ANALYSIS OF LEADING EDGE AND TRAILING EDGE COVER GLASS SAMPLES BEFORE AND AFTER TREATMENT WITH ADVANCED SATELLITE CONTAMINATION REMOVAL TECHNIQUES

Sponsored by
Strategic Defense Initiative Office

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views and conclusions contained in this document are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of the Strategic Defense Initiative Office or the U.S. Government.

Rome Laboratory
Air Force Materiel Command
Griffiss Air Force Base, New York

93-16346
This report has been reviewed by the Rome Laboratory Public Affairs Office (PA) and is releasable to the National Technical Information Service (NTIS). At NTIS it will be releasable to the general public, including foreign nations.

RL-TR-93-51 has been reviewed and is approved for publication.

APPROVED:

JAMES W. CUSACK, Chief
Photonics & Optics Division
Surveillance & Photonics Directorate

FOR THE COMMANDER:

JAMES W. YOUNGBERG, LtCol, USAF
Deputy Director
Surveillance & Photonics Directorate

If your address has changed or if you wish to be removed from the Rome Laboratory mailing list, or if the addressee is no longer employed by your organization, please notify RL (OCPC) Griffiss AFB NY 13441-5700. This will assist us in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a specific document require that it be returned.
REPORT DOCUMENTATION PAGE

Title: Analysis of Leading Edge and Trailing Edge Cover Glass Samples Before and After Treatment with Advanced Satellite Contamination Removal Techniques

Authors: S. P. Hotaling

Performing Organization: Rome Laboratory (OCPC), 25 Electronic Parkway, Griffiss AFB NY 13441-4515

Prepared for: Strategic Defense Initiative, Office of the Secretary of Defense, Wash DC 20301-7100

Distribution/Availability Statement: Approved for public release; distribution unlimited.

Abstract:

Two samples from LDEF experiment M0003-4 were analyzed for molecular and particulate contamination prior to and following treatment with advanced satellite contamination removal techniques (CO2 Gas/Solid Jet Spray and Oxygen Ion Beam). The pre- and post-cleaning measurements and analyses will be presented. The Jet Spray removed particulates in seconds. The low energy reactive oxygen ion beam removed 5000 angstroms of photo polymerized organic hydrocarbon contamination in less than 1 hour. Spectroscopic analytical techniques were applied to the analysis of cleaning efficiency including: Fourier Transform Infrared, Auger, X-ray Photoemission, Energy Dispersive X-ray, and Ultraviolet/Visible. The results of this work suggest that the contamination studied here was due to spacecraft self contamination enhanced by atomic oxygen plasma dynamics and solar UV radiation. These results also suggest the efficacy for the Jet Spray and Ion Beam contamination control technologies for spacecraft optical surfaces.
Two samples from LDEF experiment M0003-4 were analyzed for molecular and particulate contamination prior to and following treatment with advanced satellite contamination removal techniques (CO2 Gas/Solid Jet Spray and Oxygen Ion Beam). The pre- and Post- cleaning measurements and analyses will be presented. The Jet Spray removed particulates in seconds. The low energy reactive oxygen ion beam removed 5000 angstroms of photo polymerized organic hydrocarbon contamination in less than 1 hour. Spectroscopic analytical techniques were applied to the analysis of cleaning efficiency including: Fourier Transform Infrared, Auger, X-ray Photoemission, Energy Dispersive X-ray, and Ultraviolet/Visible. The results of this work suggest that the contamination studied here was due to spacecraft self contamination enhanced by atomic oxygen plasma dynamics and solar UV radiation. These results also suggest the efficacy for the Jet Spray and Ion Beam contamination control technologies for spacecraft optical surfaces.

I. Introduction

Today satellite contamination is kept within specification during production, assembly and storage by clean rooms, solvent wipes, inert gas/air purges and vacuum bakeout. Although these techniques have proven acceptable for launching "clean" satellites, (level 1000 typical), the combined effects of the space environment lead to increased contamination levels once deployed (Ref. 1,2). LDEF was initially launched with MIL-STD-1246B Level 2000C cleanliness. This is considered clean by industry standards today, but post recovery LDEF analysis showed over one pound of molecular contaminants notwithstanding particulates (Ref. 3). LDEF experiments provide a unique window into the contamination effects on a large variety of spacecraft materials all exposed to the same LEO environment for the same amount of time. Thus, LDEF really is a "treasure trove of data" as described by S.A. Little in 1991 (Ref. 4).

