A266 781
Wl nmm [

A REUSABLE SOFTWARE CATALOG INTERFACE

By
JOE E. SWANSON
Bachelor of Music Education
Central State University
Edmond, Oklahoma

1981

Q?ﬁg@ﬁﬂﬁlhggggak;ﬁgf

Submitted to the Faculty of the
Graduate College of the
Oklahoma State University
in partial fulfillment of
the requirements for
the Degree of
MASTER OF SCIENCE
December, 1991

2" 93-15727
— MM

e I
" RLPOR T DOCUMENTATION PAGE

e TR Dayp ATy

=Y =

vLeal owx Ty UL ST ST
Terlavig e . £y ety) 7

Niouliy 1:, .- “‘V.'..AL. LR wemty te s ¥
Ly SR e S MWL el e S D, Dl

.- b ~ e - o™ . - - BLRee =

L I -'-l.' Ut el Tk e Starg R N T A Y

7. AGE Y SE CALT L Fanes

TN e e

b - o

4. TITLE 20D SLATTILE

R
H {\tuSﬂéle 5:)(74(,’_4128 (,0»?2}/},? j:?ﬁezfﬂ,cc’

e - Bt e T N .
5. ALTCH,3) L e el L e e
. ’
crr < £
rr Joe €. Scwdnsony "
TOPERFIRMNG LFSALIZATCN MAME S) A_"G—A:(_'UESS.EQ) T T T T “""""s"',;',':_':".‘." il RETOT N
e TREIVTEINET L T e
FE/CHT NLLE2A

&/(,I’,j /Lom/.l STAT: tniy, ,_/&)'."’/

ST, Ilt-u/i?c‘,'l./ owldh,ma 7 ‘/075(
“~

.

R

-

S TN T I TR T I R RS T T e i e s :
ST MU T SRS SEENCT MALE, 3) AND ACCFES5ES) 10, SCe e A Te Tl N3 ATENDY
g. ST D it Do N AT

AESCT ALV 23

Mj L/;Vf//’lf/ '

.

L wa
T SUPT L ALY YOTES Tt T T Tmrm e T
- e

22 SIST T .CHoAYALAZ UTY STATEMENT :D OIsT= 2TONCC e
N PRSI RO I A

‘l
e

v

13. A8ST AT (MaxFm 220 wer2s)

——

Soﬁwarewuseisthemldng.ofanycodeoreodesegmem
need. Soﬁwmmsabiﬁtykwohmnotonlythemmeofsoﬂwm,bmdsohowﬂmsoﬁwmeis

designed. In other words, it involves designing totally self-contained software components. Each

and using it again to meet a specific

component should be easily

modifiable to meet a potential user's need. This paper reports the pro-

a software library that uses the faceted cataloging

totypical implementation of
a reusable software system.

signedtoactasaninterfaeebetweentheuserand
be used fo catalog and retrieve software compopents
a domain-specific implementation, the number of facets used in the
whilestinachievingﬁnsameseamhandreuievalmsum.

_ Within the realm of this prototype, which is
interface may be reduced

scheme. Itisde-
The prototype canl

-4 SCBLEr [TEAMS
SeF7u e Réw s ﬂ: USE ,:,/'r,?/r,.r

Fhaceted Crutplog.aq S bheme

RETEY -.-;s:'é?‘mes
/7E

¢ -mCz oCre

e

-

17. SETUR. Y CLASS FICATIGN
OF REP b T

(Lar (s

18. SECURITY CLASSIFICATICN
OF THIS PAGE

(Lo € /17.')(

19 CECLAITY CLASS FICATCN
OF 43STRACT
oA < /1.’ 54

% A UNSF ABSTaACT

N 7540 0,-2%K-31520

Ly ANS A8

A REUSABLE SOFTWARE CATALOG INTERFACE

Thesis Approved:

M‘ 5”’\,»1\.\ ‘(ZA (,\,i M

The51s Adviser

—
, & LLu
éhm&
Dean of the Graduate College
Accesion For
NTIS CRA&! g
DTIC TAS
. remepmm g Uannouniced il
 IARCEETRE ' ‘ J;::’.t.im_itionw__
[
By

D! {. Ig_)..;;d,?“. r

Avahanuty C0rles
pmmpm S o
Dist BIYR il

41l |

ii

ACKNOWLEDGEMENTS

I wish to express my sincere appreciation to Dr. Mansur
H. Samadzadeh for his encouragement and advice throughout my
thesis research. His willingness to give guidance and
direction made this a meaningful learning experience. I
also wish to thank Drs. G.E. Hedrick and John P. Chandler
for serving on my graduate committee.

I also wish to thank Rohinton Mistry and Winai
Wichaipanitch for the use of their Operating Systems II
projects as test data.

A very special thanks to my wife, Terri, for her
patience and understanding during the course work and thesis
preparation; her assistance in preparing the manuscript was
invaluable. To my sons, Jacob and James, thanks for not
giving up when I would say "wait a minute." 1It's time to

play ball.

iii

TABLE OF CONTENTS

Chapter
I. INTRODUCTION...:cccecessesccccccocsns 500G

II. LITERATUREREVIEw...'...................

Different Approaches to Reusability.
Reusability in PracticCe...ccceeceeeecaccns

III. THE PROTOTYPE IMPLEMENTATION......ccce.s

General OVervVieW......eeeeeeeeoscoceccannes

Concept of the Design...ccceeeecec..
User Interface....ceeeceecccacccnns

Sample QUErieS..ceceeesssccccccsscsssccsss

Query ReSUltS.:.isececesescnccacseces 5

IV. SUMMARY AND FUTURE WORK...... 0000000000000 C ceen

BIBLIOGRAPHY .. et eeeecevecccesssncscccasasssnsnas

APPENDIXES... ® @ & & & & ¢ 0 ¥ % 00 0 0 0 0 00 ® @ ® & & ¢ & & & 5 0 0 0 0 s 0 0 0

SOFTWARE REPOSITORY USER'S
GUIDE...."...

APPENDIX A

APPENDIX B - SOFTWARE REPOSITORY SYSTEM
ADMINISTRATOR'S GUIDE......

APPENDIX C - PROGRAM SOURCE CODE LISTING.

APPENDIX D - FUNCTION FACET THESAURUS..........

APPENDIX E - OBJECT FACET THESAURUS.....cccce.

APPENDIX - MEDIUM FACET THESAURUS.....
APPENDIX
APPENDIX

APPENDIX

H
|

iv

F
G - SYSTEM TYPE FACET THESAURUS.
H

= FUNCTIONAL AREA FACET THESAURUS...

SETTING FACET THESAURUS..::.e0ece.

16
16
16
20
25
27
30
32

35

36

43

51

111

113

115

117

119

121

APPENDIX J - LANGUAGE FACET THESAURUS

APPENDIX K - SAMPLE QUERY RESULTS....

LIST OF TABLES

Table Page
I. Facets with File Names....ccceeeeeccecccannn .o 17
II. Sample Thesaurus Entries......cccccceeeeeecnns 5 18

III. Names of the Data Files with Supporting

File NaMeS...ceeeeioessooecsccssncncns ceeenns 19

IV. File Extension Definitions.......c.cccc00ene.. 5 19
V. Sample System Queries...... 500000000000 0000C .o 26
VI. Summary Of QUerieS.....ceeeceeeecccccscsosnssss 29
VII. Summary of Valid and Invalid Queries.......... 29

vi

LIST OF FIGURES

Figure Page
1. A Partial Weighted Conceptual Graph for the

Function Facet.....c.eeeeteerncessnccacnns ceeees 8

2. Software Library Program Opening Menu............ 21

3. Data Entry SCreenN....cccceeeeccecses HoOOOOoODo00D0C 22

4. Data Entry Screen with Thesaurus.......cccccees 5 24

vii

CHAPTER I

INTRODUCTION

Software reuse is currently a topic of great interest
in the theory and practice of computer science in both
academia and industrial research. Reducing software
development cost through reuse of previously written and
debugged code is practiced in many forms today and it "is an
effective strateqgy for developers to reduce implementation
cost" [PA90]; however, it is usually at the individual
programmer level and very informal, based on one person's
stock and his/her concept of what can be reused. By
combining the efforts of a set of programmers at a given
site, reuse libraries can be formed. Each programmer can
then draw on source code from this library to accomplish a
given task.

The next step is to make the use of the library
efficient enough that the programmers would be willing to
use it regularly, both as a customer and a contributor. The
software components in the library must be readily
accessible. A means must be devised to retrieve the closest
match that meets a programmer's need with the least amount

of modification.

In this thesis, the results of current work is examined
and the most accurate library interface is identified. For
this work, the interface is defined as the set of parameters
that most clearly define a software component thus making
its retrieval possible.

To demonstrate the feasibility of this task, a partial
implementation of a software library is given. The data
manipulated is the set of parameters used to describe each
member of the software library (hereafter referred to as the
repository). Identifying the most efficient method to store
components is a topic for future research.

The concept of this implementation follows the basic
structure proposed by Kazerooni-Zand, Samadzadeh, and George
(KS90]. 1In their work, they deal with reuse at the object
code level. Their system involves three major subsystems.
The Identification Mechanism (IDM) is designed to select
those components that meet a programmer's need. The
Software Control Mechanism (SCM) is designed to provide
access to different versions of a program or component; it
receives input from the IDM. The Interface is designed to
act as a pre and post compiler; it coordinates the micro-
incremental compilatimon between their Reuse of Persistent
Code and Object Code system and the compiler [KS90].

This thesis deals only with the action taking place
within the IDM. The interface will be the parametrization

of the detailed description of all components in the

software repository. In terms of the system defined by
Kazerooni-Zand et al. [KS90], this is the Software Attribute
Databace. The level of reuse in this work is restricted to

source code.

CHAPTER II

LITERATURE REVIEW

"Software reuse" is the taking of any code or code
segment and using it again to meet a specific need.
"Software reusability" involves not only the reuse of
software, but also how that software is designed. 1In other
words, it involves designing software coaponents to be
totally self-contained needing no outside code to accomplish
their task, or if help is needed, knowing where to find it.
Each component should be easily modifiable to meet a
potential user's need.

As stated by Biggerstaff and Perlis, "software reuse is
the reapplication of a variety of kinds of knowledge about
one system to another similar system in order to reduce the
effort of development and maintenance of that other system"
[BP89a]. Reusability can mean the reuse of ideas as well as
the reuse of components. So when an algorithm is used
repeatedly, the algorithm is being reused.

