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ABSTRACT

An adaptive algorithm termed "Bootstrapped Algorithm" is proposed and analyzed, and its
performance is evaluated in this report. Using this algorithm as an interference canceler
results in structures which are unique in that they are composed of multi-cancelers; each
uses the outputs of other cancelers as references (desired signals) or in other forms to
further improve performance. As a result of such unique structures, the bootstrapped
algorithm is shown to perform as a "Signal Separator" rather then as an interference
canceler. Clearly, because it does not require a reference signal in the form of decision
feedback or training sequence, it is sometimes justifiably referred to by the term "Blind
Separator."

Due to its many advantages, one might consider many applications for such blind signal
separators ranging from neural networks and pattern recognition, direction finding and
general signal estimation to co-channel interference cancellation and cross polarization
interference suppression. After we present a thorough examination of the steady state
analysis of the two-inputs two-outputs structures without noise, we consider the
bootstrapped signal separator with noise present as a signal estimator and discuss its
properties.

Application to cross-polarization cancellation in M-QAM dual-polarized transmission is
thoroughly discussed. Improvement of error probability by using such a canceler is
quantified. Because of its importance for neural network applications, extension of the
bootstrapped algorithm to multi-inputs multi-outputs is also examined.

Convergence properties of the two-inputs two-outputs and the multi-inputs multi-outputs
cases were also studied. Finally some preliminary results of the algorithm for wide-band
signal cases were obtained. ‘

It was found that the bootstrapped algorithm has many useful properties which make it an

excellent candidate for use as a signal separator or interference canceler when other
algorithms have some difficulties. In some cases, it clearly outperforms other algorithms.
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1 Introduction

Reported below are the results of a study carried out at the Center for Communi-
cations and Signal Processing Research, NJIT, between March 1, 1991 and June 30,
1992. The aim of the research is to propose, analyze and evaluate the performance
of a fast algorithm, termed “Bootstrapped Algorithm.” The bootstrapped algorithm
for interference cancellation was first proposed by the principal investigator in 1981
[1] and later used for cancelling cross polarization in satellite communication (2] and
in the Microwave Terrestrial Radio Link [3-5]. Other possible applications to tactical

communications are included in [6].

The bootstrapped interference canceler is unique in that it is composed of two
separate cancelers each using the output of the other canceler as its reference (desired
signal) input. As a result of such structure. it is shown to perform as a “Signal Sepa-
rator” rather than an interference canceler. Clearly, as such, it does not (like regular
LMS) require a reference signal in the form of decision feedback or training sequence.

Hence sometimes, the term “Blind Separator™ is used.

Three different structures are proposed in Fig. 1; (1) Backward/Backward (BB)
(2) Forward/Forward (FF) and (3) Forward/Backward (FB). These are the three pos-
sible interconnections among different noise cancelers. The adaptive weights for these
cancelers can be controlled by minimizing output powers or minimizing the absolute
value of the cross correlation between any two outputs and hence sometimes for the
two-input two-output, we used the names “Power-Power” (PP), “Power-Correlator™

(PC) and “Correlator-Correlator™ (CC) (see Figs. 2, 3 and 4).




To understand the behaviour of this newly proposed algorithm, one must discuss
the steady state and show that under accepted conditions it converges to its steady
state which represents the desirable signal separation. Effect of noise on the behaviour
of the algorithm is also of interest. Looking at the algorithm as an estimator of the
desired signal, one might also be interested in examining the properties of this esti-

mator under noise.

Due to many advantages, one might consider many applications for such a blind
signal separator, ranging from neural networks and pattern recognition, direction
finding and general signal estimation to co-channel interference cancellation and
cross polarization interference suppression. In this report, after studying the prin-
ciple property of the algorithm without and with noise, we study the performance
of the Backward/Backward (BB)- Power-Power bootstrapped cross-polarization can-
celer and compare it to that of the Diagonalizer and LMS cancelers. Performance
study of the other two structures. i.e. Forward/Forward (FF) - Correlator-Correlator
and Forward/Backward - Correlator-Power is followed. It is also compared with that

of the BB/PP canceler.

Clearly, for cross-polarization cancellation of a dual polarized channel, we are in-
terested in separating two orthogonal signals and obtaining at the outputs, signals as
clean as possible with low error rates. Hence, we examined the two-input two-output
case. Extension to the multidimensional case is also of interest particularly, as for
example. in neural network applications. This was first done with the BB structure

and then when using the FB and FF structure.

The convergence properties of the bootstrapped algorithm with two-inputs, two-

outputs and multi-inputs, multi-outputs are also examined. Finally some preliminary

(8




study of the algorithm for wide-band signal is started.

It was found that the bootstrapped algorithm has many useful properties which
make it an excellent candidate for use as a signal separator or interference canceler
when other algorithms have some difficulties. In some cases, it clearly outperforms

other algorithms.

Section (2) below is a technical summary of the study and its results. Detailed
reports, on which this summary is based, are given in the Appendices of this doc-
ument. These appendices each cover a specific part of the research and they are
written in a way that can be read independently of other parts. Section (3) contains

the conclusions and recommendations for further study.

2 Technical Summary
2.1 Bootstrapped Algorithm - Two inputs - Two outputs

2.1.1 Bootstrapped Adaptive Separation of Superimposed Signals - Steady
State Analysis

Consider the two inputs (in complex envelope notation)

Ul(t) = Sl(t)+b82(t)

vat) = esi(t) + s2(t) (1)

where b and c are complex values and |b]? and |c|? are the input signal to interference
ratios. s;(t) and s;(t) are zero mean uncorrelated stationary complex processes. If we
process these two inputs by using Widrow’s noise canceler,[7] then the two outputs
will follow the “power-inversion™ relation with respect to power ratios at the inputs

to the weighted elements (see Fig. 1 of appendix A). Particularly, when |b] and |c|
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are less than unity, as in a cross polirization interference case, this canceler is useless.
A novel way to obtain a high signal to interference ratio at both output ports is
to use a bootstrapping approach. In this approach, two cancellation paths and two
summations are used to obtain the system outputs, and an adaptive algorithm is
employed to optimize the signal-to-interference power ratio at the two output ports
simultaneously.

Three different configurations are possible for a bootstrapped algorithm; these

are: (see Fig. 1)
1. The Backward/Backward (BB)
2. The Forward/Forward (FF)
3. The Forward/Backward (FB)

Such interconnections between the two “noise cancelers” help improve the perfor-
mance of each one and result in high quality signal separation.
In order to control the adaptive weights, one needs optimization criteria. For the

two inputs two outputs case, the following are possible,

1. Power-Power

[ 8]

. Power-Correlation
3. Correlation-Correlation

In the first, the weights are controlled by minimizing the output powers, respectively.
With the third, the absolute values of the cross correlation between one output and a
modified version of the second output, and versa is minimized. The second criterion
is a combination of both. See. for example, Fig. 2 wherein the backward/backward
configuration is used and the weights are controlled by minimizing the powers at the

output.




To understand the operation of this particular separator, let the power ratio of
the two signals at point No.3 be such that s > n (even if only slightly greater). Point
No.3, being the input to the weighted element of the 3 processor, (terminal No.l,
is the other input) will result (because of the power-inversion) in n > s at point
No.4 and output v,(t). But point No.4, being the input to the weighted element of
the a processor, (terminal No.2 is its other input) will result in s still greater than
n at point No.3 and hence at output port v,(t). This process of bootstrapping will
continue resulting in a very high sar at one port and a very high nsr at the other. The
snr and nsr, at these ports respectively, will be upper bounded by values depending
on the noise, the impurities of the system and control errors. Consequently, the
power-power canceler of Fig. 2 acts as a high quality power separator. In fact. ideal
separation occurs only in a noise and impurity free case. The operation of the other
configurations are discussed in detail in Appendix A.

One can show that for the backward/backward configuration, power or correlation
minimization are equivalent and either or both of them can be used to control the
two weights. Th: rorward/forward corfiguration’s weights can only be controlled
by de-correlation. The feedback arm of the forward/backward configuration can be
controlled by either minimizing the corresponding power output or by de-correlation
of the output signals. The forward arm of this configuration can be controlled only
by de-correlation (see Fig 5 and 6).

Appendix A of this report contains a detailed study of the steady state analysis
of the bootstrapped adaptive signal separator. This analysis concentrates on three

configuration - optimization structures.

1. Backward/Backward - Power/Power which for simplicity is termed “Power-

Power”

2. Forward/Backward - Power/Correlation which is termed “Power/Correlator”




3. Forward/Forward - Correlator/Correlator whick s termed Correlator/Correlator

After obtaining the optimum complex weigkts of the three different bootstrapping
configurations, we examine the conditions under which, utilizing an adaptive algo-
rithm, these values are attainable. It is shown that crucial to some of the analytical
results is the assumption that the input de-polarization is always much less than one.
The optimal signal power outputs, for the different configuratiors, are derived and
the optimal signal-to-interference power ratios at the two different output ports are
calculated and compared. Also calculated and compared are the input-output trans-
mission ratios and the cancellation factors at the two separate ports. Finally, some
other questions related to the subject of this paper. namely steady state analysis, are
raised.

Finally, we make the following remark in relation to performance comparisor: of
the three bootstrapping configurations considered in this report: while the symmet-
ric power-power and correlation-correlation schemes produce the same output signal
powers and power ratios. the asymmetric power-correlation scheme has a slightly dit-
ferent signal power and power ratio at its @ port. These differences are only of a
second order and might exist only if, due to some system or input impurities (Gaus-
sian noise, quantization error. etc.). the ideal optimal conditions are not rzached.
The same conclusion is in effect when comparing the input-output transmission or
cancellation factors.

Examination of Figures 2 through 4 reveals the fact that the three configura-
tions proposed require different levels of hardware complexity; some need correlators
(harder to implement) other require power measurements. The correlation-correlation
scheme is expected to be the most complex while the power-power scheme the least.
Also. different signal paths (through the system’s circuitry) are expected to result in
different system delays with the different configurations, and hence different band-

width limitations. The question of a possible trade-off between complexity and band-




width is raised. This will be addressed in a subsequent report.

Gaussian noise effects on the system performance and the analytical results of this
paper should also be considered. In particular, it is important to investigate the limit
on cancellation depth and hence on the quality of power separation that this noise
might cause.

The above items are problems which are related to the subject of appendix A
namely steady state analysis; but they will be reported separately, in appendix B.
Finally the whole subject of dynamic analysis must be investigated for the three

configurations.

2.1.2 Bootstrapped Adaptive Separation of Superimposed Signals - Effect

of Thermal Noise on Performance

The effect of thermal noise on performance is of great importance. The fact that
bootstrapped algorithms result in total separation of two superimposed signals when
noise is not present needs to be re-examined when thermal noise is added. This
problem is dealt with in appendix B. Again, the different configurations mentioned
in the previous section are considered. From the study of the general case of multi-
inputs, muliti-outputs. the analysis in this appendix is then concentrated on a specific
two inputs-two outputs case. In doing so, the effect of the thermal noise on separation
performance in terms of the output desired-signal to overall noise ratio is presented.
It was concluded that unless signals in the control loops are somewhat discriminated,
the separation problem can not be solved. On the other hand, perfect separation is
obtained for infinite signal-to-noise ratio (no noise) even if the discrimination is slight.

It is interesting to note that the bootstrapped algorithm, besides being a signal
separator. can provide an estimate of the model parameters (i.e the ratio the signals
which are superimposed at the input). As such, the question is what kind of estimator

are we dealing with? Without noise the optimal weights converge to the true unbias




estimate of the model parameter. Additive thermal noise at the separator inputs
causes bias in these estimates. This bias is inversely proportional to the input SNR
and increases with the signal cross coupling. The bias causes degradation in the
separation performance, but this degradation is small if JA|SNR >> 1, where A =
1 — be, is the coupling factor (see eqn. (1)). There exist many practical important
separation problems for which |A|SNR >> 1 (as in the cross polarization example of
section IV. of appendix B). Another question of interest when using the bootstrapped
algorithm is, what happens if only one signal is present ? This case may be realistic if
one of the signals to be separated is temporarily absent. Discussion of this in appendix
B concludes that the bootstrapped algorithm is only applicable for separation of

signals and not for noise reduction, etc. ( as in the LMS algorithm).

2.2 Bootstrapped Algorithm - Application to Cross Polar-
ization Cancellation

2.2.1 “Power-Power” Bootstrapped Cross-Pol Canceler for M-ary QAM
Signals - Performance Evaluation and Comparison with LMS and

Diagonalizer

M-QAM dual-polarized transmission became an important method for frequency
re-use, particularly in microwave radio communication. However, the orthogonally
polarized waves suffer degradation due to cross polarization interference. Different
canceler structures were proposed to mitigate the effect of cross-polarization. Among
theses are the Diagonalizer and the LMS [8). The bootstrapped algorithm is another
possible signal separator for dual polarized signal.

In appendix C, we study the performance of the “power-power” structure of the
bootstrapped algorithm discussed in section 2.1 and compared to other cancelers. As
dual polarized signals, we use M-ary QAM modulated signals and as a channel we use

non-dispersive fading channel where the depth of fading varies. To deal with realistic




conditions, we also add thermal noise to the two inputs of the canceler. Hence, it was
necessary to re-examine the parameter of the canceler with digital data (considered
random and uncorrelated).

As a performance measure, we used the error probability. For this we obtained
the Chernoff upper bound. To examine the tightness of these we derive approximates
to the error probabilities using the Gauss Quadrature method. In obtaining our
results, we assumed two kinds of output compensation: amplitude only compensation
(automatic gain control, AGC) and amplitude together with phase compensation
(AGC and output equalizer).

Many results of simulation and computer numerical calculations are included in
appendix C. From these we conclude that, as expected, 16 QAM performance is
much better than 64 QAM. It is also shown that adding phase compensation to the
canceler output adds very little to the performance obtained when only amplitude
compensation is included.

From comparing the results obtained with the moment generating method to
the corresponding Chernoff bound, we concluded that these bounds are sufficiently
tight. Comparing the results when different numbers of moments are used, and the
concluded tightness of the Chernoff bound, we infer that approximately 10 moments
are sufficient for deriving a good approximation for the average probability of error
using the Gauss quadrature rule.

The performance of these three cancelers is compared numerically in Fig. 7 and
Fig. 8 for the 16 QAM with r=-10 dB and -5 dB, respectively. Since the diagonalizer
is shown to be useless for the 64 QAM, we only compare the LMS and power-power
configuration with 64 QAM in Fig. 9 and 10. It is also clear from these figures that
the LMS canceler outperforms the diagonalizer.

The LMS canceler outperforms the diagonalizer particularly when the cross cou-

pling is high. Therefore. in the following figures, we compare the difference in perfor-




mance between the power-power and LMS when using 16 QAM and 64 QAM. This is
done in Figs. 11, 12 and 13 when r=-15 dB, -10 dB and -5 dB, respectively. Except
for a very low signal-to-noise ratio, the power-power outperforms the LMS with 64

QAM, more than with 16 QAM.

2.2.2 Performance Comparison of Three Bootstrapped Cross-Pol Can-

celers for M-ary QAM Signals

In appendix D we study the error probability performances of another two boot-
strapped structures, namely the ~Power-Correlator” and “Correlator-Correlator” when
they are used to cancel cross polarization interference of dual channel M-ary QAM
signals. As in dealing with the ~Power-Power” structure, we use the Chernoff upper
bound and Gauss Quadrature method to estimate the error probability as a function
of signal-to-noise ratios.

From the results of this studv, we conclude that the bootstrapped Power-Power
structure outperforms the Correlator-Correlator and Power-Correlator structures,
particularly when the cross coupling is high, such as -10 dB. Also, notice that the
performance at the two outputs of the Power-Correlator structure is not the same.
The performance at one output is the same as that of the Power-Power and the other
output performance is close to the performance of the Correlator-Correlator structure.

In Fig. 14, we depict a performance comparison of the three bootstrapped struc-
tures with that of the LMS cross polarization canceler. From this figure, it is clearly
shown that the Power-Power canceler scheme performs better than the others, while
LMS performs better than that of the Correlator-Correlator and that of output-2 of

the Power-Correlator structure.
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2.3 Bootstrapped Algorithm - Multi-Inputs Multi-Outputs
Separator

Beside the cross-polarization cancellation which requires only two inputs-two out-
puts structures and other applications such as in neural networks and signal separation
of multi channel CDMA, there is a need for multi-inputs multi-outputs separators.
Obviously, one can do with multi LMS cancelers when each delivers one signal and
cancels all the others. This approach becomes very complex when the number of
inputs and outputs becomes large. beside its inferiority in performance in comparison

to the bootstrapped algorithms which is discussed in this section.

2.3.1 Multi-Inputs, Multi-Outputs Separator Using the Feedback/Feedback

Bootstrapped Structure

In appendix E. we present the extension of multi-inputs, multi-outputs of the
feedback/feedback structure (see Fig. 15). As an optimum criteria for controlling the
weights, we used the minimization of correlation between one output and the cubic
of the other outputs. Beside the complexity advantage of the bootstrapped structure
to the LMS and the fact that the second needs supervisory reference while the first
does not, we studied. in this part of the research, the speed of convergence property
of the bootstrap in comparison to the LMS algorithm.

It was shown by simulation that the learning process of the bootstrap signal
separator, though requiring fewer weights. is faster than the LMS algorithm. This is
true especially at a high signal-to-interference (SIR) ratio. The learning process of
the bootstrapped algorithm is almost independent of the SIR and converges within a
reasonably small number of iterations. That is, the bootstrapped algorithm is almost

independent of the eigenvalue spread of the input correlation matrix.
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2.3.2 Convergence and Performance Comparison of Three Different Struc-
tures of Bootstrapped Blind Adaptive Algorithm for Multi-signal

Co-Channel Separation

In appendix F, we present the multi-inputs multi-outputs extension of the other
two bootstrapped structures, “Power-Correlator” and “Correlator-Correlator” (see
Fig. 16 and 17). Performance of the separators is studied and compared by examining
the depth of interference residue at each output and by considering the speed of
convergence. Effect of compensation via AGC on the separator performance is also
considered. As in the Power-Power structure discussed in the previous section, the
optimum criteria for controlling the weights, we used minimization of correlation of
the outputs with cubic non-linearities.

For channel inputs we used random bipolar independent sequences. Channel pa-
rameters were chosen to present different desired SIR ratios at the channel outputs.
These parameters determine the canceler’s input correlation matrix and hence the
matrix eigenvalue spread. Thermal noise was also added to the output of the chan-
nel.

The optimum weights for all three separators were found analytically in the ab-
sence of noise. The signal separation process was shown via simulation by the outputs
learning curves. These learning curves of the Power-Power separator is compared to
the three outputs learning curves of the Power-Correlator separator when AGC is
added to these outputs (see Fig 18). It was also shown that the three different boot-
strapped separators converge to their steady state almost with the same speed for
two or three signals. lowest for Power-Power and highest for Correlator-Correlator.
One output of Power-Correlator results in residue similar to that of the Correlator-
Correlator. However. adding AGC to the Correlator-Correlator outputs or to one of
the outputs of the Power-Correlator which reduces the amount of residue. so that

when AGC was added (when it was needed), all separators behaved similarly.
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2.4 Bootstrapped Algorithm - Wideband Signal Separator

For superimposed wideband signals we suggest a bootstrap structure whose con-
trolled elements are delays instead of complex weights or digital filters. In principle,
the structure is the same as the backward/backward structure discussed in earlier sec-
tions (see Fig. 19). It is shown in appendix G that if the source locations are known
then the proposed system provides a least square estimate of the source signals. This
suggests that the backward/backward structure provides a simple implementation of
the least square multisource estimator. Such an estimator, regularly implemented by
a maximum likelihood approach, requires a complex set of software algorithms.

If the source locations are unknown, the algorithm suggested in appendix G con-
verges to the least square solution, provided that some prior information about the
source signal is available. Hence, we show that the bootstrapped algorithm with time
delay control can be used for the separation of wideband superimposed signals.

First, the general wideband multi-source model of the problem is defined. It
assumes having N point sources received by M omnidirectional sensors. This model
is practical in passive sonar wherein the signals are wideband, noise -like random
processes and the unknown source location is to be estimated. In active sonar, the
signals are known and we are interested in estimating the source location. However,
in wideband communication one is usually interested in the source signals themselves
and not in their location.

Working in the frequency domain we first present the expression for the least-
square estimate of the vector of the source signal. Using this expression we depict
the direct block diagram that implements this estimator. Restricting our analysis to
M = N = 2 it is shown that even when the directions of the two sources are known
one needs to transfer function of the form of coswA or 1/sin?wA as well as delay (see
Fig. 1 of appendix G). Our bootstrapped approach will remedy this problem and we

only need delay elements and summers.
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We show that with feedback structure the expression for the least square can easily
be implemented (Fig. 19), if we know the location of the sources. If these locations
are unknown then we must use an estimate of these locations. The bootstrapped
algorithm can be used to estimate these locations. In fact, the controlled delays
at the feedback path of the backward/backward structure will give us an estimate
of the delav propagation of the signals’ waves impinging on the array and hence
directly related to these signals’ directions of arrival. When the algorithm controlling
these delays reaches its steady state, the outputs of the separator will each deliver

sufficiently clean signals at only one output.

