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ABSTRACT

Active  structures possessing self sensation and
action/reaction capabilities provide new design alternatives for
new structural systems. In this paper, distributed piezoelectric
layers coupled with elastic continua are used as distributed
sensors and actuators for structural monitoring and control. It
was noted that a fully (svmmetrically) distributed piezoelectric
sensorfactuator could lead to minimum, or zero. sensing/control
effects for anti—symmetrical modes of structures, especially with
symmetrical boundary conditions. One method to improve the
performance is to segment the symmetrically distributed
sensor/actuator layers into a number of colocated sub—segments.
However, the effects of segmented distributed sersors/actuators
are not quantitatively investigated. In this paper, distributed
vibration sensing and control of continua using segmented
distributed piezoelectric sensors and actuators is studied. In
Part—1, mathematical models of a plate with single—piece
symmetrically distributed and multi—piece
segmented—distributed sensors/actuators are formulated and
analytical solutions are derived. Based on analytical solutions,
it proves that the singe—piece symmetrically distributed
sensor/actuator layers are deficient for anti—symmetrical modes,
all even modes. of the plate. The single—piece distributed
sensor/actuator layers are further divided into four equally
segmented pieces from which sensor and actuator pieces are
colocated. Analytical solutions show that quarterly segmented
distnbuted sensors/actuators can sense/control most of the
natural modes, except for all quadrupie modes.

INTRODUCTION

In recent vears there are significant interests and efforts
trying to integrate active matenals (such as piezoelectrics.
shape—memory alloys, electrostrictive materials.
magnetostrictive materials, electrorheclogical fluids. etc.) with
an elastic structure such that the structure transforms from a
completely passive system to an active adaptive system (Tzou.
1991a). With the rapid development of VLSI technologes.
adding an “intelligence" to the structure could also become a
reality in the near future (Tzou & Fukuda. 1991). In the
development of active piezoelectric/elastic structures. it was
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observed that symmetricaily distnbuted piezoelectnc sensors
and actuators have observability and controllability deficiencies
in monitoring and controlling continua, especially with
symmetrical boundary conditions. With a single—piece
symmetrically distributed sensor and actuator.
anti-symmetrical structural modes may not be observable and
controllable because positive and negative sensing/control
signals on different regions of the continua could cancel out each
other. One method to improve the controllability and
observability of distributed piezoelectric sensors/actuators is to
segment them into a number of smaller pieces — sub-—areas.
However, the effects of these segmented distributed
sensors/actuators have not been quantitatively analyzed. Thus.
distributed vibration sensing and control of plates using
segmented sensors and actuators are investigated in this study.

Theories on distributed sensing and control of sheil
continua using distributed piezoelectric layers were proposed
recently. Applications to plate structures were also
demonstrated in case studies (Tzou, 1991b; Tzou & Tser:.
1991). Ricketts studied a piezoelectric polymer flexural plate
hydrophone (1981) and the frequency of completely free
composite piezoelectric plates (1989). Lee (1990) proposed a
theory for a laminated piezoelectric plates with applicauons to
distnbuted sensor/actuator designs. His formulations suggested
that the distributed piezoelectric layers are capable of sensing
and controiling bending, sheanng, shnnking, and stretching
effects of a plate. Burke and Hubbard (1990) studied
distributed transducer control designs for thin plates with
general boundary conditions. Modal control and observation
deficiencies were also exploited. Dimitriadis, et al. (1991}
invesuigated Jdistributed vibration excitations of thin plates
using piezoelectric actuators. In this paper, distnibuted sensing
and control {velocity and displacement feedback) of a plate 15
derived from the generic distnbuted sensing and control theones
of thin shells { Tzou, 1991b). Modal sensing and control of the
plate 1s derived using the modal expansion method and
equivalent line control moments are also denived in the modal
domain. Observation and control deficiencies of symmetncally
distributed single—piece and segmented sensors/actuators are
proved based on analytical solutions. Advantages of using
segmented  distributed  sensors/actuators are  discussed.
{Emphasis s placed on the evaluauon of distnbuted
sensor factuator segmentation.)