According to Biggerstaff and Perlis [BP89a], software
reuse has been in use for a number of years to a limited and
informal extent. 1In many cases, it is limited to the

knowledge of an earlier system that is similar to the

current project, or modules from other projects or systems
that lend themselves to accomplishing a specific task.
Reuse fi.gures have been reported as high as 80%, but on
average the figure is considered to be much lower, possibly
as low as 5%. Other items of reuse such as life-cycle
objects (requirements, designs, and test plans) have even
lower rates of reuse [(FG89] [FG90].

Portability can be considered a subarea of reusability.
Portability is defined in general terms as "running a
program in a host environment that is somehow different from
the one for which it was designed" [JA88].

Portability became popular with the advent of the C
programming language though it was an issue long before the
appearance of C. As early as the late 1950's and early
1960's, COBOL was defined as a standard business language.
Two corporations developed compilers late in 1960 and
exchanged code [JA88]. With a minimum number of
modifications, the code ran on both machines. However, just
because a piece of code is written in COBOL or C (i.e., a
"portable" language), it does not mean the program is
necessarily portable [JA88]. Likewise, because a portion
of a program is reused, it does not mean that the code is
reusable in the sense of software reusability.

Basili approaches software reuse from the viewpoint of
software maintenance [BA90]. He details three models that

can be used during the process of updating an old system

while using the old code as a bank of reusable code to
create the new system. These three models are described
below.

The "quick-fix" model uses the existing system. Modi-
fications are made to the source code and documentation as
necessary.

The "iterative-enhancement" model is designed to be
used when all the requirements of the system are not known
or the developer is not capable of building the full system.
This model, which is well-suited to software maintenance,
also starts with the existing system together with its
requirements and documentation. It is an evolutionary
process that allows for updating and redesigning of the
system based on analysis of the system as the work
progresses.

The "full-reuse" model begins with the requirements of
the new system and uses components of the old system as
needed along with other components that may be in the
software repository. This model assumes that the existing
components are well documented or that they are documented
as they are added to the repository [BA90].

Basili does not go into the detail of cataloging the
components for his models. However, in the case of the full
reuse model, a catalog interface describing each member in
the set of components to be used for the reuse project could

enhance the model's usefulness.

Different Approaches to Reusability

Various concepts of software reusability have been
presented by researchers. Prieto-Diaz and Freeman present a
software classification scheme used to catalog pieces of
software for future use [PF87]. The scheme enables the user
to give parameters for a search and then the system selects
and recommends software modules that match or closely match
the parameters. The parameters are part of the interface
used for the presented system.

Prieto-Diaz and Freeman's scheme is divided into two
major areas: functionality and environment. Each area is
further subdivided into three parameters. Functionality is
described by function, objects, and medium. Function is
self-explanatory; it describes what the software does, i.e.,
the action. Object describes the objects manipulated by the
function, and medium describes the data structure(s) or
device(s) that the function uses.

The environment is broken down into system type, func-
tional area, and setting. The system type "refers to func-
tionally identifiable, application-independent modules,
usually including more than one component." Functional area
describes "application-dependent activities usually defined
by ar established set of procedures." And the setting
describes "where the application is exercised" [PF87].

The facets of this scheme form a sextuple that

describes the respective components in the software reposi-

tory. To insure a uniform meaning for the sextuple, vocabu-
lary control is imposed to facilitate comparisons. A
thesaurus is used to convert all of the definitions to
descriptive words of like meaning. This lends consistency

to the comparisons.

/ /CDEN

moving something 168
198 160 r from its original

/ place
notion of
¥ replacement
3 2
notion of \
P enumeration,
2

- notion of
exchange

count, move
along a scale

| N, 1 \
NG VRN

measure add move substitute delete]

Figure 1. A Partial Weighted Conceptual Graph for the
Function Facet.

A partially weighted graph (Figure 1) is used to help
identify a closely related term when one of the members of
the sextuple is not found. The graph is a DAG, Directed
Acyclic Graph, with each of the nodes being "supertypes that
denote general concepts relating two or more terms" [PF87].

Weights are assigned to the edges using a software

engineering perspective; the closer the perceived proximity
of the terms, the lower the weight assigned to the edge
connecting the two terms. When a query is made and a term
is not matched, the graph is consulted to find closely
matching terms, and this gives the user a set of closely
related components to choose from.

To define the software components further, Kazerooni-
Zand, Samadzadeh, and George start with Prieto-Diaz and
Freeman's faceted scheme and add the implementation
environment. It is composed of two elements: language and
machine [KS90].

The Reuse of Persistent Code and Object Code (ROPCO),
the system proposed by Kazerooni-Zand, Samadzadeh, and
George, deals with reuse at a very low level. Machine
dependency becomes much more important when attempting the
reuse of object code as compared with source code.

The ROPCO system is composed of three major subsystems:
the Identification Mechanism (IDM), the Software Control
Mechanism (SCM), and the Interface. The function of the IDM
is to identify and select the programs or modules that meet
the user or programmer's requirements. Each element in the
system has a record in the Software Attribute Database
(SADB). This record is a unique identifier to its assigned
element and is used throughout the ROPCO system to identify
a particular element. The IDM prompts the user for the

functional and environment attributes as defined by Prieto-

10

Diaz and Freeman [PF87], and the implementation environment
as defined by Kazerooni-Zand et al. [KS90]. Using the
attributes input by the user, the SADB is accessed and one
or more elements are chosen; the selections are based on the
descriptions in the SADB and the proximity distance model
[PF87].

Kernighan uses the un1ixl system as an example of an
environment that facilitates reusability. By using system
utilities, he proposes that one can build more complicated
programs and utilities using shell scripts or the source
code of the system utilities [KE84].

Caldiera and Basili approach software reusability by
splitting the traditional life cycle models into two parts.
The first part is the project and the second is the factory
[CB91]. The project delivers the software system to the
customer. As a need for a component is developed by the
project, it is sent to the factory. The factory deals with
extracting and packaging reusable components. It also has
to have a detailed knowledge of the project it is
supporting.

In their system, all components, which are selected for
possible addition to the software repository, go through a
two-phase evaluation. Phase one, the identification phase,

consists of three steps: the definition of the reusability

1yNIX is a trademark of AT&T.

11

attributes model, extraction of the component, and
application of the model. Phase two, the component
qualification phase, is composed of six steps: generation
of the functional specification; generation of the test
cases; classification of the component; development of the
reuser's manual; storage; and feedback.

Phase one is automated using software models and
metrics. Components that pass this phase are analyzed by a
domain expert. Any component whose functional specification
is not relevant, or is incorrect, is thrown away. The
reason for eliminating the component is documented; this
aids in the development of future reusable components.

A component is then run through a series of tests that
are based on its functional specification. If the tests are
failed, then once again the component is discarded and the
reason is documented. At this point, any component that has
survived is classified and documented for reuse. Each
component is made an autonomous unit capable of being
compiled without the addition of other files; any
information that may have resided in other files (C include
files for example) would have to be included in the
component [CB91].

Purtilo and Atlee [PA90] introduced a language called
NIMBLE that is used to ease the introduction of reusable
modules into new applications. With NIMBLE, the difference

between parameter orders is removed. NIMBLE provides

12

parameter coercion capabilities without changing the source
code of a module. The actual and formal parameter lists are
referred to as interface patterns. A mapping from the
actual parameter list to a new "parametric" takes place to
meet the needs of the module being called [PA90].

One of the motivations for the design of NIMBLE was the
likelihood that modules that are semantically identical, but
may be structurally different, are likely to become more
prevalent as reusable software systems are developed.

NIMBLE can be used to bridge the module interface gap and
also it can widen the domain to which a module can be
applied [PA90].

Frakes and Gandel [FG89] [FG90] discuss various methods
of representing reusable software components including
library science, knowledge based methods, and hypertext
techniques. They define representation '"as a language
(textual, graphical, or other) used to describe a set of
objects" [FG89].

The faceted classification scheme of Prieto-Diaz and
Freeman [PF87] falls under the category of library science.
To compensate for the narrow focus of an enumerated system
such as the Dewey Decimal System, faceted schemes allow a
subject area to be broken down into fundamental parts.

These parts can then be synthesized to develop more

descriptive representations [FG89].

13

Commercial component libraries such as GRACE (Generic
Reusable ADA Components for Engineering) do exist. For
instance, GRACE allows a user to choose from a list of ADA
packages to accomplish common tasks such as managing stacks
and queues. It uses a knowledge engineering approach to
represent the software modules [FG89].

Chatterboxz, a graphical user interface library
available from Courseware Applications, Inc., is a library
of graphic routines for the C lanquage. It performs the
dirty work to create menu bars with pull-down menus and
dialog boxes with keyboard and mouse support using the
graphics routines of the supported compilers. The user
decides what (s)he wants and then includes the necessary
routines in his/her code. The routines are described in the
Chatterbox reference manual. There is not an automated
method available to pull routines together; the user must
decide what (s)he wants by looking at the manual or by using
past experience with the library. The user then goes to the
Chatterbox source code and selects the necessary module or

modules [SC90].
Reusability in Practice

Prieto-Diaz [PR91] states that a classification scheme

for reusable software must meet the following criteria:

2chatterbox is a trademark of Courseware Applications,
Inc.

14

1. It must accommodate continually expanding
collections, a characteristic of most software
organizations,

2. It must support finding components that are
similar, not just exact matches,

3. It must support finding functionally equivalent
components across domains,

4. It must be very precise and have high descriptive
power (both are necessary conditions for
classifying and cataloging software),

5. It must be easy to maintain, that is, add, delete,
and update the class structure and vocabulary
without any need to reclassify,

6. It must be easily usable by both the librarian and
end user, and

7. It must be amenable to automation.

Prieto-Diaz [PR91] has worked with large corporations
such as GTE Data Services (GTE DS) and the CONTEL Technology
Center. While working at GTE DS, a 14 percent reuse factor
with a savings of 1.5 million dollars reportedly has been
realized the first year. A library "asset" was defined as
any facility that could be reused in the production of
software with the initial emphasis being reusable software
components. It was found that 38 percent of the 190 assets
in the library the first year were being "actively reused."

The majority of the items in the library were components

15

with greater than 10,000 lines of code; the larger components
provided a greater savings when reused. The faceted scheme
was more effective in "domain specific collections than for
broad, heterogeneous collections."

In his work at CONTEL, domain-specific reusable
software repositories were established. The library system
at CONTEL was developed to enable its easy integration into
existing environments. This is an example of a library
system that would be capable of being instantiated into
multiple environments.

To encourage the use of the repository, monetary
incentives were used to motivate the programmers, referred
to as authors or asset providers, to write their software
with reusability in mind, and to submit the new material for

inclusion in the repository.

