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Noise of Mode-Locked Lasers
H. A. Haus, Life Fellow. IEEE, and Antonio Mecozzi

Abstract-A theory of noise in mode-locked lasers is devel- this limit, a perturbation theory is feasible, closely related
oped that applies to additive pulse mode-locked and Kerr lens to that of soliton perturbation theory I 1 ]. Yet even in the
mode-locked systems. Equations of motion are derived for pulse case when the simple saturable absorber mode-locking
energy, carrier linewidth, frequency pulling, and timing jitter.
The effect of gain fluctuations, mirror vibrations, and index equations apply 112], the perturbation equations can be
fluctuations are determined. Measurements that can determine used, qualitatively, with proper interpretation of the pa-
all four fluctuation spectra are described. Experimental data in rameters.
the literature are compared with theory. In Section II we review the master equation of saturable

absorber mode locking in the presence of (negative) GVD
I. INTRODUCTION and summarize its solution. Section III investigates a lin-

N recent years, many solid-state lasers have been mode earized equation for the perturbation from the steady-state
locked successfully, using the additive pulse mode solution as driven by, as yet, unspecified noise sources.

locking (APM) principle [11-16]. It has been shown that, The perturbed pulse is described by four parameters, the
under appropriate approximations, the theory of APM is amplitude perturbation, and the perturbations of phase,
congruent with that of saturable absorber mode locking, frequency, and timing. In addition, there is a continuum
supplemented by self-phase modulation (SPM) and grotip that is not part of the perturbed pulse. In order to project
velocity dispersion (GVD) [71. Another system of passive out the amplitudes of the perturbation from a specified
mode locking has been dubbed Kerr lens mode locking complex amplitude function, one uses solutions of the ad-
[81-1101 (KLM). It utilizes self-focusing to produce an joint system which are orthogonal to the solutions of the
intensity dependent loss. It is described by the same the- linearized equation of motion (Section IV). Using the or-
ory. thogonality properties, equations of motion are written for

Some of the systems are already incorporated in com- the four pulse perturbation parameters. These are linear
mercial products. As time proceeds, different schemes will coupled first order differential equations in time, driven
be selected according to their ability to produce stable by noise sources.
short pulses with the required duration and intensity. It is The analysis ignores the coupling to the continuum.
likely that the susceptibility to environmental noise will This is legitimate as long as the continuum does not react
differ among the different systems. One purpose of this back appreciably. One may develop plausibility argu-
paper is to predict the noise characteristics as governed ments that the approximation is valid. Section V identifies
by specified pump, mirror-position, and beam axis fluc- the noise sources starting from different realizations of
tuations. Another purpose is more fundamental. To the APM systems and KLM systems and expresses the noise
authors' knowledge, an inclusive theory of noise in mode- sources in terms of physical perturbation spectra. Section
locked systems with saturable absorber action, SPM and VI evaluates the theoretical spectra and the correlation
GVD does not exist. The reason for this is that perturba- functions of the four observables. Section VII determines
tion theories developed for Hamiltonian systems do not ways of measuring the spectra of each of the four pulse
apply; the system is not self-adjoint. In this paper we de- parameters. Section VIII compares experimental data with
velop an analytic theory of adiabatic pulse evolution in theory.
the presence of noise. We take advantage of the fact that
the shortest pulses are achieved when they are transform II. THE MASTER EQUATION AND ITS SOLUTION
limited and secant hyperbolic in temporal shape. If GVD The master equation for the nonlinear pulse evolution
and SPM are important, they are perturbed solitons. In as a function of the slow time variable T (expressing the

Manuscript received March 25, 1992; revised September II, 1992. This evolution over many cavity roundtrips) is 171
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scale of many cavity round-trip times; I is the incremental here, because systems with genuine "physical" fast sat-
loss, g the incremental gain upon one pass, Q. is the gain urable absorbers are not of practical importance, because
bandwidth; , is the effective saturable absorber action that of the difficulty in finding suitable absorbing materials.
may be produced by APM action, 6 is the Kerr phase Of much greater practical importance have become sys-
modulation coefficient, D is the group velocity dispersion teins that construct artificial saturable absorbers by APM
coefficient; S Q, T) is the noise source I101. The operator or KLM action. Such systems, generally, have apprecia-
multiplying the gain g expresses the dependence of the ble SPM action compensated by negative GVD. For this
group velocity upon the gain and the "diffusion" of a reason, the pulses are soliton-like, yet not solitons; they
pulse passing the gain medium because of the finite gain are solitary pulses. Contrary to regular soliton perturba-
bandwidth. tions, amplitude and frequency perturbations of mode-

The gain is assumed to have a long relaxation time, so locked solitary pulses do not persist, but "shed" some of
that the change of gain upon one pass can be ignored. The their energy into the continuum. This is a consequence of
gain is saturated by many pulses in succession. It is re- the gain saturation and gain-bandwidth limitation not en-
lated to the small-signal gain g0 by countered with solitons (nonlinear Schr6dinger equation,

I NLSE). The feedback of the continuum radiation back

g = g9 0- (2) into the pulse is of second order in this coupling to the
1 + . dt lal2  continuum and will be neglected. This approximation will

sP-R-f be confirmed by computer simulation later on in the pa-

where P, is the saturation power. The saturation law (2) per.