239




MATHEMATICAL MODELING

In general, closed—loop system equations, in three
principle directions. of a generic shell continuum coupled with
distmbuted piezoelectric sensors and actuators can be expressed
in a simplified form (Tzou, 1991a&b}:

L (u,upu) = phii; = = F, = L33 N%) 1= 1,23, (1)

where L, denotes all denvative operations of the elastic
COMPpONERts; u; is the displacement; p is the mass density; h is

the shell thickness: F; is the mechanical excitation; L% denotes
the derivatives of the induced control membrane forces and
bending -moments; and Ma{j and N?J are the control moments

and membrane forces on the ith plane in the jth direction. For
an uncoupled transverse vibration of a thin elastic shell, the
generic system equation is reduced to

Ly(uy) = phiiy = — Fy — L§(M3)) . (2)

If the shell continuum has an inherited viscous damping, the
system equation can be further expressed as (Soedel. 1981):

Ly(u,) — phily —cu = = F; - Li(M2)) (3)

where c is the equivalent viscous damping factor. In the case of
piezoelectricity induced damping, the control counteracting
force/moment is usually assumed to be proportional to the
velocity. For a free vibration analysis (eigenvalue analysis), all
external excitations (both mechanical and feedback) and

damping forces are zeros, i.e., F, =0, L'%(Ma \"a;J) =0, and

1
ci =0. It is also assumed that all points on the continuum
oscillate harmonically at one of the natyral frequencies, ie.,

u(x,y) = Ui(x,y) et Thus, one can derive

Li(U a0 Usno Usan) + Wl Ui =0, (4)

where w7, is the natural frequency of the mn-th mode and
Uino{ @y, a2) is the mode shape function — a spatial function of
coordinates.

Plate with Distributed Sensor and Actuator

A rectangular plate with two biaxial oriented
prezoelectric polymeric layers, one serves as a distributed sensor
and the other a distributed actuator. is used as a physical
system in this study, Figure 1. Segmentation of distributed
sensors and actuators will be discussed later. {Note that which
piezoelectric layer serves as a sensor or actuator is not crucial.
In this case, the bottom layer serves as a sensor and the top an
actuator.) The piezoelectric layers are assumed to be perfectly
bonded on the surfaces of the plate and the physical properties
of the bonding matenal are neglected. It is assumed that the
transverse bending oscillation dominates the plate motion 1e.,
the in—-plane membrane oscillations are neglected. in the later
analyses.

It is assumed that the in—piane twisung piezoelectnic
constant is insignificant, 1e., Miv = 1. The piezoelectric layets
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Fig.1 A plate with distributed sensor and actuator layers.

(k% and ha') are much thinner than the plate thickness h: thus.
the effect of piezoelectric layer thickness is neglected in the
analyses. The system equation for the plate with distnibuted
sensor and actuator layers can be written as

o

=F3+

'
dtu,

ayd
M3

+ YY,
dy*

4 4
d%u, 0%,

+ +
Ixt Ax20y3
M3,

dx3

] + phiiy + cuy

(8)

where D is the bending stiffness, D = (Yh3)/[l2(1—-u2)]; Y is
Young’s modulus and 4 is Poisson’s ratio. M2  and M?_‘. are
distributed control moments (Tzou, 1991b) and they can be
expressed in a modal expansion form (Tzou, 1992):

R

Mi= Y Y Manlt) 1545, Y 6 63

m=z1 n=1

a a S
My =Y Y tanlt) 1340 6 €5

@] n=t

x

(6)

Note that 5, is the modal participation factor: r‘? denotes the
moment arm, a distance measured from the neutral surface to
the mid—piane of the actuator and r? = (h + h?)/?; dy is the

piezoelectnic strain constant, Yp is Young's moduius of the

piezoelectric layer. and § is the feedback gain. o;n is a feedback

voltage which could be a reference voltage (open—loop) or a

sensor voltage {closed—loop) and 1t is assumed to be a spaual
function. In the case of closed—loop feedback. J:m 1s the mn—th

unit modal sensinc signal of a distributed piezoelectric sensor
expressed as a function of mode shape function.

-8 U
0% = = b8 h, (22 4 by f“")] , (8-a)
L dx? ay?
5 P o,
o3, = - [h,lq 0 bt 2 dA%, (3-b)
AS) AS dx? y?