3 Conclusions and Recommendations

We have seen that the bootstrapped algorithm has properties which make it
attractive for many applications of signal separation. Without noise the separation is
ideal. Adding noise will degrade the performance however, for signal estimation this
degradation is tolerable. Furthermore, the algorithm has the property to converge
to its steady state where signal separation occurs much faster than other algorithms.
Unlike other algorithms the speed of convergence does not depend on the signal power
ratio and hence does not depend on the eigenvalues spread of the input correlation
matrix. It is also important to note that the algorithm does not require a supervisory
reference signal. Hence in this regard, it is a blind signal separator.

In this research we studied three structures of this algorithm and discussed pos-
sible optimization criteria for each. The case of two-inputs, two outputs was studied
in detail. particularly as it is applied to the problem of separating two signals con-
taminated with cross-polarization interference. When handling M-ary QAM signal
we estimate error probabilities without a canceler and with different cancelers. one of
which was the bootstrap separator. It was shown that the bootstrapped structures

always outperform other cancelers.
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The bootstrapped structures were also extended to multi-inputs multi-outputs,

and shown to have similar properties as the two-inputs two-outputs case. For op-

timization criteria we use de-correlation of outputs with cubic nonlinearity. As an

application of multi-inputs we considered superimposed signal with uncorrelated dig-

ital data and for performance we again examined error probabilities.

Some work was also done with wideband signals. When using delay control in the

bootstrapped algorithm. we could prove the very interesting result that this algorithm

exhibits a simple hardware implementation of Least Squares estimator.

The work carried out led us to make a number of recommendations for further

study:

1

Two Input-Two Output Bootstrapped Algorithms

Study performance of the bootstrapped structure for cross-pol cancellation of
dispersive channels. Examine error probability and suggest co-pol compensation

whenever needed.

Further study the dependency of the bootstrapped algorithm on the equivalent
system eigenvalues spread to facilitate comparison with LMS on one hand and

eigen analysis on the other.

Compare the complexity of this algorithm to those of other algorithms and draw
conclusions regarding its implementation with software or hardware. digital or

analog.

Although bootstrapped algorithms do not require supervisory inputs, it is im-
portant to examine what improvement in performance one can get if such input

signals are used.

Study dvnamic performance of the three structures and examine possible im-

plementation in analog hardware.




2. Multi-Input Multi-Output Bootstrapped Algorithm

Further effort is needed to study error probabilities of multi-signal interference.

* Analysis of these cases should be completed and conclusions regarding their

performance, complexity and implementation should be drawn.
= Applications of multi-signal co-channel cancellation should be sought.

= Examine possible application for neural network implementation.

X

Study speed of convergence and depth of cancellation and their dependency on

the number of signals being processed.
3. Wideband Application of Bootstrapped Algorithms
= Further study the bootstrapped time delay estimation of two uncorrelated sources.
Extend this work to multi-input multi-output.

Examine implementation of such estimators for adaptive wideband interference

canceler and for the signal separator.
Establish the requirement for stable robust control loops.

= Examine the performance of these estimators and cancelers under different en-

vironmental conditions and with different wideband signal modulation.

Compare performance of these estimators to those of maximum likelihood and

eigenanalysis estimators.

~ The above would be done using analysis and supported by the needed simula-

tions.
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4. The Bootstrapped Algorithm as a Blind Adaptive Equalizer

Blind equalization is a channel equalizer where the reference signal is obtained

directly from the channel output instead of by using a pilot, training sequence, or

decision feedback. Such an approach has the drawback of being non-adaptive and

lacks the capability of following environmental variation. We suggest using the desired

signal extracted from one bootstrapped algorithm as a supervisory signal for the blind

equalizer. It is believed that such an approach will reduce many problems that current

blind equalizers have.
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Appendix A

Bootstrapped Adaptive Separation of Two Superimposed Signals -
Steady State Analysis

Y. Bar-Ness

Abstract

The algorithm presented here differs from other interference cancellation systems
in that it is a power separator rather than an interference canceler. That is, each
of the two input signals interferes with the other and the function of the canceler is
to remove that interference from both input signals rather than just one. A novel
way to obtain high signal to interference ratio at both output ports is to use the
bootstrapping approach.

Three bootstranped configurations are discussed and analyzed herein. They par-
ticularly differ in the criteria used to obtain the optimal complex weight in the can-
cellation path.

Steady state parameters, such as optimal complex weights, optimal signal power
outputs and signal-to-interference power ratios are derived for each of the different
configurations. Also calculated are input-output-signal transmission and cancellation
factors. In performing the analysis. emphasis is on application for cross-polarization

cancellation.
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1 Introduction

System degradations in dual orthogonally polarized communication systems may
be reduced by the use of a cross-pol interference canceler. A cross pol canceler differs
from other interference cancellation systems [1,2] in that it is a power separator rather
than an interference canceler. That is, each of the two input signals interferes with the
other and the function of the canceler is to remove that interference from both input
signals rather than just one. A novel way to obtain a high signal to interference ratio
at both output ports is to use a bootstrapping approach [3.4]. In this approach two
cancellation paths and two summations are used to obtain the two system outputs,
and an adaptive algorithm is employed to optimize the signal-to-interference power
ratio at the two output ports simultaneously.

The purpose of this appendix is to report a detailed steady state analysis of the
three bootstrapped configurations, two of which were first discussed in [3] and [4]'.
A summary of the results of this appendix is previously reported in the literature [5].
Independently, during the mid-eighties, a group of European researchers addressed
the same separation problem and, under the name of “blind signal separation™ devel-
oped a similar adaptive system [6]. More recently, a third group of signal processing
researchers have applied similar ideas to speech signal separation [7].

The three configurations suggested in the appendix differ particularly in the crite-
ria used to obtain the optimal complex weight in the cancellation path. The criteria
used minimize either the interfering signals power at the two output ports, the cor-
relation between the two signals at the two output ports, or simultaneously the in-
terfering signal power at one port and the correlation between the two output signals
at ports. Correspondingly they will be termed: 1) power-power, power-correlation
and correlation-correlation cross pol cancelers. Consequently, the three configura-

tions differ in the topology of their two cancellation paths, and the manner in which

1This work in reference [3] did not consider the cross polarization problem.
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the adaptive feedback information is derived and hence in their hardware complex-
ity. The use of either of these criteria would lead to the customary power-inversion
result. However, each of the above bootstrapping arrangements results in power sep-
aration (high signal-to-interference ratio at both output ports) through the use of a
discrimination technique.

In this appendix we obtain the optimal complex weights of the three different
bootstrapping configurations. and examine the conditions under which, utilizing an
adaptive algorithm, these optimal values are attainable. It is shown that crucial
to some of the analytical results is the assumption that the input de-polarization
is always much less than one. The optimal signal power outputs, for the different
configurations, are derived and the optimal signal-to-interference power ratios at the
two different output ports are calculated and compared. Also calculated and com-
pared are the input-output transmission ratios and the cancellation factors at the two
separate ports. Finally some other questions related to the subject of this appendix,
namely steady state analvsis. are raised. These will be investigated and reported
separately.

Consider the two inputs (in complex envelope notation)
wi(t) = s(t) + bn(t)

vo(t) = es(t) + n(t) (1)

where b and ¢ are complex values and |b|? and |c|? are the input signal to interference
ratios. s(t) and n(t) are zero-mean uncorrelated stationary complex processes. We
will not indicate the time-dependence of variables in the interest of brevity unless it
is necessary. We now process these two inputs, separately using. the simple “noise
cancelling” scheme proposed by Widrow [1] (see Figure 1). Here we consider each
input as a “reference signal” (in Widrow’s terminology) and sum it with a weighted

version of the other signal to form an output. Two such outputs v,(t) and v,(t) are
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formed simultaneously. The corresponding weights a and # (complex valued ) can
adaptively be adjusted so that the output powers Q and P are minimized, respectively.
From Figure 1 we have

vy(t) = v2(t) + an(¢) (2)

= oo = lc + a*[s]? + |1 + baf*In[? 3)
where the over-bar stands for the expected value. Therefore, [s[?and [n[? designate
the powers of the two incoming signals respectively. Thus, one can show that,

2 = 2c+a)foT +20 + ba)pl (4)
a

where the derivative of a real function with respect to (w.r.t.) a complex variable
a(a = ap+jaj) is defined by; d(.)/dt = d(.)/dar+jd(.)/da;. * The asterisk denotes
complex conjugate and j = v/—1. Equating (4) to zero we obtain the optimal value

of a
c|s}? + b|n|?
Cop = 3 2[n 12
|s|? + 18]%|n
Substituting in (3) we obtain the power of the s signal @, and of the n signal Q,.

(3)

These, following simple manipulation, are given by,

Q = —b'l(i_lblcfi)'h u /Tﬂ—'—L ISP (6)
0 = | T (")

and the n signal-to-s signal power ratio is
Qn/Q. = [b:—:||—2|2 (8)

?In obtaining the complex derivative of a real function A = |d+e6)? w.r.t. to the complex variable
6 we used the simple general rule; dA = 2e*(d + eé)
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vp(t) = v1(t) + ava(2) (9)
P =[u,(t)? = b+ B[nP? + 1 + Bef*[sP? (10)
so that
bjn|? + c*|s|?
o= - )
Inl? + lcl?s]
The power of the s signal and the n signal are, respectively;
(1 — DR/} —
S I )| A ey (12)
1+ |cf?ls]?/In]?
2
, =‘ A=) o (13)
1+ |e?|s]*/|n]?
and
P[P, = W/ICVW (14)

Like (8), equation (14) represents a “power inversion” relation with respect to the
power ratio at the input to the weighted elements. In fact, if |c| # |b] then we
expect an improvement in power ratio of one signal to the other at one port, while
a degradation of the power ratio of the second signal to the first at the second port.
For example, if |b] < |c| then Q,/Q. is greater than the s signal-to-n signal power
ratio (sor) at input terminal No.1,while P,/ P, is less than n signal-to-s signal power
ratio (nsr) at input terminal No.2.

Similar results prevail if instead of the criterion of minimizing, separately, the out-
put powers Q and P we would implement the criterion of minimizing the correlation
of each output with the corresponding input. That is to adjust a and 3 so that,

|v,,(t)v{(t)|2 and |v,‘,(t)v§(t)|2 are minimized respectively. (See Fig.1)
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In conclusion, the “noise cancelling” scheme can not be used in cross polarization
problems where high quality power separation is required, i.e. improvement in both
snr at one port and nsr at the other. This motivates one to explore the bootstrapping
approach wherein the general idea is to feedback the power-inverted “noise canceler”
output as a “reference signal” for the other “noise canceler” and vice versa. Suitable
feedback arrangements enhance the right power ratios resulting in power separation

with high signal-to-interference ratios at both output ports.

2 Bootstrapping Techniques

2.1 Optimization Criterion

In this section we investigate three bootstrapping configurations in which the

following optimization criterion are employed, these are:

1. Power-Power criterion
2. Power-Correlation criterion

3. Correlation-Correlation criterion

These configurations are depicted in Figures 2 through 4 respectively. The first
configuration follows Bar-Ness and Rokach [4], the second was considered in un-
published communications by Steinberger, while the third resembles the cancellation
network proposed by Brandwood [3]. Notice the discrimination networks in these
configurations. Such a discriminator which depends on the properties of the signals
may turn out to be a limiter, filter, etc. Its sole effect is to slightly emphasize one
signal with respect to the other. Their necessity will be obvious later. In references
[3] and [4] where narrow band signals were assumed, hard limiters were implemented
as discrimination techniques. Computer simulations have shown that limiters are

only effective in a narrow class of applications [5]. For satellite communication {5]
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in which the frequency plans for the two polarizations are staggered, a frequency
discrimination technique [8] with simple comb filter was used.

Consider the power-power canceler of Figure 2. Let the power ratio of the two
signals at point No. 3 be such that s > n (even if only slightly greater). Point No. 3
being the input to the weighted element of the 3 processor (terminal No. 1 is the other
input) will result (because of power-inversion) in n > s at point No. 4 and output.
vp(t). But point No. 4 being the input to the weighted element of the a processor
(terminal No. 2 is its other input) will result in s still greater than n at point No. 3
and hence at output port, v,(t). This process of bootstrapping will continue, resulting
in a very high snor at one port and a very high nsr at the other. The snr and nsr, at
these ports respectively, will be upper bounded by values depending on the noise, the
impurities of the system and control errors. Consequently, the power-power canceler
of Figure 2 acts as a high quality power separator. In fact ideal separation occurs
only in a noise and impurity free case.

In the cross pol canceler of Figure 3, the cancellation weight 3 is controlled via
a power criterion which minimizes the power P at the v,(¢) port. The weight a is
controlled by minimizing the correlation between the two outputs (i.e. |ml2)
thus, the name power-correlator canceler. Here, to obtain a perfect cancellation of the
n signal at vy(t), it is required that the B processor has a clean sample of n signal at
point No. 3 (because of power-inversicn behavior). The correlation processor which
controls a can operate with a sample of the signal n (at point No. 3) which is corrupted
by the signal s. but needs a clean sample of the signal s (at the other correlator input)
to generate its feedback signal. Since one of the two processors (the correlation) can
in effect defer its need for a clean sample of the signal n, it makes sense to let that
processor perform its cancellation first, making a clean sample of n available to the
other processor (power processor), which in turn provides a clean sample of the signal

s (at point No. 4) to the first processor (correlation processor) to generate a feedback
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signal. Thus, although neither processor can function properly unless the other one
does, both (in bootstrap operation) can operate properly together. Consequently,
the power-correlator canceler of Figure 3 can perform as a power separator. It might
seem complicated to comprehend such a qualitive argument, nevertheless analysis will
support these claims.

Finally, the correlator-correlator canceler of Figure 4 operates as follows: The a
processor can operate with a sample of the single n (at point No. 3) which is corrupted
by the signal s, but needs a clean sample of the signal s (at point No. 4) to generate
its feedback. Similarly with the J processor, where the signals n and s (at the point
No. 3 and No. 4) are interchanged. Since initially neither points, No. 3 or No. 4
contains a clean sample of s or n. respectively, neither processor performs properly
unless the other one does. However. if one processor starts its cancellation it results
in a cleaner sample of the proper signal needed by the other processor and vice verse.
This bootstrapping behavior finally results in the desired power separation at the

output ports.

2.2 The Optimal Weights

The optimal weights for the different configurations are now obtained using the

corresponding optimization criterion

2.2.1 The Power-Power Scheme

From Figure 2,

vp(t) = v1(t) + Bu,(t) (15)
tolt) = va(t) + avy(t) (16)
By using (1) we get,
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1 + Be*[s]? + |b+ Bn]?
[1—ap|?

P = |u(t)f = (17)

where we used the fact that s(t) and n(t) are zero-mean uncorrelated processes.

Taking the derivative of (17) we get

P _ 21— aB)(1 + Be)la+ o) + (b + B)(1 + ab) TP

B~ 1 —aBl! (19)
From dP/3p = 0 we get after simple manipulation,
(a+¢)*(1+ Be)sP+ (b+ B)(1 + ab)*n2 =0 (19)
and
T5I2 TP
5, = et TP + b1+ ab) o] 0

c(a + c)*sf? + (1 + ab)*|n]?

provided 1 — af8 # 0. Thus, if & = —¢, then f,, = —b and perfect cancellation will

result. Also from Figure 2

|1 + ab’InP + |c + of[sP?

- 7 —
Q - qu(t)' - Il _ aﬂlz (21)
Therefore, 0Q/0a = 0 implies
(1 + ba)(b+ B)*InfP + (@ +c)(1 + Be)*[s[2 =0 (22)
and
b -——2 :—2
gy = — e B[l + o1 + Be)'lsf? (23)
b(b+ B)"In[? + (1 + Be)*|s|?
provided 1 — aff # 0. Again if $ = —3 a, = —c and perfect cancellation results.
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are sought via any search algorithm.

Comparing (19) and (22), we notice that their left hand side terms form a complex
conjugate pair. Therefore, they constitute a degenerate set of equations which does

not have a unique solution in a and 3, so that difficulties are to be expected if a,p, Bop

This difficulty can be remedied by using the signals’ discrimination networks whose
effect on the two signals is different in some way e.g. complex gain, etc. Such a

network helps distinguish one signal from the other by putting emphasis on either

one. For example, if discriminator No.1 is such that its output power is P, given by

(17) with s; and n, replacing s and n, respectively, then (19) and (20) will change

accordingly. Similarly using @, to drive a, where Q; is given by (21) with s, and

n, replacing s and n respectively, then (22) and (23) will change accordingly. If we

have at least s, # 32, or n; # n; then the set of Equations (19) and {22) is no longer

degenerate. They are a set of two bilinear equations in & and (. In fact with the

effect of the discriminator (17) and (21) can be rearranged to get

(a+¢)(1 + Be)(|s]? [n2|*/|na |> — |s2]?) = 0

(B +b)(1 + ab)*(Inz|? [s1]*/ls2|* — |ma[?) = 0

If based on some slight information about the signals, discriminators® can be found

such that at their output we have |s;]? |n2|?® # |s2]? |n1|* then the only two solutions

area=—cand f=—-bora=;and f = —% . The second pair is not valid if we

constrain |a| and |3| to be smaller than unity (b and c are assumed to have magnitude

less than unity). The unique solution a,, = —c and 8., = —b are the required values

of @ and S that renders perfect cancellation at both outputs.(see (17) and (21))

3Such discriminator has been shown to exist for satellite communication [5] microwave radio [10]

and narrow-band tactical communication {9] application.
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2.2.2 The Power-Correlation Scheme

From Figure 3,we have

vp(t) = v1(2) + Bu,(t) (26)
vg(t) = va(t) + avi(t) (27)
= [ ()7 = |(1 + Bla + c)*sP + |b + B(1 + ab)*[nf? (28)

where we used the assumption that s(t) and n(t) are zero-mean uncorrelated pro-

cesses. Equating the derivative of (28) with respect to 3 to zero we get

—_—

(o + ) [s]2 + Bla+ cl*[sP + BI1 + abl’[n[? + b(1 + ab) [n[? = 0 (29)

and

_5(1 4+ ab)” [nl? + (a + ¢)*[s[? (30)
11 4 ab|?[n]? + 'a + ¢|?]s]?

,Bop =

Thus if @ = —c then B,, = —b/(1 + ab) and a perfect cancellation of the n signal will

result (see(28)). With a close to -c, we can assume that |a + ¢|* < |1+ ab|*|s[?/[n[?*

and hence
b (ato)S[sP
3,..,, = - -_ _—
/ 1 + ab |1 + ablz |n|2 (31)
Also from Figure 3
= 5@ = |aP (32)

where as it can be easily shown. using the zero correlation property of s(t) with n(t)
that

A= (a+c)(i+3a+c)[sP+(1+ab)(b+B(1+ab) TP (33)

Notice that in comparison to the corresponding terms in (17), (21) or (28) the terms
in |A|? do not depend linearly on the independent variable a (see also Appendix A-1)

and hence the general rule for the derivative in the footnote on page 4 is not valid.

__Since _the signal propagate through the same path one can take without loss of generality that
JsI? and [n|? are of the same order.
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However, directly from (P-1) and (P-2) in Appendix A-1, we have
Q2/8ar = A"0A/Bap + AGA"[dapr (34)

8Q;/da; = A"9A[day + ADA"[day (35)

where the subscripts R and I designate the real and imaginary parts, respectively.

From (33),

dA/dar = |s[2 + 28" (a + ¢)rls]® + [bl*[n]* + 28°(br + arlb|®)[nF  (36)

and

9A[Bar = T +23"(a + )il + JIbPIn]? + 28°(=b; + aslbyi (37)

It is clear that dA"/Jdar = (04/dagr)” and 8A*/0a; = (0A/Bar)”. Equation (34)
and (35) become simultancously equal to zero if either one of the following conditions

is satisfied.
1. A= A" =0, 9A/3ar # 0 (8A*/dag # 0)
and BA/aa, ;é 0 (8A'/8a, # 0)
2. JA/8ap =0 and 9A/Ba; =0 A#0

3. Neither of the terms above is zero. but the corresponding sums in (33) and (34)

are zero.
Under the first condition we have from (33)
(o + o)isP + B%la + c*[s]F + B°|1 + ab|*Tn]2 + b°(1 + ab)[n]> = 0 (38)

With a close to -c and [J] < | we have fgrla + ¢[* € (a + ¢)r and Bila + ¢f* €
(a + ¢)1, and we can neglect the second term in (38) leaving

Qop = =€ — (1 + opb)(b + B(1 + copb))"Tn /5] (39)
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Again if § = —b/(1 + aypb), then a,, = —c and a perfect cancellation of the s
signal at v,(t) will follow. Finally we notice from the conclusion following (30) and
(38) that the condition for the first leads to a result which is needed by the second
equation and vice verse. Hence if these two equations are solved simultaneously, they
lead to the stated a,p and 3.