neglects dynamics related to gain relaxation. Thus effects The chirp parameter 13 is zero when the gain dispersion

that depend critically on the gain relaxation time are not and APM action are related to the SPM and GVD by

considered. The amplitude a (T, t) is so normalized that gl -.
1a12 is equal to the power. The solution of(l) is 1121, [131 -D (7)

a(t, T) = A, sech 0 - 4) exp T +8jO Since 6 > 0 for the usual Kerr effect and y > 0 for sta-
0T + bility, this is the case of negative GVD. This adjustment

leads to transform limited pulses. Henceforth we shall
(3) concentrate on this special case. One has

where 03=0 (8)
_ j•+ g l +(I + jo•)2 g ]2D

+I fI [2 +jD =0 (4) 27.2  (9)AAu2 A0 (9)

-"4. +jD (2 + 3jo - 032) = (, - j)A (5) 1= -DI 6 (10)

and g

t g =-9 T. (6) g 2

t fl TR Substitution of these relations into (3) gives

Here, 0 is the chirp parameter; 0 is the phase of the pulse, a,, (t, T) = A,, sech - -)exp (-j -' A-' T + jOan arbitrary parameter in the noise-free solution, yet a 7e 2 e T +

driven quantity when noise is introduced; ý' is the phase
shift produced per pass, and determined from the solution (12)

of (4). Upon multiple passes, this phase shift per pass
translates into a net frequency shift. T 12

Equation (5) shows that the area A0or of the absolute A,, (13)

magnitude of the pulse amplitude is fixed for a fixed set
of parameters of the system. The perturbation analysis can
proceed from two starting points. One is the original III. THE LINEARIZED PERTURBATION EQUATION

equation of fast saturable absorber mode locking, in the Noise is, of course, handled by perturbation theory. If
absence of GVD and SPM 1121, [141 with 6 = D = 0. the noise is small compared with the signal, the equations
One may find a set of eigenfunctions of the inphase and can be linearized. In the adiabatic case, the pulse param-
quadrature perturbations and expand the noise sources in eters are changed by the noise, resulting in new pulses
this orthogonal set of eigenfunctions. Each of the ampli- that obey the steady state equations. The area of the pulse
tudes of the expansion obeys a first-order differential (amplitude-width product) stays invariant. An adiabatic
equation in T. SPM and GVD can then be treated as ad- perturbation of the pulse changes its amplitude, phase,
ditional perourba'ons. We slhall not pursue this approach frequency and timing.
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We make the ansatz: IV. APPROXIMATE SOLUTION OF PERTURBATION

a (t, T) = [a.,(t - 1to) + Aa (t - to,, T)] EQUATION
Small changes of pulse energy, phase, timing, and fre-

exp -j 6 A 2 (14) quency (-p = w - wo, the deviation from the angular
~ 2 TR, carrier frequency [ 11 are derivatives of the steady state

solution (12):
where r

(t a I - (! tah I a,(t) (21)S- w I --tan
a,()= A,, sech ()(1)aw 0  W", T T r

Oaa
Substitution of the expansion (14) into (1) and disregard A (t) = La= ja, (t) (22)
of terms higher than first-order in Aa leads to: 0

TRa Aa (t T) (t) = - tanh as (t) (23)Ta -T at(- o T r, (r)

6 2 2 jP=j2
aA -0- ta,(t). (24)=O,-J - 2o l~ T-J

2 We expand the perturbation in terms of these four func-
+ 26a5(t - to) Aa + (s -)aa(t - to)Aa* tions. The remainder is the continuum that is not part of

gs(l a't as(t5(t) A the pulse.
-ge Il-1 at 2 dt a5 (t)(Aa + 2 Aa f,,(t - t0)Aw(T) + fo(t - t0)AO(T)

+ TRS(t, T). (16) + fp(t - t)Ap,(T)

We suppressed the indication of the independent variable + tt)At(T) + Aa,(t - to, T). (25)
t - t,. The parameter g, has been defined as:

g2 Soliton perturbation theory starts with the above expan-
g _ = g, 2rA( 2" (17) sion and follows the four perturbation amplitudes Aw, A6,

Ps TR 1 + L4 &0 Ap, and At as they evolve in T[I I I according to the non-
S1 P. TR) linear Schr6dinger equation (NLSE). In this case, Aw and

It is convenient to introduce the pulse energy w, as a Ap are invariants, A6 changes due to the Kerr phase shift

new parameter: change caused by Aw, and At changes because the group
velocity changes with a change of frequency (Ap). The
master equation (1) contains two additional effects,

iw, dt a2(t) = 2A 2 T -A( namely gain dispersion (GD) and APM action. As a con-
o)= 21D I 2 sequence of these effects. Aw and Ap do not remain in-

We write (16) in the formal way: variant. If these effects are small, i.e., if the parameters
jA defined in (7) is much less then unity, GD and APM

TR Aa(t - to) = A,,(Aa) + TRS(t- t,, T) (19) can be treated as perturbations on the NLSE. The cou-
o1" pling to the continuum of the changes of Aw and Ap is of

where the operator A, has been defined: order 14, the coupling of the continuum back to the pulse
is of order t square. Hence one may use soliton pertur-

[ A + a2  bation theory to evaluate the four pulse perturbation pa-
A,(Aa) = ( - j ) + DI rameters to first order in I.

Soliton perturbation theory associates a set of orthog-

+ 26a (1 - Aa Q - t,) onal adjoint functions with the four functions and the con-
to) tinuum I111. We choose them so that the products inte-

+ (A _ 2 _,)Aa* (I-_ t) grate to unity, unless they are orthogonal and the integrals
+ j)•sa(t are zero.