CHAPTER IIIX
PROTOTYPE IMPLEMENTATION
General Overview

The main focus of this thesis is a prototype
implementation of a software library. The prototype can be
used to: (a) catalog software components using the faceted
cataloging scheme presented by Prieto-Diaz and Freeman
[PF87], and (b) retrieve components from a software
repository. This implementation is used to catalog
components at the source code level (other possibilities
include the specification, design, and object code levels).

The system has three major sub-sections: adding
components, querying the system for candidate components,
and the common vocabulary or thesaurus. This system works
within the confines of the Identification Mechanism (IDM) as

defined by Kazerooni-Zand et al. [KS90].
Concept of the Design

The prototype was implemented using the C programming

16

17

language on an IBM PC/AT3 compatible. Microsoft Quick C
compiler Version 2.5 was used for all coding and compiling.
The prototype requires eight supporting data files.
The common vocabulary (hereafter referred to as the
thesaurus) is contained in seven data files with the eighth
file being the Software Attribute Database (SADB) as defined
by Kazerooni-Zand et al. [KS90]. Each facet has its own
thesaurus data file. The facets used for this prototype and
the associated file names of their respective thesauruses
are shown in TABLE I. The thesaurus file for language is
included for information only; language is not used as a

parameter during queries.

TABLE I

FACETS WITH FILE NAMES

function funct.ths
object object.ths
medium medium. ths
system type systype.ths
functional area funcarea.ths
setting setting. ths
language lang.ths

Each line of a file is a comma-delimited list of

descriptors with the first word on the line being the

31BM PC/AT is a trademark of International Business
Machines Corp.

18

primary descriptor of that line. TABLE II shows a subset of
the "function" common vocabulary. The first word of each
line is the primary descriptor that will be used to define a
component for this facet for all components described by one
of the descriptors on that line. Given the set of
descriptors "add, increment, total,sum” from the "function"
thesaurus file, the user could enter any of the words as a
legal input. If a user enters the word "sum," the thesaurus
searches the data file of the respective facet. When sum is

found, "add" is substituted for the user's input.

TABLE II

SAMPLE THESAURUS ENTRIES

add, increment, total, sum
close,release,detach,disconnect, free
compare,test,relate,match,check, verify
complement, negate, invert

measure, count,advance, size, enumerate, list

The thesaurus is accessed every time a user enters a
descriptor (i.e., during cataloging and making queries). If
the user enters a word not included in the thesaurus, (s)he
is presented with a list from which to choose.

All of the supporting database functions are provided
by source cod2 reused from an earlier academic project (16

percent of the total lines of code are reused). Each of the

19

data files are indexed and accessed using inverted lists.

With each data file, there are three supporting files.

TABLE III shows the data files with their respective

supporting files and TABLE IV gives the purpose of each of

the data files.

TABLE III

NAMES OF THE DATA FILES

WITH SUPPORTING

FILE NAMES
Data File Word File Inverted List Inverted List Index
ru.dta ru.wrd ru.inv ru.vdx
funct. ths funct.wrd funct.inv funct.vdx
object.ths object.wrd object.inv object.vdx

medium. ths
systype. ths
funcarea. ths
setting.ths
lang.ths

medium.wrd
systype.wrd
funcarea.wrd
setting.wrd
lang.wrd

medium. inv
systype.inv
funcarea.inv
setting.inv
lang.inv

medium. vdx
systype.vdx
funcarea.vdx
setting.vdx
lang.vdx

TABLE IV

FILE EXTENSION DEFINITIONS

File Extension

Definition

.wrd

.inv

.vdx

contains all words in the data file
with their line numbers that are used
to create the inverted list

an inverted list for the data file

the index f1.:

for the inverted list

20

The thesaurus was developed with the intended use of
cataloging Operating Systems II class projects and their
components as entries. This is a domain-specific
implementation as was the implementation used at CONTEL by
Prieto-Diaz [PR91]. It is possible to change the domain
orientation by changing the common vocabulary in the
thesaurus data files.

For this prototype implementation, the vocabulary
consists of those terms needed to define the set of software
components used as sample input. The list was limited to
those terms needed to give an adequate sampling of the
programs usefulness. Developing a comprehensive vocabulary
for the operating systems domain is beyond the scope of this

thesis.

User Interface

The prototype has three major sub-sections: adding
components, querying the system for candidate components,
and the common vocabulary or thesaurus.

The system is menu driven with the video display
partitioned into multiple text windows. With few
exceptions, pressing one key is all that is required to
maneuver through the program. Figure 2 shows the opening
menu where the user is presented with three choices. Each

of the prompts are self-explanatory.

21

Sof tware Repository.

(A)dd a component to the systen.
(Qluery the system for a component.

(E)xit to DOS,

Make your selection --

Figure 2. Software Library Program Opening Menu.

After electing to add a component to the repository,
the user is prompted for the component name; the system must
be able to find the component before it can be added to the
repository. When the system is ready for the user to assign
attributes to the module, the user will see the screen shown
in Figure 3.

Attributes are entered as prompted. After all the
descriptors have been input, the user is given a chance to
make changes. When the descriptors are accepted, the
component will be added to the system. No maintenance is
required for this phase of the system.

When the user chooses Q at the opening menu, the system
updates the Software Attribute Database (SADB) to insure

that additions are included. The entering of attributes for

22

a query is done exactly as assigning attributes to a new

component.

At each of the following prompts, enter the attribute that best
describes this module or press ENTER to choose from a list.

cpu.c

1. Function:

Assigning attributes

FUNCTION is the action of the componant.

Figure 3. Data Entry Screen.

When the list of desired attributes has been accepted,
SADB is searched for all components that meet one or more of
the desired attributes. After all exact matches are
displayed, the user is presented with a message at the
bottom of the screen containing a component name and the
percentage of the attributes matched. The user can make the
decision to view or bypass a component.

After all the possible candidates have been viewed or
passed by, the user is asked if (s)he wants to keep the list
of candidates. If a negative response is given, the list is

discarded and the program returns to the main menu. If

23

accepted, the user is prompted for a file name and up to two
lines of comments. Then the candidates with their
attributes are dumped into the given file. While viewing
the result of a system query, the user can press D and the
system will display the facet definition at the bottom of
the screen.

During the assigning of attributes and while making
queries of the system, the thesaurus is available by
pressing the ENTER key. When the key is pressed, a list of
possible choices for the current facet is displayed on the
right side of the screen. Also, if the user enters a
descriptor not included in the common vocabulary, a list
will appear on the right side of the screen. By selecting a
letter corresponding to one of the given choices, the
program inserts the selected descriptor. N and P are
pressed to get the next and previous lists (see Figure 4).

The user cannot make any changes to the software
repository from inside the program except for the addition
of modules. To delete components from SADB, any ASCII text
editor can be used. Each new line in the data file named
ru.dta is a set of component descriptors. The line is a
comma-delimited list containing the component name,
function, object, medium, system type, functional area,
setting, and language in that order. A ninth entry may be
present if the user has assigned a custom attribute from a

user-supplied thesaurus file. To delete a component from

24

SADB, the user must find the line containing its name and
delete it. The next time the system is used to make a
query, the SADB supporting files will be updated

automatically.

At each of the folloving prompts; enter the attrlbute that best
descrlbes thls module or press ENTER to choose from a list.

cPu.cC
Choose fronm the glven llst. A = NOT APPLICABLE
Press N for the next list or P for the previous llst., B array
C buffer
D cards
1. Functlon: execute E character
2. Object: instruction F disk
3, HMediunm: G double
H flle
1 float
J Integer
K Jjob
L keyboard
Asslgning attributes

MEDIUM refers to entitles that serve as locales where the action takes place.

Figure 4. Data Entry Screen with Thesaurus.

To update one of the common vocabulary lists, any ASCII
text editor can be used. The thesaurus entries are stored
in a comma-delimited list with the first word of the list
being the primary key for that particular set of
descriptors. Each line of descriptors must be terminated
with a carriage return (new line character, "\n"). The user
can add or delete lines of descriptors. Also the user can

add to or delete from the existing words. After changes are

25

made, at least one of the supporting files for the particular
facet must be deleted. The next time the thesaurus accesses
the list for the updated facet, its supporting files will be

updated.

Sample Queries

The test data for this prototype implementation
consists of components of varying lengths and purposes.
Programs, of three programmers from a graduate level
operating systems course, were broken into code segments of
varying sizes based on each programmer's comments. A total
of forty-three components were cataloged using the
prototype.

Components range in size from three lines (simple
string manipulations) to more than 700 lines. Some of the
larger modules consist of multiple C functions that work in
concert to accomplish an assigned task; in other cases, a
module consists of a single function (some containing more
that 250 lines of code). As expected, it was found that the
smaller, more specialized the component, the easier it was
to classify.

Using the program specification [SA91] that was used to
develop the programs in the data set, a set of queries were
developed to find components to meet the requirements of the
principal routines: loader, memory, cpu, spooler, and

scheduler (shown in order in TABLE V). The queries were

26

performed using four and six facets. Because this is a
domain-specific implementation, the system type and setting
facets were omitted from one set of queries. This was done
to determine if the removal of the aforementioned facets
changed the results of the queries measurably. There is a
small set of components of a generic nature that can be used
in any setting or system type as needed; however, in this

sampling, their presence is insignificant.

TABLE V

SAMPLE SYSTEM QUERIES

Function Object Medium System Type Funct. Area Setting
load job operating system job io academic
access memory array operating system memory management academic
executs instruction integer operating system processing academic
reads card stack operating system job io academic
schedule jobs operating system scheduling academic

As can be seen in TABLE V, the medium column is not
used in every query. If a dominant medium could not be
identified in a component during the cataloging of the
component or in a component's specification, as in the case

of the queries in TABLE V, it was omitted.

27
Query Results

To accomplish a partial validation of this prototype
implementation, ten sample queries were completed; five
queries using four facets (function, object, medium,
functional area), and five queries using six facets
(function, object, medium, system type, functional area,
setting). The language facet was not used as a descriptor
for queries because all of the components in the system are
written in the same ‘ang. .ge, so this facet would not
provide any useful i..‘ormation during a query.

Because the prototype finds every component in the
system that meets one or more facets, the queries using six
facets list some candidate components that meet only the
system type and setting, or both. In this domain-specific
implementation with the given data set, these facets do not
provide any useful information. TABLE VI gives a summary of
the number of components found using both four and six
facets.

The left column of TABLE VI shows the number of
attributes matched (i.e., if six attributes are entered as a
query, "Exact" indicates an exact match of all the requested
attributes; -1 indicates that five attributes are matched;
-2 indicates that four attributes are matched; etc.).
Columns s, through sg give the number of components found in

samples 1 through 5 for the given number of facets.

