
NAVAL POSTGRADUATE SCHOOL
Monterey, California

AD-A267 403 DTIC
1111111 N 1111 S ELECTE

AUG 4193

THESIS

Design And Implementation of an
Interface Editor for the

Amadeus Multi-Relational Database
Front-end System

by

James Phillip Hargrove

March 1993

Thesis Advisor: C. Thomas Wu
Second Reader: LCDR John A. Daley, USN

Approved for public release; distribution is unlimited.

93-17445
IIEIIhi[~II1illI •.x 9 3 8 3 0 0 1

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST

QUALITY AVAILABLE. THE COPY

FURNISHED TO DTIC CONTAINED

A SIGNIFICANT NUMBER OF

PAGES WHICH DO NOT

REPRODUCE LEGIBLY.

U NCLASSIHIED
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
la. REPORT SECURITY CLASSIFICATION UNCLASSIFIED lb. RESTRICTIVE MARKINGS

2a SECRITY CLASSIFICATON AUTHORITY3. DISTRIBUTIONAVAILABILITY OF REPORT

2b. DECLASSIFICATIONADOWNGRADING SCHEDULE -Approved for public release;
distribution is unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

NAME OF (E3FOR 3IFG ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
omputer 9cicence ept. (if aplibld) Naval Postgraduate School

Naval Postgraduate School CS

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State. and ZIP Code)

Monterey, CA 93943-5000 Monterey, CA 93943-5000

8a. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if applikable)

8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGR, M PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO. ACCESSION NO.

11. TITLE (Include Security Classification)
DESIGN AND IMPLEMENTATION OF AN INTERFACE EDITOR FOR THE AMADEUS MULTI-RELATIONAL DATABASE
FRONT-END SYSTEM (U)

LI8? amfeisWp argrove, USN
Ja TYP Q.REP.ORT 13b. TIME COVERED 03/93, 14. DATE OF REPORT (Year, Month. Day) 15. PAGE COUNT
Mster s Ihesis I FROM 02/91 1 930325 286
Y NOTATION The views expressed in this thesis are those o1 the author and do not reflect the of ficial policy or
position of the Department of Defense or the United States Government.

17 COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD_ GROUP_ SUB-GROUPOBJECT-ORIENTED PROGRAMMING, USER INTERFACE DESIGN, PROGRAPH,

VISUAL PROGRAMMING, FORM-BASED INTERFACE, DATABASE SYSTEMS

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

This thesis extends the Graphical User Interface of a prototype multi-relational database front-end system, called
Amadeus. System enhancements are realized through the application of Object-Oriented Programming (OOP) and
Human-Computer Interface (HCI) design principles. Knowledge gained from each topic has been incorporated into
the design and implementation of a Form-based interface for database data entry and display.

The focus of this thesis is divided between two issues: the development of a set of tools for creating and using Forit
objects; and the design of the Form object itself. Form creation is accomplished using an application program called
the Intierface Editor module. The Interface Editor is one of six modules which, together, comprise the Amadeus sys-
tem. Form manipulation occurs in a second application which implements basic program methods for controlling data
entry and display processes.

Design and implementation of this thesis was accomplished using the Prograph programming language and devel-
opment environment, which provided a basic set of system classes essential to the implementation of the Form object
and Graphical User Interfaces.

20. DISTRIBUTION/AVAILABIUITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

[3 UNCLASSIFIEDAJNLIMITED [] SAME AS RPT. [] DTIC USERS UNCLASSIFIED
" ",,IIDIVDUAL 2 2 b.TE LEPHONEcde Area Code) 22c. E SYMBOLlesor •.tomas wu (408) 656-2174 CW

DD FORM 1473, 84 MAR 83 APR edition may be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE

All other editions wte obsolete UNCLASSIFIED

Approved for public release; distribution is unlimited

Design and Implementation of an Interface Editor for the
Amadeus Multi-Relational Database Front-end System

by
James Phillip Hargrove

Lieutenant Commander, United States Navy
BA, University of California, Berkeley, 1981

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
March, 1993

Author:
"/JJaniýýllip Hargrove

Approved By: s:vio

LCDR nA.DaleyUS, SecondReader

Department of Computer Science

ABSTRACT

This thesis extends the Graphical User Interface of a prototype multi-relational data-

base front-end system, called Amadeus. System enhancements are realized through the ap-

plication of Object-Oriented Programming (OOP) and Human-Computer Interface (HCI)

design principles. Knowledge gained from each topic has been incorporated into the design

and implementation of a Form-based interface for database data entry and display.

The focus of this thesis is divided b&tween two issues: the development of a set of tools

for creating and using Form objects; and the design of the Form object itself. Form creation

is accomplished using an application program called the Interface Editor module. The In-

terface Editor is one of six modules which, together, comprise the Amadeus system. Form

manipulation occurs in a second application which implements basic program methods for

controlling data entry and display processes.

Design and implementation of this thesis was accomplished using the Prograph pro-

gramming language and development environment, which provided abasic set of system

classes essential to the implementation of the Form object and the Graphical User Interfac-

es developed for this thesis.

Accesion For

NTIS CRA&I
DTIC TAB1
Undnnotinced

JLJsliftCitahon

By

Distribution i

D'IC QUALrY IrNSPECTED 3 Avadldblfity Codes

i Aviill &14i10

Ditive ia

TABLE OF CONTENTS

1. INTRO DUCTION ... 1

11. TERMINOLOGY, BACKGROUND AND BASIC CONCEPTS 4

A. HIGH-LEVEL PROGRAMMING LANGUAGES .. 4

B. VISUAL PROGRAM M ING .. 4

C. OBJECT-ORIENTED PROGRAM M ING .. 5

1. Datia Hiding (Encapsulation) .. 5

2. Classes and Objects .. 6

3. M essages .. 6

4. Inheritance .. 6

5. Polymorphism ... 8

D. DATAFLOW DIAGRAMS & DATAFLOW PROGRAMMING 8

1. Dataflow Diagram s .. 8

2. Dataflow Program ming ... 8

E. PROGRA PH ... 9

1. Application Builder .. 10

F. DATAFLOW QUERY LANGUAGE ... 11

G. AM ADEUS ... 13

1. Database Engine ... 15

2. Interface Editor .. 15

3. Database Editor .. 15

4. Relation Editor .. 15

5. Query Editor ... 15

6. Program Editor ... 16

Ill. HUMAN-COMPUTER INTERFACE DESIGN ISSUES 17

A. INTRODUCTION ... 17

1. A Brief History ... 17

B. TYPES OF USER INTERFACES .. 19

1. Command Languages and the Command Line Interface 19

iv

2. G raphical User Interfaces ... 21

3. D irect M anipulation .. 22

C. EVALUATION AND USEABILITY OF USER INTERFACES 22

1. Evaluation 22

2. Usability .. 23

D. D IA LO G DESIG N .. 23

1. D ialog Design Rules ... 24

2. U ser Feedback ... 25

IV. DESIGN AND IMPLEMENTATION .. 27

A . D EVELO PM ENT PRO CESS .. 27

B. USER INTERFACE CONSIDERATIONS ... 28

C . TH E INTERFA CE ED ITOR .. 29

1. Program Control Decisions ... 29

2. Icon Design ... 30

3. End-User Views .. 31

4. Class Descriptions .. 31

5. User Interface ... 33

a. M enu Com m ands ... 34

b. The Icon Bar ... 35

6. W indows .. 36

a. The D esign Form W indow .. 38

b. Edit Form W indow ... 41

c. Tab Order W indow .. 42

d. The Help W indow ... 44

e. Field Inform ation W indow .. 45

D. THE FO RM USE A PPLICATIO N ... 46

1. Program Control Decisions .. 46

2. Class Descriptions .. 46

3. User Interface ... 48

4. W indows .. 48

V

a. Input Form Window .. 48

b. Display Form W indow .. 49

E. THE FORM OBJECT ... 50

1. Form Object ... 50

2. Field Object .. 51

3. W indows .. 52

4. User Interaction ... 52

5. Form M ethods ... 52

6. Data Validation ... 52

7. Input Form .. 53

8. Display Form ... 53

9. Form Creation and Editing ... 53

10.Form Use ... 53

a. Input Forms ... 54

b. Display Forms .. 58

V. CONCLUSIONS & RECOMMENDATIONS FOR FURTHER RESEARCH ..61

A. SUM M ARY ... 61

B. CONCLUSIONS .. 61

C. SUGGESTIONS FOR FURTHER RESEARCH .. 62

APPENDIX A (DEVELOPMENT NOTES) ... 65

APPENDIX B (PROGRAPH BASICS) .. 68

APPENDIX C (DATABASE BASICS) .. 76

APPENDIX D (INTERFACE DESIGN GOALS AND CONCERNS) 78

APPENDIX E (PROGRAM LISTINGS) .. 82

REFERENCES .. 274

INITIAL DISTRIBUTION LIST ... 277

vi

ACKNOWLEDGEMENTS

I would like to thank the following persons for their advice, assistance and

encouragement during the course of this thesis research: Professor C. Thomas Wu, LCDR

John A. Daley, USN, LCDR Kim L. Kotlar, USN, LT Robert S. Lovejoy, USN, LCDR

Andy Melton, USN and ILT Turgay Cince, Turkish Army.

vii

I. INTRODUCTION

This thesis investigates two separate topics, object-oriented programming and

Human-Computer Interface (HCI) design. Knowledge gained from each is applied to the

design of a Form-based interface for database data entry and display to be used in

conjunction with a new relational database query language called Dataflow Query

Language (DFQL). Central to the Form-based interface is the design of a Form object

which is an abstract representation of a computer generated Form (and its component

parts). Forms of various types are common in everyday life. Examples include income tax

forms, questionnaires, job applications, invoices and order forms. Form-based interfaces

are .,ppular for database applications since they extend the paper form by creating a new

computer metaphor for these familiar objects. Users are thus able to manipulate form

images through a Graphical User Interface (GUI) in a similar manner as they would a paper

form. This ability greatly assists user interaction with the system, since users see a display

of all related fields and have a feeling of control over the data entry process

[Schneiderman92 page 71; pages 132-133]. Additionally, few instructions are necessary

since the computer-displayed form so closely resembles familiar paper forms

[Schneiderman92 page 132].

The Form-based interface discussed above actually consists of two separate

applications: The Interface Editor module and the Form Use application program. The

Interface Editor is one of six modules which, together, comprise a prototype multi-

relational database front-end system called Amadeus.1 The purpose of the Interface Editor

module is to provide users with a tool for creating and editing custom data entry and display

Forms for use by Amadeus' Query Editor module. The Query Editor uses the DFQL query

language for database manipulation, providing an "improved interface to the relational

1. Amadeus and DFQL will be discussed further in Chapter II.

model of database management" [Clark9l p. 25]. Forms are used in conjunction with

DFQL queries to make da'xta entry and di.,play more efficient for the system user.

The Interface Lditor module is a stand-alone application program which is intended to

be used separately from the Amadeus database definition and manipulation modules. This

sepaiation results in important advantages:

1. First, a clear distinction between Form creation and use is realized, simplifying the

user interfaces for both the Interface Editor and other Amadeus modules.

2. Secondly, separating the Interface Editor functions from the remainder of the Amadeus

modules keeps application size to a minimum while supporting general object-

oriented programming goals by assisting in modular program development, testing

and debugging.

The Form Use application program is used to validate the Interface Editor's Form

creation capability, and incorporates control functions for displaying and controlling Form

objects used for data entry and display. The component parts of the Form Use application

will ultimately become part the Amadeus Query Editor module, which contains query

editing and execution methods for the entire system. The Query Editor module is currently

the topic of another thesis project, and integration of the Form Use functions will be

accomplished as part of that work.

All design and programming for this thesis was accomplished using the PrographTm2

programming language and development environment. Prograph is a visual language based

on the dataflow paradigm. Since Prograph uses the Macintosh ROM-based toolbox and

operating system managers, the Interface Editor and Form Use interfaces take on a

distinctive Macintosh "look and feel".

Prograph language features relating to program development and source code listings

for this thesis are discussed in Chapter II and Appendix B. Relevant Human Computer

Interface design and implementation issues are discussed in Chapter I11. The design and

2. Prograph is a trademark of The Gunakara Sun Systems, Ltd.

2

implementation of the Form object, Interface Editor and Form Use application are detailed

in Chapter IV. Chapter V provides a summary of this thesis, complete with conclusions and

recommendations for further research. Source code listings for the Interface Editor and

Form Use applications are contained in Appendix E.

3 II

II. TERMINOLOGY, BACKGROUND AND BASIC CONCEPTS

This chapter provides background information on the Prograph programming

language and development environment, DFQL and the Amadeus system. Each of these

concepts will be discussed briefly. An introduction to the Prograph language will then be

presented to assist in the interpretation of code listings found in Appendix E. Finally,

DFQL and Amadeus will be described. Additional information on these subjects may be

found in Appendices B and C.

A. HIGH-LEVEL PROGRAMMING LANGUAGES

One way of classifying a programming language is by the language's level of

abstraction. A language is considered higher-level than another if it can express a program

with less detail than the second language. This means that a high-level language enables a

programmer to concentrate more on what is to be done and less on how to do it

[MacLennar87 p. 485-486]. The authors of Prograph assert that it is a "very high level"

language. This implies that Prograph is about as far removed from machine language as is

practical, and is more abstract than traditional high-level programming languages such as

Ada, Fortran or Pascal.

B. VISUAL PROGRAMMING

S. K. Chang describes two general categories of visual languages: those that process

visual information and those that make use uf visual expression (known as Visual

Programming Languages). Languages that are used to process visual information are

usually traditional, linear languages that have been specifically enhanced to handle visual

4

information or objects. Visual Programming Languages, on the other hand, deal with

objects which are not normally expressed visually, but which are themselves visual in

nature. Prograph is a example of a visual, very high-level programming language.

C. OBJECT-ORIENTED PROGRAMMING

Object-Oriented Programming (OOP) differs from traditional procedural

programming by the way in which data and action are treated. In procedural programming,

data and action are treated separately. Typically, data structures are first defined, and then

a set of procedures are developed to manipulate the data structures. With OOP, however,

action and data are closely coupled (i.e., data and the actions associated with the data are

defined together).

This section discusses the general characteristics of Object-Oriented Programming

Languages (OOPLs), and defines basic terms and concepts.

1. Data Hiding (Encapsulation)

Data hiding is a process by which data can only be accessed by code which is

specifically associated with the data. Data hiding is also called encapsulation because data

and its associated code are placed together in a package or "capsule". Encapsulation is an

important feature of OOP languages, and is also incorporated into certain procedural

languages such as Modula-2 and Ada. By encapsulating code and data, the programmer

guarantees that portions of a program which do not relate to specific data remain separate,

and cannot access that data.

Data hiding aids in modular program construction, since details of the inner

workings of a package are not required by anything outside of the package. When applied

properly, modular program design enables packages (modules) to be added, modified or

removed from a program with no impact on other modules. This is generally not the case

with procedural languages which do not support encapsulation. In such languages, making

a change to one part of a program may impact other parts of the program, producing a

5

"ripple" effect of program and data dependencies. Encapsulation has been implemented in

the design of both programs developed for this thesis. Portions of the Interface Editor have

been incorporated into the Form Use application, which will, itself, ultimately be

incorporated into the Amadeus Query Editor.

2. Classes and Objects

An object is an entity that contains data and an associated set of actions that

operate on the data. Every object belongs to a class, which defines the implementation of

a particular kind of object. An individual object of a class is referred to as an instance of

the class. Classes can be thought of as templates for creating objects.

In object-oriented programming, when a class is created, attributes and methods

are defined for the class. Attributes are a type of place holder for a specific value. Objects

may have zero, one or many attributes. Methods represent known behaviors of instances of

a class, and are roughly analogous to subroutines in more traditional languages. [TGS90b

p. 146, TGS90c p. 4, Symantec9l p. 19-20] The objects, classes and methods developed as

part of this thesis are discussed in Chapter IV.

3. Messages

In object-oriented programming, objects communicate with other objects by

sending and receiving messages. Messages are analogous to sub-routine calls in a

procedural programming language, and are used to tell an object to perform a specific

action.

4. Inheritance

New classes can be defined in terms of existing classes through a process called

inheritance. The new class is called a subclass or child, and the existing class (from which

the subclass was defined) is called a superclass or the parent class. A subclass inherits all

of the attributes and methods of its parent class. The parent, in turn, may have inherited

attributes and methods from its parent class. A class inherits the combined attributes and

6

methods of its ancestors. However, a subclass does not actually copy this information.

Rather, it refers to the information as a parent class or superclass [Smith9l p. 65].

Subclasses are normally created when a new class is needed which differs slightly

from an existing class. This is possible because a subclass can have its own attributes and

methods not contained in the parent class. Prograph supplies a core of system-defined

classes that describe Macintosh interface data structures such as menus, windows and

window items. Subclasses of these system classes are developed by the programmer to

define specific program actions. Figure 1 shows the Prograph System Class Hierarchy.

SClasses

Application Menu Vindow Item Menu item Vindow

Text Canvas Click Iteml Scroll List

Edit Text Button Radio Set Chock Box Graphic

Scroll Text Pop-up Mem Piot loon

Figure 1: The Prograph System Clas Hierarchy

7

S. Polymorphism

Simply stated, polymorphism allows the same message to be sent to objects of

different classes. Each object invokes a method appropriate for its particular class [Smith9l

p. 8, 109; TGS9Ob, p. 93]. Using the Macintosh Finder as an example, the effect of the

Open command depends on the icon which has been selected. If a folder icon is selected, a

folder is opened. If an application icon is selected, the application is opened. In effect, an

Open message is being sent to various Finder objects, with each object applying its own

Open method, as appropriate. [Symantec9l p. 22-23]

D. DATAFLOW DIAGRAMS & DATAFLOW PROGRAMMING

1. Dataflow Diagrams

A dataflow diagram is a modeling tool that is used extensively in operations

research and computer science as an aid in systems analysis and design. A dataflow

diagram makes use of distinct graphical symbols to convey meaning, is inherently visually

oriented and is closely related to the directed graph.

2. Dataflow Programming

Dataflow programming is a natural extension of the dataflow diagram. A dataflow

program is itself a dataflow diagram, so this type of programming allows the construction

of two-dimensional graphical dataflow models that are directly translatable into computer

executable instructions. Thus, a dataflow program is, simultaneously, a system model and

an executable program.

Dataflow programming does not impose a specific ordering on program events.

Rather, data can be thought of as actively flowing throughout a program, triggering events

in a non-sequential manner as various data dependencies are satisfied, and corresponding

program instructions are executed. This active flow of data implies more than one

8

instruction can be evaluated simultaneously, making dataflow programming inherently

concurrent. [TGS90b]

E. PROGRAPH

Prograph is an object-oriented, graphic programming language and development

environment that supports the entire software design process. Prograph consists of the

following integrated components [TGS90a p. 1]:

(1) pictorial language,

(2) graphic editor/interpreter development environment,

(3) Application Builder object-oriented interface building toolkit, and

(4) 680x0 code compiler

Prograph's visual environment makes it different from other programming languages.

The language syntax is entirely pictorial, with text used only for comments and assigning

names to objects, classes, methods, etc. Code for Prograph applications are composed of a

series of dataflow diagrams consisting of operations (represented by icons) connected by

datalinks. Data flows into an operation at a terminal node located at the top of the operation

icon, and flows out of an operation from a root node located at the bottom of the operation

icon. Datalinks provide the paths along which data flows into and out of operations.

Dataflow diagrams in Prograph are displayed in case windows. Figure 2 shows a typical

case window.

Prograph, as implemented on the uni-processor Macintosh, does not support

concurrency. Although the Macintosh's uni-processor architecture limits program

execution to a single instruction at a time, there is no sequential ordering placed on the

execution of operations in a Prograph program. Therefore, the overall character of a

dataflow program is preserved.

9

Banner Case Controls

|[J {• case window 1:1 ,______--

Input Bar

Local
Method

:VM..tents mehOperator

"j_-. Operator
w/Control

Terminal

Root

Datalink

Output Bar

Figure 2: Prograph Case Window

1. Application Builder

Prograph incorporates an object-oriented, graphical application-interface toolkit

(the Application Builder) which seamlessly integrates the Prograph development

environment with the Macintosh ROM-based Toolbox I and operating system managers

[TGS90a, TGS90b]. Traditional User Interface Management Systems or Interface Toolkits,

which separate the user interface from the application program, require a complex,

sequential edit-link-compile-run cycle whenever changes are made to an application.

I. The Macintosh Toolbox is a collection of low-level routines that implement the Macintosh oper-
ating system and user interface. See also [Apple85].

10

However, since Prograph's Application Builder facilities are an extension of the editor and

interpreter, a dynamic run-edit-design-run program development cycle is employed which

significantly reduces application development time. Thus, the Application Builder

provides a seamless integration between the processes for developing user interfaces and

the classes and methods that implement the fundamental behavior of the application itself

[TGS90b p. 215-2161.

