first-order approximation for the surface

resistance because it is fast, simple, intuitive and analytical. However, it ignores the energy

gap, does not use the correct temperature dependence of the penetration depth, and does

not take into account coherence effects. Hence, it is inaccurate, particularly at the lower

end of the microwave regime (shown in Chapter 4).

On the other hand, a model which implements the Bardeen-Cooper-Schreiffer

(BCS) theory of superconductivity is accurate for many conventional superconductors, but

the equations of the BCS model are often not intuitive and require time-consuming

numerical algorithms.

For applications such as CAD, then, a model is needed which incorporates the

accuracy of the BCS theory with the speed and intuitive nature of the two-fluid model. In

particular, microwave circuit design needs models for surface resistance which will allow

rapid calculation and also give further insight into the operation of superconductors. In

this thesis we present the results of our research: a Modified Two-Fluid (MTF) model for

conductivity which has the desired characteristics for CAD applications and is optimized

for frequencies at or below the microwave regime.
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1.2 Surface Resistance

Surface resistance is the real component of the surface impedance. We will now derive the

expression for the surface impedance, beginning with Maxwell's equations. Let us assume

there is a transverse magnetic (TM) electromagnetic wave in a linear medium incident to a

superconductor, as shown in Figure 1.1.

E

H Incident TM wave

SUij=Ho ýq

1 IH --O
Superconductor

Figure 1.1. Electromagnetic wave in linear media incident to superconductor. X refers to
the magnetic penetration depth of the superconductor.

Ampere's Law for linear media is [6]:

VxH=J+J dE/A (1.1)

Without loss of generality, we will assume that H and E are plane waves, that is,

JHF- Hoexpj(o(t-k-r)] and 1E1= Eoexp0((ot-k-r)]. (We lose no generJity because the same

arguments hold for any superposition of plane waves. Because every electromagnetic

wave is a superposition of certain plane waves, we can apply the following argument in

general.)

The above assumption implies that equation (1.1) can be written as

VxH= J+jcogE

Recall that Ohm's Law is J = oE, which implies
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V x H = A+jo6 = jo..e(l-jo'/c 6)]E = joffE (1.2)

which is Ampere's law in a dielectric with a dielectric constant, Seff-

Since both of the resulting vectors on either side of equation (1.2) are in the same

direction, and IV x HI = H 0jke ,"',t-k,'r, we can write

j ao)S E eJ(e -kr) = HI jke j(aw-k"r)
ff 0

The ratio of IEIIHI is then

k / coe=ff Eo / H0  (1.3)

Next we use the following boundary conditions:

n-(H,- H)=0
n x (H, -H)= Ks

along with the knowledge that beyond the penetration depth, the magnetic field inside the

superconductor (Hs) is nearly zero [7] as shown in Figure 1.1. We can therefore treat the

current in the superconductor that results from the incident wave as a surface current.

Since the wave is TM, the second boundary condition becomes

H, = Ks

Substituting this relation into equation (1.3) gives

k/coe f = E0 /K,

But this relation is just an impedance for a surface current. Thus,

k / comý =Z

where Zs is the surface impedance. In addition, for linear media, we know k2 = (2 p E.
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Therefore,

k/0.lom =co 1,UT, co Eff

= /ff (1.4)

In a superconductor, we can assume ja/s» >> 1, and that p is approximately po. Hence,

we can simplify equation (1.4):

k/I f =/Z 1/1jo 1o / a (1.5)

While we used an incident plane wave to arrive at this equation, it is just as valid if we

have a surface current flowing in the superconductor that generates an electromagnetic

(EM) wave. Because EM wave generation occurs if the frequency of the surface current

is greater than zero and essentially no current flows below the penetration depth, we

therefore can apply equation (1.5) to any non-DC current in a superconductor.

Since go is a known quantity, j is a constant, and the frequency is assumed to be

given, the only parameter left to calculate in equation (1.5) is the conductivity. We used

the BCS model and the two-fluid model to calculate the conductivity. Calculations with

the two-fluid model give a conductivity directly, as shown in Chapter 3, while programs

that implement the BCS model vary. Of the two programs we used, one calculated the

conductivity directly, and the other simply calculated the surface resistance. They are

described in the next chapter.
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Chapter 2

The BCS Model Programs

2.1 Introduction

The Bardeen-Cooper-Schreiffer (BCS) theory of superconductivity was published in 1957

[8], and gives microscopic formulae for superconducting behavior in conventional

superconductors. It is a complicated and detailed theory, but a basic premise is that the

superconducting electrons are coupled by phonon interaction. Essentially, an electron

interferes with the crystal lattice, giving up part of its energy in the form of a phonon, or

packet of vibrational energy. The lattice transmits this phonon to another electron, which

absorbs the energy. By this exchange, electrons are coupled and can travel without a net

loss of energy. The BCS theory has accomplished much toward understanding

superconducting behavior, including [8]:

1. Explaining why an attractive electron-electron interaction leads to a ground

state that is separated from the excited normal states by an energy gap. This

gap is important for most of the electromagnetic properties of the

superconductor.

2. Giving a magnetic penetration depth and coherence length (described below)

as natural consequences of the BCS theory. The London equation [7] is

obtained for magnetic fields that change slowly in space, and thus the

Meissner effect is explained theoretically.
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3. Explaining that magnetic flux through a superconducting ring is quantized

because the superconducting ground state involves pairs of electrons.

The distance spanned by the electron-electron interaction is called the coherence

length, is a characteristic of the material, and is given by:

ý0 hvf(2.1)
/A0

where vf is the fermi velocity of the electrons, and Ao is the energy gap at zero

temperature. Often related to the coherence length is the mean free path, which is given by

[7]:

f = ,. (2.2)

where ttr is the mean free time, or transport scattering time, of the material. When the

mean free path is much shorter than the coherence length the material is said to be in the

dirty limit, while if the opposite is true, the material is in the clean limit.

The magnetic penetration depth, denoted by X, is characteristic of the material,

temperature-dependent, and often directly measured. (The temperature dependence is

discussed in Chapter 3.) It is related to a similar quantity called the London penetration

depth XL, which is the theoretical value X as the mean free path approaches infinite length,

that is, the value of X if the material were in the so-called clean limit [9]. Tinkham [9]

found that the BCS relationship between these two quantities at zero temperature is best

approximated by:

2(0) = 2A0(1 +) . (2.3)

The energy gap, which in part determines ýo, is characteristic of the material [8]

and dependent on temperature. We can approximate the BCS temperature variation in the

gap energy A(T) by [101
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A(T) - Ao Cos( 2 ! T• 2 (2.4)

which stays within 3% of the full BCS results listed in [11].

In the BCS theory, the critical temperature Tc is related to Ao by the following

constraint: 2 Ao/kBTc = 3.528 [9], where kB is Boltzmann's constant. This constraint is

known as the weak-coupling limit [9] and it is characteristic of the BCS theory. Most

superconductors do not follow this relationship exactly, but instead have a higher value for

2Ao/kBTc. If this ratio is large, the material is said to be strongly-coupled. However, if

this ratio is not too large, the superconductor is still considered to be weakly-coupled, and

the BCS theory is still accurate.

The BCS theory also predicts the presence of electrons which do not move

losslessly and yet are not independent of one another. The presence of such electrons

gives rise to a so-called coherence effect or coherence peak, which we discuss in Chapter

3.

2.2 BCS Conductivity and Surface Impedance Calculation

While the BCS theory is a microscopic theory of superconducting behavior, it requires

some effort to apply this theory to calculations of surface impedance. Mattis and Bardeen

[12] were the first, along with the independent group of Abrikosov, Gor'kov and

Khalatnikov [ 13], to use the BCS theory to calculate exact expressions for the complex

conductivity in 1958 [14]. The Mattis-Bardeen expressions allow one to calculate the

complex surface impedance [ 14] and the complex conductivity normalized to the normal

state DC conductivity [9]. They are not easy to use in complete form, as they require

much integration. However, in certain limits, such as the low-frequency, dirty limit (where
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to<<1) or low-frequency, clean limit (where to>>!), the expressions reduce to a

manageable form [9, 14]. Though they have been around the longest, the Mattis-Bardeen

equations are still the standard expressions for the BCS conductivity, and are explained in

detail in [9] and [14]. Turneaure developed a numerical calculation for surface impedance

from these equations in [15]. However, we used two different programs for our research,

neither of which use the Mattis-Bardeen expressions.

In 1970, J. Halbritter implemented the BCS theory exactly (within numerical error)

with his FORTRAN routine [2]. Unlike Mattis and Bardeen, his implementation does not

calculate the conductivity, but directly calculates the surface impedance, and uses the

Green's function formalism of Abrikosov, et al. [ 16, 14], though the Mattis-Bardeen

expressions are nearly identical in form [14].

In 1991, W. Zimmermann et al. [1] published a C routine that calculates the

complex conductivity, normalized to the normal state conductivity. The routine was

primarily designed for optical frequency calculations. It uses a quasi-classical formalism of

energy-integrated Green functions [1].

These two programs are described in detail in the following two subsections. Each

subsection includes the good qualities and drawbacks of each program, and a description

of how we modified and used each.

2.2.1 The Zimmermann Program

The first program we will discuss is presented in [1]. It was written to give the complex

conductivity of BCS superconductors with arbitrary purity, and its application centers

around high-temperature superconductors. However, it also is stated to yield "the exact

AC conductivity of BCS superconductors at lower (non-optical) frequencies [1]," which is

the frequency range needed for microwave calculations.
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The complex conductivity is calculated from microscopic expressions derived by

W. Zimmermann [1]. Those expressions "ise the quasi-classical formalism of energy-

integrated Green functions [1]." This implementation of the BCS model applies to

isotropic weakly-coupled BCS-superconductors with a spherical Fermi surface, and it

assumes that calculations are in the local limit [1]. The original program was in

FORTRAN, but we translated it to Turbo Pascal 4.0 for our use (see program code in

Appendix B). We verified that the translated program was the same as that in [1] by

matching figures 1 and 2 from [1], which are simply the output of the FORTRAN program

under various conditions. The results, shown in Figure 2.1 below, indicate the two

programs produced the same output.

The inputs required for the program in [1] are x, y, and tt, where x = hCo / 2Ao,

y = h / 2TCtrAo, tt = T / Tc. The output is labeled s, which is the complex conductivity in

the local-electrodynamic London limit, normalized to the DC conductivity [1 ], i.e.

s(ci=O)= 1. To make our use of this program easier, we directly input Ao, Ao/kBTc, the

coherence length to and the mean free path 1. From these inputs, the program itself could

calculate the necessary x, y, and tt. In addition, we input a value for the DC conductivity,

so that the output could be in absolute units instead of normalized to the DC conductivity.

(For Figure 2.1, though, we directly input x and y.)
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Fig. 1. Frequency dependent complex conductivity .,,(w) of a Fig. 2. Complex conductivity, real pan, plotted with impurity-
BCS superconductor at temperature T=0 in reduced units dependent magnification as Re~o,,}/Re{.,(wa=2d/
s=o,(w(o)/1o, x=hiw1/24, and y=h/2zd (impurity parameter) for h)}= (I +v- 2 )s, (x), x=h&w/2•. for impurity parameters y=h/
y=500 ( zimpure limit), 16,8.4,2, 1,0.5.0.25.0.125 and 0.0625 2r4=-500. 16.8.4, 2, 1,0.5.0.25.0.125.0.0625 as in fig. I. Note
( tpure limit). Top: real part s, =Re{o.}/oo; also shown is the the sharp cusp at x= I in the pure case. Top: temperature T=0.
normal conductivity Re{uo)/Oro-v 2 /(x 2 +y 2 ) (thin dashed Lor- Bottom: T=0.7 T_.
entzians). Note that s, =0 for w < 24/h. Bottom- imaginary part

Figure 2.1 Comparison of Pascal program to FORTRAN program output from [I ]. Input
parameters (x and y) to both programs are identical. Pascal program output shown by
dots, FORTRAN program by lines as designated in above figure captions. Figures are
from [1].

We made two other modifications to the program. First, since the magnitude of the

energy gap is a function of temperature, it seems that the value of x should reflect that

change, that is, x should be equal to hco / 2A(T), where A(T) is the temperature-dependent

energy gap. We used the expression given in equation (2.4) to approximate the change in

energy gap with temperature which approximates full BCS values [ 11] to within 3%.

(Incidentally, the original program uses a different expression to approximate the
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temperature dependence of the energy gap for other calculations. This expression is closer

than equation (2.4) to the full BCS values (good to within 0.5% [17]), but both are close

enough for our purposes.) The omission of the temperature-dependence of x is fine in [1],

because the output shown is always in terms of x. However, since we want to compare the

conductivity in terms of the absolute frequency, we must account for this change in x

versus temperature.

The other change we made was to allow 2Ao/kBTc to change. In the original

program, it was held at the BCS value, 3.528. Realizing that strong-coupling effects

would perhaps not be properly handled, we nevertheless allowed the value to change so

that we gained more flexibility in our analysis. Since we did not use this program to

validate our model, for reasons detailed later, this change seems to have caused no

unvalidated loss in accuracy, at least as far as our use of the BCS calculations go.

We found that there are some advantages to this program. Its output is the

complex conductivity, so it offered a great deal of flexibility: we could use the

conductivity directly, or use the program to get surface resistance calculations. We could

look at the real and imaginary parts of the conductivity and surface resistance separately.

The program is also reasonably fast (0.4 seconds/point), so simulations were easy to do

for many different cases. We could modify the output any way we wished. Because of the

flexibility offered by this program, we were enabled to conduct our research effectively.

However, we also found some problems with this program.

We had to be careful how we specified the constant M, which was the number of

steps to be taken in numerical integration, and thus the larger M was, the smaller the step

size. However, we could not make M too large, because there would be division by zero

at some point in the program. The maximum value we could use turned out to be 513, but

we were often constrained to use values as low as about 40 in some cases. We did not

investigate why this happened in detail, we simply used as high a value for M as we could.
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We also found the program was limited in its range of material parameters. In

general comparison to the Halbritter program, the best agreement occurs at high

frequency (the higher the better, below the gap frequency), and low temperature. The two

programs agree well in general in the dirty limit, but in the clean limit, the Zimmermann

program did not return reasonable values, especially for high temperatures and low

frequencies. The output for surface resistance would not be monotonic for frequency. This

behavior was the most marked at temperatures around 0.8 to 0.9 Tc. An example of an

anomalous output is shown below.

-1.6

1og(R)

Pi)
f (Hz) 1

T/Tc ----- 18.5

Figure 2.2 Anomalous output of Zimmermann program. Frequency dependence is on a
logarithmic scale; temperature dependence is on a linear scale. Material parameters: Ao =

7.6meV, Ao/kBTc = 1.75, ao = 8*107 (f(-m)- 1, and o/1 = 1/35.16.
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There are maxima, minima, and inflection points in the above surface plot which should

not be present. In frequency dependence the plot should be monotonic and smooth with

no inflection points, and in temperature dependence it should be smooth with only one

inflection point. In the above example, there are peaks at (106Hz, 1), (3*10 6Hz, 0.95),

(I0 7Hz, 0.85) and (3* 107Hz, 0.50), and an additional ridge at 3* 108Hz. These extra

features only appear in the clean limit, and they become more pronounced with cleaner

parameters. The reason for this behavior is unknown in detail, but part of it probably lies

with the limits of the accuracy of the numerical integration.

Overall, then, the Zimmermann program was a good way to gain insight into the

BCS conductivity, as it afforded a great deal of flexible and fast analysis. We had to use it

with care to ensure that it was indeed giving good values, but we did much of our

development with the aid of this program, as we discuss in Section 3.4 of the next chapter.

However, we validated our model with a more reliable, and much slower, computer

program which we discuss next.

2.2.2 The Halbritter Program

The program we used to validate our model is presented by J. Halbritter in [2]. It

calculates the surface impedance (assumed to be in the quasi-static limit as derived in

Chapter 1) for superconductors at frequencies below the gap frequency (which quantity is

discussed in Chapter 3). In contrast, the Zimmermann program has no limitation on

frequency. In addition, the Halbritter program is much slower than the Zimmermann

program, by a couple orders of magnitude.

The actual program we used is not the original FORTRAN program in [2], but an

exact translation of it into C code by J. Steinbeck. The code for the original program and

the C translation are in Appendix C. We validated our program comparing its output with

the sample output in [2]. We found that the two outputs matched.
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The "formulae used [by the Halbritter program] are exact within the frame work

[sic] of the BCS-theory for weak-coupling superconductors. Strong-coupling effects can

be introduced by using measured [Ao/kBTc] values [2]." However, this program was not

as flexible as the Zimmermann program. We were able to use only the compiled C code,

and, even if we were able to modify and use the source code, it is not clear that we would

be able to make useful modifications to the program, since the equations implemented are

not intuitive.

