AD-A267 146
LD

Bounds on Inconsistent Inferences for Sequences of
Trials with Varying Probabilities

Herman Chernoff and Yingnian Wu

Harvard University
Cambridge, MA 02139

Technical Report No. ONR-C-13

DTIC

ELEC,

. QUL 22 100: 8 &
June 21, 1993 § 1993

Reproduction in whole or in part is permitted for any
purpose of the United States Government.

This document has been approved for public release and
sale, its distribution is unlimited.




SECURITY (LAS%IH%ATION OF “RIS PAGE

REPORT DOCUMENTATION PAGE

la. REPORT SECURITY CLASSIFICATION
UNCLASSIFIED

1b. RESTRICTIVE MARKINGS

2a. SECURITY CLASSIFICATION Aul’HORn:Y

3. ODISTRIBUTION/ AVAILABILITY QF REPORT

2p. DECLASSIFICATION / DOWNGRADING SCHEDULE

4. PERFORMING ORGANIZATION REPORT NUMBERI(S)
ONR-C-13

S. MONITORING QRGANIZATION REPORT NUMBER(S)

6b. OFFICE SYMBOL
(If applicable)

6a. NAME QOF PERFORMING QRGANIZATION
Department of Statistics
Harvard University

7a. NAME OF MONITORING QRGANIZATION

6c. ADDRESS (City, State, and ZIP Cade)

Department of Statistics, Rm. SC713
Harvard University

Cambridge, MA 02138

7b. ADDRESS (Gity, State. and 2IP Code)

8b. OFFICE SYMBOL
(if applicable)

Code 1111

Ba. NAME OF FUNDING / SPONSORING
ORGANIZATION

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

8c. ADDRESS (City, State, and 2IP Code)

Office of Naval Research
Arlington, VA 22217-5000

10. SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT
ELEMENT NO. NO.

TASK
NO.

WORK UNIT
ACCESSION NO

11. TITLE (Inciuce Secunity Classification)

Bounds on Inconsistent Inferences for Sequences of Trials with Varying Probabilities

12. PERSONAL AUTHOR(S)

Herman Chernoff and Yingnian Wu

13a. TYPE OF REPORT 13b. TIME COVERED

14. DATE OF REPORT (Year, Month, Day) NS. PAGE COUNT

Technical Report | FROM TO June 21, 1993 17
16. SUPPLEMENTARY NOTATION
17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and idenufy by blocx number)
FIELD GROUP SUB-GROUP

See reverse side,

050

19, ABSTRACT (Continue on reverse if necessary and dentify by block numoer)

93-16
Wi

l@@ (

B3l

20 OISTRIBUIION s AV

Buncalliccounomred [ same as ReT [ oTic useRrs

21 ABSTRACT SECLRITY CLASSIFICATION

228 NAME OF RESPONSIBLE NOWVIDUAL
Herman Chernoff

22b TELEPHMONE (Incivae Ares Code)
617-495-5462

| 22¢. OFFCE SYMBOL

DD FORM 1473, 3a maR

Al otrer et OPY U

83 APR e0itiON May DE useO UNtl exNAUSTED
Cosorete

SECLRITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

A




Bounds on Inconsistent Inferences for Sequences of
Trials with Varying Probabilities

Herman Chernoff and Yingnian Wu

Harvard University
Cambridge, MA 02139

ABSTRACT

Consider independent pairs of Bernoulli trials on two unknown sequences of proba-
bilities pV = {pgl) : 1<i<n} and p@ = {p{®: 1 <i < n}. The data are the
numbers of pairs which consist of (0,0), (0,1), (1,0), and (1,1) and can be summarized
in a two-way table with entries ngg, n¢;, n10 and n;; adding up to n. The two
problems of estimating the mean and variance of the number of discordant pairs ng; +njg
when Hp: p) = p® is true, and of testing Hy, using the number of discordant pairs
as a test statistic are considered. Two novel issues arise. While relevant parameters can
not be estimated consistently from the available data, useful bounds on these can be ae-
rived. While the test is poor for alternatives typically considered in the literature, it may
be effective for detecting the presence of unknown explanatory factors which discriminate
between supposedly matched pairs.
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1. Introduction.

The following two problems were posed in response to a question verbally posed by two
geneticists. It turned out that the problems did not address their questions which could be
answered by reference to U statistics. This left two problems of some theoretical interest,
but with no apparent application. The recall of previous unpublished work by Cornfield and
Greenhouse (1975) led to subsequent discussions with S. Greenhouse and J. L. Gastwirth
which suggest potential applications of these problems to issues in discrimination.