F. DATAFLOW QUERY LANGUAGE

The Dataflow Query Language (DFQL) is a visual, relational algebra which is used to

manipulate relational databases. Like Prograph, DFQL is a dataflow language, possessing

sufficient expressive power and functionality to allow a user to easily express database

queries. DFQL operators are constructed using three basic components: input nodes, a body

and output nodes. These components correspond to the Prograph constructs terminal, node

and root, respectively, and possess the same underlying principles and characteristics as

their Prograph counterparts. Figure 3 compares three DFQL primitive operators with their

equivalent Structured Query Language (SQL) queries. SQL has become the de facto

industry standard query language for relational Database Management Systems (DBMS').

However, SQL has problems with both its design and implementation [Codd88a, pages 45-

48, Codd88b pages 71-74, Codd90]. DFQL was developed to "allow users to achieve the

maximum utility from the relational model" by providing an "improved interface to the

relational model of database management" [Clark9l page 1; page 25].

DFQL operators can be grouped into two basic categories: primitive and user-defined.

Primitive operators have a one-to-one correspondence with methods in the implementation

language of the interpreter. User-defined operators are created from primitive operators and

possibly other user-defined operators which have been created previously. This provides a

great deal of freedom and flexibility when constructing queries, since commonly used

queries can be combined into compact, user-defined queries, eliminating the need to re-

It

construct them each time they are needed. Figure 4 shows a sample DFQL query, involving

both primitive and user-defined operators. Additional database concepts are briefly

discussed in Appendix C.

relation condition
SELECT DISTINCT
FROM relation

E condition
selec

relation2

relationi 'oin condition SELECT DISTINCT *
FROM relation 1, r1, relation2, r2WHERE join condition

joi

relationi relation2 SELECT DISTINCT *

FROM relationl
UNION
SELECT DISTINCT *
FROM relation2

Figure 3. DFQL Primitive Operators and Their Cowesponding SQL Queries

12

Construct User-defined Operator "SELECr-PROJECT":

relation condition

condition

condition relation relation

, saved as

output of (elec-po)
operator is
a relation

Construct DFQL Query using Primitive & User-Defined Operators

condition

relation condition relation

I •/aForm Namec

DISPLAY

so. Primitive Operator

(._..• User-defimed Operator

Figure 4: DFQL Query using Primitive and User-Defined Operators

G. AMADEUS

SQL has become the de facto industry standard query language for Relational

Database Management Systems. Although ANSI and ISO standards exist for SQL, each

RDBMS vendor normally supports its own SQL dialect. This presents a problem for the

13

user of a multiple back-end 2 RDBMS, since SQL queries for one RDBMS may not

necessarily run on a second RDBMS. A single front-end system that can act as an interface

between users and assorted back-end RDBMS is required. Amadeus is a prototype for such

a system, which takes an object-oriented approach for federating relational databases. The

objectives of Amadeus are [Wu91 pages 8-9]:

1. Provide an easy to use, yet powerful common language for accessing different types

of RDBMS, and

2. Shield the complexity of the underlying RDBMS.

Figure 5 compares the traditional DBMS arrangement and Amadeus.

U ser F ront- en
r n - n

cB

Database

traditional RDBMS with Single Back-end Database Amadeus & Multiple Back-end Databases

Figure 5: Comparison of Traditional DBMS and Amadeus

The key features of Amadeus are its use of the DFQL high-level visual query language

and an object-oriented architecture. By using DFQL as the front-end query language, users

do not have to learn different dialects for each RDBMS connected to the system. Rather,

DFQL provides a consistent, easy-to-use visual front-end interface for each back-end

RDBMS. Additionally, the object-oriented design of Amadeus ensures an easy to modify,

2. Typically, a DBMS is separated into two distinct parts: the "front-end" or user interface, and the

"back-end" which comprises the actual database. A multiple back-end system allows users to con-
nect to a number of different DBMS' from a single front-end.

14

extensible system, which is demonstrated by the designs of both the Interface Editor

module and Form Use application. Amadeus is composed of a number of modules which

can be tailored to support individual user requirements. The six modules include:

1. Database Engine

This module performs all database operations by either carrying out the

operations internally (by using the kernel database engine) or by delegating the operations

to a back-end RDBMS. In the latter case, generated SQL statements are passed to the back-

end for processing. Each supported RDBMS has its own corresponding Amadeus database

engine module (e.g., Oracle database engine, Ingres database engine, DB2 database engine,

etc).

2. Interface Editor

The Interface Editor module is used to design input forms, output screen displays

and hardcopy reports. The Interface Editor allows or disallows certain types of control

objects according to the types supported by the connected RDBMS. The design and

implementation of the Interface Editor module comprises a major portion of this thesis.

3. Database Editor

The Database Editor module is used to define and modify databases. This module

adjusts itself to allow different access controls to each database, depending on the

connected back-end RDBMS.

4. Relation Editor

The Relation Editor module is used for defining and modifying relations. The

module allows users to define relations according to the rules of the connected back-end

RDBMS.

$. Query Editor

The Query Editor module is used to perform all aspects of database operations.

The module allows identical DFQL diagrams to be used for querying different connected

15

back-end RDBMS. Since each RDBMS employs its own dialect of SQL, the Query Editor

gener tes appropriate SQL statements tailored to the connected RDBMS. All of this is

transparent to the user who is formulating the query. Forms created by the Interface Editor

module are used by the Query Editor to support data input and output (display). Objects

required for data input, display and type checking have been developed and implemented

as part of this thesis, and will ultimately be integrated into the Query Editor.

6. Program Editor

The Program Editor module is used for creating database application programs.

The module is not yet implemented.

16

III. HUMAN-COMPUTER INTERFACE DESIGN ISSUES

A. INTRODUCTION

This chapter provides a brief discussion of Human-Computer Interface (HCI) design

issues relevant to the design and implementation of the Interface Editor module and Form

Use application program. Additional HCI issues are discussed in Appendix D.

Human-Computer Interface (HCI) design is a constantly evolving, multi-disciplinary

field of study that focuses on computer systems and the way in which people interact with

them. Contributions from the fields of computer science, human factors, psychology,

graphic arts and education, play an essential role in the HCI design process. The field is

relatively new 1, and is being influenced "by the tide of development - by the persistent

flood of hardware and software products in the marketplace, and by the changing nature of

how they are created, purchased and put into use." [Winograd9O, p. 443]

1. A Brief History

Grudin identifies evolutionary stages of user interfaces by describing the

following five levels of user interface focus. These levels correspond to general

characteristics of user interfaces at various evolutionary stages, from the 1950's (level one)

into the future (stages four and five) [Grudin9O p. 261-265]:

1. The interface as hardware.

2. The interface as software

3. The interface as terminal.

4. The interface as dialogue.

5. The interface as work setting.

1. The Association of Computing Machinery (ACM) held its first conference on Computer and Human
Interaction (CHI) in 1981. The ACM special interest group on Computer-Human Interaction (SIGCHI) was
founded shortly thereafter, and held its first annual conference in 1983.

17

The first user interfaces were developed in the 1950's, and were tied directly to

computer hardware. This did not present a problem, since engineers were the primary users

of computers and were quite comfortable working at the machine-level. In the 1960's and

1970's, user interfaces began taking on forms which better assisted computer programmers.

These new interfaces included high-level programming languages, operating systems,

compilers, debuggers and assemblers. During this period (level two), the standard teletype

was the preferred means of communicating with a computer. Bit-mapped graphics and

cathode-ray tubes (CRTs) gradually replaced the more primitive interface devices, but for

the most part, the governing concept of the time remained "the 'friendliest' user interface

was the briefest user interface" [Ambler89 p. 19].

The proliferation of the personal computer in the mid-1980's saw the emergence

of new computer markets aimed at the non-prcgrammer. This was accompanied by a shift

of focus in user interfaces towards visual displays and interactive computing systems (level

three). This focus is intact today; is dominated by research into basic perceptual and

cognitive processing issues [Grudin90 p. 264], and influences the design of the interfaces

developed for this thesis.

The last two levels of user interface focus (levels four and five) involve more

abstract concepts and relationships. At these levels interface actors, agents, dialogs and

Virtual Reality/Virtual Environments enter into the realm of user interface design.

Specifically, level four involves a higher-level cognitive focus and attempts to model end-

user goals and plans, develop a sense of dialogue with the user, and create adaptive user

interfaces. Level Five is directed towards the work se: ng. where computers are expected

to play an important role in supporting group working cnvironments. Examples of such
"groupware" systems include electronic mail, co-authorship, distributed project

managemeat and group decision support. [Grudin90 p. 264-265]

The five levels of interface focus are summarized in the following table

[Grudin90 p. 265]:

18

Table 1: SUMMARY OF THE DISTINCTIONS ACROSS LEVELS OF INTERFACE FOCUS

Level 1 Level 2 Level 3 Level 4 Level S
Interface as Interface as Interface as Interface as Interface as
hardware software terminal dialogue work setting

Principal Engineers/ Programmers End users End users Groups of
users programmers End users

Human factors Cognitive

Interface Electrical Computer cognitive psychology. Social psych.,
specialist engineering science psych cognitive anthropology.
disciplines graphic design science, (dra- organizational.

matic arts9) etc.

Largely infor- Largely infor- Laboratory Wizard of Oz, Ethnographic,
Research mai Mal experiment thinking contextual.
Methods aloud, data participant

capture observer

Duration of Microseconds/ Milliseconds/ Seconds Minutes Days
basic events hours hours
studied

Cost of Lowest Low Moderate High Highest
evaluation

Precision, Highest High Moderate Low Lowest
generality

Major focus 1950's 1960's-1970's 1970's-1990's 1980's- 1990's-

B. TYPES OF USER INTERFACES

1. Command Languages and the Command Line Interface

Command languages originated with operating system commands, and can be

distinguished by their immediacy and by their impact on devices or information

[Schneiderman92 p 1441. Commands are generally brief, transitory and produce an

immediate result on some object of interest. Command languages can be extended

somewhat through the use of macros which allow constructing reusable sequences of

19

commands. Command languages may consist of single commands or have complex syntax.

Operations may number into the thousands.

The command-line interface was the dominant form of user interface until the

early-1980's. Despite its recognized problems (including the potential for increasing

cognitive load by requiring a user to memorize a potentially large set of (not necessarily

logical) commands, flags, formats and associated syntax) the command-line interface

survives today in many popular systems 2 . One reason for this is simplicity. The command-

line interface is not as dependent upon high-speed computer architecture as are Graphical

User Interfaces (GUI). Additionally, command-line interfaces are relatively easy to

program. However, this does not necessarily translate into an intuitive, easy to use

interface, as evidenced by the following Unix command which blanks lines from a file:

GREP -V A$FILEA > FILEB

Schneiderman provides the following summary of command languages in

[Schneiderman92 pp. 174-175]:

Command languages can be attractive when frequent use of a system is anticipated,
users are knowledgeable about the task domain and computer concepts, screen space is
at a premium, response time and display rates are slow, and numerous functions that
can be combined in many ways are supported. Users have to learn the semantics and
syntax, but they can initiate rather than respond, rapidly specifying actions involving
several objects and options.

While command languages are appropriate for certain types of interfaces, they are

inappropriate for the implementation of the Interface Editor module and Form Use

application. The desired interface must be able to represent real-world objects (Forms) in

a graphical environment, and allow manipulation of these objects in much the same way as

a real-world Form object is manipulated. This requires a Graphical User Interface.

2. MS-DOS and Unix are examples of command-line based interfaces which still enjoy wide popularity
today.

20

2. Graphical User Interfaces

In the command-line interface, the user was restricted to working only with

textual information. The evolution of hardware (and accompanying software) technology

enabled researchers to move beyond the confines of the text-based interface by translating

familiar every-day objects into the Human-Computer Interface. For the first time, users

could manipulate information on a computer monitor in much the same way as they did in

the real-world. The computer screen became a metaphor for a desktop which contained

windows, icons, menus and other graphical objects. The concept of What-You-See-Is-

What-You-Get (WYSIWYG) was introduced in word-processing, so that the

representation of a page on a computer screen was identical, in nearly every respect, to the

printed output. Multiple windows could be overlaid onto the desktop. Each window could

be a terminal (or shell) on the computer, a terminal onto another machine, or the interface

to a software application (such as word-processing/desktop publishing, database,

spreadsheet, or graphics design packages). [Schneiderman92 page 198; Locke page 111

There are two major consequences (from a user's perspective) of the graphical

user interface. The first is that the user is more isolated from the operating system, and is

better able to concentrate directly on performing a task rather than having to interact with

the operating system in order to perform the task. For example, to open a file in a graphical

interface a user might select the document by clicking on its icon with a mouse key. The

underlying operating system commands for opening the document are invoked by the

interface. In a command-line interface, operating system commands to open the document

are invoked explicitly by the user.

Secondly, the graphical interface lead to the concept of consistency, whereby

certain properties of an application program's user interface possess predictable

characteristics and behaviors. Thus, a consistent interface is one in which specific

commands always result in the same action(s) and produce the same result(s). The Interface

Editor module presents a consistent interface for designing and editing Form objects.

21

3. Direct Manipulation

Direct manipulation refers to a type of graphical user interface in which the user

operates on a representation of the objects(s) of interest [Schneiderman92 p. 33]. Typically,

some type of a pointing device (such as a mouse, track-ball or pen and tablet) are employed

to permit user interaction with objects which appear on the computer screen. The Interface

Editor module employs a direct manipulation interface, which is discussed in Chapter VI.

C. EVALUATION AND USEABILITY OF USER INTERFACES

This section presents evaluation guidelines and usability parameters which have been

incorporated into the design of the Interface Editor module and Form Use application.

Usability parameters tend to reflect a user's attitude towards a specific interface, while

evaluation guidelines outline key principles for good HCI design.

1. Evaluation

Jakob Nielsen proposes the following four methods for evaluating a user interface

[Nielsen9Oa]: formally, automatically, empirically and heuristically. Of these methods, the

heuristic method has been applied to the design of the interfaces developed for this thesis.

Heuristic evaluation essentially entails looking at an interface and deciding what

is good and what is bad about it. To be consistent the evaluation should be based on a set

of established guidelines which, in practice, can easily number in the hundreds or

thousands. This is especially true if the guidelines define a specific interface standard. In

order to make the heuristic evaluation process more manageable, Nielsen and Molich

propose using the following set of heuristics which were chosen for their ability to explain

a large proportion of the problems encountered in interface designs [Nielsen9Oa].

1. Simple and natural dialogue

2. Speak the user's language

3. Minimize user memory load3

4. Be consistent

22

5. Provide feedback

6. Provide clearly marked exits

7. Provide shortcuts

8. Good orror messages

9. Prevent errors

2. Usability

Nielsen discusses five generally accepted usability parameters for computer

systems while applying them specifically to hypertext 4 systems. [Nielsen 90b] These five

parameters are:

1. Easy to learn. A new user can quickly get some work done with the system.

2. Effclient to use. Once a user becomes familiar with the system, a high level of

productivity is possible.

3. Easy to remember. After an absence from the system, the average user can quickly

get back "up to speed" on the system with little effort or re-training required.

4. Few errors. Use of the system does not in itself promote errors. A user can easily

recover from an error if/when one occurs and the system must be immune to

catastrophic errors.

5. Pleasant to use. Users like using the system (or, possibly more common, users do not

dread using the system).

D. DIALOG DESIGN

Dialog is essential to the successful interface design for interactive systems. Dialog

encompasses everything related to a user's interaction with a system, including user input

3. Studies of human information processing indicate that human channel capacity or processing power
is limited to roughly 2.5 bits of information, which translates to about seven (plus or minus two) items.

4. Hypertext refers to a text system consisting of non-sequential text nodes and connecting links.

23

and command selection, system feedback (such as alert, error and status messages) and

system error handling.

1. Dialog Design Rules

Schneiderman provides the following Eight Golden Rules of Dialog Design:

[Schneiderman92 pages 72-74] which have been incorporated, to varying degrees, into the

design of the user interface developed for this thesis.

1. Strive for consistency. Consistent sequences of actions should be required in similar

situations; identical terminology should be used in prompts, menus and help screens;

consistent commands should be employed throughout. The interface which controls

Form design and editing in the Interface Editor module are essentially identical,

presenting a consistent interface. Help windows are identical, although the topics for

each window differ depending on the window (Design Form, Edit Form, Tab Order,

Form View) which the user is currently working in.

2. Enable frequent users to use shortcuts. This is supported in the Interface editor by

the inclusion of command keys and an icon bar (discussed in chapter IV).

3. Offer infornmative feedback. For every operator action, there should be some system

feedback. Each action in the Interface Editor and Form Use applications provides

some form of user feedback. Icon Buttons invert when selected, dialogs sound an alert

when activated, the name of the active Form (in the Form View window) changes as

a Form is opened or closed.

4. Design dialogs to yield closure. Sequences of actions should be organized into groups

with a beginning, middle, and end. This principle is incorporated into the command

sequence required to design and edit a Form object.

5. Offer simple error handling. Design the system so the user can't make a serious

error. The system should be able to detect errors and offer simple, comprehensible

mechanisms for handling the error.

24

6. Permit easy reversal of actions. As much as possible, actions should be reversible.

This is the most difficult rule to implement. Reversal of actions is permitted only to a

limited extent in the Interface Editor module. Users have the option of saving or

discarding (without saving) Forms from the Design Form window. While editing a

Form, changes can be discarded without saving (essentially reversing a sequence of

editing commands). Certain actions, such as deleting a Form from disk, can not be

reversed.

7. Support internal locus of control. Users want to feel in control. Surprising system

actions, tedious sequences of data entries, incapacity or difficulty in obtaining

necessary information, and the inability to produce the action desired all build anxiety

and dissatisfaction.

8. Reduce short-term memory load. Keep displays simple. Offer on-line help and

assistance to the user. A simple on-line help system has been implemented in the

Interface Editor and Form Use applications. Additionally, program control features

have been kept to a minimum without sacrificing the power and flexibility of the

interface.

2. User Feedback

System feedback should be concise, descriptive and informative. A user should

not have to question the meaning of a system-generated error or status message. Interfaces

which isolate a user from the underlying operating system (such as the Macintosh Finder)

have the potential to confuse a user with poorly phrased dialogs which assume (or require)

intimate knowledge of the operating system. The user feedback features of the Interface

Editor and Form Use applications have been designed to avoid this type of problem. In

addition to the eight rules of dialog design listed in the last section, system feedback to the

user (including alerts, dialogs, prompts and error messages) for these two interfaces also

includes the following guidelines [Apple85]:

25

I. Use plain language.

2. Use an active voice.

3. Phrase messages so that they are unambiguous.

4. Use icons whenever possible. Graphics can describe some errors better than words,

and familiar icons can help users better distinguish their alternatives.

5. Dialogs should be informative, widih.6 enough information to enable the user to take

the appropriate action.

6. Never refer the user to external documentation for further clarification.

26

IV. DESIGN AND IMPLEMENTATION

A. DEVELOPMENT PROCESS

The Prograph programming environment lends itself extremely well to both structured

and evolutionary development processes [TGS90b, pages 230-231]. Structured

development is normally associated with a "top-down" design strategy employing a

structured, analytic approach to system design. Program code is not written until the project

has been completely specified. All documentation associated with the system (e.g.,

requirements, design and test documents as well as the actual program code), is rigorously

maintained. Any changes to the system are implemented in a manner similar to the original

design effort, and can be considered a mini-development process.

Evolutionary development, on the other hand, is usually associated with creative

prototyping styles such as those found in research settings where the goal is to explore new

ideas without being bound by rigid documentation and specification rules. Thus, changes

can be made quickly and easily.

Prograph's seamless editor/interpreter environment provides the tools necessary to

create and edit applications "on the fly", easily accommodating the evolutionary approach

to systems development. For this reason, and the fact that interface design in general

requires a great deal of flexibility while trying out new ideas, an evolutionary design

approach was chosen for this thesis. The visual nature of Prograph makes an application

both a system model and an executable program. In this respect, the application code

provides up-to-date dataflow diagrams of the Interface Editor module at each stage of

development.

27

B. USER INTERFACE CONSIDERATIONS

Two user interfaces were developed for this thesis: the Interface Editor module

interface and the Form Use application program interface. A central feature of the Interface

Editor's user interface is the incorporation of the following four separate methods for

controlling program action:

1. A menu bar (with associated pull-down menu commands).

2. Window Buttons.

3. Command-key equivalents to menu commands.

4. An Icon Bar.

The first three methods are included to conform to existing Macintosh user interface

guidelines. Most casual users of graphical user interfaces are familiar with button objects

and the menu bar, while more experienced users are generally comfortable with command

key equivalents for menu bar items. The fourth method is the icon bar, which is located at

the top right-hand comer of the Interface Editor's main window. The decision to include an

icon bar was based on a desire to extend the traditional Macintosh interface, provide an

alternative means of program control for the user and to explore icon development issues

in general. Icon buttons are also included as the control mechanism for the data input and

display windows developed for the Form Use application, and provide a consistent control

interface for all Amadeus-related Form manipulation actions.

