ESC-TR-92-159 %
AD-A

Illl!lf!llllllllll’llllllllll’l!IIIIHHHHI

Technical Report
974

Overview of Enhanced Data Stream
Array Processor (EDSAP)

DT ‘% A.G. Rocco
*;%; ELE (’T93 P.D. Linton
-.:% JUL]-?’ 19 J.K. Noonan

& g ®

w4

6 May 1993

Lincoln Laboratory
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
LEXINGTON, MASSACHUSETTS

Prepared for the Air Force under Contract F19628-90-C-0002.

Approved for public release; distribution is unlimited.

93-15

, 775
t98 T T e s lMWWﬂMMMg o

This report is based on studies performed at Lincoln Laboratory, a center for research
operated by Massachusetts Institute of Technology. The work was sponsored by the Air
Force under Contract F19628-90-C-0002.

This report may be reproduced to satisfy needs of U.S. Government agencies.

The ESC Public Affairs Office has reviewed this report, and it
is releasable to the National Technical Information Service,
where it will be available to the general public, including
foreign nationals.

This technical report has been reviewed and is approved for publication.
FOR THE COMMANDER

i
Gary utungian, A
Directorate of Contract

istrative Contracting Officer,
Support Management

Non-Lincoln Recipients
PLEASE DO NOT RETURN

Permission is given to destroy this document
when it is no longer needed.

LEXINGTON

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

LINCOLN LABORATORY

OVERVIEW OF ENHANCED DATA STREAM

ARRAY PROCESSOR (EDSAP)
A.G. ROCCO
P.D. LINTON Y
. A -
J.K. NOONAN | ccesion For
Group 47 NTIS CRA&I
DTiIC T1AB
Unannou:iced 0
Justification
TECHNICAL REPORT 974
Availability Codes
. Avail and/or
Dist Special‘
6 MAY 1993

A |

DYIC QUALITY LNSrECTED 8

—

Approved for public release; distribution is unlimited.

MASSACHUSETTS

EXECUTIVE SUMMARY

The Enhanced Data Stream Array Processor (EDSAP) is a scalable version of the DSAP processing
architecture [1] that will allow massively parallel processing. Lincoln Laboratory previously designed two
generations of DSAP processors; these programmable signal/data processors provide very high throughput
in small, lightweight packages that require low power use. The EDSAP design builds upon the DSAP
architecture in a way that provides for processing in the gigaop (billion operations per second) to teraop
(trillion operations per second) range. This capability is being accomplished primarily by a significant
redesign of high-speed /O and interprocessor communication. Other architectural improvements, as well
as rapid technological advances, contribute to the improved processor. This report provides an overview of
the architecture of the EDSAP. The first EDSAP board is expected to be available in late 1993.

The first-generation DSAP processor was a subsystem of ground-based demonstration radars built
by the U.S. Army’s Harry Diamond Laboratories for ground surveillance of moving tactical vehicles. Two
NMOS, application-specific integrated circuits (ASICs) were designed to perform the high-speed signal
processing. The processor weighs 50 Ibs, dissipates 300 W, and occupies 1.25 ft>. The signal processing
portion (36 MOPS) can perform moving-target detection on 128 range cells at a pulse repetition frequency
(PRF) of 4000 Hz! (512,000 samples/second).

The second-generation processor was designed for a lightweight airborne radar carried by a small
unmanned air vehicle. The processor successfully performed real-time signal and data processing and
radar control as part of the Unmanned Air Vehicle (UAV) radar [2]. During the course of the UAV pro-
gram, the NMOS custom chips were redesigned in a 1.25-pum double-metal CMOS technology. The signal
processing portion of this processor (360 MOPS) was no longer the limiting factor in determining the sys-
tem’s wide-area surveillance capability. The processor easily performs moving target detection and classi-
fication from the airborne platform on 480 range gates at a PRF of 7000 Hz. The processor weighs 55 lbs,
requires 265 W, and occupies 1.6 ft3. The processor could also support a real-time, low-resolution (3 m), 2-
km-wide stripmap synthetic aperture radar (SAR) mode for detecting stationary ground targets. Other pro-
grammatic considerations prevented the SAR mode from being implemented.

The EDSAP is being designed to perform onboard real-time processing to form high-resolution SAR
images and to detect and classify stationary ground targets. The significant advance of this new-generation
processor is a high-speed, packet-switched, bit-serial network; this network provides high-throughput
interconnection of a large number of processors and I/0 channels using a manageable number of intercon-
nect wires. The baseline EDSAP processor described in this document is targeted at real-time processing
for the Lincoln Laboratory 35-GHz SAR system. Larger data storage (more memory per processing ele-
ment than in the previous-generation processors), greater precision (24-bit arithmetic instead of 16-bit),
and more than 10 GOPS of processing capability will be available to create high-resolution (1 ft) fully
polarimetric SAR images and to detect and classify stationary tactical ground targets or strategic relocat-
able targets in real time. This SAR application is described in Appendix A. Currently, the baseline proces-
sor is expected to weigh 70 1bs and require] KW ina3 £ package.

1. The radar actually operated at a PRF of 6000 Hz, but only 64 out of every 96 pulses were processed.

iii

The ability to scale the EDSAP has made feasible a processor that could perform the SAR process-
ing described above in a high-altitude UAV platform at a rate of 75 km?%/min. The 672-processing-element
(67 GOPS) EDSAP would be fabricated using multichip module (MCM) technology to meet the size,
weight, and power constraints of the platform.

Although the EDSAP is being developed for radar signal processing, it is a general-purpose array
processor. Its architecture will make it applicable to a wide range of real-time signal processing tasks, par-
ticularly those where electrical power and weight are at a premium, yet programmability is desirable. The
architecture is flexible and provides easy interfacing to commercially available components. Its flexibility
is demonstrated in Appendix B, which describes an EDSAP-based processor design for an application that
includes adaptive beamforming.

The EDSAP builds considerably on the existing proven architecture and software tools of the DSAP.
The DSAP software development environment includes (1) a debugger, (2) a functional simulator that
allows a programmer to develop and test code in a friendlier environment than that of the actual hardware,
and (3) an assembly-level programming language. Most signal processing algorithms currently running on
the DSAP will be able to run on the EDSAP with few or no changes.

The following design goals will be met by the EDSAP:

1. meet the requirements for proposed SAR and other radars;

2. provide the ability to interface to other high-speed components (e.g., I/O devices and DSPs) and
provide an interface to an indust-y standard (VME) bus for low-speed data, control, and diag-
nostics;

3. be scalable and versatile enough to meet the requirements of many other systems. Using basic
building blocks, it will be practical to configure systems with capabilities ranging from a few
hundred MOPS to more than a teraop. The EDSAP will allow evolutionary development, incor-
porating new technology as it becomes available.

iv

ACKNOWLEDGMENTS

The processor described in this document, the EDSAP (Enhanced Data Stream Array Processor), is
the next-generation successor to the DSAP processor that was designed and built at Lincoln Laboratory
during the middle and late 1980s. The authors would like to thank C. Edward Schwartz and Gerald B.
Morse for their continued leadership, management support, and guidance throughout this period. The
authors would like to acknowledge F. Edward Hall and Quentin L. Klein, who, along with A. Gregory
Rocco, were the principal architects of the DSAP. Our thanks to Donald Malpass for his work on the DSAP
as well as for proofreading this document and providing many helpful comments.

We would like to acknowledge Gary A. Shaw, chairman of a Lincoln Laboratory-wide radar signal
processor study. Two of the authors served on this study, which encouraged us to design the EDSAP with
an open architecture. In particular, the study-related work helped crystallize the idea of developing the
EDSAP PE as a programmable interface chip. Some of the wording in Appendix B was taken directly from
the final report of this study [3]. We would like to thank David L. Briggs, who commissioned the study.

Finally, we would like to thank Steven M. Auerbach, our technical editor, for the many helpful edit-
ing sessions he has spent with each of us.

TABLE OF CONTENTS

Executive Summary il
Acknowledgments v
List of IHustrations ix
List of Tables X
INTRODUCTION 1
PROCESSING ELEMENT 5
2.1. Comparison of EDSAP PE with DSAP PE 7
COMMUNICATION NETWORK 9
3.1. Packet Switching . 11
3.2. Network Switch 11
PROCESSING ELEMENT BOARDS 15
4.1. Hex PE Board 15
4.2. 16-Processing-Element Board 17
VME INTERFACE 19
5.1. Diagnostics and Software/Hardware Debugging 20
5.2. Clock Generation 21
RADAR INTERFACE 23
6.1. Path of Video 23
6.2. Radar Control and Navigation Information 24
MODULAR DESIGN OF EDSAP 25
7.1. Custom ICs 25
7.2. Printed Circuit Boards 25

SIZE, WEIGHT, AND POWER 27

vii

TABLE OF CONTENTS
(Continued)

9. SOFTWARE DEVELOPMENT ENVIRONMENT

10. CANDIDATE APPLICATIONS

10.1. High-Resolution SAR (Synthetic Aperture Radar)
10.2. Phased-Array Radar with Adaptive Nulling Radar
10.3. Supercomputer

10.4. Local Area Network Hub or Backbone

10.5. Telecommunications Switch

10.6. HDTV (High-Definition Television) Studio Switch

APPENDIX A EDSAP SIZING FOR SAR

A.l. Introduction and Summary
A.2. Image Formation
A.3. Detection and Identification

APPENDIX B EDSAP SIZING FOR 8- AND 64-CHANNEL PHASED-ARRAY RADARS

B.1. Sizing of EDSAP for 8-Channel Phased-Array Radar
B.2. Sizing of EDSAP for 64-Channel Phased-Array Radar

REFERENCES

viii

29

31

31
31
31
32
32
32

33

33
34
36

39

39
43

51

Figure
No.

B-2
B-3
B-4
B-5
B-6

LIST OF ILLUSTRATIONS

Baseline EDSAP for Lincoln Laboratory 35-GHz SAR application.
Block diagram of baseline processing element.

Vector (stream) processing.

Topology of low-cost communication network.
Topology of high-performance communication network.
Simplified block diagram of network switch.

Simplified block diagram of a network switch port.
Block diagram of hex PE board.

Floor plan of hex PE board.

Block diagram of VME interface.

Example of a radar interface.

SAR processor. '

Processing flow for 8-channel phased-array radar.

Quad FIR filter board.

EDSAP topology for implementing an 8-channel phased-array radar.

EDSAP FIR filter and beamforming data flow.
EDSAP 16-channel FIR filter and beamforming cluster.
EDSAP 32-chauncl superclusiei.

ix

Page

10
12
13
15
16
19
23
35

42

46

48
49

Table
No.