Consider independent pairs of independent Bernoulli observations on two sequences of
probabilities p(!) = {pgl) : 1<i<n} and p@® = {pgz) : 1 <i<n}. In biostatistical
and discrimination applications one is often interested in knowing whether the pS’) tend
to be greater than the pfz) .
this situation involving 2n parameters. These are the numbers of pairs which consist of
(0,0), (0,1), (1,0) and (1,1) respectively, and can be summarized in a two-way table with
entries ngp,ng1,n19 and n;; adding up to n. In many such applications it is reasonable
to formulate a test of the null hypothesis Hp : pgl) = pgz) , 1 £7 < n by postulating that

the odd-ratios

The data provide only four useful items of information for

P/ -5

2 2)y ?
20/ - p7)
are all equal to a common value 3 and to test whether 3 = 1. Several recent examples

are Gastwirth and Greenhouse (1987) and Yu (1993).
An interesting case for analysis is that where ngy = n;; = 1,000, n;0 = 20 but

¥ =

=12,...,n

np; = 5. While the overall success rates for both cases are almost equal, it is clear that
the discrepancy between n;o and ng; is statistically significant and could lead to rejecting
H, if that hypothesis were seriously intended. While this example would fail to prove that
one treatment is much better than another (in a case where two treatments were applied to
n matched pairs of individuals) the McNemar test would clearly demonstrate that there is
a small subpopulation on which the treatments have a decidedly different effect. In other
words, it would be evidence of the presence in the population of an explanatory factor
discriminating among supposedly matched pairs, and which may or may not be important
to uncover.

Another example, related to the problems we shall pose, is that where the data consist
of ngo =ny; =0 and n;o = 100 = ng;. In this case there is no indication that there is
an overall tendency for the pf” to exceed the p(-z)

"/, Nevertheless in discrimination cases

the data clearly show that subjects were treated differently, depending on the existence of
some hidden factors.
The problems originally posed are the following.




Problem 1. Assuming that Hj : pfl) = p?) =p; for 1<i<n, where p={pi: 1<

i < n} is unspecified, what can be said about the mean and variance of

D = (noy +nyo)/n ?

Problem 2. Test the hypothesis Hy using D as a test statistic.

Because of the paucity of data, it is unlikely that D will be an effective test statistic
for testing Hp in most applications. Nevertheless, as the second example indicates,
there may be situations where D leads to rejecting Hy and reveals the existence of an
effective explanatory factor which may be worth discovering. We shall see that while it
is impossible to estimate accurately the variances of estimates or the significance levels of
tests, useful bounds on these may be derived. In Section 4 we shall generalize to the use of
(a1 n1o + a2 no1)/n as a test statistic. Note that as long as a; and a; are positive or
have the same sign, the uzc of this generalization attacks the side issue of hidden factors
rather than the usual issue of whether the pgl) tend to exceed the psz).

In Section 5 we shall consider the case where there are three observations on p and
that where there are two observations on p{!) and one on p(?.

Almost all of the derivations will appear in the appendices which will make extensive
use of the Geometry of Moments presented in Karlin and Shapley (1953). Certain aspects
of the geometry of the space of (ngo, no1, M0, n11) are discussed in Fienberg and
Gilbert (1970) and in Diaconis (1977). Fienberg and Gilbert discuss, among others, the
set on which there is a common odds ratio. Diaconis is interested in aspects relevant to

exchangeability.

2. Problem 1.

We may regard D as the average of n Bernoulli random variables D; where
D; =1 if the i-th pair doesn’t match, i.e., the pair consists of (1,0) or (0,1). Then the
expectation and variance under Hj are given by

EoD; = 2pi(1 - p;) = d{¥

and
Varg(D;) = d”(1 - d).
Thus
(2.1) Do =EyD =n"1Y"d” = £(d®) = 26{p(1 - p)}
where € stands for the average over the n subscripted values. Similarly
(22) 0§ = nVarg(D) = £{d(1 ~ d'™)} = £{2p(1 - p)(1 - 2p(1 ~ p))}
2




While D can be used as an estimate of Ag, 03 can not be estimated consistently from
the available data. On the other hand, it is easy to see that 0 < A¢ < 2E(p)[1-E(p)] < 1/2
and we shall show in Appendix A3 that for a given A,,

(2.3) Ao/2 <02 < Ao(1 - Ap)
Note that the ratio Ao(1 ~ Ao)
o\l —8g) _
AoJ2 = 2(1 - Ag)

ranges from 2 to 1 as Ap ranges from 0 to 1/2 and that the difference
Ao(l - Ao) - Ao/? = AQ(I/Z - Ao)

ranges from 0 to 1/16 and back to zero, peaking at Ay = 1/4.

Treating the D; asi.i.d. Bernoulli random variables with common probability A,
would give the correct mean for D but could possibly overestimate the variance by a
factor of 2(1 — Ag) which is close to 2 if A, is small. That means that a naive
confidence interval for A, based on the assumption of a common probability would be
conservative, and possibly by as much as a length factor of /2.

