
U.NCLA..~SSIFIED

AD-A267 116 U A
DEATMENT OF
DUENCE

RESEARCH NOTE I
ERL-0663-RN

AN fNTERIM REPORT ON THE DISTRIBUTED DATABASE
DYNAMIC RECONFIGURATION PROJECT

by

Damian O'Dea

t Hý

APPROVED FOR PUBLIC RELEASE

____________ I Azwmovvd fg= pu2blI

UNCLASSIFIED

AR-00-US

DSIOA
^U~ A 3

ELECTRONICS RESEARCH LABORATORY

Information
Technology

Division
RESEARCH NOTE

ERL-0663-RN

AN INTERIM REPORT ON THE DISTRIBUTED DATABASE
DYNAMIC RECONFIGURATION PROJECT

by

Damian O'Dea

SUMMARY

This paper discusses the work which took place in the first phase of the development of the
dR project. The concepts of Object-Oriented Programming and Multitasking are introduced
and explained. Each stage of the project is detailed, and where relevant, concepts from the
DBMES system are introduced and explained. The paper concludes with recommendations
for future developments to both systems as they approach completion.

JAN 93 © COMMONWEALTH OF AUSTRALIA 1993

APPROVED FOR PUBLIC RELEASE

POSTAL ADDRESS: Director, Electronics Research Laboratory~PO Box 1500, Salisbury, South Australia,5108.

UNCLASSIFIED 9~6I
93--1661

ERL-0663-RN UNCLASSIFIED

This work is Copyright. Apart from any fair dealing for the purpose of study, research,

criticism or review, as permitted under the Copyright Act 1968, no part may be
reproduced by any process without written permission. Copyright is the responsibility

of the Director Publishing and Marketing, AGPS. Inquiries should be directed to the
Manager, AGPS Press, Australian Government Publishing Service, GPO Box 84,

Canberra ACT 2601.

joof

UNCLASSIFIED

UNCLASSIFIED ERL-0663-RN

CONTENTS
Page No.

ABBREVIATIONS v

1 INTRODUCTION ... 1

2 OVERVIEW 1
2.1 Platform .. 2

2.2 O bject O rientation ... 3

2.3 M ultitasking 4

2.4 Combining Object Orientation and Multitasking in DBMES 5

2.5 Single Record Two-Phase Commit 6

2.6 Summary of Work Completed to Date 7

3 U SER IN TERFA C E .. 7

4 SCREEN DEVICES 8

5 T EX T BO X 8
5.1 O perator O verloading .. 9

6 U SER SU BTA SK S ... 9

7 NODE AVAILABILITY TABLE .. 9

8 NODE NUMBER MESSAGES .. 11

8.1 M essages 11

8.2 SR2PC Performance Update 12

8.3 Node Num ber M essages .. 12

9 NODE NUM BER SUBTASKS .. 13

10 NON-BROADCAST MESSAGES ... 14

10.1 Fd d i u nio n 14

11 FLA G C LA SS 15

12 O FFSET TIM E .. 15

13 CO N C LUSIO N .. 16

14 RECOMMENDATIONS FOk FUI'URE DEVELOPMEN'I 16

15 ACKNOW LEDGEMENTS ... 18

UNCLASSIFIED iii

ERL-0663-RN UNCLASSIFIED

R EFER EN C ES .. 19

FIGURES

I Example of the Node Availability Table 10

APPENDICES

I USING THE VRTX INTERFACE LIBRARY WITH TURBO C++ 21

II NODE AVAILABILITY ALGORITHMS 23

I-A
, iv UNCLASSIFIED

UNCLASSIFIED ERL-0663-RN

ABBREVIATIONS

ALDM ADDAM-Like Distributed Database Manager
AMD Advanced Micro Devices
C3ISE Command, Control, Communications and Intelligence

Systems Engineering Group
CPU Central Processing Unit
D3R Distributed Database Dynamic Reconfiguration
DBE Database Element
DBM Distributed Database Management
DBMES Distributed Database Management Evaluation Software
DBX Distributed Databasc Ex:crciser
DPTBS Distributed Processing Testbed System
FDDI Fiber Distributed Data Interface
FIFO First-in, First-Out
GDP Graphics Demonstration Package
IDE Integrated Development Environment
ITD Information Technology Division
LIFO Last-In First-Out
00 Object Oriented
RTG Real-Time Graphics and Measurement Control Tools
SR2PC Single Record Two-Phase Commit
TC++ Turbo C++
VRTX Versatile Real-Time Executive
VT Virtual Terminal

UNCLASSIFIED V

I
ERL-0663-RN UNCLASSIFIED

U

-v..i ,.. UNCLASSIFIED

UNCLASSIFIED ERL-0663-RN

1 INTRODUCTION

The Distributed Database Dynamic Reconfiguration (D3 R) project is a part of the Distributed
Processing for Combat Systems task (NAV 87/226.3). D3R is investigating ukethods of detecting
and correcting failures of Distributed Database systems. In real life, failures are caused by faulty
networks, faulty processing components and operator errors. These failures can result in
incorrect data leading to invalid results. This may cause the systcm to fail completely, or
produce faulty conclusions.

The DYR project will form a znmponent of the Distributed Processing Testbed System
(DPTBS)[11, which is comprised of the Distributed Database Exerciser (DBX), the ADDAM-Like
Distributed Database Manager (ALDM)[2] and the Distributed Database Management
Evaluation Software (DBMES)[3]. The components of this system run on i3M PCs connected
by a fibre optic network. Access to the network is provided by hardware cards (plug-in circuit
boards with special components) with fibre optic connections (for more detail cf. section 2.1).
Programs can communicate across the network through the use of specially provided library
routines. These are pre-written software routines which have been built to interface with the
hardware cards. A library is a simple way of grouping these different routines into a single,
compact and convenient file.

The DBX is a database exerciser made up of three modules: a Simulator to generate simulated
sensor data, a Tracker to resolve this data into target tracks, and Engager to manipulate track
data I1I.

The ALDM implements a distributed database manager. By providing a partially replicated
database, it allows all nodes (machihes on the network) which require access to some elements
of the database to store a local copy of that data. This greatly improves access time, allowing
faster operations. ALDM provides two forms of data update, namely "performance", which is
a high speed update used for short-lifespan, repetitive data, and "rehable", which is slower than
performance, but guarantees that an update will occur for all copies of a data element. Reliable
updates maintain global database consistency, while performance updates rely on any erroneous
data being quickly replaced with a correct copy at the next update 121.

The DBMES is an evaluation package for distributed database protocols which is used to obtain
data about how well the system is performing under various conditions. The DBMES is easily
modifiable for use with several different database management protocols. In addition to
exercising the database for evaluat.on purposes, a Graphics Demonstration Package (GDP) has
been created to show the database operating using graphical displays 13, 41.

This report covers work undertaken on the D3R project in the period spanning January to March
1992. Further work in this project will be undertaken in 1993.

2 OVERVIEW

In the execution lifetime of any program which requires access to a network, there is always a
possibility that the system can fail in some way. With primitive systems, programs which
require this access may cease to work due to only a single fault on the network, damaging any
further access.

Distributed systems are more robust, and a network fault can be tolerated to some degree. In
some cases, such as the Fiber Distributed Data Interface (FDDi) dual-ring network, the failure
of a station (ie. machine on the system, or "node") means that that station is simply bypassed
(cut out of the ring), while network operations continue normally. Failure of two non-adjacent
stations, however, leads to network partitioning, because of the way in which a node is
bypassed. This self-healing process is called "wrapping". Essentially the stations on either side
of the disfu.,ctional node will terminate the ring and feed information back to the preceeding

UNCLASSIFIED 1

ERL-0663-RN UNCLASSIFIED

node on the secondary ring. With two disfunctional nodes, the ring breaks into two "partitions,"
or two "half-networks," both of which continue to run normally, except that they are unable to
pass data to each other until the faults are repaired.