As in the power-power arrangement, Equations (29) and (38) constitute a de-
generate set of equation which does not have a unique solution. Therefore signals’
discrimination networks are needed if a,, and f,,, the solution of (29) and (38). are
sought via a search algorithm.

Under the third condition above (i.e., when none of the terms A, dA/3ap or
0A/Ba; equals zero, but the corresponding sums of (34) and (3:  -; ', it is possible
to show by taking the required derivative that the optimum values of ag and a; are

given by

__crIsP+brIn® _ Real[4]

[P+ (bflnf  2Real[AB] (40)
=~ R ~ SRl (41)

IsP + |b]2[n]?7 ~ 2Real[AB]

By examining the nature of the solution of the minimization problem. a. defined
by (40) and (41), one can show that such a solution can not exist in practice if we

restrict 8 to satisfy
|BRlmaz = |Brlmez < 1/2V2(1sP/ )L (1/11 + ablmas) (42)
or if (using the stronger condition).
|8Rlmaz = |B1lmaz < 1/2V2(1sP/InP) i [1/(1 + |l {blmac] (42a)
In which case this extremum point will be either a point of maximum or a saddle

depending whether, or not, Jr and 3; are of the same order. Particularly if 8 1s

constrained to satisfy (42), then this extreme value of a will not be a minimum point.
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To exhibit numerically the meaning of this design constrain, we first notice using
(30) with a = —c¢ that |Bop| = [6]/[1 + ebl < [6]/(1 = lal[b]) < [blmaz/(1 = |al|blmas)-
Therefore for any possible §,, to be within the value of (42a) it is sufficient to require

that

Iblmes/(1 = [&llblmaz) < 1/2V2(ST/TP)dml1/(1 + letlblmaz)] (42b)

Assuming ([s]/[n[*)min =~ 1 then for |a| ~ | = blmaz, (41b) is satisfied if |bjmaz <
0.295. Let the de-polarization coefficients |b| and |c| be at most 0.295 (= 10db). then
the upper bound on Bg and J; given by (42a) equals 0.326.

Notice that for a wider useful range of 3, (Js|?/[n]?)min should be largest. If,
for example, the expected ({—.s—l_f/|—7-z_l—2),,,,-,l is less than the expected (W/l:l_f) then it
is preferable to change the role of the two signals in the system by exchanging the
power processor with the correlation processor and vise versa.

Under the second condition for making (34) and (35) equal to zero (namely when
0A/0ar
= 0 and AA/Oa; = 0 but A # 0) we notice that (37) can not be made to equal zero
unless f is real. Similarly, (37) can not be made to equal zero unless 8 is purely

imaginary. In these particular cases

1 calsl’ + brinl?
28r  |s|? + |b]*|n|?

QR = — B real (43)

1 CIW - bRW . .
a= —— — == B purely tmaginar 44
B " TR+ PP purely imaginary (44)

respectively. It is shown in Appendix A-2 that these values of ar and aj are points of
maximum for Q;. Furthermore they will not occur in practice since |3] is constrained
to be small just as |a].

In conclusion. we observe that in the power-correlation scheme the optimal weight
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(Bop) for the power processor must satisfy (30), while a,, for the correlation processor
can be obtained solely by (30) provided certain design conditions and constraints are

met. These conditions, can easily be met in practical cross polarization problems.

2.2.3 The Correlation-Correlation Scheme

From Figure 4 it is quite obvious that without the signals’ discrimination networks,

the control loops are indistinguishable. Notice that

vp(t) = vi(t) + Bua(2) (45)
ve(t) = avy(t) + va(t) (46)
and by using (1) we get
Py = [on@®o ()| = |41 (47)
where
Ay = (b+ B)(1 + ba)"(6m)* Il + (¢ + ) (1 + ¢B)(én)*[s]? (47a)

and, é,, = n,/n and §,; = s;/s, represent the effect of the discriminator networks.®

Similarly
Q2 = [oga(t)vp(t) = | 4o (48)
where
Az = (b4 B)*(1 + ba)(6n2)?nP® + (c + @)(1 + cB)"(6,2)*IsP? (48a)

and, 6, = nz/n and 6,; = s3/s. In the derivation of (47a) and (48a) we used the
zero correlation property of s(¢) and n(t). To derive the optimal weights, a,, and

Bop we follow the same steps used in obtaining a,, of the correlation processor in the

5For simplicity the effect of discriminator was assumed to cause different real gain for the different
signals.
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previous scheme. That is, to find 3,, of the correlation-correlation scheme, we must
equate 9P, /361 = 0 and dP,/38r = 0 simultaneously to zero. In Appendix A-3 we
prove that 0P, /3fr = 0 and dP,/38; = 0 if and only if A; = 0. This implies, using

(47a),
b(1 + ba)"(8a1)*[n % + (c + a)"(801)*]s?
ﬂop = - n 2112 T (49)
(1 + ba)(8n1)?[n|? + c(c + @)*(651)?|s]?
Notice that if @ = —c then f,, = —b and we get a perfect cancellation of the n signal

at v,(t). We can use a similar argument to find a,, from equating, simultaneously,

0Q2/0agr and 8Q,/da; to zero, namely

o = _c(l + c‘B)'(6,2)2|_s'|_2 + (b+ B)‘(&,,z)?HF
P (14 e3)(6:2)2]5[2 + b(b + B)"(6a2)n]?

(50)

Again if 8 = —b then a,, = —c and we get a perfect cancellation of the s signal
at vy(t). Equations (49)and (50) are the same as (20) and (23), respectively, which
represent the optimal weights for the power-power scheme. Recall that the latter
were obtained with the rather reasonable condition that |1 — af| # 0.

To conclude this section, we introduce in Table 1 a summary of the equations rep-
resenting the optimal weights of the three configurations together with the conditions

under which these weights are attainable.

2.3 The Optimal Output Signals’ Power and Power Ratios

Using the optimal weights derived in the previous section, we now find the optimal
powers of the two signals at the two different output ports. This we do for the different

cross-pol cancelers schemes by implementing the corresponding optimal weights.
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2.3.1 The Power-Power Scheme

From (20) we get

(1+ ab)*(1 = ch)imP/]s1]?
oo+ )" + (14 ab)[mP/lsi]?

l1+cB=

and
(a+¢)* (1 —cb)
c(a + ) + (1 + ab)*|m[*/Ts: 2

b+ 8 =

We also introduce in (51) and (52) the effect of the discriminator network No.1 (see

Figure 2). From (17) we get. by using (531), the s signal’s power

1 (L+ab) (1 = eb)imP/lsi* |
P, = 53
T=adl |clat er + (1 +abrm/lsF| (33
and by using (52), the n signal’s power
1 (a +¢)"(1 — cb) P —
P, = 2 54
[1 —ad|? |cla +c)" + (1 + ab)*|n [*/|s:1]? Inl (54)
The signals’ power ratio at this port is given by
1+ abl’ 1T TS
Pa/Pn = a+e (6nl/5sl) |n| /lsl (55)

where é,; = n;/n and 8, = s1/s. From (55) we notice that the power-inversion
relation has been enhanced. as a result of the bootstrapping arrangement, by the
factor |(1 + ab)/(a + ¢)|?, which approaches infinity (perfect cancellation) if a = —c.
Further enhancement of the s-to-n signals’ power ratio prevails if the discriminator
network is chosen such that é,; < §,;. With the smallness condition assumed for |b]
and |c| and the constraint imposed on |a|. we can easily show that the input-output

transmission for the s signal is approximately unity

Py/|s|* ~ 1 (56)
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provided that |a + c| is very small so that |8 + b| is approximately equal to zero.

Similarly the input-output cancellation factor is

PofInP =~ la + cf*/(ni?/1s:[?)* (57)

Notice the improvement in cancellation if §,; < p;.

Similar argument leads, for the second part, to

2

LA Bl 612/ 602) ST T (58)

@n/Qs = Ty

as the n-signal to s-signal ratio. Also the input-output transmission for the n-signal

Qu/Inf? 1 (59)

provided |3 + b| is very small so that |a + ¢| is approximately zero. The input-output

cancellation factor of the s-signal,
Qu/TsP = 1B+ b /([ss?/Tnal?)* (60)

2.3.2 The Power-Correlation Scheme

Using the value of 3,, (Equation 30) we obtain from (28) the optimal output

powers at the P port. The s-signal optimal power,

2

(1+aby(1 — b )P/l | (61)

la +c? + |1 + abf|n, [*/]s: ?

where we also introduce the effect of the discriminator network on (30)

The other signal optimal power.

_ (a +c)*(1 — cb) ’W (62)
la +cf* + |1 + ab]?|n4 /|51 |
The signals’ power ratio becomes
1+ abl? -
P,/P, = l - (8a1/8:1)2In|?/|s|? (63)
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Furthermore, with the smallness condition assumed for the system inputs and
parameters, |a + c|? < |1 + ab|?|n,|?/|s1]?, we have for the input-output transmission
of the s-signal,

2
~ ] (64)

—_ 1-be
P =L

and the input-output cancellation factor of the n-signal is

_ “1—e? —
Fofinl?t = (aJlrlclepc) [(Ira[?/s1]2)?
~ o+ cf/(Jn?/]s1 ) (65)

The approximations made in (64) and (65) are true if we further assume, |c| = [§] < 1.
At the Q port of the correlator processor, the output power is obtained by sub-

stituting the optimal weight a,, from (39) we get for signals’ power ratio

2

- (8u2/bn2) ST/ TTE (66)

(1 + aopb)

Qn/Qs=‘b+B

and for the input-output transmission of the n-signal;
Qn/InP =1 =bef> > 1 (67)
provided |b] = |¢| « 1. The cancellation factor of the s-signal is
Qu/IsF = b+ B(1 + capb)*/ (52l /[na?)? (68)

Notice that the output power ratio P,/P, (63) is the same as that obtained with the
power-power scheme (55). Comparing the other port power ratio @Q./Q, (Equations
(58)and (66)), we notice a slight difference which is a direct consequence of the fact
that (39) is a second order equation in «, and that the steady state optimal weight
of the 3 processor for the power-correlation scheme is not exactly the same as that of
the 3 processor for the power-power scheme (compare (20) with (30)). Similar results

are obtained when comparing the input-output transmission for one signal of the

55




input-output cancellation factor to the other signal (see (56), (57), (59) and (60) to
the power-power scheme and (64), (65), (67), (75) to the power-correlation scheme).
Notice, particularly, the slight difference that resulted from having b + S(1 + aspb)
(in (68)) for the power-correlation instead of b + § (in (60)) for the power-power.
However, both terms were found to reach an ideal zero value if the corresponding o
processor approaches its ideal optimal value. Small differences might occur, however,
because the different scheme’s structure can result in different final ideal values of

these terms.

2.3.3 The Correlation-Correlation Scheme

From Figure 4, we find the output power,

P =To(t)? = b+ BP[nP® + |1 + cB)"[s]? (69)

Except for the {1 ~ af|? factor, this is exactly the same as Equation (12) which
represents the output power at the P-port of the power-power scheme. We have also
shown in Section (2.3) that the optimal weights for the correlation-correlation scheme
are the same as those for the power-power. Therefore. we expect to have the same
terms (except for the division by (1—af3)?) for the s-signal output power P, (Equation
53), the n-signal output power P, (Equation 54) and s — to — n power ratio P,/P,
(Equation 55) at thc P port aud similarly for Q,.Q, and Q./Q, at the Q port. The
same applies for the input-output transmissions and cancellation factors (Equations
(56), (57), (59) and (60)).

In Table 2, we summarize the equations representing the s-signal and n-signal
optimal output powers at the P and Q port of the three different configurations. In
Table 3, we summarize the equations representing the power ratios P,/ P, and Q,/Q@,
at the two ports, respectively. Also represented in Table 3 are the input-output

transmission ratios and cancellation factors for the different configurations and the
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separate ports.

3 Conclusion and Further Work

After demonstrating the fact that the simple “noise cancelling scheme” proposed
by Widrow [1] cannot be used in the cross polarization problem, the bootstrapping
approach was proposed. Three different optimization criterian, namely power-power,
power-correlation and correlation-correlation criterian were considered. Correspond-
ingly, three bootstrapping configurations were examined. For each, the optimal com-
plex weights were found together with the conditions under which these optimal
weights are the unique solutions for the optimization problem and hence will be at-
tainable if an adaptive algorithm (such as the steepest decent) is used. Consequently,
equations for the optimal signal power outputs and signal-to-interference power ratios
at the two different output ports were derived. The input-output signal transmission
and cancellation factors were calculated. It was shown that any of the bootstrapping
arrangements achieves a power separation (high signal-to-interference ratio at both
output ports). However, for a power separation a discriminator technique (which de-
pends on the signals' properties and can take the form of a filter, limiter, etc.) must
be used. The need for such discrimination networks was explained and their effect on
obtaining unique steady state solutions was exhibited.

To conclude, we make the following remark in relation to performance compari-
son of the three bootstrapping configurations considered in this appendix: while the
symmetric power-power and correlation-correlation schemes produce the same out-
put signal powers and power ratios, the asymmetric power-correlation scheme has a
slightly different signal power and power ratio at its Q port. These differences are
only of a second order and might exist only if, due to some system or input impu-

rities (Gaussian noise. quantization error, etc.), the ideal optimal conditions are not
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reached. The same conclusion is in effect when comparing the input-output trans-
mission or cancellation factors.

Examination of Figures 2 through 4 reveals the fact that the three configura-
tions proposed require different levels of hardware complexity; some need correla-
tors (harder to implement) others require power measurements. The correlation-
correlation scheme is expected to be the most complex while the power-power scheme
the least. Also different signal paths (through the system’s circuitry) are expected to
result in different system delays with the different configurations and hence, different
bandwidth limitations. The question of a possible trade-off between complexity and
bandwidth is raised. This will be addressed in a subsequent appendix.

Gaussian noise effects on the systen: performance and the analytical results of this
appendix should also be considered. In particular it is important to investigate the
limit on cancellation depth and hence on the quality of power separation that this
noise might cause.

The above items are questions which are obviously related to the subject of this
appendix, namely steady state analysis, but they will be reported separately in ap-
pendix B.

Finally, the whole subject of dynamic analysis must be investigated for the three

configurations.
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IV. APPENDICES

For any function of a complex variable f(3) we have,

E[f(8)f*(B)] = E[f&(B) + fi(B)] = Elfa(B)] + E[f{(B)]

where R and I designate the real and imaginary parts, respectively. Since the

two components of f(5) are in quadrature relation to each other, they can not be

minimized independently.

Kkl : 35°(8) 21(8)
5as V(B (8) = ELf(8) =55 = =

|+ ElF(8) 55,

a5*(8) af(ﬂ)

55+ ELP(8) 5] Q

) I
EEE[f(ﬁ)f ()] = E[f(B)

Accordingly, we define,
d
if f(B) is linear in 3
f(ﬂ) =a + agﬂ
then
%E[f(ﬂ)f‘(ﬁ)] = E[f(8)a}] + E[f*(8)a2)
R

and
P
ﬁE[f(ﬂ)f'(ﬁ)] = E[-j f(B)a3] + E[j f*(B)a;]
I
Using (P-3) we get
SEUF(8)] = 2Ele; (9)

60




This is the 1. gular complex algorithm of Widrow [11]. This is also what we iermed
the general rule for a complex derivative.
Notice that we can write in an “informal torm”

df ﬁ) df(ﬂ)

d . _
@E[f(ﬂ)f (8)] = E[f(B) (4)

This is an informal since df(8)/d3 has not yet been defined. If f(3) is a general

function of 8 then we must use (P-1), (P-2) together with (P-3) to obtain.

dELF(8)1(5) OF(8) . LB . [ oiay2LB) , 26(B)
DN - (o202 4 2N ) 4 5 i + 12 2)

from which (P-4) results if we definc “informal” that for any function f(3)

4(8) _ () , .9f18)
dp 0Br 081
Notice that df(5)/93 is not a complex conjugate of the function df*(4)/33. Also

for f(3) linear in 8 %2

=0

A-2
To check the nature of the extremum points defined in (43), for 3 real, one can

show from (48) and (48a) that
8%Q2/9a% = 2Real[A,0% A}/ 0a%)] (5)

and

8 Az/dap = 2B(Is + |b]*]n]?)

Hence

9°Q2/0a}, = 4ReallAB)(Ts]* + Ib]*[ul?)

= 4(IsP? + b[n]?)

[B3(la + c*]sP? + 1 + ab|*[n]?) + Br((a + ¢)rls[? + (br + arl|b|*)|n]?)]
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(P-6)
Using (43), (P-6) yields,

3%Q2/30% = 4(|s]* + bi*|n[?)

(B4l ~ <25 + 11 + abPTT) = 5 (B + PR (7)

With the smallness condition assumed for b and ¢ and the constraint imposed
on a and f, 3°Q;/8a% < 0 and the point defined by (43) is a point of maximum.
Similar steps can be used to show that 8°Q/8? < 0 and the point defined by (44)

with 8 = jf; (pure imaginary) is a point of maximum.

A-3

Directly from (P-1) and (P-2 and similar to (36) and (37), we have OP;/86z =
2Real
[A]0A,/0BR] and 8P, /8p; = 2Reai . A;0A,/83)]. From (47a) we get

BA1/8BR = (1~ %1 (8,1)2Inf + c(c + a)"(6,)]s? (8)

8AL1/88r = j(1 + ba) (é-y Inf? + je(c + @) (6s1)*]s]F = jOAL/33R (9)

Using (P-9) we also have
Real[A10.4,,03)) = —1,,[A]0A,/3BR] (10)

Therefore 0P;/08r = 0 and 0P, JJ3; = 0. simultaneously. if and only if

4704,/88r] =0 (11)




Notice that dA,/90r(dA1/08;) is independent of Fr(f;), therefore 4, is indepen-
dent of 3 if A,/08r = 0(8A,/03; = 0). But for 8A,/dPr = 0 we must have

_ [C|2(531'_-9|—2+ (612;1|.T;|_2
c(8]sI® + b(8m1 )2 In]?

which will not occur in practice f we assume |c| and |b] are much smaller than unity
and restrict |a| to be less than unity. Therefore, A;/d3g or 8A,/38; = 0 and A; # 0
do not constitute an extremum point. so that the only point of extremum for P, is

that which is obtained by equating .4, to zero.
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the input-output transmissions (P,/[s?, @n/[n[?) and the cancellation factors
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input #2:
va(t)=ze-s(t)+n(t)

Fig. 1 Interference cancelling using two separate "noise cancelling™ schemes
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input #1:
vi(t)=s(t)+bn(t)

Va(t)=cs(t)+n(t)

Fig. 2 Power-Power bootstrapped canceler
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Fig. 3 Power-Correlation bootstrapped canceler
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vq(t)=s(t)+bn(t)
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Fig. 4 Correlation-Cororrelation bootstrapped canceler




Appendix B

Bootstrapped Adaptive Separation of Superimposed Signals - Effect of

Thermal Noise on Performance

Y. Bar-Ness, A. Din¢ and H. Messer

Abstract

Bootstrapped adaptive signal separation techniques were shown to be powerful
tools for separation of superimposed signals with ar unknown parametric model.
Estimation of all unknown model parameters are done simultaneously, using the es-
timated, separated signals under certain optimization criteria. When the signals to
be separated are uncorrelated, random processes the algorithm converges to the un-
known model parameters and the outputs are a clean version of the input signals,
provided that no additive noise is present. In this appendix, we analyze the effect of
additive thermal noise on the performance of the various structures of a bootstrapped
signal separator. We show that this noise introduces bias to the model parameter es-
timates. We study this bias and we derive conditions under which its effect is limited.
We provide a practical example where the separation of the input signals is hardly

degraded due to the presence of additive thermal noise.




1 Introduction

Separation of superimposed signals is a major problem in many different fields.
In fact, many problems are strongly related to the separation problem. For ex-
ample, if a desired signal and an interference are considered as two signals to be
separated, the well-known interference cancellation problem can be regarded as a sig-
nals’ separation problem. In an interference cancellation application, however, one
is usually not interested in the interference signal while in other applications all the
signals to be separated are of interest. The general formulation of the problem is:

given x(t) = T(s(t),6) + n(t). design a separation system G having the input

x(t) and the output y(t) = §(¢); an estimate of s(t) . s(¢) = [s1(t)...., sn(?)]T is an

N dimensional signal vector. T(8) is the mixing transformation which depends on
the model parameter vector 8. x(t) = [z,(t),...,zm(t)]T is the M dimensional vector

of the resulting superimposed signals, with

N
Zm(t) = Y Tn(s(t),0) + nm(t), m=1,2,.M (1)

n=l

Also, G is the separation system and y(¢) is the NV dimensional vector of the separated
signals. n(t) = [ni(t),...,nm(t)]7 is an M dimensional vector of the additive noise

(see Fig. 1). If the mixture model is linear in s(¢) then

Ty(8) ---  Tin(6)
Tmi(0) - Tmn(6)

(8]
N—

In which case, it may take the form of a constant matrix, T(8) = T, or a linear
time invariant multi-input multi-output (MIMO) system; T'(t,0) = F~'{H(w.9)}
where H(w, 8) is an MxN transfer function matrix. or any non-linear operation which
depends on a parameter vector 6.

