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Abstract

Computational science is a productive intellectual activity. It produces highly useful co.a-
puter programs that require much creativity and ingenuity to develop. Moreover, computa-
tion is a powerful theoretical tool for natural scientists.

However, can computational science have a scientific foundation, quite apart from its roles
as a juxtaposition of disciplines and as another theoretical tool for scientists? That is, can
computational science develop concepts that enable a broad systematic understanding of
inference and discovery in science?

This paper makes a case for an affirmative answer that relies on the concept of “generic
scientific task.” We will argue that theoretical understanding is to be attained by identifying
and automating such tasks. To develop the idea, we configure samples of previous work in
computational science (broadly construed), lay a road map to guide further research, and
suggest experimental tools to generate research problems and to re-deploy proven techniques.
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1. Introduction

There can be little doubt that computational science is a productive intellectual activity. Its
various instances - computational biology, computational chemistry, computational physics,
and so on - produce highly useful computer programs that require much creativity and
ingenuity to develop. Moreover, the idea of computation provides a powerful tool for natural
scientists to use in their theoretical development.

However, can computational science have a scientific foundation, quite apart from its im-
portant role as a useful juxtaposition of disciplines and from its role as another theoretical
tool for scientists? That is, can computational science develop concepts that enable a broad
systematic understanding of reasoning and discovery in science?

This paper makes a case for an affirmative answer by proposing a scientific basis for com-
putational science. The basis relies on the concept of generic scientific task, and suggests
that theoretical understanding is to be pursued by identifying and automating such tasks.
To develop the idea, we will place within a coherent framework various samples of previous
work in computational science (broadly construed), lay a road map to guide further research
in the area, and suggest experimental tools that can serve to generate research problems, or
to re-deploy proven techniques.

First, we will proceed by recalling the role of scientific concepts and demonstrating that the
usual interpretations and categories of computational science are inadequate to achieve a
scientific basis.

2. Scientific Concepts

According to Hempel’s Fundamentals of Concept Formation in Empirical Science [13], a
concept is a complex of characteristics that determines membership in a class that one
wishes to distinguish. Hempel points out the two roles of scientific concepts: description and
theoretical systematization. For example, the concept of “color” can describe the appearance
of peas, and of other things, but also enabled Mendel to formulate his genetic laws based on
the inheritance patterns of pea color. We conclude that color is a valuable scientific concept,
at least for classical genetics.

We can turn to computer science itself to further illustrate the nature and role of scientific
concepts, although that field is much less concerned with description due to the generally
abstract character of computer science. Some examples of very fruitful concepts are the
notion of a Turing machine, of a stored program, of heuristics, and of resource consumption
that grows polynomially in the size of input.

However, not all concepts are scientific concepts, since not all concepts contribute much to
theoretical systematization. For example, in computer science there is no known reason to
regard as fruitful the concept of resource consumption that grows as n* in the input size.
Consider another example from nature: is the concept “bigger than a limousine” a fruitful
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scientific concept? This concept includes volcanos, planets, and blue whales, and certainly
serves to describe nature. It even permits a degree of theoretical systematization, since
the observation that no living creatures bigger than a limousine can fly might lead to an
explanation: the muscular strength for flight grows in proportion to cross-sectional area,
but mass grows with volume [31]. Hence, in larger creatures the extra muscle that powers
flight is quickly overwhelmed by the added weight. After a few such theoretical successes
however, one can expect to run out of things to say, since there appears to be little systematic
understanding to be reached by comparing volcanos with blue whales.

3. Natural Science

Before proceeding to examine computational science, it is worthwhile to consider what is the
basis for cohesiveness in the natural sciences. The cohesiveness of volcanology, for example.
is ensured by the common concern of volcanologists with volcanos. Similarly, the cohesion
of biologists is a consequence of their common object of inquiry: living organisms. The
natural sciences coalesce around certain phenomena, whether life, volcanos, the planets in
geophysics, and so on. A cell biologist who builds models of cellular processes has much
in common with his next-door colleague who inve:nts new ways to observe experimentally
those same processes, even though the reasoning and methods used by the two biologists are
quite different. Even computer science, which is not generally regarded as a natural science.
coheres around the abstract concept and concrete reality of computers.

Of course, there arise important problems that call on the expertise of multiple disciplines.
However, this truth does not undermine our point, which is that the cohesion of a specific
natural science rests on a shared concern with similar phenomena.