When this situation arises, it is necessary for a distributed system to be able to continue to
execute correctly. In the case of the ALDM, the D3R protocol is intended to maintain database
consistency, both when partitioning is detected, and when a network is repaired.

The ALDM database is partially replicated. Multiple copies of each page (ie a logical division
or partition of the database) are stored on several, but not all, nodes of the system. Thus the
overall database is actually a gestalt of the multiple copies of all of its pages.

Once partitioning occurs, there is a high probability that some of the page copies in one partition
will be modified, but the copies in the other partition will not, because the node requesting the
update will reside in only one partition of the network. The database is then deemed to be
"inconsistent," because of the discrepancies between page copies. When the two partitions are
rejoined, decisions must be made as to which partition's database page copy is accurate, so that
the other partition's copies can be corrected to match that data. The operations carried out by
such a protocol when making these decisions are termed "dynamic reconfiguration of a
distributed database."

The D3R program is based on software written by C3ISE Group/ITD for the DBMES package.
The evaluation package is also being used as a driver for a simple Distributed Database
Management (DBM) protocol, which will be used to support and test the reconfiguration
protocol. The more complex ALDM protocol will replace the simpler DBM at a later date. As
much of the design of the D3R is similar to that of the DBMES, some time will now be spent
describing how that parkage was constructed [41.

2.1 Platform

The platform for all Distributed Processing for Combat Systems projects is a network of
IBM PC compatibles (henceforth "PCs" for simplicity) connected by a fibre optic network
controlled by Advanced Micro Devices' (AMD) Fiber Distributed Data Interface (FDDI)
Fastcards. The programs running on the platform interface to the Fastcard hardware
using several library routines provided by AMD. This platform is called the DPTBS.

The DBMES program is an Object Oriented (or "00") system written in C++. The
compiler used is part of Borland International's Turbo C++ (TC++) Integrated
Development Environment (IDE). The IDE provides an editor, compiler, linker, and
debugger all in one system. The evaluation software package utilises interfaces to TC++
standard libraries, to Ready System's Versatile Real-Time Executive (a multitasking kernel,
aka "VRTX") library, and to AMD's FDDI interface library.

The Graphics Demonstration Package (GDP) additions to the DBMES (mentioned above)
utilise an interface library to graphics routines provided by Quinn-Curtis' Real-Time
Graphics and Measurement Control Tools (RTG) product.

During program development of both the DBMES and D3R, a Virtual Terminal (VT) was
connected to one PC. The VT displays data which is sent to it from the PC via a serial
port connection. This allows error and report messages to be displayed by the
development programs for diagnostics and debugging purposes, without cluttering the
normal display of the program output. The different function call used to achieve error
and report message output on the VT also makes the removal of this debugging code
easier.

2 UNCLASSIFIED

W

UNCLASSIFIED ERL-0663-RN

2.2 Object Orientation

The DBMES is an Object Oriented (00) system. This means that the paradigm used in
it's design and development is quite different from programs written with the more
traditional procedural paradigm. 00 takes several concepts which have been available
to Computer Science for some time and unites them into a powerful programming
methodology.

00 has the benefits of being more natural for modelling complex real-world systems in
a program, and of resulting in code which is often re-usable in different programs. One
possible drawback of 00 is the difficulty of learning the new paradigm, due to the
conceptual shift. Once this is mastered, however, my own experience has shown that 00
is a far better method of programming distributed systems than the procedural norm.

The central concept of the 00 methodology is that of an object. The object device allows
abstraction away from the details of complex operations, encapsulation (hiding) of those
same details, hierarchical organisation of these abstractions in increasing levels of
complexity, and the treatment of similar abstractions by the same methods.

The C++ language provides facilities for the definition and usage of classes. Each object
in a program belongs to a certain type, and the definition of this type is called a "class.'
Thus, in the same way we have constructs for user-defined types (such as record
"structures"), we are able to create user-defined classes. The instantiation (ie. actual

storage space set aside tor a unit of the defining type during a program execution) of a
given type is a "variable," and similarly the instantiation of a given class is an "object."
Thus, to use objects, we first define a class (type) and can then declare as many objects
(instantiations) of that class as we need.

The instantiation of a class as an object is achieved by calling a constructor. This is a
special function of the class, which returns an object of the class type after creating the
necessary storage space and performing any initialisation required. It is also possible to
delete an object from memory by calling a destructor. This function is much like a
constructor, but instead of creating an object, the destructor releases the object's storage
space. Thus, objects are created by a constructor, and are destroyed by a destructor.

A class may contain many elements. Just as a structure can have any number of fields,
so a class can have any number of "member" data fields (fields belonging to that class
definition). However, unlike a structure, a class Lan also have any number of member
functions (also referred to as "methods" or "operations"). Additionally, classes (and C++
structures) are able to declare which members are visible outside an object ("public"
members), and which are hidden and visible only to other class members ("private"
members). This latter feature provides the encapsulation concept mentioned above.

Additionally, it is possible for a class definition to have it's origins within another, less
complex class. The new class, which "inherits" it's "form" (data fields) and "behavior"
(methods) from the "base" class, is said to be "derived" from that class. This hierarchical
derivation can be based on other derived classes to create a chain of ever more complex
classes. Classes may also be derived from more than one base class in a single step,
inheriting form and behavior from all base classes, which is termed "multiple inheritance."

Finally, if several derived classes all inherit their form and behavior from a single base
class and if objects of these similar-seeming classes may all be referred to by a single
name, then it is possible to use that name to denote any one of these objects. Each object
so denoted is then able to respond to a similar set of operations in different ways. This
concept is called "polymorphism" and the reader is referred to section 8.2 for a clarifying
example.

UNCLASSIFIED 3

ERL-0663-RN UNCLASSIFIED

2.3 Multitasking

The DBMES combines 00 with the concept of multitasking. Multitasking allows the
programmer to treat separate procedural components as independent units (or "tasks")
which appear to run simultaneously. In rcality the tasks all run sequentially, but portions
of the execution of one task are interleaved with portions from other tasks, giving the
illusion of concurrent execution. This technique requires the presence of a multitasking
kernel to handle the various needs of such a system. In the Distributed Processing for
Combat Systems task, all multitasking is handled by VRTX (cf. section 2.1 above).

VRTX provides many facilities for handling all aspects of multitasking. Amongst these
are calls to the kernel to handle task, memory, communication, 1/0 and timing control
aspects of the system.

Tasks can be in one of four states: executing, ready, dormant, or nonexistent. Execution
is the state in which a task has control of the CPU and is actuaily running. Ready
indicates the task is available to use the CPU and is awaiting its turn. Dormant mean,
the task cannot execute until it receives information from some source. Nonexistent
means th2 task is not visible from the kernL" s point of view, All tasks have an ordinal
number or priority which determines how great a share ot the executicn time the task
gets. The higher a tasks priority, the more otten it executes in preference to other, lower
prionty tasks.

Tasks need to be able to communicate with each other. VRTX provides four means to
carry out this communication, which are described below.

Queues hold multiple integer-sized messages in a first-in, first-out (FIFO) ordered,
fixed-length buffer. Queues provide the primary method of transterring data
between tasks. Tasks whirii "pend" on a queue (attempt to receive a message frou,
the queue) do so in either FIFO order (the first to pend gets the first arriving
message), or in priority order (the highest priority pending task gets the first
arriving message). Although mostly used for handling messages in FIFO order, it
is possible f queues to handle messages in a last-in, first-out (LIFO) order, and
thus behave as a "stack".

"* Semaphores are integers, holding non-negative values, which are assigned to
correspond to a particular system resource (such as a memory location). When a
semaphore's value is zero, accecs to the corresponding resource is denied to any
task which consults the semaphore (the resour, e is "locked"). If a task does gain
access to the resource (the semaphore was not zero), the task will decrement the
semaphore to indicate that the resource is in use. When a task completes its
operations on a resource, it increments the corresponding semaphore to indicate
this (the resource is then "unlocked", or "released"). Semaphores are thus used to
prevent conflicts arising from multiple tasks all accessing the same system resource
simultaneously.