8-1
B-1
B-2

LIST OF TABLES

EDSAP Size, Weight, Power, and Other Parameters
Processing and Communication for 8-Channel Radar

Communication Data Rates for 64-Channel System

Page
27
41
50

1. INTRODUCTION

The processor described in this document, the Enhanced Data Stream Array Processor (EDSAP), is
the next-generation succ: ,sor to the DSAP processor that was designed and built at Lincoln Laboratory
during the middle ar " late 1980s. Both the DSAP and the EDSAP are programmable, compact signal and
data processors. Their architectures consist of multiple independently programmable array processing ele-
ments; this approach combines complete programmability with the benefits of parallelism and pipelining
inherent in array operations. Although radar applications have driven both processors’ development, they
»7e general-purpose fixed-point array processors; thus they are applicable to a wide variety of real-time
signal processing tasks for which low power use and low weight are at a premium and programmability is
desirable. The DSAP has provided real-time processing for a number of radar systems. Most notably, it
was a key subsystem of the Unmanned Air Vehicle (UAV) radar [2], performing moving-target detection
as well as classification of vehicles as wheeled or tracked. The processor also served as the UAV radar con-
troller, providing an interface to the radar front end.

The EDSAP retains all of the desirable features of its predecessor and will meet processing require-
ments for the 1990s and beyond. While advances in fabrication techniques alone would allow the EDSAP
1o be significantly more capable than the DSAP, the architecture has also been improved to enhance the
processor’s scalability.

The importance of scalability can be understood by briefly describing a sizing exercise that used the
DSAP architecture. All of the DSAP’s processing elements (PEs) receive and transmit data using a single
high-speed parallel data bus. Attempts to increase the processing capability of the DSAP by increasing the
number of PEs were stymied by this single-bus limitation. Depending upon the application, the bus can
support about 12 PEs. Ultimately, designs were proposed in which processing capability was increased by
effectively making multiple copies of the DSAP architecture. For example, if 36 PEs were required for a
synthetic aperture radar (SAR) application, the design used three “clusters” of processors. Each cluster
contained approximately 12 PEs and its own high-speed data bus; communication between clusters was
realized in an ad-hoc manner. The resulting architecture was cumbersome and imposed severe constraints
upon interprocessor communication across clusters. The EDSAP architecture alleviates the scaling prob-
lem by replacing the single parallel bus with a packet-switched bit-serial network of higt -speed I/O com-
munication channels. The number of communication channels can easily be increased to accommodate the
required number of processing elements, allowing for a massively parallel computing architecture. In addi-
tion, each processing element has enough resources to minimize the amount of communication (i.e., each
has enough local n:iaory that it does not have to share memory with a neighbor).

Figure 1-1 is a block diagram of the proposed EDSAP baseline system. In the present design, 21
processing boards contain six PEs each. Another board serves as the VME interface. There are 32 network
ports available for high-speed 1/O (for example, for radar data input). The 126-PE system depicted in the
figure is designed to perform real-time SAR processing, including detection and identification, as part of
the Lincoln Laboratory 35-GHz SAR radar. The processing includes forming 1-ft-resolution images in
each of three polarizations. The stripmap swath that can be processed is 470 m wide, providing coverage at
a rate of 2.8 km?/min. It is estimated that the 35-GHz SAR processing will require 37 PEs. Appendix A
discusses the processing sizing operation in some detail.

21 PE BOARDS

A
f Y
PROCESSING PROCESSING
VME OTHER ELEMENT o0 o ELEMENT
INTERFACE vo BOARD BOARD
2 32 A r 6 A6
COMMUNICATION NETWORK

® PACKET-SWITCHED, BIT-SERIAL NETWORK
@ 160 BIDIRECTIONAL PORTS, EACH CAPABLE OF 15 MBYTES/SEC
® AGGREGATE PEAK THROUGHPUT OF 2400 MBYTES/s

Figure 1-1. Baseline EDSAP for Lincoln Laboratory 35-"5Hz SAR application.

The backplane contains a communication network that will operate (conservatively) at 200 Mbaud,
with the ability to maintain an average transfer rate of 15 Mbytes/sec. Each PE board has six communica-
tion ports connected to the backplane.

As indicated in Figure 1-1, 160 bidirectional ports provide access to the communication network.
The network can sustain the 15-Mbytes/sec average transfer rate on all 160 ports simultaneously, giving it
an aggregate peak throughput of 2400 Mbytes/sec. In order to achieve this peak rate, the devices on all 160
ports must be sending a steady stream of data to one of the other ports, with a ditferent receiving port for
each of the sending ports. To put this in perspective, the X-Bus of the current DSAP has a total bandwidth
of 40 Mbytes/sec.

A primary design consideration for the EDSAP has been the ability to interface easily with commer-
cial components and other subsystems. This ability is becoming increasingly crucial in modern processor
design. The final report of a recent Lincoln Laboratory-wide study [3] discusses the attributes desirable in
multiprocessor radar signa) processing architectures:

To support the development of experimental and demonstration radars for ground or
airborne applications, a simpler set of interprocessor communication standards is botk cppro-
priate and desirable. The goals of an interprocessor communication or interface standard for
prototype radar applications should

1. Accommodate growth in number and type of processing and l/O nodes (scalable)

2. Provide bandwidth commensurate with data sampling rates

3. Support heterogeneous processing nodes including
(a) Hardwired or partially programmable systolic processors
(b) Programmable DSP, CISC, and RISC processors
(c) l/0 devices, such as A/D and D/A converters

4. Provide for real-time control and context-switching

5. Allow evolutionary, incremental improvements to keep pace with technology

The report later lists the architectural features that would allow a processor to meet the criteria
required to support prototype radars:

Based on the preceding discussion of desirable features for an interface standard, the follow-
ing architectural constraints have been identified as compatible with the goal of developing an
interprocessor communication and interface standard for radar signal processing.

1. MIMD, private-memory processing nodes. The MIMD constraint ensures that heter-
ogeneous nodal processors can be accommodated. The private-memory constraint
avoids the scaling limitations associated with shared memory.

2. Industry standards for low-speed data, control, and diagnostics: Industry standards
such as the VME bus and its successors should be used whenever possible in order
to exploit chip and board-level hardware and software support.

3. Bit-serial interconnect for high-speed data. A crossbar switch accommodates scal-
able, arbitrary interconnect of processing nodes. Subsets of crossbar interconnect
include nearest neighbor, mesh, and lattice interconnect. The primary drawback to a
crossbar switch is the growth in connections with the number of processing nodes.
To minimize the proliferation of interconnections, bit-serial data paths are
employed, and the maximum number of data paths per crossbar is constrained. Bit-
serial interconnect strategies are compatible with the expected introduction of fiber
and free space optical interconnections.

4. Programmable interface chip. A major hurdle in developing a robust interface stan-
dard is the profusion of specialized interfaces associated with commercially avail-
able processor chips and systems. To deal with the range of formats and protocols, a
programmable interface processing chip is envisioned to facilitate interfacing the
bit-serial interconnect to the arbitrary node processors.

The EDSAP design embodies all four of these architectural features. The first three were addressed
previously. With regard to the fourth feature, one of the PE’s processors functions as a programmable
interface (i.e., the PE chip can function as a programmable interface chip).

Two application-specific integrated circuits (ASICs) are being designed for the processor. One is the
PE chip. In the EDSAP, a “processing element” consists of the PE chip supplemented by some amount of
external data memory. In the baseline system, each PE will contain one Megaword (48-bit words) of exter-

nal high-speed static data memory (SRAM). A conservative estimate of the instruction rate for the baseline
system is 33 MHz. This corresponds to a 100 MOPS peak capability per PE (each PE can perform one
multiply and two ALU operations per instruction). At this rate, a PE can compute a 1024-point complex
Fast Fourier Transform (FFT) in 500 microseconds.

The second ASIC being designed is the network switch (NS). Each NS chip is a full crossbar switch
for eight bidirectional bit-serial communication channels. A conservative estimate of network and NS chip
speed is 200 Mbaud.

The sections of this report that follow provide more detail about the components of the EDSAP: the
PEs, the communication network, the VME interface, the diagnostic bus, and the high-speed /O inter-
faces. Other topics discussed include (1) a multichip module (MCM) EDSAP system, (2) the size, weight,
and power requirements of the baseline and MCM systems, and (3) a survey of candidate applications for
the EDSAP architecture.

Appendices A and B provide examples of how the EDSAP architecture could be used in specific
systems. Appendix A describes the mapping of SAR processing to the EDSAP architecture. Appendix B
describes the implementation of phased array radar processing with adaptive beamforming.

This report is being written before the detailed design of the hardware is complete. It is likely that
there will be some changes as the design process proceeds. Also, more detailed documentation is being
prepared that will provide the information necessary to use the EDSAP.

2. PROCESSING ELEMENT

PE INTEGRATED CIRCUIT

ARITHMETIC ——] DATA MEMORY
PROCESSOR |«g—— 512X 48 BITS
AP
DATA MEMORY
1 512X 48BITS
NETWORK
ADDRESS INPUT FIFO
GENERATOR [P 8 x48BITS |
AGN COMM NETWORK
c:?vs:g: R 15 MBYTES/SEC IN
OUTPUT FIFO EACH DIRECTION
INPUT 1 j28xaesBrrS >
ADDRESS
GENERATOR [
AGI
PROGRAMMABLE EXT DATA MEM
«—> INTERFACE > ;M x48BITS
OUTPUT
ADDRESS
GENERATOR . - DIAGNOSTIC DIAGNOSTIC BU»S
AGO 1 BUS INTERFACE |

Figure 2-1. Block diagram of baseline processing element.

Figure 2-1 shows the processing element. As mentioned previously, a processing element consists of
the PE chip supplemented with external data memory (one million 48-bit words in the baseline system).
The PE chip contains one kiloword of internal data memory and four programmable processors: one arith-
metic processor (AP) and three address generators (AGs). Each processor contains its own dedicated
instruction memory and registers. The PE chip performs the functions of the original DSAP’s AP chip,
three AG chips, and gate arrays.

The PE’s four processors are connected to the three data memories (and to each other) via a crossbar
switch. There is a prioritized arbitration scheme for handling conflicts.

The network address generator (AGN) handles the interface between the PE and the communication
network. It contains software in ROM used to boot the PE and deal with exception handling. It also con-
tains a collection of system routines that provide the application programs on the AGN with an abstract
interface to the communication network. The remaining three processors on the PE—the input address
generator (AGI), the output address generator (AGO), and the arithmetic processor (AP)—work in concert
to perform the signal processing computations.

INPUT INPUT OPERAND STREAM
ADDRESS A B2 | (A. | (APFy,
GENERATOR [> END B, cu|®®®|8B,.Cy | B, Cp | AGOFY

AGI

e

= == ARITHMETIC
-==c =c PROCESSOR
SSIZZZZZ=ZZ ZZZpAA AP
=== STRUCTURES (X.Y) = Fy(AB.C)

OUTPUT
ADDRESS
GENERATOR [AGOFn | XYy | (X2Y2) | ® @ @ | (xy.¥y) | END
AGO OUTPUT OPERAND STREAM

Figure 2-2. Vector (stream) processing.