Icon design presents a number of difficulties, chief among them the fact that what may

be clear to one person may be completely obscure to another. Alan Kay describes this

problem as a consequence of semantic focus, having to do with the amount of meaning and

connectivity that can be solved by looking at a diagram [Kay in Laurel9l, p. 202].

Poorly-designed icons do not readily suggest the underlying metaphor or associated

program action. In such cases, a user is forced to learn what the icon actually does rather

than what it suggests. This can be a difficult undertaking given an interface with dozens of

icon:,, a popular practice in a growing number of commercial software products today.

28

C. THE INTERFACE EDITOR

1. Program Control Decisions

Menu bar commands (and their command-key equivalents) remain hidden from

view until the appropr.ate menu item is selected, at which time its associated menu items

become visible. The icon bar, however, remains visible whenever the main module window

is active. Users are generally more comfortable in an environment where objects are

brought to them instead of having to search for the objects. This is referred to as user-

centered design [Tognazzini9l p. 172]. The inclusion of ihie icon bar satisfies this user-

centered design criteria, eliminating the requirement for a user to constantly search pull-

down menus or remember command-key combinations to select specific program control

actions.

Commands relating to Form management (New, Open, Close, Save, Save As,

Print) are found in both the icon bar and the Forms menu bar menu. Similar commands

are found in other Amadeus modules in a Database menu (for database management). The

Forms and Database menu contents are similar to the File menu commands found in the

Macintosh Finder. This presents a consistent interface across the Amadeus application and

Finder. Thus, there should be no confusion, for example, as to the meaning of the Open

command (which opens a Form in the Interface Editor Module, a Database in the Amadeus

database definition module, and a File in the Macintosh Finder). This is also consistent with

general object-oriented programming concepts, since a single command (messave), in this

case Open, results in different actions depending on the receiving object (Forms menu,

Database menu or File menu).

Not all Interface Editor icon bar commands are available as menu bar selections.

Commands without parallels in Amadeus' Database and the Macintosh Finder's File

menus are found only in the icon bar, and include Edit Form, Delete Form, Help and user

Preferences controls. The decision not to include these commands in the Forms menu

contributes to the overall consistency of the user interface.

29

2. Icon Design

Icons included in the Interface Editor present images commonly found on the

Macintosh desktop. Where no desktop correlations could be found, text was incorporated

as much as possible in an icon's graphic design. The intent of including icons in the user

interface was not to introduce a completely new set of metaphors, but to build on what a

user is (theoretically) already familiar with. The choice of individual icons was made after

examining commercial software products which employ icons for program control and a

survey of literature on icon design. The icon buttons themselves were given color and three-

dimensional shading to make them stand out against the rest of the interface. Muted colors

were chosen to avoid overpowering the user's senses.

It is not reasonable to assume that every user will correctly identify the purpose

of each icon the first time the interface is used. For this reason, consideration was given to

including text labels under each icon button identifying its function (e.g., "open" beneath

the open icon button). However, this tended to clutter the icon bar and required the use of

very small text which proved difficult to read. Ultimately a decision was made not to

include identifying text for each icon button. To compensate for the lack of amplifying text,

the Macintosh System 7 Balloon Help feature (which is supported by Prograph version 2.5)

is used to provide a brief synopsis of each interface object (buttons, icons, menus, menu

items and other window items).

Space has been left in the icon bar to accommodate additional icon buttons should

the need arise. ResEdit I and Prograph's Icon Button class (discussed later in this section)

provide a straightforward means of adding icon buttons to the interface, or modifying

existing icons, as required.

1. R•sEdit is a resource editor utility available from Apple Computer, Inc. which allows editing. cre-
ation and deletion of a Macintosh application program's resource data.

30

3. End-User Views

The Interface Editor module's design assumes two general types of users:

database administrators (who create databases and data entry/display Forms) and data

entry/retrieval personnel (who use the Forms). This distinction led to a decision to

implement the Interface Editor as a separate application rather than integrate it into the

Query Editor. One consequence of this decision was the loss of a straight-forward

connection to the database definition of the active database. The solution to this problem

was the creation of an external database definition disk file to substitute for the ability to

read information directly from an active database's class attributes. However, the decision

lead to a more manageable and maintainable system, due to the smaller program size and

accompanying modular design.

4. Class Descriptions

This section describes classes unique to the Interface Editor module. Prograph

System Classes will not be discussed. Figure 1 shows the Interface Editor module class

hierarchy.

10* Classes

,.C,.d'--
ts~p Twin Tab Ordw "top K Vtbtv

Edit 4

Figure 1: The Interface Editor Module Class Hierarchy

31

a. 1E Window

This class controls the user's view of the Interface Editor module. The main

module window is an instance of this class. All menu, button and icon bar selections from

the main window are handled by methods defined in this class.

b. Help

Help windows are defined for the following Interface Editor windows:

Interface Editor Window, Define Form, Edit Form. All help windows are instances of this

class.

c. Tab Order

This class allows the user to define the tab order of a Form. The tab order of

a Form is determined by the order in which a field appears in a Form's field list. Altering

the order of a field in this list changes the tab order of the Form. The tab order window is

an instance of this class.

d Preferences

This class allows the user to change the foreground and background colors of

a Form. Supported colors include: black, white, red, green, blue, cyan, magenta and yellow.

The User Preferences window is an instance of this class.

e. Design Form

This class allows the user to define new input Forms. The Design Form

window is an instance of this class.

f Edit Form

This class allows the user to edit the Form which is displayed in the Interface

Editor's main window (the currently active Form). The Edit Form window is an instance

of this class. The Edit Form Class is a descendant of Design Form, and inherits its methods.

32

g. Credits

Each Macintosh application program has an About menu item in its Apple

Menu. Selecting this item displays general information about the application. The About

window is an instance of the Credits class, and displays programmer credits.

h. Display Info

This class controls display of field information. Double-clicking on a field of

the active Form in the Form View window opens a window which lists the characteristics

(attributes and attribute values) of the particular field. The Display Info window is an

instance of this class.

L Dialog

The Dialog class contains the methods for displaying dialog boxes in

response to user actions.

j. OK Dialog

This class provides the window definition for a dialog which contains only

one user choice (OK), which is used to alert the user to a specific program condition.

k YeslNo Dialog

This class provides the window definition for a dialog which contains two

user choices (YES and NO), and is used to obtain user confirmation before a specific

program action is executed.

5. User Interface

This section describes the user interface for the Interface Editor module. Dialog

design rules and guidelines for evaluation and usability of user interfaces, discussed in

Chapter III, have been applied to the overall design and implementation of the user

interface for both the Interface Editor and Form Use application program.

33

lI~ llllllllll-II

a. Menu Commands

The Interface Editor contains three separate menus in its menu bar FILE,

WINDOW and FORMS. Figure 2 shows the menu bar.

FILE WINDOW FORMS

Figure 2: The Menu Bar

The FILE menu is a default menu item created by the Prograph Application

Editor. It contains only one command: QUIT, which closes all active windows and

terminates program execution.The Interface Editor module is activated by selecting the

INTERFACE EDITOR command from the WINDOW menu. The FORMS menu enables

a user to perform certain basic Form management operations. The FORMS menu includes

the following commands:

1. New. This command opens a window titled Design Form which allows the user to

create a new, untitled Form. The new Form is given a name the first time it is saved.

2. Open. This command displays a standard Macintosh Open dialog containing a

scrolling list of files. Clicking the OPEN button or double-clicking on a File name

from the scroll list will open the selected (highlighted) Form in the Interface Editor's

Form View Window.

3. Close. This command closes the active Form. If the Form has been modified since the

last time it was saved, a dialog is displayed which allows the user to save the Form, or

dismiss the dialog and close the current form without saving it.

4. Save. This command saves the active Form to a disk file. If a file already exists with

the same name as the active Form, the file is overwritten.

5. Save As. This command opens a standard Macintosh Save dialog which allows the

user to specify a new name for the active Form. If the Form is saved under a new

34

name, the active Form is renamed, saved to disk (with the new name), and the old file

is closed (retaining its old file name and Form definition).

6. Page Setup. This command allows the user to specify printing parameters such as

paper size and orientation.

7. Print. This command prints the active window.

b. The Icon Bar

The icon bar consists of ten icon buttons which allow the user to access

Interface Editor commands independent of the FORMS pull-down menu. In addition to the

commands found in the FORMS menu, a number of other commands are included in the

icon bar. Figure 3 shows the icon bar.

Figure 3: The Interface Editor Icon Bar

Icon buttons descriptions (from left to right, top to bottom) are:

1. New. This command is the same as described in the FORMS menu.

2. Open. This command is the same as described in the FORMS menu.

3. Edit. This command is the same as described in the FORMS menu.

4. Save. This command is the same as described in the FORMS menu.

5. Save As. This command is the same as described in the FORMS menu.

6. Print. This command is the same as described in the FORMS menu.

7. Delete. This command allows the user to delete the active Form from disk. The Delete

command can not be undone. A dialog prompt is displayed giving the user the

35

opportunity to cancel the command or confirm the selection before a Form is

permanently deleted.

8. Preferences. This command allows the user to select background and foreground

colors for displaying a Form in the Interface Editor. These preferences do not become

part of the Form's definition, and are used only by the Interface Editor.

9. Help. This command opens a user help window.

6. Windows

The Interface Editor window is the main window for the Interface Editor module,

and is shown in Figure 4. In addition to the icon bar described earlier, the following items

appear in the window:

Interface Editor Window

3/15/93 9:23

rormi nno currently active form?

(Form View window)

quit

Figure 4: The Interface Editor Window

36

1. Current Form Title. This command displays the name of the active Form.

2. Data and Time. The current date and time are displayed at the top right of the window,

just below the icon bar. The date and time are controlled by the Interface Editor

Window's Idle Method which is defined in the Application Builder's Window editor.

3. Active DB. This box displays the name of the database which the Form is being

designed for.

4. Form View Window. This window occupies about two-thirds of the Interface Editor

window area, and is actually a Macintosh canvas object which supports Quickdraw 2

editing and graphics. When the Interface Editor module is first activated, the form

view window appears black in color, signifying an empty form view window (i.e., no

active or open Form). Additionally, the Form name display reads "<no currently

active form>. When a Form is opened, the form view window background changes to

the user-defined background color, and rectangles representing fields of the current

Form appear, along with corresponding labels. When the active Form is closed or

deleted, the form view window once again becomes black in color. Each field of a

Form is a descendent of the Prograph Window Item class. In order for objects of this

class to be visible in a window, they must first be included in the window's item list

(a list of all window items belonging to the window). Displaying a Form in the form

view window is a two-step process. The location of each Form field is determined

relative to the window, and appropriate field attributes are set to reflect this data. Once

field locations have been determined, each field object is added to the item list of the

Interface Editor window (the owning window of the canvas object). This is not

sufficient, however, to permit graphical manipulation of field objects. Graphical

operations such as dragging and resizing of objects is accomplished in a canvas

object. Since a canvas object is itself a descendent of Window Item, it can not contain

other Window Item objects. The solution to this problem is to place a canvas (the form

2. Quickdraw is the part of the Macintosh Toolbox that supports creation of complex graphic oper-
ations [Apple85 p. 1-137].

37

view window) on top of the Interface Editor window. Canvas objects (in this case,

rectangles) are then added to the canvas directly on top of each field object. Thus, a

Form is displayed as a 2-layer screen display. The bottom layer contains the actual

field object and the top layer contains the rectangle which bounds the field objects.

Whenever a field is moved or resized, only the canvas object is actually manipulated

directly. The corresponding field object (in the window item list), is updated using

positional information obtained from its corresponding canvas rectangle object. This

layering process is not required when Forms are displayed in Input and Display Form

windows by the Query Editor, since graphical operations on fields are not permitted

in these windows.

5. Quit Button. Selecting this button quits the Interface Editor module.

6. Close Box. A close box is located in the upper left-hand corner of the window.

Clicking in this box is equivalent to selecting the Close command in the FORMS

menu or clicking the QUIT button.

a. The Design Form Window

The Design Form window is activated when a user selects the New menu

item, types a command-N sequence from the keyboard, or selects the New Form icon from

the icon bar. Figure 5 shows the Design Form window. This window allows a user to create

a new form object, and consists of the following objects:

38

Design Form
FiWld Noe s

relationsa employee v=

attributes Iname 'vW

date tye char =,w

font Courier w'

font3lze 12 Ti

Field i Edit Temt
TUpe 0 Scroll List 0

FM.l J Ie J oWj-j..wjia]

Figure S: The Design Form Window

1. Field Names. This is a scroll list which contains the names of the fields defined for

the form being designed.

2. Name. This is an edit text object which is located directly below the Field Names scroll

list and allows a user to enter field names from the keyboard. If a field name is too

long to fit into the viewable portion of the edit text object, the text automatically

scrolls to the right as the user types. Each field name must be unique.

3. Field Type. This is a radio set object which allows a user to select the object type of

the field. The values of the radio set are static, independent on any database definition

and can not be changed by the user.

39

4. Relations. This is a pop-up menu object which contains the names of the relations of

the database which the Form is being designed for.

5. Attributes. This is a pop-up menu object which contains the names of the attributes

associated with the relation which is currently visible in the relations pop-up menu.

6. Data Type. This is a pop-up menu object which contains the name of the data type

associated with the attribute which is currently visible in the attributes pop-up menu.

7. Font. This is a pop-up menu object which contains font names. The font name effects

the appearance of data entered into the associated Form field.

8. Font Size. This is a pop-up menu object which contains font sizes. The font size effects

the appearance of data entered into the associated Form field.

9. Add New Field Button. Selecting this button activates the Name field to accept text

from the keyboard.

10. Enter Data Button. Selecting this button enters the description of the field whose

name is currently highlighted in the Field Names scroll list. A field's description is

defined by the text which appears in the Name field, the values which appear in the

windows pop-up menus, and the selected value of the Field Type radio button set.

11. Delete Field Button. Selecting this button deletes the field whose name is currently

highlighted in the Field Names scroll list from the Form.

12. Tab Order Button. Selecting this button activates a separate modal window (the Tab

Order Window) which allows the user to define the order in which fields are accessed

when the Tab key is selected.

13. Cancel Button. Selecting this button cancels all changes made to the Form and

closes the Design Form window without saving the Form.

14. Done Button. Selecting this button activates a dialog box which prompts the user to

name the Form which is being designed. The user has the option of naming and saving

the Form, cancelling the dialog and returning to the Design Form window, or closing

the Design Form window without saving the Form.

40

15. Help Button. Selecting this button activates a help window associated with the

Design Form window.

b. Edit Form Window

The Edit Form window is similar in appearance and function to the Design

Form window with transparent differences in the underlying implementation of the

controlling methods and the window title which appears at the top of the window. The Edit

Form window can only be accessed if a Form is currently active in the Form View window,

and allows editing of the active Form object. When the window is opened, it contains a list

of the active Form's fields (in the currently defined tab order). Selecting a field name in the

Field Names scroll list causes the values of the field (Name, Field Type, Relations,

Attributes, Data Type, Font and Font Size) to be displayed in their respective edit text box,

radio set and pop-up menus. Edit Form control buttons are identical to those described for

the Design Form window. Figure 6 shows the Edit Form window.

41

iIJE Edit Form
Field Names

Iname
fname
ssn

relationsJ emplogee WV

attributes ssn 7;;,l
data type Int v7

font Courier vI

font 3ize 12 7l

Field o EditTeHti
Type Scroll List

Add FieldOddJietelEnter >)tab D~one lCnCqIi

Figure 6: The Edit Form Window

c. Tab Order Window

The Tab Order window displays the names of the fields of a Form in the

currently defined tab order. The purpose of the window is to allow the user to modify the

tab order of a Form. Figure 7 shows the Tab Order window. The window contains the

following objects:

42

|iJ Tab Order

Field Noens

•-- [First

Moue Up

(Mu own)

__ Done

Figure 7: The Tab Order Window

1. Field Names. This is a scroll list identical to the Field Names scroll list contained in

both the Design Form and Edit Form windows. Selecting a name in this list causes the

field associated with the name to be the object of the window's manipulation buttons.

2. First Button. Selecting this button causes the field which is highlighted in !he Field

Names scroll list to be moved to the top of the scroll list (i.e., it becomes the first field

in the tab order defined for the Form).

3. Last Button. Selecting this button causes the field which is highlighted in the Field

Names scroll list to be moved to the bottom of the scroll list (i.e., it becomes the last

field in the tab order defined for the Form).

4. Move Up Button. Selecting this button causes the field which is highlighted in the

Field Names scroll list to be moved up one position in the scroll list.

5. Move Down Button. Selecting this button causes the field which is highlighted in the

Field Names scroll list to be moved down one position in the scroll list.

43

6. Cancel Button. Selecting this button cancels all tab order changes made to the Form

and closes the Tab Order window.

7. Done Button. Selecting this button closes the Tab Order window and displays the

field names in the new tab order within the Design Form or Edit Form window

(depending on the window which was active when the Tab Order window was

opened). The new tab order will not actually be saved until the Form is subsequently

saved.

d. The Help Window

Help windows provide on-line user help relating to the currently active

window. Help topics are selected from the list of Help Topics by double-clicking on a topic

title. Text for the selected topic appears in a scroll window. The Help window is dismissed

by selecting the Done button. Figure 8 shows the Help window for the Interface Editor main

module window.

Help Window

Select a help topic by clicking on a subject Help Topis

heading in the "Help Topics" list to the right. Forms 0
Text for the chosen topic will appear In this Now formOpen form
window. Dismiss the help window by Edit form

selecting the DONE button. TabOrder

Figure 8: The Help Window

44I

e. Field Information Window

The Field Information window activated by double-clicking on a field of

the active Form (the Form currently displayed in the Form View window), and displays

information about the selected field. The window is dismissed by selecting the OK button.

Figure 9 shows the Field Information window.

1J Field Info

name: Rom*

relation: reletion 2

attribute: attribute I

data type: Intger

fildjjype: Edit Text

font: Coeurier

font 3Ze: 12

Figure 9: The Field Information Window

45

D. THE FORM USE APPLICATION

The Form Use application program simulates the user interface of the Query Editor

module and the module's interaction with a disk-resident Form. Objects defined for this

application will form the basis of the Query Editor's Form display, data entry and data

validation (type checking) functions.

1. Program Control Decisions

Since this application will ultimately be incorpor t,-yi into the Query Edlitor

module, menu bar commands have been kept to a minimum. The Input Form and Display

Form menus allow a user to open either data entry or data display windows. Additionally,

users must retrieve Form objects from disk through the standard Macintosh Open dialog.

Window activation and Form retrieval will become transparent to system users once the

Form Use functions have been integrated into the Query Editor.

In order to provide consistency for Form creation, editing and use, icon buttons

were included in the Input Form and Display Form windows to control data entry and

display functions.

2. Class Descriptions

This section describes classes unique to the Form Use application. Prograph

System Classes will not be discussed. Figure 10 shows the application's class hierarchy.

a. Form Window

This class defines the basic window in which Forms are displayed.

b. Input Form Window

This window inherits the basic window properties from the Form Window

class, and adds control objects and methods for inputting data into a Form.

46

4& Classes

ApMatim 1•10100 Vgdev W

FolS Text Windw

Edit Text e FwmWw Output Frin Windeow

E edit tost

Figure 10: The Form Use Application Program Clas Hierarchy

c. Display Form Window

This window inherits the basic window properties from the Form Window

class, and adds control objects and methods for displaying data from a DFQL query in a

Form.

d. Form

This class has been imported directly from the Interface Editor module, and

contains the definition for a Form object.

e. 1E Edit Text

This class has been imported directly from the Interface Editor module, and

contains the definition for IE edit text objects. Methods have been added Which support

data input and display via IE edit text objects.

47

3. User Interface

The menu bar contains two items: FILE and FORM. The FILE menu contains

only one item: QUIT. This is a standard default Prograph menu item, and allows the

application user to terminate program execution. The FORM menu contains two items:

INPUT FORM and OUTPUT FORM. The INPUT FORM command displays a Form

(specified by the user) in an Input Form window. The OUTPUT FORM command displays

a Form (specified by the user) in a Display Form window.

The Form Use user interface is limited to a set of icon control buttons in the Input

Form and Display Form windows.

4. Windows

a. Input Form Window

Figure 11 shows the Input Form window. Forms created by the Interface

Editor module are displayed in this window for data entry purposes. The window contains

the following control buttons:

1. Clear All. This button clears all data entered into the displayed Form.

2. Clear Form. This button clears all data currently visible in the displayed Form.

3. Enter Data. This button adds the data currently visible in the displayed Form into the

attribute result of class Form Window.

4. Done. This button is essentially the same as the Enter Data button, except that the Input

Form window is closed after the displayed data has been added to the list.

5. Cancel. this button cancels the data entry process, deletes all data currently contained

in the attribute result of class Form Window and closes the Input Form window.

