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Chapter 1
Introduction

1.1 Problem Statement

The Fault-Tolerant Parallel Processor (FTPP) developed at the Charles Stark
Draper Laboratory is a computer architecture aimed at achieving high throughput while
maintaining a high level of reliability. These are necessary qualities for a computing
system that could be called upon to perform flight-critical and mission-critical tasks such
as those found in an aircraft flight control system. The FTPP utilizes multiple processing
clements (PEs) operating in parallel to achieve high throughput, and it maintains high
reliability through implementation of PE redundancy and Byzantine resilience. The high
throughput of the FTPP makes it an ideal host for hard-real-time applications, and its
custom-built operating system uses a rate group scheduling paradigm to properly
schedule iterative execution of real-time tasks. Application tasks are divided into rate
groups according to their required frequency of execution, and the operating system
schedules individual tasks for execution at regular, predefined intervals. For a real-time
system, it is critical that each task complete its execution cycle within its allotted time
frame; an inability to complete execution on time results in a condition known as a
pertormance failure.

The current incarnation of the FTPP is the Army Fault Tolerant Architecture
(AFTA). It is designed to be highly configurable and thus capable of supporting a
varying set of mission requirements. The AFTA can support as many as forty individual
processing elements, and :hese are organized into a flexible set of virtual groups (VGs) to
achieve PE redundancy. For any particular mission, the AFTA is uploaded with a suite of
application tasks, each of which may execute on one or more virtual processing groups.
Individual tasks vary according to function, required level of redundancy, required
frequency of execution, and expected execution delay. Given the variability of the AFTA
hardware and software configuration, onc may produce an overwhelming set of all
possible mappings between tasks and processing sites. For a hard-real-time system, it is
critical for the task workload to be properly distributed among the virtual groups so that
all tasks are able to complete their iterative execution cycles within their allotted time
frames. In order to identify such a task distribution, one may use a form of operational
trial and error, but it is certainly preferable to know in advance if a chosen configuration
of hardware and software satisfies necessary real-time constraints. For that purpose, this
thesis presents an automated software tool to perform a timing analysis of any given
system configuration.



1.2 Objective

The automated timing analysis takes into account the full system configuration--
both hardware and software. It performs a static analysis of the source code for each
application task and uses system performance data to estimate a least upper bound on task
execution time. The timing analysis relies heavily on source code modeling techniques,
and the limitations of modeling prevent a precise calculation of execution time. A worst
case scenario is considered in the analysis, and a minimum (rather than maximum) worst
case delay is defined using the model. Once a least upper bound is established for every
task, the tasks are categorized according to their virtual group and rate group
specifications, and comprehensive calculations are made for each virtual group to
determine if the overall system can satisfy real-time constraints under worst case
conditions. This calculation is known as the frame overrun check, and it takes into
account the following: hardware configuration, application task characterization, task
scheduling overhead, and operating system performance data.

The use of the analysis tool is not valuable solely for the overrun prediction;
rather, the overrun check is simply the most comprehensive result produced. The more
important results are the intermediate values used in performing the overrun check.
These include the delay of the rate group dispatcher and the parameterizations of the
individual application tasks. One of the major goals of this analysis is to properly
characterize the software tasks for timing estimation, code optimization, and for further
analysis of global message traffic and virtual group phasing (to be accomplished by other
tools). After a single configuration analysis, it should be readily apparent what types of
changes could be made to the system for better performance results. These changes
might include streamlining application task code, altering the mapping between tasks and
virtual groups, adjusting the virtual group configuration of the AFTA hardware, or
switching the rate group specification of one or more application tasks.

1.3 Approach

This timing analysis uses a modeling approach to account for the combined
behavior of the hardware and software in any given system configuration. The analysis
tool examines the Ada source code for each application task and develops a model for its
flow of execution. From this model, every possible path of execution is generated and
characterized according to a predefined set of parameters. Using performance data for
the AFTA operating system, the analysis tool compares the estimated execution times of
all paths and thus identifies the worst case path. Once a worst case path is defined for all
application tasks, this data is input to a model of the hardware configuration. The
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hardware model primarily accounts for the mapping between software tasks and '
processing elements, and it uses the worst case path parameterizations to determine if the R {
full system can satisfy real-time constraints under worst case conditions.

All the analysis functions described above are performed by a combination of two
programs written in C, which require minimal user interaction. Also, two “.com” files
written in Digital Command Language (DCL) are used for file searching operations and ,
proper execution sequencing of the two C programs. The results produced by the analysis
are stored in two machine-readable files; one contains the numerical results and the other
serves as an error log.
’
’
>




Chapter 2
Background

2.1 Fundamentals of Fault Toleranrce

A computing system designated to perform mission-critical and flight-critical
tasks must maintain a high level of reliability since faulty operation could cause loss of
aircraft control or at least compromise mission effectiveness. The total reliability of a
system is a function of the individual reliabilities of its components and their working
relationships with one another. The reliability of individual components is always
bounded and can usually be determined through experimentation; the goal of fault
tolerance is to use strategic component redundancy to achieve a system reliability which
is greater than that of the individual components. By definition, a fault-tolerant system
must be able to survive erroneous operation by some subset of its components and still
properly perform all assigned tasks [HAR91].

A typical reliability goal for a flight-critical computer system is 1 failure in 109
hours, while the components of that system may exhibit failure rates on the order of 1 in
104 hours [HAR91]. Some sort of redundancy scheme must be utilized to build a system
that is 10% times more reliable than its individual components. One approach is to first
examine all possible failure modes, the extent of their effects, and their associated
probabilities of occurrence. Then the system is designed to protect against all potentially
fatal failure modes which are judged to have a significant probability of occurring, and
the design must address a sufficient number of probable failure modes such that the
system reliability goal is achieved. This method is not only cumbersome and inexact, but
it is also difficult, if not impossible, to validate the reliability of the design. A
mathematical validation of the design’s reliability requires that for every error which
occurs, the probability that the design does not adequately protect against that error must
be less than 10-5 [HAR91]. It is certainly conceivable that system designers could
overlook significant types of erroneous behavior that would eventually surface in field
operation at the expense of system reliability. It is therefore preferable to employ a
design methodology that addresses only the number of potentially fatal component
failures and ignores the exact behavior of faulty components; this is the objective of the
Byzantine resilience approach to fault tolerance.

2.2 Fundamentals of Byzantine Resilience

Byzantine resilience guarantees proper operation of a system for a predefined
number of component failures, regardless of the specific nature of the individual failures.

13



The concept of Byzantine resilience is derived from the solution to the Byzantine
Generals Problem; it is stated as follows:

1. Imagine several divisions of the Byzantine army camped around an enemy
stronghold; each division has its own commanding general.

2. Upon observation of the enemy, the generals must decide whether to attack or
retreat. They communicate with one another only by messenger.

3. Some generals may be traitors and thus try to prevent the loyal generals from
reaching an agreement. All messengers are considered loyal; traitorous
activity by a messenger is treated as traitorous activity by the general sending
the message.

4. The objective is to develop an algorithm to guarantee that all loyal generals
follow the same plan of action, and no small number of traitors can cause the
loyal generals to adopt a bad plan [LAMS2].

This problem is analogous to that of designing reliable computer systems. The
commanding generals represent processors in a redundant configuration, the traitors
represent faulty processors, and the messengers correspond to the interprocessor
communication links [HAR91]. Using this analogy, the problem may be restated as
follows:

1. A redundant computer system consists of multiple processors.

2. The processors utilize identical inputs to produce required results. They
communicate with each other over data links.

3. Some processors may be faulty and may demonstrate malicious and even
intelligent behavior. Faulty communication links can be analytically treated as
faulty processors.

4. The objective is to force the system outputs to reflect an agreement among the
set of non-faulty processors and to effectively mask the behavior of faulty
processors.

The solution to this problem is best understood after explaining some
terminology. The physical components of a Byzantine resilient computer system are
typically organized into a number of subsystems referred to as Fault Containment
Regions (FCRs). Each FCR has a certain level of processing power and maintains
communication links with other FCRs in the system. By definition, any fault which
occurs within an FCR should not be propagated outside that subsystem to other FCRs. A
system is said to be f-Byzantine resilient if it can withstand a number of failures that is
less than or equal to f. One should note from the statement of the problem that an FCR
failure can denote any type of malicious or even intelligent behavior, and this ensures
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proper coverage of all possible failure modes as long as the number of failures is less than
or equal to f. The solution to the Byzantine Generals Problem can be transformed into a
set of implementation requirements for an f-Byzantine resilient system; these are
summarized as follows:
1. There must be at least 3f+1 FCRs [LAMS82].
2. Each FCR must be connected to at least 2f+1 other FCRs through disjoint
communication links [DOLS82].
3. For information emanating from a single source, there must be at least f+1
rounds of communication among FCRs [FIS82]
4. The activity of the FCRs must be synchronized to within a known and
bounded skew [DOL.84].

For a 1-Byzantine resilient system, there must be four FCRs with each one
uniquely connected to the other three; and for single sourcing of information, two rounds
of communication are required. A minimal 1-Byzantine Resilient System is shown in
Figure 2-1.

Figure 2-1, Minimal 1-Byzantine Resilient System

2.3 Tllustrations of Byzantine Resilience

The following two examples illustrate the Byzantine resilience approach to fault-
tolerant computing.

The first example shows how communication among four FCRs in a 1-Byzantine
resilient configuration can overcome faulty operation by a single FCR. Suppose each
FCR contains a single processor and all four processors perform the same operation.
Also assume that FCR A is responsible for conveying the system outputs to an external
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actuator. Simultaneously all four processors produce results for some required
computation, and the system must send these results to the actuator.

Figure 2-2 shows that the processors in FCRs B, C, and D all reach a result of ‘1’
while the processor in FCR A makes an error and submits a ‘O’ as its result. In order to
determine the output for the system, the FCRs perform a single round of communication
as indicated by the arrows, and each FCR then knows what results were reached by all the
other FCRs. A majority vote of the four sets of data is performed by each FCR, and since
every subsystem works with the same set of four data values, the FCRs necessarily agree
upon the proper output for the system. Figure 2-2 shows that each FCR has a set of three
‘I’s and one ‘0’ upon which to vote; thus they must reach the same conclusion.

ACTUATOR

Figure 2-2, 1-Round Data Exchange

The result of the inter-FCR communication and voting is that the processor in
FCR A is outvoted and the system result is given as a ‘1.’ This example assumes wnat
FCR A itself is not faulty; rather, the processor in FCR A experiences a temporary
malfunction. Despite this malfunction, the actuator associated with FCR A still receives
the correct system output, and this is shown in Figure 2-3. Thus, the temporarily faulty

operation of a single processor is masked in the system output of this 1-Byzantine
resilient configuration.
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Figure 2-3, All FCRs Agree

The example above illustrated the use of the “1-round” data exchange. This type
of communication is known as a voted message, and it is used when an exact consensus is
expected among redundant processors performing the same function. Another necessary
form of communication requires two rounds of data exchange, and this is known as
passing a source congruency message. A “2-round” exchange is required when a single
data source sends information to a specific processor or a group of processors [AFTA91].
The next example illustrates this type of communication for a 1-Byzantine resilient
system.

Suppose there is a sensor associated with FCR A, and it wishes to send data to
processors in each of the four FCRs. Let this data be represented by a binary value of ‘1.
Figure 2-4 shows the sensor sending its data to FCR A; FCR A then transmits this
information to all the other FCRs. This is the first round of data exchange. Note that the
data properly reaches FCRs C and D, but an error between FCRs A and B causes B to
read a value of ‘0." This type of fault is equivalent to traitorous activity by FCR B or
FCR A; without loss of generality, it is assumed that FCR B is faulty.

The first round of communication is followed by a second round in which the
FCRs exchange the values they received in the first round. Thus FCRs A, C, and D send
out ‘1’s to all their neighbors, and the traitor, FCR B, sends out ‘O’s to all of its
neighbors. Assume for now that the failure of FCR B to properly read A’s first message
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was a transient fault and does not occur on the second round. Figure 2-5 shows this
second round activity. At this point, all four FCRs have been presented with an identical

set of four values, and they vote individually to reach the same result.
A 1
1 »
1 0
D B g
1
»
C
Figure 2-4, First Round Exchange ’ o
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1
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Figure 2-5, Second Round Exchange ]
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Figure 2-6 shows that all four FCRs reach a consensus value of ‘1’ and pass this
value on to the processors associated with each FCR. Thus the second round of
exchanges allows the transient fault on FCR B to be overcome so that the processor
associated with FCR B could receive the proper value from the sensor attached to FCR A.

A ______ »
1
’
D1 1 B
]
1
C » @

Figure 2-6, Results from Example #2

Now consider the case where FCR B exhibits permanent faulty behavior rather
than the transient fault described previously. In this case, B could send out any random
value to its neighbors and also read back random values for the messages received from
its neighbors. This means it would be improper to assume that FCR B votes upon the
same set of data as the other FCRs; it must be assumed that FCR B reaches the wrong
value and its processor therefore receives faulty data from the sensor attached to A. This
scenario still does not compromise the effectiveness of the system as a whole, for the
perceived faulty operation of FCR B and its processors is masked by the proper operation
of the remaining FCRs. This property is demonstrated in the first example, where faulty
operation in A is masked by correct operation of FCRs B, C, and D.

2.4 AFTA Hardware Architecture

The Army Fault Tolerant Architecture is designed as a 1-Byzantine resilient
system organized as a cluster of either four or five fault containment regions. Each FCR
consists of a network element (NE), 0 to 8 processing elements (PEs), and 0 or more
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input/output controllers (I0Cs) for interfacing with external devices. Figure 2-7
illustrates the hardware configuration of AFTA.
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Figure 2-7, AFTA Hardware Configuration [AFTA91]

Byzantine resilience requires that faults within one FCR do not alter the operation
of another FCR; thus the AFTA design allows for both physical and dielectric isolation of
FCRs. Every FCR maintains independent clocking and has its own power source,
backplane, and chassis. The only physical connection between FCRs is a fully connected
high speed fiber optic network which provides reliable communication without
compromising the dielectric isolation [AFTA91]).
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The processing elements are standard processor boards with local memory and
miscellaneous support devices; laboratory prototype tests use Motorola 68030 VME
processor boards. The PEs are organized into virtual groups (VGs) with one, three, or
four processors per group, and these groups are referred to as simplex, triplex, and
quadruplex, respectively. VGs with multiple processors execute an identical suite of
tasks on each PE to provide the redundancy needed for fault tolerance, and Byzantine
resilience requires that every member of a triplex or quadruplex VG resides in a different
FCR. Each VG operates independently of the others, and the combined processing power
of multiple VGs functioning in parallel is what allows the AFTA to satisfy its high
throughput requirement. A minimal AFTA configuration consists of four FCRs hosting a
single virtual group of three PEs. A maximal configuration supports forty PEs divided
evenly among five FCRs [CLAS92]. The virtual group configuration in this case can
range from forty simplexes to ten quadruplexes. Note that the specific virtual group
configuration for a given system setup depends upon performance, reliapility, and
availability constraints, and can include mixed redundancy virtual groups. Figuie 2-7
illustrates the organization of forty PEs into their respective VGs as well as the physical
separation of the individual members of redundant VGs.

The core of each FCR is the network element. The NE maintains the ﬂber optic
links between the FCRs and also keeps the FCRs properly synchronized. The network
element is designed to implement all message passing and data voting protocols required
by Byzantine resilience, and it is the NE that actually carries out the communication
between the PEs within a VG and between the VGs themselves. The PEs communicate
with the network element over a standard bus such as the VME bus and the NEs talk to
one another via the fiber optic network. The network element is responsible for receiving
messages from the PEs in a 64-byte packet format, transmitting message packets over the
fiber optic network, storing mes<age packets destined for PEs within its FCR, and
notifying its PEs of message packet arrivals. The AFTA operating svstem works closely
with the NE hardware to ensure that the necessary communication protocols are
implemented smoothly, and the result is that the entire AFTA communication network
can be viewed as a virtual bus topology with all processors and virtual groups tied to the
bus [AFTA91]. This simplified view of the AFTA is shown in Figure 2-8. Message
passing between virtual groups occurs asynchronously over this virtual bus, and the
hardware is designed to guarantee that message packets are delivered correctly and in
order.
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Figure 2-8, AFTA’s Virtual Bus Topology [AFTA91]

The AFTA provides a unique combination of parallel processing and fault
tolerance capabilities, and the inherent complexity of these combined disciplines could
cause unnecessary difficulty for software developers. Fortunately, the custom design of
the network element and the AFTA operating system make the system’s hardware
configuration relatively transparent to application task programmers [HAR91]. The
programmer does not need to understand the requirements of Byzantine resilience or the
subtleties of parallel processing. The operating system provides a set of message passing
services that allow an applications developer to perform intertask communication via
simple function calls. Thus the programmer must know only the global communication
identification for the tasks with which he communicates; he may ignore the actual virtual
group configuration and physical system setup. This thesis primarily views the AFTA at
this level of abstraction.

2.5 Rate Group Scheduling Overview

The AFTA is designed specifically to support hard-real-time application tasks.
and a rate group scheduling paradigm is utilized to achieve hard-real-time response for
both periodic and aperiodic tasks [CLAS92]. A hard-real-time task is a process that is
executed in an iterative manner such that every execution cycle is completed prior to a
predefined deadline. Typically a task is allotted a certain time frame in which to execute,
and if execution is incomplete at the time of the deadline, a frame overrun condition is in
effect. A frame overrun denotes a failure on the part of system task scheduling, and it

could lead to catastrophic results if the cutputs of a task are critical to a function such as
flight control.
The AFTA’s processing resour: ¢~ 1.' software task assignments are logically

divided among the system’s virtual groups. Each virtual group is responsible for

scheduling the execution of its own set of tasks, and it utilizes a combination of two
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scheduling algorithms. The first is rate group scheduling; it is useful for tasks with well-
defined iteration rates and guaranteed maximum execution times (i.e. flight control
functions). The second method is aperiodic non-real-time scheduling, and this is used for
non-real-time tasks whose iteration rate is unknown or undefined (i.e. mission planning).
Note that the task scheduling algorithms do not allow non rate group tasks to disturb the
critical timing behavior of rate group tasks [CLAS92].

In the rate group scheduling paradigm, the real-time tasks on a single VG are
categorized according to their required iteration rates. Presently the AFTA supports four
rate group designations; the names, frequencies, and frame allocations of these groups are
summarized in Table 2-1 [AFTA91].

Table 2-1, Rate Group Designations

Rate Group Name | Iteration Rate Iteration Frame
RG4 100Hz 10ms
RG3 50Hz 20ms
RG2 25Hz 40ms
RG1 12.5Hz 80ms

At any given instant of time, all four rate group frames are simultaneously active,
although the processing power of the virtual group is dedicated to only one task within
one rate group. Rate group preemption is allowed such that tasks within a faster rate
group are always able to interrupt tasks within a slower rate group and thus divert
processing power to ensure that higher frequency tasks complete execution before their
next deadline. For example, if an RG3 task is executing when a new RG4 frame begins,
the RG3 task is suspended in favor of RG4 tasks. All RG4 tasks execute to completion,
and then execution of the suspended RG3 task is resumed.

minor frame index:

Figure 2-9, Rate Group Frame Organization
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Figure 2-9 serves as a pictorial explanation of the organization of rate group frames
relative to one another for a single virtual group. Notice that for an 80ms slice of time
(one RG1 frame), RG4 tasks are executed 8 times, RG3 tasks are executed 4 times, RG2
tasks are executed twice, and RG1 tasks are executed once.

For a given rate group frame, the VG schedules tasks on a static, non preemptive
basis [CLAS92). In other words, tasks within the same rate group cannot interrupt one
another even though higher frequency tasks are allowed to interrupt, and the ordering of
tasks within the rate group frame depends upon a task priority assignment made during
system initialization. Despite the preemptive activity between tasks of different rate
groups, each task on a VG should eventually execute until it reaches a state of self-
suspension. For each rate group frame, every task in that rate group must enter self-
suspension before the frame boundary; failure to do so constitutes a frame overrun.
When a task suspends its own execution, it has effectively completed its execution cycle
and the VG’s processing power is passed on to another task. At the beginning of a new
rate group frame, every task in the rate group is once again scheduled for execution and
resumes execution at the point where it last suspended itself. Figure 2-10 shows how
tasks are scheduled within an arbitrary rate group frame. Notice that incoming messages
are delivered to the rate group tasks at the beginning of the frame and outgoing messages
are queued during the frame and then transmitted at the end of the frame.

Beginning of
R?le Gl:lfup End of Rate
Frame R4: 10 ms Group Frame
—_ R3: 20 ms: >
R2: 40 ms
R1: 80 ms
Tasks within Rate Group
\
T1 T2 T3 T4 TS
Inputs and Messages Outputs and Messages
livered to Rate Delivered to Rate
Group Tasks Group Tasks

Figure 2-10, Scheduling for a Single Rate Group Frame
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The actual task scheduling for a virtual group is performed by an RG4 task known
as the rate group dispatcher. It executes at the beginning of every minor frame (RG4
frame) and schedules execution of all tasks belonging to rate groups whose frame
boundaries coincide with the beginning of the current RG4 frame. Refer to Figure 2-9 for
a good illustration of the frame boundary synchronization.

The rate group dispatcher also performs several bookkeeping functions for the
operating system, and it triggers transmission of the messages that were queued during
the rate group frames that were just terminated. Any task overruns from the previous
frames are detected by the RG dispatcher, and the error handling system is notified. In
the case of an overrun, the RG dispatcher detects which tasks were unable to complete
execution and enter self-suspension [CLAS92]. It is possible that a task which causes an
overrun actually completes its execution and effectively forces lower priority and lower
frequency tasks to remain incomplete. Thus, the source of this type of overrun error is
very difficult to trace, and it is intended that the type of a priori configuration timing
analysis proposed by this thesis will prevent the occurrence of such errors.
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Chapter 3
Preliminary Processing

3.1 Requirements

The AFTA timing analysis is divided into three distinct stages -- preliminary
processing, software modeling, and hardware modeling. Each stage builds upon the
results of the previous stage(s) and contributes to the formulation of final results. The
analysis begins with the preliminary processing stage, and its primary function is to
provide the other stages with an accurate and concise picture of the system configuration.
One of the goals of the timing analysis is to minimize user interaction so that the
computer bears the brunt of the analysis workload, and the preliminary processing phase
is designed to gather its information in an automated fashion from existing software files
and avoid querying the user about the system setup. The user is only required to provide
the name of the current task specification file; the analysis software does the rest.

Both the hardware and software analysis stages depend upon the configuration
information provided by the preliminary processing stage; however, these two types of
analysis view the system from different perspectives. The software analysis develops
models of the application task source code, and it sees the system as a collection of task
instantiations. The hardware analysis performs calculations relevant to the rate group
timing deadlines, and it sees the system as a collection of virtual groups. The goal of the
preliminary processing is to find the information required by both the software and
hardware analyses and to provide it in a format that is useful to both.

The gathering of system configuration data focuses upon the individual
application tasks, and the preliminary processing stage seeks answers to the following
questions:

1. What are the names of all application tasks in the suite?

2. On which virtual group(s) does each task reside?

3. To which rate group does each task belong?

4. What are the message passing limitations for each task?

5. Which file contains the source code for each task?
With regard to formatting this information, notice that the setup data is easily organized
according to tasks. This is a convenient format for the software analysis, but it is also
easily transformed it into a virtual group format for the convenience of the hardware
analysis. This transformation is explained in Chapter 8.
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3.2 Inputs

Ada software development and maintenance for the AFTA currently takes place
on a VAX minicomputer. During AFTA testing, application task code is transferred from
the VAX file server to the AFTA’s processing elements, and in the process, the operating
system is provided with a task specification file, which essentially explains the software
setup to the operating system. The preliminary processing phase utilizes this file to
gather most of its configuration information. The file is organized as a series of records
with each record containing information about a single task instantiation. A sample entry
is shown below in Figure 3-1.

1 => (
gcid => gcids. fdi,
gtid => gtids.fdi,
location => config.all_vg,
vg => 0,
rg => config.rg4,
precedence => 12,
max_xmit_size => 200,
max_xmit_num => 10,
max_rcve_size => 200,
max—rcve.num => 20,
pum_iors => 0,
iors => (
others => (
num_chains => 0,
chains => (
others => (E => false, D => false, C => false,
B=>false, A => faise)))))

Figure 3-1, Sample Task Specification File Entry

Since the format here is somewhat cryptic, it requires some explanation. Figure 3-1
shows the first task entry in the file, as denoted by the “1=>." The gcid and gt id lines
refer to the task’s global communication identification and global task identification,
respectively, and these are necessary for message passing purposes. The name of the task
is fdi, and it is extracted from the line “gt id=>gt ids. fdi.” fdi is a software
service that performs fault detection and isolation; by convention, a “_t ” is appended to
the task name, and the source code for fdi is found in a task body named fdi_t. Notwe
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that there is not necessarily any correlation between the name of the task and the name of
the package or file where it is held. The locat i on line shows that fdi is configured to
execute on all virtual groups in the system; a task can be configured to run on all VGs
simultaneously or only on one VG. The “vg=>0" line shows which VG hosts the task; in
this case, “0” is used because the task is mapped to all operational VGs. The rg line
indicates that fdi is an RG4 task, and its precedence value determines how it is
mapped statically within an RG4 execution frame. The next group of four lines refers to
the message buffering requirements of the task. max_xmit_size and
max_rcve_size indicate the maximum size, in bytes, of messages that the task is
allowed to transmit and receive. Likewise, max_xmit_num and max_rcve_num
determine the maximum number of messages a task can send and receive during a single
execution cycle. The final portion of the record concerns 1/O requests, and this
information is currently irrelevant to the timing analysis.

Similar to the AFTA application software, the timing analysis program is resident
on the VAX. All file manipulations in the course of the analysis take place on the VAX,
completely separate from the actual FTPP. The user provides the analysis program with
the task specification filename, and the preliminary processing begins with an
examination of this file.

3.3 Tools

The preliminary processing stage consists of one C program named START.C and
one DCL program called FIND.COM. The execution of the C program is explained in
this section and the following section; the DCL file is examined in Section 3.5. Source
code listings are included as Appendices B and C, respectively.

START.C utilizes some simple tools to examine the task specification file and
pass on the information it finds to the DCL program and to future stages of the timing
analysis. The first tool is a procedure called read_1 ist. Its function is to read a pre-
defined file which lists a series of key words that are needed by START.C when
examining the task specification list. read_| i st opens the file, grabs each key word
individually, and stores it in a structure called search_1 i st.

The next procedure is get_| i ne; its function is to pull characters from the task
specification file and assemble them into words and assemble the words into individual
lines. In this case, a line refers to the string of characters found between carriage returns.
Whenever it is called, get_| i ne finds and returns the next line in the file. The line is
stored as a collection of words in a structure called this_| ine; all white space and
comments are deleted from the line.
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The procedure called search is the workhorse of start . c. Its job is to search
a single line of the task specification file looking for the key words stored in
search_list. When a key word is found, it means that there is vital information in
that line, and a specific procedure is called to extract that information. All relevant data
found in the file is stored in a structure called t ask; its format is shown in the
pseudocode of Figure 3-2:

task record - (structure)
name (string)
virtual group (integer)
rate group (integer)
message buffers (structure)
max transmit size (integer)
max transmit number (integer)
max receive size (integer)
max receive number (integer)

Figure 3-2, Task Information Storage Format

The last major procedure is write_file, and its function is to use the t ask
structure to generate two temporary output files for the DCL program and the software
modeling stage. The first file is “task_names.dat,” and it contains a simple listing of all
the task names in the suite. The second file is “list_of_tasks.dat,” and it is a listing of all
the information contained in t ask, with one line devoted to each task instantiation and
its associated data.

The other procedures used by START.C are extract_name, get_rg, and
strip. These are minor functions needed for gathering data from the individual lines of
the task specification file.

3.4 Flow of Execution

START.C is a simple series of procedure calls to extract information from the task
specification file, organize it, and pass it on through temporary files. It begins with a call
toread_list, and this is followed by a filename inquiry. The task specification file is
opened, and then an iterative search process begins. get_I| ine is used to grab
successive lines from the file, and each call to get_1ine is followed by a call to
search. Thus the file is examined one line at a time until get_I i ne signals that the
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end of the file has been reached. All information gathered is placed in the structure
task,andwrite_file is invoked to produce the two output files described above.
Figure 3-3 illustrates the flow of input and output files for the preliminary processirg
stage.

3.5 The DCL Program

FIND.COM is an elementary file search program written in Digital Command
Language (DCL). Its purpose is to find the files which contain the source code for each
application task in the task suite. There is no convention which demands that the
filename in any way relates to the name of the task; also multiple tasks could be found in
a single file. Of cov-=, it1 .ssumed that the user already knows where the source code
can be found, but fo. .rposes of automation, FIND.COM is utilized to avoid having the
user enter the filenames for the various application tasks.

task_list.ada list_of _tasks.dat

START.C
FIND.COM

key_words.dat filenames.dat

task_names.dat temp.dat

Figure 3-3, Preliminary Processing File Flow

The Digital Command Language has a powerful search command which allows a
programmer to specify a word or group of words and then search all files in any number
of directories to find occurrences of that word group. FIND.COM is programmed to
search a specified set of directories where source code should be located. It first searches
for the occurrence of the phrase “task body is;” this phrase signifies the presence of task
source code. All filenames containing this phrase are stored in a file called “temp.dat.”
This is followed by a second search in which the previously identified files are again
searched for the individual task names listed in “task_names.dat.” When a file is found to
hold a specified task, the task name and filename are recorded together in an output file
called “filenames.dat.” The interaction of input and output files is shown in Figure 3-3.
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In conclusion, the preliminary processing phase is relatively simple, but it really is
essential to the analysis because the hardware and software modeling depend upon the
configuration data. The details of pre-processing are not critical to the analysis; what is
important is an understanding of the origin, motivation for, and contents of the two output
files -- “filenames.dat” and “list_of_tasks.dat.”

32




Chapter 4
Software Analysis

4.1 Assumptions and Limitations

The software analysis is the second stage in the progression of the AFTA timing
analysis; its function is to examine the source code for the application task suite, develop
a parameterized model for each task individually, and pass that model on to the hardware
analysis stage to produce the desired timing results. The ultimate goal of the software
analysis is to define'a worst case bound on execution time for any single cycle of an
application task. Recall that this information is necessary for the prevention of dynamic
performance failures as described in Chapters 1 and 2. The difficulty of predicting
software execution delay grows as the complexity of the code increases. High level
languages such as Ada give the programmer a great deal of latitude in formulating a
task’s structure and flow of execution, and the problem of predicting execution time
through a static analysis of source code is almost unmanageable. For this reason, some
simplifying assumptions must be made, and the goals of the software analysis must be
further defined.

The fundamental assumption for the software analysis is that task execution time
can be accurately modeled according to a limited set of known functions, which are called
in the course of code execution. At this point in the AFTA’s development, the set of
known functions primarily consists of benchmarked operating system calls [CLAS92],
but in the future, any commonly used function can be benchmarked and added to the
model. The source code analysis seeks to parameterize a task by determining how many
times each of the known functions is called during a single execution cycle under worst
case conditions. Since the delay for each function can be carefully designed and
benchmarked to be a deterministic quantity, some simple algebraic manipulation is used
to arrive at an estimated lower bound on worst case task execution time.

Notice that the timing analysis produces a lower bound on worst case delay, not
an upper bound as one might expect. This is due to the fact that the task source code is
modeled as an accumulation of function calls, where each call adds a known delay to the
total worst case execution time. The set of functions included in the code model does not
account for all of the processing performed by a task; this is clarified in the explanation of
the code model found in Chapter 5. It is probable that a substantial amount of processing
activity within the task could be overlooked by the model if such activity does not qualify
as a known deterministic quantity. This is why the timing analysis can only produce a
lower bound on worst case execution time; an upper bound would have to account for all
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processing activity, and that is not possible for the code model developed in this thesis.

The objective here is to construct a flexible model for source code that will produce

increasingly accurate r=sults as the model develops and becomes more sophisticated. ’
Though it is not known exactly how a single task’s execution times may be distributed,

Figure 4-1 shows an exponential distribution as a reasonable possibility. Given this

assumption, it is the goal of the software analysis to produce a worst case estimate that

falls on the far right side of the curve. Since this analysis provides only a lower bound on )
worst case delay, the estimate will never be on the extreme right, but as the AFTA

benchmarking efforts proceed and the code model grows and improves, the delay

estimate should shift significantly toward the tail of the curve.

Worst Case Estimate '
>
>
#of
cycles
’ o
Execution Time
Figure 4-1, Possible Distribution of Execution Times ]
The software analysis works with Ada source code, and it is assumed that the code
has been compiled and is free of errors. The analysis is heavily dependent upon Ada
syntax rules in extracting correct information from the source code, and in fact, )
compliance with Ada syntax rules is thc only guarantee afforded io the analysis tool when
it encounters a segment of code. All programmers develop their own style and use
unique text formatting and code structuring. For this reason, it is imperative that the
software analysis is able to understand any legal code construct, rather than being tuned >
to accept a predefined code format. This allows full flexibility to the application task
programmer, and at the same time, it makes the software analysis quite complex.
The element of style flexibility also imposes some limitations on the effectiveness
of a static code analysis, for there are instances where it is useful to know the value of a >
variable, but because of the variable’s definition and the flow of execution, a static
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analysis is not able to define that value. In such cases, the analysis relies upon extraneous
information from the programmer in the form of comments, and if these comments are
not included, default values must be assumed. The individual programmer makes the
decision whether or not to include the extra information, and if he chooses not to do so,
the analysis is dependent upon default values which could be highly inaccurate.

Another limitation of the software analysis arises from the fact that there is
currently a lack of actual application task code available for the AFTA. Since the AFTA
is only a prototype at this stage, software development efforts are primarily focused on
the operating system, with application task development being deferred. This serves to
limit the amount of operational testing that can be done with timing analysis. Certainly,
as a greater quantity and variety of task code is made available for testing, the timing
analysis will be modified and improved. The fact that this analysis tool must be able to
comprehend code that is not yet written reinforces the concept of allowing the
applications programmer full latitude in the realm of style and assuming nothing about
the source code except Ada syntax compliance. To date, the analysis tool has only been
tested on the fault detection and isolation software written for the AFTA.

4.2 The Ada Software Structure

The Ada programming language is designed specifically for large, real-time,
embedded computer systems, and it was created as a Department of Defense standard for
software engineering. As such, Ada was chosen to be the language for software
development on the AFTA [AFTA91]. An intimate knowledge of the Ada programming
language is not necessary for one to understand the AFTA timing analysis. but a
simplified understanding of the code framework is useful.

4.2.1 Subprograms and Packages

Ada code structures can be divided into three primary types of program units:
subprograms, packages, and tasks. These program units generally have a two-part
structure consisting of a specification and a body. The specification details the interface
to the unit, and the body contains the unit implementation details which can be logically
hidden behind the interface [BOO87]. The AFTA software analysis is interested in only
the program body; the specification is generally ignored.

Ada subprograms are the basic units of execution, and the body of a subprogram
holds the sequence of statements that define some algorithm. Subprograms are divided
into two classes: functions and procedures. The software analysis deals primarily with
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procedures, but the methods presented in this thesis are fully applicable to functions as
well.

An Ada package is a unit of encapsulation which allows the programmer to group
logically related entities such as subprograms and tasks. The software analysis relies
upon examination of package bodies to find source code for application tasks and relevant
procedures. Note that task source code is always enclosed within a package.

4.2.2 Tasks

Ada’s real-time processing capabilities are based upon the use of program units
known as tasks. A task is defined as an entity that can operate concurrently with other
program units [BOO87], and the central concern of the software analysis is the
examination of application task source code. A rate group task must have a well-defined
cyclic execution behavior, and it should never reach a point of termination until system
shutdown. These characteristics imply an infinite loop structure for a task, and this is
shown in the following sample code fragment.

with scheduler;

package body appl_test is
task body appli_t is

my_cid : constant communication_id_type := appll;
num_deleted : natural := 0;
frame_time : time := startup_time;
begin
loop
scheduler.wait_for_schedule;
end loop;

end appli_t;
end appl_test;

Figure 4-2, Sample Rate Group Task

Figure 4-2 illustrates the general code framework an application task. The
statement with scheduler signals the inclusion of all subprograms in an external
package called scheduler. This is followed by the definition of the package body for
app l_test, which includes the body for a single application task known as app 1 1_t.
The definition of my—c i d is necessary for intertask communication, and num_de let ed



refers to the number of messages deleted in the previous frame due to inadequate
buffering. The variable frame_t i me contains the value of the time when the current
rate group frame was started. These variables are unimportant to the software analysis;
what is critical to note here is the structure of task app 1 1. Figure 4-2 shows appl1 asa
minimal rate group task consisting of an infinite loop surrounding a single call to the
wait_fcr_schedule procedure that is defined within the scheduler package. The
infinite loop ensures that app | 1 executes in an iterative manner for an *~  -finite length
of time, and the call to wait_for_schedule ~llows app! 1 to suspend itself after
each progression through the loop. The task is revived when scheduled by the rate group
dispatcher during its next rate group frame. Thus, the wait_for_schedule call
regulates the rate group behavior of a task in the following manner:

1. A task begins execution when scheduled by the rate group dispatcher.

2. When a task finishes a single execution cycle (in this case, one progression
through the infinite loop), it calls wait_for_schedule.

3. The task then enters a state of self-suspension, and its processing resources are
freed for use by other tasks.

4. When the next rate group frame begins, the rate group dispatcher scnedules
the task for another execution cycle.

5. Once scheduled, the task begins execution with the code immediately
following the last wait_for_schedule call and proceeds uniil it
encounters another wait_for_schedule call.

The progression of events described above is the basis of the software analysis.

4.3 Requirements of the Programmer

One of the goals of the software analysis is to be able to accept and comprehend
source code written in almost any programming style, provided that the code complies
with Ada syntax rules. In general, the programmer is not restricted to following any pre-
defined format for the benefit of the timing analysis; however, there are a limited number
of simple directives that, if followed, make the anal, ,is much more effective.

4.3.1 Comraent Information

‘When one performs a manual static analysis of source code, it is quite easy to scan
the code both forwards and backwards to extract the information needed to trace the flow
of a program. The human mind is capable of performing complex searches for variable
value: through many levels of definition, and one can almost mentally simulate source
code a: he reads it. Unfortunately, such a manual analysis is impractical and prone to

37



errors when dealing with exceptionally large bodies of code; thus, in the interest of speed
and accuracy, automated analysis replaces manual analysis. The problem is that it is a
difficult task to train a computer to read and understand source code the same way that a
human would, and in order to simplify this task, some compromises must be made.

The first compromise is to force the computer to read code in only the forward
direction. Certainly it is possible to have the computer search a piece of code in both
directions to find information, but the logic to control such a search involves unjustifiable
complexity. Therefore the AFTA software analysis reads and examines source code one
line at a time in the order in which it is encountered. Any information that could be
useful later in the analysis must be properly extracted and stored (or remembered)
because there is no way to refer back to code that has already been processed. This
approach may seem to be too limited, but the implementation of some simple strategies
make it surprisingly effective.