If @ is known, then the problem is that of a multidimensional filtering. If the trans-

formation is linear, its solution is well known. If T'(8) is a non-linear transformation,

-1
(3]




the solution of the non-linear filtering problem depends on the type of non-linearity,
but it can usually be found.

In practice, however, 8 is rarely known. Thus. the separation problem is, in-
herently, a non-linear multidimensional filiering problem and is a very complicated
one. Inspired by Widrow's adaptive LMS algorithm [1], Bar-Ness and Rockah [2]
first suggested (for the two-inputs two-output case) to use each of the outputs of
the separator as a reference input of an LMS algorithm which produces the other
output. Since this arrangement successively improved the purity of the reference in-
puts and hence the corresponding outputs. Bar-Ness called his idea “a bootstrapped
algorithm.” The bootstrapped separator idea was extended to three different struc-
tures termed “power-power”, “correlator-correlator™ and “power-correlator” (3] and
the results were reported in the open literature eg. [4-3]. The names of the different
structures were chosen according to the performance indices which were used in each
of these structures’ optimal criteria. Application of the bootstrapped separators to
satellite communication, microwave radio and tactical communication were reported
in [4], [6] and [7]. respectively. Independently, during the mid-eighties, a group of
European researchers addressed the same separation problem and, under the name
of “blind signal separation.” developed a similar adaptive system [8]. Lately, a third
group of signal processing researchers applied similar ideas to speech signal separation
[9].

In this appendix, we review the three basic bootstrapped algorithm configurations
of the separation schemes and relate them to the - blind separation ™ and “ multi-
channel separation ” schemes. We then analyze the steady-state performance of the
different versions of the algorithms in the presence of an additive thermal noise. From
the study of the very general case, we then move to a specific application - separation
of cross polarized signals in satellite communication where we study the effect of the

thermal noise on the separation performance in terms of the vutput desired-signal to
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overall noise ratio.
For simplicity, our analysis is carried out for the case where M=N=2 (two complex

signals to be separated, two complex measurements) and the mixture model is a con-

stant, complex matrix. Notice, however, the same analysis principles are applicable
to any (M > N > 2) and other mixture models.

That is, our model is

x(t) = As(t) + n(t) (3)

1 ai

where s(t) = [si(t) 0T, n(t) = [ma(t) ma(t)]T, A = [a, 1

J , 1s the
unknown complex matrix mixture model. (Notice that the assumption that ay; =
a2 = 1 is not limiting in any way since the signals’ power is assumed unknown). Thus

x(t) = [z1(t) z2(t)]7 is complex, random vector. Given the vector x(t), separation is

performed using a 2x2 complex matrix W; that is
y(t) = Wx(t) = 5(t) (4)

In section II, we discuss three different structures for implementing W: a back-
ward/backward (BB) structure, a forward/forward (FF) structure and a forward/backward
(FB) structure. For each structure. we propose different optimization criteria to be
used for finding W that leads to separation, and we summarize the different algo-
rithms which controls W. Then, in section III, we analyze the steady state perfor-
mance of the proposed algorithms in the presence of thermal additive noise. In section
IV, we apply the results to the problem of cross polarization interference cancella-
tion and show that in a practical situation, the effect of the noise on the separation

performance is not dramatic.
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2 Bootstrapped Signals Separator Configurations

2.1 The Backward-Backward Structure

In Fig. 2.a, cross-coupled feedback structure is depicted. w, and w, are com-
plex weights. The input-output relation of the backward- backward configuration is

summarized by

y(t) = Wiypx(t) (5)
where
1 1 —un
Wy = - 6
bb 1— wWws [ —w, 1 ] y ( )

By substituting (3) in (5) we get

y(t) = Wu,AS(t) + Wbbn(t) = bes(t) + nbb(t) (7)
where,
be - __1_-— 1- waz; G —wy ’ (8)

l1—ww, | a2—wy 1—uqa

and ny(t) = Wyn(t) . Since signal separation is desired, w; and w, should be chosen

such that H,, is a diagonal matrix. Here, the desired solution is
w) =a;, W= ay, (9)

for which Hy, =I (the identity matrix) and y(t) = s(t) + A~'n(¢) is a noisy estimate
of the signal vector (without noise y(¢) = s(¢)). Notice that (9) is a necessary and
sufficient condition for Wy, = A~} so the weights can be regarded as estimates of a,

and a,. If Wy, # A~!, the output correlation matrix is given by
Ry = E{y(t)y"(t)} = BwR,H}} + WyR, W/ (10)
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where R, = E{s(t)s?(t)} and R, = E{n(t)n"(t)} are the signal and the noise covari-
ance matrices, respectively, and the noise and signal vectors are assumed uncorrelated,

H stanAs for Hermitian. We assume that

2 0
R, = oI, R,:["‘ 2J (11)

0 o

That is, the noise proresses n;(t) and n,(t) are uncorrelated processes with power
o? and the signals to be separated: s;(t) and s2(t). are assumed uncorrelated, with

power o2 and 0. respectively. By substituting (11). (8) and (6) in (1%), we get

Ry = E{y(t)y"(t)}

1 1 r2
S 1 +o?
|1 — wywsl? ra T2

_-— ] 2 p— -
bfunl® =g fw) 1) g
—(w2+w;) 14 |w

where
rm = 0l = wag ~ojla; — wy|?
r2 = 0i(a; — wy)"(1 — wyaz) + o3(ay — wy)(1 — woar)”
rar = 012(02 —wp)(1 —wyaz)” + U%(al —uwy)*(l —way) = Ti2
2 2, 2 2
= oflas— sl + o3l - waa] (13

The diagonal entries of R, are the output power. E{ly:(t)]*} and E{|y2(t)]*},
~espectively while the off-diagonal terms are tLe correlation between the two outputs,
E{yy(t)y3(t)} and E{y;(t)y2(t)} . In [3] it was shown that, for ¢~ = 0 (no thermal
noise), the two outputs powers are minimal if and only if (9) is satisfied. Thus, simul-
taneous minimization of both output powers has been proposed as an optimization
criterior, and the corresponding configuration was referred to as the “power-power
configuration.” Notice. however that. equating the derivative of the output power to

zero is a necessary condition for minimization. That 15

d
—E{|lyp()]*} = E{"-“|1‘1(t) — wyya(t))*}

dw;

= E{=2y3()[z\(t) - wiya(t)]} = —2E{m(t)y3(t)} =0 (14)
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and similarly

St} = 2E{0n(0) =0 (13)
where we used, from Fig. 2.a, the fact that, y;(¢) = z1(t) — wry2(2); ya2(t) = z2(t) —
woy1(t). Although E{|yi(t)|*} is not an analytical function, the derivatives in (14)
and (15) are informally defined as follows [1]: if A = |d + ez|? and z is a complex
variable then 44 = 2¢*(d + ex).

From (14) and (15), we conclude that for minimum output powers. it is necessary
to have minimum cross correlation between the outputs®. Thus, as optimization
critera for the backward-backward (BB) configuration one can either use minimum
output powers or de-correlation of the outputs. It can easily be shown that (14) leads
to

0'12(02 - ’Ll)go)-(l - lL‘lgag) + 0’%(01 - wlo)(l - ’U)Q‘,al). =0 (16)

while (15) leads to the complex conjugate of (16). Therefore, to find the optimal
weights w;, and w,, we must either perform minimum power or de-correlation cri-
terion by simultaneously solving the two dependent equations (14 ) and (15). To
overcome the dependent equation problem, it was suggested in [2-3] and all the suc-
ceeding articles dealing with bootstrapped separators to add what was termed a
“discriminator.” This is a certain functional operation performed on the outputs of
the separator and helps break the inherent dependency of the simultaneous equation
to be solved. To choose an adequate discriminator. some designer ingenuity and prior
knowledge of “some” differences between the signals to be separated is required. Ex-
amples of the particular discriminator, suitable for different application. were given
in [4]. [6] and [7]. In [3], it was suggested to present the effect of the discriminator as

fcllows: For the signal s,(t) and s(t). the two discriminator outputs are given by

Di(s1(8) + 52(t)) = s1(t) + brasy(t)

Sit is also a sufficient condition since the power is quadratic function of the weight.

Ll
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Dg(sl(t) + Sz(t)) = 62131(t) + 82(t) (17)

where |6;2| < 1, [621] < 1. That is, the discriminator D; slightly emphasizes the signal
si(t) relative to the other signal, i=1,2.

Optimization Criteria and Respective Algorithms

Due to the equivalence cited above, we can use for optimization criteria either
power-power minimization, correlation-correlation magnitude minimization or power-
correlation magnitude minimization on the outputs. Notice that minimization of
correlation magnitude leads to de-correlation.

Together with the effect of the discriminator. these criteria are given by 7

power-power: w(t) = [ twl):g; } = arg n&n[ g“gig;g;;}:i ]

[ E{D:(3:1(t))y3(2)}? ]
L 1E{y1(2)" Da(ya(t))}?

power-correlation : w(t) = arg min 'Eliz{{lﬁl(g/_lgzzi}(t))}lz]

correlation-power : w(t) = arg min [ ‘g{{lg;gz:ggﬁé}(t)}") ]

correlation-correlation : w(t) = arg min

(18)

By using the steepest descent algorithm with the negative of the terms in (18) as
the forcing increments, we get two linearly independent recursive control equations.
For 02 = 0 (no noise) and for |w,| < 1, and |w;| < 1, these equations have a unique
solution, wy = a; and w; = a, (3] and the bootstrapped separator converges to these
values.

To summarize: with the backward-backward separation scheme, one can use four
different adaptive separation algorithms. They are denoted by BBPP, BBCC, BBPC
and BBCP where the first two letters (e.g. BB) stand for the configuration used
(backward-backward) and the last two letters (say PC) stand for the optimizaticn

criteria used for the first and the second weight. respectively (say power-correlation,

"By minimization of a vector, we mean - minimization of all its components simultaneously.
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which are minimum power and de-correlation, respectively). The separation algo-

rithms related to the above configurations are depicted in Fig. 3.

2.2 The Forward-Forward Structure

In Fig. 2.b. the forward-forward structure (FF) is depicted. The input-output

relation for this configuration is given by

y(t) = Wysx(t) (19)
where
Wy = [ —th —;Dl ] = (1 — wwz) Wy, (20)

where Wy, is given in (6). Since, W;; and Wy, differ only by the scalar factor,

1 — wyw,, we easily adopt the results of section 2.1 to this case. In particular
y(t) = Hygs(t) + Wyn(t) (21)
where Hyy = (1 — wyw;)Hy, and
Ry = E{y(t)y"(t)} = |1 — wiwa['Rus (22)

where Ry is given in (10). For this configuration it was proved (3] that, when 0% = 0
(no noise), Hyy is diagonal if and only if Ry is. Therefore, de-correlation of the
output signal is a useful criterion for signal separation, as in the BB configuration.

Notice, however that for this configuration

d

EE{lyl(t)P} = dile“Il(t) —wizol’} = —2E{z3()y(t)} =0 (23)

Therefore, in contrast to the BB configuration wherein de-correlation of the out-
puts and minimization of their powers are equivalent. in FF such equivalence does
not exist. Using de-correlation as an optimization criterion, i.e E{y;(t)y;(t)} = 0,

E{y;(t)y2(t)} = 0, one might control both w, and w,. It is very clear that, again
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discrimination is necessary and the resultant separation algorithm, denoted by FFCC
(forward-forward correlation-correlation), is depicted in Fig. 4.

As in the previous structure, we may look at each loop as an interference canceler
which attempts to reduce the effect of the other signal. The upper loop in Fig. 4
attempts to cancel the interference caused by the input source s3(t) into s,(t), while
the lower loop attempts to cancel interference caused by the sy(t) into s,(t). By
virtue of discrimination which enhances the signal component due to s,(t) over that
due to s;(t), the first loop is able to perform partial cancellation of the interference
from sy(t) into s;(t). This results in a purer sample of s,(t) provided to the second
loop allowing that loop to perform a partial cancellation in the other direction from
51(t) into sz(t). The purer sample of s,(t) is then used by the first loop to improve
canceilation. The above cycle is repeated until essentially perfect signal separation has
been achieved. This argument lead to the term bootstrap, although no feedback has
been employed. In fact, unlike the BB structure, in the FF structure bootstrapping
results from the control. In [3], it was shown that without noise (¢? = 0), the
resultant algorithm converges to the unique solution w, = a; and w; = a, provided
that |a;| < 1 and |a;] < 1. Notice. however, that the output signals are then given
by y1(t) = (1 — aya2)$1(¢) and y2(t) = (1 — a1a3)s2(*) and not simply y;(¢) = s,(¢) as
in the BB structure. That is, the signals are indeed separated but they are scaled by

a factor which is related to the model parameters.

2.3 The Forward-Backward Structure

In Fig. 2.c., a forward-backward (FB) bootstrapped structure is depicted. Its

input-output relation is given by

y(t) = Wppx(t) (24)
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where

1 +ww, —w;

—ws 1

Wﬂ,=[ 0

1
] = Wff +w1w2elelT. e = [ ] (25)

Therefore, this configuration can be alternatively viewed as a FF configuration in
parallel with a direct weighted connection between z,(t) and y,(t) (see Fig. 5). The
relation between the signals to be separated and the output vector is then given by

y(t) = Hps(t) + Wynit). where

H;, = WpA =Hj + wuqeelA

l a
= H‘lj + wiw, [ 0 01 ] (26)

The output power matrix. Ry, = E{y(t)y"(t)} is given by

Ry = E{y()y"n)

_ | ™ ore P [ 1+ wiw]? + Juf? —wllwzl2 —wy; — wy (27)
Tar I | muthef e — ey 14+ fwy)?

where
= ol —wi(a; —wq))t + oilay — wy(l - ayu)|?

_ 2 L. i 2 2 2 -
riz = oy{(az — w2 — wyja; — w|”) = o3 (un]1 = w2ay|* = ay(1 — waa,y)7)

—_ 2 - '2 2 - 2 - - -
ra = oy((az — w2) — wilaz = w,l”) — o3 (wi|l — weay|* — aj(1 — woay)) =ry,
Ty = |a2 - u'gl‘)af =+ “ - U.':»(l;l"dg (28)

Unsurprisingly. the output power of y,(t) is as in the FF configuration. while the
output power of y;(¢) and the correlation E{y;(t)y;(t)} were changed. In [3]. it was
suggested to control u; by minimizing the power E{]y;(t)|*} and w, by de-correlating

the two outputs ( or equivalently by minimizing [E{y2()y;(t)}|*) and hence called

power-correlation . With the terminology of the appendix. this is FBPC which is

depicted in Fig. 6.a. However. using Fig. 2.c. we write

d : d
— E{lyi( O} = —E{[ri(t) —wya()]*} = =2E{y,(N)y3 (1)} (29)
dun dwy

Rl




Therefore, as in the FF structure, we can control w; by minimizing either the
output power E{|y1(t)|?} or the magnitude of the correlation |E{y2(t)y;(t)}|?. Also,
similar to the argument in (23), w,. can only be controlled by de-correlating the two
outputs. In conclusion, only two control algorithms are possible for the FB structure:
the power-correlation (FBPC) and the correlation-correlation (FBCC). These two are
depicted in Fig. 6.a and Fig. 6.b. respectively.

In [3] it was shown that if 62 = 0 and |a;| < 1 and |az| < 1 then the FBPC

3

algorithm converges to we = a3, and w, = 1_‘320‘ = . Therefore, the desired

outputs are y;(t) = s;(t) and y2(t) = (1 — aya;)s2(t) so the first signal is accurately
reconstructed while the second is multiplied by a scalar.

Although all seven possible configurations of the bootstrapped algorithms (Figs. 3.a,
3.b, 3.c, 3.d, 4, 6.a and 6.b) completely separate the signal (in a no-noise environ-
ment), they behave differently. While the BB structure resembles the AR model
process generator, the FF and FB structures resemble the MA and ARMA process
generators, respectively. These principle differences effect stability, bandwidth, con-
vergence, etc. Some of these properties were studied and compared in [10]. In the
rest of this appendix, we concentrate on the effect of noise on the average steady state

behavior of the different structures.




3 Steady - State Optimal Weight Values

Since we are implementing the steepest descent algorithm, the steady-state values
to which the weights converge (on the average) are the optimal values that satisfy
the corresponding optimal criteria. We now study the steady-state behavior of the
different configurations in the presence of noise. We do that by looking at the values
of the weights w, and w, which satisfy the criteria of (18). We assume that the
operation of the discriminators is described by (17) and that it does not effect the

noise processes ny(t) and no(t).

3.1 FF/BB Configurations

Using de-correlation in FF configuration, and due to the equivalence between
power minimization and de-correlation, in case of BB configurations, the steady-
state optimal weights of all FF and BB configurations can be obtained from the

simultaneous solution of
E{D:(y1)y;} =0, and E{yiDi(y2)} =0 (30)
From (12) together with (13), we find that w;.,; and ws,pe must satisfy

o(az — wy)*(1 — wras) + 6%,03(1 — wea1)"(a; — wy) — o2 (w) +wy) = O

(5310'12(02 - UJ2)(1 - wlag)' + 0’%(1 - wgal)(al - wl)' - 0’2(102 + w;) =0 (31)

These are two non-linear equations in w; and w,. The solution to the equations
is the mean of the steady-state value of the weights vector Wop: = [Wyopt Waopt)? - For
0? = 0 the unique solution is wy,p = @1, Waopt = a;. provided that |a;| < 1, |as| < 1

[3]. For 02 # 0, we write

Wiopt = 4 —

Wopt = QA2 — €2 (32)
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Then, using (32) in (31) we get the approximated matrix equation ®

A&ﬂSNRz +1 A*SNR; +1 6' 1
[ ASNR +1 A*63,SNR, +1 =(ai+a)|, (33)
where A = 1 — ayag, SNR, = B0} 5q SNR, = Ella@ | Thys,
_[e] _(aj+a2) [ ASNR(63 - 1) (34)
T el T det ASNR,(8%,-1) |°

and
det = IA|25NRISNR2(6;"26§1 -1+ ASNRg(éSf:, -1+ A'S.\'Rl(égl -1) (35)

If 02 = 0 then SNR; — . SNR; — oo and € — 0 as expected. If 02 # 0
then ¢ is inversely proportional to A = 1 — a,a,. Notice that ja;| < 1, |az| < 1 so
|A] < 1. The weights w, and w, can be regarded as estimates of the unknown model
parameters a; and a;. As such, they are random variables. Their expected value is

given by the solution of (30). From (32), we have

Ela)} =wigpe=a1 — &

E{a;} = waop = a2 — € (36)

Thus. € and e; of (34) represent the bias in the estimates of the unknown model
parameters. To study this bias we first assume that, 62, = 1, (that is, there is no

discrimination in the corresponding control algorithms). In this case, e] = 0

(a7 + a2)ASN R (6%, - 1) _ lai+a)) (a] + a3)
|IARSNR\SNRy(63, — 1) + SNR,A(62, - 1) © SNRi A~ SNRy(1 — ayay)"

(37%)

€ =

Thus, the bias is inversely proportional to the signal-to-noise ratio (SNR) and to
the coupling effect in the model. A. Notice that for |A| = 0. we must havea; = a; = 1

which means that at the inputs to the separator. the signals are superimposed equally.

®In the transition from (31) to (33) we assume that 1 — wja; = A +¢; =~ A and | — wiay =
A + €3~ A. This assumption will be discussed later.
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|A] = 1, we must have a; = a; = 0 which means that at the input the two signals are

totally separated. In particular if

1+34
a2

-_—SNRIA' >1 (38)

then, the bias is larger than the estimated parameter. Similar results can be obtained
for € by letting 62, = 1. Thus, as a rule of thumb, it can be said that SN R, A, where
SNRmin = min{SNR,,SNR,} is an important design factor. If SNR,;, A >> |,
the bias in the estimates of the model parameters might be negligible in comparison
to the parameter to be estimated (particularly, if a; and a, are of the same order of
magnitude) and our assumption in deriving Eq. (33) are satisfied. If, on the other
hand. the SNR is not large enough or the coupling is too strong so |A] << 1, then
the bias may dominate the estimate and may cause severe degradation in separation

performance.