More precise bounds are derived in Appendix A3 making use of = = £(p) which can
also be estimated from the data. Using 7 leads to relatively minor improvement of the
upper bound. It has no effect on the lower bound in the triangle of (w, Ag) values with
vertices (0,0), (1,0), and (1/2, 1/2), but it leads to substantial improvement near the
upper boundary where Ag = 27(1 — 7).

3. Problem 2.

Since A¢ = EgD in Problem 1 can range from 0 to 1/2, it follows that D can be
used to reject Hp only if D is significantly greater than 1/2. However if £(p) were
known, then Aq = EoD = 2£(p(1 - p)) < 2[€(p) — [E(p)]?] and we could reject Ho for
values of D < 1/2 provided they were significantly greater than 2&(p)[1 — £(p)]. Not
knowing £(p), we could estimate it and use as our test statistic

(3.1) T =D -2#(1-#)

where # = (#1) + #)/2, #® = (ny + nyy)/n, and #® = (ne1 + n11)/n. Under
the general assumptions where p{!) is not necessarily equal to p{?, we define p =
(pM + p™)/2 and then #, #() and #(?) are estimates of 7 = £(p), (V) = £(pV))
and 7(?) = £(p(?)) respectively.

We see in Appendix A4 that

(3:2) E(T)=[A-2n(1-m)]+ 51;5{12“’(1 - pM)+pP(1 - p?)}

3




where
(3.3) A= E(D)=&(d)

and d; = E(D;) = psl)(l —p?)) +p§2)(1 - psx)) for 1 < i < n. The expression for
E(T) may be regarded as the sum of two terms, the second of whichis O(n~!) and is
bounded from above by [r()(1 — #(1)) 4 7(3)(1 — x(2))}/2n. Under the hypothesis, the
main term of Eo(T) is A¢ —27(1 —7) = 202 where o2 = £(p?) — 2.

Neglecting terms of higher order, the variance of T is seen to be approximated by
n~172 where

(3.4) 72 = £{4n?d — 4(27 — 1)pd — &?} — (27 — 1)2E((pDN - p'P)?)
Under the hypothesis Hy, this variance becomes
(3.5) Te(m, Ao) = 4n?Ag — 127* + (4 — 167 + 2472) (7 — Ao/2) — 4E(p — 7)t.

To study the range of the main term in E(T), A — 2x(1 — ), we demonstrate in
appendix A5 that

(3.6a) 0<|7M 2@ <A<2r  f0<n<1/2
and
(3.6b) 0< 7 -2 <A<21-7) if1/2<7<1.

and that these inequalities are sharp given 7(!) and #(?. Without specifying 7(}) and
7(?), which can be estimated from the margins, we see that (7, A) lies in the triangle
with vertices (0,0), (1/2, 1), and (1,0). Under the hypothesis (7, Ayp) is restricted to
the subset of the triangle under the parabola Ay = 27(1 — 7). Where (m, A) lies in the
triangle depends on the value of oy, = £(p(1p?)) — #(Vx(2), When (7, A) lies above
the triangle, E(T) is positive, the hypothesis is not true, and we will be able to reject
H, with enough data. If (7w, A) lies below the parabola, E(T) < 0 and the hypothesis
may or may not be true, but we will not be able to use T to reject the hypothesis. Of
course other test statistics could be effective if we were aiming seriously at testing Hy. In
particular it would be easy to detect deviations from #(1) = #(2),

To maximize 79 subject to given values of Ay = £(2p(1 —p)) and 7 = E(p) one
must minimize

Vi = E(p— )t

It is easy to see that the minimum of V;, unrestricted by the condition 0 < p <1, is
achieved by p =7 + o0, each with probability 1/2. When 7 -6, <0 or 7+0, > 1,

4




we see in Appendix A3 that the restricted minimum is achieved by one of the 2 point
distributions assigning probability § at ¢ and 1—6 at 0or 1, for appropriate values
of ¢ and 0. In each case 7 and A, determine ¢ and 4. Let

(3.7 Va(r,0) = 0*(a® + 78)/[7?(0? + 7?)]
The minimum of V] is

(3.8a) Vim = a; if  0p <My =min(m,1-1),
and otherwise

(3.80) Vim = Va(m, 0p).

The maximum of V; is also attained by a two point distribution involving 0 or 1 if
0<mn, <1/4, and is then

(3.8¢) Vim =Vo(1 — 7, 0p)

f 1/4<mm <1/2 then Vp may be V(1 — 7, 0p) or may be attained by a 3 point
distribution involving 0, 1, and ¢ = med(q, g2,27 ~1/2) where ¢, = [v—&(p?)]/(1-7)
and ¢, = £(p?)/m.