48

U ~Input Form Window

LI•U rU
BM iRgg1l,

Figure 11: Input Form Window

b. Display Form Window

Figure 12 shows the Display Form Window. Forms created by the Interface

Editor module are displayed in this window for data display purposes. The window

contains the following control buttons (from left to right):

1. First. This button displays the first element of a data list.

2. Last. This button displays the last element of a data list.

3. Previous. This button displays the previous element of a data list.

4. Next. This button displays the next element of a data list.

5. Done. This button closes the Display Form window.

49

,.Display Forin Window

Figure 12: Display Form Window

E. THE FORM OBJECT

1. Form Object

A Form is an object composed of one or more fields, and defines a template for

entering and displaying data in response to DFQL queries specified in the Amadeus Query

Editor module. The Interface Editor module provides a means of defining, modifying and

saving Form objects

A Form object consists of the following attributes:

50

1. name. The Form's name is assigned by the user in the Interface Editor module. The

name attribute is used as an input to a DFQL query, and identifies which Form is to

be opened in response to the query.

2. fields. This is a list of field objects associated with the Form.

3. end user. Identifies the owner of the Form (i.e., the name or identifier of the user or

class of user who created the Form).

4. protected? This attributed identifies whether the Form is protected (e.g., read-only,

read-write, etc.). User access and security issues are being addressed separately, and

are beyond the scope of this thesis.

2. Field Object

Each Form field is a Prograph Window Item object (a descendent of the Window

Item class). Fields supported by the Interface Editor are considered display fields

[Gibson90], and consist of an editable area on the screen used for editing, displaying, or

updating a database. Currently, the Interface Editor creates fields consisting of descendents

of the Edit Text Window Item class (called IE edit text). Extending the module to allow

additional types of fields requires defining new subclasses within the Interface Editor class

hierarchy (subclasses of Window Item) for each new field type. Each field object consists

of the following attributes:

1. name. This value identifies the field with a unique character string. The field name is

assigned by the user in the Interface Editor module at the time the field is defined.

2. relation. This value identifies the database relation which the field is associated with.

This value is assigned by the user in the Interface Editor module at the time the field

is defined.

3. attribute. This value identifies the database attribute which the field is associated

with. This value is assigned by the user in the Interface Editor module at the time the

field is defined.

51

4. font. This value identifies the font name of the field. Data displayed in the field will

appear in this font.

5. font size. This value identifies the font size of the field. Data displayed in the field will

appear in this font size.

6. position. This value identifies the position of the field in a Form object relative to the

coordinate system of the window in which it is displayed.

3. Windows

Forms are displayed in either the Form View window of the Interface Editor

module or the Input Form window or Display Form window of the Form Use application

program. Each window is a descendent of the Prograph system class Window, and inherits

the attributes and methods of its parent classes.

4. User Interaction

User interaction with Forms is limited to keyboard and mouse input/selection. For

data entry, an insertion cursor identifies the active field. The cursor is moved from one field

to another either by selecting the destination field with a mouse, or by repeatedly pressing

the tab key. The order in which the insertion cursor moves from field to field is determined

by the tab order of a Form. The tab order is defined in the Interface Editor module at the

time a Form is created.

5. Form Methods

Methods for defining and editing Form objects are contained in the Interface

Editor module. Methods for data manipulation (entering and displaying data in a Form) are

contained in the Form Use application.

6. Data Validation

Data validation (type checking) is performed by methods defined in the Form Use

application program. These methods will ultimately be incorporated into the Query Editor

52

by using Prograph's selective load feature, which allows loading individual classes from

one application into another.

Type checking is possible since each Form is associated with a specific database

and database relation. Each field of a Form is further associated with a specific relation

attribute (and corresponding attribute data type). This knowledge is obtained from a

database definition file which resides on disk and is available to the Interface Editor during

Form definition. Type checking takes place as data is entered into a Form by a method that

compares the type of the inputted data against the data type of the field's associated

relation. Data validation methods have not yet been fully implemented.

7. Input Form

Forms used for entering data are displayed in a separate Input Form Window (a

descendent of the class Form Window). The window is activated in conjunction with a

DFQL query. Control objects (icon buttons) are included in the window.

8. Display Form

Forms used for displaying the results of database queries are displayed in a

separate Display Form window (a descendent of the class Form Window). The window is

activated in conjunction with a DFQL query. Control objects (icon buttons) are included in

the window.

9. Form Creation and Editing

Forms are created and edited in the Interface Editor module's Design Form and

Edit Form windows, respectively.

10. Form Use

Forms are used by the Amadeus Query Editor module as part of DFQL queries.

Although Forms can be used for both input and data display, there is only one Form class.

Depending on the intended use, the Form is opened in either an Input Form or a Display

Form window.

53

a. Input Forms

Figure 13 shows a DFQL operation which opens an Input Form (specified by

Form name) and inserts data entered via the Form into a relation specified by relation

relation name Form name

Cinsert

Figure 13: DFQL Use of an Input Form

Forms permit a user to enter data one tuple at a time. As data is entered, it is

maintained in an attribute called result of class Form Window as a list of tuples. Each tuple

represents the set of data entered into the fields of a Form. This relationship is shown in

Figure 14.

result: list of tuples
L ((tuple 1) (tuple 2) .. (tuple n))

fields ta4ki. list of data retrieved from fields

of a displayed Form

(daa I, data 2 , data3 , data4 , data5)

Form data: data entered via the keyboard

Figure 14: Representation of Data Entered via an Input Form Window

54

The ordering of elements (i.e., individual pieces of data) in a tuple

corresponds to the order of attributes in a relation's definition. The first element

corresponds to the first attribute, the second element to the second attribute, and so on.

When a Form object is created, each of its component fields is associated with a specific

attribute name. Since the position of each element of a tuple corresponds to a specific

attribute position, and each field of a Form corresponds to a specific attribute name, this

information can be used to determine the proper position of inputted data in a tuple.

These same relationships are used to support type checking of inputted data.

Since each attribute has an associated data type, this value can be compared with the type

of the data entered into a Form field. If a type mis-match is identified, the user must correct

the data before it can added to a tuple. Figure 15 shows the field-to-element mapping. The

notation: fieldJ, field2,field3 , etc. in Figure 15 refers to the tab order of a particular field

(e.g., field, is the first field in the Form's tab order, field 2 is the second, etc.).

55

Given the following definitions:

relation (A1, A2, A3, A4)

Form: field1 , field2 , field 3, field 4

tuple: (element,, element2 , element 3, elementQ)

assume the following by defition, the Attribute-clement
field - Attribute mapping: mapping is:

field1 - N A1 A 1 -- - element1
&U2 A2 A2 -- - element2

field3 A3 A3 -- - element3

field4 w A 4 A 4 w element 4

Then data elements will be retrieved from Form fields and stored in tuples as:

(field 1, fel4d3 , field2, Weld 4)

Tuples, in turn, will be stored in result as:

((field,, field3, f ield2, field) (field1 , fleld3, flel2, field4) -)

Figure 15: Example of Fleld-to-Element Mapping

As an example, assume that the Form specified by Form name (see Figure 13)

contains the following fields: Name, Address, Age, Birthdate and Phone. When the query

shown in Figure 13 is processed, an Input Form window is opened, and Form name

displayed as depicted in Figure 16.

If relation name has been defined in the database as:

relation name (Name, Age, Address, Birthdate, Phone)

where Name, Age, Address, Birthdate and Phone are the attributes of relation name, then

data entered into Form name will be stored in result as:

56

((Name value,, Age value 1, Address value,, Birthdate value 1, Phone value 1)

(Name value2, Age value 2, Address value2 , Birthdate value2 , Phone value2)

(Name value., Age value., Address value., Birthdate valuen, Phone value,))

When the user closes the Input Form window, the data contained in result

becomes available to the Query Editor module.

U Input Form Window

Addrs

Age Birthdate

Phone

Figure 16: Input Form Window

57

b. Display Forms

Displaying data from a DFQL query follows a similar logic to that described

above for Input Form. Figure 17 shows a portion of a DFQL query that might be used to

display query results in a Display Form window:

Form name list of tuples

0

C display

Figure 17: DFQL Use of a Display Form

In this example, list of tuples consists of a list of list of strings, and can be expressed as:

((tuple) (tuple) (tuple) ... (tuple)) 3

Since

tuple -> (element 1, element 2, element 3, ... elementn)

and

element -> string

then

list of tuples -> ((list of strings) (list of strings) ... (list of strings))

where

(list of strings) -> (string 1, string 2, string3 , "-', string.)

3. The notation () indicates a lisL Thus a list of lists is represented as(() (.0)

58

Each tuple represents a set of data generated as a result of a DFQL query. A

DFQL query can produce zero, one or many such tuples. The individual elements (in this

case, strings) of a tuple contain the data which is actually displayed in the Display Form

window.

Just as the field-Attribute mapping is used to build tuples during data entry,

the same relationships are used to determine the proper field in which to display each tuple

element. Using the definitions and mapping from Figure 15, the mapping from tuple

element to Form field can be expressed as:

element1 - b Al - field,

element 2 - o A2 r fIeld 2

element 3 - 0- A3 field 3

element 4 o A4 - field 4

Tuples are displayed in a Display Form window which contains the Form

specified by the left-hand input (Form name) to the DFQL operation shown in Figure 17.

Data is displayed in the Display Form window one tuple at a time. Users can page through

the data (list of tuples) using control buttons (First tuple, Last tuple, Previous tuple, Next

tuple) defined in the Display Window class (see Figure 18).

59

NmDisplay
Form Window!

Address

Age Birthdate

Phone _

Figure 18: Display Form Window

60

V. CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER RESEARCH

The purpose of this research was to design and implement an Interface Editor module

and a Form-based interface for the Amadeus multi-relational database front-end system.

The research provided the initial stage of development for a complete Form creation and

manipulation capability for Amadeus users.

A. SUMMARY

An extensive literature review was accomplished in which object-oriented

programming, the Prograph development environment and Human-Computer Interface

design issues were researched. The design and specification for a Form object, a Form

creation application (the Interface Editor module) and a Form-based user interface (the

Form Use application) were successfully implemented. The feasibility of the Form object

and application programs were demonstrated by simulating the Amadeus Query Editor

module's use of Forms for data entry and display.

B. CONCLUSIONS

The appropriateness of the user interfaces developed for this thesis can be most

effectively measured through formal testing by representative groups of system end-users.

Informal testing provided insights into the overall interface design, and lead to

improvements in program control functions while identifying areas requiring further

development. The Interface Editor, as currently implemented, is limited in scope and

functionality. It extends the traditional Macintosh user interface by incorporation of icons

for program control. However, the Form objects created by the Interface Editor are limited,

at present, to only a single field type. Additionally, the Form Use interface provides a single

record-at-a-time view for data entry and the display of DFQL query results. While

impacting overall system performance, these limitations are not considered critical. Rather,

61

they provide a point of departure for continued research into enhancing the user interface

for the Amadeus system.

C. SUGGESTIONS FOR FURTHER RESEARCH

Further research into the topics presented in this thesis should include, but not be

limited to, the following: expansion of the Interface Editor module to allow incorporation

of additional window item class objects in a Form field; expansion of the user help facility;

implementation of more extensive data validation beyond simple type checking;

development of a dynamic Form generation procedure which allows Forms to be generated

"on-the-fly" in response to the output of DFQL queries; extending the Form object to allow

multiple record-at-a-time viewing; and revising the Interface Editor module to provide a

more efficient direct manipulation interface.

1. Expansion of the Interface Editor

The Interface Editor module should permit the inclusion of all window items

supported by Prograph as field objects. This capability will provide a more flexible Form

object, enhancing the Query Editor module user interface for both data entry and display.

Additionally, data representation will become more responsive to user needs, since some

information is more appropriately represented as a graphic object, such as radio button sets

or check boxes. Expanding the Interface Editor module to meet this capability will require

defining new window item subclasses in the same manner as the 1E edit text subclass of edit

text was defined. The object-oriented design of the module is well suited for this task.

2. Expansion of the User Help Facility

The Interface Editor module user help facility is very basic in its conten. and

functionality. As currently implemented, only the Interface Editor's main module window

has a fully functional help facility. Implementation of the help facility for each module

62

window is still required. Additionally, it may be desirable to develop a context-sensitive

help facility which provides more responsive user help for the system.

3. Extension of Data Validation Procedures

The current data validation procedures employed by the Form Use application

consist of simple type checking of input data against attribute data types defined for each

database. A more robust data validation facility is required which is capable of supporting

database unique data types, including formatted data such as date fields. Consideration

should also be given to the inclusion of range checking (checking for out of range values

vice simply verifying the correctness of the associated data type).

4. Dynamic Form Generation.

Currently, all Forms used by the Query Editor must be defined prior to use,

requiring a priori knowledge of DFQL queries and their results. This is sufficient for

processing data using "canned" queries. However, the ability to dynamically generate a

Form based on DFQL query results will provide much greater system flexibility.

5. Extension of the Form Object

The current Form object is only capable of displaying query results one record at

a time. This provides a useful, but limited view for the user. The Form object should be

extended to permit simultaneous display of multiple records on a single Form.

6. Extension of the Interface Editor Direct Manipulation Interface

The Interface Editor module interface makes use direct manipulation features for

dragging and resizing Form fields. However, Form creation and editing takes place in

separate modal windows. The use of modal windows restricts, to a certain degree, the user's

actions. A more effective interface might be realized if all Form manipulation (including

creation and editing) occurs in the Form View window rather than separate modal

windows. This would, however, require extensive modifications to the underlying

63

functionality of the interface. User testing may determine whether the efforts required to

provided such a feature are worth the cost associated with re-designing the interface.

64

APPENDIX A

DEVELOPMENT NOTES

The Interface Editor Module, Form object and Form Use application were developed

using Prograph version 2.5.2 on a Macintosh IIfx computer with 8 MB of RAM, a 210 MB

hard disk and an Apple 21" color monitor. The operating system was System 7.0 (with

System 7 Tuner installed). This configuration is considered adequate for developing

medium to large-sized Prograph applications.

Version 2.5.2 of Prograph fixes a number of "bugs" present in earlier versions.

Additionally, version 2.5.2 replaces two Prograph Extensions and two Window Class

methods found in version 2.5.1. For these reasons, the applications and classes developed

for this thesis may not work properly on systems running Prograph versions 2.5 or 2.5.1.

Version 2.5.2 update patches are available directly from TGS or from commercial

electronic bulletin board systems (such as America OnLine and CompuServ).

The Icon Button Class (a descendent of Click Item) was used to implement the icon

buttons used in the applications developed for this thesis. This class is not part of the

standard Prograph system release, and is available separately from TGS as part of the

Prograph Goodies Disk. Icon bar icons were created using ResEdit, and are stored as PICT

resources in the resource fork of the Interface Editor application.

A large-screen color monitor (19" or larger) is recommended when developing

Prograph applications. It is not unusual to have a dozen or more windows open

simultaneously, each displaying a method, case, attribute or class window. The larger

screen size allows simultaneous viewing of multiple windows, especially when debugging

a program using Prograph's single-step mode for animating data-flow diagrams.

Additionally, Prograph uses color coding to distinguish icon and dataflow states, which

complicates program development on a black and white or grey-scale monitor. Figure 1

shows a typical 21" screen during program development.

65

o. c.....n

Y V

b(set

V V

-_.

Fgure 1. M&lA e Wp aio D

viwe o agry cae onto).Alhog the modul wil ru nacmac aits

main mm windo exced theI diesin ofa9mntr

6666

V VIt

.:~st r... . .W. ..

i 011a,.0.

Figure 1. Multiple Windows Open During Application Development

The interface for the Interface Editor module was developed for a 13" (or larger)

monitor (ideally 8-bit color, however the effect of color icons will not be degraded when

viewed on a grey scale monitor). Although the module will run on a compact Macintosh

computer (compact-mac) which is capable of running PrographI, the compact-mac's 9"

black and white monitor will not correctly display icon buttons (a consequence of

attempting to display 8-bit graphics on a 1-bit monitor). Additionally, the Interface Editor

main window exceeds the dimensions of a 9"' monitor.

Prograph is, essentially, a list processing language. Prior experience with list

processing is not necessary in order to use Prograph. However, in order to take full

1. Minimum system requirements for Prograph are: Macintosh Plus generation with 128K ROM and
I MB of RAM. Prograph can be run from floppy disks, however a hard disk is recommecnded.

advantage of the language, familiarity with lists and list processing techniques is strongly

recommended.

Prograph implements most of the Macintosh Toolbox calls described in Apple

Computer Inc's Inside Macintosh [Apple85] and Macintosh Technical Notes (published

separately from Inside Macintosh). However, Prograph's accompanying Toolbox

documentation (Tutorial and Reference Manuals [TGS90b and TGS90c] and on-line help

facilities) are incomplete. Serious Prograph development efforts require access to the

complete set of Inside Macintosh and Technical Notes, the definitive reference sources for

Macintosh program development.

67

APPENDIX B

PROGRAPH BASICS

A. LANGUAGE BASICS

1. Pictorial Representation of the Language

Prograph programs are composed entirely of icons and amplifying text. Figure 1

shows common icons used in constructing Prograph programs.

eJJ rate

Constant

Figure 1. Examples of Prograph Icons

2. Control Structures

Prograph Control Structures control the flow of execution within a program.

Control structures are composed of icons (either an 'X' or a '/') that are attached to the

right-hand side an operator, and are activated on either the success or failure of the

associated operation. The default control structure is success. Operationsfail in one of three

ways: (1) in a match operation, the items being compared do not match, (2) a Boolean

operation returns a FALSE value, or (3) a FAIL condition is propagated to a particular

operation. Operations may also generate errors under certain conditions, including: type

mis-matches, syntax errors, or a specific program condition which can not be satisfied by

the particular control structure. Figure 2 shows typical Prograph control structures. An 'X'

within a control structure indicates that it is activated if the associated operation fails. A

check mark (1,) indicates that the control structure is activated if the associated operation

68

within a control structure indicates that it is activated if the associated operation fails. A

check mark (0 indicates that the control structure is activated if the associated operation

succeeds. Other graphics inside the control structure icon indicate additional action to be

taken.

4O

ontimu X extCase XMatch j~
:Terminate'i• X I ext CaSe w rs

Figure 2: Prograph Control Structure Icons

The most basic Prograph conditional execution format is the Next Case with an

accompanying match operation or conditional test. Figure 3 depicts a conditional test with

a match on success control structure which tests for a specific condition to determine which

of two case windows will be executed.

] control 1:2 Nli•-----l•E 9 M control 2:2

• ~b
• b

if "oondttion" Is satisfied
then go to the next cewe
w10dow. else continue in condition of case I was
this wi•dow satisfied, so this case

'I!.. is executed.

Figure 3: Example of the Next Coe on Success Control Structure

69

3. Classes and Inheritance

Classes of objects, and all inheritance relationships, appear on the screen as trees

of icons. The Prograph class system provides a means for constructing a new class from

an existing class through inheritance. A Prograph class can inherit from at most one parent.

This is referred to as single inheritance.

The class icon is a hexagon which is divided into two parts: attributes on the left,

and methods on the right. Double-clicking on the left half of a class icon displays the

attributes of the class, while double-clicking on the right half displays the class methods.

Figure 4 depicts this relationship.

SClasses

gstem

Application Menu Menu Item Vindov Vindow Item

V Windo [D Window Item
NULLL

owner
FALSE Idle Mouse Down Update

active? _H

TRUE Lý
V Hilite Open Close Bounds

visible?
attributes window methods window

Figure 4: Prograph System Class Icons and Component Parts of "Window Item Class"

70

4. Attributes

Prograph attributes are displayed in an Attributes Window. There are two types

of Prograph attributes: instance and class. An instance attribute may have a different value

for each instance of a class. Class attributes, however, have one value for the class as a

whole. Therefore, the value of a class attribute is shared by all instances of the class. The

attribute icon is a downward pointing triangle.

S. Methods and Cases

A Prograph method consists of a sequence of one or more dataflows, called cases.

A case consists of an input bar, an output bar, operations and datalinks, Data flows into a case

via the input bar, and out through the output bar.

Methods are referenced in one of four ways: universal, data-determined, explicit

and context-determined (see figure 5). These terms correspond to the terms global, regular,

early-bound and self, which are more commonly used in object-oriented programming

literature [Wu9lc p. 71]. Essentially, the calling format determines where Prograph looks

for the referenced method in the class hierarchy.

(1) Universal. This is a call to a global method.

(2) Data-determined. Prograph looks for the referenced method in the class

of the object which flows into the leftmost terminal of the method.

(3) Explicit. Prograph looks for the referenced method in the class which is

explicitly listed to the left of the "/" in the method icon. If the method is not found in the

explicitly listed class, then Prograph uses inheritance links to check ancestor classes for the

method.

(4) Context-determined. Prograph looks for the referenced method in the

same class as the current method that contains the method referencing operation. This

allows a method to send a message to itself.