In this paper, the results of utilizing the CO2 jet spray and oxygen ion beam contamination removal techniques for the cleaning of LDEF contaminant species will be discussed. The overall conclusion of the paper is as follows: Indeed the proper choice of spacecraft materials and pre launch cleanliness is important, but the physical realities of the space environment necessitate an on-orbit contamination mitigation philosophy which is potentially implementable using the contamination control techniques described herein.
II. Precleaning Sample Analysis

Optical Microscopy was used to obtain sample morphological features. EDX, Auger, ESCA and FT-IR were used to obtain chemical and compositional information. UV/Vis spectrophotometry provided the optical properties for the samples. Computer image analysis was utilized to analyze the microscopy data. After contamination removal, the same techniques were applied to the samples (Ref. 5).

Two solar cell cover glass samples from the LDEF experiment M0003-4 were analyzed in this study. Sample No. L3-IV-4-14-52 was positioned on LDEF tray D9 on the leading edge of the spacecraft. Sample No. T3-IV-4-14-54 was positioned on the trailing edge of the spacecraft in Tray D3. The Leading Edge Sample (henceforth Sample L) was visually different in appearance than the trailing edge sample (henceforth Sample T).

Sample L collected 5000 Angstroms of an organic contaminant film, scattered particulate debris, and two micrometeorite craters. Circular polarized optical microscopy showed the presence of many orders of brightly colored Newton's interference rings on sample L, as shown in Figure 1 (magnification = 13x). This figure is a montage of micrographs pasted together in a jigsaw puzzle fashion since the field of view for one micrograph at 13X was too small to contain the entire sample. Seen here are the two halves of the sample placed together. The cover glass sample was stuck to the silicon backing plate by the contaminant film which acted like an adhesive. This afforded the opportunity to analyze the effects of this photo-polymerized contaminant and contamination removal techniques on both the cover glass and crystalline silicon materials. Subsequent microscopic analysis revealed the presence of a subsurface fracture running across the crystalline silicon sample. This defect was deemed responsible for the sample becoming severed in the analysis procedure.

Sample T on the other hand collected only 50 angstroms of a light brown contaminant film and scattered particulate debris. This sample was not "glued" to its silicon backing plate. Sample L was in two parts as can be seen from close examination of Figure 1. As discussed above, sample T was not found to be as heavily contaminated as sample L, and was not fixed to its crystalline silicon backing plate. In Figure 2, sample T is positioned above square graph paper (20 squares per inch). From this figure, the thin brown contaminant film is clearly seen as a contrast difference.

The physical condition of these samples was anti-intuitive. Since the Leading Edge sample experienced a higher atomic oxygen (AO) fluence than the trailing edge of the spacecraft (Ref. 7), one would expect a fairly clean-contaminant free surface. It is possible that such a surface would even be slightly eroded due to interaction with the reactive ion flux. During recovery, the AO fluence for sample L was 8.74 x 10²¹ atoms-cm⁻². The trailing edge sample was somewhat shielded from this atomic oxygen flux, having an AO fluence of 1.3x10¹⁷ atoms-cm⁻². Intuitively the author expects this to imply a thicker contaminant deposition on the trailing edge relative to the leading Edge which was not the case for the two samples examined in this work. The author is still speculating as to the reasons for this contamination density inversion.

FT-IR spectroscopy was performed with a biorad FTS-40 spectrophotometer. The FT-IR spectrum of the contaminant film taken from sample L's interferences fringes on the silicon side of the sample is shown in Figure 3. Figure 4a and 4b show that the FT-IR spectrum of nylon 6:6 is present in the contaminant film. Another expansion of the hydrocarbon region of the sample is shown in figure 5a. In Figure 5b, the FT-IR
spectrum of polyacetal delrin 500 plastic is shown. Figures 4 & 5 when correlated with Figure 3 indicated that the major constituents of the contaminant film are nylon 6:6 and delrin 500.

ESCA and Auger microprobe analyses were performed at several points in and around the micrometeorite crater shown in Figure 6. The seven numbered positions in Figure 6 indicate the Auger microprobe beam positions. The Auger electron spectrum for the crater is shown in Figure 7. The seven sampling positions did not offer strikingly different data for chemical proportion. The chemical composition of the film is given in Table 2.1 as atomic percentages. The atomic percentage values calculated from the Auger spectra were commensurate with those calculated from ESCA giving confidence in the identification of the chemical composition of the contaminant.