Then 7 is bounded above and below by Toam(7,A¢) and Tom(w,Ap) where these
are derived from 7¢ by replacing £(p—7)* by Vi, and Viym respectively, and where

(3.9) Ao =2[r(1 —7)—03].
For large n

n/2[D - 2#(1 — 7))

) 7 =
(3.10) D)

should be approximately normally distributed with mean less than or equal to 0 and
variance 1 when the hypothesis Hy is true. The expectation of T and the bounds on
7o provide corresponding approximate bounds to the probability of rejection, when the
hypothesis is true, for a test using T as the test statistic.

For a given joint distribution for (p, , p,z)) it is possible to calculate E(T) and 7
and to estimate the corresponding noncentrality parameter and the power of the test of Hy.
For illustrative and computatxonal purposes a mixture of independent beta distributions of

the form f(q1,¢2) = Zw Be(q1; oni, B1i)Be(qa; aai, B2i) might be suitable. To calculate

bounds on the power functxon of the test without assuming a proposed distribution, we

5




should calculate bounds on 72 for given 7V, 7(2) and A, which may be estimated from
the data. Of course if 7(}) and 7(?) are not close, their estimates would clearly indicate
that Hp is not true. But our use of Z is directed more at detecting hidden explanatory
factors than at testing the validity of Hy. In any case, bounding 72 involves minimizing
and maximizing the variance of (p'V) ~ 7())(p(? — 7(?)) subject to specified values of
71 7 and £(p(Mp?). This problem is discussed in Appendix 6.

4. Generalization of T.

The test statistic T' treats the pair (1,0) the same as (0,1). To direct the test
toward detecting specific alternatives where one of these pairs is more likely to occur than
another, we may apply the test statistic

(41) T) = (a]n]o + (121101)/11 - (al + (12)7?(1 - ‘;l’)

Then, we see in Appendix A4, that

ay—a a+a
ETy = —(a1 + az)o12 + L2 ) + —1—4—-1(1r(1) — n(?)2

2
(4.2) + _al;a%g[p(l)(l — pM) 4 p®(1 ~ p?N]
where
(4.3) o1z = E(pWVp?) = 2@ = %[w(l)(l — 7Y 4 21 = 7V) _ 4]

Also Var (Ty) = n~!'72 plus higher order terms where

= 5{’1'1'10“)(1 =)+ 83pP(1 ~ pP) + (a1 + @2)?p VPP (1 - pVp?)

49 = 2Aor+ a1 - pV) 4 b1 -5}
where

(4.50) by = (ay + ag)7 + (a1 — az)/2
and

(4.55) by = (a1 + ag)7 — (ay — az)/2.

Incidentally b; +b; = 27(a; +az), by — by = a; —az, biby = 7¥(a; +a3)? — (a1 —a3)/2J2.




5. Multiple Observations.
The difliculties in bounding the basic parameters in the inferences in our problems
are mitigated when more observations are available on each p;.

5.1 Problem 1 With 3 Observations.
Suppose rhat in Problem 1, we had 3 observations leading to the data ng,n;,n;,n;
where n; is the number of i values (trials) for which we observe j successes. Then

5.1) Butns/m) = ()11 - PP 7Y, =0,1,2.3
and we can estimate £(p), £(p?) and &(pd), since

Eo[(3n3 + 2n2 4+ n1)/3n] = E(p)
Ey[(3n3 + n2)/3n] = £(p?)
(5.2) Eo[ns/n] = £(p*)

Thus we may estimate Ao = 2£{p(1 — p)} by

(5.3) D =2(n; +n3)/3n
for which
(5.4) &g = nVaro(D) = £{4p(1 - p)[1 - 3p(1 - p)]/3}.

To bound &2 using our estimates, we need to bound E&(p*) given &(p), €(p?) and
E(p?). That problem is addressed in Apnendix A7.

With 4 observations on p, we will have estimates of £(p), £(p?), c(p®) and &(p*)
and the variance of the natural estimate of Ay may be estimated consistently form the
available data.

5.2 Multiple Observations for Problem 2.

Suppose that for the test of Hy we have two observations on p{!) and one for p{?.
We may label our observations by n,i = number of trials with j successes on psl)
k successes on psz) with j =0,1,2 and k=0,1.