The inputs to this program are: the operating frequency and temperature(s), and

the following material parameters: Tc, Ao/kBTc, the London (clean-limit) penetration

depth at zero temperature XL,O, coherence length (slightly different from the conventional

value), and electronic mean free path. The difference in the coherence length follows:

while the conventional formula for ,o is given by equation (2.1), the formula used by the

Halbritter program is h = vf/ 2Ao. Therefore, the coherence length that is received as

input is (7r/ 2 )ýo. There are four outputs of the program for each temperature: the surface

resistance in ohms and the penetration depth X in angstroms for specular reflection of

charge carriers at the surface, and the surface resistance and penetration depth for diffuse

reflection at the surface. From the penetration depth, one can get the surface reactance X

= cogo), [2] for each case. Chapter 4 shows how we used this program to validate our

results against the BCS model.

There is much that is good about this program. It is a numerical implementation of

the BCS model. It can handle a wide range of material parameters accurately, without the

errors of the Zimmermann program. It does have some limitations too, however. First, the

approximation of the energy gap temperature dependence is the same as equation (2.4),

which we know is only good to within 3%, as stated above. Also, the program is not user-

friendly for some applications (which is mainly a result of not being able to modify the

source code). However, it is also fairly inflexible, since it calculates the surface impedance

directly using rather complicated equations. While it is accurate, it is also the slowest of
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the programs we used, taking between 2 and 1700 seconds per point, with the longest

calculation times at lower microwave frequencies (1GHz and below). It would have been

difficult to use this program alone to do our research, because of the number and variety

of simulations we needed to perform. However, this program coupled with the

Zimmermann program made it possible to develop and test our MTF model with

reasonable speed, flexibility and accuracy. Having seen the capability of programs that

implement the BCS theory, the point of this thesis is to seek a faster and simpler way to

have the accuracy of the above two programs, yet increase the speed and ease of

calculation.
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Chapter 3

The Two-Fluid Models

3.1 Introduction

In this chapter, we will discuss the characteristics of the two-fluid model for conductivity,

and how it differs from the BCS model. In the next section, we will give an overview of

the two-fluid model: it's origin and basic concepts and equations. Next, we will discuss the

traditional two-fluid model: its assumptions, equations, strengths and limitations. Finally,

we will describe in detail our modifications to the traditional two-fluid model, our reasons

for making them, and begin to explore the results of the modifications. (The main analysis

of the results we will save for Chapter 4.)

3.2 Two-Fluid Models--Overview

The Drude model is the basis of the two-fluid model. For the two-fluid model to work, the

approximations of the Drude model have to be valid. These assumptions are [ 18]:

1. Electrons are independent of one another (the independent electron

approximation) and of the crystal lattice (the free electron approximation)

in between collisions.

2. Collisions are instantaneous events which abruptly alter electron velocity, and

cause the existence of a drag term.
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3. 1/Ctr is the probability per unit time that an electron will experience a collision.

That is, Itr is a mean free time, or transport scattering time.

4. Electrons achieve thermal equilibrium with their surroundings through

collisions only.

The basic equation of carrier motion for the Drude model is based on the above

assumptions and F = ma, and it is given by [7]:

dv m
m- =qE-- v (3.1)

dt T.

where v is the velocity of the carrier, ttr is the transport scattering time, m is the mass of

the carrier, q is the charge of the carrier, and E is the electric field. The force of the

electric field on the electron is partially offset by the drag term mv/-ttr, assumed to be

directly proportional to the velocity of the carrier [7].

The two fluid model assumes that there are two distinct, noninteracting fluids of

electrons that carry current. Each fluid follows a different parallel channel. The normal

channel, corresponding to a conductivity as(n), is governed by equation (3.1). The other

channel, the superconducting channel, corresponding to 5s(s), is governed by equation

(3.1) without the drag term. The absence of the drag term is due to the lossless transport

of current in a superconductor [7]. We will first derive the expression for as(n) from the

Drude model, and then we will derive the expression for rs(s).

The equation for current density J = nqv (where n is the density of carriers) gives

us a relationship between v and J. This relationship can be substituted into equation (3.1)

to give

mdJ m J
= qE -- (3.2)

nq dt r, nq

Applying Ohm's law J = ca E to equation (3.2) gives

36



m dJ =q n m J (3.3)

nq dt a r,, nq

We also assume that the current is sinusoidally driven (since every function can be written

as a superposition of sinusoids). This allows us to write J in the form J = J(r)eJc~t, which

implies that equation (3.3) can be written

m. q m J
M-jWoJ = (3.4)

nq a r, nq

which, in turn, implies

2 +(3.5)nq "

which gives us an expression for the conductivity. When the frequency is zero, the

resulting conductivity is the DC conductivity 0o, and is given by (nq 2 "ttr/m). Substituting

this quantity in equation (3.5) gives

"- (3.6)
1 +jan,

This equation is the normal state conductivity. However, according to the two-fluid

model, when a material is superconducting, only a small fraction of its electrons are in the

normal state. Since the normal state DC conductivity is often known, and is proportional

to the density of electrons, we can multiply equation (3.6) by a ratio 11(6),T) to get the

normal channel conductivity. The ratio rj(o),T) is the density of normal state electrons over

the total number of electrons. Thus we arrive at the normal channel conductivity

a"<" - "' r/(0,T) (3.7)Sl+ jwrt"

For the superconducting channel, there is no drag term, so the equation for the

conductivity becomes
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jCOm I
= (3.8)

nq2 a

that is

nq 2
_"_- (3.9)
m jW

Equation (3.9) implies that nq2/m is an inductance. This inductance was noted by Fritz

and Heinz London in 1935 and is related to a characteristic length in the system--the

magnetic penetration depth, denoted by X [7]. The relationship between the inductance

and penetration depth for a clean superconductor is

nq 2

m

Since the density of superconducting electrons is temperature dependent, the

penetration depth is also, and the resulting superconducting complex conductivity of the

channel for non-zero frequencies is

(s) _1

(3.10)

which includes the penetration depth explicitly because it is more general than the nq2 /m

term. Although this derivation assumes a clean superconductor, equation (3.10) is

generally true for clean or dirty superconductors when as(s) is written in terms of X. [7].

Although it is a modification to the traditional model, it is worthwhile to mention

here that the two-fluid model should be restricted to frequencies below a cutoff frequency.

We take this frequency to be the gap frequency, given by (os = ( 2A(T) / h ) where A(T) is

the energy gap as a function of temperature. In this way, the two-fluid model can account

for the energy gap in the superconductor. We will explain this cutoff frequency in more

detail in Section 3.4. Above this frequency, we assume the conductivity is the normal state

conductivity:
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-. =(3.11)
l+ Of jr

The conductivity can thus be represented by the lumped-element circuit shown in Figure

3.1.

Figure 3.1. Lumped Circuit Representation of the Two-fluid Model. LPF = low pass filter
(ideal), I-PF = high pass filter (ideal).

Since a~s() and as(n) are parallel channels, the total conductivity is their sum,

Cs) ( st)

o (3.12)

and hence the total conductivity for the circuit is

• 0< 0o< CO
UT{= O-(0<>09 (3.13)

More explicitly, we write equation (3.13) as:

Ur = a, oU (T) O) V (T)1,T) + JO co o(3.14)

1+ jWT",

where a I and G2 are the real and imaginary parts of the conductivity respectively.
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The two-fluid model, then, is in general an intuitive and fast model to implement

and use. The equations listed in this section are straightforward and analytical, but are not

complete in and of themselves. A few other relationships need defining before the model

will produce a value for the conductivity. Because the quantities 0%, Tc, X(O), and Ao are

measurable, phenomenological parameters, we must determine reasonably accurate

expressions for il((o,T), X(T), and Itr involving the given parameters in the

superconducting frequency regime in order to calculate the conductivity. The traditional

two-fluid model assumes a form for these relationships, and we discuss them below.

3.3 The Traditional Two-Fluid Model

The traditional form of the two-fluid j Iel was proposed by C. Goiter and H. B. G.

Casimir [7, 14] in their 1934 publication [19]. Their idea was to describe the

thermodynamic properties of the superconductor with these two distinct, non-interacting

fluids, though they penetrate one another [7]. Fritz London coupled it with his equations

[7], which gives rise to a system of equations for calculating conductivity.

The traditional form of the model has some good characteristics. It was developed

prior to the BCS model, so it has the advantage of being a first-order attempt at giving a

mathematical basis for the behavior of superconductors before the scientific community's

paradigm changed to a quantum mechanical explanation. It therefore does not include

some of the complex relationships that the BCS model illuminates, so it is able to give a

basic intuitive idea of what is happening. The expressions are simple in general, so it is

good for manual calculations, or for noting basic relationships between parameters (for

example, the relationship between surface resistance and frequency). It is elegant and

simple, yet still is accurate enough that it is still in use today as a qualitative model.

The basic equation of the Traditional Two-Fluid (TTF) model is (3.12) applied to

all frequencies. Unfortunately, the TTF model thus does not account for the energy gap.
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This omission is important, because leaving out the energy gap limits the TTF model to

frequencies below the gap frequency (typically on the order of THz), and also makes the

model nonphysical: it cannot satisfy the sum rule (discussed in Section 3.4).

The traditional two-fluid model assumes a simple relationship for X(T) which is

[7]:
X'(T)=X2(O)/[I-(T/T, )41 (3.15)

which results from experimental data [7, 20], including data gathered by F. London

himself [21], though not all materials have this temperature dependence (shown in Section

3.4). In addition, there is a consequence of equation (3.15) that affects il(co,T). As was

shown above, poX2 (T) = m / (ns(T)q2 ), where ns is the number of superconducting

electrons per unit volume. This relation implies that I/ns(T) is proportional to X2 (T).

Equation (3.15) therefore implies that ns(T)/ ntot is proportional to 1-(T/Tc) 4 . Using

conservation of electrons, and the fact that (ns+ nnormal)/ntot= 1, the TTF model

mandates that

n /nof ol0 / r/ = q, ( T / T,)4  (3.16)

There is benefit in having this simple relationship for ilr. Calculations are easy to do,

even on a calculator. In addition, for low frequencies (that is, where 0'tr<<t1) and well-

developed superconduction (where a2>>»1) [10] one can get an analytic expression for

surface resistance that explicitly shows its relationship to the input parameters. If one

combines equations (3.16), (3.15), (3.12) and equation (1.5) for surface impedance, the

surface resistance (that is, the real part of the surface impedance), can be shown to be [10]

2~~~ 3 0.p (, o)2(IT,'(.7
R, = 0.5po -0

2 -(T) coq. = T(3.17)[]-(TI/T )4 ]3/2

The BCS theory, however, predicts very different behavior for ll(O,,T) from

equation (3.16), and therefore different behavior for the surface resistance. Figure 3.2
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shows that 1 (co,T) (relabeled 5cs(o),T) for clarity) is much larger than "qTF(T) for T < Tc,

especially at low frequencies. Figure 3.2 also shows our modified 1r(co,T) for comparison,

which we list as equation (3.29) and label 1"MTF(QD,T) (MTF standing for Modified Two-

Fluid) in the figure. Note that while the BCS and MTF values show reasonable agreement,

the TTF model is a very different function of temperature, and has no frequency

dependence at all. Note also that rj(co,T) can exceed unity, reflecting coherence effects due

to the BCS pairing. In the next section, we recast these coherence effects into a more

intuitive form.

2 ~~MTF 
3

1 ( CO Ts I o = 0 .0 0 3 co
BCS Q)=*OOCF

0.2 0.4 0.6 0.8 1.0
T/Tc

%,/'• • 'MTF

2 BCS '. T T/Tc- 0.6
7100),T) Ic

-8 -7 -6 -5 -4 -3 -2 -1 0

log(o/oc)
Figure 3.2. MTF(w,T), ij 5cs(uo,T) from [1] and TlTF(T) versus o). (oc=6.4THz, T=0.5Tc,
mean free path I = 2nm, coherence length ý0 =2nm, penetration depth .(0) = 140nm,
AokABTc= 1.75.

3.4 Modified Two-Fluid Model

In this section, we will show the modifications and parameter specifications we made to

the TTF model in order to improve its accuracy, while keeping its speed and intuitive

nature. In Subsection 3.4.1, we lay the necessary groundwork for the MTF model by
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carefully defining relationships between parameters in a way consistent to the BCS model.

We consider the temperature dependence of X(T) in Subsection 3.4.2, and the reason for

a cutoff frequency in the model in Subsection 3.4.3. We discuss the new expression for

ri(oT) in Subsection 3.4.4. We then discuss the MTF model and its application to the sum

rule and Kramers-Kronig relations in Subsection 3.4.5.

3.4.1. Parameter Relationships

We find that to fit the BCS results for conductivity with a two fluid model, we

must define some parameter relationships in particular ways. The inputs to this model are:

the critical temperature Tc, the superconducting gap energy Ao, the penetration depth at

zero temperature X(0), and the DC conductivity 0o. We chose this combination because

Tj and Ao are usually known for a particular material, and Yo and X(0) are measurable for

a particular sample.

As mentioned in Chapter 2, throughout our numerical simulations we approximate

the BCS temperature variation in the gap energy A(T) by [10]

A(T) ~ Ao COS(,r T' )2 1/2 (3.18)

which stays within 3% of the full BCS results [11 ].

The ratio of coherence length to mean free path in a superconductor affects the

conductivity, thus we must determine this parameter from the inputs. For convenience, we

repeat equations (2.1) and (2.2):

_ = V- (3.19)
MA0

and mean free path is:
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1v = T vr (3.20)

The London penetration depth is [7]

=L.O - ' (3.21)
0OA,0

Using the above three equations, we can solve for 1/Io in terms of %L,0, Ao, and ao:

1 = ~O A L.OOPO c(3.22)

Since X(0) is taken as given, we must relate it to %L,0, and we restate that relation given in

equation (2.3) [9]:

A(0) = + 0)I (3.23)

Combining this relation with equation (3.22), we find

1 = qoX(0)PortAo -1 (3.24)

from which we can find the transport scattering time Ttr because it is directly proportional

to l/to (which is derived from equations (3.19) and (3.20)):

h I
T= - (3.25)

We note that equation (3.23) was developed at zero temperature and so differs from the

Gor'kov relationships [22] which are valid near Tc. If the penetration depth near Tc is

known, instead of X(0), then the usual Gor'kov and Ginzburg-Landau relations [7, 22] can

be used to estimate XL,0. One can then find the ratio V1o from equation (3.22) and Ttr

from equation (3.25) and one can then proceed with the same analysis that follows. (We

tried another method of finding "tr using the sum rule discussed in Subsection 3.4.5, but it

did not work. See Appendix D.)
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3.4.2 The Temperature Dependence of X2 (T)

We must carefully specify the temperature dependence of X(T) (or, equivalently, of X2 (T))

to be consistent with the material parameters. The BCS X2 (T) dependence is given

approximately by [23]

A28 s (T) = , (O) /[1- (TI T )3-(TIc)] (3.26)

However, as shown in Figure 3.3, this dependence is only valid for clean, weakly-coupling

superconductors, that is, when ýo is much less than I and A(T)/kBTc is about 1.76. When

this ratio is larger (on the order of 2 or more) the superconductor is strongly coupled (as

with Nb, Nb3 Sn, NbN, etc.). An approximate expression for the strong coupling case is

the same as that of the TTF model [20], stated in equation (3.15):

X(T) = (0)/[I-(TI T)4

We implemented both of these relationships when we compared our results to BCS

calculations of surface resistance in Chapter 4. We show in that comparison the MTF

model is more accurate when the X temperature dependence is properly specified.

However, even if it is not specified properly, the accuracy is not critically affected, as we

will show.
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Figure 3.3. Various theoretical temperature dependencies of X2 (0)/. 2 (T) (after Figure 9 in

[20]).

3.4.3 The Cutoff Frequency

Above a certain frequency, the conductivity of a superconductor behaves more like

a normal metal for T < Tc. So that our model is accurate across a large range of

frequencies, including those above this cutoff frequency, we have specifically modeled this

effect. The expression for the cutoff, or gap, frequency is:

I _ 2A(T) (3.27)
7r h

Above the gap frequency electrons have energies which exceed 2A. When

electrons have this amount of energy, they depair and essentially behave as normal

electrons regardless of temperature. This behavior does not occur sharply at the gap

frequency, but over a range of frequencies near cos. However, because this frequency

range is short, it is a reasonable approximation to treat all electrons as normal at or above

the gap frequency. Above the gap frequency, then, On is given by the normal state
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conductivity equation (3.11), and our equation for the total conductivity at all frequencies

is the same as the two-fluid model given in equation (3.14).