3.2 FB Configuration

For the configurations depicted in Fig. 6.a and Fig. 6.b, w; = d, as before, while
w; is not an estimate of a;, but rather related to it through a; = ﬁ?& As in section
3.1. and due to the equivalence between power minimization and de-correlation. we
find the steady-state optimal values of w;, and w; by imposing the de-correlation

requirement of both discriminated output signals. that is from (27) together with

(28), we find that wy.pe and wa,, must satisfy

012[((12 —wy)" — wyfaz — w2|2)] - 61220'%(w,|1 — wyaq|? — ay(1 — wpay)")
—o*(w; + wy + wi|wa]?) = 0

&01(ay — w2) — wilay — wl*)] — o3 [wi|1 - woai[* - aj(1 — weay)]

—0*(wy + wi + wi|ws]?) 0(39)




Define ¢; and ¢; as the bias in the estimate of a; and a, , respectively, so

Wopt = G2 — €2

Wiopt

—F = g -4
1+ Wiopt W2opt

a — €

1- (al - 61)((12 - 62)

(40)

Wiopt

From (39) we get

(1 4+ wyw2)* |oex(A + €1a2)" + 62,02(A + ar€3)€} — 0*(a] + a3 — €] — 62)] =0

(1+ wlwz)[6§,afe;(A + €182) + 03(A” + a1€65)er — 0 (ay + a3 — € — f;)] = (a1)

Since, |wjw;| < 1 (by restriction), we can write the approximation °

[Aaf,SNR,H A"SNR; +1 ] [ € ] - (a3 4 a5) [ 1]
- 1
1

ASNRy+1 A'.SNR +1 || e (42)

which is exactly the same as in (33). That is, the bias vector for the unknown model
parameters € = [¢; €;]7 is the same for all bootstrapped configurations, at least for

small bias, where the approximation holds.

Sthe assumptions used are: €;a» << A and ¢2a; << A, which is similar to the assumption in
the BB/FF case, but ¢ is different here.
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4 Example: Separation of Cross Polarized Sig-
nals

In this section, we apply the bootstrapped signal separation algorithm to the
separation of cross polarized signals [11]. Dual-polarization techniques have been
applied to radio communication networks to increase the transmission capacity of
limited bandwidth channels such as satellite communication channels and microwave
radio channels. In a dual polarized transmission system, the available bandwidth is
doubled by modul;ting the same carrier frequency with two independent informa-
tion signals. The two modulated signals are then transmitted through the channel,
with one having vertical polarization and the other having horizontal polarization.
Because of antenna imperfections and/or non ideal transmission channel conditions
(caused, for example, by fading), the received signals are not perfectly orthogonal.
Therefore, cross polarization coupling of each information signal to other is created
causing, in some cases, severe degradation in performance. The cross coupling pa-
rameters can be assumed to be slowly time varying and non-dispersive. Bootstrapped
separation algorithms have been proposed [4,6,12.13] to mitigate degradation in per-
formance due to cross polarization interference. It results in an increase in signals
to cross polarization interference ratio and hence, an improved signal separation. In
this application. the normalized coupling factor, |a;| and |az| is sufficiently small,
(~10dB = 10log|a;|?) and signals-to-noise ratios are of the order of 20 dB or more.
This leads to SN RpminA >> 1 so that the effect of the additive thermal noise is small.
In the following, we present results concerning the output signal-to-interference plus
noise ratio (SINR) for three configurations.

The input SNIR at the channel output (at the separator input) sav z,(¢)'? , is

given by

1%Duye to symmetry we get similar expression for the other input.
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2
Paz + Pn input lallza% + o?

P, ) SNR,
—_— = 43
(Pag +Pn tnput I01‘2SNR2+1 ( )

The output SNIR depends on the steady-state values of the weights, and therefore
on ¢; and €. In our example taking |a;|, |az| < 0.3 results in |A] = |1 — aya;| = 1,
(this is a fair assumption in the transmission of two orthogonally polarized M-ary
QAM signals [6]). By taking SNR; and SNR; >> 1, one can show that under these

assumptions the weight bias vector from (34) can be approximated by

[e;] o (a} + az) [A‘SNRI] (44)

€2 IA2SNR;SNR, | ASNR,
This approximation is applicable to all configurations. Now, for both BB and FF!!

we get by using (12) with (13) and (22) the output SNIR at the separator output at

=5

( Pﬂ ) _ ll - wlopt02,2‘712 (45)
P82 + P, output 'al - wloptlzag + 02(1 + lwloptlz)

Substituting for wy,, from (32) and using the fact that A =~ 1 >> a2 and

SNR,; >> 1, we get

( P,l ) ~ '1 - a1a2|2S'NR1 (46)
Psg + P, output - |51|25NR2 +1
Using the approximated ¢; from (44), we get
(_i_) N |A|2SNR, _ SNR (47)
P32+Pn outpu:~l—‘-llf—a.L,2+]~l_aﬂi_2+l

A*SNR; SNRy

Notice that as SNR; — oo the output SNIR approaches SN R, that is, as the

signal-to-noise ratio of the second signal gets stronger, the interference cancellation

"'From the relation between R;; and Ry in (22) the catput power ratios are the same as in BB
configuration and given by (45).
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gets better. This result is applicable to both BB and FF configurations for any of the
two outputs.
For the FB configuration, by using (27) witk (28) we get the output SNIR at the

separator output y, = 3,

( Ps; ) _ |1 - wlopt(GZ - w'.’opt)lza’f
Psg + Pn output lal - wlopt(l - w2optal)|2‘722 + ‘72“1 + wloptu-'2opt|2 + lwloptlzl
(48)
at y2 = $, using (27) with (28). the SNIR is given by
( P,, ) 3 11 — woppa1|°SN R, (49)
Psl + Pn output '(12 - w2optI25NRl + “1 + lw2optl2]
Substituting for wy.p and wy,, from (40) and with high SNR assumption we get
( P, ) _ 1 - 1+wllv::n:/zom a2|’SN Ry
Pa; + Pn output lal - ﬁ%;leJVR2 + (1 + Iﬁﬁ;lz)

IA + 61(12|25‘VBI
€ 2SNRy + (14 |ay — &?)

( Psl ) ~ 'A + 61a2|25N31 (50)
Ps; + Pn output ~ If.]izS/VRz + 1
Now using €; from (44) we get
( P, ) 1A+ $iRas[ SNR
~ a1+a3l?
Psz + Pn output 'llzl-%]%lﬁ; +1
P, 1+ 224, 2SNR,
( ) ~ Iax+a2‘17 (51)
P32+Pn output -?N—Ri—_*.l

For SNR; >> 1. this expression. as (47) can be approximated by simply SN R,
(namely, perfect cancellation). However. for moderate levels of SVR,, the output
SNIR at y; = §; for the FB configuration is slightly higher than that of the BB
configuration or FF configurations. For the other output of the FB configuration, the
output SNIR is exactly as for the BB/FF configurations.

To summarize the results of this section, we notice for cases of small coupling

between the signals and high SNR. such that |A]2SNR,SNR, >> 1, the output
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SNIR of any of the bootstrapped separators depends on the SNR of the other signal.

Practically, if the other signal SNR is high enough, the cancellation becomes perfect.

5 Conclusion

To summarize the results in this appendix, we emphasize the following

1. The basic 2-signals’ separation cell contains two weighted and two unweighted
paths. Each weighted path can be either a backward (feedback) or a forward directed.

2. The basic optimization criterion for signal separation is the de-correlation of
the output signals. However, the backward path can equivalently be controlled by
minimizing the corresponding output power.

3.Unless signals in the control loops are somewhat discriminated, the separation
problem can not be solved. On the other hand. perfect separation is obtained for
infinite signal to noise ratio (no noise) even if the discrimination is slight.

4. The bootstrapped separation algorithms provide separation of the signals as
well as estimates of the model parameters. With no noise, these estimates are unbi-
ased, in the steady-state. Additive thermal noise at the separator inputs causes bias
in these estimates. This bias is inversely proportional to the input SNR and increases
with the signal cross-coupling. The bias causes degradation in the separation perfor-
mance, but this degradation is small if [A|[SNR >> 1, where A = 1 — a;a, is the
coupling factor.

5. The effect of the additive noise is an inherent factor. Since the input to the
separator consists of the superimposed signals and uncorrelated noise processes, the
output, if separation is done, consists of superimposed noise processes and uncorre-
lated signals. That is, the noise processes at the two outputs are inherently correlated.

6. It is interesting to study the case where only one signal is piesent. This case
may be realistic if one of the signals to be separated is absent, temporarily. Formally,

if one takes, say 02 = 0 in (12), we see that any criterian used will result in only one
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control equation (assuming no noise).
o¥(az — wy)(1 — wywy)* =0 (52)

The operation of a discrimination will not produce a second linear independent equa-
tion whether noise is present or not. Thus, the problem is ill-stated and it has no
solution for w; and w,. This can also be explained by the fact that our model assumes

laz] < 1 and |a;| < 1 meaning that, at the inputs to the separator

at 1 st input z 1 powerof 1stsignal 1 o1
PUST1 SNR power of 2 nd signal ~  |a;]?

1 power of 1 st signal
SN R power of 2 nd signal

at 2 nd input z, laz)? < 1 (53)

where SNR = %{ﬁ%{% = Sg- If 7 = 0 then 53z = 0 so Eq. (30a) can never be
satisfied. Thus, the bootstrapped separator is only applicable for separation of signals
and not for noise reduction. etc. (as the LMS algorithm).

7. There exist many practical important separation problems for which ASNR >>
1 ( as the cross polarization example of sect. IV.). In this case, the output SINR is
of the order of the input SNR. namely the separation is practically perfect.

8. All other papers dealing with the same separation problem [3,4] came to a sepa-

ration configuration which is either a BB or a FF one. The papers which use a similar

approach to ours, suggest the de-correlation of the outputs as the only optimization

criteria. No other authors use our “discriminator.” However, some suggested the use
of nonlinearities in the control loop, which is a special case of statistical discrimi-
nation. All other papers in which the unknown model parameters are constants are
special cases, mentioned in our appendix. However, there have been efforts to use
similar principals for model parameters which are either digital filters coefficients or
delay lines {14]. In general. similar principles are applicable and similar results are

available. There are, however some differences. For example, in those cases. de-
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correlation of the outputs is a necessary but not sufficient condition for minimization

of the output powers.
Appendix
It is easy to show by using (40) that

2
2
1

1 —(a) — €1)a;
(a1 — €&1)(az ~ €2)

ll - wlopt(a2 - w2opt)l2alz = '1 —

2

€
a —w 1 —w a 20,2 = l 0'2
| 1 1opg( 2o0pt l)l 2 1-— ((11 _ 61)(02 _ 62) 2
Il 4+ w w ‘20.2 _ I 1 20-2
1opt W2opt - 1 — (al _ 61)((12 - 62)
2 2 la; —fll2 ? 5
Wiopt|*0? = a
| lOPtl ll - (al —_ fl)(GZ - 62)
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Fig. 2 The three configuration of the bootstrapped signal separator
a. Backward/Backward Structure

b. Forward/Forward Structure
c. Forward/Backward Structure
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Fig. 4 Correlation-Correlation Optimum Criterion for Forward/Forward Structure
Fig. 35 An Alternative View for Forward/Backward Structure
Fig. 6 Possible Optimization Criteria for Forward/Backward Structure
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Appendix C

Power - Power Bootstrapped Cross-Pol Canceler
for M-ary QAM Signals - Performance Evaluation and Comparison with
LMS and Diagonalizer
Abdulkadir Din¢ and Yeheskel Bar-Ness

1 Introduction

With many transmission systems, capacity can be doubled by using orthogonally
polarized QAM carriers. The orthogonally polarized waves can suffer degradation due
to carrier -to-cross polarization interference (C/XPI). Particularly, during multipath
fading, such degradation could become intolerable.

Many methods have been suggested to cancel the XPI. Among these are the
diagonalizer and the least mean square (LMS) cross-pol canceler proposed in {1]. In
this paper, Kavehrad compares the error performance of these two cancelers and
concludes that the LMS is substantially better than the diagonalizer. A similar
diagonalizer was also proposed by Duvoison et. al. [2].

Still another method for cross-polarization interference XPI canceler is termed
bootstrapped cancelers, of which three structures have been proposed and analyzed
in [3,4,5]. It has been shown that, under the assumption of no additive noise or when
the input signals to noise ratio is very high, all these structures converge to a state
of total diagonalization. In other words, the XPI at each of the cancelers. two out-
puts are totally cancelled similar to Kavehrad’s or the other diagonalizer considered.
Nevertheless. due to the fact that these bootstrapped structures differ from the diag-
onalizer or the LMS cancelers. the noise terms at their outputs are different and so
is the probability of error performance. Although the bootstrapped structures have
been implemented in different applications, such as satellite dual-polarized communi-

cation [4], QAM microwave radio communication [5] and in tactical communication
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[6], no attempt was made to quantify the bootstrapped cross-polarization cancelers
(BXPC) probability of error performance. In this study, we derive the average proba-
bility of error of the BXPC as a function of its input signal-to-noise ratio and compare
it with the performance of the other two methods, the diagonalizer and LMS which
were presented in [1]. We will show that the BXPC outperforms both the LMS and
the diagonalizer in cancelling XPI.

In this report, we first introduce a model for the dual-channel M-ary transmission
in section (2) and then calculate the error probability caused by cross-polarization
interference as well as the noise section (3). Two interference cancelers, namely the
diagonalizer and the LMS cancelers are introduced and their error probabilities are
estimated in section (4). These results are mostly based on previously published
material and presented in this work for completeness and the convenience of the
reader.

The power-power bootstrapped cross-pol cancelers will be discussed in section
(5). There. after deriving the canceler’s parameter such as optimal weights with and
without noise effect, we find the canceler’s optimal outputs. Assuming amplitude
compensation alone, or amplitude and phase compensation of the canceler’s outputs,
we derive seperately decision parameters for obtaining the corresponding error terms.
In section 5.2. we derive the Chernoff bound on the average probability of error on
on< hand and define an expression to be used in calculating an approximation to the
probability of error by the method of moments, on the other. Finally, in section 5.3.
we present results on the performance of the power-power canceler showing Chernoff
bounds and actual approximations to error probability based on the moments. for
different cases and with different parameters. These results are also compared. in

order to draw the conclusions in section 5.4.
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2 Dual-Channel M-ary QAM Transmission Model

Tlc model for such chaunels have been well presented in the literature [7,8,9,10].
*f.ary QAM bandpass signals with the same bandwidth and the same center frequency

transmitted on two orthogonal channels can be presented as
si(t) = Re{3:(t) exp(;27 fct)} (1)

where Re{-} stands for the real part, f. denotes the carrier frequency and 5,(t),7 = 1.2
is the complex envelopes of each of the orthogonal signals. respectively. These complex

envelope can bhe expressed as

si(t) = i it — kT) (2)

k=0

where I;; : = 1,2 is a complex information symbol which takes on one of M different
complex values. where It; = Ikr + jlxr, and Icp and I (the in-phase and the
quadrature component of the carrier), are independent M-ary svmbols from the set
{£c. 23c..... +(VM = 1)c}. Itg and Iis can each take values equal to 20 — 1 —
VM.l =1.2.... VM. Itg and Ii; are assumed to be statistically independent and
equiprobable. Also, h(t) is a complex low-pass equivalent of the overall system impulse
response. .M is the number of signal level of in-phase and quadrature component and
¢ is a constant which determines the distance to the decision boundary from each
sigual location.

The channel is assumed to be slowly time varving and non-dispersive. It accepts
two orthogonally independent random data streams [;(n) and I3(n). It causes dis-
tortion: a fraction of one stream of data is added to the other [10].

In matrix notation the received signal is given by
x(t) = As(t) + n(t) (3)

where A is the dual-channel cross coupling matrix

A:[a“ 012] (4)

an ax
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a2 ard ay are complex valued constants that denote the channels cross-polarization
(inter-channel interference) responses. The factors a,; and a;; denote co-polarization
(direct path attenuation) channel constants taken as real valued [10).

In (3) s(t) = [s1(t),s2(t)]T and the noise n(t) = [n,(t),n,(¢)]T with ni(t) =
nir(t) + jni(t),i =1,2

The received signals, sampled after matched filters, are denoted by;(see Fig 1)

zi(n) = anh(n)+ aizlz(n) + ny(n)
(5)

z2(n) = anli(n) + anla(n) + na(n)
where r,(n) and z,(n) are the sampled received signals at the first and second channels
respectively. [;(n) and n,(n) are the correspondir-g signals and noises at these outputs.
Also ny(n) and ny(n) are independent samples of Gaussian zero mean random process.
The channel coefficients a;; 7 = 1,2, i = 1,2 are assumed to vary slowly with
respect to the signal rate. These slow variations can be tracked by the adaptive
algorithms.
We define the normalized cross-polarization coeflicients,
quz _ re?® a roe’®? (6)
az2 an
where ry, r, denote the magnitude of the normalized cross polarization constants and
01. 0, are the phases of these constants assumed to be independent and uniformly

distributed over [, 7].

3 Performance of Dual Polarized M-ary QAM
System

To estimate the performance of such a system and realize the effect of cross-
polarization, we will find an estimate for the probability of errors that each output
will suffer. As a standard procedure, and based on the kind of signal processing

performed at the outputs of the receiver, we define the decision parameter. In this
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chapter we will take as the decision parameter fl(n) = ”—;g—‘l and y1(n) # z,(n)'2. In
the next chapter this normalization will be termed “amplitude” only compensation.
Define,

Zy(n) 2 il(n) - Ii(n) (7)

From (5) and (7), we write

Zi(n) = 221,() 4 21

a an

(8)

Next, we write Z,(n) in terms of its real , Z;g, and imaginary,Z,, parts. For this.
assuming ay; = aj; we use (6) in (8) and present I,(n) and ny(n) in terms of their

real and imaginary parts;

R 1R
Zir = rlypcosgy — rilpsino, + —
an
. nys
Z” = rllmszn¢1 + 1"1]2160301 + — (9)

a
For a niatter of convenience. we dropped in (9) the dependence on the sampling
time n.
Based on the decision parameters in (9), Kavehrad [1] finds the Chernoff bound
on the probability of error at the output. He also uses the Gauss quadrature rule [11]
to obtain an approximate value of the probability of error.

For the convenience of the reader, we will summarize Kavehrad’s GQR procedure:

Define,
X = T1(12R003¢1 - Iy1singy)
y = 2R (10)
a
then
Zin=X1+Y (11)

2when we add canceler: yi{n) will be the output of the canceier.
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2
. . . . . g
where Y s zero mean Gaussian random variable with variance —*~. Therefore, Z,r

an
2
is Gaussian with mean X; and variance %"—. It is possible to show that,
11
, c—-X
Pi(|Zir] > clon, I2r, I21) = 2Q( pn 1) (12)
where
Qo) = o= [ expl Tl dt
) = — exp(——
Vor Je P2
2
and 0% = 0—2"
an

Using the relation between the probability of error P(e) and Pi(|Zyr| > c), we

have

3SNR>
M-1

where we used the well known relation between SNR and M-QAM signal param-

Pulelér.Tan.Ta) = 201 = =)@ (ane = X (13)

eter;
M-1¢
syvp= M-l
SNR 3 o2 (14)
Defining the random variable.
X;
X = —;' (15)

then, (13) becomes.

1 3SNR
Pielz) = 21 - 2@ (an(l =)\ 37— ) (16)
The average probability can be approximated, using the GQR by;
1 & 3SNR
Pi(e) =2(1 - ﬁ)gw.‘Q(an M =1 (1- 17-‘)) (17)

where z; nd w; are the nodes and weights of the GQR which can be obtained from
the moments of the random variable x defined in (15) together with (10).

Based on (17), we calculate and present in Fig. 2 the probability of error at the
output of a channel for 16 QAM dually polarized signals as a function of the trans-
mitter signal to noise ratio. The cross-coupling assumed to be -15 dB. 32 moments

were used when applying the GQR in (17).
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4 Cross-Polarization Cancelers

We notice from (5) that the output of the channel contains, besides the noise
term, an interference (cross polarization) through the cross coupling a;; and a,;. This
interference undoubtly causes degradation of performance. Several different canceler
structures were proposed to mitigate the effect of cross-polarization. Among these
are the diagonalizer [10] and the LMS [12] and the bootstrapped canceler [4].

For the convenience of the reader, we will summarize Kavehrad’s approach to
estimate the performances of the diagonalizer and the LMS cross-pol cancelers. We
will introduce the decision parameters of these cancelers as they have been derived for
M-ary QAM system by Kavehrad, follow his derivation for the Chernoff bound on the
probability of error and compare the results of these two algorithms with each other
for different cross-couplings. It should be noticed that the decision parameters for the
outputs were derived in [1] under the assumption that only amplitude compensation
is used at the output. Also, it should be emphasized that unlike the LMS canceler,
Kavehrad completely neglects the effect of noise on optimal weight when he deals

with the diagonalizer.