A lower magnification view of the micrometeorite crater of Figure 6 is shown in the SEM of Figure 8. In Figure 8, the interference fringes are clearly visible as dark bands. The SEM of Figure 8 indicates that some of the contaminant film is starting to peel off the substrate as can be seen by the small area of film at about 2 o'clock referenced from center the position of the micrometeorite crater (see arrow). Also, clear in this figure are several pieces of particulate ranging in size from 0.2 mm down to probably the tens of microns spatial dimension. EDX analysis of these particles identified them as mostly metallic. Copper, Zinc, Tin, Aluminum and Silicon.

II. Contamination Removal

Gas/Solid Jet Spray Technique

The Gas/Solid Jet Spray was used to remove particulate contamination. The CO2 jet spray is shown in Figure 9. The jet spray has been described in the literature (Ref. 1,2), but may be simply described as a particle removal process which exploits momentum transfer from incident snow flakes to particulates adhering to the surface through van der Walls forces (first and second order). The energy/momentum transferred to the adhered particle breaks these surface potential forces and the “free” particle is entrained in the gas stream and carried away from the surface. The mixture of solid/gas in this process is very important for the removal of submicron particles (Ref. 1), which are not removed by high pressure gas and liquid streams due to the gas/surface boundary layer’s “insulating” action.

Ion Beam Technique

The molecular film was removed by reactive ion etching using a beam of oxygen ions and electrons from a Hughes helicon wave source (HWS) shown in Figure 10. The output beam contains oxygen ions and neutral atoms as well as electrons. The HWS also has a UV radiation component. The effects of these species upon contaminant removal is under investigation. The ion cleaning experimental parameters are as follows. The ion energy was varied between 12 and 45 eV (average). The ion flux densities varied between 550 and 1300 μA/cm² (average) as measured by a Faraday cup. The plasma was operated at 165 Mhz with a power of 10 to 20 Watts. The oxygen flow rate was measured to be 10 sccm using an Omega Engineering gas flow meter (FMA-5601). Chamber partial pressures were monitored by a VG Scientific Micromass 560 mass spectrometer to be: Oxygen: 3x10-5 Torr, Water: 3x10-5 Torr, and Nitrogen: 5x10-5 Torr. Other species were present in the chamber registering partial pressures of less than 1x10-8 Torr, and as such were of no consequence to this work.
III. Postcleaning Sample Analysis

Figure 11 shows a circular polarized light micrograph of a heavily contaminated region of sample L. The region of the sample to the left of the circular arc (AB) was masked while the region to the right of the arc was exposed to 1 hour of reactive oxygen ions. Comparison with Figure 1 shows that the sample was cleaned by the reactive oxygen ion beam. Figure 12 is a Nomarski photomicrograph (200x) of the region surrounding the crater before ion beam treatment. The same region at the same microscopic settings is shown in Figure 12 after ion cleaning. Note that only the outline of the crater remains and that the contaminant film has been completely removed. The jet spray removed the particulate debris, including the particles of glass chips on glass substrate (Ref. 6).

In one hour of total treatment time, the sample went from being contaminated at levels that the unaided eye could easily discern, to having a contamination level at the Nomarski Microscopy threshold of detection.

Figure 14 is a fluorescence light micrograph of a masked and unmasked section of sample L after 21 minutes of ion beam cleaning. The dark (non-fluorescing) side of the micrograph shows the result of removal of 1760 angstroms of molecular film. There is evidence of residual contamination (brightly fluorescing yellow matter) near the mask boundary.

The brown film of sample T (see Figure 2) was removed with 5 minutes of reactive oxygen ions. The UV/Vis spectra for the sample before and after ion cleaning are shown in Figure 15. A UV/Vis spectrum of the very edge of the sample which masked during the LDEF flight and ion cleaning operations was taken. Comparison of the spectra corresponding to this protected edge and the ion cleaned area of the sample showed conclusively that the sample was completely cleaned.

III. Contamination Collection

The above contamination removal techniques have been shown to successfully remove spacecraft contamination and development is underway to build small, lightweight flight qualifiable contamination removal systems. However, there remains the problem of preventing the removed contaminants from redepositing onto the cleaned surfaces. In response to this, Rome Laboratory developed a contamination collection device. This contamination collector is capable of collecting and containing both molecular and particulate contaminants throughout the spacecraft operational parameter space (temperature, vibration, radiation, vacuum and micrometeorite environments). One embodiment of this device, the Aerogel Mesh Contamination Collector (AMCC - patent pending) is shown in the SEM of Figure 16. In the figure is shown a cross section of the AMCC with collected particulate contaminants of various sizes. In a system, the AMCC would work in conjunction with the jet spray and ion beam removal devices as shown in figure 17. Here, the reactive ion beam removes organic particles and molecular films as the jet spray removes particles and entrails the removed species into the AMCC’s waiting pores (Ref. 1,2).