"* Event flag groups are 32-bit sized integers. Each bit of the integer is treated as a
flag, and can be either "set" (with a value of 1), or "cleared" (with a value of 0).
When a particular event occurs, the corresponding flag bit is set. Event groups
allow tasks to notify other tasks that a particular event has occurred, with a
minimum of memory wastage.

"* Mailboxes provide single integer-sized message buffers, much like single element
queues, but requiring less memory. The messages handled by a mailbox must b.
nonzero, as a zero value in a mailbox indicates that iro message has arrived at that
location. Mailboxes can be used to provide the facilities of any of the above three

4 UNCLASSIFIED

UNCLASSIFIED ERL-0663-RN

mechanisms, but are less 'neat' about it. They are more efficient in that there is less
memory devoted to the mechanism than with the other devices.

Communication is a two-way process, in that one task must send the information, and
another must receive it. The two operations nee, not occur simultaneously, but if a
receiving task attempts to read from a buffer which has no message available, it will shift
from the executing state to the dormant state until the information is placed in the buffer.

VRTX also provides facilities to handle memory management, for controlling the timing
aspects of the executing and ready tasks, and for character input and output. The kernel
nandles the system resources ' 'hich include the tasks, communication buffers, and
interrupts to the operating system.

Note: It is possible to mimic the actions of all of the VRTX facilities by writing them directly into
the cude. It may even be cheaper with respect to memory usage. The advantage of using
the VRTX facilities is that t.',ey are all protected against the potential problems which might

arise should several tasks attempt to use these facilities simultaneously. This may not £,e
the case with similar functions which are "hand-written" or taken from the standard
libraries, if VPTX facilities are not used, the behazior of the system becomes unpredictable
and error-prone.

2.4 Combining Object Orientation and Multitasking in DBMES

In combining the concept,; of Object Orientation with Multitasking the DBMES identifies
five components of the system to be separate entities. These are abstracted to become
objects, and . multitasked so that they run concurrently. These multitasked objects can
be referred to as "active objects," " processes," or simply "objects". The five objects are the
User, Sampler, Transaction, Database and Media.

User is an interactive application which allows in operator to interface with the system.
Sampler is a module which periodically consults the Database object to obtain
perform3nce data for evaluation purposes.

Transaction handles the collections of database operations which must be treated as a
single group (eg. a series of updates may occur which must be treated as if they were a
single operation, in that either all of them take place, or none do. These are also known
as "atomic transactions"). Database is a process which maintains a local image of the
global databas_. The local image is a component of the entire database, and it is stored
on a particular node. The global database is a combination of all the local images, one
for each node on the network. The Database process also provides the operations which
allow the local ima6e to be accessed. These two processes together implement a
Distributed Database Manager (DBM) which is described in more detail in section 2.5
below.

The Media object handles all the aspects of communication between the processes. This
communication can take place within a ,mngle node (0e. amongst the objects on that node,
or "local" to the node), or across the network to objects on a "remote" node (by using the
FDDI interface).

For a more technical description of combining the VRTX and Turbo C++ packages, see 141
and Appendix I of this document.

U

UNCLASSIFIED 5

ERL-0663-RN UNCLASSIFIED

2.5 Single Record Two-Phase Commit

The DBMES was developed to be used with any DBM protocol. Ultimately it will he u--,
to evaluate the ALDM protocol, but as this was still under development at the time of the
evaluation package's constru-tion another, simpler protocol was created. This protocol,
like ALDM, provides facilities for a Two-phase Commit update, but only for a single
record. Two-phase Commit is an update technique which guarantees reliability in the
update, ie. all copies, through a system of "handshaking" messages (acknowledgement of
requests from the receiver and vice versa), will be updated. This simpler DBM, which is
not yet complete, is now referred to as the Single Record Two-Phase Commit (SR2PC) and
is described below.

SR2PC provides both a performance update and a reliable update facility, as does the
ALDM. Performance updates in SR2PC behave as would any other, simply broadcasting
the update request and then moving on to whatever operation follows. The reliable
update of SR2PC uses a different mechanism to ALDM, based on locking access to
database records via a semaphore mechanism provided by VRTX (cf. section 2.3).
Semaphore is a class built around the concept of simplifying the interface to the VRTX-
provided semaphore control functions, and by making each semaphore an object, this is
readily achieved. The object stores a unique identifier which is required by the VRTX
functions in its own structure, and uses this in calls to the VRTX functions from the
object's member functions. The object thus hides the necessity of the identifier from the
programmer who is using the Semaphore object class.

When SR2PC updates a record reliably, it first broadcasts a "Prepare" message. All nodes
with copies of the data recor' shoulh then receive that message and determine if they are
able to currently access that record or not. If access is permitted, the node's DBM will
lock the record to prevent another (conflicting) update from taking place simultaneously,
and then the DBM will reply with a "Ready" message. The locking of a record is done
by a "pend" operation on a Semaphore object linked to that record (which is managed by
the Database object mentioned above). The Ready reply is sent back to the node which
issued the Prepare message, which counts the number of replies. If all nodes with copies
respond before a timeout period expires, then an "Execute" message is broadcast to all
copies which, upon receiving that message, conduct the update and then unlock the
record by a "post" operation on the Semaphore object. If the initialising node does not
receive all the replies before timeout, it broadcasts an "Abort" message to cancel the
update. All nodes with copies of the record receive this message and simply unlock the
Semaphore object. A further description of the messages and the class hierarchy of these
is given in section 8.1.

Should a participating node fail to receive an Execute or Abort message due to failure of
the initiating node, or loss of network communications, then the update is lost to the
participant. The initiating node, on re-entering the network, will not complete the update
for that node, and the system will fail because the participants will not unlock the record.
This flaw will need to be addressed as part of further work on the SR2PC. If a
participating node itself fails, then only that node will fail to update. The update is
completed on all other nodes, and when the failed node re-enters the network it will
attempt to copy the entire database from remote nodes to it's local database. At this point
the update will be implicitly carried out on the returning node, by copying the updated
record from another node. In this way the database consistency is maintained.

6 UNCLASSIFIED

UNCLASSIFIED ERL-0663-RN

2.6 Summary of Work Completed to Date

Within the first stages of the DER project, work has concentrated on the facilities that need
to be provided by the sy-tern to support dynamic reconfiguration of the network
following a failure. These include a dynamic, logical view of the network, allowing the
program to detect network partitions, to conduct reliable update transactions with several
participating nodes and to perform system specific operations. Other work included the
implementation of an object type which interfaced to VRTX's Event Group functions,
providing a consistent communication facility interface.

Furthermore there needed to be some form of interface to the user to provide choices for
the system configuration parameters that would affect how experiments could be run,
without requiring recompilation to effect these choices. These would primarily be
functions called from the User object, prompting the operator to enter a value which
would then be checked before setting the appropriate parameter.

Other work involved streamlining elements of the DBMES and the GDP which could be
improved. The suggested modifications arose during the familiarization stage of the early
work, and were adopted later. This work provided an opportunity to become familiar
with the new packages and with the DBMES' design before beginning any major work
on the new protocol.

3 USER INTERFACE

The initial work has proceeded in a number of stages. The first stage involved modifying the
User class definition and the class' constructor to allow the program user to select values for
parameters such as node number, offset-time and updatetype. These parameters are used to
configure a continuous cycle of updates, which is performed to exercise the database. The
parameters are used as follows:

nodenumber currently holds the number of the node, whose uniqueness is operator
dependent. Should operator error result in two nodes sharing the same node
number, the network will perform poorly. A future modification might ensure that
the numbers assigned are unique.

offset-time is a value from 0 to 9 which determines the delay (measured in a
number of lOths of seconds) before the first update occurs at a local node after a
remote update arrives. It therefore provides a means of "staggering" the updates.

updatetype indicates whether the operator wishes the node to conduct either
Performance or Two-phase Commit type updates. Provision for additional update
types to be easily incorporated is provided.