4. The Various Computational Sciences

Computational biology, chemistry, and physics are by now healthy branches of science. For
example, each has its own journal named Journal ¢f Computational Biology (Chemistry.
Physics, etc.). Besides serving as a label for highly significant and useful juxtapositions of
expertise, will these individual computational sciences acquire a coherence that will lead
to the systematic understanding of which Hempel writes? Putting it another way, does a
Computational X inherit the coherence of the parent science X? Formulating the question in
yet a third way, does the conventional view of the computational sciences depicted in Table 1
represent a theoretically fruitful view?

We think that the answer is negative: the concept of computational biology, for example.
does not by itself further a systematic understanding of computation in biological science.
The juxtaposition of ‘computational’ and ‘biology’ can usefully describe activities that de-
serve the label, but it does not inherit the coherence of biology. Among cell biologists. the
model builder and the developer of experimental techniques have a mutual concern with
cells. However, computing for model-building and computing for experimental-technique




Computational Biology
Computational Chemistry
Computational Physics
Computational Metallurgy
Computational Psychology
Computational Astronomy
Computational Geology
Computational Paleontology
Computational Petrology
Computational Zoology
Computational Oceanography
Computational Seismology
Computational Mineralogy
Computational Volcanology
Computational Physiology
Computational Mcteorology

Table 1: A Conventional View of Computational Sciences

development potentially share nothing except the instrument of computing. And Computa-
tional Science does not pursue a systematic understanding of computing as a phenomenon
free of context, but as a tool that relates to scientific reasoning and discovery.

Our conclusion is that computational science, viewed as a disparate collection of instances
(computational biology, physics, geology, etc.), is not a fruitful scientific notion. It is a
valuable description of challenging intellectual activity, but is likely to lead to systematic
understanding only in the individual parent science through its role as another theoretical
tool. We will argue in what follows for an alternative view of computational science that
does lead to theoretical understanding of computation in science.

5. A Scientific Basis

Our proposal is that computational science should be organized around the concept of
generic tasks that cut across the various sciences. Rather than slicing up the computa-
tional sciences horizontally into computational volcanology, physics, etc. as in Table I, we
propose many vertical slices as in Table 2. The next few sections will develop our meaning
by examining in some detail various generic tasks from science. Each generic task involves
a single, specific type of scientific reasoning that occurs in more than one science. However,
we make no claim of crisp boundaries between these tasks; even the possibility that one
task wholly contains another is not ruled out. As with any taxonomy, knowledge of the best
descriptive categories, and of relations among them, emerge over time.




Task 1 | Task 2 | Task 3 | Task 4 ...

Computational Biology
Computational Chemistry
Computational Physics
Computational Metallurgy
Computational Psychology
Computational Astronomy
Computational Geology
Computational Paleontology
Computational Petrology
Computational Zoology
Computational Oceanography
Computational Seismology
Computational Mineralogy
Computational Volcanology
Computational Physiology
Computational Meteorology

Table 2: A Scientific Basis for Computational Science
5.1. Computer algebra

A very familiar, generic task in science is solving for a differential equation. An equation
of the same form is solved identically, whether it arises in population biology, mathematical
psychology, or elsewhere. Standard symbolic computation systems can solve the differential
equation y' = f(z) over restricted classes of elementary functions. This is, of course, also
known as indefinite integration: y = [ f(z)dz.

Solving indefinite integrals is not an isolated case: there also exist algorithms for solving
higher-order differential equations, finding roots of polynomials symbolically, and factoring
multivariate polynomials over various coefficient domains. Kaltofen [16] and Davenport et
al. [8] provides overviews of the field of computer algebra.

5.2. Optimization

A second example of a generic task in science is optimization. In the case of combina-
torial optimization, there already exists the algorithmic theory and implemented software
to solve linear programs {27}, nonlinear programs, mixed-integer linear programs, and even
mixed-integer nonlinear programs. The scope of combinatorial optimization is not limited to
engineering-oriented or experiment-planning aspects of science; theoretical model-building
itself can at least sometimes be formulated as problems of combinatorial optimization by
minimizing the size of the model (e.g., [35, 36]), which in some sense corresponds to secking
the simplest theory. A wholly separate category is continuous optimization; similarly, such
tasks are generic in the sense that they cut across sciences. A typical application of contin-
uous optimization arises when theories or models contain free parameters to be optimized
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{Sl ,l} - {Sl .r}
{Su} — {S.,}
{Sa} — {S}
{Sna} = {Sar}
Table 3: Pathways

on the basis of experimental data [4].