One test statistics that may be used would be based on (n2g + ngy1)/n which has
expectation Azp = £(p — p®) under the hypothesis Hy. From the observations on
p" we can estimate E(pV) and E(p'V¢). From those on pf?) we can estimate

E(p?). Given £(p) and £(p?), the bounds on Ao are derived in Appendix A8. In

and
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particular the maximum value is 7 — [£(p?)]?/n which may be estimated by substituting
# = (2n30 + n1o + n1)/3n for m and (nge/n) for E£(p?). Thus a natural test statistic
is

1 2n99 + nyo + noy 3n3, }
T, = —<(n20 +no1) — -
*Tn {( 20 +n01) = | 3 2n20 + 110 — no1
(5.5) - 1 { n20 — Mo + 2n01 3nl, }
n 3 2n90 + nyo + non

We shall not elaborate on bounds on the variance of T> here. In a personal commu-
nication, K.F. Yu has pointed out that with £ observations on each of p{*) and p{®, the
statistic (noz + n20) — n11/2 has mean 0 and variance estimated by ngz + nze + n11/4
under the hypothesis. Thus bounds are no longer required.

Appendix.

The following remarks represent a brief summary of the Geometry of Moments which
is a major tool in deriving many of the bounds in this appendix. Let h(X) be a k-
dimensional vector valued function of a random variable X. As the distribution F of
X varies over a convex set of distributions, the range of Eh(X) is a convex set. If the
class of distributions is the set of all distributions over a closed bounded interval I and h
is continuous on I, the range of Eh(X) is the convex set generated by {h(z): z € I}
and is closed and bounded.

To maximize one coordinate of Eh(X) when the others are specified involves a
boundary point of the convex set which can be represented in terms of a k¥ point distri-
bution (involving at most k points of I). Moreover there is a supporting hyperplane at
this boundary point which maximizes some linear function EaTh(X), and every one of
the k or fewer points of I maximizes aTh(z) for z € I. Finally the coefficient of the
coordinate being maximized can be taken to be one if the specified expectations lie in an
interior point of their k¥ —1 dimensional convex range.

As a simple example consider the range of (E(X),E(X?)) over the class of all
distributions on [0,1]. This is the convex set generated by A = {(z,,23): z2 =23, 0 <
zy €1} and is the set bounded by A and B = {(z1,22): z2 =21, 0< 21 <1}, It
follows that, subject to EX = u, u? < EX? < u. Moreover, it is clear that these bounds
may be achieved by the one point distribution at u and a two point distribution which
gives probability 4 to 1 and 1—u to 0.

Given any point for which u? < p) < u, the class of distributions for which EX = u
and EX? = 4} must have support on a subset of A, the convex hull of which contains
(p, 4y). Tt follows that there are two points ¢q; and ¢ in [0,1] such that no distribution
for which P{X > g1} =1 or for which P{X < g2} =1 will yield the given values of

8




(EX,EX?). These two points are obtained by observing where the lines for (1,1) and
(0,0) through (u,u5) intersect the generating parabola segment A. Thus, for 0 < p <1

(A1) @1 = (g~ p)/(1 —p)
and
(4.2) 92 = pa/p.

Al. Special 2 Point and 3 Point Distributions with Specified Mean and

Variance.

We will have occasion to consider several special two point and 3 point distribu-
tions. First we consider the two point distribution on 0 and g with specified values of
(EX, EX?) = (u,py) where 0 < p<1,0<qg<1, and ¢ is assigned probability 6.
Then 6g = p and 6¢% =y, and

(AL1) q=uy/p=g;and 0 =p?/py .

Incidentally, for this distribution

(A1.2q0) 30 = EX® = (13)*/u
and
(A1.2b) pio = EX* = (uy)’ /4
Also,
2
(A1.3a) w30 = E(X - p)* = %(az - )
and
2 .6 [}
- oot
(A1.3b) peo = E(X — p)* = i Va(p, 0)

where 0% = p; = pj — p? is the variance of X.

Next we consider the two point distribution on 1 and ¢ with specified values of
(EX,EX?) = (u,u’) where 0 < u<1 and 0<¢g<1 and ¢ is assigned probability
6. Then, consideration of the transformation ¥ =1 - X, yields

(Al1.4) g=(u—ph)/(1 - p)=q: and 8 = (1 - p)*/[(1 = p)? + 0%,

9




and
—o?
(Al.5a) pa1 = E(X — p)* = a- #)(02 -(1-p)?
and
(A1.5b) pa = B(X = p)* =V3(1 - p,0)

A more general two point distribution with specified (u,uy) will assign probability
0 to u+r(1-0) and 1—-6 to u—r6 for r >0, and 0 < 6 < 1. For this distribution
r and 6 are connected by

(Al.6) o? =r26(1 - 9).

If we drop the restriction that u—1rf and p+r(1 —8) be in the interval [0,1] we have
0 =1/2 when r = 20. Then we will have use for dr/d8 and d(r8)/d8. 1t is easy to see
that dr/df =r(6 —1/2)

(A1.7) d(r8)/d6 = r(1 — 6/2 + 6%) > 0.
and
(A1.8) d(r(1 - 6))/d8 = r(—3/2 + 36/2 — 6%) < 0.