In the second stage, the code within the User class constructor was modified to conduct an
endless cycle of updates (with the cycle time fixed at approximately 1 second). The cycle
provides a simple means of exercising the database, although it is too limited for final tests, and
will be replaced by a more complex set of operations. The cycle is only broken when the
operator hits the Ctrl-Z key sequence. The updates currently only occur on the database element
which has the same index as the node number for this particular node, ie. Node #1 updates only
Database Element (DBE) #1, Node #2 updates only DBE #2, and so forth. The reason for this is
again simplicity, and the updates will eventually take place on various DBEs in the course of
an application's execution.

The complexity of the actual operations of the database at this stage are of less importance than
the ability to provide a constant source of operations. This will provide database activity against

UNCLASSIFIED 7

ERL-0663-RN UNCLASSIFIED

which the dynamic reconfiguration will take place, and which will be unaffected by the D3R
protocol.

Note: Currently the GDP displays two graphical meters which display DBE values (cf. section 4 below).
These meters are keyed to respond to the first and second DBEs only, so any activity in other
DBEs will not be displayed by the meters. Once again simplicity is the major factor for this
decision to limit the flexibility of this facility.

4 SCREEN DEVICES

The GDP of the DBMES displays output on a graphics screen. The output is generated by
objects interfacing with the Real-Time Graphics package produced by Quinn-Curtis (as
mentioned in section 2.1). The output is generated by using two classes of objects described
below:

"* The first class is a TextBox, which is simply a graphics box containing text.
Text-Box objects are used to communicate textual data to, or provide a prompt-
and-reply interface with, the user of the system. The objects of the TextBox class
allow the output of text strings and integer numbers into the box, and control
scrolling within the box to ensure all output remains within the bounds set up for
the box when first defined.

"* The second class, UpdateOMeter, allows the definition of a graphical meter with
a needle indicator and textual display of the value. These objects are used to
display the values of specific database elements. UpdateOMeter objects can only
be created, or be used to display a data value, which is reflected as a labelled point
on the meter which the needle then indicates, and the textual value below the
meter.

Because the Real Time Graphics (RTG) package requires specification of the number of screen
elements which would be active during the life of the program, an array of predetermined size
must be used to hold pointers to the viewports. DBMES has the indexes of this array hardwired
into the code, and a suggested modification to the DBMES code was for the D3R program to
assign these values dynamically.

To this end a new class, ScreenDevice, was created. This became the base class from which
the RTG interfaces (TexLbox and UpdateOMeter) are derived. It stores a static variable devNo
(device number) which serves as the index to the array of RTG package pointers. As each object
of a derived class is created, the devNo is assigned to that object, and then incremented. Each
object thus remembers the viewport to which it refers.

5 TEXT BOX

The Text Box is a graphics viewport generated by the RTG package in which textual output is
generated. The viewport is created by invoking a class from a global object, which all processes
in the program can then access. The output is written to the viewport by accessing member
functions of the object, in this case using overloading of the "<<" operator.

8 UNCLASSIFIED

UNCLASSIFIED ERL-0GC3-RN

5.1 Operator Overloading

Operator overloading is a concept by which an operator symbol is able to mean several
things. For example, "+" could refer to the addition of two integers, or two floating point
numbers, or the mathematical union of two sets of numbers. "+" is then an overloaded
operator. The C++ compiler provides the programmer with the capability of defining
extra meanings to operators in the same way as one defines a function.

C3ISE Group/[TD has developed a new RTG-interfaced output routine which writes a text string
to a graphics viewport. The function is believed to be more efficient and less prone to "noise"
(ie. pixels which remained after scrolling) than the equivalent function in the original DBMES.
However, attempts to incorporate this function into the program to replace the original failed
and, after a week of being unable to get the program to run, the attempt was abandoned.

The failure of the incorporation occurred due to the differing paradigms used by the two
programmers. While the original function was written with an oblect-oriented approach, the
later version was not, and thus incorrect assumptions about the software environment it was
intended to operate in had been made. Because of the false assumptions, the function will not
work without being completely rewritten. This has yet to be done.

6 USER SUBTASKS

The next stage was to investigate the possibility of getting the User active object to spawn off
subtasks through the use of VRTX's SCTCREATE function, which accepts a normal function with
no parameters or return type and generates a task. A task is a distinct block of program code
which runs simultaneously with other tasks (in appearance), unlike normal programs which can
only run through code sequentially (cf section 2.3).

Member functions of the object were found to be of the incorrect type to be made tasks unless
they were declared to be static (ie. existing independent of the class within which they are
declared). This meant that member data elements could not be accessed without using an
explicit object name to reference them, unless they also were made static. This was done and
the infinite loop of the User active object was removed to become the task update-loop. The
task creation was called by the User object, which was prevented from terminating by self-
suspension at the end of the body tie. execution of the code is halted but it is not deleted from
memory).

Note: Because the constructor of the User object forms the body of a task, and VRTX deals poorly with
tasks which simply end rather than become deleted (by SCTDELETE), the body of the constructor
must not be allowed to exit back to the calling function/task. Suspension is achieved by accessing
the VRTX call SCTSUSPI-ND, which causes the execution to halt until explicitly resumed by the
SCTRESUME call.

7 NODE AVAILABILITY TABLE

It became clear in the process of the previous work that the system required some means of
maintaining a logical image of the physical network. This view would be used by the SR2PC
DBM protocol (cf section 2.5) to determine the number of copies of the database page (record)
which must be updated, and by the lDR protocol to determine which nodes of the network are
currently accessible. A simple table in which the node numbers of all remote nodes could be
stored seemed to be the best way of implementing this.

To this end a new class, Nodetable, was designed. The class is dedicated to maintaining a two-
dimensional array, the first element of which stores the node number of a remote node, and the
second, a tag indicating whether that node has replied to the latest inquiry for its node number.

UNCLASSIFIED 9

ERL-0663-RN UNCLASSIFIED

The claws holds the array as a private data element member, and its public member functions
allow other sections of the program to manipulate the table. These functions are listed below:

Nodetable is the constructor which initialises the node-table array to contain only
the sentinel values (-I,FALSE).

* tag-node accepts a node number and tags the corresponding element in the array
as being TRUE. It returns -1 if the node number does not appear in the table and
the index of the element if it does.

* untag..nodes sets all tag elements of the array to FALSE in preparation for testing
the network and determining which nodes still exist. ¶

a nodejtagged returns -1 if the node indicated by the index parameter is currently
tagged, or not set to any node number. Otherwise (the element stores an untagged
node which may still exist) it will return the node number stored in that element.

addnode adds a node number to the array if it does not already exist in the table.
[f it does, the index of the node number is returned. If the number does not appear
in the table, the first empty element (ie. set to -1) is replaced by the number and
that index is returned. If the number is not in the table and there are no free
elements, then -1 is returned to indicate failure.

delnode deletes a node number from the table. If the number is present, it is reset
to -1, the corresponding tag set to FALSE, and the index is returned. Otherwise -1
is returned.

No-nodes counts the number of elements (in the table) which hold active node
numbers, that is, node numbers which are not -1.

* No-tags counts the number of elements in the table which have their tag set.

print tbl prints out to the communications port/VT the table consisting of it's
indexes, node numbers and it's flags.

Note: Throughout the Nodetable class it is assumed that -1 is an indication of nonexistence or failure
due to the possibility of a node having a nodenumber of 0. Using 0 as an indication of failure
would thus be apt to cause some confusion.