The above two task examples are perhaps easily seen to be generic, since they are closely
tied to mathematics and to algorithmic theory, both of which are abstract disciplines that
emphasize generic representations and solutions. If our concept of generic scientific task
were limited to such examples, then it would not be very systematic, since most scientific
reasoning does not involve such crisp formulations.

5.3. Inferring laws from data

Both artificial intelligence and statistics have addressed the problem of finding algebraic laws
hidden in data, a task of evident generality and of both historical and current relevance.
Statistics, for example, has developed methods of regression that lead to algebraic relations
among measured variables [23]. The original BACON program from cognitive science empha-
sized the creation of new terms from data using a heuristic search that noticed correlations
between two terms; psychological plausibility was also a motivating factor in the design of
the program. Much work in Al subsequent to BACON has attempted improvements.

The first three cases above of generic tasks derive their generality from the following fact:
their starting points consist of context-free equations, other mathematical expressions, or
numeric data. One may begin to suspect that only such mathematical or numerical problems
can be generic. To dispel this suspicion, we will next consider in some detail a task drawn
from our own work that involves substantial reasoning specific to a particular science, but
which nevertheless is of a promising degree of generality.

5.4. Pathway elucidation

There are many problems across science whose solutions take the form of a pathway (or, a
set of steps), as illustrated in Table 3. S;; and S;, refer to a set of items on the left and
right (respectively) of the ith step. Typically, a pathway describes some physical process
that consists of multiple steps, and a typical means to elucidate the multi-step process is
by collecting experimental evidence on its various characteristics, as permitted by available
instrumentation.

For example, an experimental biochemist’s study of a multi-step reaction may lead to the
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conclusion that the underlying reaction pathway looks liké this:

ornithine + ammonia + carbon diozide — water + citrulline
ammonia + citrulline — arginine + water
arginine + water — wurea + ornithine

Hans Krebs proposed this very pathway in 1932 to describe the formation of urea in vivo.

Not all chemical pathways are this simple. Many common cases involve a dozen or so steps,
and some important reactions are suspected to consist of more than a hundred steps. We have
made a significant advance in the automation of this chemical problem, to the point where
a computer program named MECHEM can propose highly plausible pathways of moderate
size on the basis of experimental evidence [37, 34, 33].

Chemistry is not the only source of pathway-elucidation problems. Determining multi-step
processes on the basis of experimental data is a problem that arises in nuclear physics
[14], petrology [15], and most especially biology. A biological problem of great current
importance is protein folding; the experimentalist’s role is to elucidate the pathways that
are supposed to describe how a protein chain folds into its natural state from a denatured
state [21, 28]. Without further, massive citing of biological literature, we point out that
numerous problems in biology involve the attempt to reconstruct some sort of pathway on
the basis of experimental evidence. One of our projects addresses the automation of one
such problem: endocytic processing in cells [25, 38].

To further support the idea that there is a rich set of generic tasks that cuts across the
sciences, we can adduce the surprising link of pathway elucidation with the science of psy-
chology, specifically cognitive psychology. Anderon et al. [2] discuss an interactive tutoring
system that has been designed to test Anderson’s ACT* (now PUP) theory of cognition,
which is based on the formalism of production systems. A crucial part of the tutor involves
model tracing, which is the task of inferring the production system in the student’s head
from his interaction with the tutor. Now, a production system is formally an instance of the
scheme in Table 3, and the tutor/student interaction is the experimental data analogous to
what is learned from studying a chemical reaction in the laboratory. There is not yet any
hard evidence that these similarities will be exploited at the algorithmic level, but elsewhere
we have explored in some detail these and other links among “pathway elucidation” problems
in science [38].

The cohesive basis for pathway elucidation is that, typically, intermediate products of the
“reaction” are observed experimentally, all of which must be linked via a pathway. Usu-
ally there is a rich hierarchy of constraint on pathways, ranging from what are plausible
participants, plausible “reactants” and “products” of a step, plausible steps, and plausible
combinations of steps. Sometimes pathway-like models are called other names: paths, as-
semblies, nucleations, channels, mechanisms, etc.; the main issue is whether they consist of
discrete steps.