Figure 2-2 illustrates the data-stream operation, a significant feature of both the DSAP and the
EDSAP architectures. The AP performs signal processing calculations without regard to the data memory
addresses of the inputs and outputs. The AGI fetches the input stream of AP operands from data memory

while the AGO shepherds the output stream. FIFO buffers on the input and output sides of the AP provide
rate buffering; thus, each address generator need only match the average data rate of the AP to keep the AP
running at full efficiency. This separation of the address calculations and arithmetic calculations into asyn-
chronous processes (via the FIFOs) simplifies the optimization of complex signal processing algorithms.

The AP can perform three operations per instruction: one multiply and two ALU (add, subtract, com-
pare, or logical). This capability provides the PE with a 100-MOPS peak processing capability at the
expected processing rate of 33 MIPS. The ratio of two adds to one multiply yields a very efficient imple-
mentation of the radix-4 FFT, which is used in both the DSAP and the EDSAP. The 100-MOPS PE will be
able to perform a 1024-point complex FFT in 500 microseconds. Logic in the ALUs provides for efficient
thresholding (compare) operations. The EDSAP PE will perform 24-bit fixed-point arithmetic. For a typi-
cal signal processing operation, the 48-bit data memory word will contain a complex number with 24-bit
real and imaginary parts.

As mentioned previously, the PE chip can be used to interface commercial and other devices to the
EDSAP’s high-speed communication bus. For example, the PE chip can be interfaced to another processor
through a memory shared by the PE and the other processor.

2.1 COMPARISON OF EDSAP PE WITH DSAP PE

The EDSAP PE will contain three data memories, one external and two internal, as opposed to the
DSAP’s single data memory. The DSAP PE’s data memory is accessed twice per instruction cycle; by con-
trast, each of the EDSAP PE’s internal data memories will be accessible once per instruction cycle. The
external data memory will require at least one cycle to access, but may require more than one cycle
depending on the relative speeds of the memory ICs and the PE chip. Plans for the baseline system call for
memory fast enough for the PE chip to access once each cycle.

The PE chip will be able to address up to 15 million 48-bit words (90 Mbytes) of external data mem-
ory; a one-million-word external memory is planned for the baseline PE. This external memory can be
either static or dynamic RAM. External RAM access timing will be programmable. There will also be pro-
grammable configuration registers for setting up the logic for refreshing dynamic RAM. By contrast, the
DSAP PE has a total of 64K 32-bit words of static data memory.

The AGX in the DSAP PE controls the PE’s access to the X-Bus, a high-speed parallel bus used to
move data into and out of the PE. In the EDSAP PE, the AGX will be replaced by the AGN, and the X-Bus
will be replaced by the high-speed serial network (see Figure 2-1).

The AP currently in use in the DSAP can simultaneously receive an input and generate an output to
data memory each cycle. The DSAP PE does not take advantage of this capability, however, and therefore
can only perform a single AP input or output each cycle. In the EDSAP, the PE will support both an AP
input and output during each instruction cycle.

3. COMMUNICATION NETWORK

As mentioned previously, PEs will be connected to each other as well as to external I/O devices via
a number of high-speed bidirectional bit-serial communication channels. The channels will be intercon-
nected via a number of network-switch (NS) ASICs. The channels and the network switches will constitute
the communication network. Each network switch will be able to connect up to eight bidirectional chan-
nels via its internal crossbar switch. The ratio of PEs and external I/O channels to network switches will
determine how closely a communication network implementation approximates a full crossbar switch.

As an example, consider a system consisting of 32 PEs and 16 bidirectional fiber-optic I/O lines.
Assume that four PEs and one NS reside on each of eight processor cards, which plug into a backplane.
There is a total of 48 communication ports divided into two groups: 32 reside on the processor cards and
16 reside on the backplane. The 16 ports on the backplane interface the system to external I/O via fiber-
optic translators. Figures 3-1 and 3-2 present two possible 48-port network topologies. The low-cost topol-
ogy in Figure 3-1 imposes performance limitations and provides relatively little redundancy; the topology

CARD CARD CARD CARD CARD CARD CARD CARD
L | I {] L i] i L
NS NS BACKPLANE NS NS
P P [|RRR
\ J
Y
FIBER-OPTIC VO

Figure 3-1. Topology of low-cost communication network.

in Figure 3-2 provides high performance and a high degree of redundancy. Although both networks can
support 48 simultaneous 15-Mbytes/sec (720 Mbytes/sec total) bidirectional conversations, their overall
capabilities are quite different. The difference between the two networks comes from a difference in the
number of NSs residing on the backplane (i.e., external to the processor cards). The low-cost network has
four backplane NSs, while the high-performance network has sixteen.

FIBER-OPTIC VO
A

f 1
SN NSRRI ENE!

NS NS NS NS
CARD|{CARD ||CARD||CARD| [CARD||CARD||CARD||CARD

NS NS NS NS NS NS NS NS S NS NS
WIRRHWINe I JJ
12 34 56 787 15 37 26 48
SN s
12 34 56 78715 37 26 48
A W\ 8 8 // [l
12 34 56 78 7 BACKPLANE 718 a7 26 48

Figure 3-2. Topology of high-performance communication network.

Figure 3-1 depicts the low-cost network topology. Each of the 16 fiber-optic /O ports connects
directy to four processor cards via one of the four backplane NSs. For an 1/0 port to communicate with
any of the remaining four cards, the information must be routed through one or two additional network
switches (assuming that the NS on each card can route data between the four ports on the card). It is impor-
tant to realize that, with this topology, if an /O port must communicate with a card it is not directly con-
nected to, the resources available to other ports on the network will be reduced.

In Figure 3-1, each card is connected to its two nearest neighbors. If cards transmit only to their
nearest neighbors, each card can transmit at the full 15-Mbytes/sec rate without interfering with another
card or 1/O. If cards transmit to other than their nearest neighbors, however, they reduce the network band-
width available to other ports.

Figure 3-2 shows the higher-performance network topology. This network can be envisioned as

three interconnected subnets. Each subnet implements a full crossbar; within each subnet, all 16 ports can
send to any of the other ports simultaneously without interfering with the others. The left-most subnet han-

10

dles the 1/O ports. The full /O port crossbar is implemented to support interconnection of multiple chassis.
The other two crossbar subnets interconnect the processor cards.

Each of the three subnets is connected to the other two via eight serial channels. The subnets can
communicate at 120 Mbytes/sec without interference as long as two or more originating ports do not
attempt to simultaneously transmit to the same destination port.

The current plan is to interconnect the 160 ports of the baseline system (Figure 1-1) with a full-
crossbar network similar to that in Figure 3-2. As applications are explored in greater detail, the actual
number of PEs and /O ports may change.

3.1 PACKET SWITCHING

The network can be thought of as a store-and-forward packet-switched network. In addition to the
actual data, each packet will include a description of the packet type and a destination address, as well as
information to identify the packet and minimize the probability of transmission errors. Any packet not des-
tined for a nearest neighbor will be routed from point to point until it reaches its final destination. Any node
(PEs and NSs are nodes) in the network can be the final destination of a packet; intermediate points are
always NSs. Packets can vary in size from 18 to 773 bytes.

The path that a packet follows through the network will be determined by a series of addresses
within the packet’s address section. When the packet arrives at a network switch, the switch will read the
current address, indicated by a pointer field contained within the address section. If the NS is not the pack-
et’s final destination, the NS will send the packet out the port indicated by the current address and incre-
ment the pointer; if the NS is the final destination, it will execute any requests (e.g., data reads/writes,
status inquiries) or commands contained in the packet. These requests/commands will be contained in a
separate field. All the requests/commands applicable to the NS will be defined in hardware. In the PE,
some of the requests/commands will be defined in hardware; the rest will be definable by applications soft-
ware.

The above procedure will send a packet from a single origin to a single destination. When a packet is
to be distributed to muitiple destinations, its address section will contain only a route number, and a
“route” bit in the packet’s header will be set. When an NS receives such a packet, it will refer to a lookup
table stored in its routing address RAM to determine which port(s) should output a copy.

3.2 NETWORK SWITCH

Figure 3-3 is a simplified block diagram of a network switch. A serial input stream received at a data
port will be converted to 8-bit parallel bytes, buffered in a 2-Kbyte FIFO, routed through an 8 X 8 crossbar
switch to the specified output port, converted back from parallel to serial form, and then transmitted.
(Refer to Figure 3-4 for a simplified diagram of a port.) The 8 X 8 crossbar switch will allow packets
received at any of the eight data ports to be sent out any of the eight ports. The network switch will handle
data entering all eight ports simultaneously unless a desired output port is busy; packets destined for the
busy port will wait in FIFOs. An external, electrically erasable, programmable read-only memory

11

SERIAL OUT T SERIAL IN

) TO / FROM
70 / FROM EEPROM DIAGNOSTIC R
EEPROM * > |NTERFACE PORT INTERFACE | DIAGNOSTIC
% .
SERIAL IN ==megye- 8 8 e SERIAL IN
PORT |t %3] PORT
SERIAL OUT iy - SERIAL OUT
. BYTE-WIDE .
SERIAL N s———egi SERIAL IN
PORT |ty cng:s?a AR a><>| PORT
SERIAL OUT ey —y SERIAL OUT
SWITCH
SERIAL IN === 8 8 et SERIAL IN
PORT (5> w>%»| PORT
SERIAL OUT -y joe—eei- SERIAL OUT
% .
ROUTING
, ADDRES
PORT DR AM S
NETWORK SWITCH
1K X8

INTEGRATED CIRCUIT Y
SERIAL OUT l TSERIAL IN

Figure 3-3. Simplified block diagram of network switch.

(EEPROM) will store configuration data for NSs and PEs. For testing purposes, the FIFOs of all eight
ports as well as the route address RAM can be accessed via a diagnostic bus.

Control logic not shown in the figure will determine what to do with each packet and then do it; this
will also occur when errors are encountered in the packet. The NS will log these errors and other opera-
tional data. Registers accessible to the network, and thus to the host, will allow each port to be configured
individually to various performance and protocol requirements.

12

SERIAL 8 8
SERIAL FIFO
N > T0 7> 2K %8
PARALLEL
8 TO/FROM
CROSSBAR
SWITCH
ERIAL PARALLEL 8
SERIAL

Figure 3-4. Simplified block diagram of a network switch port.

13

4. PROCESSING ELEMENT BOARDS

High-level design of two types of PE boards is in progress. One design contains six PEs and the
other 16 PEs. Each board will be the size of a 6U VME board (6.3 in. X 9.2 in.). The hex PE board (six
PEs) is planned for the baseline system. The 16-PE board will require the use of multichip module (MCM)
technology.

BACKPLANE/COMMUNICATION NETWORK - 90 MBYTES/SEC IN EACH DIRECTION

G)

\NYA ANRVA N
‘“ P

Figure 4-1. Block diagram of hex PE board.

4.1 HEXPE BOARD

Figure 4-1 is a block diagram of the hex PE board. The board’s six PEs will provide a total of 600
MOPS. The PEs will communicate with each other and with the rest of the system through the three net-
work switches. There will be enough communication bandwidth for all six PEs to be sending data at 15
Mbytes/sec to any one of the other PEs simultaneously (assuming that each PE has only one other PE send-
ing to it at a given time). Alternatively, there is enough bandwidth for all six PEs to be sending data off the
board and for all six to be receiving data from off the board simultaneously (i.e., 90 Mbytes/sec in each

15

direction). In later systems with more PEs per board, it is likely that there will be fewer ports between the
board and the backplane than there are PEs.