28

TABLE VII shows at what point a search should be
considered successful. As previously stated, the prototype
delivers all components that meet one or more of the
requested attributes. At some point, the components
returned are of little or no value because of the particular
facets matched. Because the results are based solely on
attributes matched, an additional or alternate method must
be developed to discriminate between the particular facets
matched. This is a topic for future study. But for the
purposes of this prototype, any component that is returned
that contains two or more mismatched attributes should be
discarded. The components represented in TABLE VII above
the double line should be considered valid candidates, those

below, invalid.

TABLE VI

SUMMARY OF QUERIES

29

Four Facets Six Facets
Y S, S; Sy Sg S, S, S, Sy Sg
Exact| 2 3 - 2 2 2 3 = 2 2
-1 2 - 3 - - 2 - 3 - -
=2 3 = 2 - 3 4 = 2 1 3
-3 = 3 4 = = 14 3 2 15 16
-4 - - - - = - 13 13 - -
-5 - = - — = = = 1 = =
Total| 7 6 9 2 5 22 19 21 18 21
TABLE VII
SUMMARY OF VALID AND INVALID QUERIES
Four Facets Six Facets
S1 S2 S3 S4 Ss S1 S22 S3 S84 Sg
Exact| 2 3 - 2 2 2 3 - 2 2
-1 2 - 3 - - 2 - 3 - -
-2 3 = 2 = 3 4 = 2 1 3
-3 - 3 4 - - 14 3 2 15 16
-4 - - - - - - 13 13 - =
-5 = = — - — = = 1 = —
Total] 7 6 9 2 5 22 19 21 18 21

CHAPTER 1V

SUMMARY AND FUTURE WORK

The aim of this thesis was to identify an accurate
software catalog interface capable of correctly identifyinc
software components and hence enabling their retrieval. The
vehicle used to accomplish this was a partial, prototypical
implementation of a software library.

Using the faceted cataloging scheme of Prieto-Diaz and
Freeman [PF87] in a domain-specific library, it was decided
that two facets (system type and setting) should be
eliminated from the query process. This is due to the
narrowness of the focus of the domain. As was reported in
Chapter III, within the sample domain of this thesis, the
results were the same with or without the use of the system
type and setting for valid queries.

The interface developed as part of this thesis can be
instantiated into different domains by changing the
vocabulary. Also, it can be used at different levels of
reuse other than source code such as design, specification,
or object code levels.

In order to validate the prototype fully, it must be

installed in an industrial setting to verify its performance

30

31

over time. A system librarian would enhance the usefulness
of the library by standardizing component descriptions. The
program itself is easy to use, but the task of defining the
software components is a time-consuming effort; time that a
typical programmer may not care to expend (invest) to
accomplish the task correctly. Programmers would have to be
encouraged to develop their components with reusability in
mind as was done at GTE DS and CONTEL [PR91].

To enhance the usefulness of this prototype
implementation, the maintenance functions need to be
automated. Also, the system needs a method to refine the
results of the queries. The user should be given an
indicator of the complexity required to modify the component
to meet his/her need.

Future study is needed to determine the method used to
store components ("assets" as defined by Prieto-Diaz [PR91])
most efficiently. Data compression may be one method to
integrate into this prototype in its current form.

For the concept of reusability to become a widespread
reality, it will require dedicated software librarians to
accomplish the task of managing the repositories that will
grow with time. This may open other specialized areas

within the field of computer science.

BIBLIOGRAPHY

(BA90] Basili, Victor R., "Viewing Maintenance as Reuse-
Oriented Software Development," IEEE Software, January
1990, pp. 19-25.

(BP89a] Biggerstaff, Ted and Alan J. Perlis, Software Reus-
ability: Concepts and Models, Addison-Wesley Publish-
ing Co., Vol. 1, 1989.

(BP89b] Biggerstaff, Ted and Alan J. Perlis, Software Reus-
ability: Applications and Experience, Addison-Wesley
Publishing Co., Vol. 2, 1989.

(BP90] Bollinger, T.B. and S.L. Pfleeger, "Economics of
Reuse: Issues and Alternatives," Information and
Software Technology, December 1990, pp. 643-652.

(BR87] Biggerstaff, Ted and Charles Richter, "Reusability:
Framework, Assessment, and Directions," IEEE Software,
March 1987, pp. 41-49.

(CB91] Caldiera, Gianluigi and Victor Basili, "Identifying
and Qualifying Reusable Software Components," IEEE
Computer, February 1991, pp. 61-70.

(CH84] Cheatham, Jr., T.E., "Reusability Through Program
Transformations," IEEE Transactions on Software Engi-
neering, Vol. SE-10, No. 5, September 1984, pp. 589-
594.

[CL84] Cheng, Thomas T., Evan D. Lock, and Noah S. Prywes,
"Use of Very High Level Languages and Program Genera-
tion by Management Professionals," IEEE Transactions on
Software Engineering, Vol. SE-10, No. 5, September
1984, pp. 552-563.

(CO090] Cox, Brad J., "Planning the Software Industrial
Revolution," IEEE Software, November 1990, pp. 25-33.

(CU85] Curran, Anne Marie, On Design and Implementation of
an Environment for Reusable Software, Ph.D.
Dissertation, University of Southern California, May
198S5.

32

33

[FG89] Frakes, W.B. and P.B. Gandel, "Representation Methods
for Software Reuse," Proceedings of Ada Technology in
Context: Application, Development, and Deployment,
Pittsburgh, Pennsylvania, October 1989, pp. 302-314.

[FG90] Frakes, W.B. and P.B. Gandel, "Representing Reusable
Software," Information and Software Technology,
December 1990, pp. 653-664.

[GO86] Goguen, Joseph A., "Reusing and Interconnecting
Software Components," IEEE Computer, Vol. 19, February
1986, pp. 16-28.

{JA88) Jaeschke, Rex, Fortability and the C Language, Hayden
Books, Indianapolis, Indiena, 1988.

[KG87] Kaiser, Gail E. and David Garlan, "Melding Software
Systems from Reusable Building Blocks," IEEE Software,
July 1987, pp. 17-24.

[KE84] Kernighan, Brian W., "The UNIX System and Software
Reusability," IEEE Transactions on Software Engineer-
ing, Vol. SE-10, No. 5, September 1984, pp. 513-518.

[KS90] Kazerooni-Zand, M., M. H. Samadzadeh, and K.M.
George, "ROPCO: An Environment for Micro-Incremental
Reuse," Proceedings of the IEEE International Phoenix
Conference on Computers and Communications, Scottsdale,
Arizona, March 1990, pp. 347-354.

[MA84] Matsumoto, Yoshihiro, "Some Experiences in Promoting
Reusable Software: Presentation in Higher Abstract
Levels," IEEE Transactions on Software Engineering,
Vol. SE-10, No. 5, September 1984, pp. 502-513. !

[PA90] Purtilo, James M. and Joanne M. Atlee, "Improving
Module Reuse by Interface Adaptation," Proceedings of
the International Conference on Computer Languages, New
Orleans, Louisiana, March 1990, pp. 208-217.

[PF87] Prieto-Diaz, Rubén and Peter Freeman, "Classifying
Software for Reusability," IEEE Software, January 1987,
pp. 6-16.

[PR91]) Prieto-Diaz, Rubén, "Implementing Faceted Classifica-
tion for Software Reuse," Communications of the ACM,
May 1990, pp. 88-97.

[SA91] Samadzadeh, Mansur H., "Operating Systems II Course
Project Specification," Oklahoma State University,
Stillwater, Oklahoma, Spring 1991.

34

[SC90] Schaefges, Thomas M., Chatterbox Reference Manual,
Courseware Applications, Inc., Champaign, Illinois,
1990.

[SO89] Sommerville, Ian, Software Engineering, Addison-
Wesley Publishing Co., Third Edition, 1989.

[ST84]) Standish, Thomas, "An Essay on Software Reuse," IEEE
Transactions on Software Engineering, Vol. SE-10, No.
5, September 1984, pp. 494-497.

APPENDIXES

35

APPENDIX A

SOFTWARE REPOSITORY USER'S GUIDE

36

SOFTWARE REPOSITORY

USER'S GUIDE

1. General Overview
This program is used to catalog software components

using the faceted cataloging scheme presented by Rubén
Prieto-Diaz and Peter Freeman [PF87], and to retrieve
components from the software repository. This
implementation is aimed at cataloging components at the
source code level. The system has three major sub-sections:
adding components, querying the system for candidate

components, and the common vocabulary or thesaurus.

2. Adding Components
At the opening menu, you will be presented with three

choices as follows.

The Opening Menu

b 06w59€tuare Repos1itory.

(Addd a component to the sustem.
(Qruery the system for a component.

(BY’xit to DOS.

Make your selection ——

37

38

Choose A to add a component to the repository. The prompts
are self-explanatory. Next you will be prompted for the
component name; the system must be able to find the
component before allowing it to be added to the repository.
When the system is ready for you to assign attributes to the

module, you will see the following screen.

Attribute Assignment Screen

At each of the following prompts, enter the attribute that best
describes this module or press ENTER to choose from a list.

cpu.c

1. Function:

Assigning attributes

FUNCTION is the action of the component.

Enter the attributes as prompted. After all the descriptors
have been input, you can make any changes. When you accept
the entered list of descriptors, your component will be

added to the system.

39

3. Making Queries of the System

From the opening menu choose Q. The system will then
update the Software Attribute Database (SADB) to insure that
the additions can be found. When making a query, enter the
desired attributes just as you did when adding a component
to the reposito:ry.

When you have accepted the list of desired attributes,
SADB is searched for all components that meet one or more of
the desired attributes. After all exact matches are
displayed, a message will appear at the bottom of the screen
containing a component name and the percentage of the
attributes matched. If you wish to view the components
attributes, press Y. After all the possible candidates have
been view or passed by, you will be asked whether you want
to keep the list of candidates. If you decline, the list is
discarded and you are returned to the main menu. If you
accept, you are prompted for a file name and up to two lines
of comments. Subsequently, the candidates with their
attributes are dumped into the file you have entered. While
viewing the result of a system query, you can press D and
the system will display the facet definition at the bottom

of the screen.

4. Using the Thesaurus
During the assigning of attributes and while making
queries of the system, the thesaurus is available by

pressing the ENTER key. When the key is pressed, a list of

40

possible choices for the current facet is displayed on the
right side of the screen. Also, If you enter a descriptor
not included in the common vocabulary, a list will appear on
the right side of the screen. Select the letter
corresponding to your choice and the program will insert it
for you. You may press N or P to get the next or previous

lists.

Facet Options for the Attributes

At each of the following prompts, enter the attribute that best
describes this module or press ENTER to choose from a list.