Node Availability Table

Node Number Tag

0 TRUE

2 FALSE

I TRUE

-1 FALSE

Figure 1. Example of the Node Availability Table

The Nodetable class was then tested thoroughly through the use of a User subtask called
node-table-driver which accepts operator input to determine which function is to be tested and
then accepts operator input of the parameters for that function call. The function being tested

10 UNCLASSIFIED

UNCLASSIFIED ERL-0663-RN

is then called, and results are viewed using the print tbi function call. The task is no longer in
use as it served only to test the new class, demonstrating that the class and object are sufficient
for the purpose of maintaining the logical network image.

8 NODE NUMBER MESSAGES

Once the Nodetable was available, it became necessary to put it into operation. To do this it
was necessary to have some form of communication between the nodes on the network which
would allow the transfer of each node's number to other nodes. This was accomplished by
developing two more classes which handle the Request and Reply aspects of these messages.
The classes are called NodeNoRequest and NodeNoReply, and they are based on the message
handling mechanism developed for the DBMES, which is described below.

8.1 Messages

The DBMES program is constructed of several autonomous active objects ("processes").
At times, these processes need to communicate information to each other, such as when
the Transaction process may need to poll the Database object for the value of a database
element which is being updated. This sort of communication is carried out by means of"messages."

Messages are objects which the processes can pass between each other. The processes do
this by means of objects of the Queue class. The Queue class, in a manner similar to the
Semaphore class (see section 2.5), serves to simplify the interface to the VRTX-provided
queue communication mechanism (see section 2.3).

Queues pass pointers, which are an indirect means of referencing data in memory,
including objects. The data structure resides at a particular location in the memory, and
the pointer holds the memory address where the structure can be found.

To communicate a message, the processes construct a message object of the appropriate
class, pass a pointer referencing that object to the Queue (by a POST operation) and then
continue with their operations (often entering a waiting state for any reply forthcoming).
The target of the message will at some point conduct a PEND operation on the same
Queue object, and receive a copy of the pointer to the message object. This pointer can
then be used by the receiving process to reference the message's operations and data.

f
DBMES uses seven different derived classes of message objects to carry out it's program.
The classes are all derived from the base class Message. Message defines several public
operations: SET ERR, GETERR, GET-VALUE, and SETVALUE, which allow access to a
Message-derived object's data. Message also defines several other special operations
which are PACK, PROCESS and SEND ION. As the base class is never used to directly
construct an object (ie. there is no such thing as a Message object), the latter three
functions are defined to be dummy functions which report an error if they ever execute.
They are defined to be "virtual" functions, which means that any class which is derived
from Message can redeclare these inherited functions to behave differently.

The seven derived classes all inherit the structure of the Message class, including both the
member data fields and operations. However, the PACK, rROCESS, and SEND ON functions
are each redefined for every new derived message class. The seven classes are
ReadRequest, ReadReply, Prepare, Ready, Execute, Abort and Performance. The first
two provide the facility for conducting a READ operation on the database. The next four
are all used to carry out the RUPDATE (reliable update of the database), while
Performance messages provide the PUPDATE (performance update of the database).
READ, RUPDATE and PUPDATE are all described in more detail in 121.

UNCLASSIFIED 11

ERL-0663-RN UNCLASSIFIED

The virtual functions all serve similar purposes in each Message-derived class. The
various PACK functions create a data structure of the type Fddi-union (see section 10.1),
and store all the object's state information to be sent across the FDDI network. The exact
details of these PACK functions varies from class to class due to extra data types which
each message needs to conduct its specialised purpose.

The PROCESS functions all provide the actual code which the recipient of the message will
need to execute once the message has arrived at its intended destination. When this
occurs the receiving process needs only to call the PROCESS function of the incoming
message, using the pointer which the process obtained from the input Queue. The
PROCESS function, and thus the operations prompted by the message object, will obviously
be different for each differing message class.

The SEND ON functions provide a means of telling the message-handling mechanisms of
the Media process which queue to place the message object's pointer on. This is
necessitated by the loss of such information when messages are passed across the network
to a new node.

8.2 SR2PC Performance Update

What follows is a simple example of the use of message objects. It describes the
operations conducted for a PUPDATE call to the database as provided by the SR2PC DBM
protocol.

The Transaction process first constructs an object of the Performance class, which is then
handed to the Media process. This process then calls the PACK function of the
Performance object, feeding in the requisite parameter. This function returns an
Fddi-union structure, which Media then transmits over the network. The destination of
this transmission is the (remote) Media processes of every other node on the system. This
is achieved by a broadcast message, ie. a transmission that all other nodes will receive.

On receiving the transmission, the message is reconstructed into an object, and passed by
the FDDI interface to the (now local) Media process. This process calls the message
object's SENDON function, which will direct Media to place the message pointer on the
Database process' input Queue object. When the Database process receives this pointer
it will use it to call the message object's PROCESS function. This will conduct the
performance update on the local node. The operations described above take place on
every node which is remote to the node initiating the PUPDATE call.

The other Message-derived classes, and the objects constructed from them, allow the
SR2PC protocol to use similar mechanisms to those just detailed to conduct READ and
RUPDATE database calls.

8.3 Node Number Messages

The two new message classes interact in the following manner:

NodeNoRequest is broadcast onto the network and received by all nodes
except the Originator of the request. When the request arrives the Receiver
nodes all automatically lock rescheduling to prevent interference, create and
transmit the NodeNoReply back to the Originator, and then unlock the
rescheduling process.

NodeNoReply is processed when it arrives back at the Originator. At this
point it calls the ADDONODE function (of the Nodetable object described
above) with the nodeNo parameter and if this is successful then it calls
TAGNODE. If either function fails then the error is reported on the VT.

12 UNCLASSIFIED
S. U

UNCLASSIFIED ERL-0663-RN

The operations of the message handling routines are quite complex due to the abstraction
of the messages and their encapsulation of code within the message objects themselves.
Once the methods involved are understood, however, this mechanism makes more sense
as the code is far cleaner and better defined. It also allows message handling to be
greatly simplified, and many different messages can be processed by a single unit of code,
because of the polymorphic nature of the Object-Oriented classes of messages. In other
words, the messages, which are all different in purpose and effect, can be treated as if
they were of the same type and be handled far easier (cf section 2.2).

These new message classes are somewhat difficult to test independent of the DIR code
because they require the use of almost all of the facilities provided by the DBMES. To
create a test platform for these messages would require almost as much work as building
the DBMES system itself. There is also a relative degree of correctness ensured by closely
following the design of the DBMES message system which has proven to be correct in
use. Thus these new classes were incorporated directly into the project. Final testing of
the implementations was done following the next stage, which provided the necessary
mechanisms to invoke the creation of the messages, and their processing when they arrive
at the required destinations.

9 NODE NUMBER SUBTASKS

The messages which exchange node numbers need to originate from some task and be
responded to by another independent task. It was natural that these two tasks be subtasks of
the User object. The first, nodeNo-mngr, has to handle the management of this protocol, ie. the
task of establishing and maintaining the Nodetable object. The second task, nodeNoresp,
simply acts as a responding server to handle any requests for a node number by issuing a reply
message.

The first subtask, nodeNomngr, operates in the following manner:

Within an infinite loop, the tags for the table are all reset. The queue between the
media and this task is cleared. A broadcast request (ie NodeNo..Request) is sent
from this task which will prompt all other nodes on the network to respond with
a point-to-point response (ie NodeNoReply). The manager task waits for these
responses until a timeout occurs. Any NodeNoReply message arriving at this task
is processed and, if it is from a new node 6ie. one not appearing in the table), the
node number is added to the table. In either case, the node is tagged as having
replied.

