THE FINDINGS IN THIS REPORT ARE NOT TO BE CONSTRUED AS AN OFFICIAL DEPARTMENT OF THE ARMY POSITION UNLESS SO DESIGNATED BY OTHER AUTHORIZED DOCUMENTS.
Development of Safe, Effective Vaccines for Dengue Virus Disease by Recombinant Baculivirus

Ching Juh Lai, Ph.D.

National Institutes of Health (NIH)
Department of Health & Human Services
Bethesda, Maryland 20205

Approved for public release; distribution unlimited

Dengue Virus; Genetic Engineering; Recombinant DNA; Vaccines; Biotechnology; Diseases; ID; RA I

Unclassified

Unclassified

Unclassified

Unclassified

Unlimited
FOREWORD

In conducting research using animals, the investigator(s) adhered to the "Guide for the Care and Use of Laboratory Animals," prepared by the Committee on Care and Use of Laboratory Animals of the Institute of Laboratory Animal Resources, National Research Council (NIH Publication No. 86-23, Revised 1985).

Citations of commercial organizations and trade names in this report do not constitute an official Department of the Army endorsement or approval of the products or services of these organizations.
In our previous Annual Report, covering the period 3/1/91-
2/28/92, we described our finding that cells infected with
recombinant baculovirus expressing the 80% N-terminal portion of
the dengue virus envelope (E) glycoprotein secreted the 80%E
protein into the surrounding medium. This property was unique
for recombinant baculoviruses containing the dengue E gene
constructed in this laboratory. Viruses containing this E
fragment from dengue type 2, 3 or 4 were designated b(DEN2,
80%E), b(DEN3, 80%E) or b(DEN4, 80%E), respectively. Mice
inoculated with the secreted DEN4 80%E protein in partially
concentrated medium developed a stronger antibody response to
DEN4 E, as determined by Western blotting, than did mice
inoculated with lysates of cells infected with b(DEN4, 80%E) or
with previously constructed recombinants b(DEN4, 93%E), b(DEN4,
C-preM-E-NS1-NS2A), or b(DEN4, RSVG-E). Since the dengue virus
protein products of the latter two recombinants appeared to
partially protect rhesus monkeys against challenge with wild-type
DEN4 virus in an earlier experiment, we decided to test b(DEN4,
80%E) in a second monkey experiment, to see if we could obtain a
more convincing protective response.

A total of 16 rhesus monkeys were inoculated intra-
muscularly with baculovirus products. Two control monkeys
received a lysate of cells infected with wild-type baculovirus,
and two received medium from the same cells. Four monkeys were
inoculated with a lysate of cells infected with b(DEN4, 80%E),
four with medium from these cells, and four with a lysate of
cells infected with b(DEN4, 93%E), which does not secrete its E
product. Each monkey was inoculated three times with 2 ml of
baculovirus product; boosting was done at 4 weeks and 13 weeks.
All monkeys were challenged at 16 weeks by subcutaneous injection
of 10^5 pfu of DEN4 strain 341750, provided as a lyophilized
preparation from WRAIR (1/86). Monkeys were bled during the
course of immunization to evaluate their immune response and
after challenge to assess viremia.

The antibody response to immunization, determined by 50%
plaque reduction neutralization using pre-challenge sera, was
very poor. One of four monkey recipients of b(DEN4, 93%E) lysate
had a titer of 1:10, two animals which received b(DEN4, 80%E)
lysate had titers of 1:10, and two monkeys immunized with b(DEN4,
80%E) medium had titers of 1:10 and two had titers of 1:20. All
other monkeys, including controls, were negative.

Tests for post-challenge viremia, using amplification on
C6/36 mosquito cells followed by C6/36 plaquing, failed to
demonstrate viremia. Control animals immunized with wild-type
baculovirus material were positive on only a few scattered days,
and when the amplification and plaquing were repeated for this
group, plaques were again obtained on scattered days, but these
differed from the first result. The cause of this failure is not
known. We can draw no conclusion from this experiment as to the
protective efficacy of these baculovirus products in monkeys, but
it is evident that they are only weakly immunogenic.