CPU.C
Choose from the given list. A ¥ NOT APPLICABLE
Press N for the next list or P for the previous list. B array
C buffer
D cards
1. Function: execute E character
2. Object: instruction F disk
3. HMedium: G double
H file
1 float
J integer
K Job
L keyboard
fAssigning attributes

MEDIUM refers to entities that serve as locales where the action takes place.

5. Miscellaneous
You cannot make any changes to the software repository
from inside the program except for the addition of modules.

To update the common vocabulary or to delete components from

41

the system, see the System Administrator's Guide (Appendix
B).

You may develop your own additional facet, if you so
desire, to further define your software component(s). To do
this, you need an ASCII text editor. Give the file whatever
name you desire. 1In the file, arrange the descriptors so
that each new line contains a new set of descriptors as

shown below.

SAMPLE THESAURUS ENTRIES

add, increment, total, sum
close,release,detach,disconnect, free
compare,test,relate,match,check, verify
complement,negate, invert

measure, count,advance,size,enunerate, list

Each line must be terminated with a carriage return. As the
C programming language is case sensitive, all searches of
the descriptors are done in lowercase. Only the first word
of the line can contain both upper and lowercase letters.
Make sure the first word is the way you want is displayed.
All remaining letters and words on the line should be in
lower case to facilitate the search routines.

During the assigning of attributes or while making a
query, you will be presented with an eighth prompt:

"Other." At this prompt enter the user-defined facet. The

42

program will then prompt you for the file name of the file
containing the common vocabulary for this facet. It is also
possible to assign a second attribute from one of the
program thesaurus files by entering the proper file name at

the prompt.

APPENDIX B

SOFTWARE REPOSITORY SYSTEM ADMINISTRATOR'S GUIDE

43

SOFTWARE REPOSITORY

SYSTEM ADMINISTRATOR'S GUIDE

1. General Overview
This program is used to catalog software components

using the faceted cataloging scheme presented by Rubén
Prieto-Diaz and Peter Freeman [PF87], and to retrieve
components from the software repository. This
implementation is aimed at cataloging components at the
source code level. The system has three major sub-sections:
adding components, querying the system for candidate

components, and the common vocabulary or thesaurus.

2. Adding Components

At the opening menu, the user is presented with three

choices as follows.

The Opening Menu

Sof tware Repository.

(AYAd a component to the system.
Qluery the system for a companent.

(B)xit to DOS.

Make your selection ——

44

45

Choice A is for adding a component to the repository. The
prompts are self-explanatory. Next the user is prompted for
the component name; the system must be able to find the
component before it can be added to the repository. When
the system is ready for the user to assign attributes to the

module, the user will see the following screen.

Attribute Assignment Screen

At each of the following prompts, enter the attribute that best
describes this module or press ENTER to choose from a list.

cpu.c

1. Function:

Assigning attributes

FUNCTION is the action of the component.

The user enters the attributes as prompted. After all the
descriptors have been input, the user can make changes.

When the descriptors are accepted, the component will be

46

added to the system. No maintenance is required for this

phase of the system.

3. Making Queries of the Systenm

Once the user chooses Q at the opening menu, the system
updates the Software Attribute Database (SADB) to insure
that the additions are included. The entering of attributes
for a query is done exactly as assigning attributes to a new
component. When the list of desired attributes has been
accepted, SADB is searched for all components that meet one
or more of the desired attributes. All exact matches are
displayed automatically. Subsequently, the user is
presented with a message at the bottom of the screen
containing a component name and the percentage of the
attributes matched. The user can make the decision to view
a component based on the number of attributes matched.

After all the possible candidates have been view or
passed by, the user is asked if (s)he wants to keep the list
of candidates. If a negative response is given, the list is
discarded and the program returns to the main menu. 1If
accepted, the user is prompted for a file name and up to two
lines of comments. Subsequently, the candidates with their
attributes are dumped into the file. While viewing the
result of a system query, the user can press D and the
system will display the facet definition at the bottom of

the screen.

47

4. Using the Thesaurus

During the assigning of attributes and while making
queries of the system, the thesaurus is available by
pressing the ENTER key. When the key is pressed, a list of
possible choices for the current facet is displayed on the
right side of the screen. Also, if the user enters a
descriptor not included in the common vocabulary, a list
will appear on the right side of the screen. By selecting a
letter corresponding to one of the given choices, the
program inserts the selected attribute. N and P are

presented to get the next and previous lists.

Facet Options for the Attributes

it each of the following prompts, enter the attribute that best
describes this module or press ENTER to choose from a list.

CpPu.c
Choose from the given list, A * NOT APPLICABLE
Press N for the next list or P for the previous list. B array
C buffer
D cards
1. Function: execute E character
2. Object: instruction F disk
3. HNediunm: G double
H file
1 float
J integer
K Job
L keyboard
fAssigning attributes

NEDIUM refers to entities that serve as lacales uhere the action takes place.

48

5. Updating SADB
NOTE: The user cannot make any changes to the software
repository from inside the program except for addition of
modules. It is recommended that the user nol make any
deletions from SADB.

For deletion of components from SADB, use any ASCII
text editor. Each new line in the data file named ru.dta is
a set of component descriptors. The line is a comma-
delimited list containing the component name, function,
object, medium, system type, functional area, setting, and
language in that order. A ninth entry may be present if the
user has assigned a custom attribute from a user supplied
thesaurus file.

To delete a component from SADB, find the line
containing its name and delete it. The next time the system
is used to make a query, the SADB supporting files will be

updated automatically.

6. Updating the Thesaurus/Common Vocabulary
NOTE: It is recommended that the user not be allowed to
make changes to the thesaurus data files to avoid
compromising the integrity of the supporting thesaurus.

To update one of the common vocabulary lists, use any
ASCII text editor. The thesaurus entries are stored in a
comma-delimited list with the first word of the list being
the primary key for that particular set of descriptors.

Each line of descriptors must be terminated with a carriage

49

return. It is recommended that the System Administrator
perform all additions and deletions. After changes are
made, at least one of the supporting files for the
particular facet must be deleted. The next time the
thesaurus accesses the list for the updated facet, its
supporting files will be updated. The facets used for this
program and the associated file names of their respective

thesauruses are:

function - funct.ths
object - object.ths
medium - medium. ths
system type - systype.ths
functional area - funcarea.ths
setting - setting.ths

A thesaurus file for language (lang.ths) is included for
information only; language is not used as a parameter during

queries.

NAMES OF THE DATA FILES WITH THEIR SUPPORTING FILES

Data File Wrd File Inverted List Inverted List Index
ru.dta ru.wrd ru. inv ru.vdx
funct.ths funct.wrd funct. inv funct.vdx
object.ths object.wrd object.inv object.vdx
medium. ths medium.wrd medium. inv medium.vdx
systype.ths systype.wrd systype.inv systype.vdx
funcarea.ths funcarea.wrd funcarea.inv funcarea.vdx
setting.ths setting.wrd cetting.inv setting.vdx

lang.ths lang.wrd lang.inv lang.vdx

50

Below are the purposes and contents of the supporting files.

.wrd - contains all words in the data file with their line
nunbers that are used to create the inverted list

.inv - an inverted list for the data file

.vdx - the index file for the inverted list

APPENDIX C

PROGRAM SOURCE CODE LISTING

51

/t

* PROGRAMMER: JOE E. SWANSON

*

* COMSC 5000 Thesis and Research

* Summer 1991

*/
/* ru.h */

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <graph.h>

enum color {
Black,
Blue,
Green,
Cyan,
Red,
Magenta,
Brown,
wWhite,
Dgray,
Light_blue,
Lgreen,
Lcyan,
Lred,
Light_magenta,
Yellow,
Bwhite,
}i

enum {

257,

25,

81,
1,
2,

Buf_size
FW

LEN
Required
Optional
Y

1]

typedef enum { FALSE,TRUE
void screens(int screen);

#define cls
#define clw
#define gotoxy
#define ot

#define windowO

/* buffer size */
/* field width */

} BOOLEAN;

_Clearscreen (_GCLEARSCREEN)
_clearscreen (_GWINDOW)
_settextposition

_outtext

_settextwindow(1,1,25,80); \
_settextcolor(White)

52

53

#define menuwindow screens(9); _settextwindow(7,15,18,65);\
_settextcolor (White)
#define windowmsg screens(8); _settextwindow(23,1,25,80);\
_8settextcolor(Cyan)
#define windowl screens(l); _settextwindow(1,1,4,80); \
_settextcolor(White)
#define window?2 _settextwindow(6,1,8,59); \
_settextcolor(Light_magenta)
#define window3 _settextwindow(10,10,21,59); \
_settextcolor(Yellow)
#define windowthes screens(7); _settextwindow(6,61,21,80); \
_settextcolor(Bwhite)
#define window4 _settextwindow(6,1,21,18); \
_settextcolor(Lcyan)
#define window5 _settextwindow(6,19,21,38); \
_settextcolor(Lred)
#define windowé _settextwindow(6,39,21,59); \
_settextcolor(White)
#define Read “r+
#define Write "W+
#define Append "a+"
#define Hline " \
typedef struct invert !
char key[FW];
long offset;
} INVERTNDX;
typedef struct component {
char comp_name[LEN], /* component name */
function[LEN,

object[LEN],
medium[LEN],
system_type[LEN],
funct_area[LEN],
setting[LEN],
language[LEN],
other[LEN];

} COMPONENT;

BOOLEAN chg_attribute (COMPONENT *,char);

BOOLEAN

respond(void);

char *ggets(char *string,int length,char *stream);

int check path(char input[]), char varname[], int flag);

void attr_def(int);

void
void
void
void
void
void
void
void

char

54

get_attr(int row,char attr(],char facet([],char thesdta(]);
hyper(char (], char (]);

open_file(FILE **, char (], char (], char (]);

query(char ifname[],char invfile[],char vdxfile[]);
sort(char input(]);

thesaurus(char code,char key(],char dtafile(]);

trap(int, char [], char (]);

unigue(char file_name(]);

otext [LEN]; /* global string for outtext */

/*

*
*
*
*

55

PROGRAMMER: JOE E. SWANSON
SSN:

COMSC 5000 Thesis and Research
Summer 1991

*/

#include "ru.h"
#include <conio.h>

#define cbuffer 10001

/* FUNCTION PROTOTYPES */

BOOLEAN chg_attribute(COMPONENT *,char);
BOOLEAN does_exist(char []);
BOOLEAN respond(void);

char menu(void);
char *read_attr(char []), char []);

COMPONENT *read_attributes(char *, COMPONENT *);

void add_component (void);

void assign_attributes(char *, char *);

void attr_def(int);

void db_update(void);

void get_attr(int row,char attr(),char facet{],char thesdtajf]);
void get_other_ filename(char name[LEN]);

void invert(char inputfile{],char invfile{],char vdxfile[]);
void thesaurus(char code,char key([],char dtafile[]);

/***

(2222222222222 R 2 2R R 22222 R RRR RS HAIN (A2 R RS RRRSRRERRRREERRRRREERRRZR

I EEEXEEREEEEL LSRR R a2 22222 0222 2 it 2 R R t s A a2 R R 2 2

*

* % * * *

This program prompts the user for an input file. 1If the file exists,
then the user is asked if the input file has been assigned attributes.
If a negative response is given, the user is prompted for the
attributes, else the module is added to the system.