One limitation of single-line processing is its inability to fully trace variable
values. This is easily demonstrated with the following example:

task body example_t is
counter : natural := 50;
i ! natural;
begin
loop
for i in 1.,.counter loop
end loop;
scheduler.wait_for_schedule;
counter := 100;
end loop;
end example_t;

Figure 4-3, Variable Tracing Example # 1

Now look at the code in Figure 4-3 from the computer’s perspective -- read only one line
at 2 uime and do not refer to previously read lines. The computer sees the variable
counter take on an initial value of 50, and then it finds a for . . loop that is iterated
50 times during the first execution cycle of the task named examp | e. When the task is
scheduled for its second cycle, count er assumes a value of 100 and the for. . loop is
now executed 100 times. Unfortunately though, the computer has already associated a
value of 50 iterations with the inner loop and cannot go back and find out how the new
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value of count er affects previously processed code in subsequent execution cycles. A
simple solution to this problem might be to require the computer to remember that the
variable named counter affects the inner loop so that when count er changes, a new
iteration value can be associated with the inner loop. This sounds simple until one
considers that the value of count er could change within a deeply nested procedure, and
the attempt to follow a variable into and out of a nest of procedures would rcquire some
very complex logic. Such a process borders on simulating code rather than performing a
static analysis, and code simulation really has no advantage over actual code execution.
Another solution would be to just dismiss single-line processing as an inadequate
approach because of such a shortfall, but before doing so, consider the following
example:

task body example_t is
counter : natural;

i : natural;
begin

loop
counter := temperature (format => kelvin);
for i in 1..counter loop
end loop;
scheduler.wait_for_schedule;

end loop;

end example_-t;

Figure 4-4, Variable Tracing Example #2

The example in Figure 4-4 illustrates the possibility that a loop control variable could be
determined by some quantity that is defined only at run time. In this particular case, the
variable count er is a function of the temperature measured by some external sensor.
No form of automated analysis can properly define a value for count er, and instances
such as these require that the programmer provide some extra information to help make a
static code analysis effective. Recall that the AFTA timing analysis is interested in worst
case scenarios, and for this example it would be helpful to know that a value such as 500
is a reasonable limit on the value of counter. Only a programmer with extensive
knowledge of the system could provide such input; an automated analysis tool cannot be
expected to bridge such information gaps.
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The first example illustrates a situation where programmer input is not required
but serves to simplify the static analysis process, while the second example demonstrates
that there are certain situations in which programmer input is absolutely necessary to
make the static analysis effective. If the programmer uniformly provides information
about loop iteration maximums, he guards against the analysis roadblock presented by the
second example and at the same time provides a simplified solution to the variable tracing
problem of Example #1. Situations of both types arise during a static code analysis, and a
simple request that the programmer provide information about maximum loop iterations
ultimately makes anmy static analysis more useful and actually establishes single-line
processing as a viable approach.

The AFTA timing analysis benefits from four types of extraneous information that
the programmer should be able to provide. They are as follows:

1. What is the maximum number of iterations in a for..loop?

2. What is the maximum number of iterations in a while..loop?

3. What is the maximum number of bytes in a message passed between tasks?
4. What, if any, is the maximum number of iterations for a basic loop?

This information must be provided in a conventional format that is convenient for
the programmer to understand and easy for the analysis tool to read. The most
appropriate method to communicate such data is through comment lines within the source
code. These are the rules governing the use of comment information:

1. The information must be conveyed using a single comment line which begins
with the standard “~-"" format.

2. This is followed by a “*” and an identifier denoting the type of information.

3. Next there is a statement of the form “max=" followed by a base 10 integer or
the word “unde f i ned” for infinite loops or unknown values.

4. The comment information must precede the corresponding loop or message,
although it does not have to be placed immediately betore the code statement.

5. To avoid confusion with constructs such as nested loops, information relating
to an inner loop must fall within the adjacent outer loop.

6. Refer to Figure 4-5 for some examples.

The concept of asking for extra information from the programmer is not
unreasonable or uncommon. In [PARK90}, the authors describe a requirement for both
maximum and minimum loop bounds for input to their program timing tool. Similarly,
[PUSCB89] discusses alterations to the original programming language for the
specification of loop maximums in terms of an iteration count or a time delay. The
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comment information method described here has the advantage of being simple to
implement and flexible with regard to expansion. Its primary disadvantage is that there is
no compiler enforcement of this convention. The programmer is free to omit the
information, or if he chooses to include it, he might use an improper format.

=

100
200

for loop: max
while loop: max

message: max = 300
basic loop: max
basic loop: max

%* % X B ®

400
undef ined

Figure 4-5, Examples of Comment Information

4.3.2 Naming Conventions

Early generation programming languages like FORTRAN and COBOL
implement global naming conventions and burden the programmer with name space
management. When naming an object, the programmer is forced to reference name
listings to ensure that the name is used in the proper context and does not conflict with
any other name in the system. Ada attempts to avoid this problem through the
implementation of scope rules and the overloading concept. The objective is for code
nesting and overloading to allow programmers to pick the most meaningful and
convenient names for their objects without being concerned about the use of the same
names in other parts of the system. The compiler sorts out the details in cases of name ’
conflicts and thus gives the programmer a great deal of freedom. Unfortunately, the
AFTA timing analysis tool is not as smart as the Ada compiler, and it is necessary to
impose a few simple naming conventions.

The first convention is that all task names end with “_t” when used to define the
body of the task. The analysis tool finds the task names in the task specification list and
automatically appends the “_t” when searching for the source code of the task body. If
the task name is not appended in this manner, its source code will not be found and will
not be evaluated. For an example task body definition, refer back to Figure 4-3. ’

The second convention is that all procedures and functions defined within a single
task must have unique names. The reason for this is that the software analysis builds
source code models based upon procedure calls, and a specific model is associated with
each procedure name. If a task makes use of two procedures with the same name, the ’
analysis tool will be confused as to which procedure model to use. Refer to Chapter 5 for
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a more detailed description of code model construction. Ada scope rules allow the same
subprogram name to be used for multiple procedures or functions within a nested code
structure, and the compiler is forced to figure out which body of code is being referenced
for each occurrence of the name. Likewise, the overloading concept permits the
programmer to use identical names for similar functions and procedures, provided that the
compiler can distinguish them according to the parameters included with the subprogram
name. The logic to sort such details is quite complex and is not included in the AFTA
software analysis. This naming convention is the result of a simple engineering tradeoff
where the need for simplicity in the analysis tool outweighs subprogram naming freedom
for the programmer.

4.3.3 Undesirable Constructs

For a hard-real-time system, it is desirable for the software to exhibit a predictable
timing behavior so that task scheduling constraints may be satisfied, and a software
timing analysis is usually interested in examining worst case scenarios to ensure that
execution timing deadlines are always met. When dealing with a worst case scenario, a
static code analysis can be easily confused by certain programming constructs and thus
provide no insight into their timing behavior. In practice, such constructs may
demonstrate perfectly acceptable behavior, but they have a tendency to cripple the
effectiveness of any a priori analysis.

One undesirable construct for real-time software involves the use of recursion. As
mentioned previously, the AFTA timing analysis builds source code models based upon
procedure calls. If Procedure A calls Procedure B, the model for Procedure B is inserted
into the model for Procedure A. If Procedure A calls itself, the attempt to build a model
for Procedure A is like trying to sketch the reflection of one mirror appearing in another
mirror. Recursion may be the most efficient implementation for certain algorithms, but
its timing behavior is usually unpredictable or at least very difficult to define. The AFTA
software analysis notes the presence of recursive constructs, but it does not attempt to
model them or analyze them.

As with traditional recursion, the use of mutual recursion is an undesirable
construct for real-time software. Mutual recursion refers to the situation where Procedure
A calls Procedure B and Procedure B calls Procedure A. The problem of trying to
accurately model such a situation is similar to the one described above, and the AFTA
software analysis notes the situation but does not attempt to analyze such a construct.

Another dangerous construct involves the use of basic loops and while loops. In
order for the timing analysis to be effective, the programmer must specify the maximum
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number of iterations for each instance of these types of loops, or a call to the
wait_for_schedule procedure must be included inside the loop. Even if a
wait_for_schedule call is placed inside the loop, there is a possibility that the
timing analysis could signal the presence of a potential infinite loop. Obviously, an
infinite loop is an unacceptable possibility for a real-time task. Figure 4-6 shows an
example of such an undesirable situation.

loop )
if FLAP_STATUS = FULL_UP then
compute(ALTITUDE,AIRSPEED);
else
scheduler. wait_for_schedule;
end if;
end loop;

Figure 4-6, Potential Infinite Loop

Notice that the loop shown above has no defined maximum iteration count but does
contain a call to wait_for_schedule. Thus, one might assume that any single
execution cycle eventually escapes this loop by reaching the wait_for_schedule
call; however, the software analysis looks at the worst case scenario only. In this case, it
is possible that the wait_for_schedul e call is never reached, and an infinite loop ties
up processing resources and breaks timing deadlines. The AFTA timing analysis notes
this situation but does not attempt to analyze it.
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Chapter §
Abstraction

The primary challenge of the software analysis is to identify and parameterize the
worst case execution path for each application task. An execution path is defined to be
any sequence of statements encountered between two successive calls to the
wait_for_schedul e procedure; thus an execution path determines the task’s activity
for a single rate group frame. In order to identify the werst case path, all possible paths
must be explored, and a valid method of path comparison must be employed. For a static
analysis, the best way to identify execution paths is to model the flow of execution for a
given segment of source code, and the software analysis utilizes the concept of
abstraction to construct such flow models for each task instantiation in the task suite.
Abstraction is a method of hiding details in order to simplify analysis, and it is ideal for
achieving the goals of the AFTA timing analysis. Recall that the fundamental assumption
of the software analysis is that task execution time can be accurately modeled according
to a limited set of known functions; abstraction is a way to eliminate details and highlight
the role of these known functions. The goal of abstraction is to examine the task source
code in full and develop a model that preserves only the information necessary for
parameterizing the task in terms of known deterministic functions.

5.1 The Abstraction Methodology

The process of building source code models is rather complex; thus, it is best to
begin with a high level discussion of the abstraction methodology. Task source code is
input to the software analysis as a stream of characters from a file. These characters are
assembled into single lines of code, and the code lines are processed individually and
sequentially. In the context of this analysis, a single line is defined as that which falls
between successive semicolons. Abstraction serves as a filter that transforms highly
detailed source code into a simplified flow model for execution path analysis. As each
line of code is processed, relevant information is extracted from it, and the code itself is
then discarded. Information that is considered relevant falls into two categories: flow
control items and known deterministic functions. The first category is a closed set of Ada
constructs that are used by the programmer to define the flow of task execution. These
include loop constructs, if-then-else constructs, case statements, and
wait_for_schedule calls. The second category is an open set of functions composed
of subprograms whose execution delay is deterministic and has been measured as part of
AFTA system benchmarking efforts. Presently, this set of functions primarily consists of
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operating system calls and in particular, message passing functions. Figure 5-1 shows a
full list of the critical constructs that are extracted from the source code in the process of
model construction.

loop

exit
for..loop
while..loop
end loop
if..then
else

end if
case,. .when
end case

scheduler.wait_for_schedule
rg—communication.queue_message()
rg—communication.retrieve_message()
rg—communication.send_message()
rg—communication.read_message()
rg—log.rg_log_entry()
debug_trace.debug_log()
rg—dispatcher.io_utils()

Figure 5-1, List of Critical Constructs

Each program statement is searched for items belonging to this list. When a critical
construct is found, it is appended to the end of the model along with any data associated
with the construct, and the model thus becomes a reflection of the task source code with
all unnecessary details removed.

5.2 The Motivation for Abstraction

Familiarity with the abstraction methodology makes it is easy to understand the
motivation for source code modeling and the use of abstraction. The justification for this
approach to software analysis is best summarized as follows:

1. The use of code models expands the power of single-line processing.
Examining program statements one at a time and in sequential order is a very
restrictive way of analyzing source code. With the abstraction method, single
line processing is only an initial stage that serves to build the task model: it is
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not responsible for code analysis. Thus, any static analysis limitations of

single-line processing disappear once the model is built.

2. The source code model is stored as a collection of integers, and this makes it
easy to analyze and manipulate in an automated fashion. The timing analysis &)
deals only with the task model; it completely ignores the original source code
once the model is built. This allows the analysis to be greatly simplified
because it is not wrapped up in code interpretation or string manipulation, and

simplicity is vital to the improvement and maintenance of the analysis tool.

3. The task model is constructed in a format that is ideal for identifying and
comparing possible execution paths. In contrast, examining the source code
itself for execution paths is an extremely complex task. The abstraction
process is designed specifically to transform the source code into a format that
allows the most efficient execution path identification, parameterization, and
analysis.

4. Abstraction serves to expose the message passing characteristics of an
application task because all the message passing procedures are included in
the list of critical constructs. When all tasks are considered simultaneously in !
the hardware analysis stage, the analysis tool develops a picture of worst case
global message passing activity. This is important in determining the timing ’ i
behavior of the rate group dispatcher, which is executed as part of the system i
overhead in every minor frame. 11

1
|
1

5.3 Code Model Elements ’
The source code model! for an application task is stored as a collection of integers.
Integer manipulation is easily accomplished within a high level language like C; thus the
format of the model lends itself to a simple and efficient implementation of the model
analysis procedures discussed in Chapters 7 and 8. The model is a one-dimensional array ’
of entries, and each entry is a set of five integer elements. These elements are outlined
below:
1. TYPE: An integer value representing the type of critical construct that is
found in the source code and recorded as a model entry. Every critical ’
construct listed in Figure 5-1 has a specific integer associated with it and is
recognized by the computer according to its numerical value. The constant
definitions for the analysis tool are found in “header.h,” and for purposes of
code readability and maintainability, these constants are referred to by the )
names listed in “header.h” rather than their respective numerical values.
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2. VALUE: Some of the critical constructs have a value associated with them,

and this value is required for analyzing worst case scenarios. For instance, for L))
all loop constructs, the VALUE element represents the maximum number of ’
iterations for that loop. Loops whose behavior is undefined are assigned one x)

of two constant values whose names best describe the nature of the loop. The

names of these constants are UNDEFINED and INFINITE; their meanings are

self-explanatory. Message passing constructs also have an associated value »

which represents the maximum size of a message in 64-byte packets. If no

maximu:a value is specified by the programmer, the message passing

limitations listed in the task specification file (refer to Chapter 3) are used as

default values. >
3. DEPTH: After the model is created, each entry is assigned a DEPTH value to

represent its level within the nested structure of the source code. The DEPTH

element helps the model emulate the modular construction of the original

code, and the information conveyed by the depth element is vital to the task of )

identifying possible execution paths.
4. POINTER: Not to be confused with a pointer in C, the POINTER element is

a value assigned to a model entry after the model is fully constructed. It is the

index value of another closely associated model entry, and its assigned value » @

is essential for proper identification of possible execution paths. For example,
the end 1oop construct uszs the POINTER value to identify the index for i
the model entry that represents the beginning of the loop construct. The
specific rules governing the assignment of the POINTER value are explained »
in Chapter 7. Not all model entries require the use of this element. and in such
cases, the POINTER element is assigned a constant vatue named
UNDEFINED.
5. FLOW: This element is used only during the generation of execution paths )
through the code model. It is required for bookkeeping purposes, and its value
assignment conventions are discussed in Chapter 7.
The figures on the following page illustrate a sample model construction. Figure
5-2 is a segment of test code designed to highlight the occurrence of critical constructs; it >
is not intended to represent any particular algorithm. Notice in the parameter
specifications for the message passing procedures that only the fourth parameter is
specified. This parameter indicates the size of the message; the other parameters are
unimportant to the timing analysis and are not included. It is important to understand that >
the source code lists the message size according to bytes while the model stores the
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while (UAR_1 < 100) loop
UAR_1 := UAR_3 + 5;
scheduler.wait_for_schedule;

loop
for i in 1..20 loop
rg—communication.queue_message(--,--,--,100,--,--);
if URR_1 > VAR.2
rg—communication.queue_message(--,--,--,150,--,--);
elsif UAR_2 > UAR.3
rg_communication.retrieve_message(~--,--,--,175,--,--);
else URR_2 := 0;
end if;
scheduler.wait_for_schedule;
end loop;

end loop;
rg—communication,queue_message(-~,--,--,200,--,--);
end loop;
Figure 5-2, Sample Source Code Segment

INDEX  TYPE URLUE DEPTH POINTER FLOU
0 LOOP (1) INFINITE 0 15 N/R
1 FOR..LOQP (55) 20 1 10 N/R
2 QUEUE (?) 2 2 UNDEFINED N/R
3 IF (2) UNDEFINED 2 5 N/f
4 QUEUE (?) 3 3 UNDEFINED N/A
5 ELSIF (4) UNDEFINED 2 7 N/R
6 RETRIEVE (8) 3 3 UNDEF INED N/R
7 ELSE (3) UNDEFINED 2 8 N/A
8 END_IF (52) UNDEFINED 2 UNDEFINED N/A
9 UFS (0) UNDEFINED 2 UNDEF INED N/A
10 END_LOOP (51) UNDEFINED 1 1 N/A
11 HHILE_LOOP (S56) UNDEFINED 1 13 N/R
12 UFs (0) UNDEFINED 2 UNDEFINED N/R
13 END_LOOP (51) UNDEFI{NED 1 11 N/A
14 QUEUE (7) 4 1 UNDEF INED N/A
15 END_LOOP (51) UNDEFINED O 0 N/R

Figure 5-3, Sample Source Code Model
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message size according to the number of packets since all analysis calculations deal with
packets rather than bytes. Figure 5-3 shows the code model that is constructed from the
preceding code segment; notice that the flow element is deliberately left unspeciticd since
it is only used during execution path generation.

The model follows the source code very closely since the code is primarily
comprised of critical constructs. Each occurrence of a critical construct is represented by
a single model entry. For purposes of readability, the TYPE element is listed according
to the name of the appropriate constant; the actual constant value is shown in parentheses.
The top entry indicates an infinite | oop, which is followed by a for .. loop with a
maximum of 20 iterations. The queue_message procedure call is included as the third
model entry, and the message size (100 bytes/2 packets) is shown in the VALUE element.
The i f construct in entries 3 through 8 demonstrates one use of the POINTER element.
When a conditional statement is encountered during code execution, alternate paths may
be followed. The POINTER value indicates where execution continues if a given
condition is not satisfied. For example, if the condition associated with entry #3 is not
met, execution continues with entry #5, and if the condition there is not met, execution
continues with entry #7. The POINTER value holds the key to following the proper path.
Notice that the model includes no information about what conditions are imposed by the
i f statement in entry #3 or the e | s i f statement in entry #5. The timing analysis is not
intended to simulate the source code; rather, its intermediate goal is to find all possible
execution paths. For this reason, the actual test condition is ignored: it is only important
for the model to indicate that alternate execution paths exist due to the presence of a
conditional statement. Following the i f-then-else construct, entry #9 indicates a call
towait_for_schedule (WFS), a WFS call marks both the beginning and the end of
any execution path. Entries #10, #13, and #15 illustrate the use of the POINTER element
to link the end of a loop with the beginning of that loop. A final point of interest for this
model is the use of the DEPTH element to indicate the nesting level for each entry. In
Figure 5-2, the use of indentation shows the logical nesting of code statements. Likewise.
the value of the DEPTH parameter in Figure 5-3 carries the same information. For any
complete subprogram or task, the DEPTH value begins and ends at zero. and each level
of n=sting has a successively greater value.

5.4 Bottom-Up Construction

The power of high level languages springs from the use of modularity, and it is
essential that a static analysis tool is able to recognize and properly interpret the use of
procedures and functions within an application task or within a supporting subprogram.
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When one manually performs a static analysis and encounters a procedure call, it should
be easy to find the code for that procedure and examine it within the context in which it is
called upon; however, such a searching task is not so trivial for an automated analysis
tool. For an automated analysis, when a procedure call is found, the analysis is
suspended while the compute: searches for the source code belonging to that procedure.
The source code could be in the file that is already open or it could be in a separate file, in
which case two or more files are simultaneously left open for examination. The problem
grows in complexity when one considers the possibility that the first procedure covd call
another procedure whose source code resides in yet another file. Of course, this type of
procedure nesting can go on for many levels and would result in multiple open files and
multiple suspensions of the analysis process. Note that each suspension of analysis
results in a complicated effort to save present state information in a useful format.
Obviously this is an unwieldy method of dealing with modular source code.

The use of a source code model avoids the probiems inherent in the cyclical
analyze and search method described above. The tasks of processing source code and
analyzing source code are separated through the use of the code model. All the code
processing is directed toward building the model for an application task, and then the
model is analyzed independently with no further references to the source code. In order
for the model to be accurate and effective, whenever a procedure call is encountered, the
modeling tool must already know the name and nature of that procedure so that it does
not have to search for its source code. Thus, the source code model must be constructed
in a bottom-up fashion -- precisely the opposite of the top-down manner in which
software is created. In other words, the modeling tool begins by examining the most
elemental procedures and progresses upward to higher level procedures, which often call
upon the more elemental procedures. Figure 5-4 illustrates this concept.

Software Model
Development Application Task Development
can call A.B,C.D.E
Subprogram A Subprogram B
can call C.D.E cancall C.D.E
Subprogram C Subprogram D Subprogram E

Figure 5-4, An Ideal Software Hierarchy
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This type of bottom-up model development depends upon an understanding of the
program unit linking mechanisms employed by Ada. An Ada compilaticn unit is defined
as the specification or the body of a program unit, which can be compiled as independent
text; the body of an application task is one example of a compilation unit. It may be
preceded by a context clause that identifies other compilation units upon which it
depends, and the context clause uses wi t h statements to name the supporting program
units [BOOS87]. In general, the package containing a task body begins with a context
clause that indicates which packages contain subprograms utilized by the task body, and
this is the key to identifying the particular hierarchical structure of a task. A package
referenced by the task’s context clause may have its own context clause for the
subprograms upon which it depends. Thus, an examination of all relevant context clauses
reveals the task’s dependency relationships and enables the model building process io
begin at the bottom of the pyramid as shown in the preceding figure. Chapter 6 explores
the procedure by which the software hierarchy of an application task is exposed and
utilized during the modeling process.

5.5 Expandability

A key feature of the abstraction approach is the ability :o later expand upon the
code models that are generated and thus improve the results of the iiming analysis.
Current benchmarking efforts for the AFTA [CLAS93)] are aimed at quantifying
operating system overhead, and it is for this reason that the critical constructs list (Figure
5-1) is primarily composed of operating system calls. As the project progresses, systcm
benchmarking will determine the execution delay for many more functions that could be
used by the operating system and/or the application tasks. Once a function is measured, it
will be added to the list of critical constructs, and its delay will be accounted for in the
hardware modeling stage of the analy' .s. The timing analysis software is written in such
a manner as to facilitate the addition of cri.ical constructs to the system model, for there
are a limited number of procedures afte.ied by such an addition. Appendix G outlines
the specific steps that should be taken to update the timing analysis software for
additional critical constructs.
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Chapter 6
Source Code Processing

The software analysis stage is divided into two phases: source code processing
and task model analysis. The goal of the source cod: processing is to build a complete
and accurate model of the application task source code. Once the model is developed, the
source code is no longer needed, and the task model alone is presented for further
analysis.

The primary objectives of source code processing are defined as follows:

1. To understand the program unit hierarchy for each application task and to
know where to find every relevant unit of source code.

2. To properly interpret program statements and understand modular code
construction regardless of any specific programming style in use.

3. To extract relevant information in an orderly manner, store it in an efficient
format, and apply it to task model development.

6.1 The Big Picture

An explanation of the execution flow for source code processing is rather tedious,
and it is helpful to first understand the basic structure of the timing analysis software. On
the following page, Figure 6-1 illustrates the hierarchy of procedures used in both the
software and hardware analysis. Notice in this diagram that subordinate procedures are
physically linked to their parent procedure(s); these links should help demonstrate the
context in which each procedure is called. The source code for all procedures shown is
listed in FINISH.C and is included in Appendix D.

The source code processing progresses on a task by task basis, and the procedure
called t ask_parse is primarily responsible for the model development of individual
tasks. task_parse is called from process_1| ist, and it is passed the name of a
single task and the name of the file in which the task body is defined. Notice that
task_parse is a pivotal node in the analysis hierarchy and essentially orchestrates all
the activities associated with the software analysis. When task_parse is complete, it
passes control back to process_| i st and also returns a parameterized representation
of the original task.

5.2 Establishing the Hierarchy
The code processing begins with the development of the task’s program unit
hierarchy, and this is achieved by the procedure called f ind_packages. As Chapter 5
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explains, application task software is typically organized according to package units
whose names are specified in context clauses. find_packages is given the filename of
the package containing a given task (as specified during preliminary processing), and it
compiles a list of all packages containing subprograms used by that task and its
supporting subprograms. This list is an array of filenames stored in a structure called
pkg-list. The procedure update_pkg_I|ist does most of the work for
find_packages. Itis given a filename and opens that file to search for the with
statements of the file’s context clause. For each with statement, it uses the procedure
called wi th_found to extract the name of the associated program unit and then adds
that name to the end of pkg—1| ist, if it is not already present. The first time
find_packages calls update_pkg_I ist, it sends in the name of the file containing
the application task, and this begins the construction of pkg—1 ist. On subsequent calls,
find_packages extracts package names from pkg—1|ist and converts them to
filenames to be passed to update_pkg—_| i st for processing. This process continues
until the context clause for every entry in pkg_| i st is examined. In this way, all
subprogram dependencies are explored in such a manner that the program units at the top
of pkg—1 i st are supported by the units found further down the list. No program unit
should depend upon a unit that appears above it in the final package list.

6.3 Code Modeling Tools

Once pkg_| ist is fully constructed, the actual code modeling begins.
task_parse starts by examining the units at the bottom of the list so that models are
first developed for the most elemental procedures and functions. For each entry in
pkg_1ist,task_parse utilizes the procedure called parse to perform the code
examination and model construction. After each subprogram is modeled, any pertinent
information is stored in a data structure called procedures. As the modeling process
progresses, calls to previously modeled subprograms are encountered, and when this
occurs, the model for the subordinate subprogram is inserted directly into the growing
model of the parent subprogram. Once each package unit in pkg_! i st is processed by
parse, the package containing the task body is sent to parse so that a complete model
of the task is developed for later analysis.

6.3.1 parse

The parse procedure is a generic unit designed to process any type of source
code, whether it belongs to a package, a subprogram, or an application task. It is used by
task_parse as a black box processing tool that directs the low level parsing activity of
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bottom-up task model development. The algorithm employed by parse is a simple
iterative process as is shown on the following page in the flow diagram of Figure 6-2.
Basically this procedure opens a designated file, grabs individual program statements
with a procedure called get_| ine, and examines them with a procedure called
search. The parsing process ends when any one of three conditions is satisfied. These
conditions are as follows:

1. A fatal processing error occurs.

2. The task model is complete.

3. The end of the file is reached.
The inputs to parse describe the context in which the code processing is taking place,
and these include items such as the name of the current task, the name of the file to be
opened, the name of the package being parsed, and the message passing default values for
the current task. The outputs from parse include an updated version of the procedures
data structure, and if the task body itself is submitted to parse, the procedure outputs a
complete model of that task. The operation of parse depends upon three key
procedures: read_1ist,get_I ine, and search.

6.3.2 read_| st

One of the initial functions of process_list istocall read_list in
preparation for the parsing activity to follow. read_1ist is designed to read a pre-
defined file called key_words . dat and extract from that file a list of key terms that act
as a guide to interpreting source code. The list is stored as an array of string variables in
a structure called search_| ist. Also stored in search_1ist is an integer called
length to specify the number of items found in key_words.dat. This version of
read_| i st is identical to the one described in Chapter 3, Preliminary Processing. The
search_| i st structure really could be hard-wired into the timing analysis source code,
but the use of read_1 i st encourages code modularity and maintainability since the list
of key terms can be altered without changing the source code for the analysis tool and
forcing a recompilation.

6.3.3 get_line

The purpose of get_ [ ine is to pull individual characters from a specified input
file and construct a single program statement that is stored in a structure called
this_line. this_Iine is formatted as an array of string variables with each string
representing a single word within the program statement. It also has an integer called
ength to describe the number of words in the program statement and an integer called
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marker, which can act as a pointer to a specific word of the program statement when
this_|ine is passed between procedures. One function of get_1 ine is to eliminate
all white space and unnecessary comments from the source code and reduce a code
segment to an unformatted series of program statements. The removal of indentation
formatting from the code forces the code processing to ignore that aspect of programmer
style. get_1| ine also reduces all upper case characters to lower case characters as they
are read from the input file; this makes the source code processing case independent and
removes yet another element of programmer style.

6.3.4 search

A procedure named search is responsible for finding and extracting important
information from the individual program statements, and it simultaneously directs the
development of the current code model. See Figure 6-3 on the following page for a flow
diagram of search. The current code model is stored in a structure called skeieton
(since it is a bare bones representation of the source code). Both search_iist and
this_line are inputs to search, and for each program statement, this procedure
compares every word to every entry in search_1| i st. When an exact match is found,
the current code model is usually updated, and part of the update may require that
additional information is extracted from the program statement or from other data
sources. For instance, if a message passing call is found, search activates a procedure
called find_parameter in order to determine the maximum size of the message
involved. Likewise, for any looping construct that is found, search uses a procedure
called process_loop to determine the type of loop and the maximum number of
iterations associated with that loop. search is essentially a grand switch statement
with a single case entry corresponding to each item in search_| i st. The use of the
switch statement allows the overall comparison process to remain generic while
preserving the uniqueness of response for matches with various items in search_1ist.

Keep in mind that the code processing algorithm is intended to be as generic as
possible so that the parse procedure can be used to deal with any segment of code,
whether it belongs to a task, a package, a procedure, or a function. This approach does
involve a simple tradeoff, however. The advantage is that only one set of searching
procedures is written, tested, and maintained. The disadvantage is that the code
examination process must be flexible enough to handle all situations and intelligent
enough to recognize the source code from different types of program units. In other
words, there is no master procedure that recognizes what type of code is being processed
and selects the appropriate searching procedure; rather, all the processing decisions are
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made at a low level as the search progresses. One consequence of this approach is that
some overhead state information must be carried in and out of the search procedure
through the passing of pointers in the parameter list. This information is needed by
search in order to understand the context in which the current program statement is
written. Every time search is called, it receives a single program statement along with
pointers to information about the state of the current search process. The search
procedure continuously gathers and maintains this state information to enable it to
understand program statements that it will have to examine in the future.

Two variables that hold state information are strings called task_name and
pkg—name. Recall that task_parse processes code in two stages: the first stage
examines and models all supporting subprograms and the second stage examines and
models the task code itself. The task name is needed only in the second stage when the
task code itself is being processed; otherwise, it is defined as “none.” This differentiation
alone tells parse whether it is dealing with task code or supporting subprogram code.
The reason the name is necessary for task processing is that the source code for several
tasks may be included within the same file, though tasks are analyzed only on an
individual basis. Preliminary processing identifies the file containing a particular task,
and when it is time to process that task, the appropriate file is opened. If there are
multiple tasks within that file, the source code processing is applied only to the specified
task; other source code is ignored. The only way that the code processing algorithm
knows which code to examine and which code to ignore is if it can find the begin and
end statements for the specified task. The begin statement always contains the task
name, and the end statement typically uses the task name as well, although it is not
required. Refer back to Figure 4-2 for a specific example. Thus the task_name
variable is used by the code processing algorithm as a guide to determine where the task
body definition is located within the file that is currently being examined. If task_name
is defined as “none,” parse knows to process all source code and not to search for only
the executable code of the task body.

The variable called pkg_name is needed for proper identification of
subprograms. Once a procedure or function is examined and modeled, its model is stored
in the structure called procedures, and a name is associated with it for identification
purposes. When a subprogram is called from outside of the package within which it is
defined, the appropriate package name precedes the name of the subprogram. For
example, the procedure wait_for_schedule is defined within the package called
scheduler, and a call to this procedure from the task body uses the name
scheduler.wait_for_schedule. Thus, for every subprogram model, the name is
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stored in the “package_name.subprogram_name” format so that when the subprogram
call is encountered by search, the contents of the program statement exactly match the
name of the model stored in procedures.

The name of the file currently being processed is also passed to the search
procedure, and this is necessary for error tracking. When a critical error occurs in the
model building process, the package name, procedure name, and filename are all included
in the message recorded in the error file. Such error tracking is particularly helpful in
developing and testing the timing analysis program, but it should also be helpful to the
user in finding and correcting any undesirable constructs that are detected in the course of
the timing analysis.

Also included in the parameter list of search is a pointer to the structure called
end_| ist. This is a one dimensional array of strings that is useful in tracking the
nesting structure of the source code. Ada syntax requires that many constructs conclude
with an end statement, and a list of these constructs is included below:

package body [name] is............... end [package name];

task body [namel] is.................. end [task name];

procedure [name] is......... e end [procedure
name];

function [namel] is............ vv.....end [function namel;

1+ Y+ 2 ...end loop;

I end if;

[T+ 1 - 2 e end case;

PECOPd . v v vt vt e e e ....end record;

begin........ .. i end [block namel;

select ... v i i e ....end select;

Figure 6-4, Ada’s Framed Constructs

The ability to properly interpret a given program statement often depends upon
knowledge of previous program statements, and this is particularly true when dealing
with end statements. The maintenance of the end_1| i st structure gives the code
processing tools critical information about the context in which a specific program
statement is written, and it also helps keep track of the nested structure of the source
code. Whenever the beginning of a framed construct is detected, a corresponding string
entry is added to the tail of end_| i st. Then, when an end statement is encountered, it
is compared with the last entry in end_ 1| i st, and the two strings should match. If they
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do not match, a processing error has occurred and is properly noted in the error file. For
instance, if the beginning of a loop is found, the string “end |oop” is appended to
end_| ist, and the code processing tools then know to expect that the next end
statement encountered will be an “end |oop.” This seems to be quite trivial for
statements like “end if,end loop,end case,” and “end select” because the
program statement explicitly defines the type of construct to which the end statement
belongs. However this tracking process is absolutely necessary for the other constructs
whose end statements remain rather vague. The end statements for packages, tasks,
procedures, functions, and block statements do not have to include the name of the
construct, though many programmers prefer to include the name for code readability and
debugging purposes. When the code processing tools encounter a non-specific end
statement (with no name included), there is no way to determine what program unit or
construct is affected, but by checking the last entry in end_| i st, it is easy 10 interpret
the meaning and significance of the end statement. This is illustrated in the follewing
example:

package body ambiguous is
task body example_t is
procedure compute is
begin
end;
begin
end;
end;

Figure 6-5, Example of end Statement Ambiguity

After processing the first three program statements shown in Figure 6-5, the
end_ | ist data structure has the following three entries: “end ambiguous, end
example_t,end compute.” When the first end statement is found, the analysis
program is uncertain whether that statement belongs to the package, the task, or the
procedure, but after referring to the last entry in end_1 i st, it finds that the end
statement belongs to a construct called compute. The strings called pkg_name and
task_name hold the names of the current package and task, and the structure called
procedures holds the name of the current procedure. The states of these variables are
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checked to find out that comput e is the name of the current procedure. This is valuable
information since it indicates that code processing is complete for the procedure called
comput e, and its model is ready to he sent to the model reduction tools (Chapter 7) for
final processing. Once the first end statement is properly deciphered, last entry in
end_| i st is eliminated, and two entries remain. The interpretation process is similar
for the next two end statements, and when processing is complete for the code segment
of Figure 6-5, end_1 i st is left empty since the code processing properly works its way
into and back out of the nested source code. If end_1 i st is not empty when the end of
a file is found, a fatal error has occurred and is so noted in the error file.

Yet another useful state variable needed within the search procedure is a
structure called flags. This is a set of five boolean variables used to maintain and
transfer status information during code processing. Each of the flags performs a
necessary function although the types of functions vary widely. The set as a whole is
actually an ad hoc compilation of status variables that is assembled to make it easy to
pass different types of information between procedures under a single pointer name. All
flags are initialized to a value of “no” at the beginning of the source code processing for
each task, and the current values of the flags help the analysis program to make critical
decisions about code processing and model development. What follows is a detailed
description of the function of each of the five flags.

1. model_act ive: The executable code for a program unit generally follows
some declarative statements such as variable definitions. There is no need to
include these declarative statements in the model building process, and the
model is considered to be inactive until the executable code 15 encountered.
The executable code is bound by begin and end statements, and when the
begin statement is found, model_act ive is given a “yes” value.
Likewise, when the end statement is found, mode | _act ive is givena "no”
value.

2. task_found: A file may contain more than one task body definition. It is
therefore useful to know when the code for a specific task body is found so
that code from other task bodies does not improperly contribute to the current
task model. Once the statement “task body [name] is...” is found.
the task_found flag registers a “yes” value. When the end statement for
the task is encountered, t ask_found returns to its initial “no™ value. Note
that the mode |_act ive flag is dependent upon the task_found flag
during parsing of the file containing the task body definition. The
model_act ive flag cannot register a “yes” value until the task_found
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flag indicates a “yes™ value; thus the model building process begins only after
the executable code for the appropriate task is located.

. pkg—found: The software hierarchy for an application task is developed as a
series of package names that are found within context clauses. The source
code processing e:.amines each package in succession while progressing
upwards from the bottom of the package list. When search encounters the
beginning of the specified package body, it sets pkg—found to a value of
“yes,” and it likewise deactivates the flag when it encounters the end of the
package. Neither the task_found flag nor model _act ive flag can be
activated unless the pkg—found flag is already activated.

. finished: A single file may contain several task body definitions, but tasks
are processed on an individual basis. Therefore, it is reasonable for the
software analysis to discontinue file parsing once the appropriate task body is
examined and modeled. When the task body’s end statement is encountered,
the finished flag is set to “yes,” and this leads to an exit from the parsing
loop.

. fatal_error: A fatal error occurs when the end_ | i st construction
encounters a mismatch. In other words, the source code processing might
expect to find the end statement for a procedure but instead finds a statement
like “end if.” Such an error indicates an interpretation mistake or oversight
by the source code processing, and the current code model is labeled as
invalid. This type of error undermines the effectiveness of the modeling and
analysis for a given task because it indicates that part of the task model is
incorrect, and thus the entire model cannot be trusted to produce accurate
results. Fatal errors also disrupt the analysis for the entire system, since the
system is analyzed as a simple collection of tasks. When the fatal_error
flag is set to “yes,” code processing is halted for the current task, and the
sorcware analysis proceeds to the next task. The conditions causing the error
are noted in the error file, and the final system analysis ignores any tasks that
fall subject to a fatal error. It is not necessary to halt the entire system analysis
because of errors experienced with an individual task, but the user must be
aware that the system results produced are actually incomplete. In such cases,
the user is responsible for focusing on the results of individual task analyses
rather than depending upon the conclusions from the full system analysis.
Certainly, some of the lower level results are useful, and it is for this reason



that errors in a single task model are not allowed to halt analysis for the rest of
the system.

The final item in the parameter list for search is a pointer to a structure called
procedures. This data structure holds a collection of subprogram models that are
developed during the bottom-up task model construction. procedures is organized as
a list of entries with each entry corresponding to a unique subprogram. An individual
entry holds the name, filename, and code model description for a single procedure or
function. Whenever code processing and model reduction are completed for a
subprogram unit, the appropriate data is added to the list held in procedures. During
the search process, every program statement is examined to see if it contains a call to one
of the subprograms that has been modeled and is presently stored in procedures. If
such a call is found, the model for the subprogram is inserted directly into the current
code model. This is the method by which code modularity is recognized, exposed, and
captured in the course of task model development.

As mentioned previously, search is essentially a grand switch statement which
triggers specific responses for each of the critical constructs that might occur within a
given program statement. The following paragraphs briefly describe the actions taken
when dealing with the various types of critical constructs. The boldface word at the
beginning of each paragraph corresponds to the name of the identifying constant used
with each construct.