3.4.4 The Normal-to-Total Electron Ratio il(o,T)

We now proceed to the major result of our research: to recast BCS conductivity

into a two-fluid form by generating the BCS equivalent of the ratio of normal to total

electrons rl(o,T) in an analytical form. We assume the two-fluid conductivity equation

(3.14) is valid. By equating al(o,T) from the BCS calculation with that given by the MTF

model (equation (3.14)), we define what il(o,T) must be. In particular, we used a program

by Zimmermann [ 1 ] to give us the BCS conductivity a IBCS, and we used,

a,) = X T) (3.28)
+ +(wo, )'

(for o>O) from the MTF model. One such rl(co,T) function as extracted from the BCS

calculations is shown in Figure 3.4 as a surface versus temperature and frequency. Though

different material parameters will change he exact value of 11(c,T), the surface plot

provides a qualitative feel for how the function behaves.
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100

Figure 3.4. i(mo,T) of the MTF model vs. temperature and frequency

After extracting many r(o,T) for different material parameters, we found an

expression that fits the BCS 1(o),T). Moreover, our analytic fit not only allows the two-

fluid model to fit to c,1BCS(o,T) but also G2 BCS(w,T). Our fit of i(o,T) is

-(T) 1
rA w, = T)e kr In aL +c (3.29)

kT ho1  1 + (/oo)b

where o = I rad/sec and

a -0.16 l//•o<1ando(w/oo)' <e3

0.17 -1-(l/3)Iog(l/ 1<1/ o < 1000 and (co/co9)b <e 3 (3.30)

0 otherwise
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b.lf In(10) = {1 .22 (lO) otheri (3.31)otherwise

3.98-109 l/4O< 10to /,o 7 (3.32)

co /12z"= 0.7 (2.00.10'°) otherwise

c {= (w 1 + e3  (3.33)

S0 otherwise

The temperature dependence is similar to a formula from Hinken [10]

c/ o9, T) ;t 2A(T) eA•,.•,k.. In h O(3.34)

which is an approximation to the Mattis-Bardeen equations under the conditions X>>»o,

o)<<o0c and kBT<<A [10]. Figure 3.5 shows the temperature dependence of rl(&O,T)

(equation (3.29), and again relabeled TjmTM(o,T) for clarity), 1ITF(T) (equation (3.16)), and

1H(o,T) (equation (3.34)), while Figure 3.6 shows these three equations plotted versus

frequency and temperature.

49



6

-32• MTF(,oT)

S. .flri('-"(", T.

0
0 0.2 0.4 0.6 0.8 1

T/Tc

Figure 3.5. 7 oMTF()o,T), 71H(o),T) [10] and ilTF(T) versus T. Frequency = 1GHz, mean free

path I = 2nm, coherence length 40 =2nm, penetration depth X(0) 1401m1, Ao/kBTc= 1.75.

4 I- , , , , , ,

,o,T)".
3 fl,40)o,T)
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c

Figure 3.6. 1MT.F((o,T), 7H(0),T) [10] and 11TF(T) versus (o. wc=6.4THz, T=0.5Tc, mean

free path I = 2nm, coherence length ý0 =2nm, penetration depth X(0) = 140nm,

Ao/kABTc=1.75.

Note that while our fit and the Hinken expression somewhat agree for a small range of

frequencies, the traditional two-fluid model does not follow either. Also note the value of

-q(o),T) is often significantly more than unity, as can be seen in Figure 3.4. However, the
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above MTF ij(c,T) does fit well with the BCS equivalent as shown in Figure 3.2 for one

set of material parameters. Other comparisons to BCS calculations yield similar results.

The Hinken expression does not fit well with BCS model (or the MTF model) because it

limited by its frequency approximation. However, the cause of the discrepancy between

the MTF (and the BCS) and the TTF models is more fundamental. It is due to coherence

effects: neglected by the TTF model, but not negligible in reality.

Coherence effects are the result of the long-range order in the superconductor. The

normal-state electrons in the superconductor behave differently than in a normal metal

[24], acting in a correlated fashion. Hence their behavior differs from the independent-

electron two-fluid model. We kept rl(o,T) and the two-fluid equation, and used BCS

theory calculations to determine what rj(o,T) must be in order to get the same behavior

from the independent electrons of the two-fluid model that BCS theory gets from its

correlated electrons. We discovered that to model correlated electrons with independent

electrons, we had to allow TI(o,,T) to behave as shown above. As stated above, the Hinken

expression, equation (3.34), takes these effects into account for a wide range of

temperatures, but only for a limited frequency range. Our equation (3.29) fits a wide

frequency range as well. Including these coherence effects in rl(o,T) immediately gives a

great deal of accuracy in fitting the conductivity, and hence, accuracy in fitting the surface

resistance. We will verify the above statements in the next chapter.

Before discussing the final part of this chapter-the application of the Kramers-

Kronig relationships and the sum rule to the MTF model-it is important to note that the

MTF model will still give an analytical equation for the surface resistance in a similar

manner to equation (3.17). However, this expression is complicated by the form of r(o,T)

and by the dependence of the form of X(T) on material parameters. We can still state that,

under the conditions O'tr<<l and O2>>»I [10] the surface resistance is:

R, = 0.5,u0, 02a (T) co' r1,, ( o, T) (3.35)
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though we need material parameters to specify the exact relationships for 1MTF(cD,T) and
X,(T).

3.4.5 The Sum Rule and Kramers-Kronig Relationships

Two important, and related, relationships in superconductors are the Kramers-Kronig

relationships and the sum rule. These relationships relate the real and imaginary parts of

the conductivity. We will develop both of them following a derivation in [7].

We will first develop the Kramers-Kronig relationships. We have developed a

frequency-dependent form for the conductivity, but we can also use that form to find the

time-dependent form by doing a Fourier transform. Let us define a(t,T) as the Fourier

transform of a(co,T). It is intuitive that the conductivity should be causal [7], so we can

write a(t,T) in the form o(t,T)u(t), where u(t) is the unit step function: 0 for t < 0, and I

for t > 0, to ensure that a(t,T) vanishes for t < 0. Since the product of two functions in the

time domain is a convolution in the frequency domain [25], we can write

o(w, T) = f Co(co', T)u(co - c')dco

We know the Fourier transform of the step function is:

u(CO) = 7M(Co) + 1 / jCO

which leads to the following expression:

-, T- )' (3.36)

From (3.14), we know the conductivity can be written Ol((o,T)-ja 2(cO,T), and if we

substitute this form into equation (3.36) and solve for the real and imaginary parts, we find

these two equations result:
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I -a (w',T)
(( oT) f- '( 7 d)' (3.37)

7tJ, (0-- )'r (w,) T) = - a ••( o) T) dd)_c-) (3.38)

These two equations are Hilbert transforms of one another [7].

An additional fact is known about f(t,T)-it relates a real current density to a real

electric field through Ohm's law. Thus, a(t,T) must be a real function. As a result, we

know the Fourier transform of a(t,T) must satisfy o1aI (,T) = a 1 (--<o,T) and a 2 (o,T) =

--a 2 (-oO,T) [7]. With these additional relationships, then we can write the Hilbert

transforms as

S(co, T) =- o2 --a (d, T) dd) (3.39)

/T 0  di0-0)o

c o(i, T) = 2 -c, d (3.40)
So (0-)

These two equations are the Kramers-Kronig relations [7].

The sum rule follows from the Kramers-Kronig relations. First, it is noted that, as

was discussed in Subsection 3.4.3, when the frequency is much greater than the gap

frequency, the electrons are essentially all in the normal state. Thus, we can state

lim ar (co, T) = oý (a)
ofl>>l

where n(0)) is the normal state resistance of equation (3.11). In the limit where OTS>>1

and o(otr>>l, then, we see that

lim oý co, T) = lira c (co) =-j °
W r ,o > A w, r , , > ! C O) T , "

rjr,,>>i

which gives the relation
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lim Coo(Co, T)= -j

but since aT(Oj,T) = aI(co,T)-jo 2(0o,T), it is equivalent to

lim[co,(co, T)-jwor,(co, T)]= -j-o-

Solving for the real and imaginary parts,

lirm[ cor, (co, T)]= 0 (3.41)

and

lirm[ ao2 (co, T)] = (3.42)

Equation (3.41) is redundant, because it is the same result as the high-frequency limit in

equation (3.39). However, combining equation (3.42) with the Kramers-Kronig relation

(3.40) yields

2-
lim[ oao,(wo, T)]= f a, (COI',T) do)'I= 0r (3.43)

and hence

fo', (O, T)dcoI'= (3.44)0 2 rt,.

This relation is known as the sum rule for conductivity [7].

We will now apply the Kramers-Kronig relations and the sum rule to the MTF

model. The ideal cutoff frequency in equation (3.14) implies that the MTF model a cannot

satisfy the Kramers-Kroning relationships because the model is analogous to a system with

ideal high-pass and low-pass filters. Because the time-domain representation of an ideal

filter shows that input from past and future time is needed to determine the signal at the
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present time, the model is non-causal [25]. Nevertheless, when the zero frequency part of

a, 8(0o)/0•,X2(T) [7], is included in aI, we have found the MTF model numerically

satisfies the sum rule. We also will show in Chapter 4 that the imaginary and real parts of

the surface impedance match well with the BCS calculations (which do satisfy the

Kramers-Kronig relations). Since the complex surface impedance follows directly from the

complex conductivity, we see that the ideal filter approximation is still adequate here, just

as it is for many applications in system analysis.

It is important to note that we initially tried to find n(o,T) by constraining the TTF

model, modified to include the energy gap, by the sum rule and solving for 7i(0D,T). Our

result for j(c,T) was:

tan'[zr/s(O)] (3.45)ri~°') =l-1-(T T•']tan-'[ r, Iý (T) ]

While this may seem to be a good idea, it still does not work, because it relies on the basic

assumption of the two-fluid model that electrons are independent. However, as we have

shown, electrons are not independent, and thus, in order to be accurate, the two-fluid

model requires modification that goes beyond its assumptions. (See Appendix D for a

more complete explanation.) In the next chapter, we show that once such modification has

been made, there is very good agreement between the BCS model and the MTF model

surface resistance calculations.
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Chapter 4

Surface Impedance Results

4.1 Introduction

Having developed and described the MTF model, we now show how it compares to BCS

calculations, and to surface resistance data. In this chapter, we first show how the MTF

model compares to the BCS surface resistance and reactance calculations of [2] (Section

4.2). We compare the MTF and BCS calculations to another model for surface resistance

given in [26] in Section 4.3. We then show how it compares with surface resistance data

from Nb (Section 4.4), Nb3 Sn (Section 4.5), and YBa 2 Cu 3 0 7.5 (Section 4.6). We will

now begin to compare the MTF model calculations to BCS calculations.

4.2 Comparison to BCS Calculations

We have compared our MTF model with BCS calculations for surface impedance across a

wide range of coupling strength, cleanliness/dirtiness, frequency, and temperature. After

calculating the conductivity with the MTF model, we used equation (1.5) to calculate the

surface impedance. The real component of that result is the surface resistance we used to

compare with the BCS calculations.

The BCS values were obtained from Halbritter's code [2] translated into C (see

Appendix C) using identical inputs to the MTF model. There are four numbers the
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Halbritter program calculates for a given temperature and frequency, as discussed in

chapter 2: the surface resistance and penetration depth under spectral reflection at the

boundary, and the surface resistance and penetration depth under diffuse reflection at the

boundary. Because the parameters we used were similar to YBCO parameters, it seemed

reasonable to use the diffuse boundary condition for the surface resistance calculations.

The surface resistance and penetration depths were systematically lower than the numbers

under spectral reflection conditions, but generally by less than 3 0%. To get a fit that is

comparable to the one presented here for spectral reflection conditions, we found that

multiplying the MTF function for 1 (oJ,T) as given in equation (3.28) by a constant of 1.3 is

all that is necessary.

On the other hand, because the penetration depth we used matched the output of

the Halbritter program under spectral surface reflection, it seemed reasonable to use that

output rather than the output for diffuse reflection. There may appear to be some

inconsistency in using one set of numbers for the surface resistance and another set for the

surface reactance, but they are quite separate. If we do change Tr((o,T) by the 30%

necessary to get a good comparison with the spectral results, we leave the surface

reactance results almost totally unaffected, because il(CD,T) has a very small effect on the

surface reactance, as we show in Subsection 4.2.2. Moreover, if we made no adjustment

to il(o(,T) and did the comparison, the results would only be about 30% off either way.

Hence it makes little difference which set of numbers are used in each comparison.

As stated above, we used parameters similar to YBCO for our comparisons. We

assumed a Tc of 91.8K, a penetration depth of 140nm at zero temperature, and a

coherence length of 2nm. In addition, each case shown here was tested at I 0GHz.

(However, similar results are obtained at different frequencies.) Moreover, we swept the

temperature for each case from 0.0 22Tc to 0.94Tc with a step size of 0.0 22Tc. These

parameters and conditions remained unchanged throughout our tests.
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We changed the ratios Ao/kBTc and 1/ýo in our tests. We tested the MTF model

from the weak-coupling limit (Ao/kBTc = 1.75) to the strong-coupling limit (Ao/kBTc

2.75) in increments of 0.25. For each value of Ao/kBTc, we swept 1/"o from the dirty

limit (1/0o = 0.01) to the clean limit (1/40 = 100). The following figure shows the values of

these ratios for our comparisons in a "parameter space," where one dimension is the ratio

"1/4o and the other is Ao/kBTc. Each point corresponds to a set of parameters where the

models were compared, and each point inside a circle corresponds to a figure below which

graphically shows the comparison.

(Strong) 2.75

2.5

Ao

kBTC 2.25 * *

2 4 * *

(Weak) 1.75
0.01 0.1 1 10 100

(Dirty) 1/4o (Clean)
Figure 4.1 "Parameter space" representation of the comparisons of the MTF model with
the BCS calculations. Each point indicates a set of parameters where a comparison was
made. Each point with a circle around it corresponds to a figure graphically comparing the
BCS and MTF model calculations for that set of parameters.

We present the results of our comparisons in the next two subsections, starting with the

surface resistance comparison.
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4.2.1 Surface Resistance Comparison of BCS and MTF Models

Below are the five figures that correspond to the five circled points in Figure 4. 1,

and show the weak-clean case, weak-dirty case, strong-clean case and strong-dirty case,

and a case in the middle of all extremes. In all five figures, the MTF model used a

penetration depth proportional to (1-(T/Tc)3-T/Tc)-1/2.

0 I

-2 Weak-Clean

-4

Iog(Rs) -6 /
(ohms)

-8 / - MTF Values
-10 f BCS Values

12I I I
0.2 0.4 0.6 0.8

T/Tc
Figure 4.2. Weak-clean comparison to BCS calculations (using [2]) from 0.0 2 2 Tc to
0.9 4 Tc. Penetration depth temperature dependence is proportional to
(I-(T/Tc) 3 -T/Tc)-1/ 2 . Ao/kBTc= 1.75, X(O) = 140nm, ko= 2nm, I = 200nm, Frequency =

10GHz.
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log(Rs) -6
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- MTF Values

-10 BCS Values

"-12 I I I0.0 0.2 0.4 0.6 0.8
TITc

Figure 4.3. Weak-dirty comparison to BCS calculations (using [2]) from 0.022Tc to
0.9 4 Tc. Penetration depth temperature dependence is proportional to
(1-(T/Tc)3-T/Tc)- l/2. Ao/kBTc= 1.75, ,(0) = 140nm, ýo= 2nm, 1 = 0.02nm, Frequency =

10GHz.
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-2 Strong-Clean

-4

Iog(Rs) -6
(ohms)

-8 /
-8-MTF Values

-10 :- BCS Values

-12 I ,
0.0 0.2 0.4 0.6 0.8

T/Tc
Figure 4.4. Strong-clean comparison to BCS calculations (using [2]) from 0.0 2 2 Tc to
0.9 4 Tc. Penetration depth temperature dependence is proportional to
(1 -(T/TC)3 "T/Tc)" 1/2 . Ao/kBTc= 2.75, X(0) = 140nm, ýo= 2nm, I = 200nm, Frequency =

10GHz.
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Figure 4.5. Strong-dirty comparison to BCS calculations (using [2]) from 0.022Tc to
0.9 4 Tc. Penetration depth temperature dependence is proportional to
(l-(T/Tc) 3 "T/Tc)-l/2 . Ao/kBTc= 2.75, X(O) = 140nm, ýo= 2nm, 1= 0.02nm, Frequency =

10GHz.
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Figure 4.6. Mid-range comparison to BCS calculations (using [2]) from 0.022Tc to
0.9 4 Tc. Penetration depth temperature dependence is proportional to
(I-(T/Tc)3"T/Tc) 1/2. Ao/kBTc= 2.25, X(0) = 140nm, ýo= 2nm, I = 2nm, Frequency =

10GHz.
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While the plots above show a reasonable qualitative fit in the extreme material

parameter cases, particular'y when the material is weakly coupled, we also did a more

quantitative fit using all the points shown in Figure 4.1. For each set of parameters, we

took the ratio of the MTF surface resistance to the BCS value at each temperature across

the full range from 0.022Tc to 0.9 4 Tc. For each set of parameters, we found the mean of

these ratios (the closer this mean is to one, the better the fit). We also found the standard

deviation of this mean for each case (the smaller the deviation, the more consistent the

fitting error). Figure 4.7 shows our results for all cases when the MTF model used the

BCS penetration depth temperature dependence proportional to (1-(T/Tc) 3 -T/Tc)-l/2.