V. Contamination Control For Spacecraft Applications

The above contamination removal techniques are being developed for autonomous operation in spacecraft applications. These data present the first results of
the application of these contamination mitigation technologies to long duration spacecraft exterior surface materials. The cleaning rates and efficiencies obtained are optimistic. This suggests that further contamination control experimentation in orbital systems such as the Retrievable Payload Carrier (RPC) such as shown in Figure 18 (Ref. 8). In such an experiment, small jet spray and ion beam sources would be mounted in a pallet which could be re-used for both leading edge and trailing edge missions, and/or several low cost contamination control pallets could be fabricated and flown on several RPC missions in various locations. RPC contamination experiment data would fuel a contamination control system for Space Station Freedom.

Acknowledgment

The author wishes to thank Barry Lippey and Dan Demeo of Hughes Aircraft Corporation for their kind hospitality and research collaboration on the contamination removal phase of this work. The author also wishes to thank Maurice Dumais of USAF/Rome Laboratory (Hanscom AFB) for his hospitality in the performance of the electron microscopy work. The hospitality and expertise of N.T. Castello of Oneida Research Corporation are greatly appreciated. The effort could not have been funded without the ardent support of Capt. Deidra A. Dykeman, Rome Laboratory Contamination Control Program Manager. The author wishes to thank Terry Trumble of USAF/Wright Laboratory for providing the samples used for the experiment.

VI. REFERENCES

4. S.A. Little, The Role OF The LDEF In The Development of Space Systems, pp. 1687.

6. It is well known that removal of glass chips from glass substrates after long periods of time is a most difficult problem. Additionally, there is evidence of variations in humidity of the LDEF environment during the (post STS-landing) ferry flights (Ref. 3). This implies that not only did the glass chips fall on a glass surface, but that the presence of
post flight humidity enhances the probability for a very strong glass to water chemical bond which would be a very tenacious particle to remove. Of course, the interfacial geometry is very important for the removal, but it is noteworthy that not only metallic and fiberous particulates were removed by the jet spray, but also glass chips from a glass surface.