S . . . ) .

where h” is the thickness of the distnibuted piezoelectric sensor
S . . .

layer; A” is the effective electroded sensor area: h,, and h,, are

the piezoelectric constants; rsi denotes the distance measured
from the neutral surface to the mid—plane of the sensor layer
and r? = (h + his)/2. Eq.(8—a) denotes the spatial distribution
and Eq.(8—b) denotes the averaged signal output.

Modal Expansion and Vibration Controls

Based on the modal erpansion technigue, the dynamic
response of a distributed system can be represented by a
summation of the responses of all participauing modes, 1.e..

u,y(x,y,t) = El Exnm(t) Uypn(x.y), where U, is the umt
mslins:
spatial part (mode shape function) and n,, is the temporal part —

an amplitude factor called the modal participation factor.
Substituting the modal expression into the system equation
results in an equation in terms of modal participation factors.
Using the modal orthogonality of natural modes, one can derive
(Fu, 1990)

. c .
Tant FE Nant w;nnm
aMe,  aMe,

=ﬁ‘k+pl]il\kj;];[ XX+

ax? dy?

U,podxdy , (9)
where

5 1
Py = Ziny [ j; F3U jppdxdy , (10)

and N, is defined by the mode shape functions:

Nk=j;fy U2, dxdy . (11)

(Note that this generic expression is only for transverse
vibration modes.) For a simply supported plate with a
dimension of axb, the transverse mode shape function is

Ujpg = 8in m;x sin—n?— : (12)

Substituting U, ., into N, and carrying out the surface
integration, one can derive

Ny = 32 (13)

Using the definition of damping ratio for a single degree
of freedom system, onme can rewrite the modal coordinate
equation as

M3, a*ME,
_ - l X
=Fo+ 5w kj;fy(

+
dx? dy?

)L 1madxdy , (14)
where

C

(mn__-Wv (15)

mn

is the modal damping ratio. Substituting the modal expressions
of control bending momernts irt¢ the mocal equation yicids
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R
Ho+ 9 o n e ot
Tan™ “Swn~an zn” "'mn‘vmn

x

I ( 3? M., c"'z.\I.,,m -~
_Fk'fwff 22:’:!” - PP
m=1 nst <
+Usggadxdy “15)
where M__ and M_vm are the unit modal controi moments:

a , S -
Mygn = rxdu\pg Pan (17)

a , S .
Myum = ryd;,Y pg Oan - (18

Since the time function of feedback control input 1s also a
function of system modal participation factors. the commun
terms, the mn—th term in the summations,

G*M ™M, o0

U, dxdy . 15
ﬁfm ““‘ff[axz M dy? J ¥ aantE o

represents the control effect of the mn—th mode: and it can be
moved to the left side and combined with the appropnate

system term, €.g., 7y, for a displacement feedback or 7, for a

velocity feedback. (These two feedback controls will be discussed
shortly.) All the other terms within the summations represent
the cross coupling control effects from all other residual modes.

Define a modal feedback factor Mm
amplitude (Fu, 1990):

which is independent of

M, o0 amm
Mas phl\kff [ ax2 By ]UhdedY§ (20)

and use T, to demote the cross coupling feedback effects due to
residual modes.

6"\1, M
T = [ pq ypq]
waZJ T
p:1lq=l
P#m qfD
«Uygadxdy . (21)

1) Displacement Feedback Control
For a displacement feedback proportional control, the
modal equation can be rewritten as

flan + 2Canvonan T (Wan — Mon)Tag = Fi + Tk . 02)

where
9*M,, a?uqu
toi 3 Y | =)
kT qu:-v 9x1 dy?
p:lq:l
P#m q¢n
U gadxdy 23)

. i ~ B ‘
Fy = PN, j;j:, F;U;pqdxdy and Ny = j:j: Ui adxdy. Both
afc defined for the transverse vibration modes uj only




2) Velocity Feedback Control

For a velocity feedback control (derivative controi), the
feedback time function is a first derivative of modal
participation factor, and the induced moments become

Mix = i i Tan(t) M an (24)
M3 = i i Man(t) Mygq - (25)
mz]l n=]

Moving the common terms to the left and combining them with
ran i€

:"Imn + (2(mnwmn - ‘i{mn)i’mn + “J:mnmn

=B + 1y, (26)
where
oo *M a*M
z 1 . xpq vpq
T =
L PE“kZ znqu;j;[ dx? * dy2 ]
Pii i
U padxdy . (27)

Since the modal feedback factor M_, is independent of

the vibration amplitude, it can be treated as a system
parameter. Once it is defined, the new system parameter can be
estimated without solving for a particular modal participation
factor 7y, (t) completely.