WFS: When acall towait_for_schedule is found, « WFS entry is simply
added to the current code model, provided that the mode | _act ive flag indicates a
“yes” value. No further action is necessary.

LOOP: There are four different types of Ada program statements that could
contain an instance of the word “1oop.” These are listed below:

1. end loop

2. while..loop

3. for..loop

4. |oop (basic)
The search procedure is responsible for differentiating between these possibilities and
updating the current model appropriately. The test for an “end loop™ statement
requires a simple examination of the program statement stored in this_line. If an
“end |oop” is found, no action is taken because the presence of the word “end” will
have already triggered all the necessary processes during a previous iteration of the
search loop. The remaining three possibilities signal the beginning of a loop construct.
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and it is important for search to identify the type of loop and its iteration limitations.
For this purpose, a procedure called process_1|oop is called, and its job is to scan the
program statement to determine what type of loop is being used. process_loop
utilizes yet another procedure called target_found that searches the program
statement in reverse to find out if a “whi 1e” or a “for” precedes the occurrence of the
word “loop.” The results of this search determine what type of loop to add to t:e code
model, and the value element of the loop entry i2 determined in one of two ways. The
first method is to use the comment information preceding the loop statement. If no
comment information is provided, the value element is recorded as UNDEFINED for
while..loops and for..!oops or INFINITE for basic | oops, and could trigger an
analysis error during the model reduction stage (Chapter 7). The second method is to
search for stated limits within the program statement, and this method is used exclusively
with for..loops. A procedure called for_loop_found identifies the range
statement used in the loop initialization and sends it to a function called evaluate to
determine the number of iterations. evaluate uses various tools to interpret the
iteration range and transform it to a decimal format. If it is unsuccessful, the loop entry
for the model is given a value element of UNDEFINED. Regardless of the loop type or
its iteration limitations, the beginning of a loop construct also requires that an “end
loop” entry is added to end_1 i st to maintain an accurate picture of the code nesting.

IF: When an i f statement is found, an appropriate entry is added to the model,
provided that the mode | _act i ve flag indicates a “yes” value. Recall that the nature of
the test utilized by the i f statenment is irrelevant in this analysis and does not affect the
development of the source code model. Also, the presence of an i f construct requires
that an “end i f” entry is added to end_1| i st to help track the source code nesting.

ELSE, ELSIF: The else and el si f statements are handled in a manner similar
to the i f statement. If the model is currently active, an appropriate entry is made and no
further action is necessary.

QUEUE, RETRIEVE, SEND, RECEIVE: Whenever a valid message passing
procedure call is found, an entry is added to the model, given that the model is active. An
important part of this type of entry is identifying the correct size of the message being
passed, and there are three possible sources for such information. The first source is the
comment information provided by the programmer. If no comment information is
available, the search procedure attempts to find the size of the message within the
parameter list of the procedure call. A function called f ind_parameter extracts the
size parameter from the program statement and uses the evaluat e tool to transform the
size parameter into an inieger value that is returned o search. It cither
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find_parameteror evaluate is unsuccessful in determining the message size, a
default value is used for the value element of the model entry. This default value is taken
from the task specification file during preliminary processing and is stored in a data
structure called messages. A pointer to messages is passed to search in the event
that these default values are needed during model development.

END: As discussed previously, an end statement in Ada is critical to
understanding the structure of the source code. When an end statement is found, a
procedure called end_found attempts to match it to the last entry in end_1ist. The
end_| i st entry indicates the type of construct to which the end statement belongs, and
each case merits a unique response. Listed below are the actions taken upon finding the
end statement for each type of framed construct:

1. SUBPROGRAM: First the mode | _act i ve flag is deactivated since the end
statement indicates that the executable code for that program unit is complete.
Next the current code model stored in skeleton is passed to
reduce_mode | (see Chapter 7) in order to refine the model and remove
unnecessary entries. Finally, the subprogram name and model are added to
the structure called procedures for use in constructing subsequent code
models.

2. PACKAGE: Finding the end of a package is critical to following the naming
rules for subprogram calls. If a procedure is defined within a package, any
calls to that procedure within the package simply use the procedure name.
Calls to that subprogram from outside the package must use the package name
as a prefix so that the call looks like “package_name.subprogram_name.” In
order for the code modeling process to recognize subprogram calls and
associate them with the proper body of executable code, it stores subprogram
names so that they always match the names that will be encountered in the
current segment of source code. Thus, when the end of a package is
encountered, the names of subprogram defined within that package are altered
to include the package name.

3. TASK: When the end of a task is found, the model is deactivated, and the
finished flag is set to a “yes” value in order to cease the model building
process.

4. LOOP: If an“end |oop” statement is found, an END_LOQP entry is added
to the model, provided that the model is active.

5. IF: If an “end i f” statement is found, an END_IF entry is added to the
model, provided that the model is active.
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6. CASE: Ifan “end case” statement is found, an END_CASE entry is added
to the model, provided that the model is active.
7. SELECT, RECORD: No specific action is taken.
In all cases, once the tail entry in end_1 i st is matched and the appropriate action is
taken, that entry is removed from end—| i st. If a mismatch occurs, the fatal_error
flag is set to “yes” to cease the current model tuilding process.

TASK: When the word “task” is encountered, a procedure called
task_found extracts the name of the task and compares it with the name of the task
that is currently being processed. If there is a match, the task_found flag is set to
“yes.” Also, an appropriate entry is added to end_1 i st regardless of whether a match
is found.

PACKAGE: The bottom-up model construction requires that all packages listed
in the context clause of an application task are examined so that any executable code can
be modeled. Thus, the source code processing searches for packages on an individual
basis, and when the word “package” is found, a procedure called pkg_found
compares the package name with the name of the package which it expects. If there is a
match, the pkg—found flag is set to “yes,” and regardless of whether a match is found,
an appropriate entry is added to end_1 i st to signify the beginning of a package unit.

PROC: When the beginning of a subprogram body is found, a procedure called
proc_found extracts the name of the subprogram and stores it in procedures along
with the current filename. proc_found also adds an appropriate entry to end_1 i st to
track the source code nesting.

BEGIN: A begin statement is used by tasks and subprograms to indicate where
the executable code starts, and the source code processing uses begin statements to
activate the current model. If the begin statement belongs to the current task or any
relevant subprogram, the mode | _act ive flag is set to “yes.”

SELECT, ACCEPT, RECORD: When an instance of “select, accept.,” or
“record” is found, an appropriate entry is added to end_1 i st. These constructs do
not affect the code model, but it is necessary to recognize their presence in order to
properly track the source code nesting. It is important that end statements for these
framed constructs are not confused with the end statements of other constructs.

CASE: When a case statement is found, an “end case” entry is added to
end_list, and a CASE entry is added to ske | et on, provided that the model is active.
The specific object of the case statement is irrelevant to the modeling process and has
no effect.
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WHEN: Each instance of “when” that is included in the case statement merits
its own entry in the model, for each one represents a different execution path through the
source code. The specific activity within the when statement is modeled in the same
manner as all other executable code.

procedures: The search procedure examines every program statement
looking for subprogram calls, and the list of subprograms that have been modeled is
stored in procedures. If a subprogram call is found and the current model is active,
the subprogram model is copied directly from procedures into the model stored in
skeleton. Some simple adjustments are made during the transfer to ensure that the
values held in the pointer element of the model remain accurate.

In conclusion, the search procedure is the true workhorse of the source code
processing. When search completes the model development for an individual task, the
parsing loop terminates, and the current code model stored in skel et on is returned to
task_parse for model analysis.
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Chapter 7
Model Analysis

The second phase of the software analysis involves code model analysis. The
preceding chapter explains how source code processing transforms Ada code into a
simplified model that is stored as a collection of integers. The model analysis uses these
task models produced by the source code processing to perform an efficient, automated,
worst case analysis of the AFTA application task suite. All model analysis takes place
independent of the original source code, and the final results are passed on to the
hardware analysis stage.

In the analysis of each application task, the model analysis tools are called upon to
perform two different functions. The first function is to reduce subprogram models into a
more efficient form before they are stored in the procedures data structure. When the
end of a subprogram’s executable code is encountered during source code processing, the
procedure called end_found is responsible for transferring the current subprogram
model held in skeleton to its final storage place in procedures. Prior to the
transfer, end_found sends the model to a procedure called reduce_mode |, where
model development is completed and unnecessary model entries are eliminated. The
methods used by reduce_mode | are fully explained in Section 7.2. The second
function of the model analysis involves the final parameterization of an application task.
Once t ask_parse fully develops the task model, it calls upon f ind_worst_path to
identify and quantify the worst case execution path for that task. The results are recorded
in the appropriate output file and stored for later use by the hardware analysis. The
methods employed by f ind_worst_path are explored in Section 7 4.

Code model analysis consists of three distinct stages: model preparation, model
reduction, and execution path generation. The model preparation stage takes the crude
model produced by source code processing and completes its development by defining
the depth and pointer elements for each model entry. The model reduction stage
eliminates unnecessary model entries and produces summary entries to replace inefficient
groups of model entries. Lastly, the execution path generation stage uses the model in its
final form to identify all possible execution paths and compares the paths in order 10
single out the worst case path. The following text details the methods and motivations for
each of the three stages.
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7.1 Model Preparation

During source code processing, each entry is added to the current model with only
the type and value elements specified. The depth, pointer, and flow elements are all left
undefined during initial model construction and later added during model analysis. The
model preparation stage uses the nest_level and match_loops procedures to define
the depth and pointer elements for each entry of a given model, and the result is a model
that is sufficiently complete for execution path analysis.

The nest_level procedure is responsible for defining the depth element for
each model entry, and in doing so, it provides a clear picture of the nested structure of the
original source code. The depth element is actually just an intermediate value that is
needed later to establish the pointer element values required during execution path
generation. Essentially, the depth values produced by nest_leve [ can be eliminated
from the model after the pointer elements are defined, but they remain part of the model
for purposes of model readability and simplified dcbugging of the timing analysis
software.

Table 7-1, Nesting Rules for nest_level

Entry Type DEPTH = nest is...
LOOP nest incremented
FOR_LOOP nest incremented
WHILE_LOOP | nest incremented
IF nest incremented
ELSIF nest -1 incremented
ELSE nest -1 incremented
CASE nest incremented
WHEN nest -1 incremented
END_LOOP nest - 1 decremented
END_IF nest - 1 decremented
END_CASE nest -1 decremented
other nest no action taken

The nest_ilevel algorithm uses an elementary loop to examine individual
model entries in consecutive order. An integer called nest is established at an initial
value of zero, and the model is examined one entry at a time from beginning to end.
Certain model entries signal a deeper level of nesting in the source code while other
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model entries signal the opposite. For each type of entry, nest_leve | defines the
depth element according to the present value of nest and follows a predefined rule to
determine how that entry affects the present nesting level. For instance, a LOOP entry
signals an increase in the nesting level, and an END_LOORP entry signals a decrease in
the nesting level. Table 7-1 summarizes the rules used in the algorithm; the second
column shows what value is used to define the depth element, and the third column shows
how the nest value changes for each entry type. Note that for any complete body of
executable code such as a subprogram body or a task body, the nesting level always
begins and ends at zéro. If this is not the case, it signifies that a fatal error has occurred
during the source code processing, and it is properly noted in the error file.

The match_loops procedure is responsible for linking related model entries
through appropriate definitions of their pointer elements. When the model analysis
attempts to identify possible execution paths through the original source code, the
analysis must be able to recognize connections between related model entries in order to
trace a functionally correct path. Thus the pointer element becomes a key factor during
the path generation stage. The following example should clarify this concept.

if A = B then
compute (X => 10);
elsif B = C then
compute (X => 20);
else compute (X => 30);
end if;

NN D WN —

Figure 7-1, A Sample i f Construct

Figure 7-1 is a simple Ada i f construct that illustrates the use of the pointer
element in a source code model. There are three possible execution paths through this
construct. If the conditional test in line 1 is true, execution proceeds from line 1 to line 2
to line 6. If the condition in line 1 is false and the condition in line 3 is true, the execution
path includes lines 1,3,4, and 6. Lastly, if both conditionals are false, the execution path
includes lines 1,3,5, and 6. Following the logic of the construct shown above seems to be
a trivial task, but for an automated analysis, the logic must be built into the code model in
a format that is understood by the path generation tools. When generating an execution
path, the analysis must know that if the first conditional is assumed false, the execution
path skips line 2 and proceeds to line 3. Likewise, if the second conditional is assumed 10
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be false, the execution path skips line 4 and proceeds to line 5. For this reason, the
pointer elements for conditional entries in the model are needed to direct the execution
path generator to the next valid section of code in the event that a particular section of
code is bypassed due to the outcome of a conditional statement. The exact methods of

path generation are explained in Section 7.3; at this point, it is only important to

understand the motivation for the pointer element.

The match_loops procedure examines a given model after the depth elements

are specified, and it proceeds to link related entries and install execution path logic
through the pointer elements. Only certain types of model entries must have their pointer
fields defined, and in such cases, the following rules apply:

L.

2.
3.
4

S

10.
11.

A LOOP entry points to its corresponding END_LOOP entry.

A FOR_LOOP entry points to its corresponding END_LOOP entry.

A WHILE_LOOP entry points to its corresponding END_LOOP entry.

An END_LOOP entry points to the entry representing the beginning of the
loop.

A CASE entry points to the first corresponding WHEN entry that follows.

A WHEN entry points to the next corresponding WHEN or END_CASE
entry.

An END_CASE entry points to the corresponding CASE entry.

An IF entry points to the next corresponding ELSIF, ELSE, or END_IF entry.
An ELSIF entry points to the next corresponding ELSIF, ELSE, or END_IF
entry.

An ELSE entry points to its corresponding END_IF entry.

An END_IF entry points to its corresponding IF entry.

Notice in the rules listed above that the key to proper pointer definition involves finding

the corresponding entry of a particular type. This is where the depth element becomes

necessary. Consider the following nested i f construct:

1
2:
3:
4
S

6:

if A =B then
if B=C then
compute(X => 10);
end if;
else compute(X => 20);
end if;

Figure 7-2, A Sample Nested i f Construct
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When setting up pointer elements for the construct shown in Figure 7-2, there is some
confusion if the depth element is not utilized. The pointer definition rules state that the IF
entry taken from line 1 should point to its corresponding END_IF entry, which is taken
from line 6 in this example. If the match_|oops procedure defines the pointer element
in accordance with the next END_IF entry, it commits an error by designating the
END_IF entry taken from line 4 of the preceding figure. The depth element is the key to
distinguishing between the “end i f” statements in lines 4 and 6. Notice that for both
the outer i f construct and the nested i f construct, the related “i f” and “end if”
statements have identical depth values defined within the model. Thus, for an IF entry,
match_loops is able to find the corresponding END_IF entry by searching for the next
END_IF entry that has a depth value identical to that of the IF entry. Essentially, the
depth element allows the automated model analysis tools to understand the concept of
corresponding model entries.

7.2 Model Reduction

After a given model is processed by nest_level| and match_loops, that
model is complete, but it is not necessarily an efficient representation of the original
source code. There are situations where model entries can be eliminated without altering
the analysis results, and there are other situations where a group of model entries can be
summarized effectively by a single model cntry in order to reduce the size and
complexity of the model.

The process of entry elimination is reserved for situations involving empty loops.
An empty loop is defined as a LOOP entry followed directly by an END_LOOP entry. It
is reasonable to assume that the original source code does not contain such empty loops,
but it is incorrect to make the same assumption about the source code model. The
concept of abstraction allows the code model to omit details that are considered
irrelevant to the timing analysis, and it is possible that the source code processing could
add a loop structure to the model and simultaneously find nothing within that loop that is
important enough to record in the model. The result is an empty loop that adds
unnecessary complexity to the task of generating execution paths for the complete model,
and the proper course of action is simply to delete the loop from the model. However,
there is a restriction on the types of empty loops that can be eliminated without altering
the analysis results. The primary constraint is that the loop’s iteration limit must be
defined before the loop can be deleted. In other words, if the value element for the LOOP
entry is listed as UNDEFINED or INFINITE, the loop must remain in the model to
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ensure that the undefined behavior of the construct is properly noted in the error file
during future analysis. As long as the loop’s value element is defined, any empty
for..loop,while..loop,or basic |oop is removed during model reduction. This
elimination process may seem to be a reckless omission of detail by the model analysis,
but the responsibility for model accuracy actually lies with the source code processing. If
the source code processing recognizes a program statement as significant to the timing
analysis, it is recorded in the model and accounted for in the model analysis. If a program
statement is ignored in the model development and an empty loop results, the model
analysis is held accountable for it.

When the model analysis attempts to generate execution paths, the processing
workload is significantly decreased by reducing the model to a more efficient format.
Consider the following loop and its model:

loop
for i in1..3 loop
rg-communicat ion.queue_message(-,-,-,50,-,-);
end loop;
scheduler.wait_for_schedule;
end loop;
INDEX  TYPE URLUE DEPTH POINTER
0 LaoP INFINITE O S
1 FOR_LOOP 3 1 3
2 QUEUE 50 2 UNDEF INED
3 END_LOOP UNDEFINED 1 1
4 HFS UNDEFINED 1 UNDEF INED
5 END_LOOP UNDEFINED O 0

Figure 7-3, A Sample Nested Loop and its Model

When the model analysis generates an execution path for the model shown in Figure 7-3,
it produces the following sequence: 0,1,2,3,1,2,3,1,2,3,4. Notice the repetition of the
inner loop, and imagine what the sequence would look like if the loop bound was 100
iterations rather than three iterations. In situations such as this, the path generation
process is inefficient and at times unmanageable. It is therefore advantageous to
summarize the inner loop with a single model entry called a COUNTER_SET entry. The
COUNTER_SET entry parameterizes the execution information held in a contiguous
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group of model entries and is then used to replace that group of entries. The
COUNTER_SET entry is merely a collection of integers that indicate how many times
each critical construct is encountered during execution of a given segment of code; its

format is shown below:

counter_set (structure)
num—_sent (integer)
num_read (integer)
num_queued (integer)
num_retrieved (integer)
rg—log_entries (integer)
debug_entries (integer)
io_utils (integer)

Figure 7-4, Format for a COUNTER_SET Entry

Notice that the COUNTER_SET structure includes a counter for every critical construct
that docs not pertain to the control of execution flow. In other words, it accounts for
events like operating system calls while ignoring the elements of loop constructs and
conditional statements. This structure is also used to store the f{inal parameterized
representation of the application task that is ultimately produced by the model analysis.
In this particular example, the COUNTER_SET entry records a value of 150 bytes for the
num_queued counter because a 50 byte message is queued for each of the three inner
loop iterations. All other counters remain at their initial values of zero. In this manner,
COUNTER_SET records all the necessary execution information held by entries 1,2, and
3 in the model of Figure 7-3, and it greatly simplifies the process of execution path
generation. Refer to Figure 7-5 for an updated version of the model shown in Figure 7-3.

INDEX TYPE UALUE DEPTH POINTER

0 LOOP INFINITE 0 3

1 COUNTER_SET O 1 UNDEF INED
2 WFS UNDEF INED 1 UNDEF INED
3 END_LOQP UNDEF | NED 0 0

Figure 7-5, An Updated Model
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Notice that the inner loop disappears, and the pointer value for the top entry is adjusted
accordingly. The COUNTER_SET entry is given a value of O since it is the first entry of
its type in the model, and it assumes a depth value equal to the depths of the first and last
entries in the set of entries that is replaced. Part of the data structure used to store code
models is reserved for an array of COUNTER_SET records having the format shown in
Figure 7-4. The value element of the COUNTER_SET entry corresponds to the
COUNTER_SET array index used to access the counters. The proper execution path
sequence for the updated model is now shortened to the following: 0,1, and 2. The
method by which a COUNTER_SET entry is accounted for in the quantification and
evaluation of execution paths is explored in Section 7.3.

The process of summarizing groups of model entries may seem to be modeling
overkill, but it is necessary to make the task of execution path generation a manageable
one. It also may seem that the application of this process is not properly bounded because
it theoretically could be applied to any coherent set of entries, but this is not so. This type
of model reduction is strictly limited to the following classes of constructs:

1. A for..loop with a defined iteration limit and no WFS entry within the
loop.
2. Avhile..loop with a defined iteration limit and no WFS entry within the
loop.
3. A basic | oop with a defined iteration limit and no WFS entry within the loop.
4. An i f construct containing no WFS entry.
5. A case construct containing no WFS entry.
The reason why these constructs must not encapsulate a call towait_for_schedule
is that the WES call is critical to the process of execution path generation. Recall that a
single execution cycle consists of all program statements executed between two
consecutive WFS calls. As such, all WFS calls must remain in the model for any
subprogram or application task so that they can be referenced as beginning and end points
for various execution paths. Concealing a WFS call inside the summary of a
COUNTER_SET entry destroys the functionality of WFS entries within the realm of
model analysis.

The transformation from a qualified group of entries to a single COUNTER_SET
entry takes place in a procedure called crunch. This procedure is called five separate
times by its parent procedure, reduce_mode |, and each call corresponds to one of the
five types of constructs that are listed above. Once invoked, crunch first searches for
qualified groups of entries belonging to a particular type of construct: for instance, it may
search for all while..!oops that contain no WFS entries. For each group that is
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found, crunch creates a temporary model containing only the entries from that group,
and it sends the temporary model to a procedure called generate_paths for a “mode
17 path analysis. The function of generate_paths is to identify all execution paths
through a given model, parameterize them, compare them, and single out the worst path.
A “mode 2" path analysis refers to the process of identifying and comparing execution
paths that proceed from one WES call to the next WFS call. This is the type of analysis
that is performed on the complete application task model in search of the worst case
parameterization of that task. A “mode 1” analysis involves finding all execution paths
that strictly proceed from the first model entry to the last model entry. Since crunch
deals only with groups of model entries containing no WES calls, a “mode 1" analysis is
the correct and logical choice. It may seem too complex to give the same procedure the
responsibility for performing two different types of analyses, but the implementations of
“mode 17 and “mode 2” path analyses are so similar that using two versions of
generate_paths would create unnecessary redundancy. The results produced by
generate_paths are sent back to crunch in the form of a COUNTER_SET entry,
and crunch performs the COUNTER_SET substitution within the original subprogram
model or task model.

The example shown in Figure 7-3 illustrates how the length of execution path
sequences is significantiy reduced through model reduction. It is also important to
understand how model reduction further decreases the analysis workload by eliminating
possible execution paths from consideration during the {inal task analysis. Suppose a task
model contains a basic i f construct that includes both an elsi f and an el se statement.
Such a construct has two conditional statements and three possible paths of execution.
The crunch procedure finds the construct, develops an independent model from it, and
submits it to generate_paths for a “mode 1” analysis. The path analysis generates
the three possible paths through the construct, parameterizes them, compares them, and
singles out the worst of the three. It returns its results to crunch in the form of
parameter set, and crunch replaces the original i f construct with a COUNTER_SET
entry and reduces the size and complexity of the task model. The actual model reduction
is a positive result from this process, but it is not the most significant result in this
particular case. It ic more important to recognize the fact tkat an i f construct that allows
three distinct paths is replaced by a COUNTER_SET entry that allows only one path.
Thus the total number of possible execution paths through the task model is decreased by
a factor of three. By isolating the i f construct to identify its own worst case path. the
workload required to process the full task model is tremendously reduced. In a similar
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manner, replacing a case construct with four options cuts the number of execution paths
through a task by a factor of four.

7.3 Execution Path Generation
Recall that the purpose of source code modeling is to provide an effective and

efficient means to identify the worst case execution path through a given application task.
The processes of model development, preparation, and reduction lay the foundation for
the most crucial stage of the analysis: execution path generation. The path analysis
process has the following three objectives:

1. To identify all possible execution paths through a given model.

2. To accurately parameterize each path generated.

3. To evaluate the parameterizations and identify a single worst case path.
In order to understand the methods employed by the path analysis. it is best to first
explore the general nature of the task at hand.

if A =B then compute (X => 10);
elsif A = C then
if B =D then compute (X => 20)
elsif B = 10 then compute (X => 25)
else compute (X => 30)

end if;
elsif A = D then compute (X => 35);
else A = 10;
end if;

Figure 7-6, A Nested i f Construct

Consider the nested i f construct shown in Figure 7-6. There are six possible
paths through this construct, and each path must be explored and compared against the
others with respect to execution delay. A decision tree developed from this construct is
shown in Figure 7-7; notice that the circled items represent the leaves of the tree, which
are actually the endpoints of the six execution paths. Each conditional statement in the
construct is shown as a decision point in the tree, and each decision has two possible
results, as represented by the left and right branches. The various locations on the tree are
uniquely expressed in a binary format based upon which branch is taken at cach decisicn:
point encountered along the path to that location. A left branch is represented by a "1,

and a right branch is represented by a ‘(00." The digits are listed in the order in which the
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decisions are made. The critical result of all these conventions is that the location of each
leaf or endpoint is expressed as a binary number that directly correlates to the execution
path taken to reach that endpoint.

=1
IF LEFT
\ RIGHT =0
1 0
ELSIF
V V
THEN'IF ELSIF

OV 010 001 000
i, @D
0101 \\0100

Figure 7-7, A Nested i f Decision Tree

A manual path analysis would probably utilize a decision tree similar to that
shown in Figure 7-7, for once the tree is developed, it is a trivial task to map out all the
possible execution paths. The challenge of the automated model analysis is to develop an
algorithm that uses analogous methods to produce the same results as the manual
analysis. The resulting algorithm must achieve the following three goals:

1. The algorithm must be able to comprehend the functionally of the code model
and generate execution paths using the tree-like format shown in the figure
above.

2. It must be able to fully explore the paths through the tree and know when all
paths have been explored.

3. The algorithm must be efficient enough to avoid tracing the same execution
path more than once.

The predefined format of the code model and the ability to define a path through the tree
as a binary number are key facilitating factors in the development of the path generation
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algorithm. The following explanation and walk-through example highlights the methods
used to achieve the goals listed above.

The path generation algorithm primarily focuses upon the process of generating
the binary values that correspond to the individual paths and their respective endpoints.
Two integer variables control all activity involved; one is called shi ft_number and the
other is known as the decision integer. shi ft_number tracks the length of the
current execution path, and the value of the decision integer predetermines the
decisions made at each decision point along the current path. It is best to think of the
decision integer in terms of its binary representation, for the ‘1’s and ‘0’s are what
actually determine the decisions made. decision is initialized to a value of zero, which
determines the first path that is explored, and after each path is completed, the value of
decision is updated in such a manner that it predetermines the next path to be
examined. The updating process is designed specifically to ensure that all paths are
explored once and only once and to notify the algorithm when the exploration is
complete. For an illustrative example, the path generation algorithm is applied to the tree
in Figure 7-7, and the values of shi ft_number and decision at each step of the
algorithm are laid out in Table 7-2.

The decision integer is shown in an eight bit binary format with the most
significant bit separated from the others. The MSB is called the “done bit”” because when
it changes from a ‘0’ to a ‘1,’ it signals the algorithm that the path generation process is
complete. The presence of the “done bit” leaves only 7 bits of the dec i sion integer for
use in the path generation process, and this is signified in the initial value of
shift_number. The algorithm begins with dec i 3i on initialized to zero, and it starts
at the top of the tree with the first decision point. The outcome of the first decision is
determined by the value of the bit adjacent to the “done bit,” and accordingly the right
branch is chosen. Once a decision bit is referenced, it is not used again until the next path
is explored. Subsequent decisions are made by referencing the next least significant bit
within the decision integer. For every decision bit used, shi ft _number is decremented
once to track the number of available decision bits remaining. For the first execution path,
all decision bits are ‘0’s, and the right branch is taken at three success ve decision points
until the endpoint labeled “000” is reached. As expected, the binary value of the endpoint
is identical to the series of decision bits referenced in arriving at that location. The
second line of the table shows the three decision bits used, and it lists shi ft _number
with a value of 4 since there are four decision bits unused for the first path. At this point.
the decision integer is updated to prepare for the next path. The update consists of adding
a ‘1’ to the last decision bit used, and this is accomplished by taking an integer value of |
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and shifting its bits left by 4 places. Notice the correspondence to the current value of
shift_number.

Table 7-2, A Path Generation Example

Path | Decision Integer | Shift Number | Comment
1 0 0000000 7 Initial value of decision
1 0 000__ __ 4 First three decision bits are used
2 0 0010000 7 A 1 has been added to last bit used
2 0 001____ 4 First three decision bits are used
3 0 0100000 7 A 1 has been added to last bit used
3 0 0100__ 3 First four decision bits are used
4 0 0101000 7 Add 1 to the last active bit
4 00101 ___ 3 First four decision bits are used
S 0 0110000 7 Add 1 to the last active bit
5 0011 ____ 4 Only three decision bits needed
6 0 1000000 7 Add 1 1o the last active bit
6 o1 ______ 6 Only a single decision bit is needed
7 1 0000000 7 The MSB changes; process is done

The updated value of dec i si on predetermines the decisions that will be made in
exploring the next new path. It guarantees that the new path will not be a repetition of
any previously explored path because the decision integer assumes a new and unique
value. The next state of the decision integer always depends upon the present state, and
the use of addition to transition between states guarantees that all states are unique. The
only way that a state can be repeated is if the integer becomes so large that its value rolls
over, but before this happens, the “done bit” is forced to transition from a ‘0’ to a ‘1.’
Such a transition automatically triggers the end of the algorithm and thus prevents state
repetition. The basic idea behind the update methodology is that changing the last
decision made leads to at least one new endpoint, and it possibly leads to a whole series
of new endpoints springing from previously unencountered decision points. If the last
decision that was made corresponds to a left branch decision (a decision bit equal to ‘1°),
adding a ‘1’ to the appropriate bit invokes a “bit carry” and effectively changes a decision
bit further upstream. It simultaneously clears or refreshes all the downstream decision
bits. The refresh activity ensures a complete exploration of any new branch in the same
manner that the initial zero value for decision ensures complete exploration of the
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entire tree. The update process is deceptively simple, for a seemingly trivial addition
process automatically deals with all issues of path repetition, path exhaustion, and
notification of completion. The third line of the table lists the updated decision integer
that is used to generate the second path. As with the first path, the first three decision bits
are used, and this leads to a bit carry when updating dec i s i on for the third path. The
bit carry appropriately changes the value of the second decision bit and refreshes the
value of any downstream decision bits. The algorithm continues as described until all six
paths are explored. While updating the decision integer in preparation for a seventh path,
the “done bit” registers a ‘1,” and the algorithm automatically terminates.

The algorithm implemented in generate_paths is quite similar to the one
described in the preceding example, but it is slightly more complex because it must
transform the code model into a decision tree format as it executes the path generation
algorithm. A flow chart for generate_paths is included on the following page. As
described previously, this procedure performs two types of path analyses. The algorithm
is identical for both types; the main differences between the two are the starting points
and the ending conditions for individual paths. The “mode 2" analysis is for finding
paths through the complete task model. Each path begins at the entry following a WFS
entry and ends with a WFS entry. The “mode 1” analysis is used during model reduction,
and every path begins at the first model entry and ends with the last model entry. As the
procedure proceeds through the path generation, the index values for entries encountered
along the path are stored in a one-dimensional integer array called path. When called,
generate_paths is given the index value for the first entry on the path. It evaluates
that entry to determine if it is a decision point, and if it is, a procedure called decide is
used to manipulate the dec i sion integer to find the next step along the path. Note that
the decision integer is expanded to a 64 bit number in this implementation of the
algorithm to account for the complexity of complete task models. Only a few types of
model entries prompt a decision process; these are listed below:

1. IF

2. ELSIF

3. ELSE

4. WHEN

5. WHILE_LOOP

6. END_LOOP
Depending upon the outcome of the decision, the flow element is sometimes activated for
certain entries that follow the decision point. Consider the case of an i f construct in
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which the i f condition is assumed to be true. This corresponds to taking the first left
branch in the decision tree of Figure 7-7. Once the left branch is chosen, all el si f and
e | se branches within that i f construct are excluded from the execution path. The flow
elements of the ELSIF and ELSE branch entries are set to a value called NO_EXEC in
order to signal the algorithm that those entries are no longer valid steps along the path.
When generate_paths encounters a NO_EXEC entry within its path, it knows not to
add the index value of that entry to the current path array, and it proceeds to examine
the next consecutive entry.

Now consider the situation where an i f condition is assumed to be false, and the
i f..then branch is excluded from the path. The value of the pointer element at the IF
entry allows generate_paths to skip the entries of the if . . t hen branch and go
directly to the next decision point or to the conclusion of the i f construct, whichever
comes first. When generate_paths encounters a model entry that is not a decision
point and does not have its flow entry defined, it merely adds that entry index to the path
and continues on to the next consecutive entry.

When a path trace is complete, generate_paths sends the path array to a
procedure called parameterize, which quantifies the path in terms of the
counter_set structure described in Section 4.6.2. The parameterization essentially
retraces the path and examines the type and value elements of the appropriate model
entries. When it finds an entry which contributes to one of the execution delay factors
specified in the counter_set structure, it simply updates the value of the related
counter according to the value element of the model entry. The result of this process is a
simple collection of counters that quantify the timing behavior of a given path through a
given model. It may seem that the counter_set structure is too limited in scope to
properly characterize the timing behavior of an execution path, but keep in mind that the
parameter list can and will be expanded in future efforts to improve the code modeling
process. The current set of critical constructs that drive the code model development will
grow as the AI'TA testing and system evaluation progress.

Once the parameterization is complete, the parameter set is returned to
generate_paths, which sends it to the hardware analysis tools where an actual lower
bound on execution delay is estimated based upon the parameter values submitted. The
hardware analysis methods are explored in Chapter 8. Given a single delay value for
each path, generate_paths easily compares the paths and identifies which path
causes the greatest execution delay. After all paths have been traced, parameterized,
evaluated, and compared, generate_pat hs returns to its parent procedure a single set
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of parameters that represent the worst case path through the given model for the given
mode of analysis.

7.4 Managing Model Analysis

The preceding sections focus upon the motivations and methodology of code
model analysis. It is now useful to discuss the manner in which these analysis activities
are managed.

A procedure called reduce_mode| is a simple series of procedure calls that
oversees model preparation and reduction. It begins with a call to nest_!=svel, which
is followed by a call to match_loops. Once the model preparation is complete, the
model is submitted to a procedure called mode | _ok, where the model’s validity is
confirmed prior to any further processing. mode | _ok performs a series of routine
checks to ensure that the model is able to undergo execution path analysis without
causing a run-time error for the timing analysis software. A list of these diagnostics is
included below:

1. Does model depth begin and end at zero?

2. Areall loop, if, and case constructs complete with end statements?

3. Are there any true infinite loops with no WFS calls inside?

4. If the model is a task model, is there at least one WFS entry?

5. Are any non-existent COUNTER_SET entries included in the model?
Any errors identified by mode | _ok are specifically noted in the error file. Obviously, no
errors are expected, but this type of preventive check helps avoid a situation in which a
single erroneous subprogram model crashes the entire AFTA timing analysis. After the
model is examined, reduce_mode | proceeds to a series of five calls to the crunch
procedure. Recall that crunch performs model reduction according to a specitied type
of Ada construct. This procedure is called once for each of the following constructs:
loops (basic), for..loops,while..loops, i f constructs, and case constructs.
After model reduction is complete, reduce_mode | terminates and returns the final
model to its parent procedure.

The reduce_mode | procedure is called in two types of situations. First, it is
called each time the source code processing completes a subprogram model, and it is
invoked from the procedure called end_found. The subprogram model returned by
reduce_mode | is stored in the procedures data structure for later reference. The
second situation involves model analysis for a single application task. After an
application task model is constructed, t ask_parse submits it to a procedure called
find_worst_path, which is responsible for reducing a task model to a single
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parameter set representing the worst case execution path. find_worst_path begins
by calling upon reduce_mode | to perform model preparation and reduction. It then
examines the resulting model to find all WFS entries. Since a single cycle execution path
must begin and end ata call towait_for_schedule, find_worst_path uses the
list of WFS entries as starting points for “mode 2” path analyses. For each WFS entry,
find_worst_path calls upon generate_paths to perform a “mode 2” analysis
using that entry as the starting point. generate_paths returns the parameter set
representing the worst case path beginning from the specified WFS entry, and
find_worst_path compares the parameter sets returned fur all WFS entries. The
result is a single worst case parameter set that is used to represent the entire application
task for the remainder of the timing analysis. find_worst_path returns the parameter
set to its parent procedure, t ask_parse, and the software analysis for that application
task is then complete.
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Chapter 8
Hardware Model Analysis

8.1 Introduction

The hardware model analysis is the last of the three phases of the AFTA timing
analysis. The fundamental output of the first two phases (preliminary processing and
software analysis) is a collection of worst case delay parameterizations -- one for each
task instantiation in the task suite. The primary function of the hardware analysis is to
examine these parameterizations with reference to the AFTA system configuration in
order to predict performance failures. In this role, the hardware analysis is essentially an
integration phase, for it utilizes models of the rate group scheduling system and the
AFTA virtual group configuration in performing a comprehensive examination of the task
models. During the software analysis, task models are developed and analyzed strictly on
an individual basis in an effort to quantify a single worst case execution delay for each
task instantiation. In contrast, the hardware analysis views tasks collectively according to
their virtual group designations, and it uses known performance characteristics of the
operating system to determine if, under worst case conditions, the task groupings as a
whole can satisfy the hard-real-time constraints of the rate group scheduling system. A
discussion of this process begins with Section 8.4.

A second function of the hardware analysis involves calculation of a lower bound
delay value for a given execution path. The results of this calculation are needed by the
software analysis to effectively compare different execution paths through the same code
model and thereby identify the worst case path through that model. This function is so
closely associated with the software analysis that it is difficult to distinctly classify it as
part of the hardware analysis, but since it depends heavily upon knowledge of system
specific delays, it is best to discuss this calculation process in conjunction with other
hardware-related analyses. This process is presented in Section 8.3.

8.2 Benchmarking

The timing behavior of a hard-real-time system is critical to its success, and a
proper understanding of the timing behavior enables the user to maximize a system’s
performance without compromising its effectiveness. To this end, Draper Lab is
conducting a thorough study of the AFTA’s performance characteristics, and the results
to date are reported in [CLAS93]. The objectives of the performance measurement study
are as follows:
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1. To develop analytical models useful in predicting system performance under
various configurations and workloads [CLAS93).
2. To be able to quantify system overhead on a frame by frame basis in order to
calculate the time available for application tasks [CLLAS93].
3. To identify potential performance bottlenecks so that they are eliminated in a
cost-effective manner at an early stage of development [CLAS93].
The first two objectives listed above are closely related to the goals of the AFTA timing
analysis. The execution model that has emerged from the performance measurement
study is used by the hardware analysis to examine the timing behavior of virtual groups
within the confines of rate group scheduling. Also, the actual performance measurement
data enables the timing analysis to quantify both overhead and application task delays for
a particular virtual group on a frame by frame basis. It is these calculations that lead to
the final performance failure predictions.
Figure 8-1 shows a model of the operating system overhead involved in each
minor frame. This figure is not drawn to scale and is intended to illustrate the
chronological progression of overhead tasks relative to scheduled interrupts.