Figures

Figure 1 Montage of photomicrographs (magnification: 13x) taken with circular polarized light. The thick contaminant film is indicated by the presence of several orders of Newtonian interference rings. The area defined by the "crescent moon" shape on the left side of the circle is the cover glass on top of a crystalline silicon backing plate. The contaminant film is on the top surface of the cover glass and also deposited between the cover glass and the silicon backing plate. The region to the right of the glass is the crystalline backing plate with associated contamination. It is also noteworthy that the center of the sample shows indication of a micrometeorite impact. The white rectangular area in the upper left of the figure is a "missing piece" which somehow was not photodocumented.
Figure 2 The trimming edge sample viewed with circular polarized light at a magnification of 3x. The sample is positioned over a piece of graph paper (20x20 squares/inch). The contaminant film on this sample is apparent as a brown stain which is not uniform in thickness. Note the vast difference in appearance of the contaminant films in figures one and two.
Figure 3 The FT-IR spectrum (reflection mode) of the contaminant film of Figure 1. The figure indicates the absorption region which was associated with aliphatic hydrocarbons.
Figure 4a An expansion of the hydrocarbon region of the FT-IR spectrum of Figure 3.
Figure 4b The FT-IR spectrum of nylon 6:6 which is correlated with Figure 4a.
Figure 5a An expansion of the hydrocarbon spectrum of Figure 3. Figure 5b The FT-IR spectrum of polyacetal delrin plastic which correlates with Figure 5a.
Figure 6 A SEM of the micrometeorite (or artificial space debris) impact site in the center of Figure 1. The seven numbered sites indicate positions of the Auger microprobe analysis.
Figure 7 The Auger Electron Spectrum (AES) from location number 1 of Figure 6. This AES data was typical of those of Figure 6 locations; differences were in magnitude of the Auger peaks only.
Figure 8 A low magnification (10 x) SEM of the leading edge sample showing the central micrometeorite crater illustrated in Figures 1 and 8. Note the scattered particulate debris and shadowing of one of the areas of the contaminant film. This shadow is believed to be the start of film delamination.
Figure 9 A 35mm photograph of a research model CO₂ gas/solid jet spray in operation. Newer designs are much smaller and compact. Flight units have been designed and are awaiting production.
Figure 10. A 35 mm photograph of an old research model HWS ion beam cleaner. The newer designs are inductively coupled obviating the variable capacitors between the RF amp and cavity, and is much smaller and lightweight.
Figure 11 A circular polarized light micrograph (13 x) of a section of the leading edge sample after treatment with ion beam and jet spray contamination devices. The region to the right of the circular arc was exposed to the cleaning treatments while a cover glass covered the contaminated species (left).
Figure 12. A Nomarski light micrograph (magnification: 200x) of the leading edge sample prior to treatment with contamination removal techniques. The brightly colored interference rings indicate a thickness of 4500 angstroms of contaminant film. Notice also the presence of scattered secondary debris and other particulate contamination adsorbed onto the sample surface.
Figure 13 A Nomarski photomicrograph (magnification: 200x) of the micrometeorite impact region of Figure 12 after treatment with the gas/solid jet spray and ion beam cleaners. There is only a faint indication of the presence of residual film. Nomarski puts gives an approximate thickness less than 15 angstroms. Note also that most of the particulate debris has been removed.