4.1 The Diagonalizer and Its Performance

The structure of this canceler is well presented in {10], [1], see Fig 3. The output

of the diagonalizer is given by

n(n) = wnzi(n) + wizza(n)

y2(n) = wnzi(n) + warray(n) (18)
and substituting (5) in (18). we get
vi(n) = wnlanli(n) + a12lz(n) + ny(n)] + wizlanfi(n) + azala(n) + na(n))
y2(n) = walanli(n) + a12lz(n) + n1(n)] + wazlanli(n) + azpl2(n) + na(n)]
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(19)

The canceler weights are found by forcing the coefficients of the interference signal

to zero on each channel. Therefore, from (19) we must choose the weights to satisfy,

wiaz +wiza = 0

wnan +wpay = 0 (20)

By substituting the constraint of (20) in (19), we get after using (5).

vi(n) 011[1 - rlr26j(°l+¢2)][llR(n) +j111(n)) + an(") + jnyg(n)

—(naR + jnor)r1e®®

ya(n) = agxll — rre/ @t [Lp(n) + jL1(n)] + nar(n) + jnar(n)

—(nr + jrur)r e (21)

Following Kavehrad, we define, [;(n) = %—:9- as an estimate of the transmitted

signal I;(n) and hence definition of decision parameter follows
Zy(n) = h(n) - L(n) (22)

Using (22) in (21), we write the decision parameter for the output of channel 1,

in terms of its real and imaginary parts;

Zin = =hLga(nIryrycos(ér + ¢2) + Li(n)rirasin(ey + ¢2)
mpin) n n n .
+ RN _ 2R _ 2Rr1cos¢1 + —2—lrlsma1
a1y an an an
Z\1 = —ILiin)rirasin(éy + ¢2) — Li(n)riracos(e + 02)
niy(n)y n n ; n
+ il - 2R _ mrlsznm - —z-l-rlcosm (23)
an ari an an
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The Chernoff bound on P;(|Z;r| > ¢) is derived by [1] and some of the steps can
be found detailed in section (5.2.1) From this analysis, we find that the probability

of error is bounded as follows;

1 -3 SNR a;; )
. < —_— —— =
Ple)< (1 -7 )exP[z(M 1)1+ SNR 2% + r?] r=1,2 (24)

where we again use the relation (14);

Kavehrad in a different paper [11] uses another form of compensation;

From (21). he first finds the real and imaginary part of the canceler output,

yir = an(l —riracos(¢ + 62)}ir(n) + annlii(n)riresin(éy + é2) + nir(n)

—nap(n)ricosdy + ny(n)risings,

yir = an[l —rmracos(¢r + 62))h1(n) — anlip(n)rirasin(é, + ¢2) + ni(n)
—nap(n)rysind; — nap(n)ricosé,,

(25)

then defines an estimate of the real part of I;(n),

le(n)
ay[l — rirecos(or + 02)]’

hhr(n) = (26)

and similar estimate for the imaginary part of I;(n). For the decision parameter Z,pg,

then he uses

Zig(n) & Lia(n) — Lia(n) (27)
Therefore.
1 . .
Zigp(n) = K[anlu(n)rlrgsm(o; + 072) + nyr(n) = nap(n)ricose, + nay(n)sing,] (28)
where
A é au[l - T‘17‘2€08(¢1 + 052)] (29)
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This kind of compensation might be considered as “both amplitude and phase
compensation” of the co-pol channel response. In the next chapter, we will use for the
bootstrapped cancelers, a slightly different approach to Kavehrad’s compensation; we
will apply compensation on the complex output before making a decision. Obviously,
there will be a difference in hardware needed to implement these approaches.

Both the Chernoff bound and the moment GQR can be used with (28). For the

second approach one can find

Pileldn dn i) = 2(1 = —=)Q( <) (30)

where

riradyrsin(d; + ¢2)

Y
! A(¢l’ ¢2)
1
Y = ————[nygp — nopricos¢, + ngyrisind 31
A(¢1,¢2)[ 1R — M2RT1C0SPy + N2 Ty SING, ] (31)
and a variance
2 2
2 on(l + rl)
= 32
7 [1 — riracos(@y + ¢2))? (32)
Let x be the random variable
x = riry[cos(¢r + &2) — Liysin(@y + ¢2)) (33)

then

‘ 1 3SNR
Afelon.onu) =201 - —=)0((f a1 -x) (@

Equation (34) can be evaluated numerically. Some results on the performance of

the diagonalizer of kavehrad are given in the following figures. In Fig. 4. we use 16
QAM and compare the error probability obtained with the moment method to the
Chernoff upper bound. The cross polarization used was r=-15 dB Fig. 5 depicts the
same except for using 64 QAM instead. Comparing the performance when r=-10 dB

to that when r=-15 dB is done in Fig. 6 using moment method.
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4.2 LMS canceler

The structure of this canceler (Fig 7), for dually polarized non-dispersive channels
is given in [12].

For the output of this canceler as in (18), Kavehrad performs an amplitude nor-
malization and obtains an estimate of the transmitted signal f;(n) = %T—ll

t = 1,2. The optimal LMS weights are found by minimizing the sum of the squares

of the errors. E{|e;(n)|? + |e2(n)|*}, where
ei(n) 2 Iy(n) - Ii(n) 1 =1,2 (35)

corresponding to the i-th output of the canceler.

These optimum weights are found by solving the matrix equation

where

|zy(n)|? zy(n)z5(n)
R= 2 37
[1,(n)‘x2(n) |z2(n)|? (37)

| Wnopt Wizopt J
Wopt = s 38
opt [ Waopt  Wa2opt (38)
and
S = [:“ 12 } (39)
21 a2

For E{I1(n)} = E{I(n)} and for a complex Gaussian noise. the optimum weights
from (36) can be used in (18) to find the optimal output y;(n). (see appendix B of
(1] for detail).

From the optimal output one can derive the decision parameter, and use it to find
an approximation to. or upper bound on, the probability of error.

Some results of these calculations are given in Fig. 8 to 10.
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5 The Power-Power Cross-Pol Canceler Structure

The system in Fig. 11 depicts the structure of the power-power cross-pol canceler.
It consists of two distinct control loops: @ — w,,; loop and the P — w;; loop. Let
the power ratio of the two signals at point 3, be such that I;(n) > I>(n). This being
the input to the weight w,; results in power-inversion in I(n) > I;(n) at point 4.
However. point 4, being the input to the weight w,;, results in I,(n) greater than I5(n)
at point 3. This process continues resulting in a very high ;—;(L:} at one output and
;—:{%} in the other. As a result, the power-power canceler acts as a high quality power
separator. The adaptive control algorithm varies the cancellation the coefficient w3,
W4 SO as to minimize the power P and Q at the output of the canceler. The blocks
labeled "discrimination” perform functions which make the power detection more
sensitive to the undesired (a;2/2 at port P) signal than to the desired signal “a;;/;”.

The effect of these blocks which will be discussed in later sections and prove to be

essential for the bootstrapping operation.

5.1 Canceler Scheme and Parameters

As it was discussed in section 2 above, the received signals which are sampled

after matched filters, are given by;

zi(n) = anli(n) + a1alz(n) + nl(n)
(40)
Ta(n) = anli(n) + azlzx(n) + na(n)
where z,(n) and z,(n) are the sampled received signals at the first and second channels

respectively. I;(n) and n;(n) are the corresponding signals and noises at these outputs.
5.1.1 Canceler Outputs

From Fig. 11 the outputs y;(n) and y,(n) of the canceler are as follows

y1(n) = z1(n) + ya(n)wy2
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y2(n) = z2(n) + y1(n)wn (41)
Solving the system of equation (41) leads to

z1(n) + z2(n)wy2
1 — wywy

nn) =

_ Ig(n) + z:l(n)wn
valn) = 1 = wi2wa (42)

Substituting for z;(n) and z,(n) from (40) we get

y(n) = Li(n)(ay; + wyzag) + Iz(’;)id:;:u:):zan) + ny(n) + na(n)w;, (43)

y(n) = Ii(n)(az + waan) + Iz(';)ia:jljw:glau) + ny(n)wq + na(n) (14)

5.1.2 Optimal Weights

The control algorithm simultaneously minimizes the output powers

P(w}y, wh) = E{|y1a(n)I*} (45)

Q(wiszgx) = E{ly54(n)I*} (46)
where y;14(n) and yaq¢(n) are the samples of the corresponding output after the dis-
crimina.l.ions.~ In fact, it simultaneously searches for dE {|y;4(n)|*}/0w12 = 0 and
dE{|y24(n)|*}/Owxn = 0. where E{-} and | - | denote the expected and magni.ade
respectively. The search for optimum weights can be performed by successive use of
the following recursive equations. provided that 1 — wywy # 0.

Wi = wly — 5o Pl ) (47)

Wy,
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wgl =wy — /‘2aw.' Q(wimw;l) (48)

7n
where g, and y; are the constants which determine the stability of convergence.
The optimum weights that minimize the powers are the steady state weights ob-

tained from

aP(w{Q,wél) _
3w12 =0 (49)
3Q(w{2, wél)
—_— s =0 5
Jus, (50)

From (43) and (44), we first find the powers at the output of the discriminators,

1

|1 — wiowy|? SuB{|Li(n)[*}an + wizan|®

P(wlz,wzl)
+612E{|I2(n)|*}|a12 + wizaz:|* + E{|ni(n)|*}

+E{ () unal?] (51)

1
|1 - wlzw21|2

Q (w12, wa1) [621E{[11(n)|2}{a21 + wyan[?

+622E{|I2(n)|*}az: + wnaiz)® + E{|ni(n)|*}wax|?

+E{|nz(n)}*} (52)

where é;; 1.j=1.2 denotes the effect of the i th discriminator on the different signal

(Iy(n) or I{n)) powers.




Notice that in calculating the power, we assumed I;(n) and I;(n) are uncorrelated
and zero mean. We will take for the derivative of any real function with respect to a

complex variable [13].

0 _0, .0
dw ~ Buw, Jaw.'

where w = w, + jw;. Hence, for the functions P in (51), we get, after some algebraic

(53)

manipulation (see Chapter 3 of [14]).

opP 2(1 — wyown) [ ;
= 5 E
Own2 [1 = wwa|* (a11 + wyzaz )(az + waan) én {1L(n)]*}

+(a12 + w12a22) (822 + wnayz) 612 E{| I(n)|*}

+E{m(n) sy + E{lna(n)*wra]

(54)
Similarly the derivative of the power @ in (52) can be finally written as,
0 2(1 —
anzl = |i — wlfgl:vtffll“) (a21 + wnan)(an + wizan) én E{|L(n)[*}
+(a12 + wi2a22)" (822 + wna12)622E{| 2(n)[*}
+B{ma(n)Phwn + B{ma(m) oy
(55)

Provided |1 — wywz | # 0. equating (54) and (53) simultaneously to zero will result

in wyopt and wy,opt -

—_— [an(azl + wgmptau)'E{|11(")|2}511

Wi20pt
P Dwyz0pt,

113




+ay3(az + wgloptan)'E{|12(")|2}512 + w;,optE{|nn(n)I’}] (56)

where,

Dwipopt = an(an + wyoptan) E{|L(n)}én

+aq2(az + wg]optal2).E{|I2(n)'2}6l2 + E{[n2(n){*}, (57)

and,
-1 .
Wai0pt Dw210pt [an(an + w;zoptazl) E{|Li(n)|*}62
+a22(812 + Wy30pt822)” E{| 12(n)[*}b22 + w;zoptEUnz(n)lz}] (58)
where

Dwyopt = aulan + wyopten) E{|L(n)I*}6n

+a13(a12 + Waoptaz2)” E{|12(n)*}622 + E{Imi(n)[?}  (59)

The effect of the discriminators are presented by é;; 1,7 = 1.2 which are real
valued satisfying 611620 < 61262). Note that, the first and second terms in (55)
are complex conjugates of the terms in (54). Therefore, to find a unique solution
for wy; and w,; using these equations, discriminators which enforce the constant
6ij t,7 = 1.2 satisfying the above condition. are essential. The simultaneous so-
lution of these non-linear equations give two equilibrium points; [wlzoptl’ wznoptl]
and [w120pt‘2~ wzlopt2]° One is a stable equilibrium which provides a solution to our

problem.
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5.1.3 Effect of Noise On Optimal Weights

In the absence of noise, that is when E{|n;(n)|*} = E{|n2(n)|*} = 0 the stable

equilibrium points can easily found to be

a2, a2
Wiz0pt = T W2i0pt = Tan (60)
With noise, we will write
a2 a2
Wyz0pt = Tam Wy0pt = “an + €. (61)

where €, and ¢; are perturbations. due to noise on the optimal weights that we intend

to find.

Using (56) and (60) in (61), we can finally write, after some algebraic manipulation

(see chapter 3 of [14])

o = S2[(A(E2E _)5EILEPE) - Elme) )

Ae, a2 ay

an,. a2
+CRY E(im(n1'} + Z2E{ ()]

(62)
where.
Q¢ = (122[(021011511E{|11(n)|2}+0220;25125{|12(n)|2})€§
+azz(az; — Z%Un)'&uE{llz(")lz} + E{|n2(")|2}]-
(63)
Similar steps can be followed to determine ¢, from (61) together with (38):
1 2 L] -
& = [(agz(ﬂ“-’ — )6 E{|L(n)]}} - E{lng(n)|2}>c,
ey a22 4y,
ayz ., 12 azy 2
+H(—=)E{Ina(n)I*} + —=E{|n1(n)[*}]. (64)
a2 an
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where,

ACQ = an [(a;,aucsglE{IIl(n)lz} + 012022522E{ll2(7‘)lz})6;

s (1 - 285 (L)) + Bl (65)

an a

Equation (62) and (64) can be solved simultaneously to obtain

o = +([e0 - ZEE B + Bl ][ 2 ElimP)

+22 ()] - 60 - 2B (o) Jou + E{lm(n) )|

(2 Bmn) + 22 Elima(m))]) (66)
o = o [[ehlt ~ 2B o+ Ellna(m))]- [ Edlral))
HE2y Efjna ()] + a1 - 222 ()P} + Ellma(n)F)]
(2 BIna(m)) + (27 B (67)
with
A = [032(1 - 31—22—? ) E{|1(n)|*}b12 + E{|na(n)|? }] [a“ (1 - %E’Z%)-

E{|L(n)|*}6n + E{|na(n)|? }] [ 1—%‘3“—’—‘)5{“ n)|?}én

11 @22

+E{|n,,(n)|’}].[a (1- %‘—"ﬁ’—‘ “E{|L(n)[*}622 + E{|naln }].
na
(68)




Without loss of generality, we will assume that the noise variance in the V and
H polarized channels are equal: E{|ni(n)|?} = E{|n2(n){*} = E{|na(r)|*}. This
assumption is particularly useful when calculating the probability of error. In fact,
this is the most difficult case that puts the worst requirement on the discriminators.
Using this assumption and the definition of the channel parameter. we can write the
final expression of the perturbation €, and ¢; as follows:

First Ag and A be the real and imaginary part of A, that is; A = Agp + jAy,

then, some algebraic manipulation leads to,
Ar = a} a2y (1 — 2riracos(o) +~ 02) + r2r2). E{|L(n)|*} E{|I2(n)|?}
(612621 — 611622) + [|a22;2E{|12(n)|2}E{|nn(n)|2}(612 ~ b22) + o}, E{|i(n)[*}.

E{lna(n)|*}(621 — 511)]-(1 — rirzcos(¢1 + 62)), (69)

Ar = |GE{|L(n)*} (612 — 622) — ah E{|11(n)*} (821 — 511)]-

rirysin(é; + ¢2)E{|nn(")'2}- (70)
Defining ;
€1AR + J€14l
€ = ————, 71
1 AR‘*‘JAI (‘ )
then.
€6 = €Rr+Jear
1 L —
= m (e14RN . - D7+ j€a1AR — €14RAT) (72)
with
AR+ A
1R = ClanaR QAL (73)

a2
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€1A1AR — €1ARA|
A2 ’

G = (74)

and

A2 = AL + AL (75)
From (66) with the definition of the channel parameter one can easily conclude that,

[rlcoscpl + rocosgg — rfrgcos(2¢1 + ¢2) — r,r%cosdn].

E{|na(n)]P}E{|L(n)]*}(621 — &78)

€141 = a5, |r1singy ~ r28ind; — rirsin(26; + ¢2) — rlrgsindh].
E{lna(m)P}E{1i(n)[*} (621 — 611). (77)

€24 = a§2 [—rlsinol + rysing, — r'frgsindn - rlrgsin(dn + 2¢2)].
E{lna(r)*}E{{2(n)[*}(é12 = 622). (78)

€ AR = agg [rlcosdn + recos@g — rfrgcosd)g - r,r%cos(qbl + 2¢2)].
E{|na(n)P}E{|I(n)]*} (812 — 622), (79)

Clearly.
€2 = @R+t e (80)
1 .

= m[(szRAR — €24101) + J(€24rA1 + €241AR)], (81)
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then,

€24RAR — €2410]
|A2

€2R =

€y = €24RA[ + €241AR

5.1.4 Canceler Optimal Outputs

Next using (61) in (43) with w2 = Wi20pt and wy; = Wyopt: We obtain y;(n)

1 —ay
yl(n) = —az ~an [Il(n)[an + ( a + 61)(121]
(1 —( " + & )( - + 62)) 22
+L(n)arz + (=22 4 e)ags] + na(n) + na(n)[—22 + e,]],
a a2

(84)

and after combining terms,

ai2an a2 a2
anh(n)[l - ——+4« ——1] + Iy(n)e1azz + ny(n) — na(n)— + na(n)e;
a)1822 a a2
Q12a a a
—_ __.._12 21 + £€2 + —2—161 — 6162
anaz; a2 an

yi(n) =
1

(85)

5.1.5 Decision Parameters with Amplitude Compensation at the Can-

celer Output

The co-pole horizontally polarized signal at the output of the channel is a;,1;(n)
and hence, it is reasonable to take y;(n)a;; as an estimate of this signal by compen-
sating for the attenuation in the co-pol by a;;. Therefore, we will take fl(n) = 3(n)

an

as an estimate of the transmitted signal /;(n). We will also assume the ¢;¢; in (85) is

negligible with respect to the other terms in the denominator of this equation. Hence

from (85) we can write,
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@128 an @12G21 an G2 a2
Ln)1 - + 26+ _51] L(n)[1 - + —a +—€ - —¢)
a114G22 022 a11822 an az2 azz

h(m)a 2 ¢ M ooy 2
an G 1d22 an
(86)
Define,
Zy(n) & Iy(n) = L(n), (87)

with Z;(n) is taken as the decision parameter. That is, the probability of error is
given by Py(e) = P{]Z)(n)] > ¢} where c is the half of the distance between two
signals in the corresponding signal space. From (86) together with (87), we can drive,
after lengthy algebraic manipulations (see chapter 3 of [14]), the real and imaginary

part of the decision variable Z,(n);

Z1r = IA E [Im (KrZpr + K1Zp1) + hii(K1Zpr ~ KrZpr)
a
+Ip(€e1rZDR + éuzm)—l- + I{eirZp1 — fuznn)-%:
Z VA
+ng2BR L p 208
an a3
€ r1c0s € risin
+nzn[ €1R _ T1€08¢) VZor + LI _n 1 VZo1]
ap a a1y
—€11  Tisind, €1R r,cosdn
+nar(( + )ZpR + (— — )ZDI]] (88)
a a1 an

and
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1
Zy = a7 |2[ —~ha(K1Zpr — KrZpr) — ii(KrZpr + K1Zpr)
a
—ILr(e1rZp1 — CuZDn)— + Lyi(exrZpr + €112p1) ==
a an
Zpi Zpr
—MmR— +t M 1——
an an
—€ 81N € r1C0SQ
—nzg(( 11+ 1 ¢1)Z R+(_1§_ 1 I)ZDI]
a an an an
€ 71C0S € rySing
B (. i e N LA i Y (89)
an a a; an

where Kp and K| are the real and imaginary part of K given by

I(ARAR - KAIAI

Kr = 90
R AL + A? (90)
, KarAr+ Ka1Ar

y{ 91
H A% + A (%1)

K g and K 4j are given by

Kan = alE{Ina(n)P}E{|I2(n)|*} (612 — 622).

[rf + riracos(0) + 07) — rf'rgcos(qbl + ¢;) — rfrzcos(2(d)1 + ¢2))]
(92)
Ka = alE{na(n)]?}E{|L(n)*}(6:12 — 622).

[7‘17‘23"1(¢1 + ¢2) — "17‘231"(¢1 + ¢2) — "17'233"(2(01 + ¢2))] (93)
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while Ag and A are given in (69,70). Note that Kr and K| are functions of the
random variables ¢, and ¢,. Also, the real and imaginary part of the denominator

Zp = Zpr + jZpj is given by

Zpr = 1—riracos(éy+ ¢2)+ Kp+ Vi (94)

Zpi1 —rlrgsin(dn + d)g) + K;+V,. (95)

|Az]? = Zjr + Z};- Var and Vy are the real and imaginary part of V defined

as follows

VarARr + VarAg
Ve AL + A} (%6)
_ VarAr = V4RA;
V= A% + A} ¥7)
with Vg and Vy; are given by
Vir = & E{na(mPYEQRHon ~ bu) riracos(ér + &) + 13
-~r1rgcos(¢1 + @) — riricos(2(¢y + ng))] (98)
Var = ahE{ma(m)P}EGL N En ~ ) rarasin(d: + &)
-r,r,sm(d); + ¢2) — rlrgszn(2(¢1 + 02))] (99)

and Ag and A are given in (69). Similar to the real and imaginary part of K. Vg

and V; are functions of the random variables ¢, and ¢,.
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Finally we write the real and imaginary parts of Z;(n) in terms of the random

variable representing the real and imaginary part of signal and noises of channel 1

Zip = LigYh + LYz + LpY3 + LYy + nygYs + s + nopYz + natYs

Zy1 = —=LpY, + LY — LrY, + 1Y — nipYs + ntYs — napYs + notYs

where

Y

Y3

Notice that Y;,

f

3 KrZpr+ K1Zp;
|Az|?

Ki1Zpr — KrZp:
|Az?

a22 .RZDR + €11ZD1
an |AZ|2

a2 6\rRZp1 — €11ZDR
an |AZ|2

Zpr
anl-’-\zi2

Zpi
A 2
an| Zl

(e1r — T1€0801)ZpR + (€11 — M 8tnd ) Zp;
¢111‘AZ|2

(risinoy — €;1)ZpR + (€1r — T1€08$1 ) Zpy
an|Az[?