The EEPROM connected to the NSs will store configuration information. At power-up, the AGN on
each of the PEs will prompt the network switch to transmit the contents of the appropriate locations within
the EEPROM. Configuration information will include how much external data memory is present for each
PE, as well as the timing necessary to access the memory. The EEPROM will also be able to store pro-
grams. The EEPROM will be programmable by sending appropriate commands to one of the NSs.

Y
PE CHIP PE CHIP PE CHIP PE CHIP PE CHIP PE CHIP
o PE EXT PE EXT
: RAM RAM
PE EXT PE EXT PE EXT PE EXT
RAM RAM 1M X 48 BITS 1M X 48 BITS RAM RAM
1M x 48 BITS || 1M x 48 BITS 1M X 48 BITS || 1M X 48 BITS
NS NS NS
) CONNECTOR CONNECTOR
- 9.2 |

Figure 4-2. Floor plan of hex PE board.

16

Figure 4-2 shows the preliminary floor plan of a hex PE board. Different PE bcards might be
designed for different applications. Memory-intensive applications might have fewer PEs per board but
more data memory per PE. Applications reguiring floating-point calculations might have a commercial
DSP, RISC, or CISC processor as a coprocessor for each PE. Because the PE and NS will contain most of
the logic, the design of PE boards is relatively straightforward.

In the floor plan shown, the PE chips are in pin-grid array sockets (on only one side of the board).
Each PE’s external RAM consists of twelve 4-Mbit SRAMs that are in SOJ (small outline packages with J
leads) packages on both sides of the board. The NSs are in sockets on the same side of the board as the PE
chi 5. The blank area near the two connectors is used for approximately 10 to 15 other ICs including the
EEPROM,; they are surface-mounted on both sides of the board.

4.2 16-PROCESSING-ELEMENT BOARD

A PE board using MCM technology has been sized. By using conservative MCM technology, it
should be possible to fit a PE with its 1M X 48 bits of external memory into an MCM approximately 2.5 in.
X 2.75 in. Sixteen of these MCMs with supporting circuitry should fit on a board the same size as the hex
PE. When techniques to stack three or four memory dies on an MCM have matured, it is likely that 32 PEs
with their memories and supporting circuitry can fit on the same size board as the hex PE.

17

5. VME INTERFACE

COMMUNICATION NETWORK - 30 MBYTES/SEC IN EACH DIRECTION

l ” l l } DIAGNOSTIC BUS TO REST OF PROCESSOR] ! l I l l
NETWORK \ NETWORK
SWITCH : SWITCH
NS : NS

\

\

\\‘ -\“““"“‘\“‘-“““\\“““‘\“““Jn\
\

\

A

1 \

---'_,-4

PROCESSING EEPROM DIAGNOSTIC PROCESSING
ELEMENT 1M X8 BUS ELEMENT
CHIP INTERFACE CHIP
DATA MEM DUAL PORT MEM DUAL PORT MEM DATA MEM
1M X 48 16K X 32 16K X 32 1M X 48

VME BUS - 30 MBYTES/SEC TOTAL

~— COMMUNICATION NETWORK
== DIAGNOSTIC BUS
— OTHER BUSES

Figure 5-1. Block diagram of VME interface.

The VME interface (VMEINT) will be a VME board with two PEs and two NSs, as shown in
Figure 5-1. The VME interface will connect to the rest of the processor via the communication network. It
can be thought of as an interface between the EDSAP’s serial communication network and the VME bus.

19

It will be possible to have more than one VME interface in a system. In fact, the EDSAP’s serial commu-
nication network may be used to interconnect a large number of VME chassis.

The VME bus has been chosen for the baseline system because many commercial products use it. If
it becomes desirable to interface to a different bus, it should not be difficult to modify the interface design.

The VMEINT will include two dual-port memories; one port will be used by one of the PEs and the
other port will be used by the VME bus. Each of these memories will be a true dual-port memory; two
accesses may occur simultaneously as long as both ports are not used to access the same location at the
same time. The timing of each port will be asynchronous with respect to the other.

The VMEINT will include hardware to support semaphores that can be used for arbitrating whether
the VME bus or the PE is allowed to use a particular block of memory. There also will be hardware to
allow a processor on the VME bus to interrupt the AGs within either of the PEs and to allow either of the
PEs to cause VME interrupts.

Each of the PEs will be able to make one access every two cycles (i.e., 16.5 MHz assuming a 33-
MHz instruction rate) to its external RAM or its dual-port RAM. The VME bus will be able to make block
transfer accesses to either of the dual-port RAMs at 7 to 8 MHz (32 bit words), which approaches the lim-
its of the VME bus; thus, the total bandwidth between the VME bus and the dual-port memories will be
approximately 30 Mbytes/sec. Each of the PEs will be capable of transferring data between the communi-
cation network and its dual-port RAM at 15 Mbytes/sec in both directions simultaneously. Thus, there will
be a total bandwidth of 30 MBytes/sec between the VME bus and the rest of the EDSAP with the VME
bus block transfer rate being the limiting item. (The VME interface for the DSAP was capable of only
about 3 MBytes/sec.)

The VME interface will support both 2-byte and 4-byte accesses but not single-byte accesses.
Accesses must be aligned on 2- and 4-byte boundaries, respectively. The initial version of the VMEINT is
expected 1o be a slave on the VME bus, assuming that some other processor board on the VME bus will be
the master.

The two PEs on the interface board will be capable of delivering 200 MOPS of processing power.
For some applications this may be sufficient to perform all the signal processing. In fact, the MTI radar
system successfully demonstrated at Fort Sill, Oklahoma, in the spring of 1990—which was capable of
only 108 MOPS—was able to process moving-target detection on a 10-km swath (250 40-m range cells) at
a pulse repetition frequency (PRF) of 6250 Hz (1,562,500 samples per second) {2]. The VMEINT of the
EDSAP, along with a radar interface (see Section 6), could replace that DSAP VME interface, CE (control
element), and six dual-PE cards.

5.1 DIAGNOSTICS AND SOFTWARE/HARDWARE DEBUGGING
The VMEINT will interface the VME bus to the EDSAP’s diagnostic bus. A processor on the VME

bus will be able to use the diagnostic bus to access the external memory (including EEPROM), internal
RAM, and registers of all PEs and NSs within the EDSAP. A processor on the VME bus will also be able

20

to access RAM and registers within each of the PEs on the VMEINT directly (i.e., without using the diag-
nostic bus). In the past such features have proven invaluable for diagnosing chip fabrication problems.

The diagnostic bus will be bit-serial and will go throughout the EDSAP. It will be based on the
Extended Serial Digital Signal (ESDS) Testability Bus Subset of IEEE Standard P1149 Testability Bus
Specification [4). The diagnostic bus is intended for the following purposes:

1. testing the NS at time of fabrication (most of the PE chip testing will be performed using its par-
allel port);

loading and running diagnostics for testing subsystems or the entire system;
loading the EEPROM associated with the NSs;
loading and debugging software;

v wwe

disabling components that have been found to be faulty.

5.2 CLOCK GENERATION

Two oscillators planned for the VME interface will generate clocks for the entire EDSAP. One clock
will define the bit rate over the serial network, and the other will define the instruction rate of the PEs. If
space permits, the VMEINT will include two frequency synthesizers for generating these clocks. These
two frequency synthesizers would be under program control of the VME bus-based host. The frequency of
operation would be varied while diagnostics are run in order to verify margin and expose any problems that
only occur at a particular frequency range. (Testing the DSAP while running its clock from an external
sweep generator proved invaluable in bringing problems to light and helped make the DSAP very reliable.)

21

6. RADAR INTERFACE

An interface to a specific radar is yet to be designed. Figure 6-1 shows a possible interface. For this
example it was assumed that the radar has multiple A/D channels with bursts of data at 200 MHz, and an
average data rate of less than 60 Mbytes per second per A/D channel (this is consistent with a synthetic
aperture radar). The example also includes interfaces to radar control logic and a source of navigation
information.

LOCAL NETWORK SWITCHES
/515 MB/s AVERAGE
PE PE PE PE PE
CHIP CHIP CHIP CHIP CHIP
33 MW/s BURST
-~ ; DATA
MEMORY
FIFO FIFO FIFO FIFO
l L I I ‘_’_,._50 MW/s
REG REG REG REG — C:::’::;L
l I I] P 200 MW/s
NAV
AD INTERFACE
DUPLICATE FOR EACH A/D CHANNEL PE WITH INTERFACES

Figure 6-1. Example of a radar interface.

6.1 PATH OF VIDEO

The video from each channel of the radar is digitized by an A/D converter. The A/D converter out-
puts data at a continuous rate of 200 MW/s (million words per second). This 200-MW/s stream of data is
sent to a set of four registers. The registers are clocked round-robin, creating four streams of data at 50
MW/s each. These 50-MW/s streams are sent to synchronous FIFOs whose inputs are gated to select the
desired range gates, creating S0 MW/s bursts of data into the FIFOs. The FIFOs reduce the burst data rate

23

to 33 MW/s, a rate that the PEs can handle. The PEs then format the data streams, add any contro} informa-
tion (e.g., time tags), and serd them to the main part of the processor. The PEs could possibly perform
some very simple filtering before they send the data to the main part of the processor. When used for inter-
facing, the PE chip does not require any external memory.

A/D burst rates higher than 200 MW/s can be processed by using either faster FIFOs or additional
register/FIFO/PE groups. If the average rate exceeds that of four PEs (approximately 15 Mbytes/s per PE),
additional register/FIFO/PE groups can be added. If the average data rate is low, more than one register/-
FIFO pair can be connected to each PE.

Each PE has a programmable 48-bit parallel port. If the average data rate out of the A/D is 15 Mbyt-
es/s or less, all four register/FIFO pairs can be connected to one PE (as long as the number of register/-
FIFO pairs X the number of bits output by each pair < 48).

At even lower data rates, further simplifications are possible. For example, the burst data rate in the
UAV radar’s moving target indicator (MTI) application was approximately 15 MW/s (two 8-bit samples
per word, using two A/Ds) and the average data rate was approximately 1.6 MW/s (3.2 Mbytes/s). At this
low data rate both A/Ds could be handled using only a single PE chip.

6.2 RADAR CONTROL AND NAVIGATION INFORMATION

In addition to the PEs used for interfacing with the A/Ds, the subsystem shown in Figure 6-1 con-
tains a PE for interfacing with radar control logic and navigation instruments. The task of generating
detailed timing signals for the radar could be accomplished in several ways. At one extreme, the PE would
generate all the timing signals by counting cycles. The PE would count cycles and change bits in a register;
these bits would constitute the various timing signals. The other extreme would have external counters
generate all the timing signals; in this case the PE would simply write registers controlling the counters.
Most systems would use a combination of these techniques.