Figure 14 A blue light Fluorescence light micrograph of the cleaned (dark)/uncleaned (bright yellow and green) section of the leading edge sample. As in Figure 11, the cover glass masked (protected) part of the sample from cleaning treatments. This sample was treated with 21 minutes of reactive oxygen cleaning.
Figure 15 The Ultraviolet/Visible (UV/Vis) transmission spectra for the trailing edge sample before (solid) and after (dashed) treatment with the ion cleaner. The after cleaning spectrum of a section of the sample which was protected from direct interaction with the space environment was compared to that of the sample after ion cleaning. No difference was discernable indicating that the cleaning was highly efficient.
Figure 16 A SEM of the Aerogel Mesh Contamination Collector (AMCC - patent pending) showing captured particles.
Figure 17 A system concept level diagram of the jet spray and AMCC in operation.
Figure 18 A concept level diagram of the RPC with a leading edge contamination control experiment. The experiment includes sample materials, contamination detection, jet spray and ion contamination removal devices and the AMCC to collect removed species. The experiment could be run autonomously or under remote control by shuttle or ground based experimenters. The compactness, limited scope, simple design and palletized nature of the experiment make it attractive for multiple RPC missions. (This figure is an adaptation from reference 8).
DISTRIBUTION LIST

<table>
<thead>
<tr>
<th>addresses</th>
<th>number of copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>RL/OCPC</td>
<td>40</td>
</tr>
<tr>
<td>ATTN: Steven P. Hotaling</td>
<td></td>
</tr>
<tr>
<td>Griffiss AFB NY 13441-5700</td>
<td></td>
</tr>
<tr>
<td>RL/CA</td>
<td>1</td>
</tr>
<tr>
<td>Chief Scientist</td>
<td></td>
</tr>
<tr>
<td>26 Electronic Pky</td>
<td></td>
</tr>
<tr>
<td>Griffiss AFB NY 13441-4514</td>
<td></td>
</tr>
<tr>
<td>RL/SUL</td>
<td>1</td>
</tr>
<tr>
<td>Technical Library</td>
<td></td>
</tr>
<tr>
<td>26 Electronic Pky</td>
<td></td>
</tr>
<tr>
<td>Griffiss AFB NY 13441-4514</td>
<td></td>
</tr>
<tr>
<td>Administrator</td>
<td>2</td>
</tr>
<tr>
<td>Defense Technical Info Center</td>
<td></td>
</tr>
<tr>
<td>DTIC-FDAC</td>
<td></td>
</tr>
<tr>
<td>Cameron Station Building 5</td>
<td></td>
</tr>
<tr>
<td>Alexandria VA 22304-6145</td>
<td></td>
</tr>
<tr>
<td>Strategic Defense Initiative Office</td>
<td>2</td>
</tr>
<tr>
<td>Office of the Secretary of Defense</td>
<td></td>
</tr>
<tr>
<td>Wash DC 20301-7100</td>
<td></td>
</tr>
<tr>
<td>RL/IMPS</td>
<td>1</td>
</tr>
<tr>
<td>26 Electronic Pky</td>
<td></td>
</tr>
<tr>
<td>GRIFFISS AFB NY 13441-4514</td>
<td></td>
</tr>
<tr>
<td>OC Technical Library</td>
<td>1</td>
</tr>
<tr>
<td>Rome Laboratory/OC</td>
<td></td>
</tr>
<tr>
<td>26 Electronic Pky</td>
<td></td>
</tr>
<tr>
<td>Griffiss AFB NY 13441-4514</td>
<td></td>
</tr>
<tr>
<td>US Army SDC</td>
<td>1</td>
</tr>
<tr>
<td>Attn: Joel L. Shady</td>
<td></td>
</tr>
<tr>
<td>P.O. Box 1500</td>
<td></td>
</tr>
<tr>
<td>Huntsville, AL 35807</td>
<td></td>
</tr>
<tr>
<td>Company</td>
<td>Address</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Litton Sys Inc/ITEK Optical Sys Div</td>
<td>10 Maguire Road, MA 02173-3199</td>
</tr>
<tr>
<td>United Technologies Research Ctr</td>
<td>400 Main Street, E. Hartford, CT 06108</td>
</tr>
<tr>
<td>Lockheed Corp/Technical Info Ctr</td>
<td>400 Main Street, E. Hartford, CT 06108</td>
</tr>
<tr>
<td>Martin Marietta Corp/Aerospace</td>
<td>P.O. Box 179, Denver, CO 80201</td>
</tr>
<tr>
<td>Rockwell International Corp.</td>
<td>P.O. Box 3644/SJO1, Seal Beach CA 90740-7644</td>
</tr>
<tr>
<td>Boeing Co/Kent Technical Library</td>
<td>P.O. Box 3707; M/S 6H-LC, Seattle WA 98124</td>
</tr>
<tr>
<td>Space Sys Division/CNI</td>
<td>P.O. Box 92960, Worldway Postal Center</td>
</tr>
<tr>
<td>SDIO/TNS</td>
<td>The Pentagon, Washington D.C. 20301-7100</td>
</tr>
</tbody>
</table>