Once the timeout has occurred, the manager's table is checked to determine if any
nodes it (the manager) believed to exist prior to the latest round of polling have
failed to reply. If this is the case, then a non-broadcast message (again
NodeNoRequest) is sent to that unresponsive (remote) node, and another reply
is pended for. If the node replies within a second timeout period, the
corresponding table element is tagged, otherwise the element is deleted from the
table, indicating a network partition which has been recognised. It would be
possible to, at this point in the program, initiate some form of network recovery
protocol. This protocol will become the focus of the D3R project at some point in
the future.

The manager task is set to run every five seconds. This ensures that the processing
time required by the task, which reduces the amount of available time other tasks
have to access the CPU, is not too large. The manager executes its loop and then
becomes dormant for five seconds before re-entering the loop.

UNCLASSIFIED 13

ERL-0663-RN UNCLASSIFIED

The concept of the operation of the second subtask, nodeNo-resp, is far simpler than
nodeNo-rmngr:

The task pends (indefinitely) on the queue which carries all NodeNo-Request
messages to it, and when one arrives, it is processed (ie. a NodeNo_.Reply message
is created and sent back to the node which requested it, as described above).

Note: The task of the nodeNo_resp could probably be handled by the Database active object with no
modification at all due to the polymorphism of the messages. This is not done because the
operatiion is unrelated to the database operations which are also handled by the Database object.
The algorithms for these two tasks appear in Appendix II of this document.

The testing of these two tasks was accomplished by simply checking to see that they worked
correctly. This is easy to determine because one can tell which computers are nodes on the
network by checking to see if the DIR program is running on that computer. This can be
compared to a display of the values in the logical table constructed by a node, and any lack of
correspondence between the observed values indicates erroneous behavior. The update-loop
task was shut out from the program (ie. simply not created) and the two new subtasks were
observed in operation via reports to the VT. In this way the tasks were quickly verified to be
working correctly.

10 NON-BROADCAST
MESSAGES

It should be noted that the DBMES software only uses Broadcast messages. The manager
algorithm described above uses a call to send a Non-broadcast message to a single node. The
modifications to the DBMES software to achieve this were non-trivial, but have resulted in a
very easy interface.

The Media class member function SEND was modified to accept two parameters, the first
remaining a pointer to a Message and the second, an integer which would indicate the node
number of the node for which the message was intended. This target node parameter, however,
defaults to a -1 value (indicating a broadcast message) if no explicit parameter is provided.

All Message class PACK functions were modified to accept a node number parameter and
incorporate that value into a new field of the Fddi-union called target. Thus each message on
the network carries the destination within it.

10.1 Fddi union

The Fddi_union is a special form of data storage which the program uses to facilitate
access to the FDDI interface library. The FDDI interface routines are only able to handle
messages which are streams of characters, while it is preferable for the rest of the program
to deal with messages as collections of discrete numeric values (or "structures"). A union
is a special structure provided by C÷+ which allows the messages to be treated as
structures by the program code, and then be treated as character streams by the FDDI
interface, without tedious conversions betwen the two forms.

Once such a message has been received (by any node on the network) the target field is
examined. If the value is either -1 (broadcast) or matches the local node number value, the
message is passed on through the rest of the CET MESSACE function which handles all incoming

messages, otherwise it is simply discarded.

The benefit of this method is such that none of the DBMES code, which used the SEND function
of the Media process (cf section 2.4), needed to be changed because the code operates on
Broadcast messages and, lacking the extra parameter, continues to do so. Any calls needed for)

14 UNCLASSIFIED

UNCLASSIFIED ERL-0663-RN

sending destination-specific messages uses the same code, essentially, but carries an explicit
target number rather than the broadcast default.

11 FLAG CLASS

The latest stage of the work was an attempt to get the update-loop task to utilise the offset-time
variable entered by the operator at the beginning of the program. The offset time allows two
nodes to perform updates on shared database variables in a cyclic "update/wait/update again"
fashion, where the nodes avoid clashing attempts to update, by staggering the beginning of a
node's cycle by the offset time. The update-loop must be informed of the time at which an
update message arrives from a remote node, then delay for the amount of time specified by the
offset time before entering the cycle of updates within that task. This information has to be
imparted to the update-loop by the Database receiving the incoming message.

The initial attempts to use either a Queue or Semaphore object to provide the means of
communication between the Database object and the update-loop task were unsatisfactory. The
use of a queue is not possible because updates occur many times before the update-loop is even
created. As each update occurs, it places a message on the queue to the update-loop, which
quickly overflows and causes an error, because queues are fixed-length buffers. The use of
semaphores is even less successful than queues. If the arriving updates post to the semaphore,
to release the update-loop which pends on the same semaphore, the updates preceeding the
critical time of interaction will have incremented the semaphore above zero. A non-zero
semaphore value does not cause resource locking when pended to (cf. section 2.3), and so the
update loop will not lock after all.

It was decided that the most appropriate device was the Event Flag Group mechanism provided
by VRTX. This required the creation of a new class, called Flag. The class stores the Flagid
variable and the mask value required by many of the VRTX system calls dealing with event
groups, the latter being a constant fixed at the time of the object's creation. The specifics of the
class implementation closely follows the DBMES' implementation of the Queue and Semaphore
classes.

The class provides member functions to handle the creation, deletion, clearing, checking, setting
and consulting of the flag. Each function is self-contained and does it's own error reporting.
Use of the class member functions is much simpler than the VRTX functions due to their limited
capability (ie. only one flag per object) and thus the ability of the class to store the fixed value
of the mask mentioned above.

Note: Use of the Event Group mechanism of VRTX should be undertaken with care because of a fault
in the following functions: sc I POST, SC_IPEND, and SC_FCLEAR. These functions do not set the

error code parameter when called, and consequently erroneous operations will possibly go
unnoticed. However, provided they are used with care, there should be no problems in using the
Event Groups.

12 OFFSET TIME

Once the Flag class was implemented, it was used to provide a means of comrnr anication
between the Database object and the update_loop task. The Database receives a message and
inquires into the status of the Flag object (called update_flag). If the flag is not set, the Database

posts to the flag, thus setting it. The message is then processed as normal. At this stage, any

message arriving at the Database sets the flag.

The update-loop task meanwhile is created sometime after the program commences. Once this
has occurred, it clears the flag so that the next message arriving at the Database will cause the
flag to be re-set. The updatejloop then pends on the flag, with a timeout of one second to

- -UNCLASSIFIED 15

ERL-0663-RN UNCLASSIFIED

ensure that at least one full cycle has passed, confirming that no updates which might affect the
local node are being performed on the network. Either the arrival of a message at the Database
or a timeout on the pend releases the update-loop from its waiting stage.

Whichever occurs, the task then delays for the number of tenths of seconds specified by the
offset-time (cf section 3) variable. When the delay is released, the update cycle will commence
and run until the program is terminated.

Once this was tested and working correctly, the code which posted to the update-flag was shifted
from the Database object to the process functions of the Performance and Execute message
classes. This means that the only messages which release the task pending on the flag are actual
update-types. The Database object itself receives several other types of message which would
be inappropriate triggers for the update loop.

Note: This means that any new types of message which perform update type operations which may be
added later should also post to the update-flag. The current implementation has no way of
ensuring that this will happen and relies on the programmer implementing this event flag signal
within the new message.

13 CONCLUSION

The Distributed Database Dynamic Reconfiguration (D3R) protocol is intunded to support a
Distributed Database Managemcnt (DBM) protocol in maintaining database consistency in the
event of network partitioning. The DBM could be the ALDM protocol, the SR2PC protocol
described above (section 2.5), or some other which may be developed at a later date.

D3R makes various assumptions about the form of the database, namely that it is divided into
logically disparate "pages," and that the pages will all have a consistent page header, no matter
what DBM schema is implemented, which will provide operational information about the
contents of the page.