Finally, consider the 3 point distribution which assigns probability ¢ to 1, 6 to ¢
and 1 -0 —-¢ to0 where 0 <g < 1. For the convex hull of (0,0), (1,1) and (g,4¢%)
to contain (p,ph), where 0 < u? < p) < u <1, we must have q; < ¢ < ¢z. Thenitis
easy to derive ¢ = (uz — ¢)/(p4 — ¢), and

!

_Ha—Hg _ p—y
and
(A1.10) 0= (u~pp)/q(1 —q)

A2. Bounds on E(X —pu)* and E(X -1/2)'.

We derive upper and lower bounds on p4 = E(X ~ u)* and E(X -1/2)* subject
to P{0< X <1} =1 and specified values of u4 and uj) = 0? + u®. The trivial cases
where u) = pu? and u) = u are bypassed.

10




Since pg4 = E(X —pu)* = EX* —4puEX? + 6uuy — 3u*, we may consider optimizing
E(X* —4uX3%). The function g¢(z) = z* — 4uz3 ~ A\;z — A22? has at most one local
maximum and two local minima. It follows that the maximum of g(z) over [0,1] can be
attained on at most 3 points, of which only one can be an interior point. The minimum
can be attained on at most two points.

To attack the maximization problem, we first apply the 3 point distribution of Ap-
pendix Al, and

E(X* ~ 4pX3) = ¢(1 — 4p) + 0(¢* — 4p¢®)
=p(1—4p) — (k- p)l(1 - )1+ 9) + ¢°]

which attains its maximum at ¢ = 2u — 1/2. But we are restricted to ¢; < ¢ < g, by
the argument in Al. Hence the restricted maximum of E(X — u)* occurs when

(A2.1) g = qo = med(q1,¢2,2p — 1/2).

This implies that we have a 2 point distribution when 2u—1/2 < q; or when 2u~1/2 > ¢;.
In particular, whenever u < 1/4, we have a 2 point distribution. For 1/4 < u < 3/4, we
may have a 2 or 3 point distribution depending on the value of 5.

To maximize E(X —1/2)* = E(X* ~2X3) + 3u4/2 — /2 + 1/16, we again apply
the 3 point distribution to

B(X* - 2X°) =~ +6(¢* - 2¢°)
=-—p+(p—p)l+q-¢°)
which is maximized at ¢ = 1/2. Thus the restricted maximum occurs when
(A2.2) g = go = med(q1,42,1/2).

For the minimization problem for E(X — u)*, consider first the 2 point distribution
which minimizes E(X — u)* without the restriction of X to [0,1]. That is clearly the
distribution which attaches probability 1/2 to each of u+ o and yields the value o*.
If 0<pu~o<pu+o<1, this distribution solves the restricted minimization problem.

Since 0?2 = py) ~pu? < p-p?<1/4, p~0 <0 implies u < o < 1/2. Similarly
p+0o>1 implies p>1/2. If u— o0 <0, we refer to the two point distribution of Al
at u—r6 and u+r(1-0). Then

v1(0) = E(X — p)* =r16(1 - 6)[1 - 36(1 - 9)] = 04[0(11-0) _3],

Since d(rf8)/df > 0, it follows that as p —r increases from u—o where § =1/2, 6
decreases and v;(f) increases. Thus the minimum value of v;(6), subject to the
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restrictions, occurs when u — rf = 0, i.e., for the 2 point distribution at 0 and ¢
and the minimum values of E(X — u)! is

(A2.3) Va(p,0) = 0%(u® + 0%) /P (4® + %)

A symmetric argument for the case u+ ¢ > 1 yields the two point distribution at ¢
and 1 with the minimum value of V5(1 — p,0).

The minimization problem for E(X —1/2)* is somewhat more complicated. We note
that E(X -1/2)* = B{(X — p)* +4(p - 1/2)(X ~ )] + 6(p — 1/2)*0* + (1 — 1/2)* and
that it suffices to minimize

v2 = E{(X — p)* +4(p - 1/2)(X - p)’}
= a?[(r? — 30%) + (2u — 1)r(1 — 26))

subject to the restrictions.

Suppose that 0 < 4 < 1/2. Since r takes on the same value for § and 1-6, it
is clear that the minimizing value of 6 will be less than 1/2. Ignoring the restriction
0<u—rd<pu+r(1-0)<1, wehave

(42.4) % = r02(260 — 1)fr — r5(6))
where
(42.5) ro(6) = (2 — DI(6 = 1/2) + (0 = 1/2)"].

Then, as 8 goes from 0 to 1/2, r decreases form oo to 20, 6r increases from 0to o
and ro(6) increases from 5(1/2—pu) >0 to oo. Thus, there is a unique value of 8y of
6 for which ro(6p) =r and 6, < 1/2.