***/

void main(void)

{

BOOLEAN add_flag = TRUE; /* set when component added */

cls;
_wrapon (_GWRAPOFF); /* truncate at window's edge */
/* look for DOS sort.exe */
check_path("sort.exe","PATH",1);
/* if no components have been previously added go directly to
* add_component */

if (icheck_path("ru.dta","",Optional))
{
_ot("The reuse database is empty.");
_ot(" Do you wish to add components? [Y/N] ");
gotoxy(1,70);
if(respond()) add_component();
else exit(0);

}

if (check_path("ru.dta","",Optional));

else

{ /* components have not been added */
cls;
exit(0);

}

while (TRUE)
{

cls;

switch(menu())
{
case 'A':

cls;
add_flag = TRUE;
add_component () ;
cls;
break;

case 'E':
cls;
windowz;
_ot("Do you want to exit to the operating system? [Y/N] ");
gotoxy(1,53);
if (respond())
{
windowO;
cls;
exit(0);
}

break;

case 'Q':

cls;
if (add_flag) /* CREATE/UPDATE supporting files */
{

db_update();

add_flag = FALSE;
}

/* begin processing the query */

query("ru.dta”, “"ru.inv", "ru.vdx");
break;

56

57

default: break;
} /* switch */
} /* while */
} /* main

***/

/***
KERKARRARRRRRRR AR RN N *k* chg-attribute (222 L2222 RaR2 RSl S
22 22 22 R R A R R R 22 R R2 2R YRYX2X2A SRR 2222222 2222222222222 22222222 X
*
* This function is called if an entered attribute is to be changed.
*
***/
BOOLEAN chg_attribute(COMPONENT *current,char flag)
{

char buffer[LEN];

int x;

windowl;

clw;

windowmsg;

clw;

window3;

gotoxy(9,1);

_ot("Are the above attributes correct? [¥/N] ");
gotoxy(9,42);

if (respond())

x = FALSE;
else
{

windowl;

_ot("Enter the attribute that best describes this facet of the ");
_ot("component.");

window3;
gotoxy(11,1);
_ot("Enter the number of the attribute to change -- ");

buffer{0] = (char) getche();

gotoxy(11,1);

_ot(" ")
x = atoi(buffer);

gotoxy(x,1);

_Ot(" ") ;
switch(x)
{
case 1:
get_attr(1l,current->function, "Function:", "funct.ths");
break;
case 2:

get_attr(2,current->object,"Object:"”,"object.ths”);

58

break;

case 3:
get_attr(3,current->medium, "Medium:”, "medium.ths");
break;

case 4:
get_attr(4,current->system_type, "System Type:","systype.ths");
break;

case 5:
get_attr(5,current->funct_area, "Functional Area:",
"funcarea.ths");
break;

case 6:
get_attr(6,current->setting,"Setting:","setting.ths");
break;

case 7:
if (flag == 'a')

get_attr(7,current->lanqguage, "Language:","lang.ths");
break;

case 8:
buffer{0] = '\0';

get_attr(8,current->other, "Other:" ,buffer);

default: break;
} /* switch */

x = TRUE;
} /* else */
return x;

} /* change attribute

***/

59

/***
KRKRKRKAKRKRRKAR KRR KRR A KR A AN A X JOCS XISt AARAAAKAARAARKRAKKAKAARA KA KA AR R AN K
[E 2 2 RS EREYREEZEEERSS AR RSS SRR X2 R R 222 2 2 A2 XXEXR AR XXX Rt R R R R B3
*

* This function does a linear search through the software attribute

* database to determine if the inputfile previously existed or if an

* jdentical file name is found.
*

***/
BOOLEAN does_exist(char fname[])
{

BOOLEAN flag = FALSE;

char *ptr, line(Buf_size];

FILE *fp;

open_file(&fp,Read,"ru.dta","does_exist");

while (fgets(line,Buf_size,fp) != NULL)
{
ptr = strtok(line,",");
if (strcmp(fname,ptr) == 0)
{
windowl;
clw;
sprintf (otext, "Component %s previously added. SKIPPING!\n",
fname);
_ot(otext);
sprintf (otext,"press any key to continue...");
_ot(otext);
getch();
flag = TRUE;
break;

fclose(fp);
return flag;

} /* does exist

***/

60

/***
KR hdkkkhk Ak kdd Ak kkkkkkkkhkdkkkikk respond (2 2222282228222 2222 RE22222R2R2S 22
I PRS2 EZERRRER2RE22 2222222222222 R22222222222 22222222 RRRRtR RS
*
* This function prompts the user for a Y or N response.
*
***/
BOOLEAN respond(void)
{

char x;

struct rccoord oldpos; /* catch current cursor position */

oldpos = _gettextposition();

do

{
x = (char) toupper(getche());
gotoxy (oldpos.row,oldpos.col);

}
while ((x) != 'N' && (x) != 'Y');

return (x == 'Y') ? TRUE : FALSE;

} /* respond

***/

/***
e e e ok ok e e e o e e gk ok ok ok ke o e e b ok ek ke ok ok W ok menu L2 2SS 22222222 2222222222222 822t R
IS S22 RSS RSS2SR 22 22222222222 X222 22222222t 8
*

* This function places a menu on the screen. The users choice is

* returned.
*

L2 R 22222222 REERESEEEE SRR RES SRR R 22222222 222X 2R X2 X2 X R 28 2 “/
char menu(void)

{

menuwindow;

_ot("Software Repository.");
gotoxy(5,1);
_ot("(A)dd a component to the system.");

gotoxy(7,1);
_ot("(Q)uery the system for a component.”);

gotoxy(9,1);
_ot("(E)xit to DOS.");

gotoxy(12,1);
_ot("Make your selection -- ");
return (char) toupper(getche());

}

/* menu

61

**************'k*******************k************************************/

/***

Kk kR I A A KKKk kR ok k kR ok ok ko ok kk ok ok

read attr ArXAx ARk KA XA RAXKA AR KA XA KKk Ak ko k ok kK

L3 X XSS R RS SRR ERE RS ERRNERRRSERRRRERRRRRRRRRRRRRRERRRREE R ARES]

*

*

*
*

This function reads one attribute from the buffer. The attribute is
returned to the calling module.

***/

char *read_attr(char buffer[],char sep||)

{

}

char input[FW],
*pchar,
ch;

if (buffer([0] != ',")
{

pchar = strstr(buffer,sep);

pchar++;

}

else

{

pchar = strstr(buffer,",");

pchar++;

if (buffer([(O] != ', ")

/* read data */

strcpy(input,strtok(buffer,sep));

else
strcpy(input,” ");

strcpy(buffer,pchar);
return input;

/* read attr

***/

62

/***
Ak kAR RRR R AR kAR ARk kR AA Ak tx* pread attributes ***kkxkkkaxakhdhkdr kb hhkhhhk
IEEREEEXEEEIEEEEEEEEEEZ RSS2 RRER AR Rt 2 a8 i R X s A A R Rt R R 2 &
*
* This function reads the attributes from the beginning of the input
* file. The attribute data file is checked, if the file is not

* currently in the database, it will be added. The attributes are

* passed back via the formal parameter list.

*

***/

COMPONENT *read_attributes(char *fname, COMPONENT *new)

{
static char buffer(Buf_size],
pchar, / char pointer */
*temp;
char ch = '\0';
int x, /* number of bytes read by fread */
i;
FILE *fp;

open_file(&fp,Read, fname, "read_attributes");
x = fread (buffer,l1,Buf_size-1,fp);
fclose(fp);

pchar = strstr(buffer,” "); /* remove opening comment */
pchar++;
strcpy(buffer,pchar);
/* read component name */
for (i = 0; i < 30; i++) new->comp_name[i] = buffer(i);

temp = strtok(new->comp_name,",");
/* check to see if exist in module */
pchar = strstr(fname,temp);

if (pchar != NULL)
{
strcpy (new->comp_name, read_attr(buffer,","));
strcpy(new->function,read_attr(buffer,","));
strcpy(new->object,read_attr(buffer,","));
strcpy(new->medium,read_attr(buffer,”,"));
strcpy (new->system_type,read_attr(buffer,","));
strcpy(new->funct_area,read_attr(buffer,","));
strcpy(new->setting, read_attr(buffer,","));
strcpy(new->language, read_attr(buffer,”,"));
strcpy(new->other,read_attr(buffer,","));
}
else
{
windowl;
clw;
_ot("The specified module does not contain parameters.\n");
new = NULL;

63

return new;

} /* read attributes

***/

/***
LA A X R RS EEE R SRR RN ERESE S add component LA S 2R R R R RS R R R ERRERERSEER;
IR R R EEEREERERRRRRRRRRRRRRERRRRSRRRRREEERREEERREEEEEERRERERRRRREEREERERRER;]

This function is called when a component is being added to the system.
It calls the necessary functions for attribute assignment, reading of
the attributes from the module, and adding the new info to the system
information.