1.5 StDv.s,MTF 0.6T

Rs,MTF 0.75 2 An•••"•'

0.52.25 kBTC -+ -

--X -- 2..7 5 -,- 2 ,- 0 [0.25~ -E- 2.75 22.

X Is kBTC

-2 -1 0 1 2 -2 -1 0 1 2
log( 1o /) log(I/E)

Figure 4.7. MTF model surface resistance/BCS surface resistance mean comparison for
clean to dirty and strong to weak parameters. The mean is taken across a temperature
range from 0.0 2 2Tc to 0.9 4 Tc. Penetration depth temperature dependence is proportional
to (I -(T/Tc) 3 -T/Tc)- I/ 2 . X(O) = 140nm, ýo= 2nm, Frequency = I 0GHz.

Figure 4.7 allows one to see the range of parameters the MTF model can handle

with accuracy. On the average, the fit to BCS values is off by only a small percentage over

the entire parameter range. The MTF model is best under weak-coupling conditions, and

gets systematically worse with coupling strength. The consistency of the fit to BCS is also

generally worse with higher coupling strengths, However, this systematic error is
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expected, because the penetration depth temperature dependence we used is only accurate

in the weak-coupling case. In the strong-coupling case, the actual penetration depth is

smaller than this dependence predicts, as shown in Figure 3.3, and this effect is particularly

significant at high temperature. Notice that in the preceding figures showing the extreme

cases, one can also see a divergence between the MTF and the BCS values at high

temperature in the strong-coupling cases. While this divergence is still small, on the order

of a factor of 2 at worst, it can be decreased significantly by using a proper temperature

dependence of the penetration depth. The temperature dependence of the penetration

depth seems to be closer to (1-(T/Tc) 3 "T/Tc)-1/2 as the material becomes more weakly-

coupled, and next we will do the same analysis as above, only with a penetration depth

temperature dependence in the MTF model proportional to (I -(T/Tc)4 )-1 /2 to show the

difference this dependence makes.

We begin with the same five figures showing the extreme parameter cases.

0

-2 Weak-Clean

-4

Iog(Rs) -6/
(ohms) /

-8 / - MTF Values
-10 f BCS Values

-12 -' ' I0.0 0.2 0.4 0.6 0.8
T/Tc

Figure 4.8. Weak-clean comparison to BCS calculations (using [2]) from 0.0 2 2 Tc to
0.9 4 Tc. Penetration depth temperature dependence is proportional to (I-(T/Tc)4)-1/2
Ao/kBTc= 1.75, X(O) = 140nm, ýo= 2nm, I = 200nm, Frequency = 10GHz.
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Figure 4.9. Weak-dirty comparison to BCS calculations (using [2]) from 0.022TC to
0.94Tc. Penetration depth temperature dependence is proportional to (1-(T/Tc)4 )-1 /2 .
Ao/kBTc= 1.75, %(0) = 140nm, ,o= 2nm, 1 = 0.02nm, Frequency = 10GHz.
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Figure 4.10. Strong-clean comparison to BCS calculations (using 121) from 0.0 2 2Tc to
0. 94 Tc. Penetration depth temperature dependence is proportional to (I-(T/Tc) 4 )- 1/ 2

Ao/kBTc= 2.75, X(0) = 140nm, Fco= 2nm, I = 200nm, Frequency = IOGHz.
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Figure 4.11. Strong-dirty comparison to BCS calculations (using [2]) from 0.022T to
0.94Tc. Penetration depth temperature dependence is proportional to (I-(T/Tc) 4 )"I 2 .
Ao/kBTc= 2.75, X(0) = 140nm, ýo= 2rnm, I = 0.02nm, Frequency = 10GHz.
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Figure 4.12. Mid-range comparison to BCS calculations (using [2]) from 0.022Tc to
0.9 4 Tc. Penetration depth temperature dependence is proportional to (!-(T/Tc)4)"l/2.

Ao/kBTc= 2.25, X(0) = 140nm, ýo= 2nm, I = 2nm, Frequency = 10GHz.
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Notice that this time, the strong-coupling cases show a good fit across the whole

temperature range, while the weak-coupling figures show a divergence consistent with the

fact that the penetration depth predicted by the (1-(T/Tc) 4)-1/2 temperature dependence is

too small in the weak-coupling case.

Once again, we also do a more comprehensive and quantitative analysis of the

comparison. Figure 4.13 presents the same data as Figure 4.7 when the MTF model uses

the penetration depth temperature dependence proportional to (1-(T/Tc) 4)- 1/2.

1 --[ 0.5St.Dev [R

SRsBCs 0.4
Rs,MTF 0.6 1 -- 0 .750. 0.4
Rs'BCS 0. k2 An

0.2 --- 2 A0
-*-2.75 2.25 -n- 0.1

__I 1kBT_-
a I I 2.75

-2 -1 0 1 2 -2 -1 0 1 2log( I1/%) log( I/,o

Figure 4.13. MTF model surface resistance/BCS surface resistance mean comparison for
clean to dirty and strong to weak parameters. The mean is taken across a temperature
range from 0.0 22Tc to 0.94 Tc. Penetration depth temperature dependence is proportional
to (I-(T/Tc) 4 )"1/ 2 . X(O) = 140nm, to= 2nm, Frequency = IO0GHz.

Notice again that the fit is better when the material is stronger-coupling, and that the

weaker the coupling strength, the lower the mean. However, while in Figure 4.7 the

standard deviation seemed only dependent on the coupling strength, here it seems to be

dependent on both the coupling strength and the cleanliness of the material. The results

here indicate the cleaner the material, the less consistent the fit. Even so, the fit to BCS is

still good to within a factor of order 2 at all points, and if care is taken to properly specify

the penetration depth temperature dependence, the surface resistance of the MTF model
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fits the BCS model well. Having compared the surface resistance calculations, we now

move on to the surface reactance comparison, where we can confirm directly the form of

the penetration depth temperature dependence.

4.2.2 Surface Reactance Comparison of BCS and MTF Models

Halbritter's program output includes a value for the penetration depth. Using this value,

and the relation X = toplok from [2], one can get the BCS value for the surface reactance

X. The MTF model will give the surface reactance as well, if we use the imaginary

component of the surface impedance instead of the real component. In this subsection, we

cover the same parameter space as in the previous section, and do the same kind of

analysis, only the variable on the y-axes in this section is the surface reactances.

The analytical form for the surface reactance from the two-fluid model is simpler

than the surface resistance, being only X = wto, under the conditions 0rtr<<land

GI <<«2. Hence we expect that the surface reactance would be less complicated and easier

to fit than the surface resistance, and we find this is the case.

The following five figures show the extremes of the parameter space, as was

shown in the previous subsection. However, this time the axes of the graphs are scaled

linearly, instead of logarithmically, because the difference between the MTF and BCS

values is slight, and the values for surface reactance to not change a great deal over the

temperature range. We first show plots with the penetration depth of the MTF model

proportional to ( 1 -(T/Tc) 3 -T/Tc)- 1/2.

Because the MTF model and BCS model are so close in surface reactance values,

we will only show the plots of the extreme cases (and the mid-range case), with a table

showing the means and standard deviations of these extremes, for each both penetration

depth temperature dependences: (1-(T/Tc) 3 -T/Tc)-1/2 and (1-(T/Tc) 4 )"1/ 2 . We begin by

showing the extreme cases with a temperature dependence of (I-(T/Tc) 3 "T/Tc)" !/2.
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0.014
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Figure 4.14. Weak-clean comparison to BCS calculations (using [2]) from 0.022Tc to
0.94Tc. Penetration depth temperature dependence is proportional to
(1-(T/Tc) 3-T/Tc)-l/ 2 . Ao/kBTc= 1.75, X(O) = 140nm, ýo= 2nm, I 200nm, Frequency =

10GHz.
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0.012------------- -------

0.0 0.2 04 0.6 0.8

TITc
Figure 4.15. Weak-dirty comparison to BCS calculations (using [2]) from 0.022Tc to
0.94Tc. Penetration depth temperature dependence is proportional to
(l-(T/Tc) 3-T/Tc)-1/ 2 . Ao/kBTc= 1.75, X(0) = 140nm, ýo= 2nm, I = 0.02nm, Frequency
10GHz.
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Figure 4.16. Strong-clean comparison to BCS calculations (using [2]) from 0.0 2 2 Tc to
0.9 4 Tc. Penetration depth temperature dependence is proportional to
(1-(T/Tc)3-T/Tc)-1/2. Ao/kBTc= 2.75, X(O) = 140nm, ý,= 2nm, 1 200nm, Frequency =
10GHz.
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Figure 4.17. Strong-dirty comparison to BCS calculations (using [2]) from 0.022Tc to
0.9 4 Tc. Penetration depth temperature dependence is proportional to
(1-(T/Tc)3"T/Tc)" 1/2. Ao/kBTC= 2.75, X(O) = 140nm, ý0= 2nm, I = 0.02nm, Frequency =

10GHz.
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Figure 4.18. Mid-range comparison to BCS calculations (using [2]) from 0.022Tc to
0.94Tc. Penetration depth temperature dependence is proportional to
(1-(T/Tc)3"T/Tc)-1/2. Ao/kBTc= 2.25, X(0) = 140nm, ýo= 2nm, 1 = 2nm, Frequency =

IOGHz.

Notice again the trend toward more inaccuracy at high temperature as the coupling

strength increases. Below we tabulate the means and standard deviations of the extreme cases

shown above to give a more quantitative measure of this trend. (Although a graph was more

revealing in the last subsection, since there are only a few values, a table is easier to read.)

Mean(X, mT-F/X, RCgq) Std. Dev.(Xq mTF/Xq RrO

Aa/kBTe (clean) log( 1/ 0 ) (dirty) (clean) log( / , (dirty)

2 0 -2 2 0 -2

1.75 1.039 1.088 0.049 0.049

2.25 1.099 0.091

2.75 1.142 1.149 0.156 0.170
Table 4.1. MTF model surface resistance/BCS surface resistance mean comparison for
clean to dirty and strong to weak parameters. The mean is taken across a temperature
range from 0.0 22Tc to 0.94Tc. Penetration depth temperature dependence is proportional
to (I-(T/Tc)3"T/Tc)"1/2. X(0) 140nm, ýo= 2nm, Frequency= 10GHz.
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The trend mentioned above is further substantiated by Table 4.1, since the fits are most

accurate under weak-coupling and worst under strong-coupling. They are also slightly

worse in the dirty case than in the clean case, which is expected from Figure 3.3. To

complete our comparison, we will do the same plots below using a penetration depth

proportional to (I-(TITc) 4 )"1/ 2 .
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X's 0.018
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BCS Values

0.014-

0.012

0.01000 0.2 0.4 0.6 0.8

TITc

Figure 4.19. Weak-clean comparison to BCS calculations (using [2]) from 0.022T to
0.9 4 Tc. Penetration depth temperature dependence is proportional to (I-(T/Tc) 4 )-1 /2 .
Ao/kBTc= 1.75, X(O) = 140nm, ýo= 2nm, I = 200nm, Frequency = 10GHz.
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Figure 4.20. Weak-dirty comparison to BCS calculations (using [2]) from 0.022Tc to
0.94Tc. Penetration depth temperature dependence is proportional to (1-(T/Tc)4 )-l/2 .
Ao/kBTc= 1.75, ,(0) = l40nm, ýo= 2nm, I = 0.02rni, Frequency 10GHz.
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Figure 4.21. Strong-clean comparison to BCS calculations (using [2]) from 0.022Tc to
0.9 4 Tc. Penetration depth temperature dependence is proportional to ( -(T/Tc) 4)" 2 .
Ao/kBTc= 2.75, X(O) = l40nm, ýo= 2nm, I = 200nm, Frequency = 10GHz.
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Figure 4.22. Strong-dirty comparison to BCS calculations (using [2]) from 0.022T to
0.9 4 Tc. Penetration depth temperature dependence is proportional to (1-(T/Tc)4)-I/2.
Ao/kBTc= 2.75, X(O) = 140nm, ,o= 2nm, I = 0.02nm, Frequency = 10GHz.
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Figure 4.23. Mid-range comparison to BCS calculations (using [2]) from 0.022TC to
0.94Tc. Penetration depth temperature dependence is proportional to (l-(T/Tc) 4 )-1 /2.
Ao/kBTc= 2.25, X(O) = 140nm, ýo= 2nm, I = 2nm, Frequency = 10GHz.
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Again, the trend shown above is what we have seen before: more accuracy at high

temperature in the strong-coupling cases, less in the weak-coupling cases, but even so,

there is good agreement between the models overall. Table 4.2 shows the mean and

standard deviation information.

Mean(X, E TFfXq nRq) Std. Dev.(X, MT-FX, gRs)

A/k T c (cleanj log( 1/ O ) (dirty) (cleanj log( 1/40 ) I (dirty)

2 0 -2 2 0 -2

1.75 0.952 0.993 0.044 0.047

2.25 0.999 0.012

2.75 1.036 0.998 0.043 _ 0.012
Table 4.2. MTF model surface resistance/BCS surface resistance mean comparison for
dirty to clean (left to right) and strong to weak parameters. The mean is taken across a
temperature range from 0.022Tc to 0.94Tc. Penetration depth temperature dependence is
proportional to (1-(T/Tc) 4 )- 1/2 . X(0) = 140nm, ý0= 2nm, Frequency = IOGHz.

Having done the entire comparison of the surface reactance, we can coilclude that it

verifies Figure 3.3 except in one case. In the strong-dirty case, the BCS penetration depth

was a little less than the (1-(T/Tc) 4 )-I/ 2 relationship predicted. The weak-clean case

showed good agreement with (1-(T/Tc) 3 -T/Tc)-1/ 2 , though the values were slightly lower

than the MTF predicted (cleaner parameters might have shown better agreement), and the

weak-dirty case showed slightly lower BCS values thasi (I-(T/Tc) 3 -T/Tc)" 1/2 predicted.

Unlike Figure 3.3, though, the strong-clean BCS calculations showed significantly lower

values than (1 -(TITc)4 )- 1/2, lower than even the strong-dirty case. While we do not know

why this effect occurred, it appears from this comparison that when the ratio of Ao/kBTc

is 2.25 or more, and or the material is dirty, the best fit to the penetration depth is

(I-(T/Tc) 4 )-i/ 2 , while the best fit for smaller values is (I-(T/Tc) 3 "T/Tc)-1/ 2 . To

summarize this part of the comparison, then, the overall error in the surface reactance fits
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is smaller than in the surface impedance, due to the small number of parameters that

significantly impact the surface reactance, and excellent agreement is possible when the

proper form of the equations is used depending on material parameters.

Before moving on to data for real materials, a note regarding strong-coupling

effects: the BCS model is a weak-coupling theory. The strong-coupling effects were

estimated by replacing the BCS value Ao/kBTc = 1.76 with its non-BCS value, while

keeping rc constant. It is not clear that this estimate adequately takes into account all of

the strong-coupling effects. Hence, the good agreement of the MTF model to BCS

calculations in the strong-coupling case could be misleading, because the BCS estimations

may be not be sufficient. However, because there is such flexibility in the two-fluid model,

it is likely that further modification would allow it to correctly model strong-coupling

superconductors. In this thesis, however, only the BCS calculations have been fit, so care

must be taken when using this model for strong-coupling superconductors.