Frame Timer YO Completion Frame Timer
Interrupt Interrupt Interrupt
Interrupt Handler Interrupt Handler
RG Disp (part 1) RG Disp (part 2)

user application tasks

/O transactions

queued message passing

Figure 8-1, Minor Frame Overhead Model [CLAS93]
Each minor frame begins with a hardware-generated timer interrupt that is scheduled by

the operating system, and the frame time is partitioned into two sections by a second
timer interrupt known as the I/O completion interrupt. The first portion of the frame is
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dedicated to operating system functions and I/O operations, and the second portion is
filled with another round of operating system functions followed by user application task
time. Notice that the amount of processing time allotted to the application task suite is
clearly affected by the amount of time dedicated to operating system overhead within the
second portion of the frame. The software analysis determines how much time an
application task requires under worst case conditions; the hardware analysis then groups
tasks according to their designated VGs and further calculates worst case operating
system overhead for each VG within each mino: frame. The total of all required
processing times for a particular virtual group is then compared against the time allotted
for the second portion of the minor frame to determine if a performance failure could
occur. In simple terms, a performance failure indicates that the second portion of one
minor frame overlaps into the first portion of the next minor frame. This type of “overrun
check” is the main thrust of the hardware phase of the AFTA timing analysis, but it is
important to notice that a second type of overrun condition can also occur. If the
operating system overhead within the first portion of the frame exceeds its allotted time, it
overlaps into the second portion of the frame. This type of overrun is heavily dependent
upon the activity of the I/O dispatcher, but at this point in the AFTA’s development, the
implementation of I/O operations is not well-defined. As such. the current timing
analysis does not attempt to quantify the 1/O dispatcher execution delay or predict this
form of intraframe overrun.

The following paragraphs give a brief description of the various overhead tasks
that are executed as part of each minor frame. A simple equation is included with each
task description to indicate how much frame time the task occupies and what variables
affect its execution delay. These equations are taken from [CLAS93], and they are based
upon data taken during AFTA performance measurement study.

IHy: The interrupt handler updates the current time value held by each member of
the virtual group. For fault-tolerant operation, it is critical that all VG members maintain
the same clock value, and this time update serves to eliminate clock skew. The interrupt
handler also schedules the next interrupt time, which in this case is the 1/O completion
interrupt. The most time consuming portion of the interrupt handler is the message
scoop. This involves the transfer of all message packets destined for the VG from the
network element’s dual port RAM to the local memory space of the individual members
of the VG. The delay incurred by the scoop process varies according to the number of
packets added to the virtual group’s network element input buffers since the last scoop.

IH; = (110 * number _of packets) + 103 (ysec)
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RGD;: This is the first of two manifestations of the rate group dispatcher. Its first
function is to establish a constant time reference for each of the various rate groups whose
frame boundaries coincide with the beginning of the current minor frame. This reference
is set to the congruent clock value established by the interrupt handler at the beginning of
the frame, and it ensures that all members of a VG use identical values for any time-based
calculations executed within the application tasks. For the present rate group
designations, the RG4 reference value is updated every minor frame, whereas for RG1,
this value is updated only once every eight minor frames. Refer to Figure 8-2 (page 98)
for an illustration of the rate group frame organization and frame boundaries. The sccond
function of the rate group dispatcher is to check for overrun conditions. It first looks for
an overrun on the most recent execution of the rate group dispatcher, and then it checks
for overruns on any tasks that were scheduled to complete within the previous minor
frame. The overrun checking occupies the majority of the time for the RGD, and its
delay is a function of the number of application tasks that were supposed to complete
within the last minor frame. The longest delay is incurred in minor frame 0 (refer to
Figure 8-2) because tasks in all four rate groups are scheduled to complete in the
preceding minor frame (#7). In contrast, the shortest delay is incurred in minor frames
1,3,5, and 7 since the RGD only monitors RG4 tasks within those minor frames.

RGD; = (10 * number_of suspended_tasks) + 69 (usec)

I0D: The I/O dispatcher is responsible for handling all 1/O requests. It begins by
initiating all requested outgoing data transmissions and then waits for a predetermined
time period to allow for completed transmission of all data. Following this idle period,
the IOD begins reading in any received data, and the duration of this task is a function of
the number of input requests and the total amount cf data transmitied. At this stage of the
AFTA design, the 1/O operations are not fully refined, and the delay incurred by the 10D
has not been accurately measured or analyzed. As such, the AFTA timing analysis
presently overlooks all execution delay incurred by I/O operations and related operating
system overhead. It will be a feasible task to later include such considerations in future
revisions of the timing analysis.

IH3: The execution of the interrupt handler in the second portion of the minor

frame is identical to that which occurs in the first portion of the frame. This second
execution serves to scoop all message packets delivered for the VG since the previous
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execution of the interrupt handler. The use of two scoop operations within the same
minor frame is needed to maintain synchronization between members of the same VG.
IH; = (110 * number _of packets) + 103 (usec)

RGD;: The second part of the rate group dispatcher is responsible for a number
of functions. It begins by checking for overrun conditions on the first part of the RGD
and on the preceding execution of the I/O dispatcher. This is followed by the
send_queue and updat e_queue functions. Together these functions perform a data
transfer of all message packets that were queued by tasks which completed their
execution cycles during the previous minor frame. The delay incurred by these functions
therefore varies according to tire number of tasks whose messages require transfer as well
as the size of those messages. A summary equation is given below:

Send_and _Update Queue (per task) = (123 * number_of packets) - 12 (usec)
Following the message passing operations, the RGD schedules all rate group tasks whose
frame boundary coincides with the beginning of the current minor frame. For example,
during minor frame 0, the RGD schedules all rate group tasks since all rate group frames
begin anew with minor frame 0. In contrast, during minor frames 1.3.5, and 7. the RGD
only schedules RG4 tasks because no other rate group frames begin with these minor
frames. A summary of the delay incurred by task scheduling is shown below:

Schedule_Tasks (per Rate Group) = (26 * number _of rg tasks ) + 15 (usec)
By combining the two previous equations and adding a constant delay incurred by the
overrun checking and other minor functions, the total delay for the second part of the rite

group dispatcher is summarized as follows:

num_tsk num_rg_tsk
RGDy = X [(87* num pki)) + 27] + 2 [26 * num_rg tsk) +15] + 49 (usec)
i=1 i=1
where: num_tsk is the number of tasks that completed execution cycles
during the previous minor frame.
num_pkt; is the number of packets that task i queued during its

previous execution cycle.
num_rg tsk is the number of rate groups whose frame boundary
coincides with the beginning of the current minor frame.
num_rg_tsk; is the number of tasks belonging to rate group i

FDIR: The fault detection identification and recovery task is the software

complement to the AFTA’s hardware redundancy and fault masking capabilities. Local
FDIR enables a virtual group to monitor itself and potentially perform some recovery
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operation. It is executed on all virtual groups and its execution delay is a known constant
of 84 usec. System FDIR allows the AFTA to monitor the global system and to
determine the health of shared components such as the network elements [AFTA91]. It
executes as an RG4 task on a single redundant VG known as the system VG. In its
present developmental state, system FDIR incurs a 1316 usec delay.

IOSC: The I/O source congruency manager ensures that all members of a virtual
group receive identical copies of any input value read by one or more members ot the
group. This involves complete message passing operations, and the d~'1y incurred is a
function of the number of I/O input values as well as the number of VG members
receiving these values from external systems (most likely one member or all members).
Since the AFTA’s 1/O capabilities are not yet refined and ready tor iesting, there is no
data on this source of overhead.

IOP: The 1/O processing task resolves multiple input values into a single quantity
that is used by alli members of the VG. Suppose that each member of a triplex VG is
interfaced with an external air temperature sensor. It is not likely that all three sensors
would return identical values to their respective processors, and it is therefore necessary
for the IOP to implement some algorithm for data resolution. The IOP is not tully
implemented at this time, but initial measuremenis show that the minimal 10P vverhead
is 15 usec.

In addition to overhead evaluation, the performance measurement study also
focuses on operating system functions related to user application tasks. For example, data
has been taken to determine the amount of delay required for a context switch, which
occurs every time a task completes an execution cycle and suspends itself so that the next
scheduled task can begin execution. Results indicate that the average context switch
requires 19 psec. Naturally, the amount of time devoted to context switching varies
according to the number of tasks that complete execution during a given minor frame.
For the sake of this analysis, it is assumed that all rate group tasks complete execution
during the last minor frame of their respective rate group frames. For instance. it is
assumed that RG1 tasks complete execution during minor frame 7. and RG2 tasks
complete their cycles during minor frames 3 and 7.

The most time consuming operating system calls utilized by application tasks are
the message passing functions. Evaluations of these operations vicla the tollowing
results:
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queue_message = (45 * num_msg packets) + 43 usec

retrieve_message = (61 * num_msg_packets) + 67 usec
These functions are closely related to a few of the overhead tasks described previously.
The queue_message procedure is used by the application task to prepare a message for
exchange over the AFTA optical network and to transfer the packets to the processor’s
local memory. The send_queue procedure is later activated by the rate group
dispatcher and transfers the message packets from local memory to the dual port RAM
buffers on the NE. It is important to maintain the distinction between these two
operations, for queue_message occupies application task execution time while
send_queue occupies RGD overhead time. The contributions of these two delays
occur during different minor frames and therefore are not considered as a single delay
entity, although the operations are actually performed on the same message packets.
Similarly, retrieve_message is closely related to the scoop message operation
included in the interrupt handler. The IH scoop transfers message packets from the NE
message buffers to the processor’s local memory; retrieve_message reconstructs the
message from the packets stored in local memory and delivers it to the appropriate
application task. Once again, these operations are performed on the same message
packets but occur during different minor frames. Thus, the corresponding delays are
considered independently.

8.3 Path Comparison Calculation

For each instantiation of an application task, the software analysis gencrates all
possible execution paths through the appropriate task model. In order to determine which
path represents the worst case delay, there must be a quantitative comparison ot the
individual paths, and the necessary calculations require the system specific delay data
discussed in the previous section. As part of the path generation process.
generate_paths calls upon calculate_t ime to produce a single delay value 10
represent each complete execution path. calculate_t ime uses the path
parameterization produced by parameterize in combination with the list of constants
derived from the performance measurement study to return a single integer value that
represents the lower bound on execution delay for the given path. generate_paths
then compares this value to the values for the previous execution paths to identify the
worst case path.

calculate_time is essentially a simple series of algebraic manipulations that
transforms a path parameterization into a tangible time value. At the beginning of the
timing analysis, the read_1 i st procedure develops a list of system specific constants

95



and coefficients by reading integer values from the file called “constants.dat” and storing
them in the data structure called de | ay—_data. All values are in terms of psec and are
derived from the AFTA benchmarking efforts. Note that these values are intentionally
stored in an external file to be read at run-time so that any future changes to the
benchmarking results do not force a recompilation of the timing analysis code. The
integers held in de l ay_dat a correspond to the coefficients and constants listed in the
delay equations of Section 8.2, and they also directly relate to the various elements of the
path parameterization. Given the proper constants and the necessary path parameters,
calculate_t ime simply applies the given equations to arrive at the lower bound on
execution delay. The present list of path parameters is quite limited, and the same is true
for the integer list held in de | ay_dat a; however, as the AFTA prototyping and
benchmarking efforts progress, the parameter list will expand and the list of constants
will grow accordingly. The timing analysis code is designed specifically to allow for
such growth, and Appendix G outlines the process of adding new elements to the list of
path parameters. As the AFTA project progresses and the timing analysis is revised,
calculate_t ime will account for a broader range of delay factors and the values it
returns will become more accurate.

8.4 Organizing Application Tasks

The fundamental goal of the hardware model analysis is to successfully integrate
the results of the software analysis with the established system delay data in order to
predict potential performance failurcs. Whereas the software analysis evaluates
application tasks purely on an individual basis, the hardware analysis deals with tasks
collectively according to their virtual group assignments. As such, the virtual group
serves as the basic unit of analysis in this final phase, and the first objective is to properly
categorize the application tasks according to the given system configuration.

The preliminary processing phase (Chapter 3) produces a file called
“list_of_tasks.dat,” which contains the complete AFTA software configuration. The file
is organized so that each task instantiation is listed on a single line along with the
appropriate virtual group and rate group specifications and message passing limitations.
Multiple instantiations of the same task are treated as distinct entities in order to simplify
the task organization process and to allow for separate software analyses of the same task
code with potentially different message passing limitations. The procedure cailed
process_| ist is responsible for reading the configuration file and sorting the tasks
into an array of 40 virtual groups. It is important to note that the software analysis is
actually initiated within this sorting process, for as each task is taken from the
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configuration file and placed in the proper VG, it is submitted to task_parse, which
returns the worst case delay parameterization for the given task instantiaiion. Information
about each virtual group is stored in a relatively extensive data structure; what follows is
a detailed description of each element in the structure:

1. present: A boolean variable to indicate if a particular VG exists within the
given system configuration. The AFTA allows up to 40 VGs within its
configuration, but it is not likely that most configurations will utilize all the
VGs. Therefore, this “presence bit” simplifies processing by signaling the
analysis to ignore all non-existent VGs.

2. overrun: This is a one dimensional array of integers that is established by
the overrun_check procedure. For every timing deadline that is not
satisfied in the worst case analysis, a particular integer is stored in this array to
indicate the nature of the performance failure. Section 8.4 explains this
seemingly cryptic form of information storage.

3. num_tasks: An array of five integers used to establish the number of
application tasks resident in each of the four rate groups on the given VG.
Note that the fifth integer is simply a sum of the other four and thus indicates
the total number of tasks associated with the virtual group.

4. tasks: An array of task-based data structures. For each task instantiation
belonging to the virtual group, this structure stores the name, rate group
specification, and worst case execution path parameterization. It is the
development of this element of the virtual group structure that initiates the
software analysis for each task in the suite.

S. rg_totals: An array of four integers that tracks the cumulative delay for
tasks within each of the four rate groups. As a task is added to its respective
virtual group, its worst case delay value is added to the total for its respective
rate group. In other words, rg—~total[1] contains the cumulative worst case
delay for all RG1 tasks within the VG.

6. msg_totals: A four element array of integer pairs that tracks the
cumulative message traffic for each of the four rate groups. This information
is required in calculating the overhead for each of the eight minor frames since
the rate group dispatcher delay is a function of the rate group message traffic.
As each task is added to the VG, its queued message parameters are added to
the appropriate msg_totals integer pair. The first integer of the pair
indicates the number of messages queued for the given rate group during a
single execution cycle (under worst case conditions), and the second integer
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denotes the total number of packets queued for that RG during one execution
cycle. Note that message traffic is tracked only according to the number of
messages queued, while the messages retrieved, sent, and read during an
execution cycle are effectively ignored. Section 8.6 addresses the assumptions
involved in focusing only upon queued message traffic.
Once the information in “list_of_tasks.dat” is exhausted, the virtual group records are
considered complete, and the actual timing calculations begin.

8.5 Predicting Performance Failures

The procedure called overrun_check is responsible for the final timing
calculations in the hardware analysis phase. The objective of these calculations is to
predict potential failures to satisfy the hard-real-time constraints imposed by the AFTA’s
rate group scheduling paradigm. In more concrete terms, the overrun check attempts to
identify possible situations in which the combined delays of system overhead and
application task execution exceed the time allotted within the second portion of any minor
frame (refer to Figure 8-1).

Under the present rate group configuration, an 80ms time slice contains at least
one full iteration of the tasks in all four rate groups, and as illustrated in Figure 8-2, it is
comprised of 8 unique minor frames, each of which follows the execution pattern
described in Section 8.2. Since the 80ms time slice contains at least one frame boundary
for each rate group, all relevant timing constraints can be validated through a timing
analysis that is limited to a set of 8 contiguous minor frames which spans a single RG1
frame, as shown below:

minor frame index:
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Flgurc 8-2, Rate Group Frame Orgamzatlon

Since this analysis deals with worst case scenarios, it is naturally assumed that if
timing deadlines are satisfied for a single complete time slice, they are satisfied for all
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time. For every virtual group, the overrun check attempts to determine if, under worst
case conditions, the tasks within each rate group can complete execution prior to the
appropriate frame boundaries. Figure 8-3 (page 101) illustrates the deadlines that must be
considered in such an analysis. For each minor frame, all overhead tasks and RG4 tasks
within a given virtual group must complete a single execution cycle. Any remaining time
within the minor frame is dedicated to scheduled tasks within the other rate groups.
Notice that higher numbered rate groups have execution precedence over lower numbered
groups, and until all tasks belonging to a higher priority rate group complete their
execution cycles, tasks within lower priority rate groups are not granted any frame time.
At each minor frame boundary, execution priority returns to the overhead and RG4 tasks.
A mathematical summary of these timing constraints accompanies Figure 8-3 as a list of
15 inequalities. If all 15 inequalities are satisfied, the timing deadlines are satisfied.

Evaluating the inequalities themselves is a trivial task. What is important here is
to explain the elements involved in the calculations and the rationale behind the
inequalities. The first priority of overrun_check is to evaluate the delay due to
sy<tem overhead in the second portion of each of the eight minor frames. As discussed in
Section 8.2, this value is based on the sum of the following factors:

1.IH> = (110 * number_of packets) + 103 (usec)

num_tsk num_rg_tsk
2.RGD; = 2 [(87* num _pkt) +27] + 2 [(26* nuwm_rg_tsk;) + 15] + 49 (usec)
i=l i=1

3. context switches =19 usec each

4. local FDIR = 84 usec

For each of the equations above, it is important to understand that this analysis
assumes that rate group tasks always complete their execution cycles during the last
minor frame prior to their respective frame boundaries. For instance, it is assumed that
all RG1 tasks complete execution during minor frame 7, and it is assumed that all RG2
tasks complete execution cycles during minor frames 3 and 7. This type of assumption
creates a worst case scenario for the system overhead because the burden of message
passing operations imposed by the various rate groups is thereby concentrated in the
minor frames that follow common frame boundaries, rather than being evenly distributed
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among all eight minor frames. The same concept applies to the overhead imposed by
context switching and the overrun checking performed by the rate group dispatcher.

For the first overhead equation shown above, the wvariable called
number_of packets is based upon the values stored in the msg_totals element of the
VG record. In calculating the overhead for minor frame 0, number_of packets is a sum
of the packets queued by all four rate groups because it is assumed that all application
tasks complete execution cycles during the previous minor frame. In a similar manner,
when calculating the overhead for minor frame 6, number_of packets is based upon the
msg_totals values for RG3 and RG4 tasks, since both of these groups complete
execution cycles during minor frame 5. The same principles apply in the second equation
when calculating num_pkt; and num_tsk for each minor frame. Also included in the rate
group dispatcher equation is the overhead for overrun checking. This requires that within
each minor frame, the RGD checks the status of all tasks that should have been completed
within the previous minor frame. Figure 8-3 indicates how the frame boundaries affect
various minor frames, and the information contained in the VG record is sufficient to
determine the number of tasks to be checked by the RGD in a given minor frame. The
evaluation of context switching overhead follows the same rules as used with the
overhead for overrun checking. Lastly, local FDIR affects all minor frames and is
appropriately added as a simple delay constant. As the minor frame overhead values are
calculated, they are stored in an eight element array of integers called OH]|].

The first eight inequalities ensure that the RG4 tasks meet their timing deadlines
in each of the eight minor frames. They simply compare the sum of overhead delay and
RG4 task delay to the amount of time allotted within the second portion of the minor
frame. The next group of four inequalities ensures that RG3 tasks complete their
execution cycles without exceeding their frame boundaries. These calculations account
for delays due to overhead and RG4 task execution to determine if there is sufficient
frame time left over for the lower priority RG3 tasks. The next two inequalities are
dedicated to validating the two frame boundaries encountered by RG2 tasks, and the last
inequality ensures that RG1 tasks meet their timing deadlines. Notice that the
calculations for each rate group account for delays due to all tasks with higher priorities
while ignoring delays incurred by tasks with lower priorities. The inequalities are
numbered 1 through 15, and the integer correspond:ng to each inequality that is not
satisfied is stored in the overrun array of the VG record.
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Figure 8-3, A Simplified View of Rate Group Scheduling

OH(0) + RG4 < | minor frame
OH(1) + RG4 < 1 minor frame
OH(2) + RG4 < 1 minor frame
OH(3) + RG4 < 1 minor frame
OH(4) + RG4 < 1 minor frame
OH(5) + RG4 < 1 minor frame
OH(6) + RG4 < 1 minor frame
OH(7) + RG4 < 1 minor frame
OH(0) + OH(1) + 2xRG4 + RG2 < 2 minor frames
OH(2) + OH(3) + 2xRG4 + RG2 < 2 minor frames

: OH@4) + OH(S) + 2xRG4 + RG2 < 2 minor frames .
: OH(6) + OH(7) + 2xRG4 + RG2 < 2 minor frames
: OH(0) + OH(1) + OH(2) +OH(3) + 4xRG4 + 2xRG3 + RG2 < 4 minor frames

OH(@4) + OH(5) + OH(6) +OH(7) + 4xRG4 + 2xRG3 + RG2 < 4 minor frames

: OH(0) + OH(1) + OH(2) + OH(3) + OH(4) + OH(S) + OH(0) + OH(7) +

8xRG4 + 4xRG3 + 2xRG2 + RG1 < 8 minor frames

OH(x) refers to the overhead delay in minor frame x
RGx refers to the cumulative delay of all tasks belonging to rate group x
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8.6 Assumptions

Throughout the AFTA timing analysis, a number of simplifying assumptions are
introduced in an effort to produce useful results. It is important for the user to understand
the nature of all assumptions made, for the accuracy of the analysis is significantly
affected by the validity of the underlying assumptions. The following paragraphs discuss
the assumptions that play a critical role in the integration of the application task models
with the system specific delay data during the hardware analysis phase.

When the software analysis generates all possible execution paths through a
particular code model, calculate_t ime is used to gauge the minimal worst case delay
incurred by each path so that the paths can be effectively quantified and compared. In
order to definitively state that Path A incurs a greater delay than Path B, the delay
estimates for both paths must be based upon the same set of known deterministic
quantities. This analysis assumes that for each critical construct included in the code
model, an exact delay value can be added to the time total for an execution path which
includes that construct. In other words, it is assumed that a task such as message retrieval
incurs the same amount of delay every time it is called, regardless of the nature of the
execution path. In the future, the AFTA will feature multiple architecture types for PEs,
and in such a case, the delay for a message retrieval task would vary as a function of the
VG on which a task resides. However, for any given task instantiation, the same critical
construct always contributes the same delay for every possible execution path. The
underlying assumption here is that problems such as network contention and bus
contention have a negligible effect on the total delay for a critical construct. The results
from the performance measurement study indicate relatively insignificant standard
deviations for the operating system functions and message passing functions evaluated
thus far. Problems may arise in the future as the AFTA’s performance limits are tested
and the global message traffic increases, but at this point it is safe to assume a high level
of determinism in regard to those constructs presently included in the analysis. Also. VG
phasing can be selected to minimize these effects.

A second assumption with regard to system delays is that the total time required
for an execution path increases monotonically as a function of the frequency of
occurrence for the critical constructs considered. In other words, an increase in the
frequency of a critical construct within an execution path never results in a decrease in the
total time delay incurred by that path; likewise, a decrease in the frequency of a construct
does not result in an increase in time delay. This may seem to be an inherent assumption
that need not be stated, but the coupling of overhead delays with application task delays
through the message passing functions creates the possibility for unusual delay behavior
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that should at least be addressed. It is possible that a particular combination of critical
constructs within a worst case path could unexpectedly improve the efficiency of the
overhead functions for the virtual group and thus transform a worst case path into 4 less
than worst case path. Such unusual behavior would likely arise from some unforeseen
system limitation which would prevent the overhead tasks from processing all given data
and thus require less frame time. Fortunately, this type of non deterministic behavior has
yet to appear in system testing, and the analysis presented here is conservative with
respect to increases in efficiency.

The final assumption to be discussed in this section invoives the nature of the
global message traffic. For a static analysis, it is impossible to anticipate the number or
the size of messages that are received by an application task or group of tasks within a
given execution cycle. As such, it is assumed for this analysis that @ VG only
communicates with itself -- in other words, no inter-VG communication is considered.
The result of this assumption is that for worst case evaluations, the number of message
packets scooped for an execution cycle is set equal to the number of packets queued
during that cycle. This type of assumption primarily affects overhead calculations. and its
validity is critical since the per-packet processing time is quite significant in the delay
calculation for the interrupt handler. The AFTA prototype testing has not yet addressed
the detailed nature of global message traffic under various configurations, and thus the
accuracy of this assumption cannot yet be gauged. Future system testing could call for
some adjustments to the message scoop delay calculations.

8.6 Final Output File

The final output file for the AFTA timing analysis is called “results.dat.” It is
designed to present the results of both the software and hardware analysis an efficient and
readable format. The results are organized according to virtual groups, and for each VG
the following information is included:

1. An individual listing of each task instantiation that includes the task name.
filename, rate group designation, and full worst case path parameterization.

2. For each of the four rate groups, a total worst case application task delay is
listed to help the user recognize which rate groups are overburdened or
underloaded.

3. For each of the eight minor frames, the total worst case overhead delay is
listed.
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4. A matrix of delay values lists the delay contribution from the overhead und
each of the rate groups within each minor frame. This is intended to help the
user identify potential timing problems and the sources of those problems.

5. A listing of all timing deadline violations as discovered through the evaluation
of the 15 inequalities discussed earlier in this chapter.

The contents of the results file should reinforce the concept that this analysis tool
is not valuable solely for the prediction of possible performance failures; rather, the
overrun check is simply the most comprehensive result produced. The more important
results are the intermediate values used in performing the overrun check. These include
the overhead delay totals and the worst case path parameterizations of the individual
application tasks. One of the major goals of this analysis is to properly characterize the
software tasks for timing estimation, code optimization, and for further analysis of global
message traffic and virtual group phasing. After a single configuration analysis. it should
be readily apparent what types of changes need to be implemented to improve
performance results. These changes might include streamlining application task code,
changing the mapping between tasks and virtual groups, varying the VG configuration
itself, or altering the rate group specification of one or more application tasks. As stated
previously, the user always must consider the contents of the error file when evaluating
the data in “results.dat,” for both sources of output from this analysis are relevant and
should not be examined independently.
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Chapter 9
Conclusions/Recommendations

9.1 Conclusions

This thesis presents an automated timing analysis tool that is designed specifically
to characterize and evaluate the timing behavior of a given system configuration for the
current AFTA prototype. The preceding chapters discuss a modular approach to the
development of this automated tool, and the accuracy of the timing analysis depends upon
the successful execution of each stage as well as the proper interaction between these
stages. It is appropriate now to consider independently the effectiveness of each part of
the analysis and then critique the usefulness of the analysis tool as a whole.

1. Preliminary processing is the first stage of the timing analysis. Its goal is to
accurately describe the system’s hardware and software configuration through
an automated evaluation of the task specitication file. This portion of the
analysis is both simple and successful. No further development is required.

2. The accuracy of the analysis depends upon proper characterization of the
system overhead in terms of both constant and variable delay elements. The
AFTA performarce measurement study addresses this task and presents the
results to date, and the timing ana’ysis tool depends upon these results for
delay calculations and for the proper approach to those calculations. Given
the state of the AFTA prototype, the overhead data is both accurate and
thorough, but it will be necessary in the future to study the effects of 1/O
operations and network loading on system overhead. Such results must then
be incorporated into the timing analysis that is presented here.

3. The accuracy of this analysis also depends upon the definition and
measurement of significant sources of deterministic delays within application
tasks. At this point, the estimated application task delays depend primerily
upon the presence of message passing calls within the source code, and this
focus is far too limited. In the future, the list of known deterministic delays or
“critical constructs” must be expanded in order to better characterize the worst
case timing behavior of individual application tasks. What is important here is
that this tool currently includes all the necessary infrastructure for expanding
the list of delay elements considered in a static analysis. At this stage of
development, minimal marginal effort is required to expand the list of known
deterministic delays, and this facilitates rapid improvement in the accuracy of
the worst case delay estimates.
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4. The second stage of the timing analysis consists of a static source code
anal, sis for each application task in the suite, and the first phase of this
analysis involves the development of source code models. At present, the
modeling process is both tedious and delicate, but it stands as proof that an
automated tool can effectively understand and evaluate the tflow of execution
through complex high level source code. The approach to code modeling is
sound and allows for a great deal of flexibility in terms of the types of delay
elements upon which to focus during a static analysis and the range of code
constructs that can be analyzed successfully. Certainly. the modeling
approach presented here is valid for other high level languages and could also
be adapted to work with assembly language code. The primary weakness in
this portion of the analysis tool is the lack of AFTA application task source
code with which to test the modeling process. The intricacies of the code
parsing and modeling tools create a great deal of room for minor errors. and it
is important to subject these tools to rigorovs testing with any relevant source
code that becomes available.

5. The second phase of the software analysis involves the quantitative evaluation
of the source code models constructed for the various application tasks. Since
the model conventions are well-defined and limited by design, this portion of
the timing analysis lends itself to extensive testing and improvement. Given
any valid model, the model analysis phase successfully finds all possible
execution paths and then parameterizes, quantifies, and compares them in
order to identify the worst case path. This part of the analysis tool is by tar the
most successful, and the principles involved and the algorithms developed can
easily be adapted to future changes in the modeling conventions or the path
quantification process. ,

6. The final stage of the analysis involves the integration of the individual task
analyses in a manner that reflects the system virtual group configuration and
accurately characterizes the amount of variable minor frame overhead incurred
by the given task groupings. This part of the analysis is relatively straight
forward and quite robust, but it is not complete. Due to the absence of 1/0
overhead data, the calculations of the hardware model analysis are not
completely accurate. It should be a simple task to later add the 1/O
measurement results to the hardware model used by this analysis tool, but until
then, one must remember that the results produced are somewhat incomplete.
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As a whole, the analysis tool presently produces results of limited utility, but both
the code infrastructure and the approach to an automated timing analysis are robust and
very valuable. All the necessary elements of a successful analysis tool are present, but
there is a need for further development and testing.

9.2 Recommendations for Further Study
The following list deiails recommendations for further development of the
automated timing analysis tool:

1. In order to improve the accuracy to the worst case estimates, the list of critical
constructs must be expanded. As more application task source code becomes
available, it should be easy to determine what types of functions and Ada
constructs significantly contribute to the execution delay of application tasks.
Another good source of critical constructs would be the standard Ada libraries.
If one were to benchmark all the functions included in those libraries, any
standard Ada function could be accounted for in the software analysis.

2. As application task source code is developed for the AFTA. it should be
subjected to the code modeling tools presented here. Extensive testing will
expose some minor errors in the code modeling process, and it is important to
correct these problems as soon as possible.

3. When the 1/O portion of the AFTA operating system is fully developed and
tested, its timing characteristics should be measured, modeled, and
incorporated into the hardware modei analysis. The accuracy of the system
overhead calculations depends upon knowledge of I/O operations, and any
enhancements to t-ese calculations will improve the usefulness of the analysis
results. Likewise, any 1/O operations that typically appear in the application
task source code should be quantified and added to the list of critical
constructs.

4. Another useful improvement to the overhead calculations involves proper
characterization of the system’s global message passing operations. Presently
it is assumed that a task receives the same amount of message traftic that i
sends, and it would be useful to either validate this assumption or develop a
more accurate model of global message traffic to be incorporated into the
overhead calculations.

107



Appendix A
HEADER.H

/% This is a common header that is utilized by both START.C and FINISH.C */

8include <stdio.h>
®include <ctype.h>
Binclude <stdlib.h>
Sinclude <string.h>
S$include <math.h>

/* The following constants identify critical constructs and also serve as */
/* indices ta the search_list array. The code refers to critical constructs */
/* and search..list entries according to the names shouwn below. */

8define UFS O
tdefine LOOP 1
tdefine IF 2
8define ELSE 3
8define ELSIF ¢
Sdefine CASE S
8define WHEN 6
Sdefine QUEUE 7
8define RETRIEVE 8
8define SEND 9
8define RERD 10
8define TASK 11
®define EQURL 12
8define RANGE 13
8define PACKAGE 14
tdefine PROC 15
tdefine BEGIN 16
&define END 17
2define GTID 18
tdefine UG 19
8define RG 20
tdefine XNITSIZE 21
tdefine XMITHUM 22
tdefine RCUESIZE 23
tdefine RCUENUR 24
8define SELECT 25
tdefine RECGRL 26
8define ACCEPT 27

/* These constants are for model entries only. There are no */
/* corresponding entries in search_list */
%define END_LOCP 51

Sdefine END_IF 52

8define END_CASE 53

Sdefine COUNTERSET 54

fdefine FORLLOOP 5SS

Sdefine HHILE.LOOP S6

/* Defines the various pertinent classes to which a string moy belong */
Sdefine UNKNOUN O

tdefine SIMPLENUM 1

S8define NATURALKUN 2

8define COMPLEXNUH 3

Rdefine RANGENUN 4
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tdefine UARNAME S

/* These constants describe the status of the processing */
$#define BLANK O

#define LOST -1

%define UNDEFINED -2

define INFINITE -3

%define DEFAULT -4

®define EXEC -5

#define NO_EXEC -6

/* Define the minor frame time here */
tdefine MINORFRANE 10000

enum boolean {NO = 0, YES = 1};

struct msg_pair

{
int num_msg_queued;
int num_packets;

¥

struct var_info

{
char name[100};
int value;

b

struct var_list_.info

{
struct var_info entry(100];
int length;
int marker;

¥

struct string
(
char nome(100];

b

struct list_info

{
struct string entry[100];
int marker;
int length;

¥

struct match_info
{
char nome[100];
char filename(100];
};

struct counter_|ist
{
int num_sent;
int num_read;
int num._queued;
int num_retrieved;
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int nua_msg_queued;
int msg_retrieved;
int total_time;

b

struct task_parse_info
{
char name[100];
int rate.group;
struct counter_|ist counter_set;

};

struct message_limits
{ .
int xmit_size;
int xmit_num;
int rcve_size;
int rcue_num;

};

struct task_spec_info
{
cher nare[100];
int virtual_group;
int rate.group;
struct messoge_limits |imits;

)i
struct vg-info

enum baolean present;
int overrun[20];
int nue_tasks;
struct tosk.parse_info task[20];
int rg.total[S];
int overhead[8];
struct msg_pair msg_total[5];
};

struct range_info
{
char description{100];
int first;
int last;
int span;

);

struct flag.list

{
enum boolean task_found;
enum boolean pkg..found;
enun booleon ctr_active;
enus boolean finished;
enus boolean fatal_error;
enum boolean enable_when;
int proc..depth;

};

struct comment_info
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int basic_loop_limit;
int for_loop_linmit;
int while_loop_limit;
int message_size;

};

struct model_entry_info

{
int type;
int value;
int depth;
int pointer;
int flow;
};
struct model_info
{
int length;

int numa_counters;
struct model_entry_info entry[100];
struct counter.list counter.set{100];

Vi

struct proc_info
{
char name{100]);
char fitename[100};
enum boolean done;
struct model_info skeleton;

};

struct proc.list_info
{
struct proc_info entry[100];
int tength;
int marker;
int pkg.marker;

};

struct constant.|ist

{
int queue_coeff;
int queue_const;
int retrieve_coeff;
int retrieve_const;
int [H_coeff;
int IH_const;
int RGD.msg..coeff;
int RGD_msg_const;
int RGO_tsk_coeff;
int RGD_tsk.const;
int RGD_overall_const;
int RGD_empty_queue_const;
int context_switch;
int local FDIR;
int sys_FDIR;

};
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Appendix B
START.C

nclude "header.h*

CALLNANE: START.C
AUTHOR: S. Treadwell
CREATED: 19 HRY 92
UPDATED: 20 JUL 92

This Is the preliminary processing code. It opens up the task specification
file and processes the contents. RIl required system configuration info is
stored in two output files "task_names.dat” and "list_of_tasks.dat” and

passed on to future stages in the analysis.

in()

struct task_spec_info task{20]; /* temporarily stores all config info */

struct list_info search_list;
atruct list_info this_line;
FILE *infile;

int i,c;

int signal = 1;

int num_tasks = 0;

/* Establish the list of key words that coentrol the search for config

read..list (&search_list);

/* Open the tosk specification file */

infile = fopen("task_list.ada","r");

if {infile == NULL)

{
printf(“Cannot open task_list_io_.ada \n");
exit (2);

}

/* Search the file line by line and extract relevant info */
do
{
signal = get_line(&this_line,infile);
search(&search_{ist ,&this_line,task,&num_tasks);
}

shile (signal != 0);

fclose(infile);

info */

/* Produce the output files to be used by the OCL search ond the remainder */

/* of the analysis
write_file(task,num_tasks);
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CALLNAME: READ.LIST
AUTHOR: S. Treaduell
CRERTED: 13 APR 92
UPDRTED: 15 JUN 92

This procedure estabiishes the list of key words that control the search
far configuration information. The list is taoken from “key_words.dat"
and is stered in search_list. Each key word occupies o separate line in
the external file.

read_list(search_list)
struct list_info *search_list;

{

FILE *list_file;
int signal = 0;
int value = 0;
int num = 0;

list_file = fopen(“"key_words.dat”,"r");

if (list_file == NULL)

{
printf(“Cant open key.words.dat for input\n");
exit(2);

}

while(signal != EQF)
signal = fscanf(list_file,"Xs\n", search_list->entrylnum++]) name);

search_list->length = num - 1;
fclose(list_file);
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CALLNANE: GET_LINE
AUTHOR: S. Treadwel!
CREATED: 22 APR 92
UPDATED: 10 JUN 92

Hill use the stream of characters prouvided by the specified file to asseable
a buffer of single word items al! of which belong to a single line of code.
The key here is to gather words until a carriage return is found.

Blank lines are not recorded in the buffer. Comment |ines are recorded as

a single word denoted as '--'; all odditional werds on ¢ comment line are
ignored. This procedure will not record a line of words if it is terminated
by a EOF character.

int get_line(this_line,infile)
struct list_info *this_line;
FILE *infile;

(

int ¢,k;

int nua = (;

int count = Q;
int comment = NO;
int signal = 1;
char tenp(80];

while(isspace(c = fgetc(infile))); /* bleed off white space */
do
{
if (c == EOF) break;
do
templcount++] = ¢; /* append character to word */
vhile(!isspace(c = fgetc(infile)));
templcount] = '\O';
strcpy(this_line->entrylnun]l.nome,teap); /* append word to iine */

do
if (¢ == '\n') breok;
while(isspace(c = fgetc(infile)));

count = 0;
if ((k = strcap(temp,”--")) == 0) comment = YES;
if (comment == HO) ++num;

}
while (¢ != "\n');

if (¢ == EOF) signal = 0;
this_line->length = num;

this_line->marker = 0;

return(signal);
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CALLNARNE: SEARCH
AUTHOR: S. Treadwell
CREATED: 11 APR 92
UPDATED: 22 JUN 92

Uill do the primary parsing for the “start” stage. Once a line of code is
availabie for analysis, 'search' will inspect it for a given list of ada
constructs and system calls and will branch to other parsing and analysis
functions as dictated by what is found.

This procedure looks for call names and ada constructs exaectly as given by
the user in auxillary files. Uhen searching for matches, names that are
similar but not exactiy the same as the names sought will not be
sufficient to warrant a match.