* * % *

*
***/
void add component (void)

{
BOOLEAN exist;
char ifname[LEN],

*pchar,
path[LEN], drive([3], dir[3], fname[9], ext(5],
added[Buf_size] = "";

static char buffer(cbuffer];
COMPONENT current,
*curr = NULL;

FILE *fp;
int x, i = 0;
static int col = 1, row = 1;

while (TRUE)
{
windowl;
clw;
/* prompt user for file name */
gotoxy(1l,1);
_ot("Enter the name of the new component: ");
fflush(stdin);
gets(path);
strlwr(path); /* change to lowercase */

/* change \ to / to avoid escape char in path */

while ((pchar = strstr(path,"\\")) != NULL)
pchar(0] = *'/*;

while((fp = fopen(path,Read)) == NULL)

{
windowl;
clw;

_ot("New component cannot be found. Enter new component \

64

name.\n");

_ot("(You may need to include the correct path. (Q)uit)");

gotoxy(1,60);

fflush(stdin);

gets(path);

strlwr (path);

/* change \ to / to avoid escape char in path

while ((pchar = strstr(path,"\\")) != NULL)

pchar[0] = '/';

if (path[0]) == 'q')
return;

}

fcloseall();

_splitpath(path, drive, dir, fname, ext);
strcpy(ifname, fname);

strcat (ifname,ext);

if ((exist = does_exist(ifname)) == FALSE)
{

assign_attributes(path, ifname);

curr = read_attributes(ifname, ¤t);

}

if (lexist && curr != NULL)
{
open_file(&fp,"a+","ru.dta", "read_attributes");
fprintf(fp,"%s,%s,%s,%s,%s,%s,%8,%s,%8\n",current..comp_name,
current. function, current.object,current. .medium,
current.system_type,current.funct_area,current.setting,
current.language,current.other);
fclose(fp);
window?2;
gotoxy(l,1);
sprintf (otext,"%-14.14s8 ", ifname);
strcat (added, otext);
_ot (added);
col += 15;
if(col >= 45)
{
strcat (added, "\n");
col = 0;

}

if (strlen(added) > 165)
added[0]) = '\0';
}

windowl;
clw;
_ot("Do you wish to add another component? [Y/N] ");

*/

65

gotoxy(1,47);
if (!respond()) break;

} /* add component

***/

/**t*******t********
(R SRR R R R R R R R EEREEE] aaaign attributea L2222 2R R R R RARRRRREEEESE RS
IR R RS R R RS RS R R RRRRRRRREREERERRERRRRRRXR XXX RERRRXESRRRR RS RRZER XX
*

* This function takes a module that has not been assigned attributes and
* prompts the user for the appropriate attribute definitions. The

* attributes are appended to the beginning of the input file.
*
***/
void assign_attributes(char *path, char *inputfile)
{

COMPONENT current;

static char buffer([cbuffer],

*pchar,
newfile[LEN] = "";
FILE *fp, *ifp;
int x;

windowl;

clw;

_ot("At each of the following prompts, enter the attribute that \
best\n");

_ot("describes this module or press ENTER to choose from a list.");

gotoxy(4,1);

_ot(inputfile);

window3;
gotoxy(21,1);
_ot("Assigning attributes");

get_attr(1,current.function,"Function:","funct.tha");
get_attr(2,current.object,"Object:","object.ths");
get_attr(3,current.medium, "Medium:", "medium.ths");
get_attr(4,current.system type,"System Type:","systype.ths");
get_attr(5,current. funct_area, "Functional Area:","funcarea.ths");
get_attr(6,current.setting,"Setting:","setting.ths");
get_attr(7,current.language, "Language:","lang.ths");
get_attr(8,current.other,"Other:",newfile);

windowl;

clw;

while (chg_attribute(¤t,’a'));
clw;

66

open_file(&fp,Write, "work","assign_attributes"”);

fprintf (fp,"/* %s8,%8,%s8,%8,%8,%8,%s,%s,%8, */\n",inputfile,
current. function, current.object,current.medium,
current.system_type,current. funct_area,current.setting,
current. language, current.other);

open_file(&ifp,Read,path,"assign_attributes");

while((x = fread(buffer,1l,cbuffer,ifp)) != 0)
fwrite(buffer,x,1, fp);

fclose(ifp);
fclose(fp);

if (strcmp(path,inputfile) == 0)
unlink(inputfile);

rename ("work”, inputfile);

} /* assign attributes

***/

/***
2222222222 SRR RR 2SR openufile 222222222222 222 2222222 2R 2
AAERKRKREAKAKERARAARAARAAAARARARAAAAAAAAAARAARARAAARARAAARARARAARARRRAAARRARA R AR AR ARk kdkkk
*
* This procedure opens the input and output files for this program.
*
***/
void open_file(FILE **fp,char type{],char name{],char module{1)
{
/* open input and output files */
if ((*fp = fopen(name,type)) == NULL)
{
windowO;
cls;
trap(1001, name,module);
exit (1001);
}
} /* open_file */

/**/

67

/***
I E 222222l ERROR TRAPS I E A SRS SRR RS R RSN X
Y ok % % v ok J % ok ok K ko vk vk kK v gk ok vk vk e 3k vk i o o o K o o o o ek g e e e ok ok e vk dk ok K e ok e K Sk o e gk ok ok ok o ek ok ok ok
*

* This function produces an error message when the input string does

* not match one of those specified in the program specification. This

* function is called by modules listed in the error messages.
*

*t****t***t****************/
void trap(int code, char filename{), char module[])

{
fprintf(stderr, "\n==> ERROR\n");

switch(code)
{
case 1001 : fprintf(stderr,"INPUT/OUTPUT FILE NOT \
FOUND(IO 1001).\n");
fprintf(stderr,"File \"%s\" not found in function \
\"$s.\"\n", filename,module);
break;

case 2001 : fprintf(stderr,”\nFile not properly sorted(%s2001l).\
\n\n",module) ;
break;
/* not used yet
case 3001 : fprintf(stderr,”\n (3001).\n\n");

break;

case 3002 : fprintf(stderr,”\n (3002).\n\n");
break;

case 4001 : fprintf(stderr,"\n (4001).\n\n");
break;

case 4002 : fprintf(stderr,"\n (4002).\n\n");
break;

case 5001 : fprintf(stderr,"\n (5001).\n\n");

break;
*/
default : fprintf(stderr,"***xxxx*x*x FATAL ERROR ****xxx*\n\n\n");
exit (999);
break;

} /* switch =/

} /* trap */

/**/

68

/***
ARAKARA KRR AR RA A ARk hkkk attribute definitions L2 2222222222222 R8 Rt 2 &
(22 E XX EEEZEEZREEEXEZEZZR 222222222222 22222228222 R 2222222222 22 sttt R R &1
*
* This function lists the definitions of the respective attributes.
*
***/
void attr_def(int n)
{

windowmsg;

clw;

switch(n)
{
case 1:
_Ot ("FUNCTION is the action of the component.\n");
break;

case 2:
_Ot("OBJECT is the object manipulated by the component.\n");
break;

case 3:
_Ot ("MEDIUM refers to entities that serve as locales where ");
_ot("the action takes place.\n"};
break;

case 4:
_Ot("SYSTEM TYPE refers to functionally identifiable, ");
_ot("application-independent\n");
_ot("modules. Usually includes > 1 component.\n");
break;

case 5:
_ot ("FUNCTIONAL AREA describes application-dependent \
activities.\n");
break;

case 6:
_Ot ("SETTING describes where the component is exercised.\n");
break;

case 8:
_ot("You may enter a user defined facet now.");
break;

default: break;
} /* switch */
window3;
} /* attr_def

***/

69

/***
XS EE RS R EEE RN ERRRERES] get attr AKKKAREAARARNNKARARNAANRAR RN N NNk kk Ak
XX R EEERREEREEEES AR RS RERRRRRRRRRRRRRRRRRXERRRRRRt s RRRRRRRRESRREE RS
*

* This function prompts the user and returns the value input. All

* modifications to the input value are completed before it is returned.
*

***/
void get_attr(int row,char attr(]),char facet[],char thesdta[])
{

attr_def(row);

window3;

gotoxy(row,1);

gprintf (otext,"%i. %-18s8",row,facet);

_ot(otext);

fflush(stdin);

gets(attr);

attr[(FW] = *'\0';

strlwr(attr);

if (row == 8 && attr[0] != '\0' && attr(0] != **')

get_other_filename(thesdta); /* get other definitions */

if (thesdta[0O] != *\0') /* if file l!exist, return */
thesaurus('s', attr,thesdta);
else attr[(0] = '\0';

attr_def(row);

gotoxy(row,1);

_ot(" ")i
gotoxy(row,1};

sprintf (otext,"%i. %-18s%-2fFs",row,facet,attr);
_ot(otext);

} /* get attr

***/

/***
IR RS EE XS EXE N E] software attribute database update Khhkhhkhkhhkhhkhhkkiki
I EEREEE AR RS RRERERR R SRR RRRRRRRRRRRRRRRRRRRRRERRXERRERRRRRXRRRRRR XS RRRR S 2 8 3

*

* This function updates/creates the supporting database file for the

* goftware attributes.
*x

***/
void db_update(void)
{

unlink("ru.wrd");

unlink("ru.inv");

unlink("ru.vdx");

sort("ru.dta");

hyper ("ru.dta”, "ru.wrd");

}

70

invert("ru.wrd”,"ru.inv","ru.vdx");

/* database update

***/

/***

ARKARRKRRRRRR AN KRR AR *a* got Other filename F* ¥ AXxxARKAARAANKAARARKRARR

LA 2SS SRR RERRRRERRRRERRRRSRRRRERERERSSRRRRRRRRSRESSSRSSRRSSRRERRRSSE SR]

*

*

*

*

This function is used to get the definition file for a user-defined
facet. If the file does not exist, NULL is returned.

***/

void get_other_filename(char name[LEN])

{

}

windowmsg;
clw;
_ot("Enter the name containing the facet definitions -- \n");
gets(name);
if (!check_path(name,”",Optional))
name[0] = '\0';
clw;
/* get other filename

************t**********************tt**********************************/

71

/*
* PROGRAMMER: JOE E. SWANSON

« ssn: [

* COMSC 5000 Thesis and Research
* Summer 1991

*/

#include "ru.h"
#include <conio.h>
/* FUNCTION PROTOTYPES */
BOOLEAN evaluate_targets(char tgtfile(],COMPONENT current);
BOOLEAN find targets(char ifname[],char invfile{],char vdxfilel[],
char tgtfile[],COMPONENT current);

BOOLEAN get_tgts(char ifname[],char invfile[]),char vdxfile(],

char tgtfile([]),char facet[],BOOLEAN flag);

INVERTNDX bin_search(char inputfile[],char key[],int count);
INVERTNDX find key(char vdxfile[],char key(]);

void display_ component (COMPONENT target);

void display targets(char tgtfile[],COMPONENT user);

void extract(COMPONENT *target, int *hits, char input(]);
void output_facet(int row, char *str);

void output_target(char [], char [], char [], INVERTNDX);
void make_guery(COMPONENT *);

void tgttext(char tgtfile[], COMPONENT user);

void query(char ifname[]),char invfile[],char vdxfile(]);

/X M MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM */
void query(char ifname[]),char invfile[]),char vdxfile[])
{
char name[FW],
tgtfile[FW] = "ru.tgt";
COMPONENT current;

cls;

make query(¤t);
windowO;

clw;

gotoxy(10,30);
_ot("Searching...");

if (find_targets(ifname, invfile,vdxfile,tgtfile,current))
{
evaluate_targets(tgtfile,current);
display targets(tgtfile,current);
tgttext(tgtfile,current);
} /* if f£ind */

} /* query */

/T mmmMmMomMmMmMmMoM MMM MMM mMMmMMmMMmMMmMMmMMmMMPBmmm x/

72

/***
IE XS A SRR R RRREERLRSSRRRRR)] evaluate targets IR R R RS RS SRR R REER S ERR NSRS

ARRRKRKKRKRRANKRRRARNKRRRRRARARRKRARANRRRRANRARRRRRRRARRRARRNARAANNRRRRAANRAN A AN AR AR A Ak hdk

This function reads each of the targets from the tgt file and insures
that a match exists in the parameter list and the user list. Targets
that do not match are deleted from the list. If all targets are
deleted, a False flag is returned and the processing is halted for
this search. The language attribute is for info only. A component in
the same language does not constitute a match.