One other note needs to be included here. The MTF model has computation times

that are one to five orders of magnitude less than its BCS equivalents. On a 386 machine

running DOS at 33MIHz with a math co-processor, the program from [1] requires 0.400

seconds per point, and [2] (which is more robust, as was shown in chapter 2) requires

2.73-1633 seconds per point. However, the MTF model only requires 0.0375 seconds per

point. For this dramatic increase in speed, little accuracy is sacrificed, as we have shown

above. Thus, to sum up this section, the MTF fits the BCS surface resistance and

reactance calculations well, and works much faster. In the next section, we will compare

the MTF model and BCS calculations to another model which approximates BCS surface

resistance calculations. This model, presented by Andreone and Kresin in [261, is also a

simple, analytical expression that has much greater accuracy than the TTF model, but, as

we shall show, does not have the versatility of the MTF model.
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4.3 Comparison of BCS and MTF Models to Another
Model

Andreone and Kresin in [26] discuss a model of surface resistance for high-temperature

superconductors, specifically La-Sr-Cu-O and YBCO in the low-temperature region. This

model takes into account the effect of the mean free path on the losses, and it is claimed to

be valid for "a London superconductor in the low temperature region" at low frequency

[26]. The model they present is a simple analytical expression for surface resistance for

kBTc<<A (i.e. low temperature) and low frequency.

The central equation to this model is:

1 uAAf 21 (A h Y( ' TR lS°= _ _ •° ( - " °)(---)e ",17
-4 f ,)In A kBT T

where f(x,co) = h(x,o) g(x)-3/ 2 , and h(x,(o) = x/(l+ (hoW/2A)x 2 ). The function g(x) is:

x =- (x 2 - 1)" tan-'(x2 _ 1)12X > 1

( (- x) In 1+(1 - x2 x <1

We verified that this model is a good fit to BCS calculations of [2] in the weak

limit at low temperature, as stated by the authors. Although the fit in the weak-clean limit

was reasonable, even at high temperature, we found it is not a good fit to BCS in the

weak-dirty limit at high temperature, as shown in Figure 4.24.
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Figure 4.24. Comparison of BCS calculations of [2] to MTF and model presented by
Andreone and Kresin [26]. 1<<lo (i.e. dirty limit), Frequency = 10GHz and gap frequency
= 7THz. Ao/kBTc = 1.76.

A good feature of the Andreone and Kresin model is that it is simple, giving fast

calculation times and easy implementation. However, we can also see from the equations

of this model that it is not as intuitive or easy to manipulate as the MTF model. In

addition, we see in Figure 4.24 that the model by Andreone and Kresin becomes

progressively worse as the temperature rises, and is off by an order of magnitude near Tc.

Note that the authors made no claim that their model worked at high temperature, and it

does work well under their restrictions. However, what Figure 4.24 shows is the model in

[26] lacks the flexibility of the MTF model, which still shows good agreement with the

BCS calculations throughout the temperature range. Moreover, as stated by the authors,

the Andreone and Kresin model is only valid at low microwave frequencies, while the

MTF model is able to cover microwave frequencies that are high or low. While the model

in [26] is good in some regions with the right material parameters, it is not as

comprehensive as the MTF model-nor does it claim to be.
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Furthermore, also does not provide us with the conductivity, nor does it calculate the

imaginary component of the surface impedance. We see, then, that the model developed

by Andreone and Kresin, though good in the regions stated in [26], is more limited in

scope and application than the MTF model.

Having now explored comparisons of the MTF model to the mathematical models

of [2] and [26], we shall now move on to comparing the MTF model to real data,

beginning with Nb, to see how well it works beyond comparison to purely theoretical

calculations.

4.4 Comparison to Niobium

We compared the MTF model to niobium surface resistance data, and we will discuss our

results in this section. First, we show the comparison between niobium and BCS

calculations from Halbritter [2]. The dots represent data from [27], and the open squares

represent BCS calculations as done by Halbritter [2]. Figure 4.25 shows that there is good

agreement between the Nb data from [27] and the BCS calculations using the inputs

Ao/kBTc=1.97, Tc=9.2K, X(O)=28.3nm, XL,0 =21.7nm, p0o=0.32p•t-cm, 1=56.1 nm,

ýo=3 9 nn. Ao/kBTc, Tc, and 40 were taken as given from [27]. The inputs for the mean

free path, resistivity, and penetration depths were not taken as given, but were determined

by fitting the BCS calculations to the data. The temperature dependence which spans a

large part of temperature range for superconducting Nb, is nearly correct, as is the

frequency dependence, which spans 3 decades.
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Figure 4.25. Comparison of Nb data to BCS model [2]. Ao/kBTc=l .97, Tc=9.2K,
X,(0)=28.3nm, ,L,0=2 1.7nm, p0 =0.321l)-cm, 1=56. Inm, ,o=39nm. Data from [27].

The next figure, 4.26, adds the TTF and MTF models to the comparison, using exactly the

same inputs for the TTF and MTF models as was used for the BCS model. The dotted

lines represent the TTF model output, and differ from the data and BCS calculations b) as

much as an order of magnitude at 1 GHz. However, the MTF model, shown by the solid

lines, show the correct temperature and frequency dependence, and matches both the Nb

and BCS calculations well across the broad temperature range and three orders of

magnitude of frequency. The jump which occurs just under 1THz is the transition to the

normal state due to the gap frequency. (We have included the gap frequency in both the

MTF and TTF models in this case.) The jump does not appear to be at a discrete

frequency in the graph, however, this inaccuracy is caused by the step-size of the

numerical simulation, not the equations. The jump does occur at a discrete frequency,
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Figure 4.26. Comparison of Nb data to BCS model, TTF model and MTF model.
Ao/kBTc=1.97, Tc= 9 .2K, %(0)=28.3nm, %L,0=21.7nm, p0=0.32p1l-cm, 1=56. 1nm,
ýo=3 9 nm. Data from [27].

One could perhaps try to salvage the TTF model by changing parameters to fit the TTF

model to the data. However, this results in unreasonable penetration depths and/or

conductivities, and even when such parameters are used to fit the data at one temperature

and frequency, one still cannot match the temperature or frequency dependence using the

traditional two-fluid model. To show this is true, Figure 4.27 shows what occurs when we

try to fit the TTF to the Nb data.

81



-1 I I I I

-2 Nb

7.7K K
-3\

log RS- 4

A. --- - ---------------

* % ' 4.2 K
"-6 * s

. Data9

7 --- -Trad. 2-fluid

"-8 I I I I

9 10 11 12 13

log (freq)
Figure 4.27. Fit of TTF model to Nb data from [27]. Given parameters into TTF model:
Ao/kBT¢=. 97, T=9.2K, ý,=39nm. Adjusted to fit data: X(0)=50nm, a.= 40* 108
(Q-m)-m1 (or Po=0.0251tQ-cm), 1=36 1 nnm.

The penetration depth and DC conductivity were adjusted to fit the data, and the value of

the conductivity implies a mean free path that is too long to be reasonable. The

penetration depth is reported to be 39nm in [27], and the value in Figure 4.27 is only 28%

larger. This variation is reasonable. However, in [27] the mean free path is reported to be

>I00nm, and in Figure 4.27 the TTF mean free path is 3.6tpm. This mean free path implies

that the Nb is very clean, which causes the sharp knee in the TTF surface resistance above.

This knee is not matched by the data, and the fit is accurate for less than 1 decade of

frequency. Moreover, even if we assume that such a mean free path is consistent with

[27], we have only been able to fit one temperature (4.2K). We cannot fit temperature

dependence with the TTF model. Hence, just because the traditional two-fluid model gives

an Rs which increases as o)2 (at least for small (o) and is a reasonable fit at one
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temperature, it does not follow that the traditional two-fluid model is an acceptable

approximation at other temperatures or higher frequencies, or is acceptable for inferring

material parameters.

On the other hand, our MTF model overcomes the limitations of the TTF model

and is nearly as accurate for Rs as the full BCS results. The MTF model fits Nb data

successfully, because the BCS model can also fit Nb data. We therefore expect the MTF

model to be very useful for Nb circuit design.

4.5 Comparison to Nb3Sn

Another advantage of the MTF model is that it can lead to more intuitive approximations

for materials which are not fit well by the BCS theory. We consider two examples, Nb3 Sn

and YBa 2 Cu 3 O7 .6 (the latter discussed in the next section). We emphasize, however, that

the MTF model results are nearly the same as the full BCS results, and that the following

adjustments for il((o,T) are only anzats for each given material.

We first consider Nb3 Sn data as reported in [27] and shown in Figure 4.28. The

dots represent the data, and the open squares are the BCS calculations with the inputs

listed. With the same inputs, the MTF model (shown by the solid lines) follows the BCS

calculations for Nb3 Sn with the same inputs. However, to get this good fit to the BCS

values, we used a penetration depth proportional to (I-(T/Tc) 4 )-1 /2 , because Nb3 Sn is a

strong-coupling, dirty material. As shown in Subsection 4.2.1, for such materials a better

fit to BCS calculations is obtained with a TTF temperature dependence for the penetration

depth. While both models fit the data well at low frequency and their temperature

dependence is correct, they do not fit the data at high frequency. The traditional two-fluid

model (shown by the dotted lines), while correct in frequency dependence, has an

incorrect temperature dependence. The discontinuity of the lines at about I THz is due to

the gap frequency.
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Figure 4.28. Nb3 Sn compared with BCS theory, the TTF model, and MTF model.
Ao/kBTc=2.2, Tc=18K, X(O)=75.9nm, XL,0=2 9 .3nm, po=10 -cm, l=inm, t0=5.7nm.
Data and parameters from [27], except for X(0), which was derived from [1] and the other
parameters.

We attempted to fit the data using modified inputs. Figure 4.29 shows this attempt. We

were able to fit the 4.2K line to some degree, but the frequency dependence is still

incorrect. The data at other temperatures are not fit well either. The inputs listed are not

physically reasonable-the resulting mean free path is too short. Moreover, no physically

reasonable set of parameters for the MTF nor BCS model was found to fit the data.
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Figure 4.29. Attempt to fit Nb3 Sn data from [27] with BCS theory, the TTF model, and
MTF model. Inputs are: Ao/kBTc 1.88, Tc=18K, .(O)=75.9nm, XL,0=2 .48 nm,
po = IOVDi-cm, 1=0.0061 nm, ýo=5.7nm.

Since fitting with parameters failed, we tried to modify ri(cO,T) to allow us to fit

the temperature and frequency dependence of the Nb3 Sn data. We found that by keeping

the temperature dependence of rl(w,T) from equation (3.28) but eliminating its frequency

dependence, that is, making ii(o,T)

,(T)=2A(T) e-(T )Ik T In ( (0.2) (4.1)

tlb~\I kBT ~ ha)l

fits the data well using the parameters in Figure 4.28. Figure 4.30 shows that this

approximation fits both the temperature and frequency dependence of the data. The dots

represent the data. The dotted lines show the TTF model still has an incorrect temperature

dependence. The BCS model/MTF model are represented by the open squares. The

adjusted MTF model, with equation (4.1) for l(co,T), shown by the solid lines, is a good
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fit to the data, and it uses the physically reasonable inputs listed. Thus, it appears that

Nb3 Sn is behaving like a two-fluid material in its frequency dependence and a BCS

material in its temperature dependence.

Nb3 Sn

-33
-3 ,

s -4
(Ohms)

-5

-6 K , Data

-7 K � BCS&MTF
-- 2-fluid

-8 -Adjusted MTF
_9 4.2K• K 1

9 10 11 12 13
log F

Figure 4.30. Nb3 Sn compared with BCS theory, the TTF model, MTF model and
Adjusted MTF model using (4. 1) for l((o,T). Ao/kBTc=2.2, Tc= I8K, X(O)=75.9nm,
XL,0=29.3nm, po=10=•f-cm, l=l nm, ý,=5.7nm. Data and parameters from [27], except
for X(0), which was derived from [1] and the other parameters.

A possible reason that the frequency dependence of the TTF model for 11 works

here is that the TTF model for il has been noted to be reasonable for strong-coupling

superconductors [26], and Nb3 Sn is indeed strong-coupling. Although we do not clearly

know the reasons for this behavior, this example illustrates the intuitive power of the MTF

model. In addition, insight can be gained into YBa 2 Cu 3O7 .8 through the MTF model.
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4.6 Comparison to YBa2Cu3O7-8

To compare the MTF model to YBCO, we first show a comparison of data from several

sources (Lincoln Laboratory, et al. [28] ) to the TTF, MTF and BCS models. The figure

below shows good agreement among the BCS and MTF models and the data. The TTF

model is off by an order of magnitude at lower frequency. The parameters used are

physically reasonable. However, while this result shows good agreement with the

frequency dependence of YBCO, the temperature dependence is more difficult.
01

-1 7777K

-2

-3

logR -4
( -) -5

-6 - <
"Data

-7 -- BCS Values

-8 2-fluid
- Modified 2-fluid

"9 1I
9 10 11 12

log f
Figure 4.3 1. Comparison of MTF model to BCS model, TTF model, and data from
Lincoln Laboratory, et al. [28] Numbers used for calculations: Tc = 91.8K, Ao/kBTc =

1.75, X(O)= 140nm, p = 71.4 ptn-cm, ýo= 2.00nm, I = 2.55nm. After Piel and Mueller
[27].

The temperature dependence of YBCO has been examined by Bonn, et al. in [23]. They

have fabricated some excellent single crystals of YBCO, and the following two figures

show their results. They stated that they are able to explain the increase in surface

resistance from 75K to 35K by an increase in the scattering time with lower temperature,
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although their analysis in [23], shown in Figure 4.32, is only qualitative. They used a form

of the TTF to get an idea of this temperature dependence.

Berlinski, et al. [24] also attempted to analyze in detail the data in [23] along the

line of a changing scattering time. They used a two-fluid interpretation of the BCS model

which was mathematically intricate. Their method was to derive from the BCS equations

the modifications to the TTF model. They found that the problem was complicated, and

did not reduce to a simple series of equations. They were also unable to fit the data using

this approach. Using the MTF model, on the other hand, we were able to fit the Bonn, et

al. results using their method of a changing scattering time, with reasonable accuracy over

a wider range of temperatures. The difference in success of the two approaches, that of

ours and of Berlinski, et al., is attributable to the difference in approaches. While Berlinski,

et al. tackled the formidable challenge of analytically deriving a modified two-fluid model,

we used the outputs of BCS programs and fit our MTF model to them. Since our goal was

to develop a numerical tool for CAD, we approached the problem from a numerical rather

than analytical standpoint. Hence, we avoided the intense analytical calculations that

Berlinski, et al. encountered, and arrived at a more usable model.

To fit the data of Bonn, et al., after subtracting out the 15 pf) residual resistance,

we included a temperature dependent DC conductivity, which is equivalent to changing

the scattering time with temperature. We found this temperature dependence by fitting the

Bonn data at each temperature while changing only the DC conductivity. Our fit was not

physically reasonable at high temperature-the value of the scattering time seemed to

decrease rapidly and then saturate, causing a "kink" in the temperature dependence. We

made this fit physically reasonable by smoothing out this kink. The resulting "smoothed"

scattering time temperature dependence is fit well by

r(T) = AT - + B(exp[(O.568- T/T )112.6]) (4.2)

where A = 2.12* 1014 sec-(K8 ) and B = 4.22*10-8 sec. We show equation (4.2) plotted in

Figure 4.32. Using this equation in the MTF model, we can fit the data from [23] down to
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35K, where Bonn says the scattering time saturates due to impurities, and another effect

becomes dominant and causes the further linear decrease in surface resistance with

temperature.

1000

100 Bonn, et al.

T tr 10

-13No(10-sec) I - n.-

w/MTF
0.1

0.01 I I I I I

30 40 50 60 70 80 90
T (K)

Figure 4.32. Transport scattering time vs. temperature from Bonn, et al. and MTF model
to give fit in Figure 4.33.
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Figure 4.33. Surface resistance data from Bonn, et al. compared with TTF, MTF and MTF
with scattering time in previous figure. Parameters used for curves: Tc = 91.5K, Ao/kBTc
= 1.76, XL,0(0)= 58nm, p(91.5K) = 49.5 ýtQ-cm, penetration depth temp. dependence
proportional to (I -(T/Tc)3-T/Tc)- 1/2

89



In Figure 4.33 we see the result of changing the scattering time with temperature.

The MTF model without the changing scattering time (which is essentially the same as the

BCS model) is unable to fit the data, as is the TTF model. However, the peak in the

surface resistance is matched by the MTF model with adjusted scattering time. The

adjusted MTF does not fit the data as well in the high-temperature regime as the MTF

without adjustment, but it fits the data reasonably well over a much larger temperature

range. While a better fit could perhaps be obtained, Figure 4.33 as presented shows the

power of the MTF model in its flexibility. It is simple to do "what if" calculations with this

model, while keeping the accuracy of the BCS model. If one is going to use the TTF

model anyway, as Bonn, et al. did, one may as well use the MTF model, which has the

same speed, but much more accuracy.