PEs will be configurable so that one or more of their AGs can be interrupted in response to external
signals. This feature will make it possible to synchronize the PEs in the radar interface with each other and
with external circuitry.

In order for an airborne radar to function properly it needs navigation information. The radar inter-
face shown in this example includes a navigation interface that receives information about the location of
the platform. This information would then be associated with the corresponding A/D data, and both the
A/D and navigation data would be sent to their destinations on the communication network.

24

7. MODULAR DESIGN OF EDSAP

The design of the EDSAP is modular at the chip, board, and chassis levels. The intent is that the
modules can be configured differently to meet the needs of many systems. The designs of the ICs and
boards will be available in a computer aided engineering (CAE) environment. A designer using a compati-
ble CAE system will be able to make changes to the modules.

7.1 CUSTOM ICs

The ICs are being designed using a silicon compiler from Cascade Design Automation on a Mentor
Graphics workstation. There is a high non-recurring engineering (NRE) cost associated with modifying
these ICs; changes should be avoided if practical. Two ASICs will be developed for the baseline EDSAP:

1.

the processing element (PE) will contain three AGs, an AP, internal memory, and an interface to
the communication network. It will be capable of 100 MOPS. In addition to being the computa-
tion engine for the EDSAP, it will be able to interface devices to the communication network.
For example, it will be able to interface to microprocessors, floating-point DSP chips, and spe-
cial- purpose filter chips;

the network switch (NS) will be used to implement the EDSAP’s store-and-forward, packet-
switched communication network. It will contain FIFOs and a eight-port crossbar switch and
will interconnect eight ports on the communication network.

7.2 PRINTED CIRCUIT BOARDS

The printed circuit boards (PCBs) are being designed using a Mentor Graphics workstation. Four
PCB designs are planned for the baseline EDSAP:

1.

The VMEINT PCB will interface the EDSAP to the VME bus. It should not be difficult to adapt
this design to other buses;

the hex PE PCB will contain six PEs, each with 1M X 48 bits of external data memory. The
board will also include three NSs. It should be fairly straightforward to change the amount of
data memory used by any of the PEs. It will also be possible to add coprocessors to any of PEs;

the backplane PCB will be the EDSAP’s backplane. It will contain the NSs necessary to inter-
connect the other boards and external interfaces;

the radar interface PCB—its performance and form factor will depend on the target system for
the baseline processor.

25

8. SIZE, WEIGHT, AND POWER

Two versions of the EDSAP have been sized. The baseline version is based on a single chassis with
21 hex-PE boards. The multichip module (MCM) version is based on two chassis, each with 21 sixteen-PE

boards. For each version, a separate six-slot VME chassis is included for the host.

TABLE 8-1
EDSAP Size, Weight, Power, and Other Parameters
Parameter “ersion | version
Number of signal processing chassis 1 2
Volume (ft3) 3 5
Weight (Ib) 70 150
Power (W) 1,000 4,000
Number of PEs 126 672
Throughput in GOPS’ 12 67
Data memory (Mbytes) 800 4,000
* Billions of operations per second

The chassis and backplanes for both versions of the EDSAP are expected to be the same. The PE
boards are the same size as 6U VME boards (6.3 in. X 9.2 in.), so substantial amounts of standard VME
hardware are expected to be used. The backplane will be a custom design and will include approximately
91 NSs, forming the communication network among PE boards. Each chassis will include power supplies
capable of providing approximately 2.5 kW. The 19-in. rack-mount chassis is expected to be approxi-
mately 15.75 in. high, 17.5 in. wide, and 12.75 in. deep. The extra 5.25 in. in height beyond the typical
VME chassis is to duct cooling air. The chassis can be redesigned to fit the form factor of target systems.

The power and performance estimates given here are based on the PE and NS being fabricated in a
0.8-um, 5-V CMOS process. If industry experience with 3-V CMOS processes advances rapidly enough,
the PE and NS will be fabricated in a finer-geometry 3-V CMOS process. Because a silicon compiler is
being used to design the chips, processes can be changed fairly easily. When the chips are ready for release
to fabrication, they can be recompiled in the best process available.

27

9. SOFTWARE DEVELOPMENT ENVIRONMENT

The support software for the EDSAP is expected to build upon that of the DSAP. The DSAP soft-
ware development environment is provided by three programs: a functional simulation of the hardware
[5], a debugger [6], and an assembler for writing programs [7].

Source programs for the application software are written in C. These programs are translated into
object code by the assembler, which consists of a collection of functions that fill the microcode fields of the
target processor. The debugger accepts the object code as input and serves as the user’s interface to either
the actual hardware or the software simulation. Typically, the debugger is used both for testing and debug-
ging programs on the simulated processor and for loading and executing them on the hardware.

The simulated processor provides a functional register-level abstraction of the PEs (but not their
interaction via the DSAP’s high-speed data bus). It provides a complete programming model of the hard-
ware, replicating the functionality of the hardware on an instruction-cycle by instruction-cycle basis.
Because much of the detail irrelevant to programming has been discarded, the simulation executes on an
engineering workstation quickly enough to be useful to an application developer. Also, the simulation
allows the developer to examine states within the processor that are not readily accessible in the hardware.

The functional simulation of the DSAP was developed independently of the CAD hardware simula-
tion used to develop the hardware. Therefore, verifying the correctness of the simulation required a great

deal of painstaking effort. Improvements in workstations and CAD tools should allow the development of
a functional simulation of the EDSAP PE that is derived directly from the hardware simulation.

29

10. CANDIDATE APPLICATIONS

While the EDSAP is specifically targeted to radar applications, it is also being designed to be appli-
cable to a wide variety of other applications. The remainder of this section outlines several potential radar
and non-radar applications.

10.1 HIGH-RESOLUTION SAR (SYNTHETIC APERTURE RADAR)

The EDSAP would be a very good fit for high-resolution SAR applications. Appendix A gives a
detailed system sizing for a SAR system that includes automatic target recognition.

10.2 PHASED ARRAY RADAR WITH ADAPTIVE NULLING RADAR

The EDSAP would be a good match to applications requiring a large number of input channels, such
as phased array radar. Appendix B gives detailed examples of the sizing of EDSAP-based systems for 8-
and 64-channel phased array radars with adaptive nulling.

10.3 SUPERCOMPUTER

The EDSAP’s network could be used to connect a large number of processors to form a supercom-
puter. The EDSAP PE chip would be used to interface the individual processors to the communication net-
work and hence to the rest of the system. The processors within the PE chip could deal with much of the
overhead associated with communicating with other processors in the system. Such a system could take
many forms. For instance:

1. Each “processor” might actually be a small number of processors on a VME bus. In this case an
EDSAP VME interface board would be used to interface each VME bus to the rest of the sys-
tem. In this way a large number of these VME systems could be connected to form a large sys-
tem.

2. Aninterface board based on a PE chip could be designed for the internal bus of the workstations,
to interface them to the EDSAP’s communication network. Using the EDSAP’s communication
network to tie workstations together would provide much higher performance than that of local
area networks currently in use.

3. A custom module counld be built that contains .a commercial reduced-instruction-set computer
(RISC) processor interfaced to the EDSAP’s communication network via a PE. A large number
of these modules could then be interconnected.

Any of the three systems described above might use RISC processors as the individual processors.
One way to interface a PE with a RISC processor would be to give the PE access to the RISC processor’s
memory. This would allow a shared-memory scheme in which a number of RISC processors used the
EDSAP’s communication network to access the memory of all the other processors. This scheme could be
implemented by running a virtual memory system on each RISC processor. The RISC processor would
know which pages were in its local memory. If an application program tried to access a page of memory

3]

that was not in the local RISC processor’s memory, the local PE would get the desired page, put it in the
local RISC processor’s memory, and let the RISC processor know that the page was there.

10.4 LOCAL AREA NETWORK HUB OR BACKBONE

The NS will be designed to support Ethernet, MIL-STD-1553B, and FDDI communication stan-
dards. In one configuration, the NS would break up the bit stream from a foreign network into packets
sized appropriately for an EDSAP, then attach the header and trailer information necessary for sending this
packet to an EDSAP PE. All the traffic from a particular foreign network would be sent to one PE, which
would decide where to send it.

Foreign networks not supported by the NS could be interfaced to an EDSAP-based network by using
a PE along with an interface module intended for the foreign network.

10.5 TELECOMMUNICATIONS SWITCH

An EDSAP network could be us o interconnect a large number of telecommunications channels.
The communication channels to be int. nnected would be interfaced to an EDSAP communication net-
work using PE chips. The EDSAP communication network would then be used to route traffic among the
channels.

10.6 HDTV (HIGH-DEFINITION TELEVISION) STUDIO SWITCH

The 15-Mbyte/sec data rate of an EDSAP port should be adequate to carry a digital HDTV video
signal. A PE chip would be used to interface each of the video sources to an EDSAP port. The EDSAP net-
work would then route the video among ports. Also, the signal processing capability of the EDSAP could
be used to generate special effects. '

32

APPENDIX A
EDSAP SIZING FOR SAR

A.1 INTRODUCTION AND SUMMARY

This appendix describes an image-formation and target-detection processor for the Lincoln Labora-
tory 35-GHz SAR using the EDSAP architecture. It will be assumed that the reader is familiar with the
material presented in the Executive Summary and Introduction of this report. The key upgrades from the
DSAP to the EDSAP architecture will be mentioned, followed by a discussion of the processor. The
image-formation process includes an autofocus step; some assumptions are made concerning the form that
autofocus may take. Image formation will produce three images (e.g., HH, VV, and VH), which can be
used for detection and/or combined to form a polarimetric whitening filter (PWF) image.

The EDSAP architecture represents a significant improvement over the DSAP. While the individual
processing element (PE) is quite similar to the DSAP’s PE, the 1/0 and the interconnections among the PEs
have been substantially enhanced in the EDSAP architecture. While all of the DSAP PEs were connected
to a single high-speed data bus, the PEs and I/O interfaces in the EDSAP are interconnected using a num-
ber of 15-Mbytes/sec bidirectional channels linked by custom network switches. This permits a scalable
architecture in which the /O and interprocessor communication bandwidths can grow with the number of
PEs.

As mentioned earlier, each EDSAP PE is much like a DSAP PE except that its data memory will
contain 16 times as many complex words (one Megaword). Also, the wordlength has been increased from
32 bits to 48 (the PE will perform 24-bit fixed-point arithmetic). The EDSAP PEs are expected to run three
times as fast as the 10-MIPS DSAP PEs. Finally, the DSAP PE’s AGX (the processor that handles the
interface between data memory and the high-speed bus) is being replaced by an AGN, which interfaces the
PE to the network. The differences between the DSAP’s single-bus architecture and the EDSAP’s net-
worked architecture result in a significant change in functionality between the DSAP PE's AGX and the
EDSAP’s AGN.