S (2 ( at )a.(t-to) fw(t) =2a, (t) (26)

5dta,((Aa IAa*). (20) WO [ (1),
In the next section, we express Aa in terms of the pertur- (t) 2 ta,(t) (28)
bations of the four pulse parameters. w,(
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fp(t) 2 tanh a,(t). (29) 100-

E
One may use the orthogonality property: F 10

Re j dtf,*(t)fj(,) = Si (30)

to project out the coefficients of the perturbation expan- -.1
sion: "• 6 6

(Tfr,) (2 Dh)

Aw(T) = dt dtf[*(t)Aa(t) + fw(t)Aa*(t)] (31) Fig. i. Timing fluctuations as computed from our theory and by a (nu-
- -mercal) integration that includes back coupling of continuum; the timing

is normalized to the noise source. Solid line the analytic result, dashed lineI! computer result; g, = 0.
A8 (T) = 3 dt [fo (t)Aa (t) + fe (t)Aa* (r)] (32)

Ap (T) = dt [f'(t)Aa(t) + fp (t)Aa* (t)] (33) From the preceding equations one draws the following
conclusions: The energy will grow exponentially, unless

I [the gain saturation is sufficient to suppress the APM ac-
At (T) = dt [f,* (t)Aa (t) + f, (t)Aa* (0)1. (34) tion, as indicated by (40). An energy change couples to

the phase evolution, because the change affects the Kerr
With the aid of these projection operations, one may de- phase shift, according to (41). Frequency deviations damp
rive equations of motion of the pulse perturbation param- out, because the gain of a pulse whose center frequency
eters. is off the gain line center is nonuniform across the spec-

By making use of the identity tram and pushes the spectrum back to line center. Finally,
a2  -1 a change of frequency and a change of energy both cause

A + D - + = 0 (35) a change of group velocity, the first because of GVD, the
second since by the Kramers-Kronig relation the gain

the following identities can be proven for the operator A, profile is associated with an index profile that changes
defined in (20) along with the gain.

2 _ l a 5)a,(t) As mentioned earlier, the coupling back from the con-
A'tmo) = - - g ) tinuum via gain dispersion and APM or KLM has been-9)6A (1 a at wO neglected causing an error of order U2. Fig. I shows a

(36) comparison of the prediction of our theory with the exact
numerical solution of the perturbation equation (16) for

A,[Jf(t)] = 0 (37) assumed independent noise sources Sj. The numerical
,,[f)= 2D (1 + j)f (38) method of solution has been discussed elsewhere [ 151. The

A,If(t)]21 ordinate is, of course, proportional to the intensity of the

A,'I[f(t) = 0. (39) noise source and is normalized to it. It should be noted
that the agreement is indeed excellent.

Substituting (25) into (19) and using the above identities,
one obtains the equations of motion for the coefficients of
the perturbation expansion: V. THE NOISE SOURCES

a We consider separately the noise introduced by the
TR aT Aw = [-2g, + 2yA ,2oAw + TRSW (T) (40) fluctuations of particular physical quantities.

T• _A 2 Aw
TR-AO= 6A + TRSo(T) (41) Gain Fluctuations

3T As one can see from the master equation (I), a (long

term) fluctuation Ag (T) of the gain introduces an equiv-
TR ' 3 + TS2(T) (42) alent noise source:

Sg Aw+ SaR(t, T) = Ag(T) T). (45)
TRa -2IDI Ap - g w+ TRS,(T). (43) TR 8i/

The noise sources are defined by When the laser frequency depends on the gain, which is
the case, for example, when different spectral shapes of

Sj (T) dt [f_(t)S(t, T) + 1(t)S*(t. T)j (44) the gain and the loss force the laser to operate away from
- -the maximum of the gain curve w., gain fluctuations give
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also the frequency pulling term (see Fig. 2): u GW

sag t, __ g ( ) da , (t, T). (46) -hg- - -
This term does not follow directly from (1), but is ob-
tained by extension of the gain operator to carrier fre-
quencies w,a0 off line center.

I

Length and Refractive Index Fluctuations 00 000 *c

Fluctuations of the cavity length give rise to two noise Fig. 2. Gain and loss profiles with different center frequencies for which
contributions: gain fluctuations cause frequency fluctuations.

SAL (t, T) = TR n + as (t, T) (47) Ag(T) I
TR c V dtS, (T) = A~l T Lv A(T) + L A T

where n is the effective index assigned to the total length TRfSi TRv. n

L. + S,•qn(T) (52)
The first term in parentheses is the frequency pulling where the terms Si,qn(T), due to the quantum noise, are

effect of a cavity of varying length. The second term gives independent white noise terms
the timing jitter caused by a cavity of varying length.
Cavity geometry fluctuations in a KLM system may also (Si.qn(T)Sh.q.(T')) = Di.qn6i,,hb(T - T') (53)
cause fluctuations of the effective saturable absorber pa- with diffusion constants
rameter y, if the cavity is so laid out as to enhance it by
operating near the stability boundary of the cavity mode. g= 4w • 5

-,.q w, hi' (54)
If L is again a typical cavity dimension, ALay/8L is an •n
effective noise term in the master equation. 2

Fluctuations of the refractive index produce noise terms 4D +g2 h ()

that are analogous to those due to cavity length fluctua- 3wD\ = 12, Ih
tions, with AL replaced by L(An/n). Dp _ 2 4 2g

•p.qn = 02 0 hv (56)
w, 3w,,r 2TR

Spontaneous Emission Fluctuations IT 2 Tr2  2g

Beside the classical noise sources considered above, D,.q. = w - hR. (57)
spontaneous emission fluctuations are always present into

the cavity for reason of quantum mechanical consistency. For white noise sources it is convenient to write the cor-
In a semiclassical approach, the noise introduced by spon- relation functions as
taneous emission in a laser is taken into account introduc- <Si(T)Sj(T')> = Dij (T - T'). (58)
ing a white noise source with correlation [ 161, [171