Note that the above evaluation procedure is in a generic
form. It can be employed for other geometric configurations
whose mode shape functions, either exact or approximate, are
known. These configurations include beams with most common
boundary conditions, some plates, simply supported cylindrical
pa.ne;s or cylinders, and some other shell structures (Soedel.
1981).

ONE-PIECE SYMMETRICALLY DISTRIBUTED SENSOR
AND ACTUATOR

In a closed—loop feedback system, the induced distributed
control moments are originally initiated from the distributed
sensor signal. In this section, formulation of a distributed
sensing signal and distributed control moments for a simply
supported plate with a single distributed piezoelectric sensor and
a actuator is presented. Note that a simply supported plate is
used in this study. (Segmentation of distributed sensor and
actuator layers will be discussed in the next section.}

Distributed Sensing

The mn—th mode shape function U,_ (x.y), in the

transverse direction, for a simply supported rectangular plate is
mrx

given by Ujyga(xy) = sin—

sin%-v—. The unit modal

S
_h—c ( S l—hur?( 82U1mn/ﬁx:

sensor signal (averaged) is ¢:m =
ATJ AT
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;
) + hyr3(6%U, . /0v?)|[dA®. It is assumed that the sensor layer

is fully distributed on the plate surface. Substituting the mode
shape function into the sensor equation and integrating over
whole sensor surface, x = (0, a) and y = (0, b), one can derive

s hS

m.? o I y2
Pun = 75 [ hari( 3 ) + hagry( g) }(1 — cosm7)
(1 —cosnr) . {28)
Define a sensitivity constant Sy, for the mo—th mode:
$ s M2 s 07 5

San = Hﬁthllrl(?)+h32x2(5)J' (29)
so that the sensor eqnation can be simplified to

Oon = San(1 — cosmr)(1 — cosar) . (30)

Note that the output signal vanishes. i.e., zero output. if the
mode order m or n is an even number. This observabilitv
problem will be further discussed later. Additional feedback
controllability problem induced by the constant voltage will be
answered in the next section.

Distributed Vibration Control

It is assumed that the distributed piezoelectric actuator
layer covers the plate from locations x, to x, and from y, to y,,

Figure 1. (Note that x; =0, x=a, y;, =0, and y="b for a
fully distributed actuator layer.) Since the feedback voltage is
constant over whole actuator surface if the electrode resistance
ignored, the induced control moment is also uniformly
distributed on the actuator covered area. As discussed
previously, the moment function can be separated into a

temporal function part and a spatial function part: Mix =

] @ [ ®
a
m)’ll nI’}l Naa(t)M, . and Mg, m}’ll ngl Ta(t)M g Thllxs, one
can express the moment spatial distribution using a unit step

function u ®

1 forx>x; )
(31

x < x;

u(x~x;) =

=],
. < ¥

Then the distributed control moments M. pp's can be expressed

as

*

Mg =

an:us(x—x1)—us(x—x3)][us(y—y,)—us(y—y,)] » (32)

Mymn = Iﬂ_vmnius(x—x\)_us(x_x’z)][us(y—y1)_us(y—}'2)] , (33)

where the magnitudes for proportional feedback M, , and M

were defined previously. Substituting the sensor signal of the
distributed sensor into the unit modal control momeats yields

von

M

(34)

<an r?d,,ng Spa(1 ~ cosm7)(1 — cosnx) .