DL-2
Science Applications Inc.
Attn: Mary Dursi
For: Mr Don Talada
199 Liberty Plaza, Suite 200
Pomt, NY 13440

Toomey, Mathias & Associates
ATTN: Dr. John Stover
202 E. Kay Blvd.
Bozeman, MT 59715

Naval Weapon Center
ATTN: Dr. Hal Bennett
Code 38101
China Lake, CA 93555

Hughes Aircraft Co./EOS
Attn: Jean D. Gipson
FOR: Dr Flora Young (HC1, MSA133)
P.O. Box 902 EC/El/J100
El Segundo, CA 90245

SKW
Attn: Mr Howard Stears/Security
1901 North Moore Street
Suite 100J
Arlington, VA 22209

Eastman Kodak Co/Goverment Sys
Attn: Robert J Boda/DoD Security
For: Mr Tom Oltorik
P.O. Box 24929
Rochester, NY 14624

AFGL/PHK
Attn: Dr E. Murad
Hanscom AFB, MA 01731

The Aerospace Corp./Lib Aca Group
Attn: P. W. Green
For: Maria F. Garcia/MS-M4/976
P.O. Box 97957
Los Angeles, CA 90009-2957

The Aerospace Corporation
Attn: P. W. Green
FOR: Dr Werner VonDerGhe
P. O. Box 22957 MS-M1/199
Los Angeles, CA 90009-2957
<table>
<thead>
<tr>
<th>Company</th>
<th>To:</th>
<th>From:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hughes, Danbury Optical Systems</td>
<td>Huqhes, Danbury Optical Systems</td>
<td>Attn: Debra Kaufman</td>
</tr>
<tr>
<td></td>
<td>Attn: Debra Kaufman</td>
<td>For: Mr Jack Malloy</td>
</tr>
<tr>
<td></td>
<td>For: Mr Jack Malloy</td>
<td>100 Wooster Height Rd.</td>
</tr>
<tr>
<td></td>
<td>100 Wooster Height Rd.</td>
<td>Danbury, CT 06810-7589</td>
</tr>
<tr>
<td>SDIO/TDS</td>
<td>SDIO/TDS</td>
<td>Attn: Dr Paul Temple</td>
</tr>
<tr>
<td></td>
<td>Attn: Dr Paul Temple</td>
<td>Office of Secretary of Defense</td>
</tr>
<tr>
<td></td>
<td>Office of Secretary of Defense</td>
<td>Washington DC 20301-7100</td>
</tr>
<tr>
<td>OCA Applied Optics Inc.</td>
<td>OCA Applied Optics Inc.</td>
<td>Attn: Mr David Fengler</td>
</tr>
<tr>
<td></td>
<td>Attn: Mr David Fengler</td>
<td>For: Mr Anthony Hull</td>
</tr>
<tr>
<td></td>
<td>For: Mr Anthony Hull</td>
<td>7421 Orangewood Ave</td>
</tr>
<tr>
<td></td>
<td>7421 Orangewood Ave</td>
<td>Garden Grove, CA 92641</td>
</tr>
<tr>
<td></td>
<td>Attn: Deanna T. Jones</td>
<td>For: O. Manuel Uy</td>
</tr>
<tr>
<td></td>
<td>For: O. Manuel Uy</td>
<td>John Hopkins Rd.</td>
</tr>
<tr>
<td></td>
<td>John Hopkins Rd.</td>
<td>Laurel, MD 27023-6099</td>
</tr>
<tr>
<td></td>
<td>Attn: Gayle Feole/Security</td>
<td>For: Mr Richard Dyer</td>
</tr>
<tr>
<td></td>
<td>For: Mr Richard Dyer</td>
<td>200 Liberty Plaza</td>
</tr>
<tr>
<td></td>
<td>200 Liberty Plaza</td>
<td>Rome, NY 13440</td>
</tr>
<tr>
<td>Eastman Kodak Co/Government Sys</td>
<td>Eastman Kodak Co/Government Sys</td>
<td>Attn: Joda Robert</td>
</tr>
<tr>
<td></td>
<td>Attn: Joda Robert</td>
<td>For: Mr Don Sildner</td>
</tr>
<tr>
<td></td>
<td>For: Mr Don Sildner</td>
<td>PO Box 24939</td>
</tr>
<tr>
<td></td>
<td>PO Box 24939</td>
<td>Rochester, NY 14624</td>
</tr>
<tr>
<td>Ball Aerospace Systems Division</td>
<td>Ball Aerospace Systems Division</td>
<td>Attn: Mr Peter Walker/Security</td>
</tr>
<tr>
<td></td>
<td>Attn: Mr Peter Walker/Security</td>
<td>For: Mr E. A. Roybal</td>
</tr>
<tr>
<td></td>
<td>For: Mr E. A. Roybal</td>
<td>P.O. Box 1062</td>
</tr>
<tr>
<td></td>
<td>P.O. Box 1062</td>
<td>Boulder, CO 80306-1062</td>
</tr>
<tr>
<td>General Electric Astro Space</td>
<td>General Electric Astro Space</td>
<td>Attn: P. A. Delananty</td>
</tr>
<tr>
<td></td>
<td>Attn: P. A. Delananty</td>
<td>For: Mr James T. Lloyd, MS U40,19</td>
</tr>
<tr>
<td></td>
<td>For: Mr James T. Lloyd, MS U40,19</td>
<td>P.O. Box 9555</td>
</tr>
<tr>
<td></td>
<td>P.O. Box 9555</td>
<td>Philadelphia, PA 19101</td>
</tr>
<tr>
<td>JAYCOR</td>
<td>JAYCOR</td>
<td>Attn: Mr Ray Arias</td>
</tr>
<tr>
<td></td>
<td>Attn: Mr Ray Arias</td>
<td>For: Dr Michael Treadway</td>
</tr>
<tr>
<td></td>
<td>For: Dr Michael Treadway</td>
<td>P.O. Box 95154</td>
</tr>
<tr>
<td></td>
<td>P.O. Box 95154</td>
<td>San Diego, CA 92133</td>
</tr>
</tbody>
</table>
USA Strategic Defense Command
Attn: Mr George Parsons III
CSSD-DE-T
P.O. Box 1500
Huntsville, AL 35807-3801

Naval Air Warfare Center
Attn: Ms Linda Johnson
Code 3318
China Lake, CA 93555

Naval Research Lab
Attn: Mr Robert McCo
Code 7642
Washington DC 20375-5000

Utah State University/SDL
Attn: M. K. Seppeseson
For: Dr James Dyer
Utah State University
Logan, UT 84322-1415

Physical Sciences Inc.
Attn: Mr Robert F. Weiss
For: Mr David Green
20 New England Business Center
Andover, MA 01810-7100

Martin Marietta Corp.
Attn: Dr Bedford and John Miller
P.O. Box 179
Denver, CO 80201

Rockwell International
Attn: P. Malone
3370 Miraloma Ave
P.O. Box 3170
Anaheim, CA 92803

Mission Research Corp.
Attn: D. Pritchett
P.O. Box Drawer 719
735 State St.
Santa Barbara, CA 93102-0719