Much of the work described above is unrelated to the DYR protocol itself. The work on the GDP
(sections 4,5) has no relevance to database reconfiguration, and the DBMES-specific modifications
(sections 3,6,12) are important only in that they involve the completion of the software which
is being used to drive the D3R protocol for test and evaluation purposes. General work (sections
10,11) is useful in enhancing the power of the D3R system, but is not a requirement. Thus the
only work which directly relates to the problem of database reconfiguration is the development
of a Node Availability Table (sections 7,8,9).

The level of productivity that has been achieved in a short amount of time can be partly
attributed some to the Turbo C++ packages' Integrated Development Environment, and some
to the nature of the project itself. DIR should continue to prove challenging and engaging for
some time to come.

14 RECOMMENDATIONS FOR FUTURE DEVELOPMENT

A number of further steps are required to complete this project. These will include completing
the DBMES GDP, the Single Record Two-Phase Commit update protocol, and then the Dynamic
Reconfiguration protocol. Other components of the project will involve streamlining the
operations of these projects to execute more efficiently with respect to speed, memory usage, and
resource utilisation. Some of the recommended future steps that should be considered in the
development of the project are listed below in a priority order:

16 UNCLASSIFIED -t
m • m m •

UNCLASSIFIED ERL-0663-RN

Essential:

Implementation of the Failure Detection and Recovery Protocols which should be
able to dynamically reconfigure the network in the event of faults in the system.
These protocols are the ultimate purpose of the D3R project, and as such should
take prime importance.

Immediately Required:

"* The Node Availability Table is maintained by its own sub-protocol which is
currently being redesigned for maximum efficiency. When this design is completed
the protocol should be brought into line with the modifications required. At this
time the Node Number subtasks should be objectified into an autonomous process,
because there is no logical connection with them and the User interactive operator
interface process. This may well mean the merging of the two distinct subtasks
into a single unit with two modes of operation, if this is not already achieved by
the new design. Such a modification would be far less wasteful of the relatively
precious VRTX capabilities, which are somewhat limited for the larger system
requirements we later face.

"* Modification of the current Single Record Two-Phase Commit (SR2PC) protocol
implementation to utilise the logical image of the network provided by the Node
Availability Table. SR2PC relies upon knowing how many responses to an update
request it should be collecting. This is currently assumed to be two, which might
lead to erroneous operations on any network larger than three nodes.

"* The SR2PC protocol currently pertorms some locking to ensure that read and write
accessing of the database elements do not conflict. However, it appears that this
scheme, as implemented, is not truly reliable and as such this area must be closely
examined. If any flaws in the current stage of the protocol are detected, they must
be corrected to provide a true reliable update. It would be difficult to evaluate a
reliable update for correctness over a performance update if both were error prone.

"* Modification of the update-loop to allow operator specification of which Database
Element (DBE) to perform the updates upon. Furthermore, operator specification
of the cycle time may also be desirable. This would allow the operations of the
database exercising application to be more readily configured, by allowing this at
run-time, rather than compile-time (which would be tedious).

"* The implementation of a logical (not real-time) clock which would be synchronised
between all nodes on the network. This will provide the possibility for time-
stamped transaction management, where transactions can be ordered
chronologically. If during database reconfiguration any transactions are lost, a
check of a transaction log can allow them to be reissued in the order intended.
Furthermore, modifications envisaged for the Node Availability Table may well
incorporate the concept of recording the time of the last transmission by a node,
and thus an early alert of possible node failure can be gained by this mechanism.

Highly Desirable:

"* Modifying the UpdateOMeter screen devices to hold a tally of the number of
circuits the needle has performed. This value should be displayed near the
appropriate meter but not interfere with the labelling of the points around the
display. This is required by the initial specifications written for the Graphical
Demonstration Package (GDP).

UNCLASSIFIED 17

ERL-0663-RN UNCLASSIFIED

Modification of the current dynamic initialisation of the database to handle all it's
elements instead of only one. Modify any replies for this purpose to non-broadcast
messages. This would ensure that when the SR2PC protocol is fully completed,
and conducting transactions on multiple records, that all database records are
consistent before any operations take place on the local image. With full database
initialisation available, the chances of any database errors wouid be greatly
reduced.

Desirable:

"* Reincorporating the new Text-box string output function into the program. Once
again related to the GDP, this suggested modification would greatly improve the
professionalism of the GDP's appearance.

"* Some modification to the code might ensure that posting to the update.flag is
enforced for current and future update protocols. Perhaps the flag should only be
set when a specific DBE is updated, namely one which this node is also updating.
This allows the system developer to simply link in a new update schema onto the
database without havia-g to worry about whether or not it complies to the
requirements of the evaluation system.

" the Fl..g class is capable of handling up to 32 flags per object. Currently the
number of flags per object is fixed at one, but a simple modification would make
the others available, as well as giving the ability to pend on any or all of these
flags. This would be a useful extension of the Flag class should it become
necessary to have several events being monitored ai a group by any object. Rather
than creating n Flag objects to monitor n events, the creation of a single object
which could monitor all r events (,up to 32 per object) would be a far more efficient
usage of memory, and quite 'ikely be faster and more flexible.

15 ACKNOWLEDGEMENTS

I would like to acknowledge the participation ot various members of the Distributed Processing
for Combat Systems section of C3ISE group/[TD in the development of the D3 R project.

Alan Allwright Development of the FDDI communications intertace ',:brary. Design and
development of the ALDNI reliable update protacol.

Stan Miller The design of the DBX and ALDM. Specifications of the DBMES
requirements. Initial specifications of the GDP. Development of
specifications for, and assistance in the design of the D3R protocols.

William Roberts Development of the DBX database and network communications protocols.
Design and implementation of the DBMES. Design and development of the
GDP. Work involved in the development of techniques for using the
interfacc libraries, for VRTX and RTG.

Alan Wood Implementation of the new Text Box string output function. Initial work

with the RTG package, and assistance with the GDP.

" "18 UNCLASSIFIED

UNCLASSIFIED ERL-0663-RN

REFERENCES

1. Miller, S.J., "Distributed Processing Testbed System: First
Interim Report for the DPTBS", WSRL Technical
Memorandum, WSRL-TM-26/90, Sept. 1990.

2. Miller, S.J., "A Distributed Database Manager based on
ADDAM", WSRL Technical Memorandum,
WSRL-TM-58/91, October 1991.

3. Miller, S.J., "Distributed Database Management Evaluation
Software", ERL Research Note, ERL-0635-RN,
June 1992.

4. Roberts, W.J.J., "A Case Study in Object Oriented Design:
Distributed Database Management Evaluation
Software", CSI Working Paper, Draft Form only,
lulv 1992.

. "UNCLASSIFIED 19

ERL-0663-RN UNCLASSIFIED

20 UNCLASSIFIED

UNCLASSIFIED ERL-0663-RN

APPENDIX I

USING THE VRTX INTERFACE LIBRARY WITH TURBO C++

My initial experience with Ready System's Versatile Real-Time Executive package involved the
implementation of the Distributed Processing Testbed System. The source code for this was
written with the Lattice C version 3.4f compiler. When I began work on the D3R project, I was
essentially modifying code already written, using the Turbo C++ (TC++) compiler. This code
already utilised the VRTX interface library, and much of the work of integrating the two
packages had already been done 14]. Below I present some techniques and concepts which go
beyond what is described there, based on my experiences with the project.

"* The Linker option in the Integrated Development Environment (IDE) for Case
Sensitive linking should be turned OFF due to the fact that TC++ keeps the lower-
case names of the VRTX package function calls, and yet the library in which they
reside has upper-case names.

"* The TC++ IDE provides the facility of project files. These are used by the TC++
program to keep track of all the source files which comprise a particular program
(one project per program). Project files of 75K size are definitely corrupt, and the
file should be rebuilt from scratch. Project files should normally be somewhere
around 10K unless the number of source files is very large. Somehow the IDE
corrupts the project file and the preferable solution is to set the Auto-Save option
for project files to OFF and remember to manually save the file after modifying it.