* X # * % #

*

***/
BOOLEAN evaluate_targets(char tgtfile[],COMPONENT current)
{

BOOLEAN flag = FALSE;

char input[Buf_size],

*pchar,

seps[FW] = ",\n\r",

str(FW],

*duplicate,

command{LEN) = "sort /r < new$.tgt > out";

FILE *fp,*fpo;
int att_matches = 0;

open_file(&fp,Read,tgtfile,"evaluate_targets");
while(((pchar = fgets(input,Buf_size,fp)) != NULL) && pchar[0] != '\O'
&& pchar{[0) != '\n'")

duplicate = strdup(input); /* create a duplicate of the input */
strtok(input, seps); /* throw away the component name */

pchar = strtok(NULL,seps); /* read & compare the function */
if (strcmp(current.function,pchar) == 0)
att matches++;
/* read & compare the object */
pchar = strtok(NULL, seps);
if (strcmp(current.object,pchar) == 0)
att_matches++;
/* read & compare the medium */
pchar = strtok(NULL, seps);
if (strcmp(current.medium,pchar) == 0)
att_matches++;
/* read & compare the sys type */
pchar = strtok(NULL, seps);
if (strcmp(current.system type,pchar) == 0)
att_matches++;
/* read & compare the funct_area */
pchar = strtok(NULL, seps);
if (strcmp(current.funct_area,pchar) == 0)
att _matches++;
/* read & compare the setting */

]

73

pchar = strtok(NULL, seps);
if (strcmp(current.setting,pchar) == 0)
att_matches++;

pchar = strtok(NULL,seps); /* discard language */

pchar = strtok(NULL,seps); /* read & compare other */

if (pchar != NULL && strcmp(current.other,pchar) == 0)
att_matches++;

if (att_matches)

{
flag = TRUE;
open_file(&fpo,Append, "new$.tgt", "evaluate targets”);
itoa(att_matches, str,10);
fprintf(fpo,"%s,%s",str,duplicate);
fclose(fpo);

}

free(duplicate);
att_matches = 0;
} /* while */

fclose(fp);
system(command) ;
unlink("new$.tgt");
unlink(tgtfile);
rename("out", tgtfile);
return flay;

} /* evaluate targets

***/

/***

%k Kk ok kK k A Kk k ok ok ok kK k ok ok ok ke find targets % g Kk s vk vk ok d e gk vk ok e ke kb ok ke ke ke
L2 RS ZZEEZZEEZEEEELIEZSRSRZZESESEZRS SRR RS R R RRRs R R RREEaREREEE S

*
* This file takes the current set of component attributes and locates
* all components that match n or more attributes. The target list is

* put in file "ru.tgt."
*
***/

BOOLEAN find_targets(char ifname[],char invfile[],char vdxfile][],
char tgtfile[],COMPONENT current)

BOOLEAN flag = FALSE; /* True indicates target found */

get_tgts(ifname,invfile,vdxfile,tgtfile,current. function,
flag);
get_tgts(ifname,invfile,vdxfile,tgtfile,current.object,flaqg);

flag

flag

flag get_tgts(ifname,invfile,vdxfile,tgtfile,current.medium, flag);

74

flag = get_tgts(ifname,invfile,vdxfile,tgtfile,current.system_type,
flag);
flag = get_tgts(ifname,invfile,vdxfile,tgtfile,current. funct_area,
flag);
flag = get_tgts(ifname,invfile,vdxfile,tgtfile,current.setting,
flag);
flag = get_tgts(ifname,invfile,vdxfile,tgtfile,current.other,flaqg);
if (flag)
{

sort (tgtfile);
unique(tgtfile);

}

else

{
clw;
_ot("No targets found.\n\nPress any key to continue...");
getch();

}

return flag;
} /* find targets

***/

/***
AAAKXAXKAKRARA AR A ARA A AN kA kXX binary gearch AAKAA A AKX AAKAAAA XA IXAAA AKX KKk hkkkk
% o Je e deodkodk K%k ok dkodk ok gk ko ok sk et e de e ik ok ok ok ok ok ok ke % gk % ok %k %k ok ok dk dk dk v dv de ok ok vk gk ok W vk de ok ok vk ok dk de ok ok ke ok ok ok ke R ok ok

*

* This function performs a binary search of data stored on secondary

* gtcrage. It returns the index or NULL if not found.
*

***/
INVERTNDX bin_search(char inputfile[],char key(],int count)
{

FILE *fp;

int low = 0, high = count-1,

test;
INVERTNDX index;
long guess, look;

open_file(&fp,"rb",inputfile,"bin_search");
while(low <= high)
{
guess = (long) (low + high)/2; /* find mid_point */
look = guess * sizeof(INVERTNDX);
fseek(fp, look,SEEK_SET);
fread(&index,1l,sizeof (INVERTNDX), fp);

if ((test = strcmp(key,index.key)) < 0)
high = (int) guess - 1;

else
if (test > 0)

75

low = (int) guess + 1;
else

{
fclose(fp);

return index;
} /* while low */
fclose(fp);
strcpy(index.key,"");

return index; /* key not found */

/* bin search

***/

/***

LE SRS SRRl S find key AKX ARKAAKRKRAANARNRAARRRAR AR A A AN AR N Ak

AAARK KA AR RA AR A AR A AN AR A AR A AN A A AR AR AR AR A AR A AR N ARAARARAAANRRRKRRAAAARRRAANRN AR A AKX

*

*

*

*

This function finds the specified key, if it exists, on secondary
storage.

***/

INVERTNDX find_key(char vdxfile[],char key[])

{

}

FILE *fp;

int count; /* number of elements in vdxfile */
INVERTNDX index;

long pos; /* number of bytes in file */

/* find number of index entries */

open_file(&fp,"rb",vdxfile,"find key");

fseek(fp,0L,SEEK_END);
pos = ftell(fp); /* get file length */

fclose(fp);
count = (int) pos / sizeof (INVERTNDX);

index = bin_search(vdxfile, key,count);
return index;

/* find key */

/**/

76

/***
(S22 S SESSSEERRR RS RRRE RS display targets 222 2SR RRRRSRRRRERRRERR RS
LSS 2SS SRS RRRRRR Rttt i s A sl st s Rl i i it i st SR S

*

* This function displays on the screen all the targets found during the

* gearch.
*

t**t****t********t*/
void display_targets(char tgtfile[],COMPONENT user)
{
char input[Buf_size],
ch;
COMPONENT target;
FILE *fp;
int num,
hits, /* number of parameter matches */
wronganswer = TRUE;
float request = O;
/* create screen display */
cls;
windowd;
gotoxy(1,4);
_ot ("FACETS");

gotoxy(3,4);
_ot("Component:");

gotoxy(4,1);
_ot("l. Function:");

gotoxy(6,1);
_ot("2. Object:");

gotoxy(7,1);
_ot("3. Medium:");

gotoxy(9,1);
_ot("4. System type:");

gotoxy(10,1);
_ot("5. Funct. area:");

gotoxy(12,1);
_ot("6. Setting:");

gotoxy(13,1);
_ot("7. Language:");

gotoxy(15,1);
_ot("8. Other:");

windows5; /* display user request */

gotoxy(1,1);
_Ot("USER'S REQUEST");

gotoxy (4,1);

sprintf (otext,"%-.*s8",18,user.

_ot(otext);

gotoxy (6,1);

sprintf (otext,"%-.*s",18,user.

_ot(otext);

gotoxy(7,1);

sprintf (otext,"%~-.*s",18,user.

_ot(otext);
gotoxy (9,1);
sprintf (otext,"%-.*s",18,user.

_ot(otext);

gotoxy(10,1);

sprintf (otext,"%-.*s",18,user.

_ot(otext);
gotoxy(12,1);
sprintf (otext,"%-.*s",18,user.

_ot(otext);

gotoxy (15,1);

sprintf (otext,"%-.*s",18,user.

_ot (otext);

77

function);

object);

medium) ;

system_type);

funct_area);

setting);

other);

/* get number of user attributes input */

if (user.function[0) != '\0') request++;
if (user.object{0] != '\0') request++;
if (user.medium[0) != '\0') request++;

if (user.system_type[0)] != '\0') request++;

if (user.funct_area{0) != '\0') request++;
if (user.setting{0) != '\0') request++;
if (user.other(0) != '\0') request++;

/* display targets */

open_file(&fp,Read,tgtfile,"display targets");

while(fgets(input,Buf_size,fp) !{= NULL)
{
extract (&target,&hits, input);
if (hits / request == 1) display_component (target);
else
{
windowmsg;
clw;

sprintf (otext, "Component %s meets %5.2f %% of the request.\n",
target.comp name,hits / request * 100);

_ot(otext);
_ot("Display -- (Y/N] ");

}

{

if (respond())

{
clw;
display component(target);
}
else continue;
while (wronganswer)
windowl;
clw;
if (hits > 1)
{

sprintf(otext,”%2i attributes matched.\n",hits);
_ot(otext);

}

else

{
sprintf (otext,"%2i attribute matched.\n", hits);
_ot(otext);

}

_ot("Press (C)ontinue, Facet (D)efinitions, or (Q)uit... ");
ch = (char) tolower(getch());

switch(ch)
{
case 'c':
wronganswer = FALSE;
break;

case 'd’':

windowthes;
_ot("Enter the number of\nthe facet or\n0 to return\n");
while((num = getche() - 48) != 0)
{

if (num != 8)

attr_def(num);

windowthes;

gotoxy(4,1);
} /* while */
clw;
break;

case 'q':
wronganswer = FALSE;
break;

default: break;

} /* switch */

78

79

} /* while wronganswer */

wronganswer = TRUE;
window6;

if (ch == 'q')
break;

} /* while fgets */
fclose(fp);

} /* display targets

***/

/***
(2282222228222 RS R R 8 extract I 2222222222222 2222222222 RR2R R &1
I X 2 2 R R R R R R R R R R X2 2222 2222222222222 222222222 2222222222222 RRRRRRRRREREE & X
*

* This function is used to break down the tokens of the input string and

* pu<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>