MPI Technologies Inc.
Attn: Dr A.K. Ghosh
151 Boulevard Hymus
Pointe-Claire, Quebec
Canada H9REQ
Jaycor
Attn: Dr N.C. Wild
9775 Tone Centre Drive
San Diego, CA 92121

General Electric Aerospace
Attn: Dr Barnett
P.O. Box 1000
Blue Bell, PA 19422

Hughes Technology Center
Attn: Dr R. W. Dodge
6155 El Camino Real
9ldg 736 MS117
Carlsbad, CA 92009

Strategic
Attn: Dr. R. O. Sub
4393 Viewridge Ave
San Diego, CA 92123

Jet Propulsion Lab
Attn: Dr N. A. Raouf
4800 Oak Grove Drive
Pasadena, CA 91109-8099

Harris Corporation
Attn: R. Shah
Government Aerospace Systems Div
P.O. Box 9400C
Melbourne, FL 32902

Morton International
Attn: Dr R. L. Taylor
185 New Boston St.
Woburn, MA 01801-6203

The Johns Hopkins University/APL
Attn: Dr J. Cranmer
Johns Hopkins Rd
Laurel MD 20723-6099

TRW Space Communication Div
R. J. Abernathy
R10/2324
One Space Park
Redondo Beach, CA 90278
Litton Itek Optical Systems
Attn: B. Pazot
10 Maguire Rd
Lexington, MA 02173

Litton Itek Optical Systems
Attn: Roland Plante
10 Maguire Rd
Lexington, MA 02173

TRW Space & Defense Sector
Washington Office
Attn: Dr W. E. Proctor
1101 Nineteenth St. N., Suite 800
Arlington, VA 22209-1722

Honeywell SRC
Dr M.A. Kollodge
10701 Lyndale Ave South
Bloomington, MN 55420

Honeywell SRC
Attn: Carol Ford
10701 Lyndale Ave South
Bloomington, MN 55420

International Business Machines
Attn: Dr M. Ko
5600 Cottle Rd., 537/503, Rm C336
San Jose, CA 95193

Lockheed Missiles & Space Co. Inc.
Attn: Dr D. H. Ma
Orgn., 7870, Bldg 584
1111 Lockheed Way
Sunnyvale, CA 94089-3509

University of Texas at Austin
Attn: T.A. Sebring/SST Office
McDonald Observatory
RLM 15.326
Austin, TX 78712-1083

Sandia National Lab
Attn: Dr S. Reed
Ceramics Division-7476
P.O. Box 5800
Albuquerque, NM 87185
Microelectronics Research Lab
Attn: C. Taylor and A. Culhane
9231 Rumsey Rd
Columbia, MD 21045

Veriflow Corporation
Attn: D. Schrader
112 Cypress Drive
Fairfax, CA 94930

Air Products and Chemicals, Inc.
Attn: G.F. Liebetrup
1415 Grand Ave
San Marcos, CA 92069

HNC, Inc.
Attn: Dr. R.W. Means
5501 Oberlin Drive
San Diego, CA 92121-1718

Union Carbide Corp
Attn: L.R. Rothrock
9320 Chesapeake Drive, Suite 216
San Diego, CA 92123

Microlab Northwest Training Lab
7609 140th Place N.E.
Redmond, WA 98052

Valco Instruments Co., Inc.
Attn: H. Bellows
P.O. Box 55603
Houston, TX 77255

Entropic Systems Inc.
12 Glengarry
Winchester, MA 01890

Motorola, Inc.
Gov't Electronics Group
Attn: Dr. A.L. Pai/Dr. D. Tolliver
8201 E. McDowell Rd (MD H8175)
Scottsdale, AZ 85252
MISSION

OF

ROME LABORATORY

Rome Laboratory plans and executes an interdisciplinary program in research, development, test, and technology transition in support of Air Force Command, Control, Communications and Intelligence (C³I) activities for all Air Force platforms. It also executes selected acquisition programs in several areas of expertise. Technical and engineering support within areas of competence is provided to ESD Program Offices (POs) and other ESD elements to perform effective acquisition of C³I systems. In addition, Rome Laboratory's technology supports other AFSC Product Divisions, the Air Force user community, and other DOD and non-DOD agencies. Rome Laboratory maintains technical competence and research programs in areas including, but not limited to, communications, command and control, battle management, intelligence information processing, computational sciences and software producibility, wide area surveillance/sensors, signal processing, solid state sciences, photonics, electromagnetic technology, superconductivity, and electronic reliability/maintainability and testability.