"* Beware of calling constructors (defined with a void parameter list) with the
function brackets explicitly encoded, eg.

ClassObj: :ClassObj (void)

Class0:j object U; //causes problems.
ClassObj object; I/NO problems.

This is because the first example of the call is declaring a function called object
which returns a value of type ClassObj. The second, however, declares an object
called ob~ezt which is of the type Classobj, which is the intended meaning.

The situation is different from defining and calling a function with a void

parameter list, eg.

void Funztion(-oid)

I...)

Function(j;

because in this example we are calling a function and are required to demonstrate
that it has no parameters, whereas in the previous example we are creating an
object and only implicitly calling the (zero-parametered) constructor function.

UNCLASSIFIED 21

ERL-0663-RN UNCLASSIFIED

2

,,22 UNCLASSIFIED

UNCLASSIFIED ERL-0663-RN

APPENDIX II

NODE AVAILABILITY ALGORITHMS

The following are the algorithms used in the project to maintain the Node Availability Table,
as described in section 9.

Algorithm for the nodeNo-mngr task:

loop forever:
* the Nodetable flags are all reset to FALSE.
* the Queue between the Media object and this task is

cleared.
• a request for node numbers (KodeNo Request mesSage) is

sent to the Media for broadcast to the network.
* the task then enters a loop consisting of:

• a pend on the Queue object servicing this task,
where a timeout of 20 ticks applys, and the
following:

* if any message arrives in tnat time with an error
code o• 0 (ie. no error) the message (a
NodeNo Reply) is processed. That is, the node is
added to the table and tagged as having replied.

* if the pend times out the loop is broken.
* the manager then determines the number of nodes in the

table, and the number of these which are tagged.
* if the number of nodes does not match the number of

tags another loop is entered which cycles through all
elements of the table:
* each element is checked via :As•t:• to determine

if it has responded to the request.
* if it has not been tagged, a request is sent to

poll that node alone in the hope that it still
exists.

* if the response arrives before timeout, (again 20
ticks,) the node is tagged as having replied.

* if the timeout occurs the node number is deleted
from the table.

* the manager then delays it's rescheduling for 91 clock
ticks, approximately five seconds.

Algorithm for the nodeNo-resp task:

loop forever:
* the responder pends indefinitely for a message on the

Queue object servicing this task.
* when a message arrives (only NodeNo Request's) it is

processed via a polymorphic call to the message
object's process member function.

"UNCLASSIFIED 23

IR

ERL-0663-RN UNCLASSIFIED

, 24 UNCLASSIFIED

UNCLASSIFIED ERL-0663-RN

DISTRIBUTION

Copy No.
Defence Science and Technology Organisation

Chief Defence Scientist
Central Office Executive) 1 shared copy
Counsellor, Defence Science, London Doc Cont Data Sht
Counsellor, Defence Science, Washington Doc Cont Data Sht

Scientific Adviser, Defence Central copy

Electronics Research Laboratory
Director 1 copy
Chief, Information Technology Division I copy
Chief, Communications Division Doc Cont Data Sht
Chief, Electronic Warfare Division Doc Cont Data Sht
Research Leader, Command, Control and Intelligence Systems I copy
Research Leader, Human Computer Interaction Laboratory I copy
Research Leader, Military Computing Systems I copy
Head, C31 Systems Engineering Group I copy

Mr D. O'Dea, C31 Systems Engineering Group (Author) 5 copies
Mr J. Schapel, C31 Systems Engineering Group 1 copy
Mr W. Roberts, C31 Systems Engineering Group 1 copy
Mr A. Allwright, C31 Systems Engineering Group I copy
Mr R. Driver, C31 Systems Engineering Group I copy
Mr A. Wood, C31 Systems Engineering Group 1 copy
Head, Program and Executive Support 1 copy
Mr S. Miller, Program and Executive Support I copy
Head, Trusted Computer Systems Group 1 copy

Head, Software Engineering Group I copy
Head, Computer Systems Architecture Group I copy
Head, Command Support Systems Group I copy
Head, Intelligence Systems Group I copy
Head, Information Acquisition and Processing Group 1 copy
Head Information Management Group 1 copy

Head, Systems Simulation and Assessment Group I copy
Head, Exercise Analysis Group I copy

Publications and Publicity Officer, ITD I copy

Media Services I copy

Department of Defence

Director General, Communications and Information Systems I copy

Ir UNCLASSIFIED 25

ERL-0663-RN UNCLASSIFIED

Defence Intelligence Organisation
DIDS 1 copy
DSCAN I copy
Mr P. Drewer, PRS IDS 1 copy

Army Office
Scientific Adviser, Army I copy

Navy Office
Director, Naval Combat Systems Engineering I copy

Navy Scientific Adviser I copy

Air Force Office
Air Force Scientific Adviser 1 copy

Libraries and Information Services
Australian Government Publishing Service 1 copy

Defence Central Library, Technical Reports Centre 1 copy
Manager, Document Exchange Centre, (for retention) I copy

National Technical Information Service, United States 2 copies
Defence Research Information Centre, United Kingdom 2 copies
Director Scientific Information Services, Canada 1 copy
Ministry of Defence, New Zealand I copy

National Library of Australia 1 copy
Defence Science and Technology Organisation Salisbury, Research Library 2 copies
Library Defence Signals Directorate, Melbourne 1 copy
British Library Document Supply Centre I copy

Defence Intelligence Organisation Research Service I copy
Spares

Defence Science and Technology Organisation Salisbury, Research Library 6 copies

TOTAL 60 copies

28 UNCLASSIFIED

Page Classification
Department of Defence UNCLASSIFIED

DOCUMENT CONTROL DATA SHEET Pnvacy Marking/Caveat

1a. AR Number lb. Establishment Number 2. Document Date 3. Task Number

AR-007-015 ERL-0663-RN JAN 93 NAV 87/226.3

4. Title 5. Secuity Classification 6. No. of Pages 26

AN INTERIM REPORT ON THE DISTRIBUTED L-J L 7 JF J 7. No. of Refs. 4

DATABASE DYNAMIC RECONFIGURATION PROJECT Document Title Abstract

S (Secret) C (Confi) R (Rest) U (Unclass)

"For UNCLASSIFIED docs with a secondary distribution
LIMITATION, use (L)

8. Author(s) 9. Downgrading/Delimiting Instructions

Damian O'Dea

1 Oa. Corporate Author and Address 11. Officer/Position responsible for

Electronics Research Laboratory Securi ...
PO Box 1500
SALISBURY SA 5108 Downgrading ...

1 Ob. Task Sponsor Approval for ReleaseE.L

NAVY

12. Secondary Release of this Document

APPROVED FOR PUBLIC RELEASE

Any enquiries outside stated limitations should be referred through DSTIC, Defence Information Services,

Department of Defence, Anzac Park West, Canberra. ACT 2600.

13a. Deliberate Announcement

No Limitation

13b. Casual Announcement (for citation in other documents) No ULimtation

W Ref. by Author & Doc No only

14. DEFTEST Descriptors 15. DISCAT Subject Codes
Object oriented programming
Distributed database systems 1205. 1207

16. Abstract

This paper discusses the work which took place in the first phase of the development of the D3 R project. The
concepts of Object-Oriented Programming and Multasking are introduced and explained. Each stage of the
project Is detailed, and where relevant, concepts from the DBMES system are Introduced and explaired. The
paper concludes with recommendations for future developments to both systems as they approach corpletion.

Page Classification

UNCLASSIFIED

Privacy Marking/Caveat

16. Abstract (CONT.)

17. Imprint

Electronics Research Laboratory
PO Box 1500
SALISBURY SA 5108

18. Document Series and Number 19. Cost Code 20. Type of Report and Period Covered

ERL-0663-RN 803885 ERL RESEARCH NOTE

21. Computer Programs Used

N/A

22. Establishment File Reference(s)

WA

23. Additional information (if required)