The reader may have noticed the formal analogy between the pathways of Table 3 and a
proof in logic, in which ‘—’ is logical implication. Indeed, there is no restricted meaning
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to the symbol ‘=’ as used above, which allows for its adaptation here both to the ‘=’ of
cognitive psychology and the ‘—’ of chemistry; a logical proof certainly fits the pathway
schema also. However, this noteworthy similarity of pathway to proof neither strengthens
nor weakens the assertion that pathway elucidation is a cohesive class of scientific task.

5.5. Finding differential-equation models

Another generic task in science concerns modelling a physical phenomenon with differential
equations (or difference equations). The starting point for this task is knowledge of the
object phenomenon and/or experimental data, plus a blank sheet of paper. The result is a
set of differential equations, written on the paper, that model the dynamics. In many cases,
no publishable results ensue, since deriving the model is straightforward; for example, the
basic law of chemical kinetics indicates how to write a set of nonlinear differential equations
from a given reaction pathway of elementary steps [18]. In other, less well-understood cases,
the model does lead to a publishable result, e.g., [17].

It may be objected that the task of differential-equations modelling does not lend itself to
generic computer implementation, even if the specific scientific knowledge is separated from
the reasoning. It may turn out that the only commonality obtainable is at a conceptual
level, rather than an algorithmic level or a program level. Should such cases still qualify as
generic tasks in computational science?

It turns out that there already exists work on inferring ordinary-differential-equation models
from time series data {7, 9]. In any case, however, the key issue is systematic understanding:
in the ideal case, systematicity will reach the level of a single computer program that can
execute the task. In other more difficult cases, the only reachable systematicity is at the
level of guidelines or heuristics. The latter cases should be included in the general picture
being painted here. The goals are systematic understanding and computer automation, but
small steps toward these goals are completely valid.

5.6. Discrete model building

A significant number of tasks in natural science consist of proposing discrete, structural
models of phenomena. The earliest significant work that involved computer scientists was
the DENDRAL project [22], which started with the discovery by J. Lederberg at Stanford of
an algorithm to generate the possible isomeric structures of a given molecular formula [20].
That algorithm led to a sustained effort to automate the elucidation of molecular structure
on the basis of mass-spectrometric and other data. Part of the motivation for DENDRAL
was to investigate (or demonstrate) the crucial role of abundant, specific knowledge in task
performance, contrary to the prevailing zeitgeist that emphasized general reasoning methods
and downplayed knowledge of the domain.

The subsequent work at Stanford could have taken several fruitful directions; the chosen
direction led to the MYCIN system and the expert-systems movement. An alternative di-




rection could have been to examine various tasks of structure discovery or model building
across several sciences to see whether a generic category could be identified. We believe that
such a direction is still relevant and important, and it is perhaps clearer now where it would
lead and how one might proceed.

We have taken some initial steps to identify a generic task of building discrete models in sci-
ence [39], by analyzing six computer programs that modelled or automated different aspects
of scientific reasoning in biology, chemistry, and physics. The common framework extracted
from these systems involves search in spaces of matrices (in which simpler models corre-
spond to smaller matrices) constrained by domain laws such as conservation and analogous
constraints. Unfortunately, DENDRAL was not included in this framework, but a direction
for further research has been laid.

5.7. Detection of structure in high-dimensional imagery

Another broad category of scientific task is the discovery of interesting structure in images.
This task is made especially current - and laborious - by modern instruments that are
capable of collecting large amounts of data in several dimensions, e.g., 3-dimensional NMR
data of an animal’s brain. Scanning the periodicals databases (exactly how is discussed
below in section 8), one comes across many examples of structure detection that involve
simple structures apparent to the untrained eye.!

We will mention just three examples. One author [12] reports in the journal Icarus the
detection of a hexagonal feature in map-projected images of Saturn’s north pole. Another
paper in Geology reports a large circular structure beneath Lake Huron found in aeromagnetic
images [11). In Nature, other authors reported unexpected heterogeneity in a stearic-acid
monolayer observed with an electron microscope: many densely scattered small holes were
observed [32]. Many more instances of structure discovery can be found by scanning scicntitic
journals.