The diffusion constants Dij form a positive semidefinite
2g matrix. The assumption of white noise simplifies the an-

(Sqn(T, t)S*(T', t')> = 0 - hv,5(T - T')5(t - t') alytic treatment. Anyway, one should be aware of the fact

48) that, if quantum noise is white, the classical noise sources
in general are not. The validity of the results found as-

where 0 is the enhancement factor due to the incomplete suming classical white noise is then restricted to the fre-
inversion of the medium. quency region inside the actual bandwidth of the noise

sources. In the ensuing analysis, the diffusion coefficients
will be assumed as given, and not necessarily as those of

Noise Sources in the Equations of Motion quantum nature (54), (57).
By projecting via the adjoint set of functions, we get

Ag(T) VI. THE NOISE SPECTRA AND THE CORRELATION

S..(T) = 2---g-'T-w, + SW..(T) (49) FUNCTIONS
TR The equations of motion (40)-(43) are of two types.

So(T) = T AL LT + LoAn(T) (50) One type is a relaxation equation driven by a noise source,
VgTR n the other has no relaxation time, and is driven by a noise

source as well as one of the perturbation variables. In the

Sr (T) = A (T+)( (51) former case, if the relaxation times are relatively long
3TR(w ) + Sr q0 (T) compared with the inverse bandwidth of the noise sources.
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the spectrum of the noise sources can be treated as white with
and the resulting fluctuations have a Lorentzian spectrum. (6A 2)2 <IS.(q = 0)12)

Let us define the Fourier transform pair as = (IS(f = 0)12) + W2 2 2 (68)

fa dT e -Anf(T); where the coefficients multiplying T play the role of dif-
fusion coefficients.

I The complete expressions for the correlation functions
f(T) = ~ d"l elnrf(f) (59) of timing and phase fluctuations is more involved. They

are anyway easily calculated from the fluctuation spectra.
where the infinitely long normalization time T, has been The complete expression for the timing jitter spectrum
introduced to avoid the divergence of the fluctuation spec- is
tra which is present with the usual definition of Fourier 4D 2  <1S,(fU)1 2) <IS,(f)1 2)
transfornm. This divergence arises from the fact that delta (FAt(1b)2 ) [/ l - + 12

correlation in time domain corresponds to delta correla- T+

tion in frequency domain. The inverse of the time T, gain
the "width" of the delta functions in the frequency do- (69)
main, and renormalizes their amplitude.

Let us define the two relaxation times: and for the phase noise spectrum
S- (2g3 - 2TA2)- (60) I1(fŽ)I2> - (2A2) 2  

(ISw(A1)
2
1> <1+S8(2)1 2)

_ I 2
2  + 2

ToR [z (2R + 2

1 4 g (61) (70)
Tp 3 TR 2 2  ()(7

The timing mean square fluctuations can be easily ob-
The spectra of the energy fluctuations are then tained by using the relationship

S < Is(f)2  (62) <lAt(T + To) - At(To)12>
= + 2I At ( 12)(11)(eeAT - 1)12> d11

and of the frequency fluctuations 2 0o

<ISP(11)12> l(A:OI>[ - cos (11T)] dD. (71)
(IAP(f) 2) =l> (63) ir 0

2+ 2" Assuming white noise spectra for the frequency and tim-
ing noise sources, we get

These spectra couple to the phase and timing fluctuations. (IAt(T + T.) - at(To)12 >

If the noise source spectra are treated as white, these latter
spectra are of the shape: 4DT2 + D,,T. (72)= T 2 D pP. "Pr "Tt It_ - + e - / ' + O ,T. ( 2

(64) 
7

j12 It is interesting to calculate the two asymptotic limits of

r2 f 2 +(72). Neglecting the contribution of D,.,, for T/rp << I
we have

which can be expanded into their respective singularities. :D
2 DrT 2

The leading singularity, which gives the asymptotic be- (IAt(T + To) - At(T,,)12) 41 ' (73)
havior for large T, has a spectrum of the form 1/012, cor- TR 2
responds to a random walk. Concentrating on this domi- while for TI p I
nant term, one finds that the phase and timing mean square
fluctuations are of the form: (At(T + T,,) - At(TI)12  4D DP'pT2 T (74)

(I~t(T + To) - At(To)1 2> = D,T (65)

with The variance of the timing fluctuations is unbounded, as

expected from the absence of any time reference in pas-

(<IST(4 = 0)12) + 2  r0)2> ( sively modelocked lasers. It grows for small times qua-
TR/ p dratically and for large times linearly with T. The quadratic

and growth with time arises from the i /04 dependence for
2 >> I /Tp, while the linear dependence corresponds to

(I<A(T + T0) - O(To)1 2> = DoT (67) the 1/02 spectrum fortl << I /rp.
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It is worth noting that for negligible initial frequency tions f as the pulse shape. This pulse would be derived
fluctuations a direct integration in the time domain of (42) from the mode-locked pulse and delayed by the time T.
and (43) gives, in the asymptotic limit T << Tp Successive samples of the square of the detected output

> 4D2  would be collected. Thus one would arrive at the mean
[At (T + T.) - At(T.)12) D2 DppT3 , (75) square fluctuations of the four pulse parameters. In some

T-R laser systems, the delays would have to be considerable,

different from the previous result. This T3 dependence is since the relaxation times of some solid-state lasers are

closely related to the cubic dependence of timing fluctua- many microseconds long. Delay fiber "lines" would dis-
tions on propagation distance in long haul soliton com- tort the pulses and the experiment would not be all that
munication systems known as the Gordon-Haus effect simple. An alternative way is based on the detection of

[161. The different asymptotic behavior of (73) is due to the low frequency spectrum of the detected pulse [211.
the different natures of the two processes: in a laser we Let us concentrate on this approach.
are dealing with steady-state properties, that do not exist The periodic pulse train has the time dependence:
in the propagation of a soliton in a fiber, by its nature a (-At-mTR\
transient process. a Q, T) A. )e e "'"e'~~

The phase mean square fluctuations can be evaluated in M
a similar way, obtaining (80)

(lAO (T + To) - AO(TO)12 ) The field amplitude a (t, T) is a function of two time vari-
ables, t and T; the former is the fast time variable in terms

(2- A T D. T,3 - I + e- + Do 0 T. of which the pulse envelope is expressed; the latter is the
Wo R time variable of the slow time scale in terms of which the

noise is expressed. The dependence on T is implicit in the
(76) time dependences of the perturbations of energy, Aw(T),

Other spectra and correlation functions are of interest. We of frequency, Ap (T), of phase, A8 (T), and of timing,
will assume for the sake of simplicity that the noise At(T). The pulse repeats every round-trip time TR. Since
sources are white. From the spectrum of energy fluctua- the laser relaxation rates are slow compared with one
tions, we get the correlation function of the energy fluc- round-trip time, the fluctuations produce narrow-band
tuations spectra around each of the Fourier components of the pe-

1 _" riodic pulse train separated by 3,, = 2w/TR. One may
(w(T + T,)w(To)) -• ejQT<lw(fl)l2) d decompose the function a(t, T) into a sum of Fourier

27r 7components:

= _,2 D,,,.e- f/Tli.. (77) a(t, T) = 1" E sech[7 n7no
2 ~~TR n 1

The cross-correlation spectrum of time and frequency • e"t'a° + '°-apt e -JWo"' e a*. (81)
fluctuations reads

-21DIDp, w When the pulse train impinges on a detector, the kth
(At * ())Aw (0)) = Fourier component of the detector current is produced by

-- 3 (--JP + 1 /p) (jf? + I/r') the beat of the nth Fourier component of the amplitude

(78) with the (n + k)th Fourier component:

and the cross-correlation function [ie T)], = e ( - sechr-)rYr

([At(T + T0) - At(T.)JAw(T,)) \ TR m 2
I (', ,r In -Tna

(e- - l)<At*(l)Aw()> dO •sech 2(m + k)0o1 e e (82)

where 1 is the quantum efficiency of the detector and e is

- -2 sign (T)ID Dp, - r(I - e-Ir) the electron charge. We note that the phase fluctuations
% + 7- A0 and the frequency shift Ap do not appear in the Four-

(79) ier components of the current. In order to measure them,
one needs a different experiment. We shall return to the

where r is equal to r,, for T > 0 and to r,, for T < 0. discussion of such a measurement further on.
Since the pulsetrain contains very many Fourier corn-

VII. THE MEASUREMENT OF NOISE ponents (1000 or more), one may expand the expressions
The most direct way of measuring the different noise to first order in kTo 0 . Further, one notes that the pulse-

spectra would be to construct a homodyne detector with width itself is subject to fluctuations, along with the am-
a pulsed local oscillator having one of the adjoint func- plitude A,. If the pulse is soliton like, its area is invariant
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and trum is more complicated. Let us define the spectrum of
A(wT) = A ) 0 (83) the amplitude of kth Fourier component of the current

) A(20 2 ) fluctuations as

so that

Aw AT ik(D) e Cj_ eTC.(T) dT (90)
(84)70w r"

where
The amplitude of the kth Fourier component of the current
becomes: Ck(T) (i,(T + To)i*(T,)) (91)

e --T\ 2 .. 2 Since Ck(T) = C*(- T), the spectrum can also be writ-
ik(T) Ak sech rmal) ten as

[ r n ( )] ik((0 ) = 2 Re e-j TCk(T) dT. (92)I - -• 7k0o tanh - rmQ" o

[ A 7( 2 )t (2 ) The correlation function follows from (86)
I -~r 2 -2 7R +an - w~ +rmf+l*(,)

A r Ck (T) =9K2 + TA w * (To)+Aw*(T,)
- - I' -0 ~4)l ta ( Tmfl,, I e (85.

One may replace the sum over m by an integral. Only I
the symmetric functions of m contribute. The result is e (93)

ik (T) I + A,, -j 0 (86)

Ll f jFor Gaussian processes the average can be evaluated [20]

where and the result ise/ r\ 4 (
S(87) Ck(T) =OZ 2 flI + <A w(T + To)A w(To)>hwo =R i r,] (87)

fk= I + -( krlo) • 88)w ([At(T + T0) - At(T 0)]Aw(T)>• QAt(T + To) - At(To)]AW(To))

Consistently with the first-order expansion in vkflo,/2 we <[At(T + Tj - At(T,)]A wT 0 E'

will neglect the second term in the definition of fk by set- W
ting jJ = 1. If the energy and timing fluctuations are in- - j[([At(T + To) - At(T 0)JAw(T)>
dependent, the correlation function of the current is the

sum of the correlation functions of exp (-j kflQA t) and of +
At, and so is the spectrum. If the timing fluctuations go + ([At(T+ To) - At(To)]Aw(To))]
through a random walk, the spectrum of exp (-j kfloAt) 1 2 At(T
is Lorentzian. The spectrum of Ar is added to it. The • exp -- T + T 0 )j 2 ). (94)
power of the Fourier components of the former increases

with k2 , the latter has a constant contribution plus one that Substituting in this expression the values of the correla-
increases with e and another that increases with k4 . Thus tion functions, and taking into account that
the two fluctuations Aw(T) (or Ar(T)) and At(T) con-
tribute to the current spectrum. They are independently ([At(T + T.) - At(To)]A w(T))
measurable. At(T) experiences a random walk with the
diffusion constant D,. Hence it produces a linewidth con- = -(At(-T + T,,) - At(To)]A w(To)) (95)
tribution to the kth Fourier component that is

AD = k2D,,2 (89) we get, for T > 0 and for white noise sources

The latter has a contribution that is independent of k. Ck(T) = 9t 2 {1 + ale-•r/'') - a k2eprT(l - e-(r/''*)

Thus the two fluctuations Aw(T) (or At(T)) and At(T) • (1 - e-(-T/?P) + ka 2 [I,.(l - e-(r/'.)
contribute to the current spectrum. They are indepen-
dently measurable on the basis of their different k depen- + Tp(l - e -T/,P)]}
dence.

When A• and A 7 are correlated, and/or the timing fluc- exp [-k2a3 (+ I +e (96)
tuations are not those of a simple random walk, the spec- -96
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where 120

c w = ;- 2  Dw2,w (97) j
"20"

c2 = 21DI I Qflu . DP (98)
R Dp + r. .so.

2D' 2 3  -:

C3 = ,, p. (99) -s 0 s10'
Freqecy otW (No)

Since (a)

Dwwpp2 wP(100) 20.

for the positive semidefiniteness of the correlation matrix, 0
the coefficients c, have to meet the condition

C1 C3 e 7Tw (7p + Tv) 2 C2 (101) _-0

where the equality sign holds for perfectly correlated noise

sources, when energy and frequency fluctuations are .0 l id
driven by the same noise sources (e.g., gain fluctuations). Fru oUt (Hz)

The spectrum can be easily evaluated analytically, since (b)

the only integral which is involved can be easily per- 20o

formed with the substitution e-X - y, 0-
exp (-ax - be-') dx = b -y(a, b) (102)20

ý0,
where

Pb -B0-

•y(a, b) = e-taIdt (103) j ..
0-510 50'

F5y0(

is the incomplete gamma function. If we define (u)(c)

4,(at, 0 P) - rpek2r Wka 3) (iTD-P -k 2c-) Fig. 3. The spectra of different current Fourier components for uncorre-
lated intensity and timing fluctuations. The values of the parameters are:

I "[-j U 0,- Of k21c3), kc (104) 7, = 0.5 ms. T, = 8.4 ms, c, = 25 x 10- (5% intensity fluctuations).
C2 = 0, c_ = 0.0073.

the spectrum of the kth Fourier component becomes
It is interesting to give a simplified expression of ik(a)

4k(0) =2%) Re 0t (0, 0) + c a for larf- G. Large 0 corresponds to small T, for which
/ the exponential in (86) can be expanded to first order ob-taining-:_o ° o C 2 k[ 2.pT (, ) -P

\¢.ik (T) - Mf/ I + -- w (T) I - jk0,oAt(T) .

+ + I vlae
From this expression the spectrum is directly evaluated

+jkc2 (7p + 7rw)0(0, 0) - p(l, 0) <li()12> , 2 (0) + ; (<IAW()1 2 >

" "P, (, A -]3 (105) + Pk202 (I At(p12 >
Tw + jkQ,[( At*(fl)Aw(0)>

This expression has been used to plot the curves shown
in Fig. 3. When intensity and timing fluctuations are un- - AtfPAW*(01))> . (107)
correlated, for c3 = 0, the spectrum is symmetric. Asym-
metry appears when c 3 * 0 when intensity and phase fluc- Von der Linde was the first to propose the use of (107)
tuations are correlated, as shown in Fig. 4. to measure the energy fluctuations and the timing jitter
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20- external oscillator, into the laser cavity as proposed in

0 [221 to achieve self starting and reduction of the timing
S0-jitter. Equation (43) is modified by adding the term

.20. --At/r, to the RHS, where r, is the decay time of the

I:0 timing fluctuations. The spectrum of the timing jitter be-

4o 4D 2 <I SP (a)a

20. (a) + Is,(0)1> (108)

S0. T "

.-•. The 1 /fl2 divergence typical of random walk present in

_40 (69) is removed as expected because timing jitter is now
a stationary pr. zess. The timing jitter correlation function

1640 becomes

0 
<I (At(T + T,) - At(To)12

.51o. S 5o0 2 2 2
Frequency offsit (az) 4D Dpp 2 2_ [T(l - e-ITI/

(b2 2 -2 2[r( e )(b ) - T R T Ir - p

S20 - rp(l - e-ITI/TP)] + D,,r,(l - ITI/7').

0o (109)

-20 The expression for the correlation function of the kth
Fourier component of the photocurrent, in the case of un-

-40- correlated time and energy fluctuations, is

*510- 01
-s-Ck (T)= .21 + A Aw fT -4 ro,)Aw (Tro)>

Frequency offim f) •exp - k2 2o2([At(T + To) -- At(T0 )]2 ).
(c) 2

Fig 4. The spectra of differ- it rrent Fourier components for correlated (110)
intensity and timing fluctuations. The values of the parameters are the same
as in Fig. 3. and c, = ./4cc,r/jr,(r,(, + ro)l Isee (101)). The correlation function of the energy fluctuations is given

by (77). The spectrum of the kth Fourier component is

spectra in mode-locked lasers. He considered the case of given by the Fourier transform of Ck(T). It is interesting

uncorrelated energy and timing fluctuations, when the to see what happens for I T1 - 0o: the timing fluctuations

quantity within square brackets in (107) is zero. He noted given by (109) approach asymptotically a constant value.

that the K th Fourier component of the detected current is This means that the fluctudtion spectrum at Q = 0 is di-
aDirac delta function, corresponding to the noiseless vergent. Let us cxamine the nature of this divergence by

lasirac dlustae sumofunc eenergyfluctuation, corcthe ano s considering, for simplicity, the case of r, >> r-p. In this
laser, plus the sum of the energy fluctuation spectrum and limit, the k th component of the photocurrent spectrum be-

of k2 times the timing jitter spectrum. The contributions lim es

of energy fluctuations and timing jitter can be resolved by comes

using their different K dependences. In the original paper, *I

the theory was developed mainly for active modelocking <ik(fl)>2 = e e-0'0 (1 + de- /)

where, due to the active modulation, timing fluctuations
are a stationary process. Later on, this theory has also • exp |-d 3 k~r,(1 - e-iuI/T•)] dT (Ill)
been applied to the study of the time jitter of passive where d, and d3 are positive constants proportional to the
mode-locked systems. Since in passive mode-locking the noise diffusion constants:
timing fluctuations are not a stationary process, the von
der Linde's method has to be used carefully. To see the d, = ,
differences, it is useful to consider the case in which the 2w%,
timing jitter is a stationary process, by introducing a re- 20.D2Dr.p 7
storing force in the equation of motion for At(T). This di =

accounts for the introduction of a modulator, locked to an TR
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By expanding exp [d3k2r7e-ITI/7,)] into a series and inte- -50.

grating we get

< ik(11')2)1 - e-• 2 ' 2 16(f() + 2 -7

2 2n FMency
- + -)+ (d3 k'7,)n d, 7 , ,77

+ '5+ +O

Tt -.70-
+ n2 (112) 2

02+ n

For 0 = 0 the series is convergent, and the only term left Frequency (Hz)

is the Dirac delta function. We have found that the diver- (b)

gence of the current spectrum at 0 = 0 is due to a delta
function. Equation (107) is obtained by keeping in the a .so
exact expression only the terms of first order in d, and d 3.
Summarizing, the kth order of the low frequency noise
spectrum of the photocurrent is a delta function at 0 = 0
plus a broad-band noise spectrum which, at first-order, is
the sum of the energy and/ 2 times the timing jitter spec- -70
tra. The first order expansion of the exponential that leads
to (107) is then justified, because the terms left over in 0
the expansion are small for all values of 0. In Fig. 5 the o 5 5l0p
result of the approximate and exact expressions are com- Frequaecy (Hz)

pared. The solid line is the plot of (c)
Fig. 5. The spectra of different current Fourier components in presence of

ik (0) = e -edU,' 2r, Re (-d3k2,/.t)-, (jg'r,, - d 3 k2e7) an active mode-locking restoring force. The values of the parameters are:
I --- 0.5 ms. 7, = I ms, d# = 25 x 10', d3 = 0.0073.

+ d, (-d 3k2T,)( -o,('"

/ 1 .2 function at 0 = 0 of the approximate expression (107) is
Sy , + -, -- k'2, (113) nonphysical, and it is present only because we have per-

formed a first-order expansion of the exponential for times
which is equivalent to the sum of all the terms of (112) where this approximation is not allowed. Equation (107)
and has indeed a delta function singularity in the origin, is a good approximation of the actual photocurrent spec-
while the dashed line is the plot of the only first-order trum only down to a cutoff frequency where the variance
terms in d, and d3. The approximate and exact analyses of the timing fluctuations times k2g2o becomes of the order
give indistinguishable results. of 1. This means that, in principle, the timing jitter spec-

The general structure of the photocirrent spectra with trum at very low frequency cannot be directly measured
a Dirac delta function and a broad-band background is by the method proposed by von der Linde which is based
common to all the cases in which the presence of a re- on the validity of the linearized equation (107). The ap-
storing force in the timing fluctuations makes the timing proximate and the exact expressions of the photocurrent
jitter a stationary process like, e.g., the active mode lock- spectrum, calculated assuming zero energy fluctuations,
ing. are compared in Figs. 6 and 7 assuming different values

In the case of pure passive mode-locking we have a for the diffusion constant for the frequency. In Fig. 6 the
different picture. In this case, the linear divergence of the values of the parameters have been chosen to fit the results
timing fluctuations for long I TI due to the absence of any of [221. One sees that the spectrum rises proportionally to
restoring force prevents the Fourier transform of C, (T) to k2, and that the comparison between approximate and ex-
diverge for 0 = 0. This means that now the Dirac delta act expressions is indeed excellent down to 100 Hz. Since
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0- 20-

-200 - -40 -

.20-

10 1 02 .10 n-20 10- 0 b b
z .20 -100 -

Frsquency (Hz) Freqauncy (Hz)

Fig. 6. The spectrum of the current fluctuations of the first and 20th Fou- Fig. 8. The spectrum of the current fluctuations for the first and 20th Fou-
rier component of the current. The values of the parameters, chosen to fit rier component for the same values of Fig. 7 and 7. = 0.5 ms, c2 = 25 x
the results of f221, are rp = 8.4 ms, c, = 0. c2 = 0 (zero intensity fluc- 10-4 (5% intensity fluctuations). Dashed approximate, solid exact.
tuations). c• = 0.0073. Dashed approximate, solid exact.

not be performed, its complete expression is
0

40 - Sa (0) = e e dT

-g0o = 2 Re {Tweblb• -bI)'y[--(ijOT - b,), b,]}

-120 n-f (115)

-160 where

"°.(6 2)2io' i02 •02z I02 b = 2 2 w ww. (116)
Freqluency (Hz) 2WO,,TR2

Fig. 7. The spectrum of the current fluctuations of the first and 20th Fou-
rier component for higher values of the frequency diffusion constant. The The spectrum of e -i A'J is Gaussian and its expression is
values of the parameters are: 7P = 8.4 ms, c, = 0, c , = 0.073. a. e- jf e -fJ/2)( 49(T)2"2d ,

Sao,(a) = e~eJ2(T 2 Zd

the cutoff frequency below which the approximate expres- = % e 02 / 2 7 "o . (117)
sion fails is proportional to P, we see a large deviation
from the exact theory only when we consider very high The net spectrum is the convolution of the two spectra.
harmonics.

When timing jitter increases, the approximate and exact VIII. EXPERIMENTAL RESULTS
analyses give different results for low harmonic numbers. Let us examine briefly the existing experimental data
This is shown in Fig. 7, where the plots of Fig. 6 are on timing jitter of passive mode-locked lasers. Many ex-
repeated for a ten times larger value of the frequency dif- perimental results have been published so far on timing
fusion constant. In this last case the exact and the approx jitter of colliding pulse mode-locked (CPM) lasers [24],
imate analyses give different results even for n = 20. [25] and of color-center lasers (26]. Even though our
Consequently, the shape of the timing jitter spectrum model applies to APM and KLM lasers, all reported ex-
(given by the approximate analysis) cannot be obtained perimental configurations involve intracavity negative
by the analysis of the high-order components of the pho- dispersion to compensate for the self-phase modulation.
tocurrent spectrum. On the other hand, the lower order The mechanism that produces the coupling between fre-
components are affected by the intensity noise as shown quency fluctuations and timing fluctuations (the depen-
in Fig. 8 where the case of Fig. 7 has been plotted by dence on frequency of the group velocity) is expected to
adding an intensity noise of 5%. be active also in these cases. Generally, it is difficult to

Phase and frequency fluctuations need a different way obtain, from the published experiments, all the informa-
of detection. A cascade of Fabry-Perot interferometers tion required on the numerical values for the parameters
can isolate the fundamental n = 0 of the pulse spectrum of the theory to make quantitative comparisons. How-

ever, the very specific qualitative predictions of the theory

aA(t, T) - eie-japeje (114) can be compared with available experimental informa-
TR tion. In all the reported timing jitter spectra, when no par-

ticular arrangement is used to reduce the timing jitter, the
When the diffusion of the phase can be approximated to a power spectra drop 40 dB/decade, which corresponds to
random walk, it causes a Lorentzian shape of the fre- the expected I /W" behavior. More interesting is the jitter
quency spectrum whose width is equal to the diffusion measurement in (221, where the investigated laser closely
constant of the phase 1231. W1,en this approximation can- corresponds to our model. In this case the I/O' behavior
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s- .50 0 frequency, that couples intensity and frequency fluctua-
tions; and/or to incomplete inversion. Since the timing

100 jitter due to quantum noise is not far from the measured
% -% value, large improvement of the timing jitter can be ob-

tained only by means of active stabilization of the cavity
-150 o--15o [251 or by an active "retiming" of the pulse stream [221,

,1 [271.

Z .200 _-200
10 1 0

2  
10o le IX. CONCLUSION

Frenccy (Z) We have presented an analysis of noise in passively

Fig. 9. The timing jitter spectrum of an assumed spontaneous emission
excitation (solid line) compared to the experimental results of 1221 (dashed mode-locked lasers with particular applicability to APM
line). or KLM-locked lasers in which the Kerr nonlinearity

would introduce an appreciable chirp unless compensated

is particularly evident. All these experimental results sug- by negative GVD. In this case, the system obeys per-

gest that the source of timing fluctuations is not the direct turbed soliton equations. To the extent that (40) through

broadband excitation of timing jitter which would give a (43) are dynamic equations of motion with a simple phys-

1/(22 contribution, but rather a broadband source of car- ical interpretation, our approach may predict noise belsiv-

rier frequency noise that produce timing jitter via the ior that is not strictly based on soliton perturbation theory.

group velocity dependence on the carrier frequency. We consider both classical and quantum noise sources,

Intensity noise and phase noise are usually far from the generally 6 function correlated on the slow time scale of

quantum limit in solid-state and gas lasers. Unavoidable multiple resonator transit times. When the pulsewidth and

gain fluctuations induced by fluctuations in the power timing fluctuations are uncorrelated, a set of symmetric

supply and length fluctuations due to environmental per- spectral lines spaced by 21/TR is predicted in the low

turbations are dominant. On the contrary, as already frequency spectrum of the detector current. This is in gen-

pointed out, when the laser runs at the maximum of the eral agreement with von der Linde's predictions. In the

gain bandwidth there are no evident classical noise sources presence of correlation, these spectral lines may become

for frequency fluctuations, which are the dominant con- asymmetric. The interference of timing jitter from the low

tribution to the timing fluctuations at low frequency. For frequency spectra, possible for actively mode locked sys-

this reason, it is of interest to evaluate the timing jitter tems, may lead to erroneous results when applied to the
spectrum as driven by quantum noise. We have gone passively mode-locked case. The spectral lines of the
through a numerical example using the following param- photocurrent show a fl- 4 dependence for 02 > I/ ,,, wherethrogh numricl eampl usng te flloing ara- 7 is a critical time related to the gain bandwidth, (61).
eters: 2g (incremental gain per pass) = 0.06, TR = 1.16

10-8 s, w0 = 2 X 10-7 J, 2D = -4000 fs2, X 840 These predictions are, generally, in agreement with ex-

nm, 17, = 1.6 - 1015 S-1, " = 60/1.763 fs, noise en- perimental observations.

hancement factor 0 = 1 (assuming that the lower level of
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