We see, then, from this and the previous sections that the MTF model is useful for

doing rapid, intuitive calculations to test ideas. We see, too, from the rest of this chapter

that the MTF model gives a good fit to the BCS surface impedance calculations, while

remaining fast and intuitive. Having made this point, we now summarize the thesis in the

next chapter.
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Chapter 5

Summary

As was stated in Chapter 1, there is a need for an accurate and fast model for surface

resistance calculations. The BCS model is accurate and microscopically sound for

conventional superconductors with a wide range of material parameters, at a wide range

of frequencies and temperatures. Unfortunately, calculations with this model are time-

consuming, and programs which implement it are difficult to modify. In addition,

approximations to the BCS model, as shown in Chapter 4, are useful only in certain

regimes and/or material parameters.

In contrast, the traditional two-fluid (TTF) model is good for fast calculations. It is

a simple analytic series of expressions, and as such, programs which implement it will run

quickly. In addition, programs which use this model will be easy and straightforward to

write and modify. Moreover, the TTF model is intuitive and conceptual-it is easy to

visualize what is happening in the superconductor when one uses this model. The

equations make logical and intuitive sense. Unfortunately, the TTF model lacks

microscopic soundness, and while it accepts a wide range of parameters, frequencies and

temperatures as inputs, it is inaccurate for most of these inputs.

In this thesis, we have shown that the Modified Two-Fluid (MTF) model combines

the best of the BCS model-its accuracy for many inputs-and the best of the TTF

model-its speed and intuitive nature. We have shown that it is more physically sound

than the TTF model, including as it does the coherence effects and the energy gap, but it

91



keeps its intuitive nature and speed. We have also shown how well the MTF compares to

the BCS model calculations over a wide range of parameters.

Because of the speed and accuracy of the MTF model, we can not only find

surface resistance data from parameter inputs at speeds necessary for CAD applications,

but we can also quickly find material parameters from surface resistance data. Because of

the intuitive nature of the model, we also gain insight into the physics of the material, as

shown in the case of Nb3 Sn and YBa 2 Cu 307-8.

There are a few items that constitute future work. We wish to modify the two-fluid

model further to include anisotropy and residual resistance, and we would like to

investigate strong coupling effects. We also would like to conduct some surface resistance

experiments in order to help verify this model.
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Appendix A: Comprehensive list of equations for the MTF
model

This list of equations will aid the programmer in including all the pertinent relationships

for the Modified Two-Fluid (MTF) model into his or her program. Following the list of

equations is a sample MathCAD 3.1 spreadsheet that we used to calculate the surface

impedance using the MTF model.

Required inputs: Tc, Ao or Ao/kBTc, the penetration depth at zero temperature X(0)

(NOT the penetration depth in the clean limit), and the DC conductivity oo. The operating

temperature T and operating circular frequency (o are also taken as given.

Each equation that follows will be completely specified by the inputs and/or the equations

above it. Hence, a computer program that implements each equation in sequence should

have no trouble with unspecified arguments. Following is the list of equations:

A(T) = A0[Cos ,f- ')JJ]/

1 v(O)po Ao -1

hl

I , o rA

A(O(T) = /[V(0)11 -(TI Tc)3-(TITC)] or X2(T) = (0))/[1-(TI T,)4]

I 2A(T)

$h
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o= I rad/sec

a 1 1 / 
-o 

<1a n d ( l /,-) b <0e '

O.17= l-(1/3)1og(1/,o) 1<1/1,<1000 and (w/loo)b <e'
0. 17 0 otherwise

b -~ =O •1+ +0. 2251og(l// :o) I/ 4o >1I
b.ln(lO)=t

Il otherwise

S3.98.109 1// o < 10

0o / 2 zr = (2.00.101°) otherwise

{a[(cool°) b< e] 31o) >e 3

=+e3

otherwise

r -~og, T)_ 2A(T)e-$-)ln(A())[ +]
kaT htoi l[+(W/aW,ý•-

1 ( )+ 0' r(cT) O<w<w

aIo.2 goX(T) l+ ozr,,
aro > coo

1=+ j oj)'
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Following is the MathCAD 3.1 Spreadsheet. Keep in mind that equations are read left to

right and top to bottom.

k E := 1.38 '10" 23 Oo := 5. 106 ).:= 140-10'9

hbar := 1.055"10"34 T :=4.2 Tc:=91.8 Ao:=kB-Tc-I.75

110 := 4'%'10" (a := 10"10 .2-x

A(T) =A 'ox. 1 A := i A = 2.463-10-2

T : 2.s(0) = 2C379.1014

harT2 TOL := 10- 14

o -2-Ao.-T)

A 0 B := A- I B = 7.13005

hbar

tr :hb' & tr = 1.08.10-13

WA 0

f := 10".4(10- B) + B .100 O(B- 10) b:= I + .225-Iog(B).4(B - 1)

a := [.l'b( I - B) + [[.17 - [17. (lo•(B)) J]'b(B - 1).,,( 1000- B)] + .16J

3 W 10)• W 10)
a l( f ) := a '• e 3 - c (f ) :=- e 3C.----J e 3

-0l)

rj(f,T) := 2.A(T) e kpBT.I(T{l. aI(f) + c(f)
kB'T -hba)

AW
I IT0 A(T) A

as(c•' ) + - /+ "ca A"T 2 3- TA(T) -lc 'tr/ 9 T9
an(w) 0 T- C)---

I + i .wcra.
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Z~coT)cy (aOT) R(co,T) :=Re(Z(ca,T))

R(mT) = 2.647-10-1
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Appendix B: Pascal code translation of Zimmermann program
[lM

Our translation of the Zimmermann program listed in [1] into Turbo Pascal 4.0 follows.
The program is identical in mathematical function, but the required inputs are slightly
different. The output of the code listed here is the complex surface impedance. One can
easily modify the code to output only the complex conductivity.

{$N+}
program Zimmermann;

var
delta0, doverk, sigma0, xi0, l:real;
fil : text;
redkey : string[ 1];
s, sl, s2, s3,GKsig : array[l..2] of real;
M,incr,loops: integer;
abc:string[ 1];
dx,stemp, A, B, C, D, R, delta, w: real;
u, dl, maxf, x, y, tt, t,max : real;
num, numb, total: integer;

function tanh(p:real):real; {hyperbolic tan function)
begin
if p<10000 then

tanh := (exp(p) - exp(-p))/(exp(p)+exp(-p))
else tanh : 1.0;

end;

function expo(base, power: real): real;
begin
expo:=exp(power*ln(base));

end;

procedure ggkk(e, x, y, t:real; k : integer; var re,im:real); {real part)

var
pl, p2, p3, p4re, p4im, cyre, cyim, c42re, c42im, c12, c32, th:real;
a,b,al ,b l,b2,a2,a3 :real;

begin
if k = 2 then pl :=sqrt((e+x)*(e+x) - 0.25);
p2 := sqrt(e*e -0.25);
if k = 3 then p3 := sqrt((e-x)*(e-x) - 0.25);
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if k =I then
begin

p4re :=0;
p4im: sqrt(0.25 -(e-x)*(e-x));

end;

cyim: Y;
cyre:=0;

if k-- then
begin
a: p4re*p2 +1E-20;
b :=p4im*p2;
c42re :=(O.25+e*(e-x))*aj(a*a+b*b);
c42im :=(0.25+e*(e-x))*(-b)/(a*a+b*b);

end;
if k=2 then 012 (0.25 + e*(e+x))/(pl *p2 + 1E-20);
if k--3 then c32 (0.25 + e*(e-x))/(p3 *p2 + 1E-20);
th :=tanh(e/(t+t+O. 00 1));
if k--1 then

begin
a: p4re +i cyre + p2;
b :=p4im +cyim;
al 1+ c42re;
a3 I-c42re;
bi I c42im;
b2 -c42im;
a2:=p4re+cyre-p2;
re:1th*((a3 *a+b2*b)/(a*a+b*b)-(al *a+blI*b)/(a2*a+b*b));
im:=th*((b2*a-b*a3 )/(a*a+b*b)-(blI 2-b*aI )/(a2*a+b*b));

end;
if k--2 then

begin
a:=cyre+p l-p2;
a) :=cyre-pl-p2;
a2:=cyre+pl+p2;
re:--tanh((e+x)/(t+t+0.00 1))*
((1 +cl12)*a/(a*a+cyim*cyim)-( 1-cl 2)*al/(al *al +cyim*cyim))
+ th*(( 1-cl 2)*a2/(a2*a2+cyim*cyim)-( I+clI2)*a/(a*a+cyim*cyim));
im:--tanh((e4-x)/(t+t+0.001I))*
((1 +clI2)*(-cyim)/(a*a+cyim*cyim)-( 1-cl 2)*(-cyim)/(alI*alI+cyim*cyim))
+ th*(( 1-cl 2)*(-cyim)/(a2*a2+cyim*cyim)-( I+clI2)*(-cyim)/(a*a+cyjm*cyjm));

end;
if k--3 then

begin
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a:= p3+p2+cyre;
b:=cyim;
al :=p3-p2+cyre;
re:=th*((1-c32)*a/(a*a+b*b).( 1+c32)*al/(al*al+b*b));
im:--th*(( 1 c32)*(-b)/(a*a+b*b)-( 1+c32)*(-b)/(aI *al +b*b));

end;
end;

begin (main)
write('inputs:DeltaO (inks) DeltaO/kTc sigmaO (mks)=> ');
readln(deltaO, doverk, sigmaO); I(energy gap, energy gap over kTc, DC cond.)}
write('inputs: xiO(A) 1(A) =>')
readln(xiO, 1); (coherence length, mean free path)
write('out to printer? y or n =>
readln(redkey);
if (redkey ='y') then

begin
assign(fiI, ¶PRI);
rewrite(fil);
end

else begin
assign(fil, )
rewrite(fll);
end;

writeln(fil,");
writeln(61l,'inputs:DeltaO (inks) = ',delta0: 5);
writeln(fiI,' sigmao (inks) =',sigmaO:5);
writeln(fil,' DeltaO/kTc = ',doverk:5);
writeln(fil,' xi0(A) =,Xi0: 10:0);
writeln(fil,' I(A) ='Jl: 10:0);
y :=(pi/2)*(xiOAl); (impurity factor)

writeln(fil,' y =,::)
for loops := 0 to 4 do (determines number of different temps.)
begin
{readln(tt); can be used to input temperature manually)
tt:=(Ioops*O.2+O.1); Itt=T/Tc)
if tt < 0 then tt := 0;
writein(fiI,");
writeln(fil,'T/Tc #',Ioops, ' ',tt: 3:4);
delta:= delta0 * sqrt(cos((pi12)*tt*tt));
for incr:=6 to I I do (determines no. of freqs.)

begin
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w:=pi*2*(expo(10,incr)); {circ. freq. }
x:= (1.055E-34/(2*delta))*w; {another factor from Zimm.}
s[ 1]:= 0.0; (sigma l/sigma0 (real part) )
s[2]:= 0.0; {sigma2/sigmaO (imag. part))

M := 40; {no. of integration steps--adjust down if
getting div. by zero)

dl :=I.0/M;
if 1.0 >= sqrt(x) then max:=l.0 else max := sqrt(x);
dx:= (1.0/int(M*max));

t :--tt/(doverk*2*sqrt(1-tt)*(0.9963 + 0.7733*tt)); {incl. temp. dep of
gap)

{following are math routines from Zimm., but since Pascal has no
complex math capability, complex variables are treated
as arrays)

sl[l]:= 0.0;
sl[2]:= 0.0;
s2[1]:= 0.0;
s2[2]:= 0.0;
s3[l]:= 0.0;
s3[2]:= 0.0;

u := dx*0.5;
while u <= 1.0 do

begin

ggkk(0.5 + (u/(l.0-u))*(u/(l.0-u)), x, y, t, 2, GK[I], GK[2]);
s2[1] s2[I] + GK[l]*u/((I.0-u)*(l.0-u)*(l.0-u));
s2[2] s2[2] + GK[2]*u/((1.0-u)*(I.0-u)*(1.0-u));
u u + dx;

end;

s[1]:= s2[1]*dx*2.0;
s[2] := s2[2]*dx*2.0;

ifx < 1.0 then
begin
u := dx*0.5;
while u <= 1.0 do

begin
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ggkk(0.5+x*u*u*(3.0-u-u),x,y,t, 1,GK[1 ],GK[2]);
sl[l] sl[1] + GK[1I*u*(1.0-u);
sl[2] sl[2] + GK[2]*u*(1.0-u);
u: u + dx;
end;

S[l1 s[l] + sl[l]*dx*6.0*x;
s[2] s[2] + sl[2]*dx*6.0*x;

end
else

begin
u :=dx*0. 5;
while u <= 1.0 do
begin
ggkk(0. 5+(x-lI)*u*u*(3 .0-u-u),x,y,t,3,GK[ 1],GK[2]);
s3 [ I] :=s3 [I] + GK[ I] *u*(1.0-u);
s3(21 : s3 [2] + GK[2] *u*(1.0-u);
u: u + dx;
end;

u :=dI * 0.5;

while u<= 1.0 do
begin
ggkk(x-O. 5+u*u*(3 .O-u-u),x,y,t, I,GK[ I],GK[2]);

sl[2]:=s1[2]+GK[2]*u*(1 .0-u);

u := u +dl;
end;

s[l1: s[1I + (s3[1]*dx*(x-l)+sl[l]*d1)*6;
s[2]: s[2] + (s3[2]*dx*(x-1)+s1[2]*d1)*6;
end;

stemp: =s[ I;

s[2] :=stemp * y * 0.5/x;
sig[1] s(1]*sigmao; (real part of conduct.)
sig[2] sE2]*sigmao; {imag. part of conduct.
A: (w*4*pi*1IE-7);
B :=sqrt( A / ( sig(1]*sig[1] + sig[2]*sig[2] ))
C: sqrt( sqrt( sig[l]*sig[i] + sig[2J*sig[2] ))-9
D:= 0. 5*(arctan(sig[ I /sig[2]));
R: B*C*sin(D),
write(fil,'f =,w(*i:)
writeln(fiI, and Z =',R:3 ,'+ i*',B*C* cos(D):3);
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end;
end;

close(fil);
end.
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Appendix C: FORTRAN and C code for Halbritter's BCS

Surface Impedence Program [21

The FORTRAN listing comes straight from Halbritter's code, but, as noted in Chapter 2,

the C translation was performed by J. Steinbeck.

Halbritter's FORTRAN code:

(Note: due to printing restrictions, margins have been altered, and some comment lines
exceed the margins. Therefore, lines that begin with comment text that do not begin with
an initial "C" are meant to be part of the previous line. The first line of the program is an
example.)

C SURFACE IMPEDENCE OF SUPERCONDUCTORS FOR FREQUENCIES
SMALLER THAN
C THE ENERGY GAP.

DIMENSION G(6),ID(6),TE(20)
REAL*8 DELT,DET,DQ(6),DADE,DZ,DX(1000),PI,DQI,DS(1000)
COMPLEX*8 CHS,CHD,CI
COMPLEX* 16 CDS(1000),CT(1000),CS,CD
COMMON/IHL1/ID,IQ,MS,IS,IP
COMMON/HL2/AK,A2,FL,O,GP
COMMON/HL3/PI,DQ,DX,DQ I,DS
COMMON/HL4/CHS,CHD,CI
COMMON/HL5/CDS,CT,CS,CD

csma
csma Add statements to open the input and output files
csma

open(unit=5,file='halb.inp',status='old')
open(unit-6,file='halb.out',status='new')

csma
C IT=NUMBER OF TEMPERATURE VALUES.

READ(5,1) IT
C FO=FREQUENCY (HERTZ), TE(I)=TEMPERATURES (KELVIN).

READ(5,2) FO,(TE(I),I= I,IT)
C MATERIAL PARAMETERS (UNITS: DEGREE KELVIN, ANGSTROM)

READ(5,2) TC,FAK,DLON,XKOH,FREI
C REST GIVES THE ACCURACY OF THE COMPUTATION.

READ(5,2) REST
1 FORMAT(15)
2 FORMAT(8EI0.4)

WRITE(6,2) FO,(TE(I),I= I ,IT),REST
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C THE MOMENTUM INTEGRAL IS SPLIT IN 6 PARTS OVER THE
INTERVALS
C (G(I), G(1+1)).

G(I)=1 .E-6
G(2)=1 .E-2
G(3)=0.2
G(4)=2.
G(5)=5.
G(6)=50.

C THESE SIX INTERVALS ARE EVALUATED BY SIMPSON'S RULE. I/ID(I)
GIVES
C THE SPACING OF THE ABCISSAS.