1Az = Zhr + 2},

¢ = 1.2..8 depend only on the random variables ¢, and o,.
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5.1.6 Decision Parameter with Both Amplitude and Phase Compensation

at the Canceler Output

Instead of the amplitude compensation used in section 5.1.5, in this section we
use compensation on both amplitude and phase of the co-pol signal. That is at the
output of the canceler, the co-pol signal is the same as that sent by the transmitter
and the error will be caused only by the cross coupling and the noise processes.

From (85) we can write

nn) = Kl; [Il(n)Ay + Ir(n)era22 + ny(n) + ng(n)[—gE + €1]] (111)

22
where
a1287) a2 an
A = 1- + 62— +a— — ae
andazz a ap
a12a21 an
Ay = an[l - — el—], (112)
ay 1022 an

and with amplitude and phase compensation, we take Il(n) = yi(n )él as estimate of
the transmitted signal I,(n).
Define.

Zy(n) £ Li(n) - I(n) (113)

with Z; denotes the amplitude and phase compensated output decision variable at
channel 1.

We will perform an analysis similar to that in the previous section to find the real
and imaginary parts of the decision variable Z;(n).

From (111) and (113) we get.

Zy(n) = I{n)e1az; + ny(n) + na(n [— +c,]] (114)

1
A,
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Using (6) in (114), we get the decision variable.

1 ) ;
2y = A [UzR + jhar)(e1r + jerr)az
y
+n1R + jnur — r1i(nzr + jnar)(coséy + jsing,)

+(n2nr +J'n21)(€1a+]'€11)]-, (115)

where we drop the depenc - ce of terms on the sampling time n.
Alsofrom (112) . real and imaginary part of the denominator A, are respectively

given by,

Ayr = [l —riracos(¢ + 02) + Velan (116)

Ayr = [-rirasin(ér + 02) + Vijan (117)

where Vg and V; are defined in the previous section. Clearly A,z and A, are func-
tions of the random variables ¢; and ¢;.

The real and imaginary part of numerator of (113), Zy are given by

Zvr = (Lrar-— Liar)axn

+n1r + nar(€1R — T1€0801) — naf(€1; — TSNPy ) (118)
Zxi1 = (Lreir + Lyerr)az;

+ny1 + nap(€11 — r18tnoy) + noy(€r — r1cosdy) (119)
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Finally, we can write (115) as.

. ZNR+ jZN1
=2+ 12y = —m—— 120
1 IR T 411 AyR+]AyI ( )
with
ZNRAR + ZN1A
Z\r = z 2 (121)
Alp + A%
Zu Zn1Ayr — ZNRDyI (122)

AZp + A%,
Using (116), (117), (118) and (119) in (121) and (122) we can get, after some

simplification which emphasizes the dependency of the different terms on the different

random variables, the real part of the decision variable:

1

T e

[IzR(ClRAgn + €118y1)822 + Iof(€1rRAy1 — €1124R)a22
+nRAYR + M1y
+n2g((€1r — rcosd1)Ayr + (11 — r18ind1)A ]

+na1{(—€11 + rising1)Ayr + (e1r — r1c03¢1)Ay1]] (123)

Similar expression can be found for Z,;;

1
Zy = e [-Izn(CmAyl — 118yRr)a22 + I21(€3RAYR + €111 1 )a2;
v

—nirAy1 + n11A R
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—nar([(—€11 + r15in61)Ayr + (1R = T1€0561)Ayr

+na1[(eap — T1€0861) AR + (€17 — Tlsin¢1)AyI]]

with |A, ]2 = A2 + A2,

(124)

Finally we write the real and imaginary parts of Z,(n) in terms of the random

variable representing the real and imaginary part of signal and noises of channel 1

Zir = LrY1ap + L1Yaap + nirY34p + n11Yasp + narYsap + narYeap

Zy; = —=LipYaap + I1Yiap — nirYaap + nurYsap — narYear + naYsap

where

Yiap

Yoar

Yaap

Yiar

Ysap

Year

. €1RAYR + €1101
22
1A,

. arAyr — €114yr
22
AWML

Ayr
14,2

Ayl
1A,

(e1r — 11081 ) AR + (€17 — 11810y ) Ay

|Ay[?

(r15in0) — €11)AyR + (€1p — 11€05D1 ) Ayg

1Ay 2

IAy|2 = A:R + Azl

127

(125)

(126)

(127)

(128)

(129)

(130)

(131)

(132)

(133)




5.2 The Performance Analysis

5.2.1 Chernoff Bound

With Amplitude Compensation

Using the real and imaginary parts of the decision variable for channel 1 (100)
and (101) obtained under the assumption of amplitude compensation, we calculate
an upper bound for the average symbol error probability for the power-power scheme
of BXPC with dual-polarized M-ary QAM system.

An error is made on this channel if the decision variable |Zjg] > cor ! ™ | > ¢

The probability of error on channel 1 can be written [1] as,

1

Pi(e) = 5[1 - 711—7]{P(|Zm| > o)+ P(1Zul > <)) (134)

For a bound on the probability, P(|Z;r| > ¢) or P(|Zi11| > ¢) we will use the
Chernoff bound [1]. Such a bound is defined as follows: for any random variable Z

and a constant ¢, one can find a A > 0 such that

P(Z>c) < E{eM?79} A>0 (135)

Obviously A that minimizes the right hand side of (135) establishes the least upper
bound on P(Z > ¢). Using (100) in (135) we find

P(|Zirl > ¢) < e-*CEom{E,,R[exp(umy,)].E,,,[exp(ul,}-;)].
Eplexp(ALRY3)). Er,, [exp(ALYs)).

E. plexp(AnyrY5)). En,  [exp(AnrY5)].




E.,;lexp(AnarY7)]. Eny, [exp(AnarYs)] }, (136)

where we used the fact that Ig, I;j, n;p and n;;, 1 = 1,2 are independent of each
other. Also note that all the expected value operations inside the large parenthesis,
are conditional on ¢, and ¢,, and hence the random function ¥, : = 1,..8 conditioned
on ¢, and ¢, are constant with respect to these operations.

Following Kavehrad (1], we derive these expected values: The random variable I 5
is a discrete M-ary random variable which takes the values {£1c. £3c...£( \/(—M)— 1)c}
with equal probability. For such a random variable, we derive in appendix A an upper

bound on E{exp(al,r)}, with a given constant a.(see detail in [14]).

5 VM2
Epplexp(ALRYY)] = T Y cosh{(AY1)(2i - 1)c]
1=1

A oM—
< exp(-2—c2 3 1

YY) (137)

and terms are in effect Jor the other terms in (136). The additive noise n;(n) and
ny(n) are assumed to be independent samples of zero mean complex Gaussian random
variables with E{|n;(n)|?} = 202 i = 1,2. Therefore, n;g and n,; i = 1,2 are real.
zero mean Gaussian random variable with variance= ¢2. For such a random variable
n . we can derive the value of E{exp(an})} with a as given constant. Again noting

that conditioned on ¢, and o,, AYs is a constant. and hence

A? .
E.,xlexp(AnirY5)) = exp(5-c?onYy). (138)

-~

and terms are in effect for the other terms in (136). Finally, by collecting term. we

get

P(|1Z1r| > ¢) < E,, oy {exp(=Ac + N {U(¢1, 62) + W(o0y. 02)])} (139)




where

AM-1

U(ér,¢2) = '2-—3‘—(”12+Y22+Y32+Yf)
(140)
‘772;‘32 -2 2 2 2
W(d1,¢2) = —2—(Ys +Ye + Y7 +Y5)

Minimizing the exponent of (139) with respect to A, we obtain by using (140) the

least upper bound

_&
P(1Zial > ©) < Eov{exp(—gr— = )} e
4[5 3 Ui(é1, ¢2) + ?Wl(¢l,¢2)]

where.

Ur(ér,¢2) = YE+Y24+Y2+Y?

(142)
Wild,¢2) = YI4+Y2+Y24+YE
Rearranging terms, we get
—
o?
P(1Zyp]| > ¢) < E4 4, {exp[ =1 n ]}
2[———Ur(¢1, 62) + Wi(¢1, 62)]
3o
- ool )
o LM - DSNRYU(61,62) + Wa(81, 02)]1
(143)
where in the last step, we used (see [17])
S M-1¢
NR= — = ———
SNR= = T (144)

Due to symmetry P(|Zir| > ¢) =P(|Zy;| > ¢). By using the minimum upper
bound on P(|Z | > ¢) from (143) in (139), we can write the resulting least upper

bound on the probability error
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1 1
Pe) < (1"7—1‘7)2}'}‘-
3(SNR) 1
d
¢/-1r ./—1r [2 - 1) (SNR)U] 0. ¢2)+Wl(¢l’¢2) d¢1 #

(145)

where we used the fact that probability density function of ¢; 2 = 1,2 are,
p(41) = pldn) = 5

With Amplitude and Phase Compensation

To calculate the Chernoff bound in the case where the decision variable is obtained
with both amplitude and phase compensation, we follow the same steps as in the
previous section except with a different value of ¥; ¢ = 1,2..,6.

As in (139) we have here

\2¢? \'I
P(Zinl > €) < Eson{expl=de + = (Vhp + Vip)
A2 2/v2 2 2
+_2 oi(Youp +Yop +Yiup + Y;SAP)]} (146)

where Y;4p t = 1.2...6 are defined by (127) to (132).
Minimizing the right hand side of (146) and taking the expected value over ¢,

and ¢,, we write error the bound for the amplitude and phase compensated channel

1 output,
1 1
Praple) < (1- _)”2
3(SNVR) 1
ex — - do,dod
/'/-" p[ 2AM — 1) (SNR)U,4p101.02) + Wiap(01,02) e

(147)
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where

Uiap(é1,62) = Yip +Yip

(148)
Wiap($1,62) = Yiup+ Yiup + Yiup +Youp
and
SNR= % - M_;_lg_z (149)

5.2.2 Method of Moments for Probability of Error Calculation

In some cases, the Chernoff bound might not be sufficiently tight [17). Therefore
to use it as a measure of performance in comparing different systems might not be
adequate. Hence, in this section. we will present another method which actually com-
putes an approximation rather than a bound for the average probability of error for
the power-power scheme of BXPC. The method is based upon Gauss quadrature rules
(GQR) which were shown to assure accurate and satisfactory results. We will first give
a brief description of GQR and apply it to calculate the average probability of error
of the power-power scheme. These calculations will be performed for both amplitude
compensated, and amplitude and phase compensated received signals. respectively.

With Amplitude Compensation

Using (100) in (134), we find the conditional probability,

P(|Zir| > c|#1, b2, I1r, 111, I2r, I21). For this we define Z;52 = X;+Y with the random
variable Y = nygYs + n11Ys + n2p}- + nyyYs.

The randum variable Y is zero mean Gaussian and have variance
o} (1021 = (Y2 + Y2 + Y2 + ¥2)o? (150)

Conditioned on ¢y.92,/1r,I11, I;5 and I3; , the random variable Z,g is Gaussian with

mean equals X; and variance 0*(0,.0;). Therefore

2 oo -1{5r- X172
P(lz'ql>C|¢1,¢2,1m,111,1m.121) = —\/‘>=.1;/c exp(—z—[—l—’ia—-—'] )d-fm
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Hence.

C—XI

P(|Zyg| > c|¢r, b2, Iir, a1, op, o) = 2Q( - ) (151)
where
1 oo —t2
Q(z) = \/7/: exp(—z—) dt (152)

Again due to symmetry P(|Z1r| > ¢)= P(]|Z11| > ¢), so that together with (134),

we can write

Py(efx) = 2(1 - \/%Z)Q(:—RX), (153)

where the random variable x;

x = =K (154)
Oo
with
ol = (Y + Y&+ Y7+ Y§)S, (155)

is a function of the random variables (1, ¢2, I1r, 11, I2r, L21).

Clearly, the average error probability on channel 1 can be evaluated from

Pi(e) = [ Pilelz)fx(z) dz (156)

with fx(z) as the pdf of the random variable x.

Using the method of moments in calculating (156), we get by using (149)

Pe) =201 - 7= S wi(| ) (157)

i=1

The GQR nodes z; and the weights w; are determined from the moments of
random variable x.

Using the Gauss Quadrature integration, the average probability of error in (157)
can be calculated numerically by evaluating the 2N + 1 moments of random variable

x in (154). One can derive a general equation for the moment of x.
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By = 3 (5 ) (" F ey as

k=0
where
m Y! (mon Y™
ae = 3 (1) talapt—
=0 o o
n—k—m {(n—k-m—u)
—k-m Y3 (n-kem-u) Y,
Bz. = E ( n u )I2R 3 ( k )T (159)
u=0 o o

Recall that I;;, ¢ = 1,2, j = R, I are all independent, equally likely M-ary
symbols from the set {£1c,£3c,.....+ (\/H —1)c}, and Y, £ =1,2..8 are functions
of ¢, and ¢, which are independent and uniformly distributed over [-=,=]. In the
processes of evaluating (159), we note that the n th moment of equally likely M-ary

symbol [17,18] is given by

vM~1
E,,.,{I;;}:\/l_ 3 (2m+1 - VM), (160)
m=0

and for the case of independent and zero mean M-ary symbols I;;, we have

EIU‘Ikl{I"J'I"'} = 0 i#k or j#£I
Elij{Iij} =0 1= 1,2 j= I,R (161)

Furthermore for the n th moment of Y; i = 1,..8 which are function of ¢, and ¢,

we use

Eé..o;{K‘(‘»h ¢2)n}

i

/” _ Y; (¢l’02) f¢1 ¢2(¢h¢2) d¢1,dé2
I / (61.62)" for ($1) fon($2) dbrdoy i=1.2.8
(162)

"a
‘0

i
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With Amplitude and Phase compensation

Similar analysis is used to find the average probability of error for the case when
the decision variable is obtained with both amplitude and phase compensation.

In this case, using (125). we first calculate the conditional probability,
P(|Zr| > c|é1, 92, I2r, I21). That is, we integrate on the joint probability of the
random variable Y p,

Define

Yap = nirYsap + nurYaap + narYsap + norYeur (163)
Xiap = LpYiap + LiYaap, (164)

then from (125),
Zir = Xi1ap + Yap (165)

The random variable Y4p is zero mean Gaussian and has variance

024p(01.02) = (Yip + Yip + Yip + Yo4p)02 (166)

Also conditioned on ¢,,0;. Iog and I3r , the random variable Z;y is Gaussian with

mean equals X74p and variance 02,p(¢y, ¢2). Similar to (153),

Pyap(e|@1.02, Ip, I21) = 2(1 — \/IM)Q(C _af;AP)- (167)
or
Prap(elxap) = 2(1 - \/__)Q —XAP), (168)
where the random variable x5 p,
XAP = c—;g;g, (169)
with
orap = (Yoap + Yiap + Yoap + Youp)c, (170)
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is a function of the random variables (¢, ¢, I2p, I21). Because of independence as-

sumption,

fxap(@) = fipp (BR)f151(T21) fo,($1) foq($2) (171)

Similar to (157), we can use GQR to calculate the probability of error from the

moments of the random variable x5 p; viz,

Pup(e) = 1———)2 wiQ( S z,) (172)

where again z; and w; are the nodes and the weights of the GQR.

The moments of xop can be calculated using the simple binomial rule

F(=1)"*(IrY1ap + L21Y2ap)"*
. boam)
OoAP

We take the expected values of the inner terms in (173), then,

E{xip} = E{m’ ()

Elxie} = 2, ( k )Ck(“l)"""E{Amp} (174)
k=0
where
n-k (n~k=1)
Azap = Z ( n | k ) I; YXAPI(n—k-I)YQAP (175)
=0 oAP oAP

5.3 Results

The Chernoff upper bound on the average probability of error as a function of
signal-to-noise (SNR) ratio is evaluated for various cross coupling constants and for
16 QAM and 64 QAM signals. The Gauss quadrature rule is also used to find ap-
proximations to the probability of errors.

In Fig. 12, the bounds on error probability with 16 QAM and with cross polariza-

tion coupling r= -15 dB, -10 dB and -5 dB are calculated and compared. Equation
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(145) is used in calculating these bounds when only amplitude compensation is em-
ployed, while (147) is used when both amplitude and phase compensation is employed.
Notice that adding phase compensation improves the bound when the cross coupling
is high (i.e., r=-3 dB). The effect of adding phase compensation is hardly noticeable
with low cross coupling (r=-15 dB). Fig. 13 depicts the same for 64 QAM. The effect
of compensation :s similar. Nevertheless, as expected the bounds are higher for 64

QAM displaying possibility of higher error rates with the same SNR. Comparison of
these bounds for 16 QAM and 64 QAM are shown in Fig. 14.

In Fig. 15 and Fig. 16 we depict the probability of error as it is calculated
using the Gauss quadrature rule. for 16 QAM and 64 QAM, respectively. These
calculations were done with cross coupling of -15 dB. -10 dB and -5 dB, and in each
a total of 9 moments were used. Only the case with amplitude compensation was
shown since adding phase compensation did not change these results very much. In
order to show how tight are the Chernoff bounds shown in in Fig. 12, we depict in
Fig. 17 a comparison of the results obtained with GQR moments calculations to their
corresponding Chernoff bounds for 16 QAM and cross coupling of -15 dB, -10 dB and
-5 dB. Fig. 18 shows the same for the 64 QAM case. To show the effect of increasing
the number of moments used in obtaining the GQR results, we show in the next two
figures these results with 7, 9 and 11 moments. Chernoff bound was added to these
curves for comparison. In Fig. 19. we present these comparisons for the 16 QAM
case, while Fig. 20 presents the same for the 64 QAM case.

It is important to emphasize that the error probability, although an important
factor, is certainly not the only advantage of the bootstrapped canceler. We mention

the following other points in favour of these cancelers:

1. Under the same system condition. the bootstrapped canceler steady state in-

terference residue is smaller.
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2. To implement the bootstrapped algorithm one needs less complex hardware
than for the diagonalizer, which needs a zero forcing algorithm, and for the
LMS canceler, which needs decision feedback information. In fact, it is clear
that adding a decision feedback to the bootstrap schemes will result in faster
convergence and still better performance than that which we obtained in the

current analysis.

3. The fact that the bootstrapped cancelers do not need decision feedback makes
them ideal for acquisition and, hence, suitable for channels with fast and deep

fading which causes occasional system outage.

In Fig. 21, we compare the performance of the power-power canceler to that of
the LMS canceler, for 16 QAM and r = —10 dB. Fig. 22 depicts the same comparison
with r = —15 dB. To emphasize the need for cancelers in dual polarized systems, we
add, to these two curves, the error performance without cancelers.

Figs. 23 and 24 are the same as Figs. 21 and, 22 except for the use of 64 QAM
instead of 16 QAM. In the last four figures, the moment method was used. For each
curve, the number of the moments is marked in parentheses.

The three cancelers, power-power canceler, LMS canceler and the diagonalizer,
are compared in Figs. 25 and 26. A 16 QAM signal is assumed in these figures,
with r = =10 dB and r = —15 dB. respectively. Although GQR calculation has
been done for amplitude and the phase compensated diagonalizer (see chapter 2),
the GQR calculation has not been done for the amplitude compensated diagonalizer.

Therefore, the comparisons are based on the Chernoff bound.

5.4 Conclusion

The power-power bootstrapped canceler was analyzed and its performance was
studied in this chapter. In particular the average probability of error was estimated

using the moment generating method or by finding the Chernoff bounds. Results of
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the analysis as well as computer calculations show, as expected, that 16 QAM perfor-
mance is much better than 64 QAM. It is also shown that adding phase compensation
to the canceler output adds very little to the performance, when only amplitude com-
pensation is included.