If 0<pu—06oro(Go) <p+(1—-6)ro(bo) <1, 8 and ro(fp) define the minimizing
two point distribution. If p — 8yr9(6) < 0, we see that as 6 decreases from 6, ré
decreases and u — rf increases. At the same time r increases and ry(f) decreases.
Thus dvy/df < 0 and v, increases. Then the minimizing value of v, subject to the
restrictions will occur when p—1rf =0, i.e., for the two point distribution at 0 and g».

If 0<p—06pro(fp) <1< p+(1—08)ro(bs), then as 8 increases from 6, toward
1/2, r(1 - 6) decreases, r decreases, ro(#) increases, and hence v, increases. Then the
minimizing value, as long as 8 < 1/2, occurs at the two point distribution at 1 and g¢;.
Since we showed above that the minimizing value of @ subject to the restrictions is less
than 1/2 we have demonstrated, for u < 1/2, that the minimizing distribution is one of
three two point distributions depending on 8y and ro(6,).
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The case of p > 1/2 follows by symmetry. When g = 1/2 we have o < 1/2 and
the two point distribution on g % ¢ is the minimizing distribution.

A3. Bounds on di.

Since Ag = £(d®) and o2 = £{d®(1-d®)} and dfo) = 2p;(1~p;) can vary from
0 to 1/2, the range of (Ag,0%) is the convex hull of A = {(z,z(1 —z)): 0<z<1/2}.
That convex set is bounded by A and B, the straight line segment from (0,0) to
(1/2, 1/4). Thus A and B determine the upper and lower bounds of o2 for given A,
and indicate how they may be achieved.

The lower bound is attained when some of the p; are 1/2 and all the others are 0
or 1. The upper bound is attained when all the dfo) are equal to Ay. Except when
Ay =1/2, there are 2 possible values of p; which give the same value of d§°) = Ag.

The bounds can be refined if we are given Ay and . Then our pro%lem becomes
that of minimizing and maximizing £{2p(1 — p)[1 —2p(1 —p)]} subject to specified values
of £(p) and E(p?). But that reduces to maximizing and minimizing &(p* — 2p®) or
E(p—1/2)*. That problem is treated in A2.

A4. Mean and Variance of T.

Let T = (ainio + aznpy)/n — (a1 + a2)#(1 — #). Section 3 deals with the case
where a; = a; = 1. We represent the outcome for the i-th pair by (X .-(1), X.‘z) ) and
by (Xo0i, X10i» Xo1i, X11i) where Xji; =1 if the outcome is (j, k) and 0 otherwise.
Then X.w = Xy0i + X114, X,-(Z) = Xoyi + X11i

iy = n! Z(Xloi + Xu,’) =n"! ZX'(I) = (nlo + nn)/n
=1

i=1
and n n
2 =n71 Y (Xori + Xipi) = n”! ZX.-(Z) = (no1 +nu1)/n
i=1

i=1

Let ¢ = (X" + X?)/2 - p;. Then

1 n 2 n n 2
72 = (w+;z;e,~) =7r2+21m‘12e.-+n‘2(25.-)
1=

=1 i=1

and

T = (al + a2)(1rz - 1'r) + n-1! Z[alxloi + a2 Xo1i — (a; + 02)(1 - 21I’)€,‘]
=1

(A4.1) +(a; + az)n"? (i c.-)2

=1
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where the last term is Op(n™!) and has mean (a; +a2)E[pM(1~p()+p(1—p*))/4n
and the second term is E£[a;pV(1 - p'?) + a2pP (1 — pM)] + 0,(n~/?) and has the same
variance as n~1 Y S; where

Si = a1 X10i + a2 Xo1i — (a1 + az)(1 = 20)( XV + X) /2

Thus
_ (x(0) - 72?2 gy — gy 7 — 2@
ETy = (a; + 02){ o12 + 2 . 2
(A4.2) + €M1 - pM) +pP(1 - p‘”)]/4n}

where o013 = gp(l)p(z) — (D7 (2)
Now we rewrite

Si= le,-(l) + ng,m —(ay + a2)X13i

where b; = (a1 + a2)m + (a1 — a3)/2 and b; = (a; + a2)7 —(a; —a2)/2, and we observe
that Cov(X{", X11:) = pVp{P(1 - pV) and Cov(X{, X11,) = p{MpP(1 - p?). It
follows that, neglecting the O,(n~!) term of Tj, VarT} ®n~'r? where

n=£ {b?p‘”(l — pW) + B2p@(1 = pD) + (a1 + a5)*pWpP (1 — pWp®)
(A4.3) —2(ay + az)p(l)p(z)[bl(l - p(l)) +by(1 ~ p(Z))]}