71

E2M call methods 1:1 EI

tbed Nmai

universal

a..t~ S I
explicit

eontext-&eterm**d

Figure 5: Method Ca•ling Fomats

6. Opermtions

An operation is the basic executable component of a case. Operations have a

name, zero or more inputs, zero or more outputs and a distinctive icon. Data flows into an

operation through terminals located on the top of the operation icon, and out through roots

located on the bottom of the icon. Prograph provides a special icon, called a synchro link

which forces a specific execution order on a pair of operations (see figure 6). However,

the synchro link does not guarantee that the operations will execute consecutively, only that

one will execute before the other. [TGS90c p. 7] In the example shown below, A will

execute before B. However, there is no guarantee that B will execute immediately after A,

since there is no way to determine when C will execute.

72

Is synchroI: 1_

S... ! _

o this ~ornet~igesp

efe oingtbis
B

Figure 6: Synchro Link

7. Message Passing

Message passing in Prograph is similar to most other object-oniented languages.

Some differences occur, however, because of the dataflow nature of the Prograph language.

Essentially, in Prograph objects flow into operations to initiate actions. In a "standard"

object-oriented programming language, a stationary object sends a message to another

stationary object. Although the models are somewhat different, the basic concepts are the

same. [TGS90b p. 93]

8. Primitives

Prograph primitives are calls to compiled methods, and are categorized into

sixteen groups, including: Application, Bit, Data, File, Graphics, Instances, Interpreter

Control, I/O, Lists, Logical/Relational, Math, Memory, Strings, System, Text and Type.

73

Primitives comprise the kernel of Prograph's functionality. Unlike other object-oriented

programming languages, Prograph primitives do not belong to any class. This, and the fact

that the language supports regular data types such as string, integer, Boolean and real

make Prograph a hybrid object-oriented programming language. [Wu91c p. 721

B. THE PROGRAPH ENVIRONMENT

The Prograph language is seamlessly integrated with the Prograph development

environment. An editor provides a visual interface for creating and modifying programs,

while an interpreter contains features which allow dataflow diagrams to be displayed

during execution, in effect graphically animating the flow of data throughout a program as

each operation is executed [TGS90a p. 21].

1. Editor

The Prograph editor is context sensitive, so syntax errors are caught at the time

they are created, eliminating the need for a traditional debugger. During program

execution, run-time errors are flagged, program execution is halted and the appropriate

dataflow diagram displayed. This enables the user to correct the error and immediately

resume execution. An on-line help system is also available aid is fully integrated into the

editor.

2. Interpreter

The Prograph interpreter is highly interactive. Program execution may be paused

at any point and dataflow diagrams and data values examined, allowing simultaneous

execution and editing of applications. Additionally, program execution may be traced step

by step, allowing the flow of data through a program to be traced visually. If a dataflow

diagram is changed while execution is paused, the interpreter backs up to the change and

continues execution from that pcint.

"74

C. COMPILER

The Prograph compiler generates stand-alone application programs, and allows

linking to modules developed with other programming languages such as MPW C and

Think C. The compiler also includes an intelligent Project Manager which keeps track of

the files needed to build a particular application. The Project Manager selects only the code

actually required when building a stand-alone application and informs the user of any

missing code. If the compiler detects an error in a Prograph file, the user can enter the

editor/interpreter to see the operation that generated the error.

A certain amount of overhead is normally introduced when creating stand-alone

applications. In Prograph, stand-alone applications which do not use system classes require

an additional 50Kbytes of overhead, while those with system classes require an additional

130Kbytes. However, the execution speed of compiled Prograph code is, on the average,

15 times faster than the same interpreted code [TGS90a p. 33-36].

75

APPENDIX C

DATABASE BASICS

A. DEFINITIONS

1. Database

In a general sense, a dalabase is a collection of related, recordable facts that have

implicit meaning. To be more precise, however, a database may be defined as a "shared

collection of inter-related data designed to meet the varied information needs of an

organization" [Falby9l p. 14]. Databases have the following properties [Elmasri89 p. 3-4]:

1. Logically conerent collection of data with some inherent meaning.

2. Designed, built and populated with data for a specific purpose.

3. Represents some aspect of the real world (referred to as the mini-world).

2. Database Management System (DBMS)

A DBMS is a general-purpose software system for defining, constructing and

manipulating a database.

3. Relational model

The relational model for Database Management Systems was first introduced in

1970. The model is founded solidly on mathematical principles and provides simple,

uniform data structures. The relational model represents a database as a collection of tables.

Each row in a table represents a collection of related data values which can be interpreted

as a fact describing an entity or a relationship instance. The table name, and the names of

the table columns, provide additional meaning to the values in each row of the table. Each

row in a relational database relation is called a tuple, and each column title is called an

76

attribute. The Table itself is referred to as a relation. [Elmasri89 p. 135-137]. Figure 1

shows a relation, named EMPLOYEE, from a relational database.

EMPLOYEE •attributes

Name Age Sex SSN Salary

Jane Doe 35 F 123-45-6789 50,000.00

tuples--.Nm- Bill Jones 28 M 111-22-3344 32,000.00

John Smith 30 M 000-99-3456 28,000.00

Figure 1: Table from a Relational Database

4. Data Manipulation Languages & Database Query Languages

Database Management Systems can provide two types of Data Manipulation

Languages (DML) which allow users to manipulate data in the database: high-level or non-

procedural and low-level or procedural. High-level DML's can be used either as stand-

alone languages or can be embedded in a general-purpose programming language. When

used as a stand-along language, high-level DML statements are entered interactively from

a terminal by a DBMS user, and the DML is called a database query language. Low-level

DML's must always be embedded in a general-purpose programming language. Casual

DBMS users normally use a high-level query language to manipulate the database, while

programmers use a DML which has been embedded in a general-purpose programming

language.

77

APPENDIX D

INTERFACE DESIGN GOALS AND CONCERNS

The goal of interface design should be to empower people, leading to an increase

in user experience, productivity and creativity [Dertouzos90, Butler90 p. 349]. Users are

empowered when they have "a clear predictive model of system performance and a sense

of mastery, control, and accomplishment" [Don92 p. 69]. To truly empower a user,

however, the interface designer must fully understand the difference between "efficiency"

in terms of computer science and "productivity" in terms of getting more value from work

[Winograd9O]. A well designed interface should be practically transparent, allowing users

to concentrate directly on the task at hand [Shneiderman92].

A. THE DESIGN PROCESS

The design process should typically begin with an understanding of the system's

intended users to develop a user profile. It is not uncommon to characterize system users

into different groups or classes. This may result in different design goals for each user class.

For example, classifying users as novice, intermediate and advanced will require unique

features for each user class. [Schneiderman92 pages 145-1481

After completing the user profile, task analysis should be conducted to identify the

functionality required of the proposed system. Good task analysis means continual user

testing, starting as soon as the work begins. Key elements of the design should emerge from

the task analysis, rather than being shaped to fit the results of the user testing [Norman in

Laurel90 page 91.

Change is important to good interface design. Procedures that allow incorporation of

changes, up to a point, are considered critical to successful design. Ideally, this should

include an Iterative design methodology involving user testing and prototyping tools tu

rapidly produce non-functional and functional models of the system to elicit user feedback

78

at key stages of the design process [Mountford90]. Iterative design is a process of

identifying a problem area, modifying the appropriate portion(s) of the application, and re-

testing. The iterative process continues until a decision is made to accept the prototype.

Most problems will disappear by the second or third iteration [Tognizzini92 page 86].

The cost of user testing has been a topic of debate in recent years. Historically,

elaborate test scenarios, complete with high-tech equipment for recording and analyzing

user actions and perceptions, reinforced the belief that user testing was a costly

undertaking. Newer approaches described in [Tognazzini9l pp. 79-911 stress simplicity

and common sense, promising to make user testing more acceptable both in terms of cost

and end-user productivity. These approaches include:

1. Develop test scenarios that incorporate situations that users may face, then build

prototypes that enable evaluation of the situations. Two types of prototypes can be

built: horizontal and vertical. Horizontal prototypes allow testing overall design

concepts by displaying all or most of an application's menus, windows and dialogs

without going into depth in any one area. Vertical prototypes allow greater

examination of specific parts of an application, and are used when new design

concepts and/or technology are involved.

2. Prototypes can and should be created in a matter of days, not weeks or months. A wide

variety of prototyping tools are available which greatly aid prototype devlopment.

3. Choose test subjects carefully. In the initial stages, user testing should focus on

interface issues. Content testing (testing the actual performance and applicability of a

system - such as an accounting package or CAD package) is generally not a concern

during iterative design testing. Studies have shown that a maximum of three test

subjects per design iteration is sufficient [Tognazzini page 82]. Any more than that

will simple serve to confirm problems already identified. Each iteration should

involve new test subjects [Tognazzini page 270]. Once the interface design has been

finalized, validation testing should be conducted. Validation testing requires a

79

carefully chosen representative sample of the intended user population, and may be

applied to late alpha or early beta versions of the application.

4. Apply a standardized methodology for observing test subjects. Apple Computer uses

a methodology called User Observation Through Thinking Out Loud [Gomoll in

Laurel90 pages 85-90]. This process does not yield statistical results. Rather, it allows

an observer to identify areas where test subjects are having problems using the

product, and provides information necessary to improve it.

B. FACTORS THAT INFLUENCE INTERFACE DESIGN

In general, interface design problems can be easy to describe, but extremely difficult

to actually solve [Erickson9l]. A good deal of thought, insight, ingenuity, understanding

of the original problem and knowledge of the end-user are required; however this still may

not be enough to satisfy everybody that a solution is good.

1. Lack of Standardized Methodology

There is no standard method of looking at interface design. This lack of

standardization can lead to confusion in design, testing and implementation of user

interfaces. Russel summarizes this problem in [Russel92 p. 71-72]:

As the state of graphical user interface design theory continues to mature from its
beginnings in the mid-eighties, emphasis on reducing the burden of interface
programming has become more prevalent. Across the many popular computer
platforms used professionally today, a myriad of interface building packages have be.en
designed with this concern in mind. Currently, however, no standard design
methodology exists and more importantly, no construction package has emerged that
significantly reduces programming effort while still providing the a-plica::on interface
programmer with full control over the design process....

2. Compromise

Interface design is largely a compromise [Erickson9l]. Software and hardware

must complement each other; an elegant software solution implemented on the wrong

platform will not necessarily function the way the designers intended. Human factors must

also be addressed (i.e., the interface must take into account human capabilities and

80

limitations). Sophisticated features of an interface may not be practical if the human user

cannot take advantage of them.

Additionally, an interface design team is usually inter-disciplinary. Different

disciplines have different priorities, thinking styles and values. When people from different

disciplines get together, values tend to collide. [Kim in Laurel90 page 32] Thus, competing

concerns must constantly be balanced in order to arrive at a mutually acceptable solution.

3. Appropriateness of the Interface

A common design error is to include too much functionality into a system,

producing a number of undesirable side-effects, including: excessive code to test, debug

and maintain, more complicated user manuals and help facilities and a steeper learning

curve and potentially higher cognitive loading on the user. Problems also arise if

insufficient functionality is included. In such cases, users may become frustrated because

of a perception that the system does not adequately support specific functions or features.

[Schneiderman92]

4. Pressure to Produce

Interface designers are often under a great deal of pressure to ship a product

quickly, resulting in a tendency to accept the first promising design idea and forego proven

testing and development procedures [Mountford9O].

81

APPENDIX E

PROGRAM LISTINGS FOR:

THE INTERFACE EDITOR MODULE

AND

THE FORM USE APPLICATION

82

4RCIasses

.vJ
Display Info

Application Menu Window Item Wno

IE Module Window Menu Form Menu Canvas

D iECanvas Degn Form Tab Order Help IE Window

Text4
4 Edit Form

Edit Text 3
OK Dialog Yes/No Dialog

IE edit text d ~ 3 4
Temp Form Field

End User Database Attribute Relation

Oracle De Oracle Attr Oracle Relation

Database Liaison Librarian Report

IE 03/1 S copy Mon, Mar 22, 1993 9:49

V DiSplwg Inf o
(0145

61sI
awratnf

FALS

eat',.?ar

FALS

Sag..

1 14221I

v
6"It 00"

gig.

-/CIO$**

- i

agi

alm out

*W1splwV Info

ewyaf

Uao2/1seC SWMUZI I"2Z2ts

*O1splay Inlo/OkalgInfo 1: 1

' Credits-

KILLm

FALE

10

v
4m 0

Usd31
vM

FAS
Sige

K~ILLem

12253341

sie
=O"Va

d~o m~sef

i

my awamsi

(..Pkt Slt-

Vw
Itmsa

COZ2/13=5! swaoUs2l 1"322lS

OCredits

=Credits/showa credits 1: 1

V Field

VFV

V Form

-a-d
FLE

*Form

dTtft haf omc -4118

OForm/saue farm 1:1

inFarm/saue form 1:I1huild firm 1: 1

Form ~ f m~~ ,,ll

MouuIsmau form lMbulld form 1:15a1 file info 1:1

*FormicOIlect data 1:1

Mforrnicolect "ato 1:Ipgt data 1: 1

Ofarr/default Position 1: 1

gO3mSm P"IW1 3,r33 2211

Ofnron/default position 1:ilCalcuiate Position defaults 1:2

ff a --- -- mP. "'

pam.CCCCCC - xf

talv ife~ f a.
map aO wft

PoVO~frn! p...o Ii I"@ dow M~rns1t.,egdhmow

"MOaM/dfid :

Ofe-

fl VWS

IfMi.mdfutpsto :1clclt oiindfut :

to b

eosfle satIIs32I

OForm/ri!et 1:1

re tow pumbot. or ma FinmI
wiclUm Mt s -- ~ ebm w

Sl (-()"FALSE)

MForm/reset temp 1:1

luroemt M ster of ame Farm

S (a 0 () FALSE MLL)

FormrWmad form 1:1

*Form/field Info 1:1

O IWN to. 1

........... .I ' I W 21

9FAID/MO 1:1

MFWrM/drm 1:2

foiws Ism

hJFan/draw 2:2

=fom/drmu I:2get field positions 1:2

MFOrM/draw 1:Zgel field POSltionS 2:2

lWam/draw I:2gut field Posltkon 1:2emtract Info 1: 1

FJForn/utadate 1:1

1gOf Porn asa

*For./zeraize 1:1

FALSE

"stwoe?

now$

ON /Ssp t.l5~h

v~alog

MA.gm

01aLg

v

FALSE

ve,.

A Whi~M ise

*OIAMUe~

iV

felsa.

TWA

VO

mmi

kmobod

esefim mo rim sqGe

Do

*O3/lfme OR"" do" .381

Minsllog/cmiflrm i: i

GJ ~eaao /conflru I: I shw confirm dialog I:dspa ti~ :

inflalog/conflnn 1:t1asow confirm dialog 1l 1 isplay text 1: 1

"ada

Mal~og/Iaert 1: 1

'tet

Mlalog/alefl I: I show aleut dialog 1:1

O.

*O01la~g/olert lVtahow alert dialog I:ldispiag pict 1:1

eout t"oom=- maw *Im go3ft

a"o bc

M01ial0g/aiert 1:l1lhOW alert dialog 1: 1dISPIaV tent 1: 1

&" a~gero ~±o
am ufeyIiai.isl

*Walog/rorw 1: 1 hfow error dialog $:I

C*Daluog/error .I:Ishowa error dialog I: Idisplay plct 1:1

0901loger *D 11 so/w errdalog 1: 1ipa it1

vO~~e~i~U.l ~ ti

D0ilaog/wasmlnu 1: 1 Show warning dialog 1: 1

*Olaloglwumrnng 1:100111 Warflng dialog I:I display tau~t 1:1

0Olalog/warning 1:1 show warningdialog I: Idisplay pict 1:1I

at 00 Mu.W.. .mfw of ao elig
plowt to tho a "in" kon (Yow

Up me "" ON

FEOlallog/doase 1:1

*Dlalog/dialog type 1: 1

In~almg/dialog two 1: Islloci dialog Igo. 1:41

OMM~og/dalage typ~e 1: 1 select dialog filpe 2:4

Oiemlog/dialog tgpe 1: 1select dialog tgpe 4:41

urJ~almg/dislog Sgpe I:lIaeleCl dialog agaPe 1:412how alert dialog 1:1

ORa

VA(Nalog/didaog tgps I:I select dialog tgPe 2-4show confirm dialog 1:1

=0nlNog/dislog tUpe 1:1Islmlct dialog tgp 3.4showu error dialog 1:1

Uailog/dialog lippe 1iseiect dialog lgpea:4show warning dialog 1:1

*D1ialog/dlalog tUpe 1: Iselecl dialog type l:Ashow alert dialog 1: 1tgsptaii pict 1: 1

vgg mq~ m fU

ORIO ,"to I 1 I "ct MqtyPo 1:4~~ son 11~ *"mdy text I I

d"f~eyI~~t ~2I

MDOIiosamio type SA"Imel A"p type 2 Cdiow Gesellmfi BIg 1 *Simly test I I

to~

COeub/doo type 1: seaict otye po2:4d coeftmipm g 1 1 mpby pcnt I I

2
-i esmose -o wm

PW) "Simy" mm W

Miie) .. lm typ Use do"c mewtp Sae wOdg1.dyt~

MON~ls~OW typ I IP 1 m0ectew type 2:0W imsor do"i 1: 1 sspdy test 1 I

demoo too~m utrde(s

on"e to do" as sere dim (@M

or2l5 sea2l amst $n 4)i w i"o

O0ueg/fti" type 1:120109t ft type 4-40OW WEtU agog 1: oey text It1

I0being/eliog type I: 180100 &Atel type 4.401Mw W"ii 1:o 1 I PCnyow I I

ot) ife i S

a ak

Solsw~et.I~~

V Desin Form

MLL

FAM

mav.

PUm in

-S

wiVa oW
4

gvge

de km
TWA4?

Y

14072041

v
size

Vi
-gv -kmim

V/11
v

d

MV ammomi

(.4mg T .
V

'am lo

il~eslil Forum

sum.baso Gold Amme d
tok u FLm m- Lmua

sa-fm F-os F-0 -IAý

U thmag Rom *am U~o .

Off nota 01IMMIS dam,- "a" ado" .F~ @m

- hem ffiad 0sh tO r ad

00,04 ft - - F-

aft aft lftLI omma

"d ame A dos 5 FOM w. deoo"

miss Nw OM n eurmadlgn hep :

Attetoso

1w @.F-a s w oO
19 .40"To" FOmul d-

*OauIamW News ~ tL~t

0001lign Peru/Sat tWa pWeP- I:tretriem data tupe 1: i

of a,5 - At af

inlisign Peru/sat tupa pep-up I:tretriolui data tylpe 1:1 set pop-up ualue 1:1

vow so..

mOvi/sa. &RUN to. 13gs Ir.tI

lOasigii Form/read db 1: 1

um bbA the pow" -f
by dp ow bmot f romp".
a* Owtwm fW tow Sitattw

0 ob " aan' y

rehiem..of IN ta

~0to 9.@ ,tow$

P5*1mm to uno an rommp

avo* pop"

hi sarb. ton

fleSign Form/read dO 1:luget dO name 1: 1

I.

noww

navier -

GlUesignFomqu/readdbi I:Iget attributes I: i

\ At-t
d" 6.

- I

=Design Forn/builId form 1: 1

WýdOW

flleSlgn Form/bUild formi 1: 1 build form 1: 1

ram

infesign Fana/build farm I: I buld farm I: I se file info 1:1

*fesign Farm/get name 1: 1

UI, ton
OWE

text

l oi e

* *8Sitwp~ ~80600a10"

inflsign form/got name 1: 1IaCtkuate tent field 1: 1

POW -

TIM-

visible?