We emphasize that the case of structure discovery addressed here is not necessarily one
of contradiction with prevailing theory. Many important papers report structure where no
theory applied, for example, there was no theory that predicted an absence of hexagonal
features on Saturn’s north pole.

Viewing structure discovery as a generic task, one can proceed to consider how to provide a
computer aid to the scientist that will autonomously select images having gnod rhances of
containing interesting structure. In our own work, we are currently studying the feasibility
of such an aid.

'Witkin and Tannenbaum [41] mention experiments done by Rosenfeld in 1964 that showed that secre-
taries were about as competent as meteorologists at outlining clouds in weather photographs.




5.8. Uncovering causal relations

Inferring causal relations among variables from data is a generic task in medical science
and in social sciences such as psychology and econoimics as well. Spirtes, Glymour, and
Scheines [30] have succeeded in developing efficient algorithms to automatically generate
causal models from sample data, and have implemented the algorithms in the TETRAD II
system. Spirtes et al. describe applications of the methodology to problems from medicine
and social science.

5.9. Analysis of differential equations

Section 5.5 discussed the task of developing from scratch a model of a phenomenon or of
data in terms of differential equations. After developing a model, a typical scientific task is
the analysis of the differential equations to infer their qualitative behavior {29]. Projects to
automate several such analyses by a group at MIT was overviewed by Abelson et al. [1].

5.10. Generating research problems

It is interesting to consider the possible generic nature of one of the more unstructured tasks
from science: formulating research problems. There is healthy skepticism that anything like
a systematic understanding of problem formulation is possible. In the face of this skepticism.
there is not yet enough hard evidence that it is fruitful to view problem formulation as a
generic task. However, there has been work in the area, which we will now interpret.

S. Fajtlowicz has developed a computer program named GRAFFITI [10] that generates math-
ematical conjectures in graph theory. Some conjectures made by the program have been
picked up by research mathematicians, and the ensuing proofs have been published as novel
theorems.? Fajtlowicz’s program mainly addresses conjectures in graph theory, although
he has also addressed other branches of mathematics. Although it is very unclear whether
GRAFFITI's methods could lead to useful problem generation in other disciplines, this exam-
ple illustrates one extreme along the performance/generality map, and is important evidence
that systernatic approaches to problem generation are practical and possible, at least in spe-
cific domains having a rather formal character.

From a very different source, J.E. Oliver has written at length (and excellently) on scientific
discovery (especially in geophysics), including a considerable amount on the formulation
of research problems [26]. Oliver’s interest is in providing informal guidelines rather than
systematic - much less computational - approaches. However, it is significant that Oliver
believes that even the apices of scientific activity are susceptible to improvement through
instruction through books such as his. The clear implication is that at least some systematic

2For example, a theorem that the independence number of a connected graph is > the average distance
between vertices [6) was first conjectured by GRAFFITI.




elements are present, even if his guidelines are not now usable by any existing computer
program.

Finally, the book by Langley, Simon, Bradshaw, and Zytkow [19] has addressed problem
generation from a middie point: less concerned with performance than Fajtlowicz, but more
concerned with comur:ter implementation than Oliver. The latter parts of their book give
several specific Liennistics for formulating research problems that could be incorporated into
a computer programi.

One :nay hypotiesize that formulating research problems is a generic task in science that is.
like the other tasks of this paper, susceptible to a good degree of systematic understanding,
even automation in some cases. Unlike the previous cases, we are not aware of any frontal
assaults on the task that aspire to a significant degree of generality.

6. New View of Computational Science

The previous sections have explicated the concept of generic tasks in considerable detail.
The view advanced here, which is intended to found a computational science on a scientific
basis, contrasts with the orthodox view of the computational sciences depicted previously in
Table 1. Table 4 exemplifies the new view, which is an elaborated (and transposed) version
of Table 2.

The new view calls for developing a descriptive taxonomy of scientific activity. The taxo-
nomic concepts, which serve to place members in groups, derive their worth by how well
they identify computationally similar tasks.

7. Other views

The most common, concise interpretation of computational science is that it represents sci-
ence done on a computer, presumably in contra-distinction to science done by observing,
experimenting, or theorizing. There currently exists no Journal of Computational Science
for the same reason that there is no current Journal of Observational Science - the cate-
gory is too broad. On the other hand, the field of Scientific Computing does have its own
Journal, and the work reported there is typically of a somewhat generic nature (i.e., across
sciences), although largely concerned with numeric computation. Roughly, the current dif-
ference between computational science and scientific computing is that domain scientists
largely occupy the former, while a greater fraction of computer scientists are represented in
the latter.