LD(l)--5
ID(2)=7
ID(3)=15
ID(4)=20
ID(5)=20
LD(6)=9
IS=(6.E-4/REST)* *0. 25+ 1.
DO 38 N=1,6

38 ID(N)=ID(N)*IS
P1=3.1415926535
PH=O.479*1O.**(-10)
CI=(O., 1.)
FLO=XKOH/FREI
AL=DLON/XKOH
OG=PH*FO/TC/FAK
DX(1)=0.
DX(2)=G(l)
IQ=-2
DO 40 N=1,5

LL=LD(N)- I
D=ID(N)*2
ID(N)=LL
DA=G(N)
DZ=G(N+1)
DELT=(DZ-DA)/D
DET=DELT*2.
DQ(N)=DELT/3.
DO 39 K=1,LL
DA=DA+DET
DE=DA-DELT
IQ=IQ+ I
DX(IQ)=DE
IQ=IQ+1
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3 9 DX(IQ)=~DA
DE=DZ-DELT
IQ=IQ+1
DX(IQ)=DE
IQ=-IQ+1

40 DX(IQ)=DZ
LL=ID(6)- 1
D=ID(6)*2
ID(6)--LL
DA=G(1)
DZ=1 ./G(6)
DELT=(DZ-DA)/D
DET=DELT*2.
DQ(6)--DELT/3.
IQ=IQ+1
DX(IQ)=1I.DA
DO 41 K=1,LL

DA=DA+DET
DE=DA-DELT
IQ=IQ+1
DX(IQ)= 1.IDE
IQ=IQ+ I

41 DX(IQ)=1I.IDA
DE=DZ-DELT
IQ=IQ+1
DX(IQ)=1I.DE
IQ=IQ+l
DX(IQ)= 1.IDZ
WRITE(6, 100)
WRITE(6, 101)
WRITE(6, 102)
WRITE(6, 103) TC,FAK,DLON,XKOH,FREI
WRITE(6, 107) FO
WRITE(6, 108)
DO 22 K=1,IT

T=TE(K)/TC
B=PTI2.*(1,-T*T)
AG=SQRT(SIN(B))
FL=FLO/AG
O=OG/AG
IF(O-0. 5)69,22,22

69 GP=AGIT*FAK
IS= I./SQRT(O*REST)/5.
IP=1 ./SQRT((2.-O)*REST)/5.
DO 19 I=1,IQ
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DS(I)=0.
19 CDS(I)=0.

CALL NONAN
MS-=GP/(SQRT(REST)*2. *PI)
CALL ISUM
DQ1I=CDABS(CDS( 1))
ENP-1 ./DSQRT(DQI)
AK=AL*ENP*AG
A2=AK*AK
CALL HAUPT
CHS=CHS*ENP
CHD=CHD*ENP
XS=REAL(CHS)*DLON
XD=REAL(CHD)*DLON
B=(FOIIO.** 17)*8.*PI*PI*DLON
RS=AIMAG(CHS)*B
RD=ALMAG(CHD)*B
WRITE(6, 109) TE(K),XS,RS,XD,RD,CHS,CHD

22 CONTINUE
100 FORMAT(IHI,48H SURFACE RIMPEDANCE IN THE SUPERCONDUCTING
STATE)
101
FORMAT( IHO,48H
102 FORMAT(I HO/2X.,2 IH MATERIAL PARAMETERS:)
103 FORMAT(IH0,6H TC = ,F4.2,24H K GAP(T=0O)/KTC = ,F4.2/32H LOND

IDON PEN. DEPTH(T=0,TI/L=0) = ,F7.1,9H ANGSTROMV32H COHERENCE
LENGTH

2(T=0,IJL=0)F = ,F7. 1,9H ANGSTROMI32H MEAN FREE PATH
3= ,F7.1,9H ANGSTROM)

107 FORMAT(1H0,9H FOR F = ,E1O.4,29H HERTZ THE BCS-THEORY
RESULTS/3H

I /14X,9HSPECULAR-,10X,17HDIFFUSE REFLEXTON)
108 FORMAT(IHO,3X,4HTEM-
,6X,4HlPEN.,4X,7HSURFACE,5X,4HPEN.,4X,7HSURFACE

1/2X,8HPERATURE,3X,5HDEPTH,3X, IOHRESISTANCE,2X,5HDEPTH,3X,I1OHRES
IST

2ANCE/4X,3H(K), 7X,3H(A),6X, 5H(OlIIM),6X,3 H(A),6X, 5H(OI-M))
109 FORMAT(IHO,3XF4.2,3X,F8. 1, IX,EIO.3, 1X,F8. 1,1XE1O.3,8X,4EI1.4)

STOP
END

C

C
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SUBROUTINE HAUPT
DIMIENSION ID(6)
REAL* 8 DQ(6),DX( 1000),PI,DQI1,DS( 1000)
COM4PLEX*8 CHS,CHD,CI
COMPLEX* 16 CDS(1I000),CS,CT(1I000),CIS,CID,CES,CED,CAS,
ICAD,CD,
COMMON/HLI/LD,IQ,MS,IS,IP
COMMON/HL2/AK,A2,FL,O,GP
COMMON/HL3/PI,DQ,DXDQ I,DS
COMMONIHL4/CHS,CHD,Cl
COMMON/HL5/CDS,CT,CS,CD
M=l
1=2
CALL INTQ(I,M)
CIS=DX(2)*CS
CBID=DX(2)*CD+2. *DX(2)
DO 40 1=1,6

EF(J-6)1 1, 10, 10
10 M=2

CALL INTQ(I,M)
CIS=CIS+CS*DX(2)
CLD=CID+CD*DX(2)

I I CES=0.
CED=0.
CAS=0.5*CS
CAD=0.5*CD
LL=LD(J)
DO 39 K=1,LL

CALL INTQ(I,M)
CES=CES+CS
CED=CED+CD
CALL INTQ(I,M)
CAS=CAS+CS
CAD=CAD+CD

39 CONTINUE
CALL INTQ(I,M)
CES=CES+CS
CED=CED+CD
CALL INTQ(1,M)
CIS=CIS+DQ(J)*(4. *CES+(2.*CAS+CS))

40 CID=CID4+DQ(J)*(4. *CED+(2.*CAD+CD))
A=2.IPI*AK
CHS=A*CIS
CHD=2./A/CID
RETURN
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END
C

SUBROUTINE INTQ(L,M)
DIMENSION LD(6)
REAL*8 DQ(6),DX( 1000),PI,DX2,DADQ1,DS(1 000)
COMPLEX*8 CHS,CHD,CI
COMPLEX* 16 CDS(1000),CT(1000),CS,CD,CDG
COMMON/HI/l1ID,IQ,MS,IS,1P
COMMON/HL2/AK,A2,FL,O,GP
COMMONIHL3/PI,DQ,DX,DQI1,DS
COMMON/HL4/CHS,CHD,Cl
COMMON/HL5/CDS,CT,CS,CD
CDG=CDS(L)IDQ I
DX2=DX(L)*DX(L)
DA==DX2*A2
GO TO (10, 1 1),M

10 CS=1 ./(DA+CDG)
CD=CDLOG( I.+CDG/DA)
GO TO 9

11 CS=1./(A2+CDGJDX2)
CD=CDLOG( 1.+CDG/DA)*DX2

9 L=L+1
RETURN
END

C

SUBROUTINE NONM4
DIMENSION ID(6)
REAL* 8 D,DX(1I000),PI,DQI1,DS(1I000),DV,DZ,DU,DGDADC,DP,DM,
I DW,DWO,DQ(6),OT,02
COMPLEX*8 CHS,CHD,CI
COMPLEX* 16 CDS(1I000),CT(1I000),CS,CD,CY
COMMONIHL I/ID,IQ,MS,IS,IP
COMMONIHL2/AK,A2,FL,O,GP
COMMON/HL3/PI,DQ,DX,DQ I,DS
COMMON/HL4/CHS,CH-D,CI
COMMON/HL5/CDS,CT,CS,CD
OT=O/2. *GP
IF(OT-0.2)10, 10,9

10 02~=OT*OT
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DV=OT*(1.+02/6. *(1 .+02/20. *(1 .+02/42. *(l.+02/72. *(l .+02/1 10.)))))*
1 DEXP(-OT)
OT=-OT*2.
GO TO 8

9 OT=-OT*2.
DV=(1 .-DEXP(OT))/2.

8 B=4*IS
BS=PIIB
DO048 K=1,IS

B=4*(IS-K)+2
D=B*BS
DZ=0.5*(1 .+DCOS(D))
DU=GPIDZ
DA=DEXP(-DU)
DG=DEXP(-DU+OT)
DC=DA/((1 .+DG)*(1 .+DA))*DV
DP=DZ+1.
DM=1.-DZ
DU=DP*DM
DW=DSQRT(DU)
DA=DZ*O
DWO=DSQRT(DU+DA*(2.+DA))
DP--DZ*DSQRT(DZ*DP)
DU=DA/DU
IF(DU-O. 1)7,7,6

7 DU=DU*(2.+DA)/2.

GO TO 5
6 DM=DWO-DW
5 CY=-CI*DMI2.IDZ+FL

CALL WINK(CY)
DU=DCIDPIDWO
DWU=DWO*DW
DM=1 .+DZ*(DZ+O)
DPS=(DM+DWLJ)*DU
DMS=(DM-DWU)*DU
DO 20 I=1l,IQ

20 CDS(I)=CDS(I)+DPS*CT(I)
DM=DWO+DW
CY=CI*DMIV2./DZ+FL
CALL WINK(CY)
DO021 I= 1,IQ

21 DS(1)--DS(I)+DMS*CT(1)
48 CONTINUE
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CY=-CI*BS*4.
DO 22 I~=1,IQ

CDS(I)=(CDS(I)+DS(I))*CY
22 DS(I)=O.

B=4*IP
BS=PIIB
DO 47 K=1,EP

B=A*(IP-K)+2
D=B*BS
DZ=I +05*O*(1 .+DCOS(D))
DU=GP*DZ
DA=DEXP(-DU)
DG=DEXP(-DU-OT)
DC=DG/((I .+DG)*(1 .+DA))*DV
DP--DZ+1.
DM=DZ- 1.
DW=DSQRT(DP*DM)
DA=O-DM
DU=DP-O
DWO=DSQRT(DA*DU)
CY=DWO+CI*DW+FL
CALL WINK(CY)
CY=( I +DZ*(DZ-O)+CI*DW*DWO)fDSQRT(DP*DU)*DC
DO023 I= 1,IQ

23 DS(I)=DS(I)+CY*CT(l)
47 CONTINUE

B=+BS*4.
DO 24 I=1,IQ

24 CDS(I)=CDS(I)+DS(I)*B
RETURN
END

C

C
SUBROUTINE ISUM
DIMENSION ID(6)
REAL*8 DQ(6),DX(1I OO),PI,G,DU,D W,DS(1 OOO),DQ I
COMPLEX*8 CHS,CHD,CI
COMPLEX* 16 CDS( 1 OO),CS,CB,CU,C W,CL,CP,CACT(1 OOO),CD
COMMON/IlL I/ID,IQ,MS,IS,IP
COMMONA-IL2/AK,A2,FL,O,GP
COMMONIHL3/PI,DQ,DX,DQ I,DS
COMMON[HL4/CHS,CfHD,CI
COMMON/HL5/CDS,CT,CS,CD
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G=PIIGP
DO 20 I=1l,IQ

2C DS(I)=0.
DO 30 M=1,MS

B=2*(MS-M)+ 1
B=B*G
DU=B*B+1.
CB=B+O*CI
CU=CB*CB+1.
DW=DSQRT(DU)
CW=CDSQRT(CU)
CL=(DW+CW)/2. +FL
CP=DW*CW
CA=(1.-B*CB+CP)/CP
CALL WINK(CL)
DO021 I= 1,IQ

21 DS(I)=DS(I)+CA*CT(I)
30 CONTINUE

DO 22 I= l,IQ
22 CDS(I)=DS(I)*CG4+CDS(I)

RETURN
END

C

C

SUBROUTINE WINK(CL)
DIM[ENSION ID(6)
REAL*8 DQ(6),DX(1000),PI,D,DQ1,DS(1000)
COMPLEX*8 CHSCHD,CI
COMPLEX* 16 CDS( 1000),CS,CT(1I000),CD,CC,C2,CL
COMMON/HLI/ID,IQ,MS,IS,IP
COMMON/HL2/AK,A2,FL,O,GP
COMMONAHL3/PI,DQ,DX,DQI1,DS
COMMONIHL4/CHS,CH-D,CI
COM[MON/HL5/CDS,CT,CS,CC
DO 20 1=1,IQ

D=DX(l)
CD=D/CL
C2=CD*CD
U=CDABS(CD)
IF(U-0.2)10,10,1 I

10 CT(I)~=3./CL*(I ./3.-C2*( 1./I 5.-C2*(1 ./35.-C2*( 1.163.-C2*( 1/99.

GO TO 20
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11 CD=1./CD
CT(I)--0.75/D*(-2.*CD+(I .+CD*CD)/CI*(CDLOG(CD+CI)-CDLOG(CD-CI)))

20 CONTINUE
RETURN
END

J. Steinbeck's translation of the above program into C follows:

/* Surface of superconductors for frequencies less than the energy
gap. As rewritten by J. Steinbeck */

/* I have tried to give all of the varibales meaningful names, unlike the
original FORTRAN version of the program. The naming convention is as follows:

(varA varB ...)_(vara varb ...) Generally means

varA varB .....

vara varb ......

For some functions (like the Kernel evaluated by the program) the

variables are named

name_(varA varB .... ) which means name(varA, varB, ....)

Other Notes:

1) The temperature dependence of the energy gap is presently given as
Delta(T)/Delta(0) = cos(pi/2 * tA2)

*/

#include<stdio.h>
#include<math.h>
#include"e:\math\cmath.h"

#define PI 3.1415926535
#define P12 (PI * PI)

Complex chs, cs, Zs; /* Variables for specular reflection */
Complex chd, cd, Zd; /* Variables for diffuse reflection */
Complex cds[ 10001, ct[ 1000];
double ds[ 1000];
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double T[20]; /* temperature values *l
double q[10001; /* wave vectors for integration */
int id[6];
double dq[6];
int iq,is,ip,ms; /* numbers of things */
double kappa_Tlw, kTlw2, /* kappa(T,l,w) and squared */
double hwdeltaT; /* hw/delta(T) */
double deltaTkT; /* delta(T)/kT */
double fl;
double Q_0w; /* Kernel Q(0,w) */

void haupto; /* Main integration routine */
void nonano;
int intq(int, int); /* calculates integrands */
void wink(Complex);
void isumO;

main()

double h k = 0.479951e-10; /* h/k */

int n, k, i;

int it; /* number of temperature values */
double fO; /* frequency in Hz */
double Tc; /* critical temperature */
double delta0_kTc; /* delta0_kTc */
double lambdaO; /* lambdaO with mfp infinte, T =0 */
double chiO; /* chiO, coherence length at T = 0 */
double 10; /* mean free path of carriers */
double rest; /* accuracy factor (?) */

double hwdeltaO; /* hw/delta(O) */
double delTdelO; /* delta(T)/delta(O) */
double t; /* reduced temperature */
double chi_1; /* chi(0)Il(0) */
double kappa; /* lambda0/chi0 */
double lamb_Tiw; /* lambda(T,l,w) */

double g[6]; /* interval data */

double d,da,dz,delt,det;

/* get the input data to run the desired case */
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printf("Frequency (Hz) --");
scanf("%lf', &M);
printf("Number of temperatures ( <= 20) -- ");
scanf("%d", &it);
for (n-=0; n<it; n++) {

printf("\nTemperature %d --",n);
scanf("%lf', T+n);
}

printf("AnMaterial parameters\n");
printf("\tCritical temperature (K) -- ");
scanf("%If', &Tc);
printf("\tDelta(0)/kTc ratio -- ");

scanf("%lf', &delta0_kTc);
printf("\tLondon penetration depth (T =0) (A) --

scanf("%lf', &Iambda0);
printf("\tCoherence length (T = 0) (A) -- "),

scanf("%lf', &chiO);
printf("\tElectronic mean free path (A) -- ");

scanf("%lf', &M0);
printf("\n\nAccuracy factor (???????) -- ");

scanf("%lf', &rest);

/* basically do the momentum integral in six parts to weight the regions
properly. Integration is done by Simpson's rule and the regions are assigned
as follows: */

g[0] = 1.e-06;
g[1] = Le-02;
g[2] = 0.2;
g[3] = 2.;
g[4] = 5.;
g[5] = 50.;