The SAR digital processing involves forming three images in realtime. Each image represents a 375-
m-wide stripmap with 1-ft resolution. Each pixel in the image represents approximately l/4 m X '/4 m sam-
ple spacing. The image is fabricated as a “frame”: 2048 range samples wide by 512 pulses long (the data
have been “resampled” down from 1500 Hz to approximately 500 Hz; the latter represents pulses in this
document). The time required to collect a frame of data is between (.94 and 1.17 sec and is a function of
platform speed. The PWF is applied to the (complex) images to form a fourth, reduced-speckle image.
This image is fed to the constant false alarm rate detector (CFAR) process, which finds “regions of inter-
est” at a rate of about six per second (this corresponds to a false-alarm rate of 100 per square kilometer).
All four images are then available for texture discrimination and target identification.

The processor design uses 37 PEs (see Figure A-1). Five are allocated for range processing, which

involves computing (I, Q) samples from real inputs and then computing the range compression FFT. The
data are then shipped to one of four PEs to be used for the autofocus function. Each of the four PEs con-

33

tains one fourth of the range swath. While these PEs will contain data for all three polarizations, only one
polarization needs to be processed for autofocus estimates. The data and the autofocus estimates are then
transmitted to one of 16 PEs for cross-range processing. Each of these PEs creates three images for one
sixteenth of the range swath. The complex pixels from the three images are combined (using the PWF) to
form a fourth image with reduced speckle. The four images are then transmitted to one of twelve PEs allo-
cated for detection and identification. The size of the detection and identification section of the processor is
driven by memory requirements.

The sizing discussed in this appendix was done very conservatively, in part because the amount of
data memory required drives the sizing in most cases. This leaves a good deal of computing power and PE
I/0 bandwidth in reserve. The range-processing step is computation-bound and was sized to use 80% of
the computing power available in the five PEs. The maximum input or output data rate to a single PE is 4.7
Mbytes/sec (the input rate to each autofocus PE). The channel capacity is 15 Mbytes/sec. Figure A-1
shows the processing flow along with the amount of data memory required for each PE. The interconnec-
tions among the PEs as depicted in the figure represent a low-risk design with low utilization of the overall
EDSAP interconnect capability.

A.2 IMAGE FORMATION

A.2.1 Range Processing

At the start of range processing, data is input from three polarizations (e.g., HH, VV, and HV). For
each pulse at each polarization, 4096 11-bit A/D samples are input to an eight tap FIR filter to form 2048
complex (I, Q) samples. The inputs represent samples of an intermediate frequency, taken after the chirp
radar has been deramped. They are referred to as range offset video. Practically, the 4096 sample input
vector is decimated. Every other sample becomes an in-phase value to be paired with an adjacent input
sample as the quadrature component. The eight tap filters are low-pass to attenuate high-frequency arti-
facts of the process. Also, the in-phase filter coefficients are offset in time relative to the quadrature filter
coefficients to time-align each (I, Q) pair. The first part of range processing requires 144 MOPS.

The second step in range processing is the range-compression FFT. In this step the 2048 complex
samples from each channel are input to a Taylor-weighted FFT. The outputs of the FFTs (2048 complex
range samples for each of the three polarizations) are sent to a collection of PEs that serves as the comer-
turn bulk memory and performs the autofocus function.

In this design, a single PE will perform the entire range-processing function for a single pulse. Five
PEs will be allocated to the task, with pulses allocated to PEs in round-robin fashion. The input data rate
(from three channels) is 18.8 Mbytes/sec (3.77 Mbytes/sec for each of the five PEs). The output data rate is
the same. Each of the range-processing PEs partitions its outputs in range, sending one fourth of the range
swath to each of the autofocus PEs.

34

RANGE AUTOFOCUS XRANGE TARGET TARGET

COMPRESSION DETECTION IDENTIFICATION
(5 PEs) (4 PEs) (16 PEs) (8 PEs) (4 PEs)
/ PE
TOTAL INPUT RATE 4.7 MBYTES/SEC
18.8 MBYTES/SEC INTO EACH PE/ P
PE PE / PE
\ PE PE
PE /
PE *
) PE °
®
PE ° 'Y °
®
PE o
PE
PE ¢
PE PE PE
§ PE e |—
- /
80% MEMORY USAGE 80% MEMORY USAGE
60% COMPUTATION USAGE 60% COMPUTATION USAGE
Figure A-1. SAR processor.
A.2.2 Autofocus

The autofocus function has yet to be precisely defined. It is expected to be based upon the phase-gra-
dient algorithm and will include multiple transform passes (FFTs) on the data (perhaps a subset of the
data).

35

It is assumed that the data will be autofocused in 128-pulse batches. Also, while the data from all
three polarizations will be passed through the autofocus PEs, only one channel will be used to compute
autofocus estimates. Finally, the computation requirement was based upon the equivalent of three 128-
point FFTs at each range gate for each 128-pulse batch. This amount of computation power was then dou-
bled to determine that four PEs were required for autofocus.

While the range-processing PEs handle the data in single-pulse batches, the autofocus PEs work on a
128-pulse subframe [one second of data, or about 512 pulses, is referred to as a frame because images are
created in one-second batches (synthetic apertures)]. Note that the data is corner-turned implicitly during
the transfers from the range to autofocus PEs and then internally within each autofocus PE. As each batch
of data for autofocus is only one-quarter of a frame, four PEs can simultaneously maintain an input buffer
and an output buffer while processing the subframe in between. Autofocus estimates are transmitted to
each cross-range processing PE. Input and output data rates are 4.77 Mbytes/sec for each PE.

A.2.3 Azimuth Processing

Cross-range resolution is achieved by convolving across the pulse dimension at each range gate.
This is currently done using fast convolution (i.e., FFT-based) techniques. The radar data is convolved
with a Taylor-window-based filter. A quadratic phase correction and the autofocus estimates computed in
the previous step are incorporated into the filter. A fairly large number of contiguous range gates are
expected to use the same quadratic phase corrections (this saves storage).

The current implementation of this processing works on two frames (1024 pulses) of data. For each
of the three polarizations, at each range line, the convolution is computed by a complex multiply sand-
wiched between two 1024-point FFTs. The appropriate 512 points represent the complex image pixels at
the given range for the given polarization. A magnitude operation is performed to create an image for the
given polarization and is combined with the complex pixels from the other two polarizations to form a
reduced-speckle (e.g., PWF) image. The four images are made available to the detection and identification
processing stages.

Sixteen PEs are required to hold the data (given input and output buffering) for the cross-range pro-
cessing. About sixty per cent of the sixteen PEs’ computing power is needed. The input data rate for each
PE is about 1.2 Mbytes/sec. The output rate is 0.8 Mbytes/sec/PE. This assumes that the outputs of the
cross-range processing are four images per second, one for each polarization and the reduced-speckle
image, and that each image consists of 512 (cross-range dimension) by 2048 (range) pixels. Each pixel is
assumed to be real (the result of a magnitude operation).

A3 DETECTION AND IDENTIFICATION
Twelve PEs have been allocated for detection and identification processing. The sizing is driven

largely by the requirement to maintain four images in memory. Thus, there is a good deal of computational
capability in reserve should algorithms evolve.

36

One-meter cells are used in the CFAR detection process. A cell is computed by adding up a 4 X 4
collection of high-resolution pixels (from the PWF image). It is assumed that the resulting ground clutter
data is lognormally distributed. Thus, the logarithm of each cell is compuwed, and a two-parameter (mean
and variance) test is used to find detections. The perimeter of a 40 cell X 40 cell box centered on the target
cell is used to estimate the two parameters. In practice, eight lead-lag vectors .aust be maintained: four for
mean estimation and four for sums-of-squares computation for variance estimation. Each of the four vec-
tors represents a side of the 40 cell X 40 ce™ box.

Threshold crossings will be clustered; if a detection is within a target’s length of a previous detec-
tion, the two will be combined to form a cluster. It is envisioned that the cluster location will be computed
as a simple amplitude-weighted average of the locations of the detections in both range and cross-range.
Mature clusters (clusters far enough from the data being presently processed so that no new detections will
be added to them) are used to flag regions of interest.

Some of the operations associated with texture discrimination will be described. At this stage, the
data rate has been reduced by the CFAR to (on average) six regions of interest per second. A region of
interest (ROI) is, for example, a 175 X 175 pixel area centered upon a detected cluster. The size of the
region depends on the target’s size and is predicated on the assumption that the center of the region (the
location of the detection) could be any point on the target. A square with sides twice the size of the target’s
longer dimension would be guaranteed to contain the target within it. Thc {oilowing is a description of
some of the steps performed upon a region of interest and the target-sized rectangle once its orientation has
been estimated.

Orientation involves placing the “target” (e.g., an 86 X 12 rectangle) within the “region of interest”
(a 175 X 175 square with the centroid location at its center). Rectangles formed from a sequence of slides
(by four or eight pixels) and rotations (3-degree increments) are tested. The slide/rotation position that
contains the maximum energy is the assumed location/orientation of the target within the region of inter-
est.

The 50 brightest pixels in the 175 X 175 region are used to estimate (fractal) dimensionality within
the region. An algorithm is run to determine the minimum number of 2 X 2 boxes required to “cover” the
50 brightest pixels. Relatively few 2 X 2 boxes means that the bright spots clump together. This is indica-
tive of a dimensionality of 2 and a high likelihood of a target. Many 2 X 2 boxes indicates that the bright
spots are spaced randomly. The dimensionality is near zero and a target is not indicated. In-between values
may indicate a target (a one-dimensional “line” along the target may have been detected).

The standard deviation of the logarithms of the pixels in the 86 X 12 template is computed. A high
standard deviation is a strong indication of a target.

The power in the 25 (say) brightest pixels in the 86 X 12 template is compared to the power in all the
pixels. For targets, the brightest scatterers account for a significant portion of the total power.

37

APPENDIX B
EDSAP SIZING FOR 8- AND 64-CHANNEL PHASED-ARRAY RADARS

This appendix presents an EDSAP sizing for 8- and 64-channel phased-array radars. The process
illustrates two key properties of the EDSAP architecture. One is the ease with which one can integrate or
interface to commercially available components. The other is the ability to scale the EDSAP to the task at
hand. An EDSAP for 8-channel and 64-channel versions of a phased-array radar is described. This appen-
dix was originally written as part of the study that is reported in Shaw, et al. {3]. Since the time of the
study, technology has progressed to the point where the EDSAP is expected to run faster than the speed
assumed in the study. This appendix uses the same assumptions as the study: an EDSAP with its process-
ing elements running at 20 MIPS (million instructions per second), which corresponds to 60 MOPS (mil-
lion operations per second), communication channels that can sustain a communication rate in each
direction of up to 15 Mbytes/sec, and a chassis that can hold eight 6.5 in. X 12.0 in. boards.

The phased-array application involves adaptive beamforming followed by Doppler filtering for
moving target detection. The processing can be broken down into four steps:

1. For each of the channels (elements of the phased array), a finite impulse response (FIR) filter
(a) fabricates complex samples from the radar returns, (b) performs pulse compression, and
(c) provides channel equalization.

2. A subsample of the data from each channel is used to estimate the adaptive weights required for
beamforming. This part of the processing will be referred to as the sampled matrix inversion
(SMI).

3. The beamforming step consists of applying the estimated weights to combine the eight (or 64)
channels into a single stream of data (single beam).