.......................................................................... ey,
search(search_list,this_line,task,nun_tasks)
struct list_info *search_list;
struct tist_info *this_line;
struct task_spec_info task[];
int *num_tasks;
{
int i,j,k;
int size;
for{j = 0; j < search_list->length; ++j)
for{i = 0; i < this_line->length; ++i)
if((k= stremp{this_line->entryli).name,search_list->entryl[j}.name)) == Q)
{
this_line->marker = | + 2;
switch(j)
{

case GTIB: /* extract the task name */
extroct_name(this_line, task,num_tasks);
break;

case UG: /* extract the task's virtual group assignment */
task[*num_tasks].virtual_group = strip(this_tine->entryli+2].name};
break;

case RG: /* extract the task's rate group designation */
task[*num_-tasks].rate_group = get_rg(this_iine->entryli+2].name);
break;

case XNITSI2E: /* extract message passing limitations */
task[*num.tasks]. limits.xmit_size = strip(this_line->entryli+2].name);
break;

case XMITNUMN:
task[*nun_tasks].limits.xmit_num = strip{this_line->entryli+2]. name);
break;

case RCUESI2E:
task[*num_tasks].limits.rcve_size = strip(this_line->entryli+2].name);
break;

case RCUENUM:
tosk[*num_tasks].limits.rcve_num = strip{this_line->entry[i+2].name);
*num_tasks += |;
break;

default: break;

)

}
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CALLNANE: URITE_FILE
AUTHOR: S. Treadwell
CREATED: 26 MAY 92
UPDATED: 12 JUN 92
This procedure is called at the end of the “start™ stage. It will produce

two output fiies for use by later stages. The first file contains names of
the tasks implemented in the task suite; it is used by the DCL search in
finding the files where the tasks reside. The second file contains all
pertinent info about the task suite, and it is used by the “finish" stage in
parsing the tasks and calculating overruns.

ite_file(task,num_tasks)
ruct task_spec_info task[];
t num_tasks;

int i,j,k;
int repeat;
FILE *outfile;

outfile = fopen(“list_of_tasks.dat","w");

if (outfile == NULL)

{
printf("Cannot open list_of_tasks.dat\n");
exit(2);

}

for(i = 0; i < num_tasks; *++i)
fprintf(outfile,"%s Xd Xd Xd %d %d Xd\n",
task[i].name,task[i].virtual_group,taskl(il.rate_group,
task[il.limits.xmit_size,task(i).limits.xmit_nunm,
task[il.limits.rcve_size,task[i].limits.rcue_num);
close(outfile);

outfile = fopen(“task_names.dat”,"u");
if(outfile == NULL)
{
printf("Cannot open the output file\n");
exit(2);
}

for{i = 0; i < num_tasks; ++i)
{
repeat = NO;
for(j = 0; j < i; ++j)
if ((k = stremp(task[i).name,task{j].name)) == 0)
repeat = VYES;
if (repeat == NO)
fprintf{outfile,"%a\n",task{i].name);
}

fprintf(outfile,"done\n");

fclose(outfile);

117

v



Appendix B

CALLNANE: EXTRACT._NANE
AUTHOR: S. Treadue!l
CREATED: 26 HAY 92
UPDRTED: 09 JUN 92

Used to extract task name from the task specification file.

extract_name{this_line,task,num_tasks)
struct list.info *this.line;

struct task_spec_info taskl];

int *num_tasks;

{

char temp[40];

char task_nanme{40];
int count = 6;

int count2 = Q;

int num;

num = this_line->marker;
strcpy(temp,this_line->entrylnuml.name);

/* eliminate the prefix "gtids." from the task name */

vhile (templcount] != ',")
task_namelcount2++] = templcount++];
task_name{count2] = '\0';

/* Rdhere to the naming conuention for task nomes */
strcat (task_name,"_t");
strcpy{task[*num_tasks].name,task_name);
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CALLNANE: STRIP
ARUTHOR: S. Treaduwe!l
CRERTED: 26 NAY 92
UPDARTED: 12 JUN 92

Used to take the comma off the end of a number and convert it from a string
to an integer,

int strip(argument)
char argument{];

{

int count = Q;
int value = 0;
char teap[20];

/* strip the comma off the end */
while(argument{count] != ‘')
{
temp{count] = argument[count];
count++;
)
tempicount] = '\0';

/* conuvert the string to an integer value */
value = strtaol(temp, (chor **)HULL,10);
return{value);

CALLNRNE: GET_RG
RUTHOR: S. Treaduwell
CREATED: 26 MAY 92
UPDATED: 12 JUN 92

This extracts the rate group number fer o task from the task spec file.

int get_rg(argument)
char argument(];

{

char rg[10];

/* grab the rg ¥ directiy and convert it to an integer */
rgl0] = argument(9];

rgl1] = "\0O';

return(strtal(rg, (char **)NULL,10));
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DCL Source Code

ANALYZE.COM

This program orchestrates the entire analysis process from start to finish.

$run start
$efind

$run finish
$exit

FIND.COM

This program finds the files that hold the application task source code and produces
“filenames.dat” as output.

$tosk = “tagsk"

$body = "body"

$is = “is"

$!search /window=0 /output=temp.dat /metch=and-

$! [ftpp.afta.scurce.cnslib...].ada~

$! 'task’,‘'bedy’,'is’

$search /window=0 /output=temp.dat /match=and-
[treadwell.afta...].ada-
‘task’, 'body’,"is’

$open/append outfile temp.dat

$erite outfile "done”

$close outfile

$type temp.dat

$open/urite outfile filenames.dat

$open/read taskfile tosk_names.dat

$bigloop:

$read taskfile taskname

§if taskname .egs. “done” then goto finished

$erite outfile taskname

$open/read infile temp.dat

$loop:

$read infile filename

$if filename .eqs. "done” then goto done

$search ‘filename' ‘taskname’

$match = $severity .eq. |

$if match then write cutfile filename

$goto loop

$done:

$close infile

$goto bigleop

$finished:

$close outfile

$close taskfile

$type filenames.dat

$!purge

$exit
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FINISH.C

%include “header.h”

/* This is the controlling “main” for finish.exe */

main()

{

void match_up{);

void process_list();

void check.overrun(};

void write_file(};

struct match_info task[40];

struct vg_info vugl4a];

struct constant_list delay-data;

int i,n;

int num_tasks;

FILE *error_file;

error.file = fopen(“errors.dat","w");

if(error_file == NULL)

{
printf{"Cannat open errors.dat for output\n");
exit(2);

}

match_up{task,&num_tasks,error_file);
/* The following info teiis the user which version of the task suite is */
/* being analyzed. Note it’'s recorded in the error log rather than the */
/* results file. */
fprintf(error_file,"The matching between tasks and filenames is...\n");
for (i = 0; i < num_tasks; ++i)

fprintf(error_file,"Xd %3 Xs\n",i,task[i]l.name,task[i]. filencne);
process_list{ug,task,nun_tasks,&delay_data,error_file);
check_overrun(ug,8delay_data,error_file);

write_file{ug);

fclose{error_file);
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CALLNAME: MARTCH_UP
AUTHOR: S. Treaduwel| »
CREATED: 27 HAY 92
UPDARTED: 25 JUN 92

Takes the output file from the DCL task body search and performs a matchup

between task names and the files in which they reside. |If the task was not
found, it is matched with a “none.” |If the task name was found in multiple
files, the user is given notice and the choice of which file he wants to []

have processed for that task. This gives the user the choice of which
version of a task he wants to have analyzed since it is assumed that several
versions of the same task may be present in the target directory.

__________________________________________________________________________ *
void match_up(task,num_tasks,error_file)
struct match_info task[]; ’
int *num_tasks;
FILE *error_file;
{
struct string filel[10];
int i = 0;
int j = 0; »
int num = Q;
int choice = 0;
int signal = 0;
int k,n,c;
char dummy(80];
FILE *infile;
»
infile = fopen("filenames.dat”,"r"); /* File produced by the DCL search */
if (infile == NULL)
{
forintf(error_file,"Cannot open filenames. dat for input\n")
exit(2);
) »
/* Data format: task name foliowed by corresponding filename(s) with each */
/* name listed on a separate line. The first task name is grabbed and */
/* converted to typical string format. */
fscanf(infile,"%s\n",task[i]l.name); strcat(task[i++].name,”\0");
/* Now, corresponding filename(s) and additional task naomes are grabbed */ ]
/* from the file and conuverted to string format. Uhenever a new task name */
/* is found, the filename(s) for the previous task get(s) processed. Note */
/* that 0,1, or multiple filenames (up to 10) can be handled for each task */
do
{
signal = fscanf(infile,"¥s\n",dummy); strcat(dummy,”\0"); /* grab name */
nus = strlen(dunmy); : ’
if(({((c = dummylnum-1]} == '¢'; && ((c = dummylnum-2]) == "_")) ||
(signal == EQF)) /* Is it o task name? or the end of the file? */
{
switch(j) /* Process filename(s) for last task name */
{
case 0: strcpy(task[i-1].filename, “none"); break: [
case 1: strepy(tosk(i-1].filename,file[0].name), break;
default: /* Let the user choose which version of the tast e *
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printf("NMultiple files found for the task called Xs\n",task[i]. name);
for {n = 0; n < j; ++n)
printf{"%d : %s \n",n,fileln).name);
printf(*Your Choice: *); scanf("%d”,kchoice);
if{choice ¢ j)
strcpy{task[i-1].filename,filelchoice] . name);

if (signal |= EOF)
{
strcpy(tosk[i].name,dummy); /* If it was a task name, store it */
+4-i; jso;
}
}
else .
strcpy{filelj++].noame,dunmy); /* If not, store it as a filename */

while{signol != EQOF);
*num.tasks = i;
/* Procedure ends with an array of paired names stored in task[]. Each */

/* task name has a single filename associated with it (or "none”) and */
/* num_tasks reveals how many tasks are included in the analysis */
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| CALLNANE: PROCESS_LIST
‘ AUTHOR: S. Treadwel | )
CRERTED: 09 JUN 92
UPDATED: 14 OCT 92
Takes the output file from start.exe and gleans from it all the necessary
information about the task suite that is contained in the task specification
file. The information is then grouped and stored according to the ugs in )
which the tasks reside. Note that task parsing and analysis is initiated
here, and the results stored in ugl] are later submitted to check_ouverrun
for an integrated hardware and software configuration analysis.
__________________________________________________________________________ *)
void process_list{vg,task,nun_tasks, delay—_data,error_file)
struct vg—_info vugll; »
struct match_info task([];
int num_tasks;
struct constant_list *delay_data;
FILE *error_file;
{
void read_list();
struct counter_list task_parse(); ’
struct message_limits messages;
struct list_info search_list;
int i,j,k;
int num;
int num_loaded;
int marker; »
int ugnum;
int rgnum;
int signal;
char dummy(80];
char task.name[80];
FILE *infile;
]
infile = fopen("list_of_tasks.dat","r"); /* File produced by start.exe */
if(infile == NULL)
{
fprintf(error.file,"Cannot open list_of_tasks.dat for input\n");
exit(2);
} )
/* Establish the array of key words that will be used in the scftware */
/* modeling and analysis phase. Also process the system specific delay */
/* values and store them in delay.data. */
search_list.length = 0;
read_l ist(&search_list, delay_dato);
]
while(l)
{
/* Grab information relating to a single instantiation of a single task */
/% Each task instantiation is given a single line in the input file ./
/* The format should be readily apparent from the fscanf statement below */
signal = fscanf(infile,"%s Xd %d Xd ¥d Xd ¥d\n",task_name,&ugnum,&rgnum, >
&messages.xmit_size,&messages. xmit_num,
&messages.rcue_size,&messages.rcue_num);
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if (signal == EQF) break; /* End of file terminates the procedure */

/* Find the filename for the task that is to be analyzed and mark it */
for(j = 0; j < nun_tasks; #fj)
if({k = strcmp(task_name,task[j].nane)) == 0) marker = j;

/* Update appropriate vug record according to the task instantiation */
/* Note that each task instantiation is processed individualiy so that */
/* different message passing limitations can be analyzed faor a single */
/* task. */
nua = uglugnua).num_tasks;

vglugnum].present = VES; /* Yes, this vug® exists in this configuration */
vglugnum].num_tasks += 1;

strepy(vglugnum] . task[num].name, task_name);
vglugnum].task[num].rate_group = rgnue;

/* Now kick off the analysis of the specified task with the call to */
/* task.parse. The analysis culminates in the establishment of ¢ single */
/* counter.set that will represent the specified task instantiotion */

/* during the integrated hardware and software analysis in check_overrun */
forintf{error_file, "\fSOFTUARE ANALYS!S FOR Xs\n\n",task{marker].name};
vglvgnum].task(num]l . counter_set =
task_parse(Rsearch_list,delgay.data,taskimarker].nane,
task[marker]).filename,messages,error_file);

}
fclose(infile);
/* This procedure completes with vg[] holding all config information as *y

/* well as all worst case execution delay analysis resulls for each */
/* Instantiation of every task in the suite. */
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CALLNANE: TASK_PARSE

AUTHOR: S. Treadwel!ll Y
CREATED: 10 AUG 92

UPDARTED: 14 OCT 92

This procedure has responsibility for modeling and analyzing a single task

to find a parameterized expression for the worst case execution path through

the task for @ single execution cycle. The parameterization is returned to

the parent procedure. [

struct counter_list.task_parse(search_list,delay_data,task_name,filename,
messages,error_file)

struct list_info *search_list;

struct constant_list *delay_data;

char task_name[];

chor filename{];

struct message_limits messages;

FILE *error_file;

{

void find_packages();
void parse(); »

‘ void print_procedures();
struct counter_list find_worst_path();
struct list_info pkg_list;
struct model_info skeleton;
struct counter_list final_counter;
| struct proc.list_info procedures;
| struct counter_list counter_set; ’
struct flag_list flags;
char pkg_filename[80];
char pkg_name[80];
int i,k;

/* Set a flag in the error log to help establish the chronology of the */ )
/* analysis and any errors.
fprintf(error_file,“Uorking on %s\n",task_name);

/¥ Initialize the worst case parameterization for the task */

finagl_counter.num_queued = 0;

final_counter.num.retrieved = 0;

final_counter.num_sent = 0; »
final_counter.num_read = 0;

if ((k = strcmp(filename,“none")) == 0)

{
fprintf(error_file,"No file was found for task %¥s\n", task_name);
goto doneparsing;

) ’

/* Prepare for bottom-up modeling */
pkg_list.length = 0;
procedures.length = 0; procedures.marker = 0; procedures.pkg_marker = 0;

skeleton.length = 0; skeleton.num_counters 0;
]
/* Establish the task's procedure/package hierarchy */
find_packages(filename,&pkg_list,error_file);
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/* Starting at the bottom of the package list, each package is processed */
/* individualiy to collect procedure models in preparation for modeling */

/* the actual task body. */
for (i = pkg_list.length - 1; i >= 0; --i)
{

strepy(pkg_filename,pkg_list.entrylil.name);

strcat(pkg_filename,".ada"); /* Filename is derived from package name */

parse(search_list,delay_data,pkg_filename,pkg_list.entrylil.name,task_nanme,
messages,&procedures,&skeleton,&flags,error_file);

}

/* Now parse model| the task body since all supporting procedures */
/¥ have already been examined *)
strcpy(pkg_name, “none”);
parse(search._|ist,delay_data,filename,pkg_name,task_name,messages,
&procedures,&skeleton,&flags,error_file);

/* Record info in the error log to help with any debugging needed */
print_procedures(&procedures,error_file);

/* Now analyze the resulting task mode! to find the worst case exec path */
/* assuming that the task body was found in the specified filename */
if(flags.task_found)
{
final_counter = find_worst_path(&skeleton,delay_data,error_file);
/* Record results in output file */
fprintf(error_file,"The worst path is characterized by...\n");
fprintf(error_file,"Queued: %3d Retrieved: %3d Sent: X3d Read: %3d \n",
final_counter.num_queued, final_counter.nun_retrieved,
final_counter.num_sent, final_counter.num_read);
}
else
fprintf(error_file,"The task Xs was not found in Xs\n",task_name, filename);

doneparsing: return(final_counter);
/¥ final_counter holds the worst case path parameterization and is stored */

/* by the parent procedure (process.list) in the appropriate ug record as */
/* the definitive representation of the given task instantiation */
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CALLNANE: FIND_PACKAGES

AUTHOR: S. Treadwell »
CREATED: 12 JUL 92

UPDATED: 15 0OCT 92

This procedure builds the structural hierarchy for a given task by examining
its context clause for package names upon which the task depends. It also
examines context clauses for all supporting packages to find packages upon
which they depend. The result is a one-dimensional array of package names »
with the most fundamental packages at the bottom of the list -- in other
‘ words, the packages toward the top of the list depend upon the ones at the
! bottom of the list.

__________________________________________________________________________ %/
void find_packages(filename,pkg_list,error_file) »
char filenamel];
struct list_info *pkg_list;
FILE *error_file;
{
void update_pkg_list();
int i,j;
char pkg_filename[80]; [
/* Look at the context clause in the package containing the task body */
update_pkg_list(filename,pkg_list,error_file);
/* Look at the context clause in all packages contained in package list */
/* Any new packages found are appended to the list, and the search */
/* continues in a recursive mcnner until reaching the end of the package */ ’
/¥ tist. */
for(i = 0; i < pkg_!ist->length; ++i)
(
strcpy(pkg—filename,pkg_list->entrylil.name);
strcat(pkg—filename,".ada")
update_pkg_list(pkg_fiIename,pkg_list,error_file); »

}

/* Record results in error file purely for debugging purposes */

fprintf(error_file,"The packages found are...");

if(pkg_list->length == 0) fprintf(error_file, "none");

fprint f(error_file,"\n"};

for(i = 0; i < pkg_list->length; ++i) ’
fprintf(error_file, “%¥s\n",pkg_list->entryfi).name);
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CALLNARME: UPDRTE_PKG_LIST
AUTHCOR: S. Treadwel!
CREATED: 1S JUL 92
UPDATED: 18 NOU 92

This procedure examines the context cliause of a given package in order to
find names of packages upon which the given package depends. This is a
methed of exploring the subprogram hierarchy for a given task, and atl neuw
package names found in the context clause are appended to the package list
to be later examined by this procedure.

void update_pkg_list{filename,pkg_iist,error_file)
char filenamef];
struct list_info *pkg_list;
FILE *error_file;
{
void with_found();
struct list_info this.line;
struct list_info comment_line;
struct comment_info info_buffer;
int i,j,k;
int signal = 1; /* Serves to signal the end of the file */
FILE *infile;

infile = fopen(filename,"r");

if(infile != NULL)
while (signal != Q)

{
/* Search the file looking for a program stotement of the form ... */
/* “with [PKG_NRAHE];" UWhen such o statement is found, the package */
/* name is extracted and checked against the package list to */
/* determine if it should be appended to the current [ist *x/

signal=get_[ine{&this_line,&comment_line,&info_buffer,infile,error_file);
if{(k = strcmp(this_line.entry[0].name,"with")) == 0)
{
this_line.marker = 1;
withofound(&this_line,pkg.list,infile);
}
}

fclase(infile);

}
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CALLNRME: PARSE
AUTHOR: S. Treadwel!
CRERTED: 10 JUL 92
UPDRTED: 18 NOU 92

A generic code processing procedure that accepts code from all types of
program units -~ packages, subprograms, and tasks. For subprograms, it
canstructs code models and adds the model info to the procedures data
structure. Uhen dealing with o task body, the task model is developed and
returned to task_parse in the skeleton data structure.

__________________________________________________________________________ *
void parse(search.!ist,delay_data,filename,pkg_name,task_name,messages,
procedures,skeleton, flags,error_file)
struct |list_info *search.list;
struct constont.iist *deiay.dato;
char filenamel[];
char pkg_name[]; /* Passed as “none" when parsing the task body file */
char task_name[];
struct message_limits messages;
struct proc_list_info *procedures; /* Holds all subprogram models */
struct model_info *skeleton; /* Aluays holds the current model */
struct flag_list *flags; /* Provides important sta: . information */
FILE *error_file;
{
int get_line();
void search(};
struct list_info this_line; /* Holds the current program statement */
struct list_info comment_iine; /* Used to grab vital progrommer input */
struct list_info end_list; /* Needed for status info */
struct comment_info info_buffer; /* Holds current summary of prog. input */
int signal = 1; /* Signais when the end of the given file is reached */
int i,k;
FILE *infile; /* Ada source file that is currently being parsed */

FILE *outfile; /* Error log */

/* Set-up */
end_list.length = O,
comment_line.length = §;
this_line.length = 0;

flags->ctr_active = NO;
flags->pkg.found = NG;
flags->task_found = NO;
flags->finished = NO;
flags->fatal._error = NO;
flags->enable_when = NO;
flags->proc.depth = 0;

info_buffer.basic_loop_limit = INFINITE;
info.buffer.for_loop_limit = UNDEFINED;
info_buffer . while_loop_limit = UNDEFINED;
info_buffer.message_size = DEFAULT;

/* Note thot it is assumed that all packages and files upcn which o task */
/* depends are included in the same directory as the task body file. '
infile = fopen(filename,"r");
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{
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(infile == HULL)

fprintf(error_file,"File %3 could nat be found\n",filename};

goto done_parsing;

}

/*
/*
if

do
{

}
wh

do

/¥
/*
/¥
/%
/¥

Help specify the chronology of the error log by listing the file that */
is currently being processed */
({k = strcmp(pkg_name,“none”)) == 0) /* |s this the actual task file? ¥/
fprintf(error_file,"Now processing task %s\n",task_name);
se
fprintf(error_file, "Now processing package %s\n",pkg_name);

/* Grab program statements one by one and examine them on an individual */

/* and chronolocgical basis. */

signal = get_line(&this_line,&comment_line,&info_buffer,infile,error_file);

search{search_iist,delay_data,skeleton,&thias_line, flags,&end..list,
&info_buffer,pkg_name,task_name,messages,procedures, filename,
error_file);

ile{(signal != 0)8&(flags->finished == NO)&&(flags->fatai_error == NO));
ne_.parsing:;

The critical data structures updated in this procedure are skeleton and */
procedures because these hold the growing callection of subprogram and */
task models. Uhen task_parse calls parse for the fina! time to examine */
the actual task body, "skeleton" is ieft with the fina! task mode! and */
is later passed on to the model analysis procedures */
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CALLNANE: CHECK_OUERRUN
AUTHOR: S. Treadwell
CRERTED: 09 JuUN 92
UPDATED: 20 aCT 92

At this point in the analysis, a worst case path parometerization has been
established for each task instantiation in the suite. These path
parameterizations have been used tc establish the critical data values for
each vug, and it is the ug records that are used for the performance failure
predictions ar “"ouerrun checks.” This procedure performs the overrun check
for all 40 ugs (or at least the ones that exist) end leaves the overrun
info in an array thot is part of the ug recerd. The write.file procedure
is responsible for later extracting and ciphering the overrun info.

void check_averrun(ug,delay-_data,error_file)
struct vg-info vgll;

struct constant_list *delay.data;

FILE *error.file;

{

int calculate_time();

int vug.nus;

int ~ate_group;

int rg-total;

int num_tasks[5];

int num_tasks_completed[9];
int num.msg.queued{B8];

int num.packeta_queued(8];

int num.rate_groups_duel(8];
int overhead[8];

int i,j;

/% For each possible virtual group in the system... */
for{ug_num = 0; vg_num ¢ 40; ++ug_nunm)
{

if (vglug_num].present == YES) /* If the vg has any tasks resident in it */

for{i = 0; i < S; ++i) /* Initialize intermediate tally variables */
{

num_tasks{i] = 0;

vglvg—num] .rg_totaifil = 0;

vglug_nun].msg.totalli].num.msg_queued = O;
uglugnuml.msg_total{il.nun_packets = Q;

for(i = 0; i < vglug-num].num_tasks; ++i) /* For each task in the vg . */
{
rate_group = vglug_num).task[i}.rate_group; /* Simplify notation */
++num-taskslrate_group]; /* Esatablish how many tasks are in each rq */
/* For each rg, establish a tally of delay time for oll tosks ¥/
vglug-—num].rg.totai[rote.group] +=
uglug.num] task[i].counter_set .total_time;
/* For each rg, establish a tally of queued packets for all tasks */
vglug_nun].msg_totallrate_group].num_packets +=
vglug_num].taskii}.counter_set.num_queued;
/* For each rg, establish a tally of queued messages for all tasks *;
vglug_nun].msg_totallrate_group). . num_mag_queued +=
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vglug_num].task[i].counter_set.nun_mag_queued;

for(i = 0; i < 8; ++i)
overhead[i] = 0;

/* Far each minor frame, establish how many tasks should have */
/* completed execution cycles during the previous minar frame */
num_tasks_compieted[0] = vglug_num].num_.tasks;

nun_tasks_completed[1] = num_tasks[4];

nun_tasks_comnpleted[2] = num_tasks[4] + nua_tasks{3];
nun.tasks_complieted(3] = num_tasks[4];
nun_tasks.completed[4] = num.tasks[4] + num_.tasks{3] + num.tasks[2];
nun_tasks_completed[S]) = num_tasks[4];

num_tasks_complieted[6] = num_tasks[4] + num_tasks[3];
nun_tasks_complieted[?] = num_tasks[4];

nun_tosks_compieted[8) = num_tasks_completed(0];

/* For each minor frame, establish now many messages are queued by */

/* tasks that should have completed cycles during the previous frame */

num_mag_queued[0] = uglug_num].msg_total{4].num_mag_queued +
vglvg.nunl.msg_totai[3]) . num_msg_queued +
uglug_numl.msg_total[2).num_msg_queued +
vglvg_numl.msg_total[1].num_msg_queued;

nun.msg_queued{1] = uglug_num] . msg_total{4].num_msg_queued;

nun_msg_queued{2] = uglug_num].mag_total{4].nun_msg_queued +
vglug_num]l.msg_tota![3].num_msg_queued;

nun_msg_queued[3] = num_msg._queued[1];

num_msg_queued(4] = uglug_num].msg_total[4].nun_msg_queued +

vglug_numl.mnsg_totai[3].num_msg_queued +

vglug_numl.msg_total[2].num_msg_queued;

nun_nsg_queued(1];

nun_msg_queued[2];

nun.msg.queuedli];

nun_msg_queued[S]
nun_msg_queued(6]
num_msg.queued[7]

/* For eech minar frame, establish how many packets are queued by */
/* tasks that should have completed cycles during the previous frame *;
num.packets_queued[0] = vglug_num].msg_total[4].nun_packets +
vglug-num].msg_total[3].num_packets +
vglug.numl.msg_total[2].num_packets +
vglug_num].msg_total[t].num_packets;
num_packets.queued[1] = uglug_num].msg.totai[4].num_packets;
nun_packets_queued[2] = vglug_num].msg_total[4].num_packets +
vglugonuml.msg_total[3].num_packets;
num.packets.queued[3] = num_packets_queued[1];
num_packets_gqueued[4] = uglug_num].msg_total[4].num_packets +
vglug_num] .msg_total[3] . num_packets +
vglug-num].msg.tota!l[2]. num_packets;
num_pockets_queued(5] = num_pockets_queued[!]};
num_packets_queued[6] = num_poackets_queued[2];
nun_packets_queued[?] = num_packets_queued[!];

/* For each minor frame, establiish how many rate groups should have */
/* encountered frame boundaries at the beginning of the given minor */
/* frame (where the given minor frame ® js the index number */
nun_rate_groups_duel[0] =
num_rate_groups_due[1]
num_rate_groups_due{2]
num_rate_groups..duel3]
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nua_rate._groups_due(t] = 3;
nua_rate_groups_due{S] = 1;
nus_rate_groups_due(6] = 2;
nus_rate_groups_due(?? = 1;

/% Now, for each minor frame, establish the delay due to systenm
/* overhead as a function of the intermediote taliy values calculated
/* above
for(i = 0; i < 8; ++j)
{

'* Delay due to context switches for tasks completing in given frame
ouerhead{i]+= num_tasks_completed[i+!] * delay_data->context_switch;

/* Delay due to scheduling of tasks completing in the previous frame
overhead{i]+= num_tasks_completed{i] * delay_data->RGD_tsk_coeff;
overhead[il+= num_rote_groups_dueli] * delay_.data->RGD_tsk_canst;

/* Oelay due to messages queued by tasks completed in previcus frame
overhead[i]+= num_msg_queuedli] * delay_data->RGO_msg_const;
overhead[i)+= num_packets_queued(i] *

(delay_data->tH_coeff + delay_data->RGD_msg_caeff};

averhead[i]+= delay_dato->local _FDIR;
overhead[i]+= delay_data->IH_const;

/* Due to the nature of the delay data for the RGD, the following */
/* distinction is made to account for situations where there are */
/* no messages queued by the tasks completed in the previous frome */
i f{num_packets_queued[i]>0) overhead[il+=delay.dato->RGD.overall_cons
else guerhead{i] += delay_date->RGD_empty_queue_const;

}

/* Check the deadlines for the RG4 tasks */
for(i = 0; i < 8; #++i)
if ({overhead{i] + uglvg_num].rg_total[4]) > MINORFRANE)
vglug—numl.overrunlil = YES;

/* Check the deadlines for the RG3 tasks */

rg-total = (2*vug{uvg.numl rg_total[4]) + uglvg_nun].rg_total[3];
if((overhead[0])+ovarhead[1]+rg_total) > (2*MiNORFRANE))
vglug_num].overrun[8] = YES;
if({overhead[2]+overhead[3]+rg_taotal) > (2*HINORFRANE))
vglvg_nunl.overrun(9] = VES;
if((overhead[4])+ouerhead[S5]+rg_total) > (2*MINORFRANE))
vglvg_num].overrun[ 10} = YES;
if((overhead{6]l+averhead{?]+rg_total) > (2*MINORFRANE))
vglug.num] . overrun[11] = VES;

/* Check the deadlines for the RG2 tasks */

rg-total = {4*uglug.num].rq_total[4]) + (2*uglug.num] rg_totai[3]) -

vglvg.num].rg_total[2]);

if({overhead[0]+overhead1]+overhead[2]+averhead[ 3]+rg_total) >
(4*HINORFRANE))

vglugnum).overrun[12] = YES;

if{(overhead[4)+overhead{5]+overhead[6]+overhead[?]+rg_total) >
(4*NINORFRANE))

vglug_num].overrun[13] = VES;

/* Check the single deadline for the RAGI tasks */
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rg-total = (8*uglugonum].rg.total[4])) + (4*vglug_num].rg.totaii3}) -

(2*ug{ug_num).rg_total[2]) + vglug_numl.rg_totat[1];

i f{(overhead[0]+overhead{1]+overhead[2i+overhead{3]+overhead{¢]+
overhead[5]+overhead{6]+overhead[ ?1+rg_tatal) >(B*NINORFRANE) )

vgluy_numl.overrun{14] = VES;

/¥ Record the overhead dota in the ug record */

for(i = 0; i < 8; ++i}
vglug_num).overhead(i] = overhead(il;

}

/* At the close of this procedure, all results are stored in the ug */
/* records and ~ent back to the "main" for interpretation by write_file */
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CALLNAME: READ_LIST
AUTHOR: S. Treaduwell
CREATED: 13 APR 92
UPDRYED: 1S JUN 92

This procedure incorporates info held in external files into the run-time
data base for the analysis tool. “key_words.dot” holds the critical
constructs that are the key to parsing the Ada code. “constants.dat” halds
the system specific delay data that is needed for doing overrun calculations
and path parameterization cemparisons.

void read_list(search_list, delay_data)
struct list_info *search_list;
struct constant_list *delay_data;
{

int signal = 0;

int value = 0;

int num = 0;

int k;

int dummy_int;

char dummy_string[100};

FILE *list_file;

list_file = fopen(“"key_words.dat","r");

if {list_file == NULL)

{
printf(“Connot open key_words.dat far inputi\n");
exit(2),

}

/* Note that file format has each critical construct on its ouwn line */
wvhile{signal = EOF)

signal = fscanf(list_file,"%¥s\n", search_list->entrylnum++] name);
search_list->length = num - |;
fclose(list_file);

list_file = fopen(“"constants.dat”,"r");

if (Jist_file == NULL)

{
print f("Cannot open constants.dat for input\n");
exit(2);

}

/* File formal has o labeil foliowed by the related integer value. Each */
/* label/value pair occupies its own line *
facanf(list_file,"¥s %d\n",duamy_string,&dummy_int};
delay._data->queue_coeff = dummy_int;

facanf(list_file, "¥s Xd\n",dummy_string,&dummy_int};
delay_data->queue_const = dummy_int;

facanf(list_file,"¥s Xd\n",dummy_string,&dummy_int);
delay.data->retrieve_coeff = dummy_int;

fscanf(list_file,"%s Xd\n",dummy_string,&dummy_int);
delay_data->retrieve_const = dummy_int;

fscanf(list_fiie, "Xs Xd\n", dummy_string,&dummy_int);

delay_dato->lH_coeff = dummy_int;

fscanf(list_file, "¥s Xd\n",dummy_string,&dummy_int);
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delay_data->lH_const = dummy_int;
fscanf(list_file,"%s ¥d\n",dumay_string,&dummy_int);
deloy-data->RG0_msg_coeff = dummy-int;
fscanf(list_file,"¥s $d\n",dummy_string,&dummy.int);
delay-data->RGD.msg_const = dummy—int;
facanf(list_file,“Xs %¥d\n",dummy_string,&dummy_int);
delay_data->AGD_tsk_coeff = dummy.int;
facanf(list_file,"%s Xd\n",dummy_string,8dummy_int);
delay_data->RG0_tsk_const = dummy_int;
fscanf(list_file,"¥s Xd\n",dummy_string,&dummy_int);
delay.data->RG0_overall_const = dummy_int;
fscanf(list_file,"“%s ¥d\n",dummy_string,&dummy-int);
delay.data->RGD_empty_queue_canst = dummy_int;
fscanf(list_file,“Xs %d\n",dummy_string,&dumay_int);
delay_data->context_switch = dummy_int;
facanf(list_file,"%s Xd\n",dummy_string,&dummy_int);
deloy-data->local .FOIR = dummy_int;
fscanf(list_file,"Xs %d\n",dummy.string,8dummy_int);
delay.data->sys_FDIR = aummy_int;

feclose(list_file);
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CALLNANE: GET.LINE
AUTHOR: S. Treaduell
CRERTED: 10 JUN 92
UPDATED: 18 NOU 92

Uill use the stream of characters provided by the specified file to assemble
a buffer of single word items all of which belong to a single line of code.
The key here is to look for a semicolon as the line terminator, not a
carriage return, The semicolon is not included in the program statement and
all capital letters are transformed to lower case letters. All white space
is deleted and comment |lines are recorded in a separate buffer using the same
format as the program statement. The program statement stored in this_line
is passed back to parse to be examined during model consiruction. The
comment held in comment_line is passed to parse_comment to extract any
programmer input included.

int get_line(this_line,comment_line,info_buffer,infile,error_file)
struct list_info *this_line;

struct list_info *comment_line;

struct comment_info *infa_buffer;

FILE *infife;

FILE *error_file;

{.
veid parse.comment()};
int k;
int ¢ = 0;

int num_word = 0;

int num_comment = 0;

int count = Q;

int signal = |;

char temp(80];

enum boolean comment = NQ;
enum boolean done = NO;

this.tine->length = 0;
comment_line->length = 0;

do
{
count = 0;
do
if ((c == "\n")8&(comment == VES)) /* for "\n" after o comment .. */
{
comment = NG; /* the comment is terminoted by the carriage return */
comment. | ine->marker = 0;
/* Check the completed comment for programmer input */
parse_comment (comment.tine, info_buffer,errar_file);
comment_line->length = 0; /* Once checked,the comment is not needed */
}
while(isspace(c = fgetc(infile))); /* kill the white space */
if (¢ == EOF) break; /* terminate procedure upon end of file */

do

{
if({c > 64)88(c < 91)) ¢ += 32; /* tronsform UPPER case to lower case */
if((c == ';")8&(comment == NO)) done = YES; /* prog statement complete */
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if('done) templcount++] = ¢; /* add character to word */
}
vhile(!isspace(c = fgete(infile)));
if (¢ == EOF) break;

templcount] = '\0';

/% add word to line*/
atrcpy(this_line->entrylthis_line->lengthl.name,temp);
strepy(comaent_line->entry[comment_line->length].name,temp);

if ((k = strncmp(temp,”--*,2)) == 0) comment = YES;
if (comment) ++comment_line->length;
else ++this_line->length;

}

vhile (!done);

if (¢ == EQF) signal = GQ;
this_line->marker = 0;

/* Uhen signal is returned as a "G," it signifies that the end of the file */
/* has been reached. */
return(signal);
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CALLNANE: SERRCH
AUTHOR: S. Treaduwel!
CREATED: 11 APR 92
UPDATED: 18 NOU 92

Hill do the primary parsing for the "finish" stage. Once a line of code is
available for analysis, 'search’ will inspect it for o given [ist of ada
constructs and system calls and will branch to other parsing and analysis

functions as dictated by what is found. This procedure looks for call names
and ada constructs exactly as given by the user in auxillary files. Uhen
searching for matches, names thot are similar but not exactly the same os

the names sought will not be sufficient to warrant a match.
.......................................................................... *)
void search(search_list,delag_dato,skeleton,this-line,flugs,end-tist,
info_buffer,pkg_name, task_name,messages,procedures, filenane,
error_file)
struct list_info *search_iist; /* list of constructs */
struct constant_list *delay_data; /* list of system specific delay data */
struct madel_info *skeleton; /* holds the current model */
struct list_info *this_line; /* current program statement ¥/
struct flag_list *flags; /* parsing status info >/
struct list_info *end_list; /* nesting status info */
struct comment_info *info_buffer; /* programmer prouvided info */
char pkg_name[];
char task_name[];
struct message_limits messages; /* message passing limits ¥/
struct proc_list_info *procedures; /* holds all subprogram models */
char filenamel];
FILE *error.file; /* errar log */
{

void process_loop();
void end_found();
vaid task_found()
void pkg_found();
void proc_found();
int find_parameter();
enum boolean valid_call(};
int i,j,k;

int old_num_counters;
int old_length;

int value;

int previous;

for{i = 0; i < this_line->length; ++i) /* check each word in the stotement */
{
/* establish the index for the word that precedes the word currently */
/* being exomined */
if(i > Q) previous = i - I}
else previous = 0;

for(j = 0; | < search_list->length; ++j) /* check against critical const */

if((k= strcmp(this_line->entryli).nome, search_list->entry(j]).name)) == 0}
switch(j)
{

case UFS: /* append to current model */
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skeleton->entrylskeleton->lengthl.type = UFS;
skeleton->entrylskeleton->length).value = UNDEFINED;
if (flags->ctr_active) ++skeleton->length; /* model must be active */

break;
case LOOP:
/* ignere "end loop” statements here */
if ((k = stremp(this.line->entrylprevious]).name,”end")) != 0)
{

this.iine->marker = i;

/* extract extra info and add an entry to the model */
proceas_loaop{skeleton,end_list,this_line,info_buffer,error_file);
if (flags->ctr_active) ++skeleton->length;

}
break;
case IF: /¥ append to current model */
if {(k = strcap(this_line->entrylprevious).name,”end”)) = 0)
{

skeleton->entrylskeleton->length].type = IF;
skeleton->entrylskeleton->lengthl.value = UNDEFINED;
if (flags->ctr.active) ++skeleton->length;
/* update the end_ilist */
strepy(end_list->entrylend_list->length++] . name,"if");
}
break;
case ELSE:
skeleton->entry[skeleton->length).type = ELSE;
skeleton->entry[skeleton->length).value = UNDEFINED;
if (flags->ctr_active) ++skeleton->length;
break;
case ELSIF:
skeleton->entry[skeleton->length).type = ELSIF;
skeleton->entrylskeleton->length]l.value = UNDEFINED;
if {flags->ctr.active) ++skeletan->length;

break;
case CASE: /* ignore "end case” statements here */
if({k = strcmp{this_iine->entrylprevious]).name,“end"}) '= 0)
{
flags->enable.vhen = YES; /* guards against “"exception” handling */

/* code being included in the model >/
skeleton->entrylskeleton->lenqth].type = CASE;
skeleton->entrylskeleton->tengthl.vatue = UNDEF INED;
if (flags->ctr_active) ++skeleton->length;