M

ymn

Il

r%d“\’pg San(1 — cosmm)(1 — cosn). (35)




Equivalent Line Moment

Note that a uniform moment distribution is characterized
as a resultant bending phenomenon which can be equated by a
set of couples or moments acting at both ends of the
distribution. Using an equivalent external distributed moment
approximation and the modal expansion technique, vne can
derive a modal equation in terms of modal participation factor
as

aT
- 1 1
=F
k+f’hNk-/;'/;[ Ix *

where T}, is the distributed moment acting in the ith—direction

with @ unit N-m/m? (Soedel, 1981). Comparing this equation
with Eq.(14) gives

mzz]
U, dxd
5}' J 3ondXay ,

(36)

a2, . i
7% = Tu» (37)
a
M3,
3y = T,,- {38)

Using the identity: —3{u (x - x;)]
Dirac delta function defined as

1 forx=x;
0 x#xi,

which has a dimension (1/m) (Soedel, 1976), one can derive the
equivalent line control moments in the modal domain:

8(x - x,) where 6(x) is a

&(x —x;) (39)

aMa ® @
T =2, Y MuaMaa{fx—x) = dx-x;)llu(y-,)

ax]l ns|

- US(Y‘YZ)] =Ty, (40)
6Ma ® ©
73';1 =2 Xanyﬂm[us(x—x‘) - us(x—xz)][i?(y—y )
—.6(15'1;;)] = Tn : (41)

The above two equations imply that in each direction the
uniform moment is equivalent to two externai equivaient
distrbuted line moments acting at both ends of the distribution.
The units of two moment definitions are consistent with each
other. Thus, the equivalent line moments Mlmn‘s representing
the control moment effects on tue boundaries of actuator
distribution, fully or partially distnbuted. are used. (Lee
(1990), Burke/Hubbard (1990), and Dimitriadis. et al. (1991)
also suggested the line—moment approximation in global
coordinates based on their respective studies.) Modal
controllability and observability of the single—piece distributed
sensor and actuator, fully or partially distnbuted, will be
emphasized in the later analyses.

Modal Feedback Factor and Modal Equations

Using the equivalent distmbuted line moment concepts,
one can redefine the modal feedback factor My, as
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t 3 x
fon = 515 e T e
. = + 1n o XAY 12
RN Yxdy L ogya Gy - T

* *
where M, . and M., are the equiaient awstridutea .ime

moments. Depending on feedback algonthms. this medal
feedback factor may contribute to either damping (velocity
feedback) or elasticity (displacement feedback) in the mn-th
modal coordinate equation. Substituting Eqs.(32}, (40) and

mode shape function into the modal feedback factor .‘;Im and
integrating the two moment terms respectively, one can obtain

L,

=

*M

< “xmn

a ab
- a -
P Lamdxdy=j; J.o Moo ‘5;&""";’

= &x = xy)]-u(y —¥) —ully = ¥,)]

-sin-m—a’r—x——sin—nsﬂ— dxdy . 143}
Integrating by parts gives
M,
M on _ mb mrx,
j;j; ax2 U‘.!mndXdy == Mxmn Tna [COST
maXq nxry, mry,
—cos— ] [cosT— cosT] . (44)
Similarly,
M.,
mrx
ymn — na !
j;j; 2y Ujgadxdy = — Mo, o5 [cos—a-
m7x, nry, nry,
— cos—7 ] [cosT - cosT} . (45)

Then, the modal feedback factor Mm for the equivalent

boundary line control moments of a simply supported plate can
be expressed as

; -1 mb na mmx, mTx =
M = AN, (Mzzagz + Mywomp) [cos T~ Cos——
( Bmy, oAy,
. |cos—5———cos—5—] . {46)

Note again that M, vanishes for all even modes if x, and
x, o y, and y, are symmetrically located about the mid—span.

As discussed previously, the modal feedback factor can be
combined with the modal damping term in the veloatvy

feedback:

Nant (2¢zn~on — “-’!mn)i]mn*' “’:xnnmn= Fy+ Ty, {47

where M__ represents the distributed control effect and T,

Eq.(27). denotes the cross coupling effects resulting from all
other participating modes due to the closed—loop feedback.
Define a modified modal damping ratio (g, as

Mo,
T !
an

Cl’ﬂﬂ = /‘.mn ! 12&‘




where the system inherent modal damping ratio ¢ is assumed

known from laboratory experiments. Then, the modified mn—th
modal equation becomes

Tant 2¢an“nnTaat wt‘:nnmn= l.:‘k + Ti . (49)

Note that T} is the coupling terms from the residual modes.