4. The vector-processing step consists of Doppler processing, clutter cancellation, and constant
false alarm rate (CFAR) detection.

B.1 SIZING OF EDSAP FOR 8-CHANNEL PHASED-ARRAY RADAR

The processing is partitioned as follows: FIR filtering, beamforming, vector processing, and sam-
pled matrix inversion (SMI). Figure B-1 shows the processing flow for the system. The numbers given in
the figure are the data rates expected over the indicated paths in Mbytes/sec. The data comes from eight A/
D converters, each operating at 4.5 million 12-bit real samples/sec or 6.75 Mbytes/sec. Each of these data
streams goes into an FIR filter that creates the 1 and Q samples, equalization, and pulse compression. The
output from each of the FIR filters is 0.75 million complex 2 X 16-bit numbers/sec or 3 Mbytes/sec. The
output of the FIR filters goes to two different places:

1. Each of the eight channels goes to each of the beamformers, where a weighted sum is taken to
derive a beam.

2. Each of the eight channels also interfaces to the SMI processing, where a covariance matrix is
estimat~d and used to compute appropriate weights for the adaptive nulling.

39

INPUT FIR
.75 FILTER
INPUT FIR
675 | FILTER —rv
| 300
INPUT FIR FORM
675 | FILTER
INPUT FIR BEAM 3.00
675 | FILTER FoRM | 1
1200 | vector | <0.01
INPUT FIR >
—————i PRO
6.75 FILTER — C
3.00
INPUT FIR FORM
575 > FILTER
INPUT FiIR BEAM 3.00
675 | FILTER FORM |
INPUT 1
= Flt‘lrIZR [005 NOTE: NUMBERS ARE DATA
‘ RATES IN MBYTES/s
A
o] ©
el 2
o v
SAMPLE MATRIX
INVERSION

Figure B-1. Processing flow for 8-channel phased-array radar.

The existing implementation has the FIR filters outputting all their data onto a bus. The SMI proces-
sor then grabs the small percentage of the samples that it needs from that bus. In the EDSAP implementa-
tion, rather than send all the data to the SMI and let it sort out what it needs, each FIR filter sends only the
data that is actually to be used by the SMI. The output of the SMI processing is < 0.01 Mbytes/sec to each
of the beamformers. The output of the beamformers is 0.75 million complex 2 X 16 bit words/sec, or about
3 Mbytes/sec. The beamformer output goes to the vector processing. The vector processing performs MTI
radar processing on each of the beams. The vector processing outputs a very low data rate (< 0.01 Mbytes/
sec).

TABLE B-1
Processing and Communication for 8-Channel Radar

Board function | Board type Qty Source Mbytes/s | Destination Mbytes/s
FIR Quad FIR 2.00 AD 54.0 Beamform 24.0
SM! 0.4
SMI Hex PE 0.16 FIR 04 Beamform <0.01
Beamform Hex PE 1.33 FIR 24.0 Vector Proc 12.0
Vector Processor Hex PE 1.00 Beamform 12.0 Data Proc <0.01

Table B-1 lists the processing and communication necessary for implementing the 8-channel radar
with the EDSAP. The first column is the board function followed by the board type. Next is the number of
copies of that board type that are required (these numbers will be justified later in this section). Also shown
is the input source for the data into the processing module and the bandwidth of that data in millions of
bytes per second, followed by the destination for the data output by the module and its bandwidth. It
should be noted that communication within a module is not accounted for in this table.

B.1.1 FIR Filter Implementation

In the current system each of the eight channels contains a FIR filter. These FIR filters are imple-
mented with eight A100 filter ICs and two adders. Each A100 performs approximately 96 million multiply
accumulates per second. The processing element (PE) performs one multiply and two additions per
instruction cycle. Running at a 20-MIPS rate, a PE can perform 20 million multiply accumulates per sec-
ond. Thus, it would take 40 PEs to replace the eight A100s currently being used to implement the filter. It
was therefore decided to continue using the A100s to implement the FIR filters.

The EDSAP PE can be used as a general-purpose programmable interface chip. In this case it is used
to interface the FIR filter to the rest of the EDSAP. Figure B-2 is a diagram for a quad (containing four FIR
filters) FIR filter board that is the same size as a hex PE board; it can be plugged into a hex PE slot within
the EDSAP.

B.1.2 Sampled Matrix Inversion

The samples selected for the SMI processing are determined by the PE chips used to interface the
FIR filters.

The SMI process uses a relatively small number of input samples to estimate the weights for adap-
tive beamforming. In the current processing scheme, this function requires approximately five MOPS
(implemented using a single Motorola DSP56001). This indicates that the function could easily be per-
formed in a single PE (60 MOPS) of a hex PE board. The beamforming weights produced must be applied

41

COMMUNICATION NETWORK
80 MBYTES/SEC IN EACH DIRECTION
NS PROM
24
ya
rd
16
<~ A100
a | 16 +
PE [>—{—><{A100 <+ }—{A100{A100 {A100{A100 HA100 | REG
18
\mylmi A100
FIR FILTER 0
A FIR FILTER 1
FIR FILTER 2
N FIR FILTER 3

Figure B-2. Quad FIR filter board.

to data taken at the same time as the data used to estimate those weights. This means that the eight-channel
input to the beamforming function must be stored (buffered) during the time it takes to estimate the
weights. It is expected that the 10-msec lag associated with the present SMI processing scheme is a reason-
able estimate of the latency for this same processing on a single PE.

The adaptive nulling weights derived by SMI would be applied in the beamforming section. The
beamforming sec’ion would buffer approximately 10 msec worth of data so that weights could be applied
to the data they were derived from.

B.1.3 Beamforming

Beamforming requires 24 million multiply/accumulates per second per beam. Each PE on a hex PE
card is capable of 20 million multiplies and 40 million additions per second. Therefore two PEs (or ore
third of a hex PE) should be able to perform the beamforming for one beam with margin. To process four
beams, eight single PEs or l'/3 hex PEs will be allocated.

42

The beamforming PEs would buffer the data, delaying it enough so weights that correspond to the
appropriate samples of the SMI can be applied to the data.

B.1.4 Vector Processing

In the current system the vector processing is done by four vector processors. Each of these proces-
sors currently employs an array of eight Motorola DSP56001 DSP chips and a bus-oriented communica-
tion network.

The ability of the PE architecture and instruction set to efficiently perform Doppler filtering and
CFAR was demonstrated with the DSAP processor in the UAV radar [2]. A comparison of the performance
of the DSAP in the UAV radar with the vector-processing requirements of this system indicates that a sin-
gle hex PE would be sufficient.

B.1.5 Communication Network

Figure B-3 is a block diagram of the EDSAP sized to implement an 8-channel phased-array radar;
the shaded area is the backplane. The communication network is part of the backplane (the EDSAP has an
active backplane). The system shown in Figure B-3 includes the card complement specified by Table B-1.
The quad FIR and hex PE cards indicated by dotted lines are optional spares and are included to give a
degree of fault tolerance.

B.2 SIZING OF EDSAP FOR 64-CHANNEL PHASED-ARRAY RADAR

The 64-channel system is essentially the same as the 8-channel system except that a weighted sum of
64 channels is being taken for each of four beams that are formed. This also means that the SMI processing
must get data from 64 channels instead of eight.

B.2.1 FIR Filter and Beamforming

The same EDSAP quad FIR filter board proposed for the 8-channel system can be used for the 64-
channel system. Hex PE cards are used for beamforming. Figure B-4 shows a way to use a quad FIR filter
card and a hex PE to perform the FIR filtering and beamforming on four input channels for all four beams.
The numbers shown for each of the data paths specify the data rate in Mbytes/sec. For simplicity, Figure B-
4 does not show all the data paths in and out of PEs 1, 2 and 3. Basically, PEs 0 through 3 cooperate to start
the formation of four beams for four input channels. Each PE applies the four sets of weights (one for each
beam) to the input stream from one channel. The PEs then shuffle the data so that each PE has the four
weighted samples required for starting the formation of one beam. These samples are summed and output
to other PEs that will finish the formation of the 64-element beam. This will now be described in greater
detail.

43

FIBER-OPTIC VO PROCESSING

[4 A L} s A A Y
CHO
CH1
CH2
CH3
CHa
CHS
CHé
CH7

1ISTIINTLIRY e - |

ws I ows Il ws Il ws QUAD :3:5 :°“:° \\SPARE, | QuAD [nex pe|\Hex Ps:lnexpe

FR || g ‘s::\ns': stoT! | FIR || BEAM ||\ SPARE| WP
- [[
NS NS NS NS NS NS NS NS NS NS NS NS
TG T DT L))
12 34 56 787 15 37 26 48
KL L\ K \ 8y
12 34 56 78718 37 26 48
&L \ \ \\ & 8)/ VA,
12 34 56 78 4 7 18 37 26 48
EDSAP BACKPLANE

Figure B-3. EDSAP topology for implementing an 8-channel phased-array radar.

QUAD FIR HEX PE
A —A
i A
PARTIAL SUM
4X3=12CHAN
1 BEAM
9.00
PARTIAL SUM
16 X 3 = 48 CHAN
1 BEAM
9.00
TO SMI
025
PARTIAL SUM PARTIAL SUM SUM
4 CHAN 16 CHAN 64 CHAN
INPUT FIR 1 CHAN 1 BEAM 1 BEAM 1 BEAM
‘ |1 BEAM 1 BEAM__
575 | FILTER 3.00 PEO =00 | PE4 3.00 PES 3.00
TO SMI WEIGHTS FROM SM!
0.25 0.01
PARTIAL SUM
4 CHAN
INP FIR 1 CHAN 1 BEAM
6.75 FILTER 3.00 PE1 300
TO SMI WEIGHTED A/D DATA
0.25 1 CHAN, 3.00
PARTIAL SUM
4 CHAN
INP FIR 1 CHAN 1 BEAM
675 *| FILTER 3.00 PE2 300
TO SMi
0.25
PARTIAL SUM
4 CHAN
INP FIR 1 CHAN 1 BEAM
675 | FILTER 3.00 PE3 300

NOTE: NUMBERS BELOW EACH LINE
ARE DATA RATES IN MBYTES/s

Figure B-4. EDSAP FIR filter and beamforming data flow.

PE O performs its processing steps concurrently on successive sets of data. That is, it applies the

complex weights to the input stream at the same time it forms the appropriate beam using the most recently
shuffled data. These same steps are performed by PEs 1, 2 and 3, although the explanation that follows is
from PE 0’s point of view. The steps to process each batch of data are as follows:

45

I. Complex data words (16 bits I, 16 bits Q) are output from the FIR filter at a rate of 0.75 MHz,
corresponding to a data rate of 3.00 Mbytes/sec. This PE input data is buffered until PE 0
receives processing weights from the SMI processing.

2. Once PE 0 receives one weight for each of the four beams from the SMI processor, PE 0 applies
the weights to its data, creating partial sums for all four beams. This processing requires 0.75
million complex multiplies per second per beam for a total of 12 million real multiplies and six
million real additions per second for all four beams.