/* 1./id[] gives the spacing of the abscissas (?) */

id[O] = 5;
id[l] = 7;
id[2] = 15;
id[3] = 20;
id[4] = 20;
id[5] = 9;

is = I + (int)pow((6.e-04/rest), 0.25);
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for (n=-O; n<6; n++) id[n] *= is;

chi_1 = chiO/1O; 1* dirty limit ratio ~

kappa = lambdaO/chiO; /* type I or 11 *

hw-deltaO =h-k * fD/(Tc * deltaO-kTc); I* hw/delta(O) *

/* set limits for first interval *

q(1=0.;
q[1] = g[0];

iq =1;
for (n=0; n<5; n++)

/* set up for Simpson's rule integration *

d =(double)(2 * dn)

da = g[n]; /* lower limit *
dz = g[n+1I]; /* upper limit *

delt (dz - da)/d; /* interval size ~
det 2. * delt.
dq[n] = delt/3.;
for (k0-; k<id~n]; k++){

da += det;
q[++iq] =da - delt;
q[++iq] = da;

q-+-+iq] = dz - delt;
q[++iq] = dz;

d (double)(2 * id[5]);-

da =g(0];
dz = l1.g[5];-
delt (dz - da)/d;
det =2. * delt;
dq[5] = delt/3.;
q[++iq] = 1 ./da;
for(k=O; k~Zid[5]; k-H-){

da +=det;
q[++iq] = 1 ./(da - delt);
q[+-4iq] = I ./da;
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q[++iq] = 1 ./(dz-delt);
q[++iq] = ./dz;

1* fortran version chooses to write a bunch of stuff ~

/* do for each temperature */
printf("Temp.\t Rs-s\tlambda-s\t Rs-d\tlambda-d\n");

for (k=0; k<it; k++) I
t = T[k]/Tc; /* reduced temp ~
delT -delO = sqrt(cos(0.5 * PI * t * t)); /* gap at T *
fl = chi lI/delT-delO;,
hw-deltaT = hw delta0/delT-delO;

/* do only if hw < half gap ~

if ((hw-deltaT - 0.5) < 0.){
deltaT -kT =delT-delO/t*deltaO-kTc;
is =(int)(O.2/sqrt(hw-deltaT * rest));
ip =(int)(O.2/sqrt((2. - hw-deltaT)*rest));
for (i=0; i<iq; i++){

ds[i] = 0;
cds[i] =Comp(0);-

nonano;
ms = (int)(deltaT kT/(sqrt(rest)*2. * PI));
isumO);
QOw = cmag(cds[0]);
lamb_-Tlw =I ./sqrt(Q_OPw);
kappaTlw = kappa * lamb Tiw * delT-delO;
k_-Tlw2 = kappa,_Tiw * kappaTiw;
hauptoj;
chs = cmul(chs,Comp(lamb-Tlw));
chd = cmul(chd,Comp(IambTiw));

/* Specular Impedance */

Im(Zs) = Re(chs) * lambdaO;
Re(Zs) = fabs(Im(chs)) *

(fO * I. e-17) * 8. * P12 * lambda0;

/* Diffuse Impedance */

Im(Zd) = Re(chd) * lambda0;
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Re(Zd) = fabs(lm(chd))*
(tD * I. e-17) * 8. * P12 * lambdaO;

printf("%4. 2f\t%e\t%e\t%e\t%e\n',
T[k], Re(Zs), Im(Zs), Re(Zd), Im(Zd));

/* Main integration routine. Basically, accumulate results in ciX for
final summation at the end .*/

void haupt()

int i, j, k, m;

Complex cis,cid,cas,cad,ces,ced;
double a;

m= I;
i = 1;

i+= intq(i, in);
cis =cmul(Comp(q[ fl), cs);
cid =cadd(cmul(Comp(q[ I ), cd), Comp(2. *q[lJI)

for 6=0; j<6; j++){
if =5){

n =0;
i+= intq(i, in);

cis =cadd(cis, cmul(cs, Comp(q[1I])));
cid = cadd(cid, cmul(cd, Comp(q( I ])));

ces =Comp(O.);

ced =Comp(0.);

cas =cinul(Coinp(0.5), cs);
cad =cmul(Comp(0.5), cd);
for (k=0; k<idbjJ; k-H-)f

i+= intq(i, in);
ces =cadd(ces, cs);
ced =cadd(ced, cd);
i+= intq(i, in);

cas =cadd(cas, cs);
cad =cadd(cad, cd);
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i+= intq(i, in);

ces -cadd(ces, cs);
ced cadd(ced, cd);
i+= intq(i, mn);

cis = cadd(cis,cmul(Comp(dqU]), cadd(cmul(Comp(4.), ces),
cadd(cmul(Cornp(2.), cas), cs))));

cid =cadd(cid,cmul(Comp(dqlj]), cadd(cmul(Comp(4.), ced),
cadd(cmul(Comp(2.), cad), cd))));

a =2./PI * kappa -Tiw;
cbs =cmul(Comnp(a), cis);
chd = cdiv(Comp(2./a), cid);

1* Calculate integrands for specular and diffuse scattering cases. ~

int intq(int 1, mnt m)

double q2;
double temp;
Complex Q~qw;

Q-qw = cdiv(cds[l],Comp(Q...Ow));
q2 =q[l] * q[j];
temp =q2 *kTlw2;

if ( m)
cs =cdiv(unity,cadd(Coinp(temp), Q_qw));
cd =clog(cadd(unity, cdiv(Q-qw, Comp(temp))));

else{
cs =cdiv(unity, cadd(Comp(kTlw2),cdiv(Q_qw, Comp(q2))));
cd =cmul(clog(cadd(unity, cdiv(Q_qw,Comp(temp)))), Comp(q2));

return(,1);

/* nonan, isum and wink evaluate the kernel Q(k,w) which is then integrated
in the other routines. ~

void nonan()

mnt i,k;
double hw_2kT; I* hw/2kT ~

double hw-kT; /* hw/kT ~
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double dv, bs, d, dz, du, da, dg, dc, dzplI, dzmlI, dw,dwo,dp,dm;
double dps,dms,dwu;
doubleý expdu, exphwkT, expduhwkT;
Complex temp;

hw -kT = hw -deltaT * deltaT-kT;
hw_2kT =0.5 * hw-kT;

if (hw_2kT <= 0.2)
double h2;

h2 =hw_2kT * hw_-2kT;
dv =hw_2kT * (1. + h2/6. *(1.+h2O20 *(1.+h/42.*(1.+)h/72 *

(I. +h2/1 10.))))) * exp(-hw-2kT);

else{
dv =(I. - exp(-hwkT))/2.;

bs =0.25 * PII(double)is;

/* This loop eats up the most time ~

exphwkT =exp(-hw -kT);
for (k0-; k<is; k++) {

d =bs * (double)(4 * (is - k) - 2);
dz =0.5 * (1.+ cos(d));
du = deltaT-kT/dz;
expdu = exp(-du);
expduhwkT = expdu * exphwkT;
dc =expdul((1 A-expduhwkT) * (1 .+expdu)) *dv;

dzpl =dz+ 1.;
dzml dz - I.;
du -dzplI * dzml1;
dw sqrt(du);
da dz * hw-deltaT;
dwo =sqrt(du+da*(2.+da));
dp =dz * sqrt(dz*dzpl);
du =da/du;
if (du <=0.l1)

du 0.5 * (2. + da);
dm du*(0. - 0.5*du*(1. - du*(L. -1.25*du*(].-1.4*du*

(l.-l.5*du*(l. - I 1.*du/7.*(].-l.5*du*(l.-l3.*
du/9.*(1.-l.4*du))))))))) * dw;

else dm dwo - dw;
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temp = dcomplex(fl, -din * 0.5/dz);
wink(temp);
du =dc/(dp * dwo);
dwu = dwo * dw;
dm =1. + dz * (dz + hw -deltaT);
dps =(din + dwu) * du;
dms =(dmn - dwu) * du;
for(i0O; ilq; i-H-)

cds~i] = cadd(cds[i],cmul(Coinp(dps), ct[i]));
dm =dwo + dw;
temp =dcomplex(fl, dm * 0.5 /dz);
wink(temp);
for(i=0; iMq; i++)

ds[i] += dms * Re(ct[i]);

temp =dcomplex(0,-bs * 4.);
for (i0O; i<iq; i++) (

cds[i] = cmul(cadd(cds[i],Comp(ds[i])), temp);
ds[i] = 0.;

bs = 0.25 *PL/(double)ip;

exphwkT =exp(hW~kT);

for(k0O; k<ip; k-H-) (
d = bs * (double)(4 * (ip - k) - 2);
dz =1. + 0.5 * hw -deltaT * (1. + cos(d));
du =deltaT -kT * dz;
"epdu = exp(-du);
expduhwkT = expdu * exphwkT;
dc = expduhwkT/(( 1. + expduhwkT) *(1. + expdu)) *dv;

dzpl dz + I.;
dzinl dz - I.,
dw =sqrt(dzplI * dzml1);
da =hw deltaT - dzmlI;
du =dzp I - hw-detaT-
dwo sqrt(da * du);
temp =dcomplex(dwo + fl, dw);
wink(temp);
temp =cdiv(dcomplex(dc * (I. + dz * (dz - hw-deltaT)),

dc *dw * dwo), Comp(sqrt(dzp I * du)));
for (i=0; i'lq; i++) dsl] += Re(cmul(temp,ctfl]));

bs 4.
for(i=0; i<iq; i-H-) Re(cds[iI) += ds[i] * bs;
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void isumo

int i, m;
double g,b;
double du,dw;
Complex cb,cu,cw,cl,cp,ca;

g = PI/deltaT -kT;
for(i=O; ilq; i++) ds[i] 0.;

for(m=-O; m<ms; m++){
b = g * (double)(2 * (ins - mn) - 1);
du =b * b+ 1.;
cb = dcompiex(b, hw-deltaT);
cu =cadd(cmul(cb, cb), unity);
dw = sqrt(du);
cw = csqrt(cu);
ci = cadd(cmul(cadd(Comp(dw),cw), Comp(0. 5)), Comp(fl));
cp = cinul(Comp(dw), cw);
ca =cdiv(cadd(cmul(Comp(-b), cb), cadd(unity,cp)),cp);
wink(cl);
for (i=O;i'ziq;i++) ds[i] += Re(cmul(ca, ct~i]));

for(i=O; i<iq; i++) Re(cds[i]) += ds[i] * g

Complex coef[81 ={1./255., 0., L./195., 0., L./143., 0., L/199., 0.,
L/163., 0., IA135., 0., L/115., 0., IA/., 0. )

void wink(Complex ci)

int i;
double d,u;
Complex cd, cd2;

for(i0O;i<iq;i++)
d =q[i];

cd = cdiv(Comp(d),cl),

cd2 = cinul(cd, cd);
u = cmag(cd);
if (u <= 0.2) 1

1* ct~i] = 3./cl*(1./3.-cd2*(1./15.-cd2*(1./35.-cd2*(1./63.-
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cd2*(1./99. - cd2*(1./143.-cd2.*(l./195.-cd2/2S5.

int j;
Complex temp;

temp = coeffO];

foroj1; j<8;ji-H){
temp = csub(coefUj], cmul(cd2,temp));

temp, = cdiv(temp,cl);

ct[i] = cmul(Comp(3 .),temp);

else{
Complex temp,templI
double t I;

cd =cdiv(unity,cd);

1* ~~ct[i] = 0. 75Id*(-2 .*cd+( 1.+cd *cd)/ci*(log(cd+ci)..
log(cd-ci))) *1

temp = cadd(unity, cmul(cd,cd));
temp = cdiv(temp,I);
temp = cmul(temp,

(csub(clog(cadd(cd,I)),clog(csub(cd,I)))));

temp 1 cmul(Comp(-2.),cd);
temp = cadd(temp,templ);
t I= ~0.75/d;
temp = cmul(Comp(t I), temp);-

ct~i] = temp;
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Appendix D: The Transport Scattering Time and
Normal-Total Electron Ratio from The Sum Rule

During the course of developing the MTF model, we attempted to use the sum rule to find

two quantities: the transport scattering time ttr and the normal-total electron ratio il((o,T).

We present in this appendix the method by which we tried to find these quantities, and

why this method failed.

We started by making the following assumptions:

1. The sum rule argument works at all temperatures, including zero. The

sum rule, equation (3.44) from Subsection 3.4.5, is

f a (cO', T)do)' =0 2',

To find a solution to the sum rule, recall equation (3.14):

)+ 0 Xco ) w<co.

l+jaoX)(

Applying (3.14) to (3.44) and integrating gives the expression:

2,OXT) (Il- rXco, T)) tan-' rý(T (D.l1)
2•o/(T) ~r,,r

where ts(T) = 1/os(T). Equation (D. 1) is the two-fluid solution of the

sum rule.

2. The value of the penetration depth, whether the material is clean or dirty,

must have a Ginzburg-Landau temperature dependence near Tc, that

is, it must be proportional to (I-T/Tc)"1/ 2 near Tc.
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3. The penetration depth has the TTF temperature dependence and hence is

proportional to (1-(T/Tc) 4 )"1/ 2 . This assumption ensures assumption

2.

4. The function il(w,T) is the fraction of electrons in the normal channel,

and that it is only temperature dependent, i.e. 1(j(o,T) = r7(T), and goes

to zero at zero temperature.

Assumptions I and 2 are well-founded, and assumptions 3 and 4 are used to preserve the

two-fluid model picture. In addition, Ttr is assumed to remain constant.

We will use these assumptions to find the scattering time. At zero temperature,

assumptions I and 4 imply

0r =o0 tan- (D.2)
20,u02(0) r,, r (0)

and, because all the quantities except Ttr are taken as given, we can solve for ttr. The

problem with this method is that equation (D.2) is a transcendental equation, and must be

solved numerically. Not only does such an iterative solution increase the time and

difficulty of calculation, we found that solving this equation numerically was not

straightforward, as it is sensitive to the tolerance of the numerical processor and

converges to a solution for some parameters and does not for others that are only different

by a small percentage. However, it is possible to use this expression if one is careful.

We also discovered another effect of using equation (D.2): it gives a particular

dependence for the ratio of the penetration depth to the London (or clean-limit)

penetration depth at zero temperature. Using equation (3.22)

1 _ A0',L 0Or0Po

ý0 h

and equation (3.25)
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hi1

we can relate ,(O) to ,L,0.

Following is a graph of X(O) / X,L,O using four methods of finding this ratio. They

are: the Tinkham method (equation (3.25)), the Gor'kov method [29], the above method

and the Zimmermann program from [lI] which will give the BCS calculation. The

independent variable is the ratio o / 1.

1000 r

100 7

Gor'kov 7
10

Zimmermann (BCS)
-, (solid line)

Tinkham(dotted line)

0.1 1 10 100 1000 105

•o/ 1
Figure D. I X(O) / XL,O versus 40 / 1, using four methods of finding this relationship:
Tinkham's equation (equation (3.25)), the Gor'kov relations [291, the sum rule method,
and Zimmermann's BCS program (from [I]). The ratio of o0 /I goes from clean to dirty
going left to right. At larger 40 / 1, the Zimmermann and Tinkham methods are nearly
identical, as are the sum rule and Gor'kov methods.
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It is interesting that the sum rule and Gor'kov relationships match, except for clean

materials where the sum rule method seems to approach I faster than Gor'kov. Of course,

all methods are converge to 1 in the clean limit. It is also interesting that BCS and

Tinkham's equation match well across the whole parameter range from clean to dirty.

As stated in Subsection 3.4.5, we can also find ii(o,T) from the sum rule. We

know the two-fluid form of the sum rule at any temperature is equation (D. 1), and at zero

temperature it is equation (D.2). Using these two equations and assumption 3, we can

solve for il(c,T), which results in equation (3.45):

(co, T) = 1-[1-(T/•) 4 ] tan-'[ r, / r(0)]
tan-'[ rx / r (T)]

which we have stated does not work for the same reason the TTF model ri(o,T) = (T/Tc) 4

does not work: they both ignore coherence effects. However, just to give an idea of how

equation (3.45) and the TTF expression behave compared to one another, we include

graphs of both functions in the dirty limit and in the clean limit. The two functions are

almost indistinguishable in the clean limit, but are different in the dirty limit, particularly as

the temperature approaches Tc. Even so, they are similar in that they are monotonically

increasing functions, and have similar curvatures.
F I I

0.8 Clean limit 0.8 Dirty limit

From Sum Rule - From Sum Rule
0.6 From TTF 0.6 From TTF

i(c•,T) (,T:

0.4 0.4

0.2 0.2

, _ -- r , .-I

0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8

TITc TITc
Figure D.2 Comparison of i(co,T) from sum rule method and from TTF model o/l for
the clean limit is 0.0124, while for the dirty limit it is 12.4. ,,
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