Modal Controllability and Observability

As discussed previously, the derived sensing and control
equations suggest that the single-piece symmetrically
distributed piezoelectric sensor and actuator have deficiencies in
sensing and ccntrolling all even modes — anti—symmetrical
modes — of the simply supported plate. That is there are severe
problems-on observability and controllability for the even—order

. - . mrx .. nry
modes. According to the mode shape sin————sin—p—, the

sensor layer is stretched at some locations while the other
locations compressed so that the charge signs can be different.
The resultant charge is zero due to those equal magnitude
negative and positive instant charges.

Even if the observability problem could be solved, say by
other sensing techniques, there is still modal controllability
problem for the single—piece symmetrically distributed actuator.
For example, when m = 1 and n = 1, the moments at both ends
counteract the motion resulting in significant control effects.
However, when either m or n = 2, only a moment at one end
suppresses the motion, while the other augments the motion. As
a result, only very minimal, or zero, control effect is generated.

In order to ensure controllabilities for most of the modes,
e.g., both even and odd modes, distributed piezoelectric sensors
and actuators need to be redesigned and/or new control
strategies developed. One method to improve the sensing and
control performance is to segment the distributed sensor and
actuator layers into a number of sub—areas so that the
charge/voltage cancellation problems can be minimized. As an
example, the single—piece distributed sensor and actuator layers
are equally divided into four smaller pieces in which sensor
signals are fed back into their colocated actuator layers. In the
next section, the performance of these segmented distributed
sensors and actuators is evaluated using analytical techniques.

SEGMENTATION OF DISTRIBUTED SENSORS AND
ACTUATORS

As discussed in the previous section, theoretical
derivation suggests that there are observability and
controllability problems for anti—symmetrical modes if the
single—piece symmetrically distributed sensor and actuator
layers are used. One method to overcome this problem is to
segment both the distributed piezoelectric sensor and actuator
into colocated subsections or sub—areas. That is each pair of
sensor and actuator consists of top and bottom pieces of layers
at the same location of the plate respectively.  Then each
segmented sensor can detect the local motion state. The
processed sensing signal is fed back into the colocated
distributed actuator resulting in a localized control effect for
that sub—area only. Detailed formulation of a segmented
distributed piezoelectric sensor/actuator design for the simply
supported plate is presented in this section (Fu, 1990).
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Segmented Distributed Sensors

It is assumed that the distribuied piezoelectric sensor is
divided into four equally sized segments, i.e., cut along the
center lines. Figure 2 illustrates this segmentation. The four
segmented sensors still cover the whole surface of the plate. A
small gap is left between the two adjacent sensor segments to
prevent them from short circuitry, but it is ignored in the
mathematical model due to its smallness. Then each sensor
segment responds to the local motion state and generates a
signal output.

f

Fig.2 Segmentation of distributed piezoelectric
sensors and actuators.

For tke mn—th mode, segment~1 sensor outputs a signal

S
Do a8

S1 _
o =

a b
77  mrx . m
J; j; 51n—asxn+dxdy

=4S,,(1 - cos%'—) (1- cosgg—) ,

h® s, MM 2 sy AT 2
5, [ h:utx( _) + hn’z( ) ]
A 1 3 F

(50)

where S, is a sensitivity constant for the mn—th mode, i.e., S,

hs s M 2 n,% s s
“mn [ hzlrl( —a—) + hnr§( B ) ] n= (h +h )/2 And the

other three segmented sensors provide output signals as

#ol =4S, (1 — cosBI) (cos23~ —cosnr ) , (51)
033 = 4Sm(cosﬂg~ — cosm) (cos%r— —cosnr ), (52)
¢:u“ =4S, (cosﬂg— —cosmx )(1 - cOSE-Z;r—) . (53)

Note that the output signals won't vanish for most modes except
for quadruples of n or m modes. Note that if n=m = 1, ‘p,‘:,i =

S s

S1= a8 =034 lfn=m=2 43l = oS} and oS = o3t = -
$

'3mxl1 :

Segmented Distributed Actuators

It is assumed that a distributed piezoelectric layer covers
the center part of the plate from x, to x, and from y, to v, and

it is further equally divided into four segmented distributed
actuators as shown in Figure 2. According to the sign changes




of.sensor outputs at different modes. Eqgs (1501 to 133), the signs
of feedback voitages to each segmented actuator vanes and so
the distnbutions of induced moments. Thus, the contrul
moment distributions can be written in the form of step funcuon
u.'s as