3. The weigmed data for beam 0 is kept in PE 0. The weighted data for bcams 1, 2 and 3 is sent on
to PEs 1, 2 and 3 respectively. This weighted data forms three streams each at 0.75 million com-
plex words/sec or 3.00 Mbytes/sec. Each of these streams contains data corresponding to PE 0’s
input channel, weighted for a particular beam. While PE 0 is sending the three steams of data to
PEs 1,2 and 3, PEs 1, 2 and 3 are sending PE O their data weighted for beam 0.

4. PE 0 takes the weighted beam 0 data from PEs 1, 2 and 3 and adds it to its own. This requires
2.25 complex or 4.5 million real additions per second.

5. The partial sum of four input channels for beam 0 is sent to PE 4 by PE 0.

PE 4 adds the beam O partial sum from PE 0 to those from three other PEs (on other hex PE boards),
creating a partial sum accumulated from the data of 16 A/D input channels. This requires 2.25 complex or
4.5 million real additions per second.

Ignoring for a moment what PE 5 is doing, it is easy to see that four quad FIR filters and four hex
PEs can be used to form a cluster that derives partial sums of 16 input channels for all four beams. Four of
these clusters can be combined to process 64 channels. One PE 5 in each of these clusters (the other three
are spares) can be used to take the 16 partial sums and create the sum for all 64 channels for a particular
beam. Hence, four beams have been formed from 64 input channels.

It is interesting to note that the amount of beamforming a PE can perform is limited by its /O to the
communication net (not the bandwidth of the communication net) rather than by processing rate. The arith-
metic processor (AP) within the PE has two ALUs capable of performing a total of 40 million real addi-
tions and 20 million real multiplies per second. PEs 0, 1, 2 and 3 are each performing 10.5 million real
additions and 12 million real multiplies per second. PEs 4 and 5 are not as busy. However, the communica-
tion input to all the PEs used for the beamforming is just over 12 Mbytes/sec of the available 15 Mbytes/
sec.

B.2.2 Sampled Matrix Inversion
The samples for SMI processing are determined by the PEs used to interface the FIR filters.
The weights derived by SMI are applied in the beamforming section. The beamforming section buff-

ers approximately seven msec worth of data so that weights can be applied to the data they were derived
from.

46

The SMI task for the 64 channels is much greater than it is for the 8-channel system. A special
wafer-scale device called MUSE [8] has been developed to perform the SMI processing for the 64-channel
system. The total data rate into the MUSE device is somewhere around 12 Mbytes/sec (16 Mbytes/sec was
budgeted in sizing the communication net) and the rate out is around 50 Kbytes/sec. The MUSE is inter-
faced with two PEs for input and one PE for output, similar to the way the A100s are interfaced on the FIR
filter board.

B.2.3 Vector Processing

The vector processing for the 64-channel system is analogous to that of the 8-channel system, as
both systems form four beams after interference cancellation. A single hex PE is again used to implement
the vector processing (VP) for all four beams.

B.2.4 Network and Physical Layout

The EDSAP for the 64-channel system is divided into two superclusters, each contained in its own
chassis. The superclusters are in turn made up of smaller clusters. Figure B-5 shows the cluster used for
FIR filtering and beamforming of 16 input channels. This cluster contains four pairs of quad FIR filters and
hex PEs that plug into the backplane of the supercluster. The backplane contains 12 network switches to
achieve the necessary network bandwidth. There are 16 bidirectional connections for the A/Ds and eight to
connect to the rest of the supercluster.

Figure B-6 is a diagram of a supercluster, which is made up of the following:

1. Two 16-channe] FIR/beamforming clusters, along with their 32 bidirectional fiber-optic connec-
tions for the A/Ds (total of 64 fibers).

2. Aspare quad FIR filter.
A spare hex PE that can be used for either beamforming or vector processing.

4. A MUSE board. There is a MUSE board in each of the superclusters, only one of which is actu-
ally used in normal operation. The other is a spare for fault tolerance. It is possible to run the
MUSE boards in both superclusters and compare the results as a diagnostic.

5. Ahex PE that may be used as a VP. The VP in either supercluster is adequate to handle the
required vector-processing job; the other becomes a spare. The spare VP can be used for beam-
forming as well as vector processing.

6. Sixteen bidirectional fiber-optic I/O ports, eight of which are used to tie the two superclusters
together. The other eight are available to devote to other devices, possibly spare A/Ds.

An EDSAP supercluster for 32 channels of the 64 would require twenty-four 6.5 in. X 12 in. boards
spaced at 0.75 in. The communication network is part of the backplane. The fiber-optic transmitters/receiv-
ers could be contained either on a separate board or on the backplane. The whole supercluster should fit in
a chassis 8 in. high X 15 in. wide X 22 in. deep (1.5 f). Assuming 20 W per board, 1 W for each of the 36
NSs on the backplane, 20 W for clock generation/distribution, 2 W for each of the 48 fiber-optic ports, and

47

QUAD ":E"A :.E QUAD ’LEE’:;E QUAD ’f;;e QUAD “::A;E
FIR 1 rorm || PR || Form FIR || rorm|| PP || Form
[Vi [\ L \ L
NS NS NS NS NS NS NS NS
wee LU DU L)
1514 | [1312] |1110] | 9 8 76 | |54 32 (10
\ 7
SUPER NS NS NS NS
CLUSTER , ,
BACKPLANE { LJ l] LJ ’
1 & Y J
TO REST OF SUPERCLUSTER

Figure B-5. EDSAP 16-channel FIR filter and beamfomxingvcluster:

power supplies of 80% efficiency, the total power dissipated by each of the two superclusters should con-
servatively be under 800 W.

In order to demonstrate that the communication network can handle the data rates, Table B-2 shows
some representative data rates through the areas that are most likely to present bottlenecks. Note the spare
bandwidth available; clearly, bandwidth is more that adequate. The unused bandwidth allows the spare
boards to serve either of the superclusters.

48

FIBER-OPTIC 1O
—

r —
TO OTHER
SUPERCLUSTER \ \ N\ N\

OTHER VO /— SUPERCLUSTER BACKPLANE
ns || ns || ns || wns e |[MExeell | [nexee
sPARE | | SPARE vp
I
ns || Ns || ns || ns ns || ns || ns || ns

/

16 A/Ds 16-CHANNEL 16-CHANNEL
FIR/BEAM CLUSTER I_ FIR/BEAM CLUSTER
16 A/Ds

Figure B-6. EDSAP 32-channel supercluster.

49

TABLE B-2
Communication Data Rates for 64-Channel System
Data Source and Operations MBytes/sec

Data out of 16-channel FIR/beamforming cluster:”

1 Beam output from beamforming 3.00

Partial sums of 16 channels for 3 beams (3 X 3.00) 9.00

Samples from FIR filters to SMI (16 X 0.25) 4.00

Total data rate out of cluster (out of available 120) 16.00
Data into FIR/beamforming cluster from rest of system:”

Partial sums of 16 channels for 1 beam (3 X 3.00) 9.00

Weights from SMI processing to beamformers (16 X 0.01) 0.16

Total data rate into cluster (out of available 120) 9.16
Data into supercluster doing MUSE and VP for both superclusters:

2 Beams output from beamforming 6.00

Partial sums of 16 channels for 2 beams 6.00

Samples from FIR filters to SMI (32 X 0.25) 8.00

Total data rate into supercluster (out of available 120) 20.00

* Does not include the VO for the A/Ds

50

® N o vn ok

REFERENCES

F.E. Hall and A.G. Rocco Jr., “A compact programmable array processor,” The Lincoln Laboratory
Journal Vol. 2, No. 1, 41-62 (1989).

C.E. Schwartz, T.G. Bryant,].H. Cosgrove, G.B. Morse, and J.K. Noonan, “A radar for unmanned
air vehicles,” The Lincoln Laboratory Journal Vol. 3, No. 1, 119-143 (1990).

G.A. Shaw, R.A. Gabel, D.R. Martinez, A.G. Rocco, S.C. Pohlig, A.D. Gerber, J.K. Noonan, and K.
Teitelbaum, *“Multiprocessors for radar signal processing,” MIT Lincoln Laboratory, Lexington,
Mass., Technical Report TR-961 (17 November 1992).

“Testability bus specification,” IEEE draft specification P1149/D7 (31 October 1988).
Q.L. Klein, private communication (22 December 1988).

P. Rygiel, private communication (29 April 1988).

Q.L. Klein, private communication (22 December 1988).

C.M. Rader, “Wafer-scale integration of a large systolic array for adaptive nulling,” The Lincoln
Laboratory Journal Vol. 4, No. 1, 3-30 (1991).

51

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

and end g the of Send Wus burden nr any other aspeci of thm

Public reporing burden 1of thes of [} 10 sverege 1 hour per response. Mnmummmmm-mmwmumw

(0704-0186), Wastungton, DC 20503,

g tes burdan, ib Washmgion

S [tor [mw|2|5mmwm1mWVAWW“&NW#W“WWWM

6 May 1993 Technical Report

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

4. TITLE AND SUBTITLE

Overview of Enhanced Dats Stream
Array Processor (EDSAP)

6. AUTHOR(S)

A. Gregory Rocco, Paul D. Linton, and
James K. Noonan

5. FUNDING NUMBERS

C — F19628-90-C-0002
PE — 63250F
PR — 224

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Lincoln Laboratory, MIT
P.0. Box 73
Lexington, MA 02173-9108

8. PERFORMING ORGANIZATION
REPORT NUMBER

TR-974

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
U.S. Air Foree

Electronic Systems Center

Hanscom AFB, MA

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

ESC-TR-92-159

11. SUPPLEMENTARY NOTES

None

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

EDSAP. The first EDSAP board is expected to be available in late 1993.

The Enhanced Data Stream Array Processor (EDSAP) is a scalable version of the DSAP processing architecture that will
allow massively parallel processing. Lincoln Laboratory previously designed two generations of DSAP processors; these
programmable signal/data processors provide very high throughput in small, lightweight packages that require low power
use. The EDSAP design builds upon the DSAP architecture in a way that provides for processing in the gigaop (billion
operations per second) to teraop (trillion operations per second) range. This capability is being accomplished primarily by a
significant redesign of high-speed 1/0 and interprocesso: communication. Other architectural improvements, as well as rapid
technological advances, contribute to the improved processor. This report provides an overview of the architecture of the

14. SUBJECT TERMS

15. NUMBER OF PAGES
64

16. PRICE CODE

ABSTRACT
Same as Report

synthetic aperture radar phased array radar radar signal processing
parallel processing real-time processing packet-switched network
digital signal pr ing ication network(s) massively parallel processing
17. SECURITY CLASSIFICATION | 18. SECURITY CLASSIFICATION| 19. SECURITY CLASSIFICATION { 20. LIMITATION OF
OF REPORT OF THIS PAGE OF ABSTRACT
Unclassified Unclassified Unclassified

NSN 7540-01-280-5500

Standard Form 298 (Rev. 2-89)
Prescribed by AMS! Std. 239-18
298-102