For our purposes, we do not see a useful distinction between the two terms, since we are
concerned with science done both on and by computer, in the service both of the client
sciences (which can make use of the automation products) and of a nascent science whose
object of inquiry is the computational logic of science. For us, computational science is
distingnished from human science, not experimental, observational, nor theoretical science.
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Computational | Computational | Computational | Computational
Biology Chemistry Physics Metallurgy | --:---

computer
algebra
optimization
inferring
laws from
data

pathway
elucidation

finding
differential
equation
models

discrete
model
building
detection of
structure in
imagery
uncovering
causal
relations

analysis of
differential
equations

generating
research
problems

Table 4: A Scientific Basis for Computational Science

Of course, coilaboration between human and computational science is encouraged.

7.1. Computational science as a third mode of science

In an excellent article describing grand challenges in the application of supercomputers to
science (40], K.G. Wilson interprets computational science as a third mode of scientific
activity that is distinct from the classical modes of theory and experiment. Moreover.
computational science actually competes with experiment, in the sense that modelling a
physical phenomenon and simulating the model can produce data that are not practically
obtainable via experimentation.

Wilson asserts that computational science is appropriately a new discipline, since long expe-
rience and professional training are required for success, at least at the supercomputer level.
Wilson adds that computational science is not computer science, because “computational
science is concerned with a specific set of computer applications and requires training in the
discipline of the application being considered, whereas computer science addresses gencric
intellectual challenges of the computer itself.” Wilson addresses further the important is-
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sue of what is quality research in computational science. Contributions of quality include
new algorithms that are numerically accurate or that reduce the computations by large fac-
tors. Other contribrtions involve model development and testing, mathematical insights
into numerical accuracy, and the engineering of complex scientific software.

We do not see sharp conflict between our proposal and Wilson’s views. On the contrary, our
proposal is a generalization of them, but supplemented with an outline of how systematic
understanding can be attained within the much broader scope that we advocate for compu-
tational science. We diverge, however, at the contention that computational science is not
computer science, which is said to address “generic intellectual challenges of the computer
itself.” There is little interesting to say, empirically, about a computer by itself; perhaps
one could determine how its durability and reliability over time are affected by temperature
and the like, but further empirical knowledge depends on specifying something to compute,
and that something is generic only to a degree.

For example, the classica! subfield of operating systems arose from systematic study of how
best to satisfy the dynamic resource demands of programmers and applications programs.
However, even such a basic topic as multi-user operating systems is not completely generic,
since some small, ultramodern computers permit only a single user. Things are generic to
one degree or other: many scientific tasks have degrees of genericity, and these should be
sought out by computer science, as well as by any other interested disciplines.

7.2. Generic tasks in expert systems

Chandrasekaran has previously developed the concept of generic tasks in knowledge-based
expert systems [5], and J. McDermott has expressed similar views [24]. Chandrasekaran
views generic tasks as elementary building blocks of more complex, but still rather generic.
tasks such as heuristic classification. His examples of elementary generic tasks include hier-
archical classification, hypothesis matching or assessment, abductive assembly, and others.
Our concept of generic scientific task is quite related to Chandrasekaran’s, although our
concern is wholly with science and not at all with general intelligence.

There are a couple of reasons to think that the concept of generic scientific task may prove
more systematic and fruitful than its predecessor. Firstly, empirical science as a whole shares
many values and procedures as the results of instruction and indoctrination in scientific
methods. Secondly, science strives to formulate its knowledge formally and precisely when
possible, which is a boon to those who would automate it. For these reasons, and contrary
to prevailing opinion, much of science may turn out easier to automate than the tasks of
non-science. The modern methods developed for knowledge-acquisition, which depend on
having a strong model of the intended problem-solving, may prove adaptable to scientific
problem-solving in the future.
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7.3. Science and artificial intelligence

Danny Bobrow quoted the late Allen Newell as making the following prediction of a conver-
gence between the sciences and artificial intelligence [3]:

We should, by the way, be prepared for some radical, and perhaps surprising,
transformations of the disciplinary structure of science (technology included) as
information processing pervades it. In particular, as we become more aware of the
detailed information processes that go on in doing science, the sciences will find
themselves increasingly taking a metaposition, in which doing science (observing,
experimenting, theorizing, testing, archiving, ...) will involve understanding these
information processes, and building systems that do the object-level science.
Then the boundaries between the enterprise of science as a whole (the acquisition
and organization of the knowledge of the world) and AI (the understanding of
how knowledge is acquired and organized) will become increasingly fuzzy.