/* update the end.list */
strepy(end_list->entrylend_list->length++].name, "case”);
}
break;
case UHEN:
/* add entry to mode! only if it belongs to a case statement */
skeleton->entry[skeleton->length].type = UHEN;
skeleton->entryl[skeleton->length].uvalue = UNDEFINED;
if ((flags->ctr_active == VES) 8% (flags->enable_when == VES))
++skeleton->length;
break;
case END:
this_line->marker = i + |;
end_found{delay_data,this_line,end_list,procedures,flags,skelfeton,
pkg.name,task.name,error.file);
break;
case TASK:
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this_line->marker = i + 1;
task_found(this_line,end_list,task_name, flags,error_file);
break;

case PACKAGE:

this_line->marker = | + |;
pkg—_found{this_line,end_list, pkg_name, flags,error_file);
break;

case PROC:

this_line->marker = i;
proc.found(this_line,end_list,procedures,flags,filename,error_file);
break;

case BEGIN:

if ((flags->proc_depth > 0)|l(flags->task_found == YES))

flags~->ctr_active = YES;

break;
case SELECT:
if((k = stremp(this_line->entry[previous].name,"end”)) != 0)

strepy(end_list->entry(end_tist->length++] name, "setect”);

break;
case RECORD:
if({k = strcmp(this_line->entrylprevious].name,"end")) != 0)

strepy(end..list->entrylend.tist->iength++].nane, "record”);

break;

case ACCEPT:
strcpy(end_tist-ventrylend_tist->length++].name, “start”);
break;

default: breck;

Need o separate comparison statement to deal specificaily with the
message passing functions because there couid be a ( and parameter
names cttached to the function call which would cause an inexact
match with the key word in search_iist

if{{k= strnemp(this.line->entryli].name,search_list->entryl[;j].nanme,

strlen(search_list->entrylj].name))) == 0)

this_line->marker = i;
search_list->marker =j;
switch(j)

case QUEUE:
/* check to make sure it really is a subprogram call */
if(ualid_cali(this_line->entry[i).nane,

{

search_l ist-Yentry[j].nome)==YES)

skeleton->entry[skeleton->length].type = QUEUE;
/* If programmer input specifies message size, use that value */
/* over any other possible size values */
value = info_buffer->message_size;
info_buffer->message_size = DEFAULT;
if{value == DEFAULT)
/* If programmer input does not specify size, find the value */
value = find_parameter(search_list,this_line,error_file);
/% If no viable value can be established, assume the default */
if({value == LOST)]|{value > messages.xmit_size))
{
fprintf(error_file,"Assuming default size for queue.messoge\n”};
skeleton->entry[skeleton->length].value =
packetize{messages.xmit_size);
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)
else

skeleton->entrylskeleton->length}.value =

packetize(uvalue); /* transform size from bytes to packets */
if (flags->ctr_active) ++skeletaon->length;

}
breck;
case RETRIEVE:
if{ualid_call(this_line->entryli].name,
search_list->entrylj].name)==YES)
{

skeleton->entrylskeieton->length].type = RETRIEVE;
value = info_buffer->message_size;
info_buffer->message_size = DEFAULT;
if{value == DEFAULT)

value = find_parameter(search_list,this_tine,error_file);
1f{{value == LOST)|{!(value > messages.xmit_size})

{
fprintf(error_file,
“Assuming default size for retrieve_message\n");
skeleton->entry[skeleton->length].value =
packet ize(messages.xmit_size);
}

else
skeleton->entrylskeleton->length].value =
packet ize(ualue);

if (flags->ctr_active) ++skeleton->length;

break;
case SEND:
if(valid_call(this_line->entryli].nane,
search_list->entry[j].name)==YES)
{

skeleton->entry[skeleton->length].type = SEND;

value = info_buffer->message_size;

info_buffer->message_size = QEFAULT;

if(ualue == DEFAULT)
value = find_parumeter{search_list, this_ line,error_file);

if((ualue == LOST}||(value > messages.xmit_size))

{
fprintf(error_file,"Assuming default size for send_message\n");
skeleton->entry(skeleton->length].value =
packet ize{messages.xmit_size);

}

else

skeleton->entryl[skeleton->length].value =
packetize(value);

if (flags->ctr_active) ++skeleton->length;

}
break;
case READ;
if(valid.call{this_line->entry[i].nanme,
search_list->entrylj].name)==YES)
{

skeleton->entrylskeletan->length] . type = READ;
value = info_buffer->message_size;
info_buffer->message.size = DEFAULT;

if(value == DEFAULT)

value = find_parameter(search_list,this_line,error_file);
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if({value == LOST)||{value > messages.xmit_size))
{
fprintf{error_file, "Assuming default size for reocd_message\n");
skeleton->entrylskeleton->tengthl.value =
packet ize(messages.xmit_size);
}
else
skeleton->entrylskeleton->length).value =
packetize(value);
if (flags->ctr_active) ++skeleton->length;
}
break;
default: break;
}
}
}

/* Now lock for subprogram calls and insert models as appropriate */
if {(flags->ctr_active)
for(j = 0; j < procedures->length; ++j)
if({k = strnemp(this_line->entrylil.name,procedures->entrylj]. nane,
strien(procedures->entrylj].name))) == 0)
{

old_num_counters = skeleton->num_counters;
old_length = skeleton->length;
for(k = 0; k < procedures-entrylj].skeleton.length; ++k)
skeleton->entry[skeleton->length++] =
procedures->entry(j].skeleton.entryfk];
for(k = G; k < procedures->entrylj].skeleten.nua_counters; ++k)
skeleton~>counter_set[skeleton->num_counters++] =
procedures->entrylj].skeleton.counter_setlk];
/* adjust counter_set index values to accomodate the new entries %/
for(k = old_length; k < skeleton->length; ++k)
if(skeleton->entry(k].type == COUNTERSET)
skeleton->entry[k].value += old_num_counters;
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CALLNAME: PARSE_CONNENT
AUTHOR: S. Treadwell
CREATED: 12 MAR 93
UPDATED: 14 MAR 93

This procedure takes a single compiete comment as input and extracts from

it any programmer input specifications included. The specs must conform to
the established conuventions, and any information found is used to update the
info_buffer, which is a running list of default values to use as loop
iteration maximums and message sizes.

void parse_.comment{comment_line, info_buffer,error_file)
struct list_info *comment_iine;

struct comment_info *info_buffer;

FILE *error.fiie;

{

int evaluate();
int eval_simple_num{);
struct string key_word{S];
int i,j,k;
int value = UNDEFINED;
strepy(key_word[0].name, "basic”);
strepy(key_word[1).name, " for");
strepy(key_werd[2] .name, "while");
strepy(key_word[3].name, "nessage”);
/* Check if comment line conforms to programmer inpul conuventions ¥/
if((k = stremp(comment_)ine->entry[1]).name,"*")) == 0)
{
/* if an integer value is given in the comment, evaluate it */
if(evatuate(comment_| ine->entrylcomment_line->length-1] . name)==SIHPLENUN)
value=eval_simple_num{comment_line->entrylcomment_line->length-1] name),
for(i = 0; i < 4; ++i)
if((k = strncmp{comment_line->entry[2].name,key_word(i].nane,
strien(key_word[i].name)-1)} == 0)
/* update the appropriate info buffer value */
/* if value is not a positive integer, the default value is assumed */
switch(i)
{
case 0:
if (value ¢ 0) value = INFINITE;
info_buffer->basic.loop_limit = value;
break;
case 1:
if {value < 0) vaiue = UNDEFINED;
info_buffer->for_loop_limit = value;
break;
case 2:
if {value < 0) value = UNDEFINED;
info_buffer->wuhile_laop_limit = value;
break;
case 3:
if (value < 0) value = DEFAULT;
info.buffer->message_size = value;
break;
default: bredak;

}
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CALLNAME: WRITE_FILE
AUTHOR: S. Treadwell
CRERTED: 0S APR 93
UPDARTED: 28 APR 93

This procedure sends the analysis results to an external file called
"results.dat.” All information is passed in through the ug data structure.

The output format is self-

void write.file(ug)
struct vg-info ugll;

{

int i,j,k;

int left_over;

int RG3_left_over;
int RG2_1eft_over;
int RGi_left_over;
FILE *outfile;

explanatory.

outfile = fopen("results.dat”,"uw");

ifloutfile == NULL)
{

printf(“Cannot open results.dat for outputi\n”);

exit(2);
}

fprintf{outfile,"All results are given in terms of microseconds.\n");
fprintf(outfile,"The alictted minor frome time is Xd.\n\n",MINORFRANE);

for(i = 0; i < 40; ++i)
{

if(ugli].present == VES)
{

fprintf{outfile, "RESULTS for UGRXd\n",i);
/* List individual results for tasks */
for(j = 0; j < vglil.num_tasks; ++j)

{

forintf(outfile, "\nTASK: ¥s

vglil.task(j].

rate_group);

RATE GROUP: %d\n",uglil}.task[j].name,

fprintf(outfile, "HORST CASE PARTH: number of packets queued: ¥d\n",
uglil.task[j].counter_set.num_queued);

forintf(outfile,”
vglil. task[j].
fprintf(outfile,"
vglil.task([j].
fprintf(outfile,”
vglil.task[j].
fprint f(outfile,”
vaglil.task(j].
fprintf(outfile,"”
uglil.task[j].
fprintf(outfile,"”
vglil.task(j].
)

counter_set .

counter_set

counter_set.

counter_set.

counter_set.

counter_set.

number of messages queued: ¥d\n",
num_msg_queued);

number of pockets retrieved: X¥d\n",
num_retrieved);

number of messages retrieved: Xd\n",
msg_retrieved);

number of packets sent: ¥d\n",
num_sent );

number of packets read: Xd\n",
num_read);

minimal delay: Xd\n",
totai_time);

/* Now categorize results according to rate groups ond frame & */
fprintf{outfile, "\nRATE GROUP TOTALS FOR APPLICATION TASKS\n");
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for(j = 1; j < 5; ++j)
fprintf{outfile,"rate group Xd: Xd\n",j,vgli).rg-taotalljl);
fprintf(outfile,"\nOUERHEAD TOTALS\n");

/* Create g matrix of results to show the contribution from overhead */
/* and each rote group for each minor frame. */
for(j = 0; j < 8; ++j)

fprintf{outfile,"minor frame Xd: Xd\n",j,vglil.overheadljl);
fporintf(outfile,

*\nHINOR FRANE OUERHERD RG4 RG3 RG2 RGINR");

RG3_left_over = uglil.rg_totall3];
RG2_left_over = uglil.rg_totall2];
RGI_left_over = uglil.rg_totall1];

for{j = 0; j < 8; ++j)

{

/* Determine whether a new frame begins for RG3 and RG2 tasks */

ifC() == 211 == )II(j == 6))

RG3_left_over = uglil.rg_total[3];

(j == 4)
RG2_left_over = uglil.rg_total[2];
fprintf(outfile,” £d Wik

/* overhead contribution */
i f(HINORFRANE >= ugli].overhead[j])

{
fprintf{outfile," %5d" ,ugli}.overhead(j]);
left_ouer = NINORFRANME - uglil.overhead(j];

}

else

{
fprintf(outfile,” %5d",MINORFRANE) ;

left_over = Q;
)
/* RG4 cantribution */
if{left_over >= vglil.rg_tatall[4])

{
fprintf(outfile,” %5d”,vglil.rg_totall4]);
left_over -= uglil.rg_totall4];

}

else

{
fprintf(outfile,” X5d", left_over);
left_over = 0;

)

/* RG3 contribution */
if(left_over >= RG3I_left_over)

(
fprintf(outfile,” X5d",RG3_left_over);
left_over -= RG3_left_over;
RG3_left_over = 0;

}

else

{
fprintf(outfile," 54", left_over);
BG3_left_over -= left_over;
left_over = Q;

}

/* RG2 contribution */
if(left_over >= RG2_left_over)
{
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fprintf(outfile,” X5d",R62.left_over);

left_over -= RG2_left_over;
RG2_.left_over = 0;
}
else
{
fprintf(outfile,”
RG2.left.over -= jeft._over;
left_over = (;
}
/* RG! contribution */
if(left_over >= RGI_left_over)
{

£5d*, left_over);

forintf(outfile,” XSd\n",RGI_left_over);

left_over -= RGI_left_over;
RGi_left over = {;

)

else

{

fprintf(outfile,”  %5d\n",left_over);

RGiI_left_over -= left_over;
left__over = Q;
}
}
/* State predicted overrun conditions
fprintf(outfile,"\n");
if(uglil.overrun{0] == VES)

fprintf(outfile,"RG4 did not satisfy i

if(uglil.overrun{1] == VES)

fprintf(outfile, "RG4 did not satisfy i

if(uglil.overrun{2] == VES)

fprintf{outfile,"RG4 did not satisfy i

if(uglil.overrun[3] == VES)

fprintf{outfite,"RG4 did not satisfy i

ifluglil.overrun[4] == VES)

fprintf(outfile,"RG4 did nat satisfy i

if(uglil.overrun[S] == VES)

fprintf(outfile,"RG4 did not satisfy i

if(ugli].overrun[6] == YES)

fprintf(outfile,"RG4 did not satisfy i

if(uglil.overrun[?] == YES)

fprintf(outfite,"RG4 did naot satisfy i

if(uglil.overrun[8] == YES)
fprintf(outfite, "RGI did not satisfy
if(uglil.overrun[9] == YES)
fprintf(outfite,"RG3 did not satisfy
if(uglil.overrun[t0] == VES)
fprintf(outfite, "RGI did not satisfy
if(uglil.overrun[11] == VES)
fprintf(outfile,"RG3 did nat satisfy
if(uglil.overrun[12] == VES)
fprintf(cutfile,"RG2 did not satisfy
if(uglil.overrun[13] == VES)
fprintf{cutfile,“RG2 did not sotisfy
if(uglil.overrun[14] == VES)

forintf(outfile, "AG! did not satisfy i

fprintf(outfile,"\t");
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CALLNANE: HWITH_FOUND
AUTHOR: S. Treaduwel!l
CREATED: 12 JUL 92
UPDATED: 08 OCT 92

This procedure is used to help establish the software hierarchy for a given
task. UWhenever a "with" statement is found in a cantext clouse, it is sent
to this procedure so that the package name can be extracted and added to
pkg_list.

void with_found(this_line,pkg_!ist)
struct list_info *this_line;
struct list_info *pkg.list;
{

int i,c¢;

int j = 0;

int k = 0;

int num = 0;

enum boolean repeat = NG;

char temp1[80];

char temp2{80];

struct string packagel[10];

/* Nhost of the compiexity of this procedure is due to an attempt to handle */

/* different format styles for the "with” statement -- i.e single vus. */
/* muitiple names on each line, with or without white space separating the */
/* names, */
for(i = this_line->marker; i < this_line->iength; ++i)
{
strepy{templ,this_line->entryli].nome);
while{{c = tempi[j++]) ‘= '\Q")
{
if(c == ",")
{
temp2(k] = '\Q";
if ((c = tempt[j1) t= "\O")
{
k = 0;
if (strien(temp2) >= 1) strcpy(packagelnum++] . name, temp2);
}
}
else

temp2[k++] = ¢;
)
temp2{k] = '\0';
if (strlen(temp2) >= 1) strcpy(packageinum++].name,temp2);

j=0
k = 0;
)
/* Ensure that package names cre not repeated within pkg_list */
for(i = 0; i < num; ++i)
{

repeat = NO;
for(j = 0; j < pkg—list->length; *+j)
if{{k = strcap(pockageli].name,pkg_! st->entrylj]).nome)) == 0)
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repeat = VES;
if(repeat == NQO)
strepy(pkg_list-dentrylpkg_list->length++] name,package(il).nome);

CALLNANE: PKG.FOUND
ARUTHOR: S. Treadwell
CREATED: 06 OCT 92
UPDATED: 066 NOU 92

in the case where a package statement is found, this procedure will decide
whether it is a valid package body and ensure that the name matches

the name expected. |f these conditions pass, the proper flag will be set.
__________________________________________________________________________ ’/

void pkg.found(this_line,end_iist,pkg_name,flags,error_fiile)
struct list_info *this_line;
struct list_info *end.list;
char pkg_nane(];
struct flag_list *flags;
FILE *error_file;
{ Y
int k;

if ({(k = atrcap(this_)ine->entrylthis_line->marker++] name, body”)) == 0)
{
/* in the case where the task body file is being processed the pockage */
/* name is not known prior to proceSSIng and is defined as "none’
/* Uhen the package name is found it is appropriately recorded .y
if ((k = stremp(pkg_name,“none”)) == 0)
strepy{pkg_name,this_line->entrylthis_line->marker]. . name};
if ({k = strcmp(pkg_name,this_line-dentrylthis_line->marker]}.name)) == 0)
{
flags->pkg..found = YES;
strepy(end_list->entrylend_list->length++] name,pkg_name);

else
fprintf(error_file, "Unexpected package name or instance found\n™),
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CALLNANE: TASK_FOUND
ALTHOR: S. Treaduell
CREATED: 06 OCT 92
UPDARTED: 12 NOU 92

In the case where a task statement is found, this procedure will decide
whether it is a task body and ensure that the name matches
the name expected. |f these conditions pass, the proper flag wiil! be set.

void task_found(this_line,end_list,task_name,flags,error_file)
struct list.info *this_line;

struct list_info *end_list;

char task_name[];

struct flag_list *flags;

FILE *error_file;

{
int k;
if ((k = strcep(this.line->entry[this_line->marker++].name, "body")) == 0)
{
strepy(end_list->entrylend_list->length++].name,
this_!ine->entrylthis_line->marker].name);
if ((k = strcmp(this_line->entrylthis_line->marker].name,task_name)) == 0)
if (flags->pkg—_found == YES) flags->task_found = VES;
else fprintf(error_file,"Task found but package not yet found\n");
else
fprint f(error_file, "Unexpected task name -- found: ¥s expected: ¥s\n",
this.line->entry[this_line->narker].nane, task._name);
}
}
/¥ o e e e e e e e

CALLNAME: PACKETI!ZE
AUTHOR: S. Treaduell
CREATED: 20 APR 93
UPDATED: 20 APR 93

R simple function to transform o message size in bytes to a message size in
64-byte packets., Hote that four bytes of overhead are added to the message
size to account for message header information.

int packetize(num_bytes)
int num_bytes;
{

int num_packets;

num_bytes += 4,
num_packets = ceil{num_bytes/64.0);

return{num_packets);

}

153



Appendix D

CALLNAME: PROC_FQUND
AUTHOR: S. Treadwell
CREATED: 1S JUL 92
UPBARTED: 10 NQU 92

Grabs the name of a procedure and increments bath the length of the procedure
list and the internal procedure marker.

void proc..found(this_line,end.list,procedures, flags,filename,error_file)
struct list_.info *this_line;
struct list_info *end_list;
struct proc.list.info *procedures;
struct flag.list *flags;
char filenamel[];
FILE *error_file;
(

int i = 0;

int ¢,k;

char temp[80];

char name[40];

/* The proc_depth fiag is needed to help identify valid subpregram body */

/* code so that extraneous code is not included in the model. Basically */
/* when proc_depth is greater than zero, we are dealing with code inside */
/* a subprogram body ond cen add model entries appropriately */

if(flags->pkg_found == VES) ++flags->proc_depth;

/* Extract the name of the procedure and strip away the parameter 1ist */
strepy(temp,this_line->entry[this_line->marker + 1].name);
c = temp[0];

while((c t= '\0') & (c != " ("))
{

name(i++] = ¢;

c = temp[il;

name[i] = '\O';

/* Set up the procedures data structure to accept model info */
strcpy(end_list->entrylend_list->length++].name,name);
strepy(procedures-dentrylprocedures->lengthl.name,name);
strcpy(procedures->entryl{procedures->length].filename, filename);
procedures->entrylprocedures->length].done == NO;
procedures->marker = procedures->length;

++procedures->length;
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CALLNANE: FIND_PARANETER
RUTHOR: S. Treadweil
CREATED: 4 NAY 92
UPDATED: 30 OCT 92

Once a system call is found, it may be necessaory to calculate the delay it
incurs based upon the value of one of the parameters included in the call.
This procedure will identify all of the parameters for a given call, and

the critical parameter can be isolated and evaluated with reference to all
preceding code. The object is to attach a specific value to the critical
parameter so that this value can be used in calculating the expected time
delay for a given system call. For now, this procedure is only utilized

when trying to determine the size of a message for a message passing fcn.

int find_parameter(search_list,this_line,error_file)
struct list_info *search.list;

struct list_info *this_!ine;

FILE *error_file;

{

int evaluate();

ini eval_simple_num();
int eval_complex_num();
int eval_natural_num{);
int ¢;

int i = 0;

int j = 0;

int k = 0;

int num = 0;

int value = L0OST;

enun boolean foundfirst = NO;
enum boolean foundsecond = NO;
enum boolean innerset = NO;
char temp1[40];

char temp2[40];

char critical[40];

struct string parameter[10];

/* Nost of the complexity of this praocedure is due to an attempt to handle */

/* any possible paorameter |ist format -- to include white space and euven
/* carriage returns between parameters.
for{(i = this_line->marker; i < this_line->length; ++i)
{
strepy(templ, this_line->entryli).name);
while((c = templ[j++]) != '\0")

{

suitch(c)

{

case '(': /* Looking for the ( that begins the parameter list */

if (foundfirst == YES) /* in case of parameter like “natural{i)" */
{
innerset = YES;
temp2[k++] = ¢;
else foundfirst = YES;
break;
case ',': /* commas separate the parometer items ¥/
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temp2[k] = ‘\D';
strepy(parometer(num].nane, tenp2);
k = 0;
++num;
break;

case ')’': /* Looking for the closing ) */
if {innerset == VYES)

{
temp2[k++] = ¢;
innerset = NO;
}
else
{

foundsecand = YES;
temp2[k] = '\u';
strepy{paramneter[nunl.name, temp?);

break;
default:
if {(foundfirst == YES}
if (lisspace(c))
temp2[ke+] = c;
break;
}
}
j=0;
}
/* Nate that the fourth parameter is targeted because it is the fourth */

/* parameter that specifies message size for message passing functions */
/* In the future, we con pass in the number of the critical porameter */

/* rather than having it harduired to = 4 */
if {(num >= 3)

strepy(critical,paraneter[3]1.name);
else

fprintf(error_file, "Found too few parameters for an instance of ¥s\n",
search_list->entry[search_list->marker].nane);

/* Determine the format of the critical porameter and evsoluate if passible */
switch{evaluate(critical))

{

case SINPLENUM: value = eval_simple_num(critical); break;

case CONMPLEXNUN: value = eval_complex_num(critical); break;

case NATURALNUN: value = eval_natural_nun{critical); break;

case UARNANE: value = LOST; break;

case UNKNOUN: value = LOST; break;

)

if (value < 0) value = LOST;

return{value);
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CALLNANE: PROCESS_LOOP
AUTHOR: S. Treadwell
CREATED: 23 JuL 92
UPDATED: 18 Novu ¢2

Uill take a "loop"” occurrence and further define it into the type of loop or
classify it as an "end loop." |f the program statement defines the beginning
of a loop, the value of the loop iterations maximum must be defined and
included in the appropriate model entry.

void procesa_loop(skeleton,end_list,this_line,info_buffer,error_file)
struct model_info *skeleton;

struct list_info *this_line;

struct list_info *end_iist;

struct comment_.info *info_buffer;

FILE *error_file;

{

int for_laop_found();
enum boolean target._found(};
int k;

/* Update end_list according to the locp construct */
strepy(end_list->entrylend_list->length++].nane, "loop");
skeleton->entry[skeieton->length).value = UNDEF INED;

/* |Is it a for..loop? */
if (target_found(this_line,"for","loop") == VES)
{
skeletan-Yentrylskeleton->length].type = FOR_LOGP;
skeletaon->entry[skeleton->length].value =
for.loop.found{this.line, info.buffer,error_file);

}
else /* Is it g while..loop? */
{
if (target_found(this_line,"while","loop") == VYES)
{
skeleton->entrylskeleton->length].type = UHILE_LOOP;
skeleton->entry[skeletan->length).value = info.buffer-d>uhile_loop_lim:t,
info_buffer->uhile_loop_limit = UNDEFINED;
)
else /* we know it is a basic loop at this point ¥/
{
skeleton->entry{skeieton->length].type = LOCP;
skeleton-Yentrylskeleton->length].value = info_buffer->basic_loop_limit;
info_buffer->basic_loop_limit = INFINITE;
}
}
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CALLNAME : FOR_LOOP_FOUND
AUTHOR: S. Treaduwell
CREATED: 4 HAY 92
UPDATED: 2% JUL 92

If a for..loop construct is found, the loop's max iterations must be defined

and stored in the value element of the model. This procedure checks the
progranmer input buffer, and if no limit is given there, it finds the loop
argusent and attempts to evaluate it.

int for_loop_found{this_line,info_buffer,error_file)

st
st

{

ruct list_info *this_line;
ruct comment_info *info_buffer;

int evaluate();

int eval_range_nun{);

struct range_info temprange;
char argument[20];

int loop_timit = UNDEFINED;

/¥ ldentify the loop argument */
strcpy(argument ,this_line->entry[this_line->marker + 3].name);

/* |f there is no programmer input for the loop maximum evaluate the */
/* argument if possible */
if (info_buffer->for_loop_limit == UNDEFiNED)
if (evaluate(argument)== RANGENUN)
loop_limit = eval_range_num(argument ,error_file);

if(loop_limit < 0) /* If no positive integer is established for limit */

{

loop_iimit = info_buffer->for_loop_limit;
info_buffer->for_loop_limit = UNDEFINED;
}

return(loop_limit);
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CALLNAME: END_FOUND
AUTHOR: S. Treadwell
CREATED: 15 JUL 92
UPDATED: 18 NQU 92

This procedure is used for any "end” statement found and it is essential te
maintaining the end.list, which holds code nesting status info. For “end"
statements appiying to program units, this procedure initiates the mode!
wurap-up and processing.

void end_found(delay_data,this_line,end_list,procedures, fiags,skeleton,
pkg..name, task_name,error_file)
struct consiant_list *delay_data;
struct [ist_info *this_line;
struct list_info *end_list;
struct proc_list_info *procedures;
struct flag-list *flags;
struct model_info *skeleton;
char pkg.namel]);
char tosk_name[];
FILE *error_file;
{
void reduce.madel();
int i,j,k;
chor dummy_name[8Q];
char object[80];
char expected(80];

i = procedures->marker;

strcpy(expected,end_list-Yentrylend_list->length - 1]}.name);

/* If "end" is the last word in the programn statement...*/

if(this_line->marker < this_line->length)
strepyf{object,this_line-Y>entrylthis_line->marker].name); /**/

else

strcpy(object, "none”);

/* Compare what end_list expects with what ia found in the code. If there */

/¥ is a mismatch, declare a fatal error. */

if((k = strcmp(object,end_list->entrylend..list->length - 1].name)) t= Q)
if({k = strcmp{object,"none”)) != 0)/% don't compare something to nothing*/
{

flags~->fatal_error = YES;

fprintf(error_file, "Fatal error occurred in package ¥s with ‘end %37,
pkg_none,chient ).

fprintf{error_file,".. .expecting end ¥s\n",
end_list->entrylend_tist->length - 1].name);
}
/* |f the end of o subprogram body is found... ¥/
if({k = strcmp(expected,procedures->entryli].name)) == 0)

{
i f(flaga->proc.depth > 0) --flags->praoc_depth;
else fprintf(error_file,"Error with procedure depth\n");
flags->ctr_active = NO; /* deactivate the model */
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reduce_mode| (skeleton,delay_data,error_file); /* wrap-up the model */
procedures-Yentryli]. skeleton = *skeleton; /* store the model */
procedures-dentrylil.done = YES;

skeleton->length = 0; skeleton->num_counters = 0;

procedures->marker = procedures->length;

/* Nust account for nested procedure bodies */

for (j = procedures->marker - 1; j >=0; --j)

i f(procedures->entryljl.done == NO)

{
procedures->marker = j;
break;
}
}
}
/* If the end of o package is found... */
if((k = strcmp{object,pkg_name)) == 0)
{

flaga->ctr_cctive = NO; /* deactiuvate model */
flags->finished = YES; /* code processing is complete */
for(j = 0; j < procedures->length; ++j)
procedures->entrylj].done = YES;
/* adjust subprogram names to include package name */
for(j = procedures->pkg_marker; j < procedures->length; ++j)
{
strepy{dummy_nane, pkg_name);
strcat{dummy_name,".");
strcat(dummg_name,procedures-)en\rg[j]‘name);
strcpy{procedures->entrylj].name, dumny_nanme);

}

procedures->pkg_marker = pracedures->length;
}
/¥ If the end of a task body is faund... */
if((k = strcmp{object,task_name}) == 0)
{

flags->ctr_active = NO;
flags->finished = YES;
for(j = 0; j < procedures->length; ++j)
procedures-Jentrylj].done = YES;
}

/* Add an end_loop entry to the model */
if((k = strcmp(expected,”"loop”)) == Q)
{
if({k = strcmp{object,"none”}) == 0)
fprintf(error_file, "Fatal error -- expecting an end loop\n");
skeleton->entrylskeleton->length].type = END_LOOP;
skeletan->entryfskeleton->length).ualue = UNDEFINED;
if (flags->ctr_active) ++skeleton->length;

}

/* fidd an end_if entry to the mode! */
if{{k = stremp(expected,”if")) == Q)
{
if({k = strcap(object,"none")) == 0)
fprintf{error_file,"Fatal error -- expecting an end if\n"),
skeleton->entry(skeleton->length).type = END_IF;

160



-
i
»
Appendix D \
skeleton->entry[skeieton->tength].value = UNDEFINED; '
if (flags->ctr_active) ++skeleton->length; 1
’ ]
/* Add an end_case entry to the model */
if((k = strcmp(expected, "case”)) == 0) ‘
{
if((k = strcmp(abject, "none"”)) == 0)
fprintf(error_file, "Fatal error -- expecting an end case\n");
skeleton->entrylskeleton->lengthl.type = END_CASE; ®
skeleton->entrylskeleton->lengthl.value = UNDEFINED;
if (flags->ctr_active) ++skeleton->length;
flags->enable_when = NO;
)
if((k = strcmp(expected,“start”)) == Q)
if((k = stremp(object, "none”)) == 0) L
fprintf(error_file, "Fatal error -~ expecting an end start\n");
if((k = strcmp(expected, “select”)) == 0)
if((k = strcmp(object,"none”)) == 0)
fprintf(error_file,"Fatal error -- expecting an end select\n");
®
if((k = strcmp(expected, "record")) == 0)
if((k = strcmp(object, “none")) == 0)
forintf(error_file, "Fatal error -- expecting an end record\n");
if(end_list->length > 0) --end_list->length;
) ®
®
®
®
®
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CALLNANE: UAL ID_CALL
AUTHOR: S. Treadwell
CREATED: 22 JUN 92
UPBATED: 22 JUN 92

A quick check to see if o procedure call instance is really a valid one.
Basically this traps for cases where there is a larger word that contains
the name of a procedure but is not ¢ call for that procedure.

enum boolean valid_call(argument,match)
char argument(];
char match[];
{
int k;
enum boolean flag = NO;

if(strlen{argument) == strien(match)) flag = VES;
if{(k = argument{strien(match)]) == '(') flag = VES;

return(flag);

}

CALLNANE: PRINT_LINE
AUTHOR: S. Treaduell
CREATED: 13 APR 92
UPDATED: 28 0OCT 92

Used far debugging purposes. Will print out whatever line of code has been
most recently stored in the this_line buffer.

void print_tine{this_line,outfile)
struct list_info *thislline;

FILE *outfile;

{

int i;

for (i = 0; i ¢ this_line->length; ++i)
fprintf(outfile,"%s ", this_!ine->entrylil.name);
if(this.line->length > 0) fprintf(outfile,"\n");
}
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CALLNAME: TARGET..FOUND
AUTHOR: S. Treadaell
CREATED: 29 JUL 92
UPDATED: 29 JUL 92

Used in parsing loop statements. Helpful in distinguishing between a for_
loop and a while_loop since loops are keyed on the word "loop” and not on
"for™ or "while.” The boundary string is used to bound the search for the
beginning of the loop. Ue don't want to search infinitely and possibly find
a loop beginning that does not opply to the given loop. Consider the
following example:

for i in 1..10 loop

loop

end loop;
end loop;
Uhen parsing the inner loop construct, we don‘t want to find the beginning
of the outer loop and mistakenly identify a basic loop as a for.. locop.

enum boolean target_found(this_Iline,target, boundary)
struct list_info *this_line;

char target{];

char boundaryl(];

{

int i,k;
enum boolean success = NQ;

/* Start at the word “laop” and search backwards for the target without */

/* going further back than allowed by the baundary set. */
for(i = this.line->marker - 1; i >= 0; --i)
{

if((k = stremp(this_line-Y>entrylil.name,target)) == 0)
{

success = YES;

this_line->marker = i;
break;

}

if((k = stremp(this_{ine->entrylil.name,boundary)) == 0)
break;

}

/* The success integer indicates whether the target wos found */
return(success);
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CALLNANE: EVUAL_ARANGE_NUN
AUTHOR: S. Treaduwell
CREATED: S MAY 92
UPDATED: 1S JUN 92

Uill take a string expression for a range tike '0..60° and parse it into a
first, last, and span values. These values are then stored in the data
structure :alled range, and the span value is also returned as the output of
the function.

int eval_range_num(word,error_file)
char word(];
{

int evaluate();

int eval_simple_nun();

int eval_natural_num();

int eval_complex.num();

int ¢;
int i = 0;
int j = 0;

char min[20];
char max{20];
struct range_info temprange;

strcpy(temprange.description,word);

/* find the first value in the range */
vhile(isalnumn(c = wordli]))

min[i+*]} = ¢;
min[iss] = °\O';

++i;

/* find the last vaiue in the range */
wvhile(isalnum(c = wordli++]))

max[j++] = ¢c;
max[j] = '\O';

/* evaluate the first value in the range */
switch{evaluate(min))

{

case SIHPLENUN: temprange.first = eval_simple_num(min); break;
case NATURALNUN: temprange.first = eval_natural_num{min); breok;
case CONPLEXNUM: temprange.first = eval_complex_num{min); break;
case UARMAMNE: temprange.first = LOST; break;

case UNKNOUN: tempraonge.first = LOST; break;

default: temprange.first = '0ST; break;

}

/* evaluate the last value in the range */
switch(evaluate(max))

{

case SINPLENUM: temprange.last = eval_simple_num(mox); break;
case NATURALNUN: temprange.last = eval.natural_num{max); breck;
case COMPLEXNUH: temprange.last = euval_complex_num{max}; breck;
case UARNRNE: temprange.last = LOST; break;
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case UNKNOUN: temprange.last = LOST; break;
default: temprange.lost = LOST; break;
}

/* calculate the range */
if{{temprance.first != LOST) &8 (temprange.last != LOST))
teaprange.span = temprange.last - temprange.first +1;
else
temprange.span = LOST;

return{temprange.span);

o " A - A e = o o = = = = = o - " m T = = = e - - o~

CALLNRME: EUARL_NATURAL_NUN
AUTHOR: S. Treaduwe!!
CREARTED: 4 MAY 92

UPDATED: 15 JUN 92

Hill take an expression like ‘natural{number)’ and evaluate its value based
upon the number within the parentheses. This value is then returned as the
value of the expression.

int ewval_.naturel_num(word)
char word[40];

{

}

int evaluate();

int eval_simple_num();
int eval_complex_num{);
int ¢;

int i = 0;

int j =0;

int value = LOST;

char argument[401;

if {word(?) == (")
{
i = 8;
while{(c = word[i++]) != *}")

argument[j++] = ¢;
argument{j] = '\0";
switch(evaluate{argument})
{
case SIMPLENUMN: value = eual_simple_num(argument); break;
case CONPLEXNUM: value = eval_complex_num{argument); break;
case UARNANE: value = LOST; breck;
case UNKNQUN: value = LQST, bredk;
default: value = LOST; break;
)
}

return{uvalue);
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CALLNANE: EUAL_CONMPLEX_NUN
AUTHOR: S. Treaduell
CRERTED: 4 MAY 92

UPDATED: 15 JUN 92

Hill take @ string expression fike '16%ffff%®' and parse it into o single
integer value and return that value as the output of the function.

The string must be in o form ainost exactly like that given. Any base or
internal value can be used, provided that it is not too large to be held
in an integer.