To derive Equation (3.2) we set a; = a2 =1 in (A4.2) and note that

(1) 4 (2
A - 2n(1 = 7) = £GW +p® — 2pWp@) _ (2D 4 (1 - ’_'_Jz’_"_

= 7 4 7 95, — 22 _ 20) _ 1) 4 (x() 4 x(2)2/0
= —20y5 — (71 — 7(B)2/2

To derive Equation (3.4), we set a; = a; = 1 in (A4.3). Then b = b = 2x. The
matching of coefficients of 472, 47 and 1 in these two disparate forms involves showing
that

P01 = pM) +pP(1 - pP) =d - (pV) - pD)?
—25Mp@(2 = p1) _ 5@ = _2pd 4 (p1) = p@)?
4pMp(1 - pMp@) = 4pd — d? — (p'V - p?)?
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and this may be facilitated by noticing that p() + p(® = 2p, d = 2p — 2pVp(?) and
(P - p)? = 4p% — 4p(Vp@,

A5. Boundson A and EXY.

First we consider upper and lower bounds on E(XY') subject to the restrictions that
EX =y, EY =v, and 0 X <1 and 0 <Y <1 with probability one. We have
0<EXY <EX =pu. Similarly 0 < EXY <v. Moreover E(1-X)(1-Y)>0 and
hence EXY > pu+v —-1. Thus

(45.1) max(0, EX + EY ~ 1) € E(XY) < min(EX, EY).

Moreover these bounds are easily attained using 2 point distributions on adjacent edges of
the unit square. For example if EX < EY, the distribution which assigns probability v
to (u/v,1) and (1-v) to (0,0) yields EXY = u. If p+v > 1, the distribution which
assigns probability (1—u) to (0,1) and u to (1,(p+v—1)/u) yields EXY = u+v-1.

To consider A we note that given 7() and #(® with »(}) < 7x(® it follows that

0 < EpMp® < 7)) if0<wr<1/2

and
27 — 1< EpWMp® < 71 if1/2<#n<1.

Since A = £(pM + p? — 2pMp?P) = 2(x — EpMp(D) it follows

(A5.2a) 2r>A> | - x>0 f0<7r<1/2
and
(A5.2b) 20-7)2 A2 7V -x®|>0 f1/2<r<1

A8. Bounds on the Variance of (p{!) —x(1))(p?) — z(2)),

The problem of establishing bounds on E£{(p" — 7(V)2(p® — x()?} subject to
specified values of 7(1), 7(2) and 0,2 may be rephrased as that of minimizing and
maximizing EX2Y? or the variance of XY subject to the restrictions EX = EY =
0, EXY =¢, and (X, Y)eER={(z,y): —a<z<1-a, - <y<1-p} where a
and B, representing 7{!) and 7(?), are between 0 and 1. Applying A5 we see that

(A6.1) —cz = —min(af, (1 -a)(1 ~f)) <c<min(a(l - P), (1 —a))=a
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This result can also be derived using the Geometry of Moments by studying where zy —
A1z — A2y is minimized and maximized.

It is possible to demonstrate that the maximum is attained by a three point distribu-
tion, with two of the points on opposite vertices of R.

The minimization problem reduces to two cases. The easier case is that where —¢; <
¢ < cz. In that case the two branches of the hyperbola zy = ¢ have pointsin R and it
is possible to find a two point distribution for which Var(XY) = 0.

For some values of a and f, it is possible to find values of ¢ where ¢; < ¢ < ¢;.
In those cases we can show that there is a solution involving at most 4 points, only one of
which can be an interior point. The conjecture that there is a two point solution consisting
of a vertex and another point (on the line from the vertex through the origin) is supported
by numerical calculations.

A7. Bounds on 33.

Since 62 = £{(4p—16p? +24p® —12p*)/3} , minimizing and maximizing 52 subject
to specified values of £(p), £(p?) and E(p?®) is equivalent to maximizing and minimizing
EX* subject to the specified values of the first 3 moments and 0 < X < 1. As
in Appendix A2, maximizing EX* involves at most a 3 point distribution, only one
point of which is an interior point of {0,1] and minimizing EX* involves at most a 2
point distribution. The three moments uniquely specify such distributions which may be
calculated directly.

AS8. Bounds on Agjgp.

We wish to minimize and maximize E(X — X3) subject to specified values of EX
and EX? and 0 < X <1. Thisis equivalent to maximizing and minimizing EX® or
pa = E(X — p)}. The function g(z) = 2% + A\jz + A2z? has at most one local minimum
and one local maximum. It follows that both the minimum and maximum of ¢ on [0,1]
can involve at most two points, only one of which can be an interior point of [0,1]. In
the maximization case the boundary point has to be 1, and in the minimization case it is
zero. Thus the minimum and maximum of u; are u3; and u3 of Appendix Al. In
particular the maximum of E(X — X3) is p — (u})?*/u.
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