From comparing the results obtained with the moment generating method to
the corresponding Chernoff bound, we concluded that these bounds are sufficiently
tight. Comparing the results when different numbers of moments are used, and the
concluded tightness of the Chernoff bound, we infer that approximately 10 moments
are sufficient for deriving a good approximation for the average probability of error

using the Gauss quadrature rule.
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Fig. 8 LMS Cross-Pol Interference Canceler. Chernoff Bound and GQR calculation,
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Fig. 10 LMS Cross-Pol Interference Canceler, Chernoff Bound and GQR calculation,
64 QAM with amplitude and phase compensation. cross coupling -15 dB.
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Fig. 12 Power-Power Cross-Pol Interference Canceler, Chernoff Bound 16 QAM

153




POWER-POWER SCHEME

1 EREREEEN] nlll_llT_l'rllnlllflllelrllllT_[lrlllrIl
g .
~
-~
10 N

64 QAM N

r|=r2 N\
0||.=022=O dB
10 ™
g 10~
o
8
§, 10 °*
R
a Chernoff Bound
107"

-15 dB

-2 | —— Amp. Compensated
10 - — Amp&Pha. Comp.

e Lt
15 20 25 30 $5 4()
SNKR  JB

Fig. 13 Power-Power Cross-Pol Interference Canceler, Chernoff Bound 64 QAM
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Fig. 14 Power-Power Cross-Pol Interference Canceler. Chernoff Bound comparison
16 QAM vs. 64 QAM
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Fig. 15 Power-Power Cross-Pol Interference Canceler, GQR calculation, 16 QAM
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Fig. 16 Power-Power Cross-Pol Interference Canceler, GQR calculation, 64 QAM
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Fig. 17 Power-Power Cross-Pol Interference Canceler. Chernoff Bound and GQR
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Fig. 19 Power-Power Cross-Pol Interference Canceler, effect of increasing of
moments on GQR calculation results. 16 QAM
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Fig. 20 Power-Power Cross-Pol Interference Canceler, effect of increasing of

moments on GQR calculation results. 64 QAM
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Fig. 21 Performance Comparison of Power-Power with LMS cancelers, GQR
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Fig. 22 Performance Comparison of Power-Power with LMS cancelers. GOR
calculation, 16 QAM, with amplitude compensation, r; = r; = —15 dB.
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Fig. 23 Performance Comparison of Power-Power with LMS cancelers, GQR
calculation, 64 QAM, with amplitude compensation, 7y = r2 = -10 dB.
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Fig. 24 Performance Comparison of Power-Power with LMS cancelers, GQR
calculation, 64 QAMI. with amplitude compensation, r, = r, = —15 dB.
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COMPARISON OF LMS
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Fig. 25 Performance Comparison of LMS, Diagonalizer and Power-Power cancelers,
Chernoff Bound . 16 QAM. with amplitude compensation, r, = r; = —10 dB.
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COMPARISON OF LMS
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Fig. 26 Performance Comparison of LMS, Diagonalizer and Power-Power cancelers.
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Appendix D

Performance Comparison of Three Bootstrapped Cross-Pol Cancelers for

M-ary QAM Signals

Abdulkadir Ding and Yeheskel Bar-Ness

Abstract

M-QAM dual-polarized transmission becaine an important method for frequency
re-use, particularly in microwave radio communication. However, the orthogonally
polarized waves suffered degradation due to cross polarization interference.

Different canceler structures were proposed to mitigate the effect of cross-polarization.
Among these are the diagonalizer and the LMS canceler. The bootstrapped algo-
rithms have been suggested in the past for different applications such as: satellite
dual-polarized communication, tactical communication and QAM microwave radio,
as well as tactical communication. Nevertheless, no attempt has been made vet to
quantify these cancelers’ probability of error. These issues will be addressed in this
appendix and will show that the power-power structure of the bootstrapped cross

polarization always outperforms the other cancelers.
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1 Introduction

In microwave radio communication networks, the transmission capacity can be
doubled by using orthogonally polarized QAM carriers. The orthogonally polarized
waves can suffer degradation due to carrier-to-cross polarization interference (C/XPI).
Particularly during multipath fading, such degradation could become intolerable.

Many methods have been proposed to cancel the XPI. Among these are the diago-
nalizer [1] and the least mean square (LMS) cross-pol canceler proposed by Kavehrad
[2]. In his paper, Kavehrad compares the error performance of these two cancelers
and concludes that the LMS algorithm is substantially better than the diagonalizer.

Still another method for XPI is termed bootstrapped algorithm. It is important
to note that the bootstrapped structure requires no reference signal nor any of the
decision feedback methods and hence, it can be classified as a blind canceler; a distinct
important feature.

The bootstrapped structures have been suggested in the past for different appli-
cations, such as in dual-polarized satellite communication [3], QAM microwave radio
communication {4] and in tactical communication [5]. The error performance of one
scheme of bootstrapped algorithms termed power-power, was presented in [6] and
compared with that of LMS and diagonalizer. In this appendix, we intend to extend
the performance analysis to the other structures of the bootst-apped blind canceler
(BXPC) algorithms for M-ary QAM systems and compare the performance of these
structures with each other.

In this study, we derive and compare the average probability of error of the BXPC
as a function of its input signal-to-noise ratio for three different structures of this
canceler. After this introduction we present the mathematical model of the dual
polarized channel in section II. The different structures of the BXPC is described in
section IIl. In section IV, a summary of the performance analysis of the BXPC for

dual polarized M-arv QAM system over non-dispersive fading channel is presented.

170




In section V, the results of these analyses are shown and compared. Also included
are the results of the comparison of the performance of BXPC with that of the other

cancelers.

2 M-ary QAM Dual-Channel

The model for such a channel has been well presented in [1,2]. Two orthogonal M-
ary QAM bandpass signals with the same bandwidth and the same center frequency

can be presented as
si(t) = Re{3;(t) exp(j2=f.t)} (1)

where Re{-} stands for the real part, f. denotes the carrier frequency and 3;(t),: =
1,2 is the complex envelope of each of the orthogonal signals, respectively. This
complex envelope can be expressed as §,(t) = Y52, Ith(t—kT') , where I} is a complex
information symbol which takes on one of M different statistically independent and
equiprobable complex values. The effect of the channel is given by x(t) = As(t)+n(t),
where A is the dual-channel cross coupling matrix. whose elements a;;,7,7 = 1,2
are complex valued constants that denote the channels co-polarization and cross-
polarization responses, s(t) = [s1(t), s2(t)]T and n(t) = [n,(t), n3()]7 is a complex zero
mean Gaussian noise vector.

The received signals which are sampled after matched filters, are denoted by

1‘1(n) = auIl(n) + 01212(72) + nl(n),

Ig(n) = alel(Tl) + (12212(71) + Tlg(n). (2)
where z,(n) and z2(n) are the sampled received signals at the output of the first and
second channels respectively. [;(n) and n;(n) are the corresponding signals and noises

at these outputs. Also ny(n) and nz(n) are assumed independent samples of the zero

mean complex Gaussian with E{|ni(n)|?} = 202,i = 1.2.
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3 The Bootstrapped Algorithms

Three configurations of bootstrapped structures, namely, power-power, correlation-
correlation and power-correlation, depicted in Figs. 1-3 were partially reported in the
open literature [3,4,5] . Each configuration consists of two cross coupled interfer-
ence cancellation loops. The power-power scheme is so named because it consists
of two control loops, each of which tries to minimize the power at its output. The
correlation- correlation scheme similarly consists of two control loops, each of which
tries to minimize the correlation between its output and its sample interference. The
power-correlation scheme is a combination of the other two.

For the power-power scheme depicted in Fig. 1, as well as in the others, one
interference cancellation loop attempts to cancel the interference from the signal I,(n)
into the signal I (n), while the other loop attempts to cancel the interference from
Ii(n) into Iz(n). By virtue of a discrimination technique which slightly enhances the
signel component due Iz(n) over that due to I;(n), the first loop 1s able to perform a
partial cancellation of the interference from I5(n) into I;(n). This results in a purer
sample of I;(n) provided to the second interference cancellation loop, allowing that
loop to perform a partial cancellation in the other direction, from I;(n) into I(n).
The purer sample of I;(n) is then used by the first loop to improve its cancellation,
and so the above cycle is repeated until essentially perfect interference cancellation on
both signals has been achieved. A similar argument shows that the other two schemes
also lead to perfect interference cancellation. Although it is possible to consider more
general terms, we will restrict the channel parameters to
p— Z—E = r,el%, (3)
where ry,7; denote the magnitude of the normalized XPI constants and ¢;, ¢; are
the phases of these constants assumed to be independent and uniformly distributed

over [~m,].

172




3.1 Power-Power Scheme

From Fig. 1, one can find the output of the canceler

z1(n) + z2(n)wiz

zo(n) + z1(n)wyy
1 — wjwy ’

1 — wiawy

y2(n) =

n(n) = (4)

where z,(n) and z3(n) are given in (2). The control algorithm simultaneously min-
imizes the output powers P, and ©Q;, by searching for 9E {|y14(n)|?}/0w;12 = 0 and
OE{|y24(n)|*}/Ows = 0. This can be performed by a recursive steepest descent al-
gorithm, provided that 1 — wyows # 0. yia(n) is the signal after the discriminator.

It can be shown that w;; and ws; converge in the steady-state to

a2 az -
w =——+4+¢€, W = —— +e¢€. (3)
120pt a2 ) 210pt a1

where ¢€; and ¢; are the effect of the noise on the steady state weights. They depend

on the channel parameters as well as on the signal and noise powers [7]. Substituting

(5) into (4). we get for the first output

1 aj2a a
yl(n) =—A— [01111(1'1.)[1 -~ 1z + Clﬂ] + Iz(n)éla'_)g
v a;1a22 an
a
() = na(m) 2 4 nan)a), (6)
az;
where
ayq.a a a
Ay é 1 - ———12 A + —1—262 + —2'1'61 — €1€9. (7)
anazz az2 an

The co-pol polarized signal at the output of the channel is given by a;;11(n), and
hence it is reasonable to take y;(n)a;; as an estimate of this signal by compensating

for the attenuation in the co-pol by a;;. Therefore fl(n) = y']a',(,ﬂ as an estimate

of the transmitted signal I;(n), and the decision parameter for the first output of

the canceler is defined as. Z;(n) 2 Ii(n) = I;(n). We will assume the €€, in (7) is
negligible with respect to the other terms of this equation, and get

Zi(n) = 1 _11(,,)62?‘_?+12(n)€19_2_2+ ny(n)
Ay as an an
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+n2( —a;2 1)] (8)

a); 022
where
@126 az an
A, = 11— 4 Bt I
anaz: a22 an

The probability of error is given by P,(e) = P{|Z1(n)| > ¢} with ¢ as the half of the
distance between any two symbols in the corresponding signal space. Note that Z,(n)
depends on the random signal and noise variables I;(n) and n;(n) : = 1,2 and on the
random variables ¢, and ¢, through the channel parameter and through the weight
perturbation ¢; and €;. Therefore. in order to be able to calculate the probability of
error, we must find the real and imaginary part of Z;(n). Algebraic manipulation [7]

leads to

Zir = heY) + LY2 + LeYs + 1Y + nyRYS
+ny1Ye + naRY: + nopYs,
2y = =hLeY:+ I Y = LY, + 11Y5 — nyRrYs

+n11Ys — narYs + na Y. (2)

where we dropped the sampling time n for simplicity, and Y;,, m =1,2,..8 depend

only on the random variables ¢, and ¢,. Expressions for Y., are given in the appendix.

3.2 Correlation-Correlation Scheme

The outputs y,(n) and y,(n) from Fig. 2 are as follows

Ty(n) + a(n)uwy,,

yi(n)

ya(n) T2(n) + z1(n)wa. (10)

With this scheme. the algorithm simultaneously minimizes the correlation between
two outputs. It searches for 8| E {y14(n)y3(n)}|*/0w12 = 0 and 8| E {y2a(n)yj(n)}|?/0wn =

0. As in the previous scheme. it can be shown that w,; and w;, converge in the steady
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state to the same values as in (5). Followiug the same steps as in the power-power

scheme, we get the decision parameter

1
Zy(n) = L(n)[-2222 4 294 [ (n)axe

@228y, an an
—a
4ma(m) + mafm)[ 2 + 6] (1)

Algebraic manipulations lead to

Zyp = LpYa + hiYe + LaYs + 1Y + nirYos,
+nyrY6 + n21Yeq,
Zyy = —hLrYae+ LYy — LRYw + LyYes + nqgYes.

—narYr + narYee. (12)

where again Y., m = 1.2,..7 depends only on the random variables ¢, and o,.

Expressions for Y., are given in the appendix.

3.3 Power-Correlation Scheme

The outputs y;(n) and y,(n) from Fig. 3 are as follows

n(n) = z1(n)(1 + wiawa) + r2(n)ws,

y2(n) = z3(n)+ z1(n)wy. (13)

The control algorithm simultaneously minimizes the output power E{|yia(n)?} and
the square magnitude of the correlation of output y;4(n) with y;(n). It searches for
3E{|y14(n)|*} /8w, = 0 and 8|E{y24(n)y;(n)}|*/0wy = 0. It can be shown that w,

and wj; converge in the steady state to

(137) a2
w =}, W = —— + e (14)
120pt 3y 210pt 4
PLT " ag[l - g PCT T

Unlike the other two schemes of bootstrapped cancelers. the power-correlator scheme

is not symmetrical; its outputs and hence, the decision parameters for each output are
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different. From (14) with the substitution of w,,opt and Wyopt 10 (13), we obtain

n(n) = hL(n)an(l - fi&: + e3eq) + Ir(n)ay;.
aggk

a ay2a7 1
-(— 12)2—€4+k63+6364—]+n1( 1+ —= 122
azzfluk
021 a2 €2

—— — — — )
aufa 2 F +e3e4]+n2(n[ 22L‘ L],

a21412 a2
+ €4—]
a11422 azz

+n2(n) - nl(n)[—;aln + 64]. (15)

y2(n) = L(n)esarn + f(n)az(l —

and the corresponding decision parameters

- a2 T _ 2 2
Ziln) ==hin) ey + = k[Iz( Jaznl~(22)e,
a2 ]

+e3k?]) + ny(n)f1 - ——-e3L - —64
an

-i-Tl'z(Tl)[—aT)2 + kfs]] )

1 a a
Zy(n) = Li(n)ayyeq + I(n)[— il +€4£

az2 G11822 az2

+na(n) + ny(n [——+e4]] (16)

where k £ 1 — 2221 The real and imaginary parts of Z;(n) and Z,(n) are given

11322
by

Zir = hLeYu + LYy + LrY s + 1Yy + mrYis
+n11Y16 + n2rY 17 + 2t Vs,
Zyy = —hLherYi2+ LY — LrYrg + I1Y13 — nygrYie

+ny7Y15 — narYis + narlis. (17)

Z:r = hLeYa + LYo+ LYo + Y2, + nypYas

+n11Y26 + n2grYor,
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Zyy = =LY+ 1Y — LeYsy + IrYas ~ nirYas

+n11Yo5 + narYor. (18)

where as before Yy;, [ =1,2,..8 and Y;,, m = 1,2,..7 [7] depends only on the

random variables ¢, and ¢,.

4 Performance Analysis
Using the decision parameter of equation (9), (12), (17) and (18) for the three
structures, respectively, we have for the average symbol error probability

Pi(e) = %[1 — L 1{P(1Zir| > ) + P(1Zu] > )} (19)

)
vM
The least upper bound on P(]|Zg| > ¢), called the Chernoff bound (8], would then

be given by

1 1 4 "
File) < “‘sz)z;a/.,/.,'
-3(SNR)

1
- , dos,
P 2(M =1) (SNR)Ui(en, b2) + w,-(¢1,¢2)] dé1d9,

(20)

where, SNR = M1 (8], and Uj(¢1,¢2) and Wi(éy,¢2), 1 = 1,2 differ for different

schemes [7].

The power-power scheme

Ui(¢l! ¢2) = }/12 + Y22 + )/32 + },42a

Wi(é1,42) = Y2+Y2+Y2+YE (21)

where Y,,, m =1.2...8 is defined in (25).‘




The correlator-correlator scheme

Ui(¢r,¢2) = Yi+Y3+Y3+Y4
Wil ¢2) = Yi+Yi+Y3 (22)
where Y,,, m =1,2,..7 is defined in (27).
Due to the symmetric structure of the power-power and correlator-cor:elator
schemes, the error probabilities at both outputs of each corresponding scheme are

the same for each structure.

The power-correlator scheme for output-1

Uridi,¢2) = Yi+Y5+Y3+Y
Wi(d1,92) = Yii+Yis+ Y3 +Y5 (23)

where Yy, {=1,2,..8 is defined in [7).

For output-2

U¢r,¢2) = YA +Y5+YR+Y

Widr,62) = Yi +Ye+VYs (24)

where Y, m = 1,2,..7 is defined in {7].

5 Results and Conclusion

The Chernoff upper bound (20) on the average probability of error as a function
of signal-to-noise ratio (SNR) is calculated for various cross coupling constants for 16
and 64 QAM signals and for the three different structures of the blind bootstrapped

cross polarization canceler.
The performance of these three structures is depicted in Fig. 4. 5, 6 and 7 for the

16 QAM with r= -15 dB and -10 dB. The bounds are higher for 64 QAM indicating
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a possibility of higher error rates for the same SNR. In Fig. 8, we compare the per-
formances of these three structures of BXPC with that of the LMS cross polarization
canceler.

From these figures, we conclude that the power-power scheme outperforms the
correlator-correlator and power-correlator schemes, particularly, when the cross cou-
pling is high , such as -10 dB. Also noticeable is the fact that the performance at
the two outputs of the power-correlator scheme are not the same. The performance
of one output is the same as that of the power-power scheme and the other output
performance is close to the performance of the correlator-correlator structure. In Fig.
8, it is clearly shown that the power-power scheme performs better than the others,
while LMS performs better than that of the correlator-correlator and that of output-2
of the power-correlator scheme.

Appendix

The Power-Power Scheme

_KrZpr+KiZp; ., _ K1Zpr— KrZpi

)/1 ) 3 }2
|ZD|' IZD!2
az ¢1rZpr + €111
YE’ = — P [}
ap |Zpi
_ an€rZpr — €11ZDR
)/4 - 2 [}
ayn |ZD1
Z ) Z
Ys = _ﬂ_y }'6__:_&_?
011|ZD| 011|ZD|
Y, =(€m — 11€0501)ZpR + (€11 — m1stney ) Zp;
011|ZD|2 ’
. rysinoy — €71)2pr + (€1r — ricosm )2
Y, =( 1 1 — € DRI ( ;R 1 1) DI (25)
anAZDI
Zp = Zpr +jZDI. K = Kp + J k.
Vo= 1r+ Vi, eae=ear+Jjar
€2 = €2R +j62! (26)
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where

ay2d71 | 412 az
Zp

Q
|

A 412 A an
K = | %4

The Correlator-Correlator Scheme

Yo = Va-—rirycos(o: + ¢92),
w2 = —[VI —rirsin(o + #2)),
as2 az 1
Yo = —=€r, Ya=——@ai, Ys=—,
ap an an
1
Yo = —[ar— ricoso,],
an
1 .
Yo = ——lar— rsinay), (27)
an
and
_ L o[ s —idr _ 2. i(261+82)
€ = Zan rie’* 4+ rqe ~ T|T2€

~rirkei® | E{|n(n) P E(T() "} (6a1 — 6u1)

1 i .
2 - 2 +2¢
Ega” [rle jor + ,.261% - rlrze’(‘b’ 2)

~rirse|. E{ln(n)}E{ E(n)?) (612 - b22)

i 2 . . . . . . . -
where &;; = i“l’;:((:)v ! is the discrimination constant which is the ratio of the mean

square of j th output signal at the output of the i th discriminator to the j th signal.

and y;4(n) is the signal after the discriminator.
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input #1: :
vy(t)=s(t)sb-n(t) : @
!
@ 1 input #2: "
‘ 1 valt)=ces(t)en(t
e e [N

Fig. 1 Power-Power Cross-Polarization Canceler




input #1: !
vy()zs(t)sbn(t) |

input #2:
va(t)=c-s(t)+n(t)

Fig. 2 Power-Correlator Cross-Polarization Canceler
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input #1: | iscrim.
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<
: A
| |
|
o
L
input #2: ,
va(t)=c-s(t)+n(t) va(t
| & . '
| signais’
e L] e O

Fig. 3 Correlator-Correlator Cross-Polarization Canceler
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P(symbol error)
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Fig 4. Power-Power Cross-Pol Canceler, Chernoff Bound comparison 16 QAM vs.
64 QAM
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CORRELATOR~CORRELATOR SCHEME
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Fig 5. Correlator-Correlator Cross-Pol Canceler. Chernoff Bound comparison 16
QAM vs. 64 QAM
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Fig 6. Power-Correlator Cross-Pol Canceler output-1. Chernoff Bound comparison
16 QAM vs. 64 QAM
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Fig 7. Power-Correlator Cross-Pol Canceler output-2, Chernoff Bound comparison
16 QAM vs. 64 QAM
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Appendix E
Bootstrap: A Fast Blind Adaptive Signal Separator

Abdulkadir Ding and Yeheskel Bar-Ness

Abstract

In this report, we propose a new fast multidimensional adaptive algorithm for
multi signal separation. The method is essentially based on multi-power-inversion
schemes [1]. It separates multi uncorrelated signals imposed on each other. The two
dimensional version of this adaptive algorithm, named bootstrapped canceler, has
been applied to digital communication to mitigate the effect of cross-polarization in
dual polarized M-ary QAM signals [3]. It has been shown that in previous appendices
that the power-power bootstrapped algorithm performs better than the least mean
square (LMS) algorithm in separating the two uