AD-A267 029 . .
T

RL-TR-93-49
Final Technical Report
May 1993

INTEGRATED TRUSTED
SYSTEMS DEVELOPMENT
ENVIRONMENT

ORA Corporation

Tanya Korelsky and David Rosenthal

DTIC

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

Rome Laboratory
Air Force Materiel Command

mfm wm:fmwmuum: ffiss A Force Base, Now York,

— - W™

S

This report has been reviewed by the Rome Laboratory Public Affairs Office
(PA) and is releasable to the National Technical Information Service (NTIS). At
NTIS it will be releasable to the general public, including foreign nations.

RL-TR-93-49 has been reviewed and is approved for publication.

APPROVED: M ? Jﬁ/.}w/&/‘g

EMILIE J. SIARKIEWICZ
Project Engineer

FOR THE COMMANDER:

JOHN A. GRANIERO
Chief Scientist
Command, Control and Communications Directorate

If your address has changed or if you wish to be removed from the Rome Laboratory
mailing list, or if the addressee is no longer employed by your organization,

please notify RL (C3AB) Griffiss AFB NY 13441. This will assist us in maintaining
a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a
specific document require that it be returned.

REPORT DOCUMENTATION PAGE [G i t76eotes

Pubic reparting burden for this collsction of information is estimated to average 1 hour per responee, including the time for reviewing instructions, sesrching existing data sources,
gathering and rnaintaining the data Needed, and cormpiating snd reviewing the colection of infornetion. Send cormmernts regarding this burden estimate or &y other aspect of this
colection of iformation, INclding suggestions for reducing this burden, to Washington Heedquarters Services, Directorats for inforrnation Operstions sndReports, 1215 Jefferson
Davis Highway, Sults 1204, Arington, VA 222024302, and to the Office of Managemert and Buciget, Paperwark Reduction Project (0704-0188), Washington, DC 20503

1. AGENCY USE ONLY (Leave Blank) 2 REPORT DATE 3. REPORT TYPE AND DATES COVERED
May 1993 Final
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
INTEGRATED TRUSTED SYSTEMS DEVELOPMENT ENVIRONMENT C - F30602-91-C-0058
PE - 35167G
PR - 1069
6. AUTHOR(S) A - 01
Tanya Korelsky and David Rosenthal WU - P3
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
ORA Corporation REPORT NUMBER
301 Dates Drive
Ithaca NY 14350-1313
9. SPONSORING/MONITORING AGENCY NAME (S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
Rome Laboratory (C3AB) AGENCY REPORT NUMBER
525 Brooks Road
Criffiss ATB XY 13441-4505 RL-TR~93~49

11. SUPPLEMENTARY NOTES
RL Project Engineer: Emilie J. Siarkiewicz/C3AW (315)330-3241.

12a DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Approved for public release; distribution unlimited.

13. ABSTRACT Madrmasm 200 worda)
This document is the Final Report of the Integrated Trusted Systems Development Environ-~

ment (ITSDE) project. The ITSDE project was a feasibility study that addressed the soft-~
ware development process for trusted systems. The goals of this effort were: (1) to elab
orate the Integrated Development Process (IDP) for trusted systems outlined in "Develop-
ing Trusted Systems Using DoD-STD-2167A" by T. Benzel and to elaborate the corresponding
documentation suite, and (2) to investigate how formal specification and verification
tools developed at ORA for Rome Laboratory fit into the elaborated IDP for trusted
systems of high assurance. The IDP attempts to integrate activities by the DoD-STD-
2167A and the "Trusted Computer System Evaluation Criteria', TCSEC, into a unified
approach for the development of trusted systems. We chose to investigate the elaboration
of the IDP by developing requirements, design, and formal specification of a particular
example. This approach allowed us to illustrate the findings and recommendations pro-
duced by the study. As our example for the study we chose to add a trusted mail service
which we call the Trusted Mail Handler, to the THETA (Trusted Heterogeneous Architecture)
distributed operating system. THETA adds trusted distributed operating system function-
ality on top of commercial-off-the-shelf (COTS) trusted operating systems.

14. SUBJECT TERMS 15 NUMBER OF PAGES
Software development formal specifications 76
trusted systems 16, PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION |19. SECURITY CLASSIFICATION |20. UMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED) —
Fﬁ . -)
NSN 7540.01-290-3600 Preprtoed by ARSI S1a Zoe e

sy CIFECIED B Accesion For
T ST NTIS CRA&I)g
DTIC TAB
Uniannounced 0
Justification
By
Distribution |
Availability Codes
Avail and/for
Contents pist | Specil
g1 _|
1 Executive Summary 1
2 ITSDE: Multiple IDP’s 3
2.1 Introduction 3
2.2 The2167A Phases 4
2.3 What Goes intoa Thread 5
2.3.1 Thread Definitions 6
2.3.2 Documentation, 6
2.3.3 Development Methods and Tools 8
2.34 Librariesand Reuse 8
24 Certification 9
2.5 Development of a New Thread 10
3 The IDP for Trusted Applications: The Early Requirements
Phase 11
3.1 ‘lrusted Applications 11
3.2 Early Requirements Phase 12
3.3 THETA Mail Handler Example 13
3.4 Early Requirements Phase for the THETA Mail Handler . . . 14
4 Requirements and Top Level Design Phases 16
41 Romulus 16
4.2 Placement of the Romulus Activities in the IDP 17

4.2.1 Problem: Requirements/Top Level Design Dilemma . . 17
4.2.2 Solution: Suggested Way of Handling Placement of the

Modeling 17

4.3 Kinds of Application Security Models19

.rr..v PN

s 2t

4.3.1 Multiple Single Level (MSL) processes 19

- 43.2 Weak MLS applications 19
4.3.3 MLS (or Strongly MLS) 19

4.4 Theta Mail Handler Example 20
44.1 Romulus Specification 20

4.5 Suggested Modifications to Romulus 20
Detailed Design and Coding Phases 22
5.1 THETA Managers and the Security of the THETA method . . 22
" 5.1.1 Security Issues in Autogeneration 23
5.2 Thread of Development and the THETA Mail Handler Example 24
5.3 Recommendations for Theta 24
5.3.1 Modification to the Current THETA Method 25

5.4 Code Verification and Penelope 25
5.4.1 Penelope Usage in an IDP Thread 25
5.4.2 Modifications to Penelope 25
SLCSE-based ITSDE Design Sketch 27
6.1 The SLCSE system 27
6.1.1 E-SLCSE 28

6.2 ITSDE/SLCSEMatch 28
6.2.1 Thread Definition 28
6.2.2 Developer - Contractor Coordination 29
6.2.3 Production of Documentation 29

6.3 Implementation of ITSDE in SLCSE 30
6.3.1 ITSDE Thread Development 31
6.3.2 Examples of SLCSE Modification for ITSDE 31
THETA Mail Handler — Customer Goals 37
A.l Introduction L 37
A2 Functionality 37
A.2.1 SendingaMessage 37
A.2.2 Receivingamessage 38
A.2.3 Acknowledgements and Notifications 38

A3 UserlInterface, 38
A4 Security 39

B THETA Mail Handler — Preliminary Selection of Develop-

ment Method 41
B.1 Introduction 0 0L 41
B.2 UserInterface 41
B3 Post Office., 42
B.3.1 Multi-Single Level Solution at the COS Level 42
B.3.2 Multi-Single Level Solution at the THETA Level 42
B.3.3 Solution Using Existing THETA Autogeneration of Man-
AEETS .« . v v e v e e e e e e e e e e e e e e e e 42
B.3.4 Alternative Restrictive THETA Manager 42
B.3.5 Proposed Choice 43
C Modeling for the THETA Mail Handler 44
C.1 Formal Model for THETA Managers 44
C.1.1 Simplification in the Case of No Read ups 45
C.2 Alternate Presentation 46
C.2.1 Summary of Constraints 46
C.3 Design and Implementation Alternatives 47
C31 DoNotUseaGuard 47
C32 UseaGuard. 48
C.3.3 Method for the THETA Mail Handler. 48
D System Specification 49
D.1 Scope e 49
D.1.1 Identification 49
D.1.2 System Overview 49
D.1.3 Document Overview 49
D.2 Applicable Documents 50
D.2.1 Government Documents 50
D.2.2 Non-Government Documents. 50
D.3 System Requirements, 50
D.3.1 Definition 50
D.3.2 Characteristics oL 53
D.3.3 Design and Construction 55
D.3.4 Documentation 0000 57
D.3.5 Logistics L oo 57

D.3.6 Personnel and Training 57

D.4

D.5
D.6

D.3.7 Characteristics of Subordinate Elements 58
D.3.8 Precedence 58
D.3.9 Qualification. 58
D.3.10 Standard Sample 58
D.3.11 Reproduction Sample, Periodic Production Sample, Pi-
lot,or Pilot Lot 58
Quality Assurance Provisions 58
D.4.1 Responsibility for inspection 59
D.4.2 Special Tests and Examinations 59
D.4.3 Requirements Cross Reference 59
Preparation for Delivery 59
Notes. 59
D.6.1 Intended Use 59
Y

List of Figures

6.1 Software Requirements Subschema

D.1 System Configuration

Chapter 1

Executive Summary

This document is the Final Report of the Integrated Trusted Systems Devel-
opment Environment (ITSDE) project conducted for Rome Laboratory by
ORA. The ITSDE project was a feasibility study that addressed the soft-
ware development process fur trusted systems. The goals of this effort and
the paralle!l effort at Trusted Information Systems were

o to elaborate the Integrated Development Process (IDP) for trusted
systems outlined in “Developing Trusted Systems Using DOD-STD-
2167A” by T. Benzel [Ben89] and to elaborate the corresponding doc-
umentation suite, and

e to investigate how formal specification and verification tools developed
at ORA for Rome Laboratory fit into the elaborated IDP for trusted
systems of high assurance.

The IDP attempts to integrate activities mandated by the DoD-STD-
2167A [Dep88] and the “Trusted Computer System Evaluation Criteria”,
TCSEC [DoD85] into a unified approach for the development of trusted sys-
tems. We chose to investigate the elaboration of the IDP by developing
requirements, design, and formal specification of a particular example, ac-
cording to the first version of the IDP [Ben89]. This approach allowed us
to show various inadequacies of the first version of the IDP process and
to illustrate the findings and recommendations produced by the study. As
our example for the study we chose to add a trusted mail service, which
we call the Trusted Mail Handler, to the THETA (Trusted HETerogeneous

1

Architecure [RL992]) distributed operating system. THETA adds trusted
distributed operating system functionality on top of commercial-off-the-shelf
(COTS) trusted operating systems. It is an object-oriented system, which
supports the addition of new trusted services.

Our feasibility study showed that the original version of the IDP that was
developed for systems is not completely suitable for trusted applications and
needs modifications and additions. One of the results of the study showed
that there should be variants of the IDP corresponding to a variety of factors
such as the software type (e.g., system vs. application) and level of trust.
We call a particular development process based on the development factors
a thread of development. We introduce the concept of an IDP with multiple
threads in Chapter 2. In Chapters 3, 4, and 5 we present a general discussion
of the needed changes in the IDP process and the related changes in the
corresponding IDP documentation.

The second direction of the study was to investigate how the Romulus
security methodology fits into the elaborated and modified IDP. The results
of the study showed that the Romulus methodology can be used in several
ways in the integrited development process, ranging from the conventional
design specification “from scratch” to the reuse or adaptation of Romulus
models available in the library of models. We present the discussion and the
results of this second direction of the study in Chapter 4.

We also discuss how the THETA development methods are part of a
particular thread of development (Chapter 5). The standard THETA devel-
opment thread requires substantially less security analysis then an analysis
of an OS and provides insight into the utility of having different development
threads for different kinds of trusted development.

In our proposal for the ITSDE project, we anticipated that our study
of the issues described above would allow us to discover deficiencies and
recommend improvements to the systems under investigation, i.e., Romulus
and THETA. Our observations are presented in Chapters 4 and 5.

In Chapter 6 we present a sketch of how the ITSDE design could be
incorporated into the Software Life Cycle Support Environment (SLCSE).
SLCSE fully supports the DoD-STD-2167A software life cycle and thus is
particularly well suited for supporting ITSDE. The advantages of providing
software support for the ITSDE concept are particularly significant because
of the complexity of interconnecting common development factors in defining
a thread.

Chapter 2
ITSDE: Multiple IDP’s

2.1 Introd-uction

The formulation of the Integrated Development Process (IDP) by T. Ben-
zel in [Ben89] was concerned with integrating the TCSEC documentation
requirements into the DoD-STD-2167A software development process. How-
ever, this formulation essentially outlined only one develcpment and evalu-
ation process. Different kinds of trusted systems require different kinds of
development and evaluatior processes because systems differ in the kinds of
security services they provide and in their external interfaces to other trusted
components. This fact was recognized by the National Computer Security
Center (NCSC) in their formulation of network evaluation guidelines which
was published as the Trusted Network Interpretation (TNI)[NCS87] in 1937.
'The Trusted Database Interpretation (TDI)[NCS91}, which appeared in 1991,
continued the diversification of the development and evaluation process to
applications. D. Bodeau in [Bod88] has described many of the issues involved
in integrating the development of applications into DoD-STD-2167A, includ-
ing the difficulties of building trusted applications. In this report, we expand
on the application development process, with particular attention paid to the
incorporation of high assurance methods and tools.

To produce a detailed explanation of the development process, we must
take into account that systems that require different degrees of TCSEC trust
(c.g., C2, B3, Al) have different requirements for secure development. For
example, in producing a top level design, we must choose between assurance

methods such as disciplined software engineering, manual formal methods,
and mechanical formal tools.

In addition to the kind of system and level of trust there are other factors
that are needed for determining the correct development process. Based on
all of the factors one can define particular development methods that we call
threads of the integrated development process. We will address the factors
in choosing a thread in Section 2.3.1.

We call the environment to support the modified IDP based on mul-
tiple threads the Integrated Trusted Software Development Environment
(ITSDE). In this chapter, we examine what is needed for thread develop-
ment.

2.2 The 2167A Phases

Before beginning the thread descriptions, we give an overview of how to
incorporate security into the 2167A development process. For a substantially
more detailed exposition, see D. Bodeau’s report [Bod88].

The 2167A development process is often called a “waterfall” model, as
at the completion of one phase of the process one drops into the next phase.
This method is best suited to handling projects that are well understood so
that one can correctly plan out the project without knowing all of the details.
Projects that involve more research need a way to reevaluate and reformulate
what needs to be done when an unexpected difficulty arises. These projects
are often handled by a spiral method [Boe88]. In this report we ¢ .ncentrate
on the traditional 2167A approach. For a discussion of ways of handling the
spiral method, see [TIS89).

Because many of the important security decisions are made before the
2167A process begins, it is desirable to augment our discussion of the 2167A
development phases with an earlier phase. We will call this the early require-
ments phase, as its purpose is to produce a first draft of what the system or
application should be like (typically in the form of a proposal).

Here is a short description of security aspects of the the combined early
requirements and 2167A phases.

e Early Requirements: In this phase the general method of developing
the project is chosen, including the initial identification of the potential
security threads that may be used.

4

o Requirements: The requirements for the system and its components
are identified. In particular, the security requirements are identified.

e Top Level Design: The specification and development process decisions
are made more concrete. This phase includes identification of trusted
objects and how they will be handled. It sometimes includes an initial
examination of potential covert channel problems. A top level specifi-
cation may be produced.

o Detailed Design: All of the design details are completely developed.
This phase includes checking the correct handling of trusted objects.
A more detailed description of the security aspects of the design is
typically produced at this stage.

e Code: The sy.tem or application is implemented at this stage. A
code-design correspondence is made to assure that the code follows the
design. (This correspondence includes checking that the code follows
the security model.) Some covert channel problems may be discovered
and resolved at this stage.

o Integration and Testing: The parts of the system are put together and
tested. Interactions between parts of the total system, may impact on
the overall security (e.g., covert channel problems) and must be tested.
Penetration testing is also needed.

We present more details about the early requirements phase in Chapter 3,
the requirements and top level design stages in Chapter 4, and the detailed
design and code in Chapter 5.

2.3 What Goes into a Thread

Each supported thread should include information for all the phases of the
DoD-STD-2167A (including the early requirements phase). This information
will include guidance documents, development methods and tools, and ex-
amples. Before describing these parts, we first give a general description of
factors involved in defining threads.

2.3.1 Thread Definitions

The details of particular thread construction are beyond the scope of this
effort, but to provide some insight into what is needed, we give a short
sketch of some of the factors that should be taken into account for defining
a thread:

e the security assurance level
o the security functionality that the system provides

e the security support services that are required of the underlying plat-
form

e the constraints imposed by meeting other kinds of objectives such as
real-time constraints

¢ the choice of development method (for example, the THETA autogen-
eration method described in Chapter 5)

e specialized factors such as

— special hardware or operating system characteristics
— security portability of the application or system being developed

— security concerns arising from distributed computing

In its full generality, building threads from factors looks like a formidable
task. However, much of the simplification and grouping of factors has been
done in the construction of existing guidelines (see Section 2.3.2.1). Also,
ITSDE can grow incrementally, starting with several better understood threads
and adding more threads gradually. The complexity of the thread definitions
can be managed by using the software support of the ITSDE/SLCSE system
(see Chapter 6).

2.3.2 Documentation

A thread definition involves more than just a classification of what is needed
in the development process. There should be documents and tools associated
with a particular thread. In this section and the following scction (2.3.3) we
examine thesc aspects of threads.

2.3.2.1 Software Documentation

For each thread, a detailed description is needed of the variants of the 2167A
Data Item Descriptions (DIDs) tailored to the thread.

To define the collection of documents that should be produced for trusted
systems in ITSDE and the variants of these documents tailored for particular
threads, one should build on the results of work done by

the NCSC, such as the NCSC Rainbow Series

the group at the AFCRC (the Cryptological Research Center at the
Kelly Air Force Base), such as the Guide for Security Relevant Acqui-
sitions CDRL and DID Handbook

TIS, who produced some guidance for tailoring a general-purpose op-
eratings system and two stand-alone DIDs (for the Security Policy and
for the Philosophy of Protection), and recommendations for tailoring
the existing 2167A DIDs in their Final Report for the ITSDE project
[BR93].

Deb Bodeau in her report “Guidance for Reviewers of Security-Relevant
Design Specification and Verification Documentation” [Bod88]

MITRE in their SCAP Workbench tool

Jody Frosher and Charles Payne in their “Navy Handbook for Trusted
Application Systems”

ORA in this report

other groups within DoD defining acquisition and certification CDRLs
and DIDs

One should also take into consideration the currently emerging Federal
Criteria, the first draft of which should be available in the fall of 1992.
Another relevant guideline being prepared is the “Guideline on Developing
Security-Related Mission Needs”.

2.3.2.2 Descriptions of COTS Products

Threads will be partly based on the security services that the composite sys-
tem needs from the underlying COTS products. Especially important are any
details needed to make the integration secure. Consequently, detailed docu-
mentation of thread-specific trusted COTS products evaluated or accredited
by the Air Force should be available to the ITSDE user.

2.3.2.3 Supporting Guidelines Material

For each thread, the collection of relevant mandated government documents
related to particular development phases should be available to the user. Ad-
ditional documents may be needed where the government documents do not
provide enough guidance, for example, documentation for trusted applica-
tions. !

2.3.3 Development Methods and Tools

Tools supporting assurance methods should be integrated into ITSDE and
be available for the user depending on the type of development thread. In
Chapter 4 we discuss the Romulus tool. Other tools, such as verification
tools (Gypsy, EHDM, and FDM) should also be included.

2.3.4 Libraries and Reuse

It is highly desirable to make the trusted development as routine as possible
by having threads contain the security analysis that is common to all uses
of that thread. The nature of the reuse of existing examples depends on the
complexity of the security needed by the system or application. Where it
is simple, there is likely to be a worked out method that could be tailored
or instantiated to the specific circumstances. Where it is complex, one may
have to reason by analogy with an existing application.

Some of the development threads may have pre-analyzed formal models
(for example, in the Romulus library of models) that can be used in the

'Currently, there are several working groups addressing this and related problems in
the DoD. An example of new documentation of this kind is the “Navy Handbook for
Certification of Trusted Application Systems”, which will be presented at the MILCOM
92 in October.

requirements/design stage. There also may be sophisticated code generation,
or code-model correspondence establishment techniques. Consequently, for
threads corresponding to the higher levels of trust, ITSDE should include the
library of supported models (both reusable and adaptable) and corresponding
reusable methods of design and code generation.

2.4 Certification

In the latest draft documents produced under the Federal Criteria Project,
such as the “Minimum Security Functionality Requirements for Multi-User
Operating Systems” [NIS92], the NIST and NSA outline the government
plans to “broaden the trusted product evaluation program substantially by
accrediting laboratories to evaluate commercially-oriented products”, [NIS92],
pp. 1-6. It means that the DoD services will be authorized to evaluate/certify
a full spectrum of trusted products and systems.

ITSDE should fully support the evaluation/certification/accreditation pro-
cess. By certifying threads as well as particular systems and applications,
much of the complexity of the security analysis can be removed from the
actual software development.

Recently developed tools like the SCAP (Security Certification and Ac-
creditation Plan) Workbench Tool describe in detail the certification activi-
ties that should happen during the software development stages. This tool,
however, stands alone and is not currently integrated with the DoD-STD-
2167A process. For example, the certification reviews that are mandated
by the NCSC are not correlated with the suite of reviews mandated by the
DoD-STD-1521B, the review standard that is used in the DoD-STD-2167A
paradigm. We believe that the certification/accreditation process should
be supported by ITSDE in an integrated fashion. The close monitoring of
the trusted system development by the Designated Accreditation Authority
(DAA) via ITSDE will help ensure that all the mandated and necessary de-
velopment is performed and documentation is produced in a timely manner.
It will also streamline the overall evaluation/certification/accreditation effort
considerably.

The development and certification of a thread is going to be difficult and
will require considerable expertise. The certifiers of a thread will need to be
experts in security theory and practice. The certifiers need not be the same

organization responsible for checking that a system or application conforms
to an existing approved thread.

2.5 Development of a New Thread

In this section we examine, what is involved in developing a thread (as op-
posed to what is involved in developing a system or application). There is a
considerable difference between what one should do for following a thread in
developing a system or application and what is involved in the development
of the thread. In this section we sketch what is involved in developing a
thread.

Because of the cost, one should strive to make a thread general so it can
be applied to a relatively large class of systems or applications. In addition,
the thread definition should be clear to both software developers and security

software certifiers.
Here is a sketch of a thread development method:

1. identification of the security needs of the application (or class of appli-
cations)

2. analysis of adapting existing techniques or the analysis of what is
needed in a new security methodology

3. generalization of the step 2 work to handle a larger class of problems

4. development of the security method, taking into account both design
and coding issues.

5. analysis and possible verification of part of the method.
6. documentation production
7. certification of methodology process

8. adaptation of ITSDE/SLCSE (incorporation into a library of methods)

10

Chapter 3

The IDP for Trusted
Applications: The Early
Requirements Phase

3.1 Trusted Applications

We use the term application software to mean the additional software added
on top of some existing computer system. In particular we assume that the
operating system and possibly other supporting software are already built.
The word trusted is used in the security literature in many different senses.
In this report, a “trusted application” will mean an application that handles
information of multiple security levels and is trusted to do so in a secure way.

The security concerns associated with developing an application are dis-
tinct from those of an operating system. Typically, the application need not
duplicate many of the operating system security services, such as authen-
tication. Hence the security analysis of the application will depend on the
security services provided by the underlying system. Additional security ser-
vices provided by the application may depend on partial correctness of some
parts of the underlying system.

The overall security provided by trusted parts of an application may rely
on characteristics of the underlying system that may be difficult to analyze
(such as covert channel interaction). Therefore, the simplest and safest course
of action is to minimize the trusted part of an application. Indeed, the cur-

11

rent security guidelines for applications (i.e., TDI) discourage the use of any
applications handling multilevel information. Because of the TCB minimiza-
tion requirement of TCSEC B3-Al class systems, such applications would
not be considered for B3 and above. However, there is still active interest
in developing trusted applications, particularly at the Bl level because of
the added efficiency and functionality they have over equivalent applications
built using only single-level processes.

3.2 Early Requirements Phase

Since there is no standard for the early requirements phase, we include one
way in which this phase could be accomplished.

1. Identification of what is desired (goals) and what is needed. We refer
to this step as the determination of the customer goals and customer
needs. This includes determining what security measures are needed
and the overall level of security assurance. A distinction between goals
and needs is made so that the appropriate tradeoffs of requirements
can be made.

2. Identification of what will be accomplished.

o Identification of what the application will be. A discussion of the
security tradeoffs will be needed where the customer goals cannot
be met.

e Identification of the thread of development. The general method
for building the application is presented at this stage. This in-
cludes how the security objectives will be achieved and how unan-
ticipated difficulties might be handled. Where possible one would
utilize an existing approved development thread for achieving se-
curity. A rationale for the appropriateness of the method to the
particular application is also given here.

e Initial security analysis. An argument should be provided describ-
ing how the security of the composite system can be achieved by
the functionality of the application and the underlying system.

12

This method is very much like the development of a proposal in response
to a customer’s request for proposal (RFP). Note however, that the best way
to do the first step is to directly confer with the customer. In practice, this
may mean that some aspects of the early requirements phase may have to
be modified or expanded at the start of a contract. Also, the steps of this
approach may need to be iterated until the proposed solution is acceptable
to the customer.

Also, documentation describing what is needed for different possible ITSDE
threads will need to be available to the contractors, probably before the award
of a contract.

Considerations in early requirements development Before a security
methodology is chosen it should be made clear to what extent it can be used
to assure the attainment of some security goals. For example, formal security
analysis with the restrictiveness theory generally does not examine potential
timing channels. If the goal is to absolutely prevent any leaks, then this
method of analysis will provide some but not complete assurance.

Other considerations include the following:

e What security interface conditions are appropriate/ To what extent are
the security assumptions about the interfaces to the underlying system
met?

e How does the operating environment of the application impact on the
potential exploitation of channels. To what extent will this application
increase the actual utilization of the systems covert channels?

3.3 THETA Mail Handler Example

We applied our integrated development process methods to a particular
example, the THETA Mail Handler. THETA is a secure extensible dis-
tributed operating system that supports the development of trusted applica-
tions [RL992]. The application was the addition of a mail handler service on
top of THETA. Our goal was not to build a system extension to THETA,
but rather to investigate the development process. As such, we focused on
those parts of the application development that would provide insight into
the development process.

13

The functionality of mail handling consists of

e auser interface that displays options and unread mail and handles
composition of messages.

¢ a mail manager that keeps track of arriving mail, retrieves a message
to be read, and other operations.

e a notifier that notifies a user that there is unread mail.

The user interface will operate in a window at a single level. It can be
untrusted.

In this chapter, we examine the early requirements phases, in the next two
chapters, we will also discuss this example for later stages of development.

3.4 Early Requirements Phase for the THETA
Mail Handler

The first part of this phase was the eliciting of customer goals and needs. A
document describing the results is contained in Appendix A.
Two key security characteristics were:

o Covert channels were to be eliminated where feasible.

e The application was to be MLS if this would aid efficiency.

In developing the proposed solution several alternatives were explored.
Ideally the different alternatives should already be well documented, existing
threads, so that one does not have to explore what are the ramifications of
the different choices. Since at the time, there were no documented threads,
our development path was forced into more of a research direction.

The options we explored included:

e No MLS managers (i.e., use a collection of single level processes)

e A standard THETA Manager development approach for the Post Office
and User Interface

14

e The use of a “THETA Application” instead of a THETA Manager.
(There is more than one way in THETA to set up an application. The
distinction is primarily not a security concern.)

e A “restrictive” THETA Manager (with sharing of a common mail data-
structure for mail at different levels)

Efficiency benefits and security problems were surfaced for the MLS ap-
proaches. This involved developing an understanding of the capabilities of
THETA Managers. Utilizing information about the current THETA system
security (which would be contained in ITSDE) we noted the security channel
due to the limitations of the secure AT&T UNIX COS to recognize requests
parameterized by security level.

An “exploratory design” of the restrictive THETA Mail Handler was per-
formed (a spiral approach), to gain a better insight into potential design or
coding problems.

15

Chapter 4

Requirements and Top Level
Design Phases

In this chapter, we discuss the requirements and early design phases of ap-
plication development. Our main focus is on how to integrate the Romulus
security modeling tool, into these phases of the development process. We
assume that the early requirements phase has been completed so that the
proposed solution and general method for handling the development have
already been chosen.

4.1 Romulus
Romulus [ORA90] is a modeling tool that supports both

e atop level data flow decomposition tool that checks security constraints
between components, and

e a specification language, security condition generation mechanism, and
verification tool for checking the security of a specification. Romulus
provides the most support for showing that a formal top level specifi-
cation (FTLS) satisfies the security property known as restrictiveness
[McC90], although it could be used to check other security properties.

16

4.2 Placement of the Romulus Activities in
the IDP

4.2.1 Problem: Requirements/Top Level Design Dilemma

One of the difficulties of integrating the security development process with
2167A 1is deciding where to place the security modeling. One would expect
to produce the security requirements during the requirements phases (SSS
to SRS). A natural step in the requirements formulation is the construction
of a security policy model. The security policy model, however, requires the
identification of subjects and objects, and the identification of objects is an
internal detail of a component and really part of a design decision (SDD).
This problem is not unique to security, but rather due to the fact that
some softwaie properties are most easily expressed and underctood by relat-
ing them to design or even implementation level concerns. One could require
a pure “black box” development approach and not allow the expression of
top level requirements baused on details of the internal state. Indeed, trace
based security models are intended to do this. We believe, however, that the
advantages to identilying, at least in general way, what objects need to be
protected outweigh the disadvantages of prematurely constraining the design.

4.2.2 Solution: Suggested Way of Handling Place-
ment of the Modeling

We believe the solution to the problem is to put the modeling into both the
requirements and the top level design phases.

4.2.2.1 Requirements Phase

In the requirements phase, the suggested model and method from the early
requirements phase is n.ade more precise. This activity includes the following

e decomposition of the top level components
o the identification of the trusted components

o the dependencies of these components (including data flow)

17

the allocation of any special security requirements

a preliminary indication of what the trusted components must protect
and what security services they mus. perform

identification and development of the security model

e an initial examination of any security flaws

Note that some of the items normally call for at least some general dis-
cussion of the objects being protected and of internal interfaces, but the
discussion does not need to be detailed (as at the level of the SDD).

The Romulus system can be used to construct the components and their
connections, to check that the interface connections between the components
are consistent, and to surface security violations (such as :nding secret in-
formation to an unclassified process or user). The graphical specification can
later be filled in with more details to become part of the interface and design
documentation.

4.2.2.2 Design Phase

In this phase the model is filled in and the formal and descriptive top level
specifications (FTLS and DTLS) are produced. They are called specifica-
tions, but in practice they are really top level design documents and go into
the design phase of 2167A.

Our approach differs somewhat from Benzel’s IDP in that the FTLS and
DTLS are not necessarily split into different phases of the 2167A process.
The top level design needs a descriptive exposition, and if more assurance is
needed, a formal exposition i~ ilso needed. The detailed design phase also
needs a descriptive exposition. In practice, because of the cost, there would
generally not be a detailed FTLS for the detailed design phase. However,
critical parts of the design might benefit from a detailed formal description.

The textual specification language part of Romulus can be used to build
a formal specification that can serve as par. of the design documentation,
and it can be used for verifying the security of that design (usually restric-
tiveness). This may involve writing a new specification or the instantiation
of a more generic description. (Note that the kind of verification needed for
instantiation will be different from a direct proof of security: for example, it

18

may involve access control checks or checking special assumptions about the
kinds of inputs or outputs.)

4.3 Kinds of Application Security Models

The choice of security model is primarily based on the kind of data sharing
between processes at different levels and what kinds of potential security
problems are intended to be surfaced. Here we describe a partition of the

methods to highlight what is needed for the THETA Mail Handler.

4.3.1 Multiple Single Level (MSL) processes

One possibility is to prohibit any sharing of data across levels, i.e., the ap-
plication is a collection of independent single level activities (e.g., processes).
This model is what the THETA documentation calls MSL. In this case, there
are no MAC issues, but there may still be development threads for this model
to handle other security constraints.

4.3.2 Weak MLS applications

Another possibility is to allow only the scheduling activity and the event
buffering to be shared. The application is conceptually equivalent to a collec-
tion of single level applications that are scheduled securely. The application
is trusted to keep the data spaces separated. This is the primary model used
for the THETA system managers and, in particular, is the model for the
THETA Mail Handler. The term “weak MLS” is used because it is MLS in a
very minimal way. There is almost no sharing of state information between
the different activiiies.

4.3.3 MLS (or Strongly MLS)

In this case, each request that the applicati ;i an handle may involve read-
downs (accessing application information I -+ ti.an that request) and may
involve write-ups (altering information at - t:pner level). Without an ad-

equate design, there is the potential that higher level information may be
directly or indirectly placed into lower level objects.

19

There are a variety of formal models that are used to express MLS models,
depending on what kind of information flows that are being analyzed. The
standard approach is to use a Bell-LaPadula model, to make sure that there
are no overt channels, e.g., direct access violations. Romulus utilizes a more
thorough method, restrictiveness [McC90] (which is a variant of the Goguen-
Meseguer non-interference method [GM82]). Restrictiveness identifies more
potential security design problems.

4.4 Theta Mail Handler Example

In this section we continue the description of the THETA Mail Handler
example for the Requirements and Top Level Design Phases. (Part of an
adapted draft SSS was produced, see appendix D.)

The application was partitioned into three CSCs: the Post Office, the User
Interface, and the Notifier (for incoming mail). The allocation of the MAC
security requirements to these CSCs is straight forward. The User Interface
was chosen to be single level and the Post Office was chosen to be a standard
MLS THETA manager. The Notifier is an MLS process spawned as part of
the “ideal” login process (which is planned for, but not yet implemented in
the current version of THETA).

4.4.1 Romulus Specification

In the THETA development thread there is no need for an application de-
veloper to build a requirements/top level specification (FTLS) because the
same model is used for all managers (weak MLS). We show how Romulus
can be used to construct the model in Appendix C.

4.5 Suggested Modifications to Romulus

Based on our experience with modeling and specification here are our rec-
ommendations for modifications to Romulus.

e The current version of the specification language is not well suited

for presentation to a broad audience. Either the language should be
extended or a front-end language should be built.

20

e Inadequate support for specification of shared memory and scheduling
is a limitation. We were not able to “naturally” specify the Theta
manager method in Romulus on a detailed enough level. However, this
deficiency is already being addressed by the Romulus developers (see

[Sut92)).

21

Chapter 5

Detailed Design and Coding
Phases

After the top level design has been produced it must be refined into a detailed
design and then implemented. Typically we would expect that a DTLS
would be produced at a detailed level and that it would be analyzed for its
conformance to the top level design. For security critical parts of the code, a
refined FTLS may also be produced. These would then be utilized in making
a code-model correspondence.

Our principal focus in this chapter is on methods used by the THETA
distributed operating system for the detailed design and coding of secure
managers.

5.1 THETA Managers and the Security of
the THETA method

The THETA method of building applications is one example of a thread of
development. We first provide a brief explanation of the method of building
THETA managers. The material in this section is a slightly modified form
of part of the Theta Final Report [RL992].

Most THETA managers are produced by a method called autogeneration.

With this method, the basic properties of manager, its types, and
the operations of each type are specified in a high-level language,

22

code for each operation is written, and the manager is assem-
bled according to the specifications. The assembly involves using
code from a standard manager skeleton, reusing the code of oper-
ations inherited [rom other types, and inserting the code for new
operations.

A multi-level object manager is one that can handle operations on
types that it manages at a range of security levels. A multi-level
manager may be designed as a single multi-level secure (MLS)
manager process or multiple single-level (MSL) manager pro-
cesses. If it is implemented as a MLS process, then the manager is
part of the mandatory TCB and is trusted to perform mandatory
access checks.

THETA provides the programmer with a set of tools for man-
ager generation. The programmer defines a type and a manager
for it using the type-definition and manager definition languages.
He then uses manager generation tools to build a skeleton of an
object manager. The skeleton implements message packing and
unpacking, conversion from canonical to internal representations
of data and vice-versa, mandatory and discretiorary access checks
that may be necessary for an operation, and many other routines
common to most managers. To finish implementing a manager,
the programmer has only to fill in code for the type specific op-
erations that the manager supports.

5.1.1 Security Issues in Autogeneration

The address space that a manager executes in is not partitioned
by security level. If managers are single level (or implemented
by the multisingle level (MSL) /refmsl scheme), then the single
address space poses no concern. For MLS managers, however,
care must be exercised in design and implementation so as to
avoid any information flow that would compromise security.

Under the assumption that only the good guys write MLS man-
agers, the threat of intentional malicious code is removed. But
there could be oversights and inadvertent security violations. THETA

23

manager generation tools provide the infrastructure to organize
trusted manager development, and ensure that all of the basic
security concerns are addressed.

5.2 Thread of Development and the THETA
Mail Handler Example

Each standard THETA manager uses the same weak MLS model. An ap-
plication developer is faced with no new security designs or analysis. There
is, however, the potential that the code will not follow the model, so that a
code-model correspondence is important. (One must still rely on checking
the code to make sure memory is handled appropriately.) THETA provides
documented guidance in achieving this aim.

Since most of the security work is done prior to the application develop-
ment, this thread is particularly simple. This kind of situation is an example
of the advantages of having specialized threads, and, in particular, of the
THETA development approach.

THETA Mail Handler The detailed design and coding of the THETA
Mail Handler should follow the THETA conventions developed for the con-
struction of MLS managers. As this thread is already well developed, a
detailed design and code for the THETA Mail Handler was not developed.

5.3 Recommendations for Theta
Suggestions for future upgrades to THETA include the following

e A simpler development environment that provides a better abstract
interface to the system would be very useful

¢ Improved documentation would be helpful. Documentation for THETA
manger development has already substantially improved during the
ITSDE project [Cor92]. A detailed formal assurance argument needs
to be written for a generic THETA manager

24

5.3.1 Modification to the Current THETA Method

An alternative to the current THETA method is to provide more automated
assurance for (weak) MLS managers.

Here is one possibility that we and THETA project members have inves-
tigated. Any particular single level part of the process would have a separate
address space (and be an OS lightweight thread of the manager). In order to
achieve this, the first action of the lightweight thread would be to eliminate
any potential references to the trusted part of the process (e.g., the queue
of tasks). This action would be automatically generated as part of the au-
togeneration method. Under this scheme, we would not have to check that
the application developer’s code does not subvert the security of the process,
but only that the autogeneration method was properly applied.

5.4 Code Verification and Penelope

The Penelope [Gua89] system is a tool for writing Ada specifications and
code and verifying that the code meets the specification. As part of the
effort on this project we have briefly investigated how Penelope would fit
into the IDP. The example we have studied, the THETA Mail Handler, is
designed to be an extension of THETA and hence would be coded in the
C language. Therefore, Penelope is not directly applicable to this example.
Below, we examine a few issues that should be considered in incorporating
Penelope into an IDP thread.

5.4.1 Penelope Usage in an IDP Thread

Penelope could be used to discharge the assumptions from the FTLS and
hence be part of the model-code correspondence. There may be specific
constraints surfaced in the security design that could be checked in Penelope
to provide a higher assurance that the code properly follows the design. One
problem with adding this to a thread is the cost involved in code verification.

5.4.2 Modifications to Penelope

Here are two areas where modifications to Penelope would be useful.

e In the current system, it is awkward to prove the security property
directly on the code since there are limitations in the analysis of in-
put /output sequences.

e Currently, there is no connection between Penelope and Romulus and
assumptions from the Romulus specifications must be manually trans-
lated into the Penelope specification language to be discharged in the
code.

Chapter 6

SLCSE-iLased ITSDE Design
Sketch

In this chapter, we briefly describe the Software Life Cycle Support Environ-
ment (SLCSE) [Str90] which was developed at Rome Laboratory’s Software
Engineering Laboratory to support DoD-STD-2167A development. We ar-
gue that SLCSE can provide a convenient platform for the implementation
of the thread-based ITSDE and illustrate this argument with a high level
sketch of examples of such an implementation.

6.1 The SLCSE system

SLCSE is an integrated collection of software tools and documentation that
supports the 2167A development process. It includes tools for both the
development and the management of software. SLCSE is not just a particular
CASE tool, or a particular kind of software development environment, but
rather an environment framework. This framework can be used to create
a particular environment to suit the needs of a variety of different users
on a software development project. It provides a “common consistent user
interface accessing a comprehensive set of software development tools which
support the full spectrum of DoD-STD-2167A software life cycle activities
from Requirements Analysis to Maintenance” (p1-2 from [Str90]). It allows
users assuming different roles (such as System Analyst, Project Manager, or
Programmer) to have access to the tools and the documents that they need

[8%]
-1

to carry out their roles.

The environment framework is supported by an underlying database,
which maintains information relevant to the actual software and software doc-
umentation under development, and management information such as sched-
ule and milestones. The results of user activities are interrelated through the
database and user-interface (using hypertext-type links).

The database underlying SLCSE is an entity-relationship (E-R) database.
Its collection of entities and relationships are subdivided into schemas corre-
sponding to particular user roles. This way a user in a particular role has a
more focused view of the tools and documentation supported by SLCSE.

For details on the SLCSE system see the SLCSE Final Technical Report
[Str90].

6.1.1 E-SLCSE

The examples given in this chapter are mostly based on the existing SLCSE
system. However, an enhanced version of SLCSE called E-SLCSE is currently
being developed. The planned enhancements do not change the SLCSE con-
cept, but instead provide a greater generality, flexibility and commercial
quality to the environment. For example, the current SLCSE uses an Entity-
Relationship (E-R) database; in E-SLCSE it will be replaced by a more gen-
eral, object-oriented repository. This repository will be based on the PCTE
repository.structuring the collection of entities (objects) and relationships by
allowing sub-objects that inherit relationships from their parent object.

6.2 ITSDE/SLCSE Match

SLCSE can serve as a convenient platform for the ITSDE implementation
because it provides a match for at least three concepts underlying ITSDE.

6.2.1 Thread Definition

A substantial enhancement in E-SLCSE over SLCSE is that it will support
not only the 2167A process but other processes. In particular, E-SLCSE
will support a process definition tool that will allow users to define their
own variants of the software development process. This enhancement is very

28

important for ITSDE because it will provide a convenient way to define
threads.

6.2.2 Developer — Contractor Coordination

SLCSE can serve as a common medium between the developer/contractor
and the DoD acquisition authority. By having access to the SLCSE database,
in the Project Administration role, the acquisition authority has an opportu-
nity to closely monitor the on going effort since the SLCSE database records
in a well-organized form all the details of system development.

For trusted systems, there is another government entity, the DAA, that
is mandated to closely monitor the system development from the certifica-
tion/accreditation point of view. By adding a new role Certification Ad-
ministration, SLCSE can provide a unique match for the ITSDE goals in
that it can allow for the convenient access to and exchange of system de-
velopment information between all the three parties involved via the SLCSE
database/repository.

6.2.3 Production of Dccumentation

Another feature of SLCSE which (see Chapter 2) that accommodate the
information mandated by TCSEC for the evaluation/certification process.
The production of tailored documents can be supported in SLCSE in an
efficient and convenient way, by using the specification language of the docu-
ment generation tool. Material, which is stored in the SLCSE database, can
be incorporated in more than one document, avoiding inefficient and time-
consuming duplication. The E-SLCSE document generation tool will also
provide consistency maintenance between the documents and the repository
artifacts that were used in them, propagating changes in both directions.

Currently SLCSE uses a program called DOCGEN, which produces docu-
ments in LaTex. E-SLCSE will use more convenient, commercially available
What-you-see-is-what-you-get document generation tools. The DOCGEN
program (and its successor in the E-SLCSE) allows the user to specify the
document structure in a specification language which, for every section of a
document, points to the SLCSE database entity {or entity’s attribute) con-
taining material to be put in this section.

29

6.3 Implementation of ITSDE in SLCSE

In what follows we give an outline of a design and implementation process
for incorporating ITSDE into SLCSE. The goal of this outline is to provide
a general description of our approach and to show that the ITSDE/SLCSE
configuration has significant potential and deserves future consideration

The first part of incorporating ITSDE into SLCSE is to produce a ¢. -
plete design of the ITSDE development threads as outlined in Chapter 2.

After this part has been completed, the design and implementation on
SLCSE should be laid out. The attractive feature of the ITSDE/SLCSE con-
figuration is that no new software needs to be written except for the interfaces
of the specification and verification tools (such as Romulus, Penelope, and
other tools) with the SLCSE user interface and its database.

The design and implementation of SLCSE/ITSDE will include

e defining new SLCSE (or E-SLCSE) user roles,

o defining new database schemas as well as augmenting and changing the
existing schemas,

e integrating the specification/verification tools into SLCSE, which in-
volves

~ implementing the support for their invocation via the SLCSE user
interface,

~ associating them with a certain (new) role in SLCSE,

~ connecting their input and output with particular objects in the
SLCSE subschemas (new and existing ones),

e creating new document generation specifications for non-integratable
security documents such as Philosophy of Protection [BBC90] and
modifying the existing document specifications for 2167A documents
according to the tailoring recommendations.

Full design of all these additions and modifications is clearly beyond the
limits of the current effort. However, we belicve that full design and im-
plementation can be produced with a relatively modest effort after ITSDE
threads are fully defined and configured. We next give an outline of this
process, and provide illustrative examples of typical additions and changes.

30

6.3.1 ITSDE Thread Development

The design method for the ITSDE implementation on SLCSE will include a
meticulous “walk-through” of all the threads designed for (the first version
of) ITSDE (see Chapter 2). The walk-through will identify all the necessary
additions and modifications to SLCSE. In particular,

e For each thread, all the additions and modifications to the SLCSE
database/repository that are necessary to accommodate all the material
and tools that are used in the thread should be identified and carried
out. If a thread involves the use of tools not supported by SLCSE,
these tools should be integrated into SLCSE

e For each thread, specifications in the SLCSE document generation tool
of all the DIDs tailored to the thread (see discussion below in section
2) should be produced and tested

e As we pointed out above, the first version of SLCSE did not support
explicit process definition. E-SLCSE, however, will support this feature
and its user interface most probably wiil be able to support the choice
and navigation of threads. It remains to be determined how much
additional effort to support the ITSDE user interface will be needed

6.3.2 Examples of SLCSE Modification for ITSDE

Below we give examples of the SLCSE modifications necessary to support
ITSDE. We give the examples using SLCSE terminology but all of them can
be directly translated into the E-SLCSE terminology. The examples below
are by no ineans are an exhaustive list of additions and modifications.

6.3.2.1 New Roles

The tools and documents available to a SLCSE user are configured by roles.
Currently SLCSE supports eighteen roles that can be grouped as follows:

o different aspects of government contract acquisition such as Acquisition
Management, Project Administration, Project Management

31

¢ different phases of system development such as System Analysis, Soft-
ware Analysis, etc.

e SLCSE-specific aspects such as SLCSE Installation

e general roles such as Secretarial

For ITSDE, a role of Certification/Accreditation Management should be
added. More analysis of the certification/accreditation activities needs to be
done to decide whether it should be one role or a small collection of roles. For
example, the “penetration team” role can be seen as relaied to such existing
roles as Verification and Validation and Software Testing. However, it might
be different and specific enough (for instance, might use specific tools and
methods) to be assigned a special new role Penetration Study.

Another possible new role might be described as a Security Analyst. For
systems at a higher level of trust, there will be security specialists whose role
will be to ensure that the development process answers the requirements for
this higher level of trust. These specialists might be responsible for writing
the security policy of the system, as well as for creating the formal security
policy model, and carrying out the formal specification and verification effort.

6.3.2.2 Subschemas

New subschemas Currently, SLCSE supports nine subschemas. Two of
them are “administrative” (the Contract subschema and the Project Man-
agement subschema), i.e., they describe activities performed and documents
used and created in the process of managing and administrating the projeci.
Out of the remaining seven, six describe the activities and documents related
to phases of the DoD-STD-2167A process, and one, the Environment sub-
schema describes the features of the operational environment of a completed
system.

For ITSDE, we see the need to add at least the following new subschemas:

e The Certification/Accreditation subschema.

For this subschema, one can benefit from the effort that went into cre-
ation of the SCAP Workbench Tool, which is based on a similar idea
of hypertext. It provides a good representation and organization of the

32

activities mandated for certification/accreditation and the documenta-
tion that has to be produced, as well as the connections between the
activities and documentation required by TCSEC.

e The Security Policy subschema.

Various aspects of the system security policy (MAC, DAC, 1&A, Audit)
should be represented in this subschema at a level of detail sufficient
for automatic generation of the security policy document. For trusted
systems of higher levels of trust, the subschema will include entities
corresponding to a formal policy model.

e The Specification and Verification subschema.

For systems of higher levels of trust. This subschema will support such
entities as Design_Specification, Code Specification, Proof, etc. and
connect them with appropriate links to the source code files.

e The Covert Channel Analysis subschema.

This subschema will have entities corresponding to the methods of
covert channel analysis supported by ITSDE such as shared resource
matrix analysis.

e The Secure Operational Environment subschema.

More analysis is needed to determine whether a new subschema is nec-
essary or the existing Environment subschema can be augmented and
modified to accommodate the mandated operational security analysis
of the trusted system environment.

e Other schemas may be needed

Modifications of Existing Subschemas In the E-R representation of
SLCSE subschemas, one can add entities and relationships between them,
and also add or modify attributes of entities. In this section we give two
examples of modifications to the E-R representation needed for ITSDE.

We will use the Software Requirements subschema as the first example.
The current SLCSE Software Requirements subschema from [Str90] is shown
in Figure 6.1. The entity CSCI_Capability describes the required function-
ality of the Computer Software Configuration Item (CSCI). Its attributes

33

5C1 _Eyglérlng_keq

CSCI_External _
Interface_Req

CSCI_Internal_In
terface. Mp;

CSCI_Design_
Constraint_Req

Software_Quality_

Factor_Req

Human

Factors_Req

CSCI_
Security_Req

Special_

Qualification_ Req

1s_allocated _to CSU

Legend:

[Entity | Cetationshin>

Figure 6.1: Software Requirements Subschema

34

are Purpose, Performance, Control _Flow_Diagram, and Data_Flow_Diagram
[Str90]. The entity CSCI_Security_Req has only one attribute, Req_Statement,
and is supposed to specify “ security characteristics of the CSCI design with
respect to potential compromise of sensitive data” [Str90].

For ITSDE, the following modifications of these attributes might be sug-
gested. In trusted systems, the functional requirements of an trusted CSCI
that corresponds to the system’s TCB (or a part of the TCB) that imple-
ments a particular security service are “by definition” its security require-
ments. For such components, the CSCI _Security_Req entity becomes the
value of the Purpose attribute of the CSCI_Capability entity.

In the E-SLCSE we might define a sub-object of a CSCI object, called a
Trusted .CSCI, which will inherit all the general functional relationships of a
CSCl, and also will have particular attributes specific for trusted components.
For example, for trusted CSClIs of systems of higher levels of trust we might
add a Formal Security_Requirements attribute to the CSCI_Capability entity.

Our second example will be from the Design subschema. For systems of
higher levels of trust, modifications to represent formal design specifications
of trusted software components (CSCI, CSC, CSU) should be made to the
Design subschema. Below we suggest tentative modifications as our second
example.

Specifically, an external entity Formal_Top_Level Specification (FTLS)
(from the new Specification and Verification subschema) should be connected
with all types of design components, CSCI, CSC, and CSU. Further analysis
needs to be done to determine the best way to represent the Code-Model Cor-
respondence requirement of the TCSEC. The activity of establishing Code-
Model Correspondence is usually considered a part of the System Testing
phase [Bod88]. One simple way is just to add a new Code-Model Corre-
spondence entity in the Test subschema whose value is the correspondence
argument and connect it by the appropriate relationships with the design
components’ entities (CSCI, CSC, CSU) in the design subschema (relation-
ship “isin”) and with the FTLS entity in the Specification and Verification
subschema (relationship “with”).

For future “beyond A1” systems, where the Code-Model Correspondence
is given as a formal argument (proof), the Code-Model Correspondence entity
should be also connected with the Formal_Proof entity from the Specification
and Verification subschema.

35

6.3.2.3 Integrating the Specification/Verification Tools into SLCSE

As we pointed out above, the attractive feature of implementing ITSDE on
the SLCSE platform is that there should be a minimal amount of new soft-
ware written for the integration of the specification/verification tools into
SLCSE. In particular, the user should be able to invoke these tools via
the ITSDE/SLCSE interface. In addition, the results of using these tools,
when saved, should be written into the appropriate entities of the Specifica-
tion/Verification subschema.

6.3.2.4 Documentation Generation

In Chapter 2 above we have pointed out that the software documentation
DIDs will need to be tailored according to the process development variants
supported by ITSDE threads, and we listed some sources of information for
such tailoring.

Once the collection of documents supported by ITSDE and their thread-
specific variants are established, the specifications for these documents in
SLCSE should be produced. The specification of the documents in SLCSE
will, in addition to fulfilling its own goal, serve a very important design func-
tion of “debugging” the ITSDE subschemas. In document generation specifi-
cations, each section of each document should have a pointer to an entity or
an entity’s attribute where the text corresponding to this section resides. The
meticulous process of correlating entities and their attributes with sections
of documentation will allow ITSDE developers to discover omissions, over-
laps, a- d other inadequacies of the newly defined or modified subschemas.
Although tedious and time consuming, this part of developing ITSDE is very
straightforward.

36

Appendix A

THETA Mail Handler —
Customer Goals

A.1 Introduction

This appendix contains a description of the customers’ initial position about
what they would like a mail facility on THETA to support. This appendix
was prepared from the July 1, 1991 meeting at Rome Laboratory. (Rome
Laboratory personnel agreed to play the role of the customer.)

A.2 Functionality

The functionality of the THETA mail facility can be divided into the follow-
ing three areas:

e Sending a message
e Receiving a message

e Acknowledgements and notifications

A.2.1 Sending a Message

e Mail can be sent to either individuals or to a group of users.

37

o There should be a facility to aid in constructing replies to messages.
Options for constructing replies to mail messages are:

— Same as sending a message, but without having to fill in the des-
tination.

— Append reply to original message before sending it out.

— Start up an editor with the original message and send out the

edited message.

e Forwarding mail to other users should be convenient. An option to first
use an editor would also be desirable.

A.2.2 Receiving a message

e Arriving mail can be pre-sorted by “project” or by arrival time. More
sophisticated selections of mail, as in a database query, would be de-
sirable.

e Mail can be directly printed without having to first save it or without
having to have read it.

e Mail can be stored by users in different ways (for example in different
files), but some automatic storage of mail should be provided (such as
a system file, e.g., mbox).

A.2.3 Acknowledgements and Notifications

Users will be notified when new mail has arrived. Notifications may be in the
form of just a beep, but it would be more desirable to have some text in some
window. Another alternative is to display some graphical icon indicating that
new mail has arrived.

When mail has correctly arrived, and possibly when mail has been read,
the system will automatically send an acknowledgement to the sender.

A.3 User Interface

In general, an easy to use system is desired.

38

Particular Requested Features:

e When a mail item has been deleted, the remaining messages to be read
will be renumbered starting with 1 and continuing consecutively.

e It should be possible to request that a mail message be printed directly
from the user interface of the mail handler.

o Acknowledgements and notifications should arrive without cluttering
the active window.

e The mail facility should be adaptable by having some kind of configu-
ration file. One of the options should be where mail can be saved.

e Multiple users on the same system (but with different terminals) may
be permitted.

e Some control over the color of the background and the type font, to
indicate the classification level of the items, would be desirable.

A.4 Security
e MAC

— The mail facility should not allow information at a given security
level to be leaked either directly or indirectly to a user at a lower
level. Even small channels from Notifications and Acknowledge-
ments will not be permitted.

— It would be desirable to minimize the amount of new MLS code.

— Checking user clearances will be transparent.

e DAC
The THETA file system DAC will be used for DAC access rights on

saved mail.

e Privacy Enhancements

Encryption will be a user option. Three options will be supported:

39

— Request the THETA system to encrypt mail over the network.
— Store unread mail in encrypted form.

— Store read mail in encrypted form (with user keys).

e Constraints on Users
Both single level and multilevel users may use the system.

Mail activity in a given window will be single level (at the level of that
window). Multilevel users will be responsible for not putting higher
level information in a lower level window. Multilevel users will not be
trusted to dynamically change the level of the window while in the mail

handler.
e Assured Service

Priority mail that blocks other services until the mail is read would be
desirable. However, it should not be at the expense of MAC security
leaks.

40

Appendix B

THETA Mail Handler —
Preliminary Selection of

Development Method

B.1 Introduction

This appendix is not complete but gives some idea of what is needed.

The Mail Handler will be added to the THETA Operating System and
should conform to the THETA requirements for adding new managers.

For functional and security reasons it is natural to split the system into
three parts (probably CSCI's). One component is the the User Interface
that will display and input requests for sending and receiving mail. Another
component is the Post Office for managing the mail that is to be delivered.
The third component is the Notifier that will inform the user that there is
mail to be read.

B.2 User Interface

Because of security considerations and customer requests, the User Interface
should be single level.

41

B.3 Post Office
B.3.1 Multi-Single Level Solution at the COS Level

It is possible to build a mail handler as a COS extension on some node of
the THETA system. This option is eliminated because it will not be a real
extension to the THETA system (which is a customer goal). In particular, it
will not be sufficiently portable to other kinds of COS nodes on the THETA
system. However, if this option should be chosen at a later time, the de-
sign and security analysis should be based on the specific COS and security
application criteria.

B.3.2 Multi-Single Level Solution at the THETA Level

Since the mail traffic is naturally separated by the level of the mail, one
would suppose that a multiple single level handling of mail would be the
desired solution. Indeed this would minimize the amount of trusted code.
However, it is not such a good design with respect to the capabilities of the
underlying operating system, i.e. THETA. This is principally because the
number of processes would have to be much larger with a multiple single
level approach.

B.3.3 Solution Using Existing THETA Autogenera-
tion of Managers

There is one method described in [Cor92], that is the standard way of extend-
ing THETA. (This method is described in Chapter 5.) It does involve adding
trusted code, but this addition is sufficiently small to be analyzable. (De-
tailed THETA documentation describing the advantages and disadvantages
of this approach is still being developed.)

B.3.4 Alternative Restrictive THETA Manager

It is possible to derive a different security thread that would be restrictive,
but this is unnecessary and would be costly.

42

B.3.5 Proposed Choice

Because it was desired that the design be COS independent, that the costly
alternative of deriving a new security thread was not appropriate, and that
the multi-single level solution would add too many additional single level pro-
cesses, it was decided that the existing THETA Autogeneration of Managers

methpd should be used.

43

Appendix C

Modeling for the THETA Mail
Handler

In this appendixe, we describe a way of modeling the THETA Mail Handler
for the requirements and top level design phases.

This appendix is not sufficiently developed to be used in a thread, but is
sufficiently detailed to provide an idea of what could be done.

C.1 Formal Model for THETA Managers

In this model, we will assume that all of the data can be partitioned by

label.

product indexed by the level of the data.
Suppose that the MLS process P has variables zz.

That is, the data of the MLS process P can be represented as a

/* the projection of the data at a particular security level */

/*

/*

/*

/*

proj :: {data,level} -> data

Q -- a process which is supposed to be single level */

Q :: {event,data} -> process
Guard transformation -- assures
Guard :: process -> process
update of process data */
update :: {data,event} -> data
the level of event e */

lev :: event -> level

44

security independent of Q */

P(xi)= await e where validinput(e) then
begin
Guard(Q(e,proj(lev(e),xi)),lev(e));
P(update(xi,e))
end

such that
The invariant of the process includes:

o update(zi,e)(I1) = zi(l1) for all /1 dominated by level(e) (recall that
type data is really an indexed product). This prevents even the exis-
tence of the message from effecting lower level data.

o for [dominating the level of e, update(zt, €)(!) = update(proj(zi,1), e))(1).
The updated version of the data at level { depends only on information
at or lower than (.

Additionally
e () does not handle inputs and eventually halts.

e the guarded process does not produce outputs at a level less than [
That is, VR, S : process][Vl : level](Guard(R,l) - S and e invy) =
level(e) dominates [.

Such a process is restrictive (a special case of Romulus security condition

generation (SCG) [Ros88]).

C.1.1 Simplification in the Case of No Read ups

In the case that the MLS processes do not need to make read ups, one can
partition the data so that only the data at a particular level can be extracted.

So we can replace the proj(xi,level(e)) with data_at/{level{e),xi).

45

C.2 Alternate Presentation

The above presentation was based on the current Romulus system. In the
current version, processes are usually specified in a functional style, and
in particular the data variables are viewed as parameters to the process.
An alternative is to allow updates to the variables throughout the process
definition.

If an assignment operation is added to the SL language, then we could
combine the updating of the variables with the prod-.ction of the outputs.
This will permit the specification to more nearly follow an imperative style
design (i.e., like a traditional programming language).

In this case we could define the Guard transformation to block any up-
dates to lower level data. That is, instead of having a separate trusted update
function, it would be incorporated into the one guard.

In the current version of Romulus this is a bit awkward to express. How-
ever, Romulus is currently being revised to handle problems like this one.

C.2.1 Summary of Constraints

There are two kinds of objects messages and parameters.
Rules for Messages:

e No Read Up. Is imposed on Q) by the formalism. (The data passed to
Q is at or below the level of the input.)

e No Write Down. Is explicitly imposed on () by the Guard. All data
are labeled at least at a level greater than or =qual to the input.

Rules for parameters:

e No Read Up. Is imposed on Q by the formalism (The data passed to
Q is at or below the level of the input) and

e No write down. Any assignment zi(l) := ... is blocked by the Guard
for any [such that not dominates(l,level(e)). (Any internal transition
event to do an update will explicitly be designated at some I, and if
that level is not allowed, the process will continue without doing the
update.)

46

C.3 Design and Implementation Alternatives

In this section, we briefly discuss how to produce a design and implementation
that will be restrictive. There is more than one possible method and we
describe several methods in the next subsections.

The goal in the development of the next stages is to minimize the amount
of work that the designers and implementors have to perform in order to
achieve restrictiveness with high assurance. However, the method chosen
will depend on what sort of automated tools are available.

C.3.1 Do Not Use a Guard

A traditional approach is to construct a process Q that doesn’t need a
guard. That is build Q such that Guard(Q(e,proj(lev(e), x1)),lev(e)) =

Q(e, proj(lev(e), z2)).

C.3.1.1 Build and verify an FTLS

We can construct a detailed formal description of @ and use Romulus to
check that outputs are labeled correctly and that the data parameters are
also handled correctly. Implicit in this analysis is that the underlying system
can assure correct delivery of messages and that other processes do not change
the process’s data, i.e., 1.

C.3.1.2 Code Level Verification

Alternatively, we can generate the constraint as in the FTLS verification
approach, but defer the verification of the constraints to a verification of
constraints on the code. One would still inspect the constraints at the design
level, but one would not carry out any formal proof. Each design constraint
on an output or data parameter would be converted into a corresponding code
constraint. While it is possible, that a difficult problem could be pushed to
the code level analysis, for this class of models it is unlikely. Also, we will
still need to check the code for potential security violations.

47

C.3.2 Use a Guard

Another approach is to design and build a guard that filters or corrects
the labels of outputs and protects the multilevel data. The guard must be
securely informed of the level of the input e. Any output of @ can then be
corrected or discarded based on that level. Similarly, updates and accesses
to the data can be mediated by the guard. An analysis would still have to
be made that the guard was correct and protected, but we would no longer
have to verify anything about Q.

C.3.3 Method for the THETA Mail Handler

The THETA Mail Handler was chosen to be built as a weak-MLS manager us-
ing the autogeneration methods of THETA. It mostly uses the guard method.
Events that are invocations to other managers are sent through the Kernal
which checks the current operating level of the manager, for that invocation,
to adjust the label. Events which are system calls are implicitly associated
with the current operating level of the process. The guard protects the mem-
ory by the way data is accessed and updated in the autogeneration method.
However, the guard does not completely protect the @ part of a manager
from tampering or inappropriately accessing data at a different level from
which it was invoked. This is handled by checking that the code was pro-
duced by the autogeneration method and that it only utilizes the allowable
access methods.

48

Appendix D

System Specification

The following appendix is a first approximation of the System/Segment Spec-
ification for the THETA Mail Handler and does not incorporate all of the
suggestions by TIS (as their report arrived too late).

SYSTEM SPECIFICATION
FOR THE
THETA Mail Handler

D.1 Scope

D.1.1 Identification
Number: xxx, THETA Mail Handler

D.1.2 System Overview

The purpose of the THETA Mail Handler is to securely extend the THETA
distributed operating system with a facility to send and receive
mail messages between users of the THETA system.

D.1.3 Document Overview

This document is a preliminary specification of the THETA mail handler
system requirements.

49

D.2 Applicable Documents

D.2.1 Governmnent Documents

The following documents of the exact issue shown form a part of this spec-
ification to the extent specified herein. In the event of conflict between the
documents referenced herein and the contents of this specification, the con-
tents of this specification shall be considered a superseding requirement.

1. "Trusted Computer System Evaluation Criteria”, Department of Defense,DoD-
5200.28-STD, Dec. 1985.

2. "Trusted Database Management System Interpretation of the Trusted
Computer System Evaluation Criteria”, National Computer Security
Center,NCSC-TG-021, version 1, April 1991.

D.2.2 Non-Government Documents

The following documents of the exact issue shown form a part of this spec-
ification to the extent specified herein. In the event of conflict between the
documents referenced herein and the contents of this specification, the con-
tents of this specification shall be considered a superseding requirement.

1. 7 A Hookup Theorem for Multilevel Security” ,Daryl McCullough, IEEE
transactions on Software Engineering, Jun 1990, volume 16, number 6,

pages 563-568.

2. THETA System Requirements documentation for constructing New
Managers (not currently available).

D.3 System Requirements

D.3.1 Definition

D.3.1.1 System Configuration

The THETA Mail Handler will have its functionality split between two pieces:
a user interface and the mail manager. (It has not yet been determined

50

whether the mail manager will be a manager in the sense of a THETA man-
ager or whether it will be a THETA application that uses the THETA File
manager to control its objects.)

- e N o e - - Eh D R T A W e A e e e W

i h]
1]
! Mail Handler System '
[
i !
! 1
| Mail User :
1
: Interface :
]
3 '
! i
! 1
! '
! '
; 1
TCB) :
| Mail Handler E
= :
D e T e 2
Pt iechie et T“""“""““"‘"T
!]
! THETA TCB THETA (non-TCB) !
I :
e e e e o e e 22
COS

Figure D.1: System Configuration

D.3.1.2 Functionality

The purpose of the THETA Mail Handler is to facilitate the exchange of
information between users of the THETA system, subject to the security

)

requirements on the users and their messages. This facility is only for com-
munication between and internal to THETA sites on a given THETA system.

D.3.1.2.1 Functionality For the purposes of exposition, the functional-
ity of the THETA mail facility can be divided into the following three areas:

¢ Sending a message
e Receiving a message

¢ Acknowledgements and notifications

D.3.1.2.1.1 Sending a Message
¢ Mail will be sent to either individuals or to a group of users.

o There will be a facility to aid in constructing replies to messages. Pos-
sible options for constructing replies to mail messages may be

— Same as sending a message, but without having to fill in the des-
tination.

— Append reply to original message before sending it out.

— Start up an editor with the original message and send out the

edited message.
o Forwarding mail to other users should be convenient. An option to first
use an editor will be available.
D.3.1.2.1.2 Receiving a Message

o Arriving mail can be pre-sorted by “project” or by arrival time. More
sophisticated selections of mail may also be supported.

e Mail can be directly printed without having to first save it or without
having to have read it.

e Mail can be stored by users in particular files at the user discretion. In
addition, some automatic storage of mail will be provided (such as a
particular file, e.g., mbox).

32

D.3.1.2.1.3 Acknowledgements and Notifications Users will be
notified when new mail has arrived. Notifications may be in the form of just
a beep, but it will also include options for displaying notifications as text
in some window and as some graphical icon indicating that new mail has
arrived.

When mail has correctly arrived, and possibly when mail has been read,
the system will automatically send an acknowledgement to the sender.

D.3.1.2.2 User Interface In general, the user interface should be easy
to use.
Particular Requested Features:

e When a mail item has been deleted, the remaining messages to be read
will be renumbered starting with 1 and continuing consecutively.

e It will be possible to request that a mail message be printed directly
from the user interface of the mail handler.

e Acknowledgements and notifications will arrive without cluttering the
active window.

e The mail facility will be adaptable by having some kind of configuration
file. One of the options will be where mail can be saved.

D.3.2 Characteristics

D.3.2.1 Performance Characteristics

There is only one state and mode for the Mail Handler. However, the THETA
system may be reconfigured without a Mail Handler. All the capabilities
described above assume that the Mail Handler is active.

D.3.2.1.1 (State Name) Not Applicable

D.3.2.2 System Capability Relationships
Not Applicable

53

D.3.2.3 External Interface Requirements

D.3.2.3.1 THETA Mail Handler External Interface Description
This system will be connected to the THETA system. Data passed from
the trusted Mail Handler code to other parts of the THETA system must be
appropriately labeled.

D.3.2.4 Physical Characteristics

Not Applicable

D.3.2.5 System Quality Factors
D.3.2.5.1 Reliability THETA supports added reliability through repli-

cation. It is transparent to the design of the Mail Handler.

D.3.2.5.2 Maintainability Standard THETA Software Maintenance prac-
tices should be used.

D.3.2.5.3 Availability No special availability conditions must be met.
Continuous availability of the THETA system and the Mail Handler is a
desired goal.

D.3.2.5.3.1 Additional Quality Factors None

D.3.2.6 Transportability

Not Applicahle

D.3.2.7 Flexibility and Expansion

The THETA Mail Handler should be added to the THETA system consistent
with the THETA guidelines for adding new managers.

The user interface should be designed so that it can be upgraded to handle
other COS and THETA window and mouse support.
D.3.2.8 Portability

Not Applicable

o4

D.3.3 Design and Construction
Not Applicable

D.3.3.1 Materials
Not Applicable

D.3.3.1.1 Toxic Products and Formulations Not Applicable

D.3.3.2 Electromagnetic Radiation
Not Applicable

D.3.3.3 Nameplates and Product Marking
Not Applicable

D.3.3.4 'Workmanship
Not Applicable

D.3.3.5 Interchangeability
Not Applicable

D.3.3.6 Safety
Not Applicable

D.3.3.7 Human Engineering

The user interface design should attempt to minimize the chances of a user
inadvertently entering high level information while using the mail handler at
a lower level. (General guidelines are not yet available.)

D.3.3.8 Nuclear Control

Not Applicable

D.3.3.9 System Security

The system should be B3 (TCSEC), but the interpretation of these require-
ments may be adjusted to reflect the contracting agency’s objectives. (The
certification and accreditation procedures will be based on the Air Force
procedure xxxyyyzzz.)

e MAC

— The mail facility should not allow information at a given security
level to be leaked either directly or indirectly to a user at a lower
level. Even small channels from Notifications and Acknowledge-
ments will not be permitted.

— The amount of new MLS code will be minimized, except that
efficiency considerations can be used to override this objective.

— Checking user clearances will be transparent.

e DAC
The THETA file system DAC will be used for DAC access rights on
saved mail.

e Privacy Enhancements

Encryption will be a user option. Three oprtions that will be supportec
are:

—~ Request the THETA system to encrypt mail over the network.
— Store unread mail in encrypted form.

~ Store read mail in encrypted form (with user keys).

e Constraints on Users
Both single level and multilevel users may use the system.

Mail activity in a given window will be single level (at the level of that
window). Multilevel users will be responsible for not putting higher
level information in a lower level window. Multilevel users will not be
trusted to dynamically change the level of the window while in the mail

handler.

56

e Assured Service

Priority mail that blocks other services until the mail is read may be
partially supported. However, it will not be at the expense of MAC
security leaks. This feature should either be implemented or a report
should be prepared indicating why this feature was not supported.

D.3.3.10 Government Furnished Property Usage

The Mail Handler is intended te be used on a THETA System (contact Rome
Laboratory).

D.3.3.11 Computer Resource Reserve Capacity

No special requirements.

D.3.4 Documentation

Security documentation will be developed as required by the ITSDE version
of 2167A for secure systems.

D.3.5 Logistics

No significant impact on existing maintenance, facilities, or equipment.

D.3.6 Personnel and Training

Appropriate installation and auditing procedures will be followed.

D.3.6.1 Personnel

No new personnel are needed.

D.3.6.2 Training
Not applicable

57

D.3.7 Characteristics of Subordinate Elements
The THETA Mail Handler contains no Segments.

D.3.8 Precedence

Nondisclosure should take precedence over functionality requirements pro-
vided the resulting system will be usable.

D.3.9 Qualification
D.3.9.0.1 Security Analysis

1. Formal Model and Verification
2. Covert Channel Analysis

3. Penetration Test

D.3.9.0.2 Functionality Analysis

1. Testing of User Interface, Mail Manager, and integrated system

D.3.10 Standard Sample
Not Applicable

D.3.11 Reproduction Sample, Periodic Production Sam-

ple, Pilot, or Pilot Lot
Not applicable

D.4 Quality Assurance Provisions

Assurance provisions for security will be achieved through the accreditation
process (and the use of an approved THETA development thread).

58

D.4.1 Responsibility for inspection
The Certification will be handled by XXX.

D.4.2 Special Tests and Examinations

Not applicable

D.4.3 Requirements Cross Reference

Not included in this sample SSS.

D.5 Preparation for Delivery

No special preparations are recessary.

D.6 Notes

Abbreviations:
e B3 - The B3 level of security (in TCSEC)
e MLS - Multilevel Secure

e TCB - Trusted Computing Base

e TCSEC - Trusted Computer System Evaluation Criteria

e TDI - Trusted DataBase Interpretation

e THETA - Trusted Heterogeneous Architecture (a secure distributed

operating system)

D.6.1 Intended Use

The intended use of the Mail Handler is to exchange mail between users of

the THETA system.

39

D.6.1.1 Missions

Not applicable

D.6.1.2 Threat

Security threats are not included in this sample SSS.

60

Bibliography

[BBC90] M Branstad, W. C. Barker, and P. Cochrane. The role of trust

[Ben89)

[Bods8]

[Boe88]

(BR93]

[Cor92]

[Dep88)

[DoD85]

in protecting mail. In IEEE Computer Society Symposium on Re-
search in Security and Privacy, May 1990.

T. Benzel. Developing trusted systems using DoD-STD-2167A. In
Fifth Annual Computer Security Applications Conference, Decem-
ber 1989.

Deborah J. Bodeau. Guidance for reviewers of security-relevant
design specification and verification documentation. Technical Re-

port MTR-10478, Miire, Bedford, Mass, Sept 1988.

Barry W. Boehm. A spiral model of software development and
enhancement. In Computer, pages 61-72. IEEE, May 1988.

Terry Benzel and Doug Rothnie. Integrated Trusted System De-
velopment Environment — Process, Final Report. for contract

F30602-89-C-0049, RL-TR-93-xxx, in preparation, 1993.

ORA Corporation. Manager developer’s tutorial. Technical Report
Contract F300602-88-0146, CDRL A024, For Rome Laboratory,
April 1992.

Department of Defense. Military Standard — Defense System Soft-
ware Development, February 1988. DoD-STD-2167A.

Department of Defense. Trusted Computer System FEvaluation Cri-
teria, December 1985. DoD-5200.28-STD.

61

[GM82]

[Guag9]

[McC90]

[NCS87]

[NCS91]

[NIS92]

[ORA90]

[RL992]

[Ros88]

[Str90]

Joseph A. Goguen and José Meseguer. Security policy and security
models. In Proceedings of the Symposium on Security and Privacy,
pages 11-20, Oakland, CA, April 1982. IEEE.

David Guaspari. Penelope, an Ada verification system. In Pro-
ceedings of Tri-Ada ’89, pages 216-224, Pittsburgh, PA, October
1989.

Daryl McCullough. A hookup theorem for multilevel security.
IEEFE Transactions on Software Engineering, 16(6):563-568, June
1990.

National Computer Security Center. Trusted Network Interpre-
tation of the Trusted Computer System Evaluation Criteria, July
1987. NCSC-TG-005, version 1.

National Computer Security Center. Trusted Database Manage-
ment System Interpretation of the Trusted Computer System FEval-
uation Criteria, April 1991. NCSC-TG-021, version 1.

NIST. Minimum Security Functionality Requirements for Multi-
User Operating Systems, January 1992. Draft Version.

ORA Corporation. Romulus: A computer security properties mod-
eling environment, final report - volume 1: Overview. Technical
report, ORA Corporation, June 1990.

ORA Corporation. Fzperimental Secure Distributed Operating Sys-
tem Development — THETA Phase 11, June 1992.

David Rosenthal. An approach to increasing the automation of
the verification of security. In Proceedings of Computer Security
Foundations Workshop, pages 90-97, Franconia, NH, June 1988.
The MITRE Corporation, M88-37.

Tom Strelich. Software life cycle support environment. Technical
Report RADC-TR-89-385, General Research Corporation, Febru-
ary 1990.

62

[Sut92]

[TIS89)

lan Sutherland. Shared-state restrictiveness. Romulus Project,
1992.

TRW, Computation Logic Inc., and Trusted Information Systems.
Process model for high performance trusted systems in Ada. Tech-
nical Report ARPA 6414 Contract MDA 972-89-C0029, TRW, Au-

gust 1989.

U.5. GOVERNMENT PRINTING OFFICE: 1993-710-093-60276

63

OF
ROME LABORATORY

Rome Laboratory plans and executes an interdisciplinary program in re-
search, development, test, and technology transition in support of Air

Force Command, Control, Communications and Intelligence (C3D activities

for all Air Force platforms. It also executes selected acquisition programs
in several areas of expertise. Technical and engineering support within
areas of competence is provided to ESD Program Offices (POs) and other
ESD elements to perform effective acquisition of C3I systems. In addition,
Rome Laboratory's technology supports other AFSC Product Divisions, the
Air Force user community, and other DOD and non-DOD agencies. Rome
Laboratory maintains technical competence and research programs in areas
including, but not limited to, communications, command and control, battle
management, intelligence information processing, computational sciences
and software producibility, wide area surveillance/sensors, signal proces-
sing, solid state sciences, photonics, electromagnetic technology, super-
conductivity, and electronic reliability/maintainability and testability.