=Deuign Farm/get name 1: 1retriewi associated data 1: 1

=D~esign Farm/get name 1: tretrlmeu associated data 1: 1 Update edit window 1: 1

fto

MOS/ISOM t l.art. lees 2r.15 a

w m lupqp awiu aa wwm a ,W Ip m

SI. (Mft DAnrimw *042 Typ ~wr -R" IV)

Ooip ftna algm"t IU- w"SmU- *1 I;1.9.1.mwine IA~ I g a 2:

MDNWPWWS mm 11mfleeignWO 1Fofu/oicav O edit field 1:84:1My

Imam

* 6@/1519., SW~l 30822 I

iMolslgn Form/okau edit field I: lgel old name 1:2

Meuign ForM/ukeu edit field 1: tnet olt name 2:2

COespg Farmoiag edt field I:tIrset tent field 2:2

tvaost

I

ol1so8wlra

d 1.UM
|:

=Dsignl Form/okag edi1 field IlvreplecO old field data 1:1

P Moeslgn Form/alcag edit field t:Ireptace oid field date t:I,.date display 1:1

MDN OOS.P dt t Itm I8 SOCl: dOW 11@4 4101 1:ludato IebI I Pt48 CurentfdMi E I I

not/Isom~ 4~l Ud 21

infesign farm/get MMel WOt 1: 1

SI

00migu Form/get field date I:lget data t:Igel Isalie 1:2

4SI vw I
U 3l iomi. ni'

Moeuign form/got field date 1:1gat data t:tget uslue 1:2chelck far null 1:2

meeewordo ntempbeaf, * x
pcll~ ow Ia S
vowe ot ve AtftlUefi"

anvo to w mIm
(twot) vane

=Design Frarm/get field data 1:190t data 1:19.1 value l:2chieclc for nuLl 2:2

fleslgn Farm/add fleld 1:2

ornwm ban

I Aew im

iMIN "Mn to a"

YES -

amn ur to

=Oeslgn Farm/add field 2.2

me i Ofto bo ewuee al
a"e ftu. TMI Col fies to

OWUR LM I OM.

go/Io 0111.W-UM21.1ml 22:15

ROeuuIg Form/add field 1:211aM listing 1:2

MUL

Snliesin Form/add field i:2uciuael lsingu 2aNI2

1m1

fleuign Farm/add field 1:200tdlilteing 1gt bot 1: 1

fled-iNo

Vale¶1 amit i~ai

Ousin form/add field 1:2flald listing l:2@lroadg In list? 1:2

inleslgn Form/add field l:Zfied listing l:2*lreadg In list? 2:2

=Dfesign Form/add field 1:211lhd listing 1:2add field to list 1:1

--'

DOesign Form/add field l:2field listing l:2alreaadi in list? t:2found? 1:2

CMD@Ngn Form/ad~d field 1:2fied lilsting 1:2ilreidV In list? t:2found? 2:2

a.1 bnNm .nty.
som "0a" I -
Ow to"4 FM VAw OMu

Mm/19 IMV1."21

A.Usgn Form/colBlel date 1:1

mmleston formlcollect date 1:1gel data 1*1

*k0sign Form/reset farm 1.1

c- 0 0 FLK

GIneslgn Form/new form 1: 1

N OS/Iso 5M M0621.192 22:11

Inflesgn form/new form 1:aInew form instance t: I

--- 1111111111110

51.I fu.. .0.6g. tom pW1'

*kulgn w ofrm/elet .ame

OenFrm/delte name an

t~ , "".

Ole3nfr/ane ilg1

g ~ ~ ~ ~ ~ ~ w CM"533S~2. 321

Nesign Formldeflee name 12reom name from field list 1:2

floE-U flow..s

sowa

Flo List

U"t "am O

meo-

to W- isgww

00fehlgn Farm/name from list 2:2

SIMER

COSIS0sp iuwa am 50 ll

2Nflsign Form/nama from list 1:2get HSI 1: 1

Pba usn

Enfesign Fofm/namse from list Z:Zalert beep 1: 1

*fllesgn Formi/name from list 2:2blanlc out field name 1: 1

*Ueaigin Form/close 1: 1

E *OSi5.~ k~~2~laM22vl

Ginesigf For/u/sadato list 1: 1

MU~sIgn Form/Udate list 1: tget Reild namves 1: 1

=Oeslgn Fermlupdate list I:lIupdate field namie scroll list 1.2

a Iw

Wmm urn

flag-hem

-Am N

nmm m

inflesign Furm/uPdate list I:Iupdate field name scroll list 2:2

COS/laaplIu.~19. M 22:13

iUMSepin Form/cencl saue 1: 1

-W. town
mm-t T@w

IDesign Farm/cancel saue I:lreset TEMPO FORM I :1

0musign Form/cancel saUe I :lreset TEMP V FORM 1: 1reset TEMP I:1

lesign Formlcancel soe 1:lrest TEMP D FORM 1:lreset FORM 1:1

P.r.

llesign Form/okag done 1:1

WY-

NoIls/1sw Sw , elmai32l

Mssign Form/lc done 1:l leple error checking 1:2

MOeslgn Form/ukal done 1: 1 simple error checking 2:2

infeslgn Form /okin done 1: I simple error checking 2:2sound alert 1: 1

Olesgn Form/lew field Input 1:1

IKOS/IS S- .ma aitS

ONulgn Fern/new field Input 1:l1inltiallZe snugV bate 1: 1

SI

lieg-i

UMeulgn Farm/new field Input I: de-select scroll list 1:1

rkm Lin

-itg.

floestgn Farm/got attribute pap-up 1: 1

amum. ebl.
0290040

nag-

Am-

mass'. anmoo
fir VO I~ -~

wpm itsPm .
po" om-

Uoicmmzm

*03/5ow SWOW2g.tl leS2:IS

inkslgn Form/set attribute pope-up 1:te 1 olvaue 1:2

f~ilesigp Form/get attirbute pop-up 1:I1got value 2:2

Uflesign Form/get attribute pop-up 1:I1retrieve attributes 1: 1

.. - ------ -------

nowlbt~

I
to&

IF Pin,.u ul et. K mll ,ua Y

""timesSi I. . 21

P..M/Mtww" mouh vap-i I: I fob* t lW 6 b 1:1 sa t M peo ws IM I

.* FW Of i4omw

.VFU hI of

Ott-sit.O

Mt MOOe

" "&O.v tM- uOk1tollv 030)bl 64 V 1M tit 04

ht o

00130so

Attibbot

Son-0 FMWGO/M GOOM. 96949 IIf~tltVOGMbm.0 VIi sOt 999VA I Ift~~WPP Io typo p-a 1

gaft ,M*eq3j

107 OWet mt pOpq* I leIbve avow" 1:1 ont pop"p vmwe 1Ii gtsgtvem pop I I get vil.

mum=

=801= Piet 4"000A POPA 1 tweault I: I teeSI les pop-ap vow$ 1: 1 wt dull typo pop"q I I mat

fleol-letmim

egos/Iesom SiM W2i. wt * is

VIE wumdow

same

'ALM

wkn uv

40

Y

Pau.

Y
- -o

Y48
mm

lomb
(1TmV 62

IV
Ownmon

I/ o
lw U u

-m
a" wi

area* W. IE Wmadw -

sew &SUN or omOINOK t IAW

911 -. M .owm im .00 M

VANa With Curren 02094

ow oO -wN "We. "WH OWN so Ed wmd wow

I m~.ummwwt "m.11410PP0 o a
IM ~ doo &t am 4,d OOM s eurf"Mk ei

ow ~ ~ ur 1tU oow o " "Hie. Cie .ua t ad to

iiwr pef d.0 wf PAXIS to"d
etb. 0 C, cadJ ohm 11BOA M abc "M ec

beM ask Ia IIU mto
GOW31 WONOW Gum I IFIN det" 91110ItN It ssm 0011o gm . 1aa

PO Famw Io o tom OfNN

PO mal em. -m turnth
No Ism utm reub~m IMOD nin.a

mumphumbeemwembemp"

mam

O11 Window/saue as 1:2

*IE Eindalsaew as Z22

slt you.e son OW-9O e rmww ne fmt "am aie. n o tam.. to ame

gas/Isom, likmmW21. ibiS *tiS

Mac WindOW/Sm.am 85 :2updote form 1:1

lUpomyae
"to O- t.-o

Sa t lm iea l"f

%uM43 10 disk.

Mac Winldow/ague as 1:p r hoskepn 1, 1

MIE Wlndow/Sm us Il :2updmte form 1:1seve form to disk 1:2

fro

VOI

a 2/S -mgiso" ai

Olt Wlndoglw/Ie as I:2update farm 1:I1sU.e form to disk 2:2

*IE Window/saaueas 1:2update form 1:19111Wom G to disk I:Zupdate nane 1:2

MOE Sjlndmmsaue as 1:2uptate form l:issue form to disk 1:2update name 2:2

kSM dge Fal

MOE Whudmw/change? made 1: 1

MOE Ulndow/clmnarlp status 1:1

IME Windaw/reset Witem list 1:1

MiE Wlindow/reset witern list i:iremoue tram list 1:2

iem

m x

RON % Im b"

M11 WlindoW/reset wilem list I:Irumoue from list 2:2

item

itsb ac a iOMs
ejsct~ as-

maEUhndwideute form 1:1

01IE Wilndomi/delete form 1: 1/delete form 1:2

oom

WIE UlnidoW/detete Ior. 1: 1/delete form 2:2

1I. Fie W.. ..hsM toat dMM is I h ft.. wPMM -f OWNSMe

Sit Wtfldow/dhlete form 1: 1 dulete form I:?perform housekeeping 1: 1

vega F., £ T of ows ulo1m£ ui

WPW/.~~~w~ onr I 1m a p~~l mmqq Iý COW" m. Tlp

w~ OwwCeOE m'-

USE~~~ ~ Ttdu~pog adIf

v 0111. mwtI lPSit1

011E1U11duu/displag field Info lMlnfOUPIntdow InSlance 1:1

MOE Windom/disong field Info 1: 1displasj 1: 1

wt It AW WIdh. go
tU tO tome 41

WIE 1111WDMwINInpam fildw Into I:MSsPIMu 1:1Uoate IE~bjett 1:1

01IE Wkidow/IE Idle 1: 1

Got/Is""p aw"W21. 132213

Witi Window/IC idle I:ILuPdae dIock 1:2

textr atl

*IE Window/IC Idle l:Iupdgte clockC 2:2

nedt uselps.. ~m

M1E wlindow/check f or unsaved changes 1:3

/KA~fi
T ono

TWAUE

AIMII Window/chedcl for unsmued changes 2:3

1IE Wingew/chock for unsmued change& Z:3

MIni Window/check for unnsued chaniges 3:3

- assign o s t

mom inft a 9

ftf WAM be s bf

itono ow

51mo aavuim gem ""M U

Ai& iam a aomi SAW D

tom.W

bttmOu
aU S

"" " a9-'

"4I6.
LF

'U'ý

Iftal" 03, ko5 W m li. lie) 216

Oil IMkmdw/chack for unsaued changes 2,3rocess answer 2:3

me mon "S to

W11 hindowlchwer far unsaved changes 2:3process answer 3:3

ON VO

an mmai orMW

own u ~

gEW NdWW/Chc efur msaer. hanges 2:Sprwcess Imanswer TW 1:p1t ar

/for

wowe farm we

g ot/Iso bo mor 21. 1ogs 22:16

WWWWAMOlvemmom am" stooregas Wawa 1:106 "WASM41:1

rem so
cat qmýmmmftft FýVrm
Twomotbellmmime
re"" teA NW&AM
of am Librom

IRAGMM Nam mmw "MOO 'I
troll *A Omm ws

11MI

sw- go MIN view CO.As

w aw of) Wbft-

"own

men ftrwý

917ý- Pam a Twigs of cwm ftm a TOW
The MAK IN don MOM

of am" Lbroun

MVAM cow" I a
*ý aw G~ wwows

60

pwp4m Uo ftm vlaw cames
116011k soý an on a" OE) "b"W

.9=6mt

ow"§* am" form.

SOWS"" swowil. logo 22:16

tEk u tuýwtqef~t v l:Wem ftut vi.a tam~ vi

Fets

nowe

sav go* ls
L*.

Wb~'Fm do % wau Sao Zowuina m et uu1mwt.. odu

s~igt anft a
dasm

Rom oM.,

LLm -'l
....... W

sm Fom Air

Bi I~dowWo fur OMOugernO :Z UpurnMWW I SpWftuMftUS1luG a.&TmpI

(cc

* W~eS~a~l t~t in~~ 2 ~.S meSfwrn &fU t9grt F £TU1I

OlE Windome/mruIsue fonm 1:2

roll IM f*am dak

6 ft~m fem U.W4 allr

MIE Window/ratricue form 2:2

1IE Window/retrieve farm t:2cfieck for opmn farm 1:3

SI~ft In gown8~*

MOE Windaw/retrimue farm I :2cleck for open form 2:3

Clow

.r w rM"Mod n

(1 MON be E so "a" f. a mw fwm 00se S ftm?

19O2/I0"y V lRw2l let$22 Is

MOE icWndow/rglflinue form I:2chock for open form 3:3

P" 0 wMa

MOE Wilndow/retrimue form 1:Zrand form from disk 1:2

WIE Window/reirieue form 1:2read foarm from disk 2:2

WIL-

*IE Window/retrieue form I:2update name 1: 1

MEWM0W/uMM.v uNM 1.2m.e tu ftMr MM If 12080Y p" toam SH9 I I

=I[Ulndow/ratfleue foam t:2ranS form fromn dsk~ I:Zraud data groim dik 1:2

Mor VOI

c4-

.1 E WIfdncow/retfGlau foas I:2raad fwo fromn disk I:2rmad data from disk Z:2

error

5T S

WE Wce/rmn@tw turn I:ZmS turn owSS Iu t:reed 051tu Sai onea. 16tur FwI I

*If Wlinltudowmilt form 1:2

error

SiuniniT- .un

St VSu Co* so go Offom amw Set fl* a 0 mw ftur to amn

IE Wlindow/it form 2:2

USE Windo/seat form 2:21oad leMp 1:1

copy~ @ am$
FOM, VAO aM TWOTZ&M

UIE Window/eit form 2:2uPdale 1E Window 1:1

dm m Ul

IE Window/edit form 2.2101o1 TeMp I:lbMIld Setp 1:1

O, l 02.1 W21. IN)216

*1IE UindOW/001~ forim 2:2apdato If Window 1:Ilundate form 1: 1

learnt Gommi

MIE Wlindow/eat form 2:2update If Window i:lupdate farm I:ireset canuas 1:1

laesmvee

s~mm

fMiE WindowV/tab Order 1: 1

we Tom,

MiE Window/lab order Mineid Temp IA1

Fam vte du Two

*02/t50ony sm"W21 1102 22.14

=I[Wkndow/tab order I:Ieaedate 11 Window 1:1

*IE Window/tab order 1:11081d Tmp 1:lbuild temp 1:1

MOE Window/okag done 1: 1

*IE Window/soVu done 1: lpertoiri houskeeping 1:.1

Tot ea.m be m &m I6,

of ems Lbwi

f eew Mb etibsl or

-F ame On Fae wm

dos/Isomla lkneitr~.110S22216

*IE II~ndouiokag done I: Iperfrmmhuuskmepiflg I:Ireset Form Temp 1:1

IME Windam/okag~ time 1: Iperforra hmasicavoing 1: 1reset librarian 1: 1

MIEi Window/slcag done 1: 1perform housiceeping 1: 1disable Farms menu 1: 1

find-mom

ALSI

l T11

1 521

Oil WlNHIGI/mh1UP Cmeift 1:1

O il Window/cancel 1:1

*Vmm VIDW IV" wdeeeWaa :

USE Window/delele 0lal0g 1:2

-2 -ter mie i s.U

EO3Idiin Sri.l 11 O

*iE Window/delete dialog 2:2sound alert 1:1

*IME Windmu1O/deiete dialog 2:2process response 1:2

*lE Window/delete dialog 2:2process response 2:2

- ". sodg

USE WAinduw/close 1: 1

Mfl Windowu,/xa'-m name 1:1

£O'lle" .a-l.se lt

1IE Window/now 1:1

*IE UWndiwlnew 1: 1Cheek for open form 1:3

gmel

cmatui ovu Iyfo

vim~P Omdo"
fled-It..

tentMmmm

W ede eI. e tma@ wO

dos"S="

Oil Windaw/view 1: 1Check for open lamD 3:3

some"

M1E Windaw/niew t:tflaw form dmialg 1:1

Wido

t-

VMlE Windoul/new l:lnWW fam dialag 1:1g0t duteafts definition 1:2

Ce...1ý

ca"6

e-T-es U

MOM CaImpmmua " ps U. w da W, Mk~t p.a

camel s. ~I m at

SitE10 Ulnie/nw 1:11101 10arm dkfg I:Ipst 411tabove deflinition 2:2

NULL

5 1 Lamm to Mee mum uulemee fA@ Kim V5ft ino.£w6

IE UindSUw/uue 1:1nW1 iaO 11919lreset TEMP 0 FAIN 1:1

*lE UWndM/nmW U:1.. 1oMm dialug 1:Iupilate title 1:1

Wk W&OWAiW I: I OfMu Ot&. lI lf1M inW*fuP t2:Zsw won I I

*lIE WindCow/new 1:nMw form dialog i:ireset TEMP & FORM 1:Ireset TEMP 1:1

4

UIE Window/new 1:1eW fofRm dialog lUlreset TEMP C' FORM I:lreSet FORM 1:1

*IE Window/update IE Window 1: 1

It no aDIWA Sam fum.

*lE Wladkw/lsed now taom 1: 1

'WOW W rnAmlod new333YA se- mufel :

MO E Wino/odndow/ds farm :do fi 1: 1

MOE Window/dose form 1:2

FOI1i,,5..2. 3 St

*IE Windmu/blanat coiws$ I:I

Wif window/user Preils 1: 1

WIE Windowiget current 1: 1

=I[Window/saue 1:1

EOOI'cep campIES~i

MOE wkmadu/jaue I: I up~te form I: I

fled-ktme

per -ww Pam

no tam tos :71 in
guim to dft

- ((((((fCCCCCCI ffULL

*lE Windowu/saue 1: Iupdate foam 1: 1mm,. form to disk 1:5

nameue a

mm

dafe doeove.m

f orm tog d5a "W

EO3/l
t
mpy oldmt ti22

MOE Window/saue I:1update form 1:ismue form to disk 3:3

iF Win~ddDow/get db derintltiol t:2

JIE Window/get db definition 2:2

1WW VON

5I &* t0 lod tOlina mews. plaidm OSOS It .ns Sod hosa,

* WK Window/get db definition I:2r:ad data I:1

IS

eCOfIitSmopy S.Rl 142 I . lodlI 22 ISI

=if Window/get do defladtion 2:2bound alert 1: 1

VHelp
MAL

'Owmftw.w

FALE

Iwe

WboPMoor

1124551

v
1291 4931

v
size

- in

eoS/Mccy S . 13. e22216

smeip

-u* -m momamaM
m Alip.

of MOUW t t W-

am ance h o a ob No-W0

*Help/okcug done 1:1

~* as

atarWea 0011,112, teat 1332) teat

5 1 may $cof Test

*Melp/sholw help I: I
v

.

/ol

sWAOD *OHMi xtsf*M10 OVI by 9169M VA DOPMt DMtes

C 03/IS espy SWILMOVt. go 2116

OPelp/hgAp info 1: 1

vo a.,

inmelp/help info I: Aget help topic 1 :2

=HeA/hfol Info 1: Iget help topic 2:2

oeAm.

UNCA P/help i nfo I:lIddiplag 1 help textAteriu et 1:1

wmd" 4" i

51 0115c ~~2.1 2

WHhllfiheap InfO I:Idisplaj help text t:Iretrioue text 1:5

Sl A Sami ma sosaP Wo MONa & moorto swily bymi "a Weag WAw~ am.. Qinyooa Form. amt mWon. D

musand a mo PO a om In rusan fmor - or by a. Pamau

*HSIp/help Info 1:l1displmj help texst 1:I1retrieue texst 2:3

a er We @Wooa On is WeO ib~foal N Isor Cwm tail Isdana by VA inflo *W TONS dflog st
food by "M matemsiidmow Howevan. if you ~A snonw of a Oon aW" VA boo1riomi IIwA (Camm on
Mwa a~n. m@W 9 In I-ISMRS. UM, syai a Wa ma.). ITIS IPANT THAT? YOU AW O $LffMS.FX m
ym&FW. MAnue. we roagwogd Me m WAS in an am. 1

Ofse" a um is accommm n O.a of tom us,.

(I) smasc Open ramI USowf or
(2) a so aWA i Form bom Met soim Irom un WAeft in WanI= bor)

A mswofi UdnSI ft iowe "Wsm ON am ai You to "No i the MomFe to opeft Ye. Can someadso
IooaaOym. (a Oweas) frii was awbesm 0M6 Wia ft to oam by sgwepong WAs W~a WASOm* pam a ow

090O h5am or you toi "awu son lwA ft ft. aoma WA camI "tb"i Vtoui to amos WAe "I'gm
.OiHa opama a woam ft.

=HeID/helP Info l:ldlsPlag help teaxt I:lretrieve teaxt 3:3

=Help/heipC~lCl 1:1

Offelp/HeIp 1: 1

cos0/ISsoma lsa W2 i. SoSlia

Viab Order

FAA

ve'.

- min

ef

0*AM no?