.......................................................................... %/
t eval_complex_num(uword)
ar word(]);
int i = 0;
int j = 0;
int ¢;
int basevalue;
int numualue = LOST;
char base[20];
chaer num(20];
while(isdigit{c = word(i]))
basel[i++] = ¢;
base[i++]) = *\Q"';
while(isxdigit{c = word[i++])})
nualj++] = ¢;
num(j] = "\O';
bosevalue = strtol(base,{char **)HULL,10);
numvalue = strtol(num,{char **)NULL,basevalue);
return{numualue);
CALLNAME: EUAL.SINPLE_NUN
RUTHOR: §. Treaduell
CREATED: 4 nAavy 92
UPDATED: S HAY 92
Hill toke a pure number in string form and convert it to integer form and
return that integer as the output of the function.
Cannot deal with floating point numbers; only integers are alloued.
flssumes that everything expressed as a pure number is in base 10.
.......................................................................... .

t eval.simple_num(ward)
or word[];

int value = LQST;

value = strtol{word, (char **)NULL,10);
return{value);
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CALLNAME : EUVALUATE
AUTHOR: S. Treaduell
CREATED: 4 MAY 92
UPDATED: 5 NARY 92

Uill take a string as ar input argument, evaluate the contents of that string
and put it in a class according to its configuration. The class is returned
as an integer value and the classes are defined in "header.h”

UHorks for all tested cases, but may not be foolproof. A safety net is
provided through the UNKNGUN class of string, which is triggered when the
string does not fit any of the allowed patterns.

int evaluate(uword)
char word(];

{

int class = UNKNOUN;
int i = 0;

int k = 0;

int ¢;

int dots = 0;

int pound = 0;

int other = 0;

if (isdigit(word[0]))
{

while((c = word[i++]) != '\O")

{

if(c == ', ') ++dots;

if(c == '8') ++pound;

if(lisdigit(c)) ++other;
}
if ((dots == 2) & (pound == 0) & (other == 2)) class = RANGENUN;
if ((dots == 0) & {(pound == 2) & (other >= 2)}) class = COMPLEXNUMN,
if {(dots == 0) & {pound == 0) & (other == 0)) class = SINPLENUN;

}

if {(isalpha(uword{0]))
{
class = UARNAME;
if{(k = strncmp{word, "natural”,?)) == 0) class = NATURALNUN;
wvhile({c = word[i++]) = '\Q")
if(c == ')
if{({c = word[i++]) == '.") class = RANGENUN;
}

return(class);
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CALLNANE: PRINT_PROCEDURES
AUTHOR: S. Treadwell
CREATED: 19 OCT 92
UPDATED: 19 OCT 92

Hill print out the models for each of the pracedures found for a given task
This procedure is provided for filling the error log with valuable info for
tracking down analysis and/or run-time errors,

void print_procedures{procedures,error.file)
struct proc_list_info *procedures;
FILE %error_file;

(

}

int i,j,k;
for{i = 0; i < procedures->length; ++i)
{
fprintf{error_file,"Procedure £s found in Xs\n", procedures->entryli].name,
procedures->entrylil.filename);
for(j = 0; j < procedures-dentryli].skeleton.length; ++j)
fprintf(error_file,"Type:X3d Ualue:X4d Depth:X3d Pointer:%3d\n",
procedures-entrylil.skeleton.entrylj].type,
procedures->entryli].skeleton.entrylj).value,
procedures->entryli].skeleton.entrylj].depth,
procedures-Yentryli].skeleton.entrylj].pointer);
for(j = 0; j < procedures->entry(il.skeleton.num_counters; ++j)
fprintf(error_fite,"Ctr %2d: Queued %3d Rtrud X3d Sent X3d Read X¥3d\n",j,
procedures->entrylil.skeleton.counter_set(j].nun_queued,
procedures->entry(i].skeleton.counter_set[j].nun_retrieved,
procedures->entryli].skeleton.counter_set{j].nun_sent,
procedures->entryli].skeleton.counter_set[j].num_read);
)

void clear_screen()

(

}

print f("\033[XdJ",2);
printf("\n");
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CALLNAME: FIND_UWORST_PATH
AUTHOR: S. Treaduwell
CRERTED: 01 SEP 92
UPDATED: 20 OCT 92

For a given model, this procedure controls model preparation, reduction, and
path generation. The execution path generation leads to identification of
the worst case path and the parameterization of that path is returned to the
parent procedure, process..list.

struct counter_list find_worst_path{skeleton,deloy_data,error_file)
struct model.info *skeleton;

struct constant_list *delay_data;

FILE *error_file;

(

void reduce_model();

int calculate_time();

enum boolean model_ok();

struct counter.list generate_paths();

struct counter_list big_counter, new_counter;
int i;

/¥ Initialize path parameterization */
big.counter.num_queued = 0;
big-counter.num_retrieved = 0;
big_counter.num_sent = 0;
big_counter.num_read = 0;
big_counter.total_time = Q;
big_counter.num_msg_queued = 0;

/* prepare and reduce the model */
reduce_model (skeleton,deloy.data,error_file);

/* include the final task model in the error log */
fprintf(error_file,"Task Model...\n"};
for(i = 0; i < skeleton->length; ++i)
fprintf(error_file,“%3d Type:%3d Ualue:X4d Depth:%3d Pointer:%3d\n",i,
skeleton->entrylil.type,skeleton-dentrylil.value,
skeleton->entryli].depth,skeleton->entryli).pointer);
for{i = 0; i < skeleton->num_counters; ++i)
fprintf(error_file,"Ctr X2d: Queued X¥3d Retud ¥3d Sent X¥3d Read %¥3d\n",
i,skeleton->counter_set[i].nus_queued,
skeleton->counter_set[i].num_retrieved,
skeleton->counter.set[i].num.sent,
skeleton->counter_set[i].num_read);

if(model_ok(skeleton,error_file)) /* trap for model errors */

{
/* generate || possible paths that start at the top of the model */
big_counter = generate_paths(skeleton,delay.dota,0,2,error file);

/* generate paths beginning with each UFS entry in the made! */
for(i = 0; i < skeleton->length; ++i)
if(skeleton->entrylil.type == UFS)
{

new_counter = generote_paths(skeleton,deIag_doto,i¢1,2,error_1vIe),
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if (calculate_time(detay_data,&new_counter) >
calculagte_time(delay.data,8big_counter))
big_counter = new_counter;
}
}

else fprintf(error_file,“The mode!l could not be processed due to faults\n");

return{big_counter);
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CALLNANE: REDUCE_NMODEL
AUTHOR: S. Treaduwel!
CREATED: 06 OCT 92
UPDATED: 19 0CT 92

This procedure takes a given model and completes it's development. It then
reduces it by squeezing out loops, if's, and case statements that have no
UFS inside. These constructs are replaced by counter_set entries.

void reduce_model(skeleton,delay.data,error_file)
struct model_info *skeleton;

struct constant_list *delay._data;

FILE *erraor_file;

{

/™

vaid crunch();

void check_ctrs();
void nest_level();
void match_loops();
int i;

/* model preparation */
nest._level(skeleton);
match_loops(skeleton);

for{i = 0; i ¢ skeleton->length; ++i)

forintf{error_file,"%3d Type:%3d Ualue:%4d Depth:%¥3d Pointer:¥3d\n", i,
skeleton-Yentrylil.type,skeleton-sentrylil.value,
skeleton->entryli].depth,skeleton->entrylil . pointer);/**/

/* model reduction */
crunch(skeleton,delay_data,LOOP,error_file);
crunch(skeletaon,delay_data UHILE_LOOP,error_file);
crunch(skeleton,delay_data,FOR_LOGP, error_file);
crunch{skeleton,delay.data,!F,error_file);
crunch{skeleton,delay_data,CASE,error_file);

/* eliminate any empty counter_set entries */
check.ctrs(skeleton,error_file);
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CALLNAME : NEST_LEVEL
AUTHOR: S. Treadwell
CRERTED: 07 RUG 92
UPDATED: 04 MAR 93

Takes the abstracted model and determines the level of nesting for each itenm
in the model. This is necessary for the process of matching loops and other
control flow items. Each type of model entry has a particuiar effect on the
nesting value for entries thot follow.

void nest_level(skeleton)
struct model_info *skeleton;
{

int i;

int nest = Q;

for (i = 0; i < skeleton->length; ++i)

switch(skeleton->entryli].type)

{

case LOGP:
skeleton->entrylil.depth = nest;
++nest ;
bregk;

case FOR_LOOP:
skeleton-dentrylil.depth = nest;
++nest;
breck;

case UHILE_LQOOP:
skeleton->entryli].depth = nest;
++nest;
break;

case IF:
skelieton->entryli).depth = nest;
++nest,;
break;

case ELSIF:
--nest;
skeleton->entrylil.depth = nest;
+4nest;
break;

case CASE:
skeleton->entryli].depth = nest;
++nest;
break;

case HHEN:
--nest;
skeleton->entryli].depth = nest;
+*nest;
break;

case ELSE:
~-nest;
skeleton->entryli]l.depth = nest;
++nest;
break;

case END_LOOP:
--nest;
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skeleton->entrylil.depth
break;

case ENO_IF:

--nest;
skeleton->entrylil.depth
break;

case END_CRSE:

--nest;
sketeton->entryfi].depth
break;

default:

}

skeleton->entryli].depth

fl
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nest;

nest ;

nest;

nest;
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CALLNAME: MATCH_LOOPS
AUTHOR: S. Treadwe!l
CREATED: 07 AUG 92
UPDATED: 04 MAR 93

This procedure will jook through the mode! and match lcop statements with
the proper end_loop statements. Likewise for the if end.if and case
end_case pairs. Other matchings are necessary as well. HNote that empty
loops are eliminated in the beginning. It may be necessary to do the same
with eapty if’'s and empty case statements. The matching is accomplished
through the establishment of the pointer elements in model entries.

void match_loops{skeleton)
struct model_info *skeleton;
{

int loap_starts[20];

int num_loops = 0;

int i,j;

for (i = 0; i < skeleton->length; ++i)
skeleton->entry[i].pointer = UNDEFINED;

/* Eliminate empty loops */

for (i = 0; i < skeleton->length; ++i)
suitch(skeleton-Yentryl[i]. type)
{

case FOR_LOGP:
if(skeleton->entryli+1].type == END_LOOP)
{
for{j = i; j < skeleton->length - 2; ++j)
skeleton->entrylj] = skeleton->entrylj+2];
skeleton->length -= 2;
}
break;
case UHILE_LOOP:
if(skeletan->entryli+1].type == END_LGOP)

{
for{j = i; j < skeleton->length - 2; ++j)
skeleton->entrylj] = skeleton-dentrylj+2];
skeleton->length -= 2;
}
break;
default: break;
}
/* loop_starts is an array of index values for entries that represent */
/* the beginning of a loop construct. It simplifies the motching of */
/* loep starts and end_ioop entries. >/

for (i = 0; i < skeleton->length; ++i)
switch(skeleton->entrylil.type)

{
case LOOP: loop_starts[num_loaps++] = i; breadk;
cose FOR_LOOP: loop_startsi{num_loops++] = i; break;
case UHILE_LOOP: laop_starts(num_loops++] = i; break;
case END_LOOP:
skeleton->entryli].pointer = laoop_starts(--num_iocops};
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skeieton->entry{skeleton-d>entryli]l.pointer].pointer = i;
break;
case END_IF: /* match with the corresponding |F statement */
for(j = i-t; j >= 0; --j)
i f{(skeleton->entrylj].type == IF)aR
(skeleton->entry(j).depth == skeleton->entryli].depth))

{
skeleton-dentryljl.pointer = i;
skeleton->entryli].pointer = j;
break;
}
break;

case END_CASE: /* match with the corresponding CASE entry */
for{j = i-1; j >= 0; --j)
if({skeleton-ventryljl.type == CRSE)&R
(skeleton->entryljl.depth == skeleton->entrylil.depth))

{
skeleton-dentryljl.pointer = i;
skeleton->entrylil.pointer = j;
break;

}

break;

case UHEN: /* point to next WHEN or END_CASE entry */
for{j = i+1; j < skeleton->length; ++j)

if({(skeleton->entrylj].type == UHEN)|]
(skeleten->entrylj].type == END_CASE)) &R
{skeleton->entryljl.depth == skeleton->entryli].depth))
{
skeleton->entrylil.pointer = j;
break;
}
break;
case IF: /* point to next branch in the "if" construct */
for(j = i+l; | < skeleton->length; ++j)
if({(skeleton->entrylj].type == ELSE)}I
(skeletan->entryl[j].type == ELSIF)I|
(skefetan->entrylj) . type == END.IF)) 2&
{skeleton->entry[j].depth == skeleton->entrylil.depth))
{
skeleton-Yentrylil.pointer = j;
break;
}
break;
case ELSIF: /* point to next bronch in the "if" canstruct */
for(j = i+1; j < skeleton->length; ++j)
if({(skeletor->entrylj]l.type == ELSE)II
(skeleton->entryljl.type == ELSIF)]|
(skeleton-dentrylj].type == END_IF)) &&
(skeleton->entrylj].depth == skeleton->entryli] depth))
{
skeleton->entryl i} .pointer = j;
break;
}
break;
case ELSE: /* point to the end of the "if" construct */
for(j = i+1; j < skeleton->length; ++j)
if((skeleton->entrylj].type == END_IF) &%
(skeleton->entrylj].depth == skeleton->entry[il.depth))
{
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skeleton->entrylil.pointer = j;
break;
)

break;

default: break;

CALLNAME: CRUNCH
AUTHOR: S. Treaduwell
CREATED: 01 SEP 92
UPDRTED: 19 OCT 92

This procedure identifies constructs that do not contain WFS calis and

crunchos them into a set of counters to replace the construct. This is
necessary simplification because it allows loops that contain critical

constructs to be counted for their total iterations, not just a single

pass through.

void crunch(skeleton,delay.data,start. type,error_file)
int start_type;

struct model_info *skeleton;

struct constant_list *delay_data;

FILE *error_file;

{

struct counter_list generate_paths();
struct modei_info temp;

int i,j;

int k = 0;

int begin;

int end;

enum boolean present = NO;

enum boolean qualified = NQ;

for(i = 0; i ¢ skeleton->length; ++j)
{
/* Guard against crunching loops with undefined iteration maximums */
quatified = NO;
if(skeleton->entry[i] . type == start._type)
switch(start_type)
{
case |F: qualified = YES; break;
case CASE: qualified = YES; break;

default: if(skeleton-dentryli].value > 0) qualified = YES; break;
}

/* Find the bounds on the targeted construct */
if (qualified == YES)
(
begin = i;
for(j = i+1; j < skeleton->length; ++j)
{
if(skeleton->entryljl type == WFS) present = VES;
if(skeleton->entrylj]l.pointer == begin)
{
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end = j;
break;
}
}
if(ipresent} /* if no UFS entry within the construct */
{
/* set up the temporary model for the targeted construct */
for(j = begin; j <= end; ++j)

temp.entrylk] = skeleton-dentryljl;
temp.entrylk].pointer -= begin;
++k;

}

temp.length = k;

skeleton->entrylbegin).type = COUNTERSET;
skeleton->entrylbeginl.pointer = UNDEFINED;
skeleton->entrylbegin).value = skeleton->num_counters;

/* establish the worst path parameterization for the temporary model

/* and use it as a counter_set entry in the model to replace the

/* targeted construct

skeleton->counter_set[skeleton->num_counters++] =
generate_paths(&temp,delay_data,0,1,error_file);

/* Adjust the original madel to compensate for eliminated entries */
for(j = begin + I; j < skeleton->length - (k-1); ++j)
sketetan-Yentryljl = skeleton-dentrylj+(k-1)];
for(j = 0; j < skeleton->length - (k-1); ++j)
if (skeleton->entrylj].pointer >= begin)

skeleton->entry[j].painter -= (k-1);
skeleton->length -= (k-1);
k = Q;

}

else present = NO;
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CALLNANE: CHECK_CTRS
AUTHOR: S. Treaduwell
CREATED: 16 NOU 92
UPDATED: 16 NOU 92
Will exomine the skeleton sent in and check for COUNTER_SET entries
containing only zeros. These will be removed from the model.

vaid check_ctrs(skeleton,error_file)
struct model_infa *skeleton;
FILE *error_file;
{
int i,j,k;
int sum;

for{i = skeleton->num_counters - 1; i >= 0; --i)
{
sum = 0;
sum = skeleton->counter_set[i].num_queued +
skeleton->counter_set[i].num_retrieved +
skeleton->counter_set[i].num_sent +
skeleton->counter_set[i].num_read;
if(sum == 0) /* eliminate the entry and adjust the model accordingly */
{
--skeleton->num_caounters;
for(j = i; j < skeleton->num_caounters; ++j)
skeleton->counter_=et{j] = skeleton->counter_set[j+1];
for(j = 0; j < skel-ton->length; ++j)
if((skeleton->entryljl.type == COUNTERSET)&R
(skeleton->entrylj).value == i))
{
--skeleton->length;
for{k = j; k < skeleton->length; ++k)
skeleton->entry[k] = skeleton->entry(k+1];
}
for(j = 0; j < skeleton->length; ++j)
i f((skeleton->entrylj].type == COUNTERSET)&R
(skeleton->entrylj).vatue > i))
skeleton->entrylj}. value -= 1;
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CALLNANE: GENERATE_PATHS
AUTHOR: S. Treadwell
CREATED: 1S AUG 92
UPDATED: 19 OCT 92

This procedure generates all possible execution paths through a given model.
It begins at the designated starting entry and exhausts al! paths from that
point using the decision integer as the path determinator. Once a path is
defined, it is paraometerized, quantified, and compared to previous paths.

struct counter_list generate_paths(skeleton,delay_data,start,mode,erraor_file)
struct model_info *skeleton;

struct constant_list *delay_data;

int start;

int mode;

FILE *error_fite,

{

int calculate_time(};
int decide();

struct counter_list parameterize();

struct counter_|ist big_counter,new_counter;
int path[30];

int j = 0;

int i,k;

int done;

int next;

int shift_num;
unsigned long teamp;
unsigned long decision

0x00000000;

big_counter.num_queued g;
big.counter.num_retrieved = 0;
big.counter.num_sent = (;
big.counter.nua_read = 0;
big-counter.num_msg_queued = 0;
big—counter.totcl_time = 0;

uhile(decision < 0x800000C0) /*decision=80000000 means a!! paths eshaustea*/
{
for(i = 0; i < skeleton->length; ++i)
skeletan->entryli]. flow = BLANK;
i = start; shift_num = 30; done = NO;

do
{
if ((mode == 1} && (i == skeleton->length - 1}) done = VES,
switch(skeleton-dentrylil. flouw)
{
caose EXEC: next = | + 1; path[j++] = i; break;
case NO_EXEC: next = | + 1; break;
default:

pothlj] = i, /* printf("i is Xd\n",i);/*%/
switch{skeleton->entrylil type)
{
case UHILE_LOOP:
next = decide(skeleton,i,&j,decision &shift_num);
break;
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case END_LOOP:
if(mode == 1) next = i + 1;
else
{
if(skeleton-sentrylskeleton-dentrylil.pointer].value == INFINITE)
{
next = skeleton->entryli].pointer;
#0];
}
else next = decide(skeleton,i,&j,decision,&shift_num);
}
break;
case |F:
next = decide(skeleton,i,®j,decision,&shift_num);
break;
case ELSE:
next = i + 1;
00]‘;
break;
case ELSIF:
rnext = decide(skeleton,i,&j,decision,&shif(_num);
break;
case WHEN:
next = decide(skeleton,i,&j,decisiaon,&shift_num);
break;
case WFS:
++j ;
done = YES;
break;
default:
++j;
next = i + 1,
break;
}
break;
}
i = pext;
)

while(!done);

if(mode == 2) /* mode 2 is for full task model gnalysis */
{
fprintf(error_file, "PATH:");
for(i = 0; i < j; ++i)
fprintf(error_file,"X3d",path[il]);
fprintf{error_file,"\n");

}

/* porameterize the path just campleted ond compare to prev.aus paths */
new_counter = porameterize(skeleton,path,j,mode);
if{calculote_time(delay_data,&neu_counter) >
calcutaote_time(delay_data,&big.counter))

big_counter = new_counter;
i 0
++shift_num; /* o necessary odjustment */
/* now update the decisiaon integer to determine the next path */
/* the math here effectively reuvcrses the last decision made */
/* in the last execution path */
decision &= {OxffIfffff < shift_num);
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decision += (0x01 << shift_num);

}

/* big_counter is the parameterization of the worst case path through */
/* the given model for the given starting point */
return(big_counter);

CALLNANE: DECIDE
AUTHOR: S. Treaduwell
CRERTED: 16 AUG 92
UPDATED: 15 SEP G2

This procedure makes the decision of where to go next according to the
decision integer. The next point in the path is returned as an integer.
The shift number is updated if a decision is made but the decision
integer is not changed until! the path is complete.

int decide(skeleton,i,j,decision,shift_num)
struct model_info *skeleton;
int i;
int *j;
long int decision;
int *shift_num;
{
int next,k,l;
int iterations;
int first_no_exec;
unsigned choice;

choice = (decision >> *shift_num) & 0x01;
i f{choice) choice = EXEC;

else choice = NO_EXEC;

*shift_num -= 1|;

switch{choice)
{
case EXEC:
next = i ¢+ 1;
ooij ;
/* must block off the unchosen branch of the construct */
k = skeleton->entryli].painter;
first_no_exec = k;
switch(skeleton-Yentrylil.1ype)

{

case |F;
while(skeleton-sentrylk]. type != END._IF)
k = skeleton->entrylk].pointer;
for{l = first_no_exec; | < k; ++])
sketetan->entry[1]. ftow = NO_EXEC;
break;

case ELSIF:

while(skeleton->entrylk]. type '= END_IF)
k = skeleton->entrylk) . pointer;

for(l = first_ono.exec; | ¢ k; ++1)
skeleton-ventry( 1] . flow = NO_EXFC;
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break;

case UHEN:

while(skeleton->entry(kl.type != END_CASE)
k = skeleton->entryl[k].painter;

for{l = first_no_exec; | < k; ++1)
skeleton->entryl1]. flow = NO_EXEC;
break;

default: break;

break;

case NO. EXEC:
/* jump to the next branch using the pointer element */
next = skeleton-dentrylil).pointer;
switch(skeieton-Yentrylil. type)

{

case UHILE_LOOP:

++next;
break;

case END_LOQOP:

skeleton->entryli]. flow++;

++*J’;

/* need to guard agoinst troublesome constructs and ensure that a */
/* loop conteining a conditiaonal WFS entry does not become an */
/¥ infinite loap when generating paths */

iterations = skeleton->entrylskeleton->entryli).pointer]. value;
if(iterations > 0)
if(skeleton-dentrylil. flow == iterations ~ 1)
skeleton->entrylil.flow = EXEC;
if(skeleton-ventryli].flow == 5) /* 5 is a stringent Iimit %/
skeleton-Yentryli].flow = EXEC;
break;

default: break;

}

break;

)

return({next)};
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CALLNANE: PARAMETERIZE
AUTHOR: S. Treadwel!l
CREATED: 7 SEP 92
UPDATED: 9 SEP 92

Lill take a given path through the model and add up all the critical system
calls along the path. This info is stored as a set of counters and

returned to the parent procedure.
............... ..,....,..-....-......-......----__.._-——-——-—--—-----———-______________-..‘/

struct counter_list paraometerize(skeleton,path,path_length, mode)
struct model_info *gkeleton;
int path[];
int path_length;
int mode;
{
int i
int j 0;
int loop[10];
int iterations;
int counter_num;
struct counter.list counter.set;

sk

counter_set.num_queued = 0;
counter_set.num_retrieved = 0;
counter_set.num._sent = Q;
counter_set . .num_read = 0;
counter_set.nun_msg_queued = C;
counter_set.msg_retrieved = 0;

for{i = 0; i < path_length; ++i)
{

iterations = 1;

if{mode == 1)
for(k = 0; k < j; ++k)
iterations *= loop[kl;

switch(skeletan->entrylpath[ill.type)

{

case LOOP: loop{j++]) = skeleton-dentrylpath{il).value; break;

case FOR_LOOP: toop[j++] = skeleton->entrylpathlil}.value; break;

case UHILELLOOP: foop(j++] = skeleton-Yentry{path[il]l.value; break;

case END.LOOP: if(j >0) j--, break; /* for mode 2--will explain later */

case COUNTERSET:

counter_num = skeleton~->entrylpath{il).value;

counter_set.num_queued += skeleton->counter_set[counter_num].num_queued;

counter_set .num_retrieved+=
skeleton->counter_set{counter_num].num_retrieved;

counter_set.num_sent += skeleton->counter_set[counter_num]. num_sent;

counter_set.num_read+=skeleton->counter_set[counter_num].num_read;

counter_set .num_msg_queued +=
skeleton->counter.setlcounter.num].nun_msg_queued;

counter_set.msg._retrieved +=
skeleton->counter_set{counter_num].msg.retrieved;

break;

case QUEUE:
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if (iterations > 0)
(
counter_set.num_queued +=(skeleton->entrylpath[il]l.value * iterations);
counter_set .num_msg_queued += iterations;
}
else
{
counter_set .nun_queued += (skeleton->entrylpath(il].value * 10);
counter_set.num_msg_queued += 10;
}
break;

case RETRIEUE:
if(iterations > 0)
{ .
counter_set.num_retrieved+=(skeleton->entrylpath(il).value*iterations)
counter_set.msg_retrieved+=iterations;
}
else
{
counter_set.num_retrieved += (skeleton->entrylpathli]].value * 10);
counter_set.msg_retrieved+=10;
}
break;

case SEND:
if (iterations > 0)
counter_set.num_sent += (skeleton->entrylpath[i]].value * iterations);
else
counter_set.num_sent += (skeleton->entrylpath(il]).value * 10);
break;

case READ:
if (iterations > 0)
counter_set .num_read+=(skeletaon->entrylpath[il].value*iterations);
else
counter_set.num_read += (skeleton->entrylpath[il]).value * 10);
break;

default: break;

}

}

return(counter_set);



Appendix D

CALLNANE: MODEL_OK
AUTHOR: S. Treaduwell
CREATED: 20 OCT 92
UPDRTED: 12 NQU 92

Hill verify the structure of the model to ensure that it is prepared for
analysis,

enum boolean model_ok{skeleton,error_file)
struct model_info *skeleton;
FILE *error_file;

{

int i,j;
int loops = 0;
int ifs = (;

int cases = (0;
int waits = 0;
enum boolean valid = YES;

/* Nake sure the model begins and ends with depths = 0 */
i f(skeleton->entrylskeieton~->length - 1].depth != 0)
{
valid = NO;
forintf(error_file,"The final model entry is at the wrong depth\n");
}
if(skeleton->entryl0].depth != 0)
{
valid = NO;
fprintf(error_file,"The initial model entry is at the wrong depth\n");

}

/* Ensure that for every loop there is dn end.loop and the same with */
/* case statements and if constructs */
for(i = 0; i < skeleton->length; ++i)
switch(skeleton->entrylil.type)
{
case LOOP: ++loops; break;
case FOR_LOOP: ++|oops; break;
case UHILE_LOOP: ++loops; break;
case ENDO_LOOP: --loops; break;
case {F: ++jfs; break;
case END_IF: --ifs; break;
case CASE: ++cases; break;
case END_CASE: --cases; break;
case UFS: ++waits; break;
case COUNTERSET:
/* make sure the model does not reference a non-existent counter set */
if(skeleton->entryli}.value >= skeieton->num_counters)
{
valid = NG;
fprintf(errcor_file,
"Excessive counter_set number at model entry Xd\n",i);
}
break;
default: break;
}
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if(loops != 0)
(

valid = NO;

fprintf(error_file,"There is improper loop matching in the model\n"});
}
if(cases 1= 0)
{

valid = NO;

fprintf(error_file,"There is improper case matching in the modei\n");
}
if(ifs i= 0)
{

valid = NO; .

fprintf(error_file,"There is improper if/end_if matching in the model\n");
if(waits == 0) /* ensure that the task model includes a UFS call */
{

valid = NO;

fprintf(error_file,"There is no UFS in this model\n");
}

/* Nake sure there are no infinite loops containing no UFS calls */
for(i = 0; i < skeleton->length; ++i)
if((skeleton->entrylil.type == LOOP)&&(skeleton-dentrylil.value<0))
{
waits = 0;
for(j = i+1; j < skeleton->length; ++j)

if(skeleton-Yentrylj].type == UFS) ++uaits;
if((skeleton->entryljl.type == END_LOOP)RS

(skeleton->entryljl.pointer == 1))

break;
}
if (waits == 0)
{
valid = NO;
fprintf(error_file,"Infinite loop containing no HFS\n");
}

}

/% |f the mode! passes all tests, valid = YES; otherwise, valid = NO */
return(ualid);

)
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CALLNANE: CALCULATE_TINE
AUTHOR: S. Treadwell
CREATED: 09 SEP 92
UPDATED: 30 OCT 92

This procedure takes a path parameterization and calculates a lower bound
on delay for that path using system specific delay data.

int calculate_time(delay_data,counter_set)
struct constant_list *delay_data;
struct counter_list *counter_set;
{
int sum = 0;
int extra = 0;

if(counter_set->num_queued>0) sum +=
(delay_data->queue_coeff¥*counter_set->num_queued)+
(delay_Jdata->queue_const*counter_set->num_msg_queued);

i f(counter_set->num_sent>0) sum +=
delay_data->queue_coeff*counter_set->num_sent+delay_data->queue_const;

if(counter_set->num_retrieved>d) sum +=
(delay_data->retrieve_coeff¥counter_set->num_retrieved)+
(delay_data->retrieve_const*counter_set->msg_retrieved);
if(counter_set->num_read>d) sum +=
delay_data->retrieve_coeff*counter_set->num_read+
delay_data->retrieve_const;

counter_set->total_time = sum;

/* Certain critical constructs add delay to the frame overhead as well as */

/* incurring task execution delay. It is critical to account for this */
/* additional delay when comparing various paths. This extra delay is */
/* not added into the "total_time" parameter but it is part of the "sum” */
/* that is returned to the parent procedure */

extra += delay_data->iH_coeff * counter_set->num_queued;
if(counter_set->num_queued > Q)
extra += delay_data->RGD_msg_coeff * counter_set->num_queued +
delay_data->RGO_msg_coeff * counter_set->num_msg_queued;
else extra += 21;

sum += extra;

return({sum);
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External Files

key_words.dat

scheduler.wait_for_schedule
loop

if

else

elsif

case

when
rg_communication.queue_message
rg.communication.retrieve_message
rg_communicat ion.send.message
rg_communicat ion.read_message
task

::

range

package

procedure

begin

end

gtid

vg

rg

nax_xmit_size

max_xmit_num

max_rcve_size

max_rcve_num

select

record

accept

constants.dat

queue_coefficient 45
queue_constant 43
retrieve_coefficient 6!
retrieve_constant 67
interrupt_handler_coefficient 110
interrupt_handier_constant 103
RGD_message_coefficient 123
RGD_msssage_constant -12
RGD_task_coefficient 26
RGD_task_constant 15
RGD_overall_constant 49
RGD_empty_queue_constant 70
context_suitch 19

locai{ _FDIR 84

systea_FDIR 1316
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An Illustrative Example

. The files included in this section are taken directly from a full-scale test of the AFTA
timing analysis tool.
. The task specification file is task_1l i st . ada.
. The source code for the application tasks is found in the following files:
app-test.ada
eys_fdi.ada
test_code.ada
. Note that the task called test_t is not intended to represent actual application task
code. It is used merely for testing purposes and is designed to highlight some of the
features of the timing analysis tool that are not fully exercised by the legitimate tasks:
appl1_t,appl2_t,and sys_fdi_t.
. The following files are intermediate files passed from the preliminary processing
stage to the software and hardware analysis stages:

task_names.dat

list_of_tasks.dat

filenames.dat
. The output of the analysis is found in errors.dat and results.dat.
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task list.ada

with config;

with ne_interface; use ne_interface;
with gtids;

with gcids;

s g g g g g .

package task_list is

-- specification of rg tasks in system; does not include rg and io dispatchers;
~-- they are special rg4 tosks and are specified within config.init_cid_config
-- NOTE:

-- There is no ordering requirement in list, but an ordering conuention makes
-~ the list easier to read. The implemented conuention is to order the task

-~ based on vg,rg, and precedence.

task_list : constant config.task_list_r := (
num_tasks => 140,
tasks => (

-- tasks only on ug O
1 => {
gcid => geids.appli..l,
gtid => gtids.appl],
location => config.one_ug,
vg => 0,
rg => config.rg4,
precedence => 0,
max_xmit_size => 400,
max_xmit_num => 5,
max_rcve.size => 400,
max_rcve.num => 20,
num_iors => 0,
iors => (
others => (
num_chains => 0,
chains => (
others => (E=>false,D=>false,C=>false,B=>false,A=>false)))))));

2 => (
gcid => gcids.appl2.t,
gtid => gtids.appl2,
location => config.one_vg,
vg => 0,
rg => config.rg4,
precedence => %,
max_xmit_size => 200,
nax.xmitonum => 10,
max_rcve_size => 200,
max—.‘cve_num => 20,
num_iors => 0,
iors => (
others => (
num_chains => 0,
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chains => {
others => (E=>false,D=>false,C=>false,B=>false,A=>faise))))),
3 => (
gcid => gcids.system_fdi,
gtid => gtids.system_fdi,
location => config.one_vg,
vg => 0,
rg => config.rg4,
precedence => 14,
max_xmit_size => 200,
max_xmitonum => 10,
max_rcve_size => 200,
max.rcve.num => 20,
num.iors => 0,
iors => (
others => (
num_chains => 0,
chains => (
others => (E=>false,D=>false,C=>false,B=>false,A=>false)}))),
4 => (
gcid => gcids.appli_2,
gtid => gtids.appll,
location => config.one_vg,
vg => 0,
rg => config.rg3,
precedence => 3,
max_xmit_size => 200,
max.xmit_num => 10,
max.rcve_size => 200,
max_rcve_num => 20,
num_iors => 0,
iors => (
others => (
num.chains => 0,
chaing => {
others => (E=>false,D=>false,C=>false,B=>false,R=>false))))).
5 =>(
gcid => gcids.app!2_2,
gtid => gtids.appl2,
location => config.one_vg,
vg => 0,
rqg => config.rg3,
precedence => 4,
mox.xmit.size => 200,
max.xmit_num => 10,
max_rcve_size => 200,
max_rcve_num => 20,
num_iors => Q,
iors => (
others => (
num_chains => 0,
chains => (
others => (E=>false,D=>false,C=>false,B=>false,A=>false)))))
6 => (
gcid => gcids.appl 1.3,
gtid => gtids.appll,
focation => config.one_vg,
vg => 0,
rg => config.rg2,
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precedence => 0,
max_xmit_size => 400,
max—xmit_num => S,
max_rcve_size => 200,
max._rcve_num => 20,
num_iors => 0,
iors => (
others => (
num_chains => 0,
chains => (
others => (E=>false,D=>false,C=>false,B=>false,R=>false))))),
7 = (
gcid => gcids.appl2.3,
gtid => gtids.appl2,
lacation => config.one_vg,
vg => 0,
rg => config.rg2,
precedence => 4,
max_xmit_size => 200,
max_xmit_num => 10,
max_rcve_size => 200,
max_rcve_num => 20,
num_iors => 0,
iors => (
others => (
num_chains => 0,
chains => (
others => (E=>false,D=>false,C=>false,B=>false, A=>false)))) ).
8 => (
gcid => gcids.appll_14,
gtid => gtids.applt,
location => config.one_vg,
vg => 0,
rg => config.rgl,
precedence => 4,
max_xmit_size => 200,
max—xmit_num => 10,
max.rcve_size => 200,
max.rcve_num => 20,
num_iora => 0,
iors => {
others => (
num_chains => 0,
chains => (
others => (E=>false,D=>false,C=>false,B=>falise,A=>false))))),
g => (
gcid => gcids.appl2_14,
gtid => gtids.app!2,
focation => config.one_ug,
vg => 0,
rg => config.rgl,
precedence => 0,
max.xmit_size => 200,
max.xmit_num => 10,
max.rcve_size => 200,
max..rcve_num => 20,
num_iors => 0,
iors => (
others => (
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num_chains => 0,
chains => (
others => (E=>false,D=>false,C=>false,B=>false A=>false)))})},

10 => ¢
gcid => gcids.test_I,
gtid => gtids.test,
location => config.one_ug,
vg => 0,
rg => config.rgl,
precedznce => 1|,
max.xmit.size => 200,
max_xmit_num => 10,
max_rcve.size => 200,
max-rcve_num => 20,
num_iors => 0,
iors => (
others => (
num.chains => 0,
chains => (
others => (E=>false,D=>false,C=>fclse,B=>false,A=>false)))))

end task_list;
-- DEC/CHS REPLACEMENT HISTORY, Element TASK_LIST_.ADR

-- *3 17-FEB-1992 10:11:41 FTPP "added iors spec”

-- %4 12-FEB-1992 12:18:19 SAF2234 "moved dispatcher specs within init_cid”
-~ *3 8-FEB-1992 09:52:43 FTPP "added io task assignment”

-—- %2 27-DEC-1991 09:46:35 SAF2234 "changed precedence, added cppl tasks”
-~ ) 13-DEC-1991 10:19:11 SAF2234 “"specification for task list in mass
memory"”

-- DEC/CHS REPLACEMENT HISTORY, Element TASK_LIST_.ADA
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app_test.ada

-- with text_io;

-- with scheduler;

-- with ne.intertace;

-- with mem_utils;

-- with config;

-- with rg_communication;
-~ with systenm;

-- with jo_utils;

-~ with task_priority;

-- with gcids;

~- with rg_dispatcher;

-- with rg_log;

-- with exception_log;

-- with debug_trace;

-- with unchecked_conversion;

package body appl_test is

LR S S 4 R 2 e 4 2 R R e S E Y A A S L 4 L E S A R E R R S AR R

task body appli_t is

my_gcid : config.gcid_t;

my.rg : config.rg.t;

-- generics for printing message

function fetch_laong is new system.fetch_from.address(
system.unsigned_longword);

function fetch_word is new system.fetch_from_addrzsat
system.unsigned_word);

function fetch_byte is new system.fetch_from_address(
system.unsigned_byte);

function byte_to_long is new unchecked_conuersion(system.unsigned_byte,

system.unsigned_longword)

xmessage : array {system.unsigned_byte range 0..60) of system.unsigred_byte,
xerror : rg.communication.tiransmit_message_status_t;

rmessage : array (system.unsigned.byte range 0..60) of system.unsigned.byte:
rerror : rg_communication.receive_message_status_t;

from.cid : config.gcid_t;

from_vug : ne_interface.vugid_t;

size : natural;

class ; ne_interface.class.r;

begin
text_io.put_line("Elaboration of APPLI");
for i in xmessage'range loap
xmessage(i) := i;
end loop;

accept start{gcid : cenfig.gcid.t) do
my.gcid := gcid;
end start;
my-rg := config.gcid_canfig(my_gcid).rg;
-- for i in rg.dispatcher.frame_t loop
-- if config.">="(my.rg,rg.dispatcher.slowest_rg(i)) then
-~ rg_J.spatcher. io_interval{i) :=
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- scheduler."+"(rg_dispatcher.io_interval(i),1.0);
- end if;
-- end laoop;
rg_log.rg_log.entry(ay-geid, "APPLI",
- text_io.put_line(“At wfs of APPLI" &
config.gcid_t'image(my_gcid) & “ " &
config.rg.t'image(my_rg));

loop
-- * for loop: max = 61
for | in xmessage'range laoop

debug_trace.debug_log{16%f7f?7%,byte_to_long{i));
scheduler.wait_for._schedule;
debug_trace.debug._log(168f1 1%, byte_to_long(i));
- text_io.put_tine("After ufs of APPLI" &
rg—log.rg..log_entry{my_gcid, "APPL1",
“After uwfs " &
system.unsigned_byte'image(i) &8 " " &
config.gcid_t'image{my_gcid) & " " &
config.rg_t ' image{my_rg));

debug_trace.debug._log(1681212% ,byte_to_long(i});
rg_communication.queue_message(
my_gcid,
my_geid,
xmessage 'address,
natural (i),
xerror,
config.my_vg);
- if rg_communication.“/="(xerror,rg_communication.success} then
- text.io.put_tine(
-- rg_communicotion.tronsmit_message_status_t ' image(xerror));
.- end if;
debug..trace.debug_log{16%f3f3% byte_to_long(i));
for j 1. r~essage’range loop
rmessage(j) := 163FFS8;
end loop;
size := natural(rmessage’iast);
debug_trace.debug_log{16814f4% byte_to.lang(i));
-~ * message: max = 128
rg_communication.retrieve_message(
from.cid,
my..gcid,
rmessage ' address,
size,
rerror,
from_vg,
class);
if rg.communication.”/="(rerror,rg_communication.success) then
-- text_io.put_!line(
-- rg.comaunication.receive_message_status_t’ ' image(rerror});
nult;
else
debug.trace, debug_iag(16%f5fS% byte_to_long(i));
rg.log.rg_log—entry(my_gcid, “APPLI",
-- text_io.put_line("retrieve: from " &
"retrieve: frem " &
config.gcid_t'image(from_cid) & " to " &
config.gcid~t ' image{my_gcid) & " " &
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ioutila.hex(rmessage’'address) & " “ &
natural ‘image(size) & " to " &

ne_interface.vugid_t'image(froa_ug) & " " &
boolean'image{class.broadcast) & " * &
ne_interface.packet_class_t'image(ciass.packet) & * " &

ne_interface.exchonge_class_t ' image(class.exchange));
debug.trace.debug_lag{162{616% ,byte_to_long(i});

- rg_log.rg.log_entry(my.gcid, "RPPL1",
- text_io,.put_!ine(

-- io_utils.hex(fetch_long(rmessage'address)} & " " &
-- io_utils.hex(fetch_long(system."+"(rmessage'address, 4))) & "..." &
- io~utils.hex(fetch_lang{system."+"(rmessage’'address,

-- system.address_int(size-8}))) & * " &

-- io.utils. hex(fetch_long{system."+"(rmessage'address,

-- system.address_int(size-4))}));
end if;

-- add test of overrun

-- if system."="(i,10) and config."="(my_gcid,gcids.app!i_3) then

- loop
- null;
-- end loop;
- end if;
end loop;
end loop;

exception
when NUMERIC_ERROR =>
exception_log.exception_log_entry("APPLI", "
config.gcid_t'image(my_gcid));
when CONSTRAINT_ERROR =>
exception.log.exception_tog.entry("APPLI","
config.gcid_t' image(my_gcid));
when PROGRAN_ERROR =>
exception_log. exception_log—_entry("APPLI","
config.gcid_t ' image(my_gcid)};
when STORAGE_ERROR =>
exception_log.exception_iog_entry("APPLI1","
config.geid_t'image(my_geid));
wvhen TASKING_ERROR =>
exception_log.exception_.log_entry{"APPLI" "
config.geid_t'image(my_gcid));
when others =>
exception_laog.exception_log_entry("APPLI","
config.gcid_t'image(my_gcid));

end appli_t;

NUMERIC_ERROR gcid=" &

CONSTRAINT_ERROR  gcid=" &

PROGRAM_ERROR gcid=" &

STORAGE_ERROR  gcid=" &

TASKING_ERROR gcid=" &

OTHERS ERROR gcid=" &

==303300000000003000 300 53050 55030 0 %5 30 05 55355 00033 3 0 0 35353 )X 5 3350330335555 5 5>

==L CCLLCLLLLLCLLLLLLLLLLCLLLLCLLCLLLLLLLCLCCLCLLCLLLCLLCLLLLCLCLLCCedce

task body appl2_t is

my-gcid : config.gcid_t;

my_rg : config.rg_t;

-- generics for printing message

function fetch_long is new system.fetch_from_address(
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system.unsigned_!onguword);

function fetch_word is new system.fetch_from_address(
system,unsigned_word);

function fetch_byte is new system.fetch_from_address(
system.unsigned_byte);

xmessage : array (system.unsigned_byte range 0..60) of system.unsigned_byte;
xerror : rg_communication.transmit_message_status_t;

rmessage : array (system.unsigned_byte range 0..60) of system.unsigned_byte;
rerror @ rg-communication.receive.message_status_t;

from_cid : config.gcid_t;

from.ug : ne.interface.ugid.t;

size : natural;

class : ne_interface.class_r;

begin
text_io.put_line("Elaboration of APPL2");
for i in xmessage'range loop
xmessage(i) := i;
end loop;

accept start{gcid : config.gcid_t) do
my_gcid := gcid;

end start;

my-rg := config.gcid_config(my.gecid).rg;

rg_log.rg_log_entry{my_gcid, "APPL2",

-- text_io.put_line("At wfe of APPL2" &

config.gcid.-t'image(my_gcid} & " " 2
config.rg_t'image{my_rg));

loop
-~ * fapr loop: max = 61}
for i in xmessage'rangz loop
scheduler.wait_far_schedule;
-~ text_io.put_line("Ffter ufs of APPL2" &
-~ config.gcid_t'image(my_gcid} & " " &
-- config.rg_t " image(my_rg));

rg_communicat ion.send_message(
my_gcid,
my_gecid,
xmessage 'address,
natural (i),

xerror,
config. my_ug);
-~ if rg_communication."/="(xerror, rg_comnunication.success) then
-~ text_io.put_line(
-~ rg-communication.transmit_message_status.t' image(xerror));

- end if;

for j in rmessage’'range loop
rmessage(j) := 163FF®;

end loop;

size := natural(rmessage’last);

rg_communication.recd_message(
from_cid,
my-gcid,
rmessage’ address,
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size,
rerror,
from_vg,
class);
if rg.communication."/="(rerror,rg_.communication.success) then
-- text_io.put_iine(
-- rg_communicotion.receiue_message_status_t'image(rerror));
null;
else
rg-log.rg_lcg.entry{my_gcid, "RPPL2",
-~ text_io.put_iine(“read: from " &
“read: from " &
config.gcid_t'image(from_cid) & " to " &
config.gcid.t'image{my.gcid) & " * &

fo_utils.hex(rmessage’'address) & * " &
natura!'image{size) & " to “ &
ne_interface.vgid_t'image{from_ug) & " “ &
boolean’image{class.broadcast} & “ “ &
ne_interface.packet_class_t 'image(class.packet) & “ " &

ne_interface.exchange_class_t ‘image(cliass.exchange));
rg_log.rg_log_entry{my_gcid, "APPL2",
- text_io.put_line(

io.utils.hex(fetch_long{rmessage address)) & " " &

io_utils.hex(fetch_long{system."+"“(rmessage’address,4}}) & ". . ." &

jo_utils.hex{feichlong(system. + \rnessage’'address,
system.address_int(size-8)))) & " " &

io_utils.hex{fetch_long(system."+"(rmessage’address,
system.address_int(size-4))))};
end if;

end loop;
end loop;

exception
when NUHMERIC_ERROR =>
exception_log.exception_jog_entry{“APPL2"," NUMERIC_ERROR gcid=" &
config.gcid_t' image(my_gcid));
when CONSTRAINT_ERRGR =>
exception_log.exception_log_entry("APPL2"," CONSTRAINT_ERROR gcid=" 3%
config.gcid_t image{my_gcid));
when PROGRAN_ERROR =>
exception_.log.exception_log_entry("APPL2"," PROGRANM_ERROR  gcid="
config.gcid_t'image(my_gcid));
when STORAGE_ERRGR =>
exception_log.exception_log_entry("APPL2"," STORAGE_ERRCR gcid=" &
config.gcid.t image{my_gcid));
when TRSKING_ERROR =>
exception_log.exceptian_tog—entry("APPL2","“ TASKING_ERROR gcid=" &
config.gcid_t ' image(my_gcid));
when others =3
exception_log.exception_log_entry("APPL2",“ OTHERS ERROR  gcid=" &
config.gcid_t ' image{my_gcid));

(24

end appl2_.t;
= IOORRIOOODINNIININIIINNINIDIINIDNIDNINNINIIDNNIISIIINNINIIIIIIDIDIIINIIINNNILIS NI

end appl_test;
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sys_fdi.ada

== €€CCLLLELLCLLLCLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLCLLELLLLKLLLLCLLLCLLLLRLK

-- RBSTRACT package body system_fdi

- system_fdi defines the functions which must be performed by the

-- system fdi for the analysis of fault dato from all ugs. Currently,

-- only the inter ug presence test message reception ond the aralysis

- of its timeliness is implemented. In the event of failure of thia {est
-- a message is displayed in the RG4 fag.

-~ CONTENTS package body system_fdi

-- History:
--  16-Jun-92 Carol Babikyan
.- Created skeleton structures for system.fdi to retrieve messages fron

- local fdi on each UG

-- External Units:
- ne_interface is with'ed. Provides ne mapping.

-- Exceptions:
-- None declared. Predefined exceptians may be roised.

-~ 1/0:

-- message primitives used
-- VNt Specific:

--  None

-- N147 Specific:
-- Nene

-- XDADBA Compiler Specific:
-- Refer to Portability summary of listing

T A > T TP o W o " " - -~ o = o 4m = o e a A = o - — -

-- ne interface definitions

~- with ne_interface;

-- enable printing directly to screen

-- with text_io;

-- enable wait_for_schedule call

-- with scheduler;

-- enable access to clock and time parameters
-- with clock.extension; use clock.extension;
-~ with calendar; use calendar;

-~ configuration information
-~ with config; use config;
-~ with gcids;

-- message interfaces

-- with rg_communication;

-- need for addresses

-- with system; use systenm;
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-~ with unchecked_conversion;

-~ enable logging of information in different logs
-~ with rg.leg;

-~ with fdi_log;

-~ with exception_log;

-~ with fdi_msg;

-~ with fdi_globals;

package body system_fdi is

type vgid_status_r is record

inter_ug_to : calendar.time;
last_inter_vg-time : clock_extension.system_tick_t;
cur_inter_ug_time : clock_extension.system_tick.t;

end record;
vgid_status : array (ne_interface.ugid_t) of ugid_status_r;

initial_time : clock_extension.system_tick_t := 0;

==~ €L LLLLLLLLLLLLLLLLLLLLKLLLLLLLCLLLLLCLCLLLCLLdCddC€(CKCCLCegeel

task body system_fdi-t is
my-gcid : config.gcid_t;
my-rg : config.rg-t;

xmessage : fdi_mag.message_r;

xstatus rg_communicatian.transmit._message_status_t;
rmessage fdi_msg.message_r;

ratatus rg_communication.receive.message_status_t;
from.gcid : config.gecid.t;

from_vg : ne_interface.vgid_t;

size : natural;

class : ne_interface.class_r;

syndrome : fdi_globals.syndrome_r;

-- presence test buffer (syndrome info is soved for syndrome analysis)
type pt_buffer.r is record

from_ug : ne_interface.ugid_t;

syndrome : fdi_globals.syndrome_r;

class : ne_interface.class_r;
end record;

max.pt-entries : constant := 80;

type ptoentry.t is range 0..mox_pt_entries;

num_pt_entries : pt_entry_t;

pt_buffer : array (pt-entrg_t range !..max_pt_entries) of pt_buffer_r;

function ticks_to_int is new unchecked.canversion
(clock.extension.system_tick_t,system.unsigned_longuord);

function int_to_ticks is new unchecked_conuersion
(system.unsigned_longuord,clock_extension.system_tick_t);

" " " """ —-_—- - "> " " o e o " " -~ = " "= " = = v

-~ Compute.UG.Timeout computes the maximum time between receipt of inter-UG-
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-- presence test messages for eoach virtual group in the configuration.

- The timeout periad is computed as 3 times the frame time of the FDIR task
-- on the tested virtual group. Since FDI task executes as a rate group 4
~= task this is essentially 3 * the minor frame duration.

-- UWhen using the RE simulator this time must be exaggerated because the
- system timestamps are accurate and, o course, the ne sim is not!

- - " - —_——— T T = = W T T - A8 T W = = - = " " 4 " " " o " - = —

Procedure Compute_UG_Timeout is

frame_time_int : system.unsigned_longuord;

to_int : system.unsigned_longuword;

to_scale_factor : system.unsigned_longword := 3;

to.tick : . clock_extension.system_tick_t;
begin

for i in ne_interface.vugid_t loop

if config.vgid_config(i).redundancy /= config.redundancy_level_t(0) then

frame_time_int := ticks_to_int{cliock_extension.rep_to_tick
(config.vgid_config(i).frame));

toint := to_scale_factor * frame_time_int;

to_tick := int_to_ticks(to_int);

vgid_status(i).inter.ug_to := clock_extension.systick_to_time(to_tick);

initial_time;
initial_time;

vgid_status(i).last_inter_vug_time
ugid_status(i).cur_inter_ug_time
end if;
end loop;
end;

-~ Read._al!l.messages reads all messages and updates the infarmation relevant
-~ to the specific type of message.
- Inter_vg.presence_test messages are used for 2 purposes:

-- 1) the syndrome associated with the message is used in syndrome
-- analysis
-- 2} The time of receipt is used toc determine the next expected

-- arrival of an inter_vg_presence_test message. Failure to
-- receive this message within the allotted time impiies the
-- UG is faulty.

- Syndrome_exchange message contains the syndrome data for a single

- member of the system FD! UG, The receipt of scurce congruent messages
-- from each member of the system fdi UG is necessary to perform

-- syndrome analysis. Should one member of the system fdi UG be faulty
-- its data may be corrupted. Consequently, if a source congruent

-- message is received from the system fdi UG, it will be assumed that

- that message is a syndrome exchange message.

- - """ " " " — - " = = = = = o = = = = ————— = = — == ————— = — =

procedure extract_inter_vg_pt_info(i : in out pt_entry.t) is
begin
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pt_buffer(i).from_ug := from_vug;
pt_buffer(i).syndrome := syndrome;
ptbuffer(i).class 1= class;

-- \Update time of receipt of current inter_ug_presence_test
-- message
vgid_status(from_vg).cur_inter_ug_time := syndrome.stamp;

procedure extract_syndrome_exch_info is ’
begin

null;
end;

procedure check_for_missing_syndrome_exch is
begin
nulli;
- if from_vug = my_ug then
-- case class is
-- when R =>
-- when B =>
-- when C => »
-- when D =>
-- when E =>
-- when others => software error!!i!
-- end;
-- end if;
end;

begin
num_pt_entries := Q;
-~ * basic loop: max
read_loop:
loop
~- Receive the inter-UG presence test measage from local FODI )
size := rmessage'size/8;
rg-comrunication.retrieve_message(
from_gcid,
my.gcid,
rmessage’address,
size,
rstatus, ’
from_vg,
class,
syndrome);
case rstatus is
when rg_communication.success =>
case rmessage.message_type is
wvhen fdi_msg. !NTER_UG_PT =>
extract_inter_vg_pt_info(num_pt_entries);
when fdi_msg.SYNDROME_EXCH =>
extract_syndrome_exch_info;
when others => check_for_missing_syndrome_exch;
end case;

"
N -

when rg_communication.no_message =
exit read_loop;
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when others =>
-- text.io.put..line(
-- rg.communication.receive._message_status_t 'image(rstatus},,
exit read_loop;
end case;
end loop read_loap;

- O " YT T T e B Ty e - " - s 20 1 ] 4 = e o ——— -

- This procedure checks the timeouts of all active UGs. If the time has
- elapsed beyond the time expected for receipt of o message, the UG will
-- be diagnosed as faulty.

Procedure Check._inter_ug_timeouts is

delta_sys.ticks : clock.extension.system_tick.t;
begin

for i in ne.interface.ugid_t loop
if config.ugid.config(i).redundancy /= config.redundancy_level_t{Q) then

rg-log.rg_log_entry{my_gcid, "SYSTEN.FDI",
ne..interface.vgid_t 'image(i) &
clock_extension.system_tick_t'image
(ugid_status(i).last_inter_vg_time) & * " &
clock_extension.system_tick_t'image
(vgid_status(i).cur_inter_vg_time));

-~ Check the next_inter_vg_time to determine if it has expired
delta_sys_ticks :=
clock_extension.diff_sys_ticks( vgid_status{i).cur_inter_ug_time,
vgid_status(i).last_inter_ug_time);
if clock_extension.systick_to_time(delta.sys_ticks) >
vgid.status{i).inter_ug.to then
if vugid_status(i).last_inter_vg_time /= initial_time then
fdi_log.fdi_log_entry("SYSTEM_FD!",
“UG " & ne_interface.vugid_t'image(i) &
" failed Inter-UG timeout: " &
clock.extension.system.tick.t'image
(vgid_status(i).last_inter_ug_time) & " " ¢
clock_extension.system_tick_t'image
{vgid_status{i).cur_inter_ug_time));

end i f,;
end if;
vgid_status(i).last_inter_ug_time := ugid_status(i).cur_inter_ug_time;
end if;
end loop;
end;

L R e e e - - = A - 4y . - = — o

Procedure Analyze_syndrame is

-- This procedure analyzes the syndrome matrix received as a result of last
-- frame's syndrome exchange. The syndrome matrix contains the syndrome
-= patterns perceived by each member of the system fdi UG for each UG from
-- whom it received an inter_ug_presence_test messoage.
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begin
null;

end Analyze_syndrone;

Procedure Exchange_syndrome is

-- This procedure performs o series of source congruent exchanges to

-~ distribute the syndrome data for those inter UG presence test messages

-- preceived this iteration. Upon completion each member of the system FOI UG
-- will have congruent copies of the syndrome bytes.

begin
null;

end exchange_syndrone;

e e o = = = = - = = e = = h T T o . W % A

begin
text_io.put_line("Elaboration of SYSTEN_FDI");
accept start(gcid : config.gcid_t) do
my_gcid := gcid;
end start;

my.rg := config.gcid_config{my.gcid).rg;

rg_log.rg.log_entry{my_gcid, “SYSTEN_FDI ",
config.gcid_t ' image{my_gcid) & " " &
config.rg_t ' inage(my_rg));

-- Compute timeout times for each virtual group in the configuration
compute_vg_t imecut ;

loop
scheduler . .wait_for_schedule;
-- Read aony messages sent to System FOI
Read_ol |_messages;
rg.log.rg.log_entry(my_gcid, "SYSTEN_FDI",

pt_entry_t'image(num_pt_entries) & " messages read ");

-- Examine inter-ug presence test for timeouts
Check_inter_ug.timeouts;

-- Analyze syndrome received this frame
finalyze_syndrone;

-~ Exchange syndrame for next frame
Exchange_syndronme;

end loop;
exception
when NUNMERIC_ERROR =>
exceptian_log.exception_log_entry("SYSTEN_FDI"," NUMERIC_ERROR ");

when CONSTAAINT_ERROR =>
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exception_log.exception_log_entry("SYSTEN_FDI"," CONSTRAINT_ERROR");
when PROGRAN_ERROR =>

exception_log.exception_log_entry(“SYSTEN_FOI"," PROGRAN_ERROR");
when STORARGE_ERROR =>

exception_log.exception_log.entry("SYSTEN_FD!"," STORAGE_ERROR");
when IHSKING_ERROR =>

exception_.log.exception.iog.entry("SYSTEN_FDi"," TASKING..ERRGR");
when others =>

exception.iog.exception_log_entry("SYSTEN_FO!"," OTHERS ERROR");

end system.fdi.t;
==33303303305 9030 ) L3033 33053 3530553553533 3535335533533 55 555553333553 53355 35553355

end systea_idi;

)
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test_code.ada

with first_package;

with second_package;

pa.- age bady test_code is

task body test_t is

begin
loop
first_package.second;
second.package. first;
end loop;

end test_t;

end test_code;

first package.ada

package body first_package is
procedure first is

i : natural;

size : natural;

condition : natural;

a : natural;
b natural ;
c natural ;
d : natural;
e natura!;
b

for i in 1..2 loop
rg_communication.retrieve_message(a,b,c,190,d,e);

end loop;

-~ *® ghife foop: maox = 2

while condition < 10 loop
rg—communication.queue_message (a,b,c,50,d,e);
scheduler.wait_for_schedule;

end loop;

if condition > 20
-- ¥ message: max = 50
rg_communication.queue_message {(a,b,c,size,d,e);

else
-~ * message: max = 100
rg_communication.gueue.mcssage (c,b,c,size,d,e);
end if:
end first;
procedure second is
i : natural;
temperature : natural;
begin
-~ * for loop: max = 11
for i in t..natural loop
first;

scheduler.waoit_far_schedule;
if i >6 first;
end if;
end loop;
end second;
end first_package;
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second_package.ada

package body second_package is
procedure first is
a : natural;

b : natural;
¢ : natural;
d : naturg:;
e : natural;
begin

rg-communication.send_message{a,b,c,200,d,¢e);
end first;
end second_package;
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task_names.dat

appli.t
appl2.t
systea_fdi_t
test_t

done

list_of tasks.dat
appli_t 0 4 400 5 400 20
appl2_t 0 4 200 10 200 20
systen_fdi_t 0 4 200 10 200 20
appii_t 0 3 200 10 200 20
appl2_t 0 3 200 10 290 20
appli_t 0 2 400 S 200 20
appi2_t 0 2 200 10 200 20
appli_t 0 1 200 10 200 20
appl2.t 0 1 200 10 200 20
test_t U 1 200 10 200 20

filenames.dat

appli_t

USER: [ TREADUELL .AFTRIAPP_TEST.ADA; 3

appl2.t

USER: [ TRERDUELL .AFTR]IAPP_TEST.ADA;3

system_fdi_t

USER: [TREADUELL .AFTRISYS.FB! .ARDA; 12

testt

Appendix F

USER: { TREADUWELL .AFTAITEST_CODE.RDA; 6
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results.dat

All results are given in terms of microseconds.
The allotted minor frame time is 10000.

RESULTS for UG*0

TRSK: appli_t RATE GROUP: 4

HORST CASE PATH: number of packets queued: 7
nusber of messages queued: |
number of packets retrieved: 3
nusber of messages retrieved: |
number of packets sent: O
number of packets read: O
minimal delay: 608

TASK: appl2._t RATE GROUP: 4

UOGRST CASE PATH: number of packets gueued: 0
number of messages queued: 0
number of packets retrieved: 0
number of messages retrieved: 0
number of packets sent: ¢
number of packets read: 4
minimal delay: S34

TASK: system_fdi_t  RATE GROUP: 4

WORST CASE PRTH: number of packets queued: 0

) nupber of messages queued: §

number of packets retrieved: 48
number of messages retrieved: 12
number of packets sent: 0
number of packets read: 0
minimal delay: 3732

TASK: applil.t  RATE GROUP: 3

HORST CASE PATH: number of packets queued: 4
nunber of messages queued: |
number of packets retrieved: 3
number of messages retrieved: !
number of packets sent: 0
number of packets read: 0
minimal delay: 473

TASK: appl2.t RATE GROUP: 3

WORST CASE PATH: number of packets queued: 0
number of messages queucd: 0
number of packets retri.uved: 0
number of messages retrieved: 0
number of packets s=nt: %
nuaber of packets read: 4
minimal delay: 534

TASK: appli_t RATE GROUP: 2

WORST CRSE PATH: number of packet:s queued: 7
nuaber of messages queued: |
number of packets retrieved: 3
number of messages retrieuved: |
number of pockets sent: O
number of packets read: 0
minimal delay: 608

TASK: appl2_t RRTE GROUP: 2

HORST CASE PATH: number of packets queued: 0
numnber of messages queued: 0
number of packets retrieved: 0
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TASK:
UGRST

TASK:
HORST

TARSK:
UCAST

RATE GROUP TQTALS FGR APPLICATION TASKS

appli_t

appl2.t

test_

rate group
rate group
rate group
rate group

t

1:
2:
3:
4:

Appendix F

number of messages retrieved: 0
number of packets sent: 4
number of packets read: 4
minimal delay: 534
RATE GRAUP: |
CASE PATH: number

numaber
number
nuaber
number
numsber

number
number
number
number
number

number
number
number
number
number

2916
1142
1007
4874

OUERHEAD TOTAL

minor
minor
minor
minor
minor
minor
minor
minor

NINGR

NN N— O

frame
frame
frame
frame
frame
frame
frame
frame

FRANE

~N AN -~

: 7041
2043
2992
2081
1678
2043
2992
2138

OVERHERD
7041
2043
2992
2081
4678
2043
2992
2138

of packets queued: ¢
of messages queued: |
of packets retrieved: 3
of messages retrieved: |
of packets sent: O
of packets read: O
minimal delay: 473
RATE GROUP: 1
CASE PATH: number

of packets queued:

of messages queued: G

of packets retrieved: 0
of messages retrieved: 0
of packets sent: 4
of packets read: 4

minimai delay: 534
RATE GROUP: 1
CASE PATH: number

of packets queued: 6
of messages queued: 4
of pockels retrieved:
of messages retrieved: 4
of packets sent: 4
of packets read: 0
minimal delay: 1909

RG4
2959
4874
4874
1874
4874
4874
4874
4874

RG3
0
1007
1607
0
448
559
1007
0

RG4 did not satisfy its boundary in frame 0.
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errors.dat

The matching between tasks ond filenames is...
0 appil_t USER:{TRERDUELL.AFTAJAPP_TEST.ADA;3
! oppl2._t USER:[TREADUELL .AFTAJAPP_TEST.ADA;3J
2 system_fdit USER:[TREABUELL.AFTAJSYS_FD!.ADR;12
3 test_t USER:[TRERDUELL.AFTAJTEST_.CODE.ADA;6

SOFTURRE ANALYSIS FOR appli_t

The pockages found are.. .none

Now processing task appli_t

Assuming default size for queue_message
Task flodel ...

Type: 1 Ualue: -3 Depth:
Type: 55 Ualue: 6! Depth:
Type: 0 Ualue: -2 Depth:
Type: 7 Value: ? Depth:
Type: 8 Ualue: 3 Oepth:
Type: 51 Ualue: -2 Depth:
Type: S1 Ualue: -2 Depth:
PATH: 0 1 2

PATH: 3 4 S5 1 2

PATH: 3 4 5 6 0 1 2

The worst path is characterized by...

Queued: 7 Retrieved: 3 Sent: 0 Read: i

Pointer: 7
Pointer: 6
Pointer: -2
Pointer: -2
Pointer: -2
Pointer: 1
Pointer: O

rcrNnsLN —0O
O = MNNON - O

SOFTURRE ANALYS!S FOR appi2_t

The packages found are...none

Now processing tosk appl2_t

Unexpected task name -- found: appll.t expected: appt2.t
Assuming default size for queue_message

Assuming default size for send_message

Assuming default size for read_message

Task Hodel...

0 Type: | VUalue: -3 Depth:
Type: 55 VUalue: 61 Depth:
Type: O Ualue: -2 Depth:
Type: 9 Ualue: 4 QOepth:
Type: 10 Ualue: 4 Depth:
Type: S1 Ualue: -2 Depth:

6 Type: 51 Voalue: -2 Depth:
PRTH: 0 1t 2
PATH: 3 4 5 1 2
PATH: 3 4 S5 6 0 1 2
The worst path is characterized by...

Queued: 0 Retrieved: 0 Sent: 4 Read: 4

Pointer: 7
Pointer: 6
Pointer: -2
Pointer: -2
Pointer: -2
Pointer: |1
Painter: 0

N bW —-
O —~MN NN -—-O
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SOFTUARE ANALYSIS FOR system_fdi.t

The packages found are...none
Now processing task system_fdi_t
Assuming defauit size for retrieve_message
Procedure compute_vg.timecut found in USER:[TREADUELL.AFTAISYS_FO!.ADA;12
Type: 55 Ualue: -2 Depth: O Painter: 2
Type: 51 Uglue: -2 Depth: O Pointer: O
Procedure read_ail_messages found in USER:[TREADUELL .AFTAR}SYS_FD!.ADA; 12
Type: 54 Ualue: 0 Depth: O Pointer: -2
Ctr 0: Queued 0 Rtrud 48 Sent 0 Read @
Procedure extract_inter_ug_pt_info found in USER:[TREADWELL .AFTA]SYS_FD! ADA;12
Procedure extract_syndrome_exch_info found in USER:[TREADUELL.AFTAISYS_FOI . ADA; 12
Procedure check_for_missing.syndrome_exch found in
USER:[TREADUELL .AFTR]SYS_FDI .ADA; 12
Procedure check_inter_vg_timeouts found ip USER:[TREADUELL .AFTAJSYS_FDI ADA; 12
Type: 55 Ualue: -2 Depth: O Pointer: 2
Type: S1 Ualue: -2 Depth: O Pointer: O
Procedure analyze_syndrome found in USER: [ TREADUELL .AFTA]SYS_FD1.ADA; 12
Procedure exchange_syndrome found in USER:{TREADUELL.AFTA]SYS_FOI ADR;12
Task Model. ..
0 Type: | Uatue: -3 Depth: 0 Painter: 3
1 Type: O Ualue: -2 D0Oepth: | Painter: -2
2 Type: 34 Ualue: 0 Depth: | Pointer: -2
3 Type: 51 Uaiue: -2 Depth: 0 Pointer: O
Ctr 0: Queued 8 fetud 48 Sent 0 Read (]
PATH: 0 }
PATH: 2 3 0 !
The worst path is characterized by...
Queued: 0 Retrieved: 48 Sent: 0 Read: 0

SGFTUARE ANALYSIS FOR appti_t

The packages found are...none
Now processing task appli_t
Assuming default size far queue_message
Task Modef. ..

0 Type: 1 Ualue: -3 QDepth:
Type: 55 VUolue: 61 Depth:

Pointer: 7
Pointer: b

0
1 !
2 Type: 0 Ualue: -2 Depth: 2 Pointer: -2
3 Type: 7 Udalue: 4 Depth: 2 Pointer: -2
4 Type: 8 Ualue: 3 Depth: 2 Pointer: -2
5 Type: 51 Ualue: -2 Depth: 1 Pointer:
6 Type: 51 Ualue: -2 Depth: 0 Pointer: 0§
PATH: 0 1 2
PATH: 3 4 5 1 2
PATH: 3 4 5 6 0 1 2

The worst path is characterized by. ..
Queued: 4 Retrieved: 3 Sent: 0 Read: 0
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Appendix F

SCGFTUARE ANALYSIS FOR appl2.t

The packages faund are...none

Now processing task appl2.t

Unexpected task name -- found: appil_t expected: appl2..t
Assuming default size for queue_message

Rssuming default size for send.message

Assuming default size for read_message

Task Hodel...
0 Type: | Uafue: -3 Oepth: O Pointer: 7
I Type: 55 Ualue: 61 Depth: 1 Pointer: 6
2 Type: 0 Ualue: -2 Oepth: 2 Painter: -2
3 Type: 9 UValue: 4 QDepth: 2 Pointer: -2
4 Type: 10 Ualue: 4 Depth: 2 Pointer: -2
S Type: 51 Ualue: -2 Depth: 1 Pointer: |
6 Type: 51 Ualue: -2 Depth: 0 Pointer: 0

PATH: Q 1t 2

PATH: 3 4 S5 1 2

PATH: 3 4 S 6 Q0 1 2

The worsat path is characterized by...

Queued: 0 Retrieved: 0 Sent: 4 Read: 4

SOFTURRE ANALYS!S FOR appli_t

The packages found are...none

Now processing taosk appli_t

Assuming default size for queue.messoge
Yask Hodel ...

0 Type: 1 Ualue: -3 DBepth: 0 Peinter: 7
I Type: 55 Ualue: 61 Depth: 1 Pointer: 6
2 Type: 0 VUalue: -2 Depth: 2 Pointer: -2
3 Type: 7 Value: 7 Depth: 2 Pointer: -2
4 Type: 8 Uaglue: 3 Depth: 2 Pointer: -2
S Type: S1 Ualue: -2 Depth: | Pointer: |
6 Type: S1 Value: -2 Depth: O Pointer: 0

PRTH:; 0 1 2

PATH: 3 4 5 1 2

PATH: 3 4 5 6 0 1t 2

The worst path is characterized by. ..

Queued: 7 Retrieved: 3 Sent: 0 Read: 0
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Appendix F

SOFTUARE ANALYSIS FOR appl2-t

The packages found are...none

Now processing task appl2_t

Unexpected task name -- found: appli.t expected: oppl2.t
Assuming default size for queue_message

Assuming defoult size for send_message

Assuming default size for read_message

Task Modet...

0 Type: | Ualue: -3 Depth: 0 Pointer: 7
1 Type: S5 Ualue: 61 Depth: 1 Pointer: 6
2 Type: 0 Ualue: -2 Depth: 2 Pointer: -2
3 Type: 9 Ualue: 4 Depth: 2 Pointer: -2
4 Type: 10 VUalue: 4 Depth: 2 Pointer: -2
5 Type: S1 Ualue: -2 UOepth: 1 Pointer: |
6 Type: 51 Ualue: -2 Ddepth: Q0 Pointer: O

PATH: 0 t 2

PATH: 3 4 5 1 2

PATH: 3 4 5 6 0 1t 2

The worst path is characterized by. ..

Queued: 0 Retrieved: 0 Sent: 4 Read: 4

SOFTUARE ANALYS!S FOR oppli.t

The packages found are...none

Now processing task appli_t

Assuming default size for queue_message
Task Hodel. ..

0 Type: | Ualue: -3 Depth: G Pointer: 7
t Type: 55 Ualue: 61 Qepth: 1 Pointer: 6
2 Type: 0 VUalue: -2 DOepth: 2 Pointer: -2
3 Type: 7 Ualue: 4 QDepth: 2 Pointer: -2
4 Type: 8 Ualue: 3 Depth: 2 Pointer: -2
S Type: 51 Ualue: -2 Depth: 1 Pointer: |1
6 Type: S1 Ualue: -2 Depth: 0 Pointer: 0
PATH: 0 1 2

PATH: 3 4 5 1 2

PRTH: 3 4 5 6 0 1 2

The worst path is characterized by...

Queued: 4 Retrieved: 3 Sent: 0 Recd: 0
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Appendix F

SOFTUARRE ANALYSIS FOR appl2_t

The packages found are...none

Now processing task appl2_t

Unexpected task name -- found: appli.t expected: appl2.t
Rssuming default size for queue_message

Assuming default size for send_message

Rssuming default size for read_message

Task HNodel. ..

Type: 1 Uglue: -3 ODepth:
Type: 55 Ualue: 61 Depth:
Type: 0 Ualue: -2 Depth:
Type: 9 Ualue: 4 Depth:
Type: 10 Value; 4 Depth:
Type: 51 Ugiue: -2 Oepth:
Type: S1 Ualue: -2 Depth:
PATH: 0 1 2

PATH: 3 4 5 1 2

PATH: 3 4 5 6 0 1 2

The worst path is characterized by...
Queued: 0 Retrieved: 0 Sent: 4 Read: 4

Pointer: ?
Pointer: 6
Pointer: -2
Pointer: -2
Pointer: -2
Pointer: 1
Pointer: O

OWNEWN-O
O = NNN-—-O

SOFTUARRE ANALYSIS FOR test_t

The packages found are. ..

first_package

second_package

Now processing package second_package

Now processing package first_package

Now processing task test_t

Procedure second._package.first found in second_package.ada
Type: 9 Uatlue: 4 Depth: 0 Pointer: -2

F.oceduie first_package.first found in first_package.ada
Type: 54 Uglue: 0 Depth: Pointer: -2

Type: 56 Ualue: 2 Depth: Pointer: 4

Type: 7 Uglue: 1 Depth: Pointer: -2

Type: O Uolue: -2 Depth: Pointer: -2

Type: 51 Ualue: -2 Depth: Pointer:

Type: 54 Ualue: 1 Bepth: Pointer: -2

Ctr 0: Queued O Rtrud 8 Sent 0 Read O

Ctr 1V: Queued 3 Rtrud 0 Sent 0 Read 0

Procedure first._package.second found in first_package.ada

o0 - 00

Type: 55 Ualue: 11 Depth: Pointer: 16
Type: 54 Ualue: 0 Oepth: Pointer: -2
Type: 56 Ualue: 2 Depth: Pointer: S
Type: 7 Ualue: 1 QOepth: Pointer: -2
Type: O Ualue: -2 Depth: Pointer: -2
Type: S1 Uaglue: -2 Oepth: Pointer: 2
Type: 54 Value: | Depth: Pointer: -2
Type: 0 Uatue: -2 Depth: Pointer: -2
Type: 2 Ualue: -2 Depth: Pointer: 1S

Type: 54 Ualue: 2 Depth:
Type: 56 Value: 2 Depth:

Pointer: -2
Pointer: 13

Type: 7 Ualue: | Depth: Pointer: -2
Type: 0 Value: -2 Depth: Pointer: -2
Type: 51 Uglue: -2 Depth: Pointer: 10
Type: 54 Ualue: 3 Depth: Pointer: -2

-t NIAR W W NN = et e RN o o O

Type: 52 Ualue: -2 Depth: Pointer: 8
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Appendix F
Type: St Ualue: -2 Depth: 0 Pointer: O
Ctr 0: Queued 0 Rtrud 8 Sent 0 Read 0
Ctr 1: Queued 3 Rtrud 0 Sent 0 Read 0
Ctr 2: Queued 0 Rtrud 8 Sent 0 Read 0
Ctr  3: Queued 3 Rtrud 0 Sent 0 Read 0
Task Model. ..
0 Type: 1 Value: -3 Depth: 0 Pointer: 19
{ Type: 55 Ualue: 11 Depth: 1 Pointer: 17
2 Type: 54 VUalue: 0 Depth: 2 Pointer: -2
3 Type: 36 Ua .e: 2 Depth: 2 Peinter: 6
4 Type: 7 Ualue: ! Depth: 3 Pointer: -2
5 Type: O Ualue: -2 Depth: 3 Pointer: -2
6 Type: S1 Ualue: -2 Depth: 2 Pointer: 3
7 Type: 54 Ualue: ! Depth: 2 Pointer: -2
8 Type: O Ualue: -2 Depth: 2 Pointer: -2
9 Type: 2 Ualue: -2 Depth: 2 Pointer: 16
10 Type: 54 Value: 2 Depth: 3 Pointer: -2
11 Type: 56 VUalue: 2 Depth: 3 Pointer: 14
12 Type: 7 Value: 1 Depth: 4 Pointer: -2
13 Type: 0 Value: -2 Depth: 4 Pointer: -2
14 Type: S1 VUalue: -2 Depth: 3 Pointer: 11
15 Type: 54 Value: 3 Depth: 3 Pointer: -2
16 Type: 52 VUalue: -2 Depth: 2 Pointer: 9
1? Type: S1 Value: -2 Depth: t Pointer: |
18 Type: 9 Ualue: 4 Depth: 1 Pointer: -2
19 Type: S1 VUalue: -2 Depth: O Pointer: 0
Ctr G: Queued 0 Retud 8 Sent 0 Read
Ctr 1: Queued 3 Retud 0 Sent 0 Read
Ctr 2: Queued 0 Retud 8 Sent 0 Read
Ctr 3. Queued 3 Retud 0 Sent 0 Read
PATH: 0 1 2 7 8
PATH: 0 1 2 3 4 5§
PATH: 6 7 8
PATH: 6 3 4 §
PATH: 6 7 8
PATH: 16 17 1t 2 7 8
PATH: 16 1?7 1 2 3 4 5
PATH: 16 172 1819 0 1 2 7?7 8
PATH: 16 17 1819 0 1 2 3 4 5
PATH: 9 101516 17 1 2 7 8
PATH: 9 10151617 1 2 3 4 5§
PATH: 9 10 1S 16 171819 0 t+ 2 7 8
PATH: 9 101516 171819 0 1 2 3 4 S
PATH: 9 10 11 12 13
PATH: 14 1S 16 1?2 1 2 7 8
PATH: 14 1S 16 17 1 2 3 4 5
PATH: 14 15 16 1?7 1819 0 1 2 7 8
PATH: 14 1S 16 1?7 1819 0 1 2 3 4 5
PATH: 14 11 12 13
PATH: 14 1S 16 17 1 2 7 8
PATH: 14 15 16 1?7 1 2 3 4 5
PATH: 14 15 16 172 1819 0 1 2 7 8
PATH: 14 1S 16 171819 0 1 2 3 4 §
The worst path is characterized by...
Queued: 6 Retrieved: 16 Sent: 4 Read: 4]
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EX: case NEU_CONSTRUCT:
++counter_set .new_construct;
break;
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Appendix G %
A Checklist for Adding Critical Constructs
1. Designate a constant name that is to be used to refer to the new construct and add the ~1
constant definition to the list in HEADER.H
EX: define NEU_CONSTRUCT 28
2. Add a new integer parameter to the counter_set structure definition in
HEADER.H.
EX: int new_construct;
3. Add the new delay parameter to the constant_| i st structure definition listed in
HEADER.H.
EX: int new_construct_const;
4. Add the new construct to the end of the list in “key_words.dat.”
5. Add the delay constant corresponding to the new construct to “constants.dat.”
EX: new_construct_delay 33
6. Add the new delay parameter to the read_1ist procedure for reading in delay
constants.
EX: fscanf(list_file,”Xs Xd\n”, dummy_string,&dummy_int); PY
delay_data->new_construct_const = dummy_int;
7. Add the new parameter to the initialization lists found in task_parse.
generate_paths,and find_worst_path.
EX: final_counter.new_construct = 0;
8. Add the new construct to the switch statement in the search procedure. If it is a
subprogram call, group it with the message passing calls and use the val id_cal |
procedure to verify any occurrence of the new construct. The code should lcok
something like this...
EX: case NEU_CONSTRUCT:
if(ualid_call{this_line->entrylil.name,
search_list->entrylj]l.name) == VYES)
( skeleton->entry[skeleton->iength).type = NEU_CONSTRUCT;
skeleton->entry[skeleton->length].value = UNDEF INED;
if (flags->ctr_active) ++skeleton->length;
;reak; l
9. Add the new construct to the summation in check_ctrs. !
10. Add the new construct to the switch statement in parameterize.




11.

12.

Appendix G

Add the new construct to the calculations in calculate_t ime.
EX:sua += delay_data->new_construct_const*counter_set.neu_construct;
Add the new construct to the parameter listing in write_file.

EX: fprintfloutfile, “ new construct instances: %d\n”,
uglil.task[j].counter_set.neu_construct);
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