S5

*

Mign = Myean [ug(x—x,) —u (x~ %) = (=1)"u (x- %)
+ (=1 )] [ugly=y) = ugly= ) — (=D s- B
+ (—l)"us(y—y;)] ) (54)

*

My = Mygn [us(x—xl) —u(x=3) ()% (x-3)

+ (1P xoxp)] [ug(ry) = uy= ) = (-DPugy- B)

+ (—1)“us(y-yg)} : (55)

Note that (—l)m/n is used for sign changes. The

directions of control moments depending on mode—numbers m
and n are consistent with the sign changes of signals discussed
previously. Figure 3 illustrates the control moments contnbuted
by segmented actuators for two typical modes.

Mode shape m=1

M M

Sl

Y Y

in x direcuon

Mode shape m=2

in x direcnon

Fig.3 Moment actuation of segmented actunators.

Substituting the above two generic moment expressions
into Eq.(20) for modal feedback facior and integrating each term
respectively, one can derive

3 mx mr
b 1
j;.]; podxdy = =M ___ Ir?a [cos — COS7—
mr mwx, nry, nr
- (—1)"'cos-:,— + (=1)™cos = ] [cos—B— ~ COSm—
n7rv ]
—(=- )“cosr+( ~1)" cos—g—| . (56)
ff dxd \ na mx, mx
dy? y= ymn b |COS— — — COSm—
mnr m7x, nry, nr
- (—1)"‘cos-2— + (=1)"cos ry ] [cos—? ~ oSy
nfv ]

- (- l\“cosz— + (- 1)“cosT— (57)

Thus. the modal feedback factor M_, for the four—piece

segmented actuator configuration becomes
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: -1 7 mb na i
Man = 5587 | Mxwnng ~ Mionmb |
mx, mr mrx mmx..
. [cos —0S7— —{—1)"cosu— ~(—1)"cos
¢ ATy, n* nr nry,
. —_ — = n — n £
LCOST Cosy— (-1) oSy + { 1) COSTJ {58)
The unit modal control moments for the first colocated
segmented sensor/actuator are defined as
nr 1 .
M. =71 4,,Y g[ (l—cos—r)(l—cosT;| , 1593

Mign = r,danG [4Sm(1—cos35—)(l—cosl‘_;—)‘l‘ 6N

Note that the moda! feedback factor Mg,
except for quadruples of m or n modes.
m = 3, M_ s are 1dentical to those calculated by Eq.(46) for a

single piece actuator.  Thus, the analysis suggests that the
segmented actuator design improves the controllability for even
modes without degrading the contrcl merits for odd modes.
Since lower modes are generally more important than higher
modes, only several lower modes are considered in this study.
Detailed parametric study and time-history analyses of the
plate will be presented in Part—2 of the paper.

will not vansh
Whenn=m=1orn =

CONCLUSIONS

This paper is concerned with a performance evaluation of
distributed, one—piece fully and multi—piece segmented,
distributed piezoelectric sensors/actuators. The theoretical
analyses suggested that:

1) A single—piece symmetrical distributed sensor layer has
sensing deficiencies, observation deficiencies, for all even
modes because the locally generated positive and negative
charges could be canceled out on the whole effective
sensor surface.

2) A single—piece symmetrical distributed actuator layer is
also ineffective for controlling all even modes,
controllability deficiency, due to similar reasons stated 1n
item 1. However, the charge/voltage is fed back (or
injected) to the distributed actuator layer in control
applications.

3)  Quarterly segmented sensors and actuators can sense and
control most of the natural modes, except the quadruple
modes, of the plate. The sensing and control effects for
all odd modes are identical to the single-riece
sensor /actuator configuration.

The analyses showed that segmenting distributed sensor
and actuator lavers into a number of sub—segments does
improve the observability and controllability of the system. The
segmented actuator design improves the
observability/controllability for even modes without degrading
the control ments for all odd modes of a simply supported plate.
In general, lower modes are more important than hugher modes
in structural momtoring and control. Thus, only several lower
modes are considered in this study, although further
segmentation of actuators are possible and might provide better
structural observability/controllability.
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