-w a

11".

v
- 641e

v
-. i021

V

Amm

sliab Order

T Commit" -bemm

fom hl dm~kf 0a son
[mde, ==~ MT. be 050 sad.£518 for sS~00 LIP a" ownui I e mm.

get~m e a wa .i ni a did Mom; * ingj

on to 9~ am -pw
-- M amdb 0E5C8

W"* SO" s obedep a- to orer 5W ,abe crow

-ddd do"-

OI1 op led ~ 3 1m toe OD to led Net
Wi~~~" Order nId~ U in. an bd"Otinu Ims

to 11660"P. first 18. Idt loo tie old Do

dios,1Ssopy smem,1. is*322-10

Intb Ordlcr/cancl uawe 1:1

Taob Order/edit tab order 1:2

uTab Order/edit tab order 2:2

10Tmb Order/edit tab order 1:2tab order Instance 1:2

irOS/IS coy Ikl -l421. 1SIS 220

lo

GBTalb Order/edit tab order i:2tab order instance 2:2

eTob Order/edit tab order 1:2get current field data 1:1

Mab Order/edit tab order t:2updale scrolI list 1:1

Mlb Order/edit tab order 1:2tab order instance 1:2get list 1:1

/form

/too 011 fow ti a 1.10 21

U7ah order/edit tob order l:2tmb order Instance 1,2field list emiplti? 1:2

am we U fsm

ampty.u sot ems
Sae ta orde

07ah Order/edfit tab order t:.2tab order instance l:2field list em~ty7 2,2

51 11. Thre &*no% lear feare 1so ammet farm

=Tab Order/edit tab order 1:2tab order Instance 1:20Opn Tab order Windolu 1: 1

a rrest art 11 too ti ovubw

U:i MneadolWw to relect
Walac ofti SI Ti Order

atteb s Koc - tat an o-
eSo"in .0e bth 0eet

at am e p Stn Mak (i .-
afronvt ; a toptakt Wooden)

stoS/13S ey SMNSe21. lSS22:.16

Upeh Slder/mmu up 1:2

Mobh Order/maue up ±22

07ah Urder/maus up 1:2nmoue scroll list 1:2

07oal Order/mowe up 1:2maue scroll HSI 2:2

.1 Old"

MUuLL. ~- ~ ~aSl

ITab Order/,,u.e upl:Zupdate tamp 1: 1

T

/flowage

Ufab Order/move up 1:Zmoue scroll list t:Zmoue field up 1:3

Well Order/moue up 1:2moue scroll list 1:2muev field up 2:3

istab-.I Ov.1W is weS
almend amgo met

Tab Order/move up I :2moue scroll list I :2mOev field up 3:3

T2

23213111~t

moohIlSapw .Ptl l2

Inleb rderlmaue up 1:2updatO temp 1:l1MOMe field UP 1: 1

U7ah order/move up l:2updale temp I: lmoue field up I: I moue field up 1:3

Ulah Order/masse up l:2updete temp t:lmaue fieldU uplAMoue field up 2:3

3!

x

A O,1Sap . i . .1 l. 25

Moeb Order/Item selected? 1:2

PInM Umt

flod-ftim 9K e

swap on

- SM

MbU Order/item selected? 2:2

T7ab order/okay done 1: 1

d~fto F00

MT78) Order/nkaU done 1: lupdate Form 1: 1

Fr

070b Order/195t 1:2

"Ron On IIOd ctM ma w to Urn
OW of Ur n Uof mirms . DO" tw

ibm ~ ~ ~ mt a~w~d -Now ft5) /1104 or cims

U~~ah Orbr/ts 2:2

UNTab Order/lost I :2save Changes to teMP 1: 1

/110w4m0 to us - VAt we IN ot
mao w" W.
rouwm Ow sou of fim

"94011801211 dot go fm
so 141-slUmh itto go
011 of a1.in.

In

wot.M to V~q

Iflab Order/last 1:2SaUe Changes to tIMP 1: twrite to Temp 1: 1

To/~af*OWI1031

InrabI Order/Update Scroll lilt 1: 1

WTsb Orderlvalid Click? 1:2

07mb Orderluaid click? 2:2

C~ab Order/canocel dialog 1: 1

owlN

LIOU

EfO2'Icom b.MVIl 1"32214

Wpab order/cancel dialog 1:Intakce dialog 1: 1

6 1 Wsavsd am"@a A be b Comms SW, soameso s Cum

07ab order/first 1:2

"lit

WA we ct111ai IsS sRom to an
top of amg lot Of lmom" av of Us

VATab Order/first Z:2

=Wsb Order/first I:Zsave changes to temp 1: 1

Mwe ~ to lthe ofAlotbIor

111s2,1" "m an of 011111

Wd Iw-Wocs It to togw
*WAo f 11" lot

MoTb Order/tab order 1:2

I7 %

"cc ICI.6a

inTab Order/tab order 2:2

<a~o

CTab Order/tab order t:2tab order instance 1:2

Monab Order/tab order 1:2tab order Instance 2:2

mEOt/lSomp smmw21.1S216

Mo~b Order/tab order 1:2ta order Instance 1:2fleld HSI empty? 1:2

Ri~d Ust

Utah Order/tab order l:2tab order Instance 1:2110111 list emptV? 2:2

Mobh Order/tab order 1:2161; order instance I:2oPen Tab Order Window 1: 1

To INd

in do OWuis to isett
too of. 'rob Order

atee-, n amui gso at
on1f stoc otosmm 0 am ofi.kt

01" . 1 INSi 11t
"Nour in so an be"~

CU~et ow toepust vomoo.)

Utab Order/tab order 1:21011 order instance I:2get list 1: 1

Rk istU

ftod-Ites

sEos/15, io i.ua 21

Molb Order/gatfield 1:2

Mob Order/getfleld ±2.

Moab 0rder/moa2 Gown 1:2

nellSsawa

LNULL

MnaDOarder/mali. down 2:2

.....a4

IMab Srder/move dawn 1:2mouie scroll Hist 1:2

U - -

Not

WILL -

Mobh order/maue dow~n I :Zmaue scroll Hsit 22

Btab Order/mOue down I.:2tpdate temp 1:1

7Tab Order/moue down 1:2moue scroll list 1:2get split position 1:2

a wo ait m

lit

ilO$IS..p/ kit.oy . ifS 22 4 C

Wab Order/moue down i:2moue scroll Not 1:20et split position 2:2

WAM

NULL

Oiab Order/moue down lZnmoue scroll list l:2moue field down 1:1

[,.PNot WAM own

Iab Ordoer/moue down 1:2update temp l:Mmoue field down 1:1

lieOVSCI$4OW Sa iMMR21 Il9932216

VOK iOimig

0OK bWOW
v

3MA.

v

aivU

VAE

1 137 261

-o mwt

amVf

MK Dilo

so/S= wmw""821

VVOSINo Ewalg

.. mr Dt.

-'v.

FALKE

v
sags.

-vk
Wido ne1ws

Vr
1.55III

FALSE22

v
MALe

v
mselce .1

14017g1

v
1-27262

1V
sizeq

V
wove"m

go" atbr,"

IS Ol'iscf 5ysIRwumSI 622216

Vlump

b) h of two amm type.. attr. & pmetma

""needs m to*e Mtt'&A POG)

07emp/deiault position 1:1

uwi~ig p

UMeMp/default position t:tCOICUldte Position defaults 1:2

.Of OSI " s W t AlS1

whueaUn380 960

T5

awk~~ Sw-i o s

OTemp/fdelt field 1: 1

T

iotack.t

it
4t

meTmp/add field 1:1

/flods

=1emp/repiece filud I: I

,1eiMP/rePl8CC Field 1:Make changes 1: 1

m 00.

0 at-nta

II

M7e111p/fleld names 1: 1

T 2I d u% 2.1)2)

Tmemp/reset tamp 1:1

-T,--)

MTemp/revert t emp 1:tu *1tmpI

Fond/ted tt :

v Edti Far

.wmm

MAL

""I.umul

4,

vna
Iw St4
TW
v4 0

TE
siz

se"

K"

v
-onýa

am ý

- v

SEldil Form

so" m tomn eam oe

609Fi=dMW OWm/btend owul

MEUdi Farm/build form 1:hulWr 1:

re-

att.Ib~es

Esawsoopy SWNNoatat.21

IlEdit 1mrm/build form l:lbedld form l:lsel file Info 1:1

IMIEdit Farm/edit form 1:1

mDEd., Farmledht form I:Iedlg form Insatane 1:1

samem a us t@ ro e belf

Se Mme of %o frmI..rrool The Kvmub sam ona
SMae. -m a Waf of
so eems Waes urn ".~-
mos aw" tin. us foir "

a* s"purt iu

UW*are ftii pml

=Edit Form/ecltl farm I: lget current fied names 1:1

/far2Oe .31 ~321

=Edit F-trinedit form l1lupdate scroll list I'l

WEdAR Fommlokag edit 1:1

limit~

=Efdit Form/comel dialog 1;:1

/srn..-af I"..

=Edit Formlcancell dialog I: lmake dildog 1:1

fola/IsoMy SM"W11. mall:;

=Edit Farm/delete name 1:2

-Vbblw6

awn. Owwo

=Edit Form/delete name 2.2

WlEdIt Form/delete name 1:2remaue name from field list 1:2

UO3/S4Ip SKM~l 21

=Edit Form/close 1:1

=Edlt For1m/clse I: Ilrelresh canvas 1: 1

51 Iff'lwla EIo+ ,C

*E•dill Form/cancel savue I:1
CA'

*Edlt FO/1calncel Foave :/cpanoel housekeeping 1:

Cw 08/11 eI I., 0 21. 1001111

VPreferenlces

MAL

ub% vo
F;

STS?

Orw 0

IRAm

TUX.

veSSk

MAL220

V

$*Boom
12419

SIR

*ga
- -
ma 0v mob

Vw
go oh

V

WASK(mmto~'

pmft m
low ~~k bef Go

Wfteference/okaIJ Profs 1:1

*MPveferences/okey profs 1: 1gal canues 1: 1

"Dld-won"

01'references/ulcay prefs 1: 1get user prefs 1: 1

*Preferences/oaym prefs 1:Iuppig colors 1: 1

p611CMs"2."21

W~refearunces/aocausrels I: I ge user prefs I: Iget preferences 1:1

morafwartesIoiu Pat$s 1.1 Olt OSr vats 1.1 got pmftue.1 eeprfeeI

*BPreferewlces/okcuU pref s 1: lopply colors 1:I1refresh canvas 1: 1

=Preferences/user profs 1: 1

*Preferences/user Preis 1: 1 set ualues 1: 1

lbreferences/user Preis i: set umlues 1: 1Upd0tm radio bet 1: 1

to0,/Iso AM- it.10922 2:10

V lECeiwas

v
76

visilei?

1MM

grow?

1001
v

1001

v

mu.
(a

6

wCto"

vCIS
'Pera
TIN

10000
V

WHO.

"S00 00I"
V

vmw~ifS
V

1001

boom

forgrun

012/1M iu16~ostl

so pf 4104110, Sa

*IECanuas/build object 1:2

sm o

ad~GPK mot beem m

tWOWINO toR m

MIECeuues/build object 1:20dd objects to witem list 1: 1

WuMOr If

rawin to Pmm

atab OrdOW

IN)I ~SRmS.ld 21

GkCWWUIJ1. MPCtI.Zn 1:01 0U ftWOW 10 'IM Whe~ O@WN isewI

Ii'~t
bmn ego 4"m
one UK Owi

Itm a

inIECmn.uesflind object 1: 1

IECawn u/find object t:tIocmte abject 1:1

*IEC~nms/do drag 1:1

*Or~p umcL.I1Il

IMI ECamsasidm 1: 1:Ido mg1: 1

FAIECanues/do drag 1:Iudfdrag 1: lapainte old position 1: 1

mew Me am %ad
Oueam0) wesio
in Ut flub.

*IECorul/cremte IEUbJUC 1:1

T ili
64WAG VOO a

mob,.l

*itCmwmos/aeate IfEUJect I:Igenerute lMfbject 1, 1

was/Isom Wdi9I1. IWO If 6

inIECuomm./cawues Prop i: i

S10 aOO32M~ sa000

MIECanuas/drom 1:1

IJECalams/drrnn I:Iaw rect 1:1

*IIEComems/daam 1:Idraua label 1: 1

*IECamusin/drow l:tdrma reel t:lfrome the object 1:1

01111

MIlECnumms/draw 1: 1drGW M"~e 1: 1mmC Peun 1: 1

cow

-po to
auMTO r won" w

*IECuewas/drawp l:Ilam label l:ldraw label 1:1

inIECanues/bojld form 1:2

lIECawms/bujld feum 2:2

0.e m ow ime

*IECauujst/I Draw 1:2

MIECenums/IE Drmaw 2:2

*IECMwUMlget posilllmns 1: 1

fet

UIECOang/srafruSh Camias 1:1

COMMw' ~ I 11

inIEConasire fresh Comeus 1: Iset preferences 1: 1

llECmnuas/rsfrosh comeDs 1:129t Prefermnces l:lbaCkgmuuau color 1:1

*IECanues/rafresII comeas 1:l1ust preferences 1: 1foreground color 1: 1

ItCmWvaghftU, CaIva 1 t PRSIWMM" 1 I bOMPud cowo 111313awl"W 1IA

5L

IM~c~wwrQ5@" /I 13W loll ii.t 1:16hONcw11a" 2218

I"

iEak iw.S0r86r @&wasv i:? t onrm. 1 I Ibinooow~ co I I mtawo 4:8G.

fkcuswJrofei m 4Mg I iiwmft pw~hsc I: labmomg cow I:?st @Bkcar 4S:

M~wwfaf my.. 1:1 M Pe pISU~ lee 16aimu c Vmtg m akcm 6:8

inacawowesive cow"s $:I wpmnotwsqs I: I b em.wo 1.1t anna'. m

IDECveiretaftcanvas I I at pmtahwIes 11 twmwm caw I 1 nt UCOl 1.£

j~ECwv~t8Cavas 1 Iut p~et~nMOS I 1"rowsgr colori 1It FotiColo. 2 U

inECWbNa~dIISCWM 1 st prefoRMSit I I ~regromWtideor I:I Mt PaCoior4S

maCm~vwr.*,uoftam 11 se pml imumso I: I Ibgvmaia COW I:I m~i p.Col~r,q

inECaOvWSSIMINSCOM I letVPMftl~ I: I ftUlloid olo 01 *11 Mt FdoCdl~w7.S

iIDCmS/w"efmosi COW". 1I got Pr1om I 1 I Ifmvograo mmo CO l:.t Fuoriar 8:0

-1--sae

inIECauwms/blank canvas 1: 1

IMIECnvSIMU111/blank canums I: IreseI Ilobject Iuw 1:1

MIECaaush/bgank camias 1: Igruui canvas 1: 1

III too 82000 $101

*IECanvasIIf Click 1:41

*i. in gow~

1902/IS .0Iu Msm"i.119115 SiS

inIECamiue/IE C~ck 3:4

*IECommus/IE CUCk 344

---- -------- -, -----

Mnod m. for

MIECanva/IE Cick 1*4acliue farm? 1: 1

60315" be tsw.wl1"t

*lECanues/11 Click 2:.4prucess command-Cick 1:2

ON 77 PON

bm"

FA-LS V

*lECIIueS/IE Click 2:41process cfunmand-click 2:2

de NI owt of
No SM wMkaom

*lECwwas/lE Click 3:4process simple click 1.2

wdow P v

*lECOMisIME Click 3:.4procoss simple click 2.2

WWgW Corns POW EM

am Ois -I ate

@amt~sp Mm w2I iO 2

*IECunueS/IE OCUM 4.40MM~eS dmal-Cflck 2:2

amm

- Ce .ins

inIECanUWs/ E al~k 4:4prgcusg cmmnd-U11 0-1 led 2.2 taf 1

inIEC~mas/E Click 2-4procss cvmmffd-click 1:2t fiede positio 1:1

MIECanua/IE Click 2*4procsss cmnmand-dick 1:2pracess 1: 1

inECWVW/W deC *4pcMin coWIdWGk 1:2bo~ereet? I loot mctbWM 1:1

OR OinA. fewn i *WbE
O N 100bevlaODOUN Mb
to POaON to am" pmpf
tO ft ubesomo to pofto

MIECuwas/IE Click Z*4process cammand-cllck l:2pracess 1: lreS12e rect 1: 1

ql~wwhl ClcWUpoes omn-ic :pca tlodaR:

Sodlmp IuAN2. I2 21

OkCaw.,U Ok 2:4p..o coomea 1:20mess.. I: I no@et I: I sambct act fswm I I

Il ONIM to -N~f
Ilmt Ifom Raesw

SVA w ems amrstllel g

fS~ o -uet S to

mea s.5s

I- -edi

CW-1 "M CleS 2 45mm.o OOM.eA liweme IZms I: WSW fet 1 Isenem them poemon Ii *oea estee

Mead

ame seawe

ROO/l5SM" &K~a2l WII.) 1221:6

bero~~on 4t th ia

*IECanues/IE Click 3.,4process simple click I:2ciici Inside rect? 1:1

Pt

rUw E~

inIECiwas/iE Click 3:4process simple click 1:2process 1:2

MIiECsiwn/i Clcick 54process simple click l:2process 2:2

aSWM am r ses

MOS/lSeq am "pal. IM 22,14

MkcUSwIICb&tk3.F4pmm yb .1141112k1oW*. ml? I lt 11W pmm 1:1

I R

am asb of

*IE~uauIIEOlc~c&4prCinuamimcikIZju~m2doda

If3I ayk .am S.lU l

MInCcanuas/IE OCkk 3:4ProC.s uigpPIO diCk 12pgcsI 2.Zdo draw 1: 1

infCmwas# ekst j:4pmc*u W* c 12pme~u 2:2WdM@ CM' samW 1:1

IavmEae twes- ms0 i un ~~eZiqII~~fc echnI

VnA oms keNa.em
ma of a e. we rowms

-~~~

mais

s

*O~smay uw2l.19S 22:16

akc.w8S.U k 5:Cpmem ofi 41k I:apqg.mle. 220 on: lupdao. rw pagea., see..m Oject but

Pb ~ One me

"Olowws kow n h

4pieokpok 2M :d " IIpoofooR :updateeorcen
ker st 1:1 eam br

*1wsommeClk4rcs mbedc :Icc nr?1:

oweer

rievr

UIECwmGS/IE Cliek 4*4PrOOSS doi*Ie-llck 1:cI c :ZIgIng reel 1: 1

- Net

wa"Sf 03,11 o f . Ines 22:16

*IECuwesg/IEClick 4:4proCuS i04a-cllck I:ZUnt~gIght the rect 1:1I

em met

MI gnm/EClwaicka 4*mpoeeee u..ie-click 1:2det? In gect li~i insid r t 1:

ton so twoP
sum~8 .om peume

mucawwa cla UO W. i.ntm Sea uemo 1 2 1.ti not? 216mat :9teiea:

inIECanVS/iPe profs 1:1

MInEcnues/ge t prefs 1:1:gtcous1:

*I[Canvas/get prels vi:get canvas vi1

S,

sol/s" m oal lI221

MinCaMWB/get Prwls 1:1901 Profs 1:190t colors 1:1

*IECau~as/update wiitsu 1:1

kAMin m et m Ko

Item

Is am ts

*Il~canwslupdate witesu o:iremmwe from list 2:2

Item

ooe " WN

*IECaaoms/update witems 1:I1add objeCts to WuHOM Slist 1: 1

wmwt~w Sa co

we a* Ow"

ine ie

V IE edit tent

Y

eative?

VISbI.

grew?
I 2302101

120501
V
Sao.

fout

ir~
sm03

Vr
lo m

+aDO
jmifete

mu
v-

so Pod-

wrap?
I 0127671

V
1001
V

ML

v ile

v

A~ 1fte

mu
K 2ISe ua - 11v 221

VIE @0t Sent

MAL

flolk/1so SUMMIF2. t282ZI6

WEi edit 10041/1191 1 lImfor filad data 1:1

*IE edit tmtt/lrkt t:Icolculate size 1:1

anu . i IW WI " 3v
go - Pt (V~pMt)

*IE edit texut/hot I: Icalculate lobel 1: 1

WIE edit teautllnlt 1:lm1fWar field data 1:t1set attributes 1:2

S09/tI -w $Moffat, 193 22:16

=I[.dl ust/Inil IAlseer field date 1:1901 attrmibtes 2:2

wts

*IE edit text/kil I :l fer fle d data I : ftat tOntV fo nt size I stfn 1:1

fewm

*IEed11ISKtad/WIl 1:luNmr fiel date I: 18.1 font*C font size I: Iset font sz 1:1

film

p.-@b

=it edit temt/init 1:SIcalcsgee label 1:l1find label point t: I

Oil edit temt/init 1:tcIcalcdate label 1: 1find label point 1: 1calcilate tauet boa. 1: 1

1Emt lndeadtn ise2

M1E @02t ent/font narme 3:14

MOE/o edi toutlen naea 3:14

eIl ait lenitfont name 4:14

MIE @01 elaidfont nam1ile 5:14

*IE 413t tail/font nalme 6:14

IE sit teml/font name 7:14

it

nMI edit tent/font name 3:14

too/ISom p IS.$Z:7

1IE eit toot/flon nome 9:14

*IE edit temt/full namve 11:14

MuE edit tekt/flalt name 11:14

1IE .dit teit/fant ismfe 12-14

Wt/le~ lu01 SMai. INNU 13.14

oil•.11 mtolmfont amom 14:14

mm.e .5mm mlml

oil sum poem m

.I[eIf tlmt/lont size 1:6

=If edit 10m1/fuon size 2:6

10

USE edl tlent/ont size 3:6

01E odit t(ext/font Size 4:6

14

UIE edit temt/fIll size S:6

W1E edit tent/tont size 6:6

~Fomi Meniu

Vorms,
v

FALE

vel.

"mm me

'V
S.,.ow

k.4m bts.