We regard the proposal of this paper as entirely consonant with Newell’s perception, although
we have added the concept of generic tasks that cut across the sciences as in Table 4. Newell’s
vision of building computational systems tu do “object-level” science corresponds to our
emphasis on science automation; our view of computational science as task-centered and
discipline-generic calls at least for adjustments to the disciplinary structure of science, if not
for Newell’s transformations.

7.4. Is systematic science likely?

To those who doubt that scientific reasoning and discovery are themselves susceptible to
scientific analysis, we offer the following analogies. The number of atoms in the universe is
very large, but chemistry teaches that the number of their types - or elements - is only 103.
Similarly, the number of rocks in the world is very large, but petrologists point out that their
distinct types are much fewer. Finally, the number of published scientific papers is large; for
example, the number of records added weekly to the Science Citation Index is about 14,000
(728,000 per year). Is it really plausible that there are 728,000 types of publishable results
in science, and that these are renewed yearly? Or, can one impose order on the seemingly
endless variety, just as science so successfully achieves elsewhere? We think the answer is
quite plain: scientific reasoning and discovery are ripe for systematic understanding, and
their automation through computation is one bright direction.

8. A Research Plan

A fruitful research plan follows quite simply from the proposed view of computational science.
Given the current stage of understanding, any of the following tractable steps will advance
the subject:
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Identify a new task of some generality.

¢ Automate a new instance of an already-identified generic task.

o Compare individual automations of a generic task, and identify their common core.
e Automate a novel task from a single science, postponing considerations of generality.

Identify common cores among multiple generic tasks.

One could generate more research steps by considering schematically (generically) what is
being proposed: a taxonomy of science founded on computation. Taxonomies require devel-
opment of concepts, demonstration of their worth, hierarchical organization, etc. Perhaps
even the scientific task (carried out here in this section by the author) of proposing a research
plan on the basis of a taxonomic view could be studied systematically.

What tools can help us thus to develop computational science? For some time we have been
browsing databases of scientific and engineering abstracts (e.g., INSPEC, PERIODICALS,
MEDLINE, etc.), first motivated by the desire to find problems of pathway elucidation
analogous to the chemical problem on which we had worked for some years. Slowly, we came
to realize the great value of these databases as a tool for understanding the content of science
in a complementary way to how historians of science present it. Finally, in our preliminary
study of computer-aided discovery of hidden structure in imagery, we have quite consciously
searched these databases to gain an understanding of the breadth and importance of the
task, as well as the typical discoveries that are made along those lines.

A convenient means to generate new research problems in this new-style computational
science is to browse these databases using keywords that characterize scientific results or
activities that one is familiar with. For example, one might search for all records containing
the two adjacencies ‘differential equations’ and ‘experimental data,” and then look up a
good number of the articles to see what activities are involved, the logic and heuristics
underlying the activities, and what are the publishable contributions. Then, one can set out
to accomplish the task (or a subtask) with computation, or at least to design a computer
aid as an important - and useful - first step.

9. Conclusion

We have proposed a new view of computational science that is founded on the concept of
generic tasks. Each generic task is general because it is present in various sciences, but at
the same time is specific because it involves one mode of reasoning, or a small number of
them.

This view of computational science houses disparate pieces of work from computer algebra,
computational statistics, operations research, theoretical computer science, and artificial
intelligence under a single roof whose common purpose is the automation of science. Com-
putational science is fundamentally an empirical science, in the sense that the large problems
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it poses are drawn from scientific practice, and to a large degree its solutions should be mea-
sured in terms of practice. For example, the problem of finding automatically the solution
to a differential equation can be motivated by the empirical fact that such problems arise in
science.

A research plan follows from the key features of computational science: its empirical motiva-
tion, its concern with automation via computation, and the need for a systematic taxonomy.
Like other empirical science, observational tools are needed, and we have pointed one out:
browsing electronic databases of abstracts. The experimental tools remain the same as in
computer science as a whole: implementation and testing.
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