(I vds W

*mom menu

wa~s/is"" sw.V21i imsaa,,

*Fgr. meNmdope formi 1: 1

Row. lwwo

Si. hmsrtlU Idr WbMW

=Form MenU/S~uM form 1: 1

51 ~2

E

.wamI

WForw MOM/d"e IOrM 1: 1

lWorm Menu/deftte form 1:1

51 Bmfum5I

60O/isiesy sm"alt.1IMS22 17

Win.m Mnu/save torm as 1:1

in~onu Menu/sait form j: I

Worm Menu/retrieue form 1: 1

51, we lowwad

Worm Menu/new form 1: 1

61

* t/meMLe*21. 101122:17

MF~rm MuwiU/et WindoW 1: 1

VUlndmW Mlenu

F"J

v

pean

am III

v

OWIndow MOMu

Won anuk . Evku

IJIndoiw imom/open Interlfae editor 1: 1

=WIndow Mew/open Interface editor 1: Iopen Interface editor 1: 1

tW.1indom Menu/open Interface editor I:Ireset window Stack 1:1

NOSllSed" Ism u*. lIoa 22* I?

UIindem Menu/gopn Interface medtor I: treset form 1:1

4Mndew Menu/open Interface editor 1: Ireset librarian 1: 1

MInwndow Menu/open Interface editor tIlreuet IE Window 1:1

VAIl~N. IdwW nue

=Windowi Menti/open Interface editer M~acttuete the Ferms menu 1:1

F SI t ~Sit

Moiem/uop.. meiwe..eaw 1:1 meet a U~wop I treset omtfbtmme I:se I

SS

402/lI0M W^ mra. 190 It I?

VIE Me"h*l

PAMJ

mie,

ft

VAbOWii

V
- u

()ýons

v
- m.

C)m
VSA
(3

Mvxmt
.4o'eugw

cd4hhlm,
v

Ibroeg

2 mm

so4en a

VI odl

MIni M4adue/inlitlalize 1:1

WE ModUle/InhtiaIlZe 1: IIIgt Wilndowv list 1: 1

V Uhadu

PROGRAM LISTING FOR:

THE FORM USE APPLICATION

236

*classes

Peru. Tout L WB Pa U

Tint n Fan W y Fa N s

M ~ g Atorutt aenotle

arb ft tede AM Crode

am o iso iu 2lSSr~ m 1,2. SS35.12

V Fun Window

amroot

M"L

V
gos~a

'VL

PAME

v
Feal?

l

'v
K"..

1477 4291

V
Ssiz

/a@*,
v

~s i
Vmmoh
It

shm 294

11~ 0/13.0 lo "Mf.alsset 1

U501M WInCIW

M~ sost0 w me"Co

refresh

1form Window /read 111 1: 1

tam$e

CO~ar. Window/refresh 1: 1

go./~h M.lW22 "b"11

Worm Windw/relfresh l:Idraw field labols ?:I

=Form Windolw/refresh :1drow field labels I:lmoue pen 1:1

I
*xt..-Unmt

inForm Windmw/refresh 1:ldraw flud labels l:ldraw label 1:1

*Form Wlndmu/Close 1:1

eForm Wlndowlinll 1:1

k iOS/I
$u

Nr2.
1

105512

anfrm Window/init 1: I,2mmu field objects 1:2

=Form Window/init 1: lremmue field objects 2:2

*Fonn Window/lalt 1: 1remoue field objects 1:2determine type 1: 1

" M ass to5 11"

WF Att Window/reset i:t

km kd

VOhspift Form Wkmlom

m".

V
FALEs

v
MALt'

v4

VAL

14711ii

v
1477 4" 1

v
size

V

mmCr~@..

v

olesseee

4 IWVM f

I pusm of

~v -- m o

gm.b/I my mem jK*2 1002

DOWSPIag Form Window

arm M ovesm Of "m am" n ft-. Do" m ~ e.

first lost IPeebs melt

inWsphuu Farm Uhlndmu/rellet 1: 1

eastle

001splag Form IWindaw/okag done 1: 1

ERO/itMv~MM 22.10028:12

ONspeag Form WUlnIew/ECee 1:1

*I143'ag Farm Window/ment 2:2

,. tmin b

issea &arm M"dwlet :

onIspleg farm Windaw/namt Z:2soemd alert 1At

6~02"3,S.60~ MW Islagia8

inueIOU Fom. WkINNum/Proulaus 2:2

M~is~piav Form, Windau/proulous 2:2sound alert 1: 1

SWuIMsjO FoUI WindOW/I1sst 1:2

OI~spie Form Wihnrdow/liast 2,2

am It~m ~is

Mupiev Form Windou/iost 1.2cflECk for end of Ust 1:1

INS.Imij Farn. Elndam/Iast 2:2saand alert 1: 1

iMspoaas Furm, Window/ftru 12

*Dhapiag For= Window/fIrSt 2:2

Ems" In buiq

InMsplov Form Wilndow/first 1:2chwkl for heginfdng Of l~st 1: 1

flhspleg Form Window/first 2*2sound alefl 1:1

*api|g Form Wik'now/offn diuplag form I: I

ItommRear

mispiau Form. Einclaw/apen 1:1

'60

'netog

ta a stm

/tt m mome

001"gpla Form Window/open 1:1 get form name 1:2

0 xL

dm|l,,mulll lllap

-MULL

Ox

6~08/13.00 MNOWN2. 1908 5.12

IOspIOU Form Uindow/open I:l1uibd form 1:1

asrm s lost-to-lst

form

WOsplaU Form WIndow/open 1:ldlspiag form In window 1:1

/fait

limat

- ~hU toto

ONsplea Form Window/open 1:1get form name 2:2sound alert 1:1

gzgO'IS.mO m z 1015:1)2

*auoplau 1mm Wlindow/sPun I: iget 10cm namme2:Zdispla actror message 1:1

St. L~m to low fom em. tww sumn urns WA ft0

=01pleg Form Windowm/open l:lbuNd form I:lbjild list 1:2

I~splaV Form Window;/open M:bufld form I:Ibuild list 2:2

an

Ott DbF

WDluplag Form Window/open 1:I1build form 1:Ilbuild list 2:Z1nit attributes 1: 1

16 00

FALSE

"gto"@?

bOust, OMt IWOW/.Popo 1180 twom a mmIaimw1"d ltim to wiotw, I I

b"II
to -NMI "M Old
of Mpg UIN aio.4

77tt

03OINP IW Pu WindOW/00" 1 1 li. fby INO -M P0 1 : 1 Slid Sold to .olWm 1: 1 crw aim & I I

IIfew

Fo~~ pmllow .ds hly1w ,P40 : i 08t idw1 o ~l1 ' 0.

c-

L

II

leb - oewl

moiply or vmoowopn :1dwm lmiw#ad I:sd fidto n" udrwlof 51'aasel1ý

~KAM

COMMA,~t SP i

0 od0/I-si- s.Ss 1

?s.aaWVeWM/Dpf I I dap" tamwo nwb,e I: Iadd.. IMS toie W I& 10wo Mel I: lawmemb 1 1w

amme don t

Nee. for w~t"

LDPyam.WWAWw/ep"O 1: ampay ttawmwbgw . 11 add nlew to mond" 1:111 Noel I: loaw bad I Adm

811.5f

001lsplaej Form Wifldaw/dhIslay 1: 1

Ir's-p dm b

MISPteU Feam Wkidaw/dwpsga l:-idSPI&V data In Form 1:1

Mim" powm WWiow/gimpy 1.1 dhw dmos~ Pmrw lanmsow owavnsa to Uo4Os 1:

ssem

My . WN to SWWWWK

jMDWj PwWm Wfeow/usy I ld~by sOM. Pn~a 1:1 miasa.mmem. to flsid I:Imnr otwodf to .me...t I I

rowl I't

wlis

laft,

to-tt

a-on~~~ FaMkmow/M , llduo~fsNPoN 1:1amipetnu~mto bM.tI '0510 bid oesMfl I la

IN USlmM~~2 ~ii

Momta 1amU:1a/a dt :

- .ua oUt1u

inMhspIae Form W 111n1dow/get dt ~gtrlto data 1:1

-t " bft assor 1 o
Gdk dft. anV kwmglo

*og Is 6 ofr N OW weIm

wedto~ CORWO ds do*

thsisaft xm bow hogh .

topI Po n b dIme Uft

WM OS1in Ut.ia i

IMOISpIOU Form Window/get data 1:IInit attributes 1:1set list length 1:1

=Display Form Window/get date 1: 1 itIt attributes 1: 1 reset display pointer 1: 1

I u, 03/1 S*i t 22. 11 O i

V Input Form Window

v
ImmooY
OILL~

v
FALSE

v

V
m4L

FALSEv

v

147111V

1477 491V
Sal.

v

V

~myb

v

1) me to•mm

Imp too" V&A

g1dOM411115.0 OWL 022. 30361

*1fl1ut Form Window

apme b ulne ft FOO.-

Udoees mw~ Fe. ~~ des dot Ww a

a"dme. Peso S.. .1oaw Cie"

FEWol -Ado

'MI

=I nput form Window/oayug clear fornm 1: 1

m .caes .me

m of Gooe fim
ace " "Nd~ellow

*lnput FOnM Wlndow/okg Clear farm 1:l clewr fields 1:2

Csmmooe in V

*input Form Window/oklwf clewr form M:lcleu fields 2:2

Milnput Form llndow/okag clear form I:lclewr fields 1:2determine type 1: 1

Sigsmm.e Datum to W mWA&.
No ""mo to b Femsud

lnput Form Window/okaU clewr all 1:1

d.ew tra m n

flow .

W~0/Iib

=lnput Form Winclomiopen input form I: I

=IpIut Form window/open I:1

/Igt

ilnPul Form WIndow/ogen I:Iget form name 1:2

i-ING

Mlinput Form Window/open I:lget form name 2:2

l,,O&,S, M VU.1SgSI12

menput Form Wkf4IWmlqwl 1: buil form 1: 1

setw~bme. I~s-to-mist

Ulaput Forst Windmospefl I:9l formu forme In ondoaer 1: 1

amE/a.0 u N2.9991

floput Fom Windowlispen I: I ge form namme 2:2disiliejerror message 1:1

=input Form Window/open I:Ibuild form I:Ibulid list 1:2

=Input Form Window/open IMbuiid form I:Ibuiid list 2:2

Mt otMtI

*InPUt Form Window/open I:tbuld form I:huild lsis 2:Zinlt attributes 1:1

11MM

oetive?,

Porm law Ipe" I: I wply ro In Iow II mao040 to .WIC 1:1

fIss

antoso_____ "00

~40 1 ~r ~t.M eR1 pyto r a4tms 1S dOMt w0K t ~r t

O~oso

6-..1W4t
mrjmm- fA.A

Poli ca.caw tcmc

UflOeI~ hUoom ~2l

WNWom/WOI IfeotWYWW 1un wit:.1 Oddi MON toUA e :1owla botIdeal .IdIMOt I IMVwo

m~oto
armme PON

ade

d ob

orMewst,,

Wuow/soo 1 1it- tarn. 11m lidltot to 1. G trew Imeot 1:10low oot t 1 am. I
U~ttoo~w am f:tig I

Winput Form WiMSoWo/oSCU done 1:1

cafwoo fair itS-Osar dom a tweS a dmIon .f U.It
farm fuoo. amt n toM.'

/ omor t low* mow: mafo- faise

qwoat, Mean Adta tam,"Mr Sott of tIW FOMe am,,.

par elam(tb,p

litwOSIisba beb14022. lot 1112

*Input Fem WlndOWoa/koU dollS Il:Chmck for 1*f 1-Galr data 1: 1

=input Foarm ldlndow/okog dones ~l:idsplayj result 1: 1

Sl

Ole-

Si co. COMM of ovum "OSW of 1es VamW "MOW W

l~minom -ot /sokay~ da Ii .5505i twbmesevr due 1:ý 1111060 esYl 1:1

ron

O~m d I flam SI
kn a "a mS .S

W O N 0b

£0M021 1.55 VAN 111400 BS~l

Comfens ww'Oo af I I mum i o~ fi-oyu mu 1:1a ~asm y 1 louisaMOU2:2

MlksA Foam WtODW/06my am* 1:1CftCk f lwbft-"GrOsa 1 Iam fiels amepl I: 1cmw" vowYs I I

WPN oatiFMOMNWOi.cUV. mus 1:1~I W for Mf-Me. 1:1MINSa ona uy? 1:10m9=a .u 1:2sa...tljI.

11111m m 6.5 Pict f.muw

usemu si Plot ses

linput Form Windwimo/icaU enter 1: 1

7;

1is Ro at

r///,auet w MA

lowa . the

lntaut Form, winoow/kekai mnter l:icomlect data 1:2

vo COMg I In tmfl
fti 06pa

=inpiut Fonu lWlndow/uocaV enter t:tcoilect data 2:2

rmu
do-

Wnput form Winndaw/okag enter I:lIadd tuple to result 1:1

ewemg to t

on f A-

I*lnPut Form Wkndmu/otakj enter t: tcoltect data t:?determine taipe 1: 1

IMMO ss NetkqtoS

C"' umi mame -ue

gegab la iuf *a,

=input Foam Window/okalg enter I:Iadd tuple to result l:Iset temp 1:1

Mlnput Form Window/okay enter :lMadd tuple to result M:lorder data 1:2

ClMnput Form Wlndow/okag enter I:Ildd tuple to result l:lorder data 2:2

ftm

CAtnpUt ForM 11l140011/010u enter 1: 1tadd tUple to result 1:l atat to result I:)

ItN O3IS so. m iG 22. 210918 2

G Pw*A wmbio./4k dour I I i aow to ulow 1:imWSW iea 121.olmud type 1:

ho' bi odMols

stee t e Foes Wi "Wemmy esui I: ee a" Ne to Neam I e 1: 1 .- iove io e I2 Is mutwi oe t 1: e

lam-

92i;7it

Moo ot~ion AW411 .o*ei

GONOW ~ ~ *Iluu Form Wbndow/okyMloA8dso o Me104~ 1:1IWO"11mma.ul

WAa

OFOS1S -I Z2IS3

HE 00ti leNS

V
Ouse.

FLKE

v

FALSE

grow?

120101

sue.

70L

V

ules

MALI

vl W

so109?m

0MAL?

v
800 -es

isml

v

Lamsexcter

KILL

Al-Vt
U U.031510 NE~ 3 KIL3L

VI nit t lml

V.'
vie

v
an.

J

IE I~mI O)/lS. * M 1031312

=if edit tent/nilt 1: tcewj attributes 1: 1

aft ~t

5t

S1 MwolS oW nC*S1 inbw VonP Sam- *pCoa 'FW M~ U4 V *AtW"O 'We Type -Fw Type

52 (awn. bcead oft f"W 'PO &=I1 Y4Ujb WF A~ fm mawse mget 1~se -AM 1Tw e') I

*IE edit test/nane 1:1

oil edit teNt/assign Ualue 1: 1

apar

Sam F".

FV

C 'R -
v

none.

so -

PAM-

UFrmt

RI fISlt U~of
POeM to m

reeset va

MFmrM/Inlt 1:1I

NeOW

*Form/ruest 1:1

51(ewes fled WA am Vveseter"

Vemmis

FPMJ

Vw
K"t,.

-w

mueman

(I Toom.
T

EmgOS~~he &e~ba .led Zgt

REFERENCES

[Ambler89] Ambler, Allen, and Burnett, Margaret, "Influence of Visual Technology on
the Evolution of Language Environments", Computer, October 1989, pages
19-32.

[Apple85] Apple Computer, Inc., Inside Macintosh, Volumes 1-5, Addison-Wesley
Publishing Company, Inc., 1985. ,

[Butler9O] Butler, Keith, "Collaboration for Technology Transfer - or How Do So
Many Promising Ideas Get Lost?", Conference Proceedings, CHI '90,
ACM Press, 1990.

[Chang87] Chang, S.K., "Visual Languages: A Tutorial and Survey", IEEE Software,
January 1987, pages 7-17.

[Clark9l] Clark, Gard, and Wu, C.T., Dataflow Query Language for Relational
Databases, Department of Computer Science, Naval Postgraduate School,
Monterey, CA.

[Codd88a] Codd, E.F., "Fatal Flaws in SQL: Part I", Datamation, v. 34, August 1988.

[Codd88b] Codd, E.F., "Fatal Flaws in SQL: Part 11", Datamation, v. 34, September
1988.

[Codd9O] Codd, E.F., The Relational Model for Database Management: Version 2,
Addison-Wesley, 1990.

[Cox86] Cox, Brad, Object Oriented Programming - An Evolutionary Approach,
Reading: Addison-Wesley Publishing Company, 1986.

[Dertouzos90] Dertouzos, Michael, "Redefining Tomorrow's User Interface", Plenary
Address, Conference Proceedings, CHI '90, ACM Press, 1990.

[Elmasri89] Elmasri, R. and Navathe, S., Fundamentals of Database Systems, Benjamin/
Cummings Publishing Company, Inc., 1989.

[Erickson90] Erickson, Thomas, Creativity and Design, Introduction to The Art of
Human-Computer Interface Design, Reading: Addison-Wesley Publishing
Company, 1990

[Falby9l] Falby, John, Lecture Notes in Database Systems, Naval Postgraduate
School, 1991.

274

[Gibson90] Gibson, Katie, Form Systems, Department of Computer Science, Oregon
State University, 1990

[Grudin90] Grudin, Jonathan, "The Computer Reaches Out: The Historical Continuity
of Interface Design", Conference Proceedings, CHI '90, ACM Press, 1990,
pages 261-268.

[Laurel90] Laurel, Brenda, editor, The Art of Human-Computer Interface Design.
Reading: Addison-Wesley Publishing Company, 1990.

[locke] Locke, John, "Using UNIX in the Computer Science Department", undated
tutorial, Department of Computer Science, Naval Postgraduate School,
Monterey, CA.

[MacLennan87] MacLennan, Bruce, Principles of Programming Languages (second
edition)), Holt, Rinehart & Winston, Inc., 1987.

[Mountford90] Mountford, Joy, et al, "Designers: Meet your Users" (Panel), CHI '90
Conference Proceedings, ACM Press, 1990, pages 439-442

[Nielsen90a] Nielsen, Jakob, and Molich, Rolf, "Heuristic Evaluation of User Interfaces",
Conference Proceedings, CHI '90, ACM Press, 1990, pages 249 - 256.

[Nielsen90b] Nielsen, Jakob, Hypertext and Hypermedia. San Diego: Academic Press,
1990.

[Russell92] Russell, Matthew, Xu, Howard and Wang, Lingtao, "Action Assignable
Graphics - A Flexible Human-Computer Interface Design Process", Panel
Discussion, Conference Proceedings, CHI '92, ACM Press, 1992

[Shneiderman92] Shneiderman, Ben, Designing the User Interface - Strategies for Effective
Human-Computer Interaction, Addison Wesley Publishing Company, Inc.,
1992.

[Smith9l] Smith, David, Concepts of Object-Oriented Programming, McGraw Hill,
Inc., 1991.

[Symantec9l] Symantec Corporation, Think C Object-Oriented Programming Manual,
"1989-1991

[TGS90a] The Gunakara Sun Systems, Prograph 2.0 Technical Specifications, 1990.

[TGS90b] The Gunakara Sun Systems, Prograph Tutorial, 1990.

[TGS90c] The Gunakara Sun Systems, Prograph Reference, 1990.

275

[TGS91I The Gunakara Sun Systems, Prograph 2.5 Updates, 1991.

lTognazzini9l] Tognazzini, Bruce, Tog on Interface, Addison Wesley Publishing
Company, Inc., 1991.

[Winograd90] Winograd, Terry, "What Can We Teach About Human-Computer
Interaction", closing address for CHI '90, Conference Proceedings, CHI
'90, ACM Press, 1990.

1,

[Wu91a] Wu, C. Thomas, Visual Query Language for Relational Database
Interoperability, Department of Computer Science, Naval Postgraduate
School, Monterey, CA., 1991

[Wu9lb] Wu, C. Thomas, Object-Oriented Programming (Class Notes - cs4114),
Department of Computer Science, Naval Postgraduate School, Monterey,
CA., 1991

[Wu9lc] Wu, C. Thomas, "OOP + Visual Dataflow Diagram = Prograph", Journal
of Object-Oriented Programming, June, 1991, pages 71-75.

276

INITIAL DISTRIBUTION LIST

Defense Technical Information Center 2
Cameron Station
Alexandria, VA 22304-6145

Dudley Knox Library 2
Code 52
Naval Postgraduate School
Monterey, CA 93943-5002

Chairman, Code CS 2)
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-5002

Professor C. Thomas Wu, Code CS/Wu
Naval Postgraduate School
Monterey, CA 93943-5002

LCDR John A. Daley, USN, Code CS/Da
Naval Postgraduate School
Monterey, CA 93943-5002

Commander, Naval Security Group Command
Code G30
3801 Nebraska Ave., NW
Washington, D.C. 20393-5449

LCDR James P. Hargrove, USN
148 Kerns Court
Napa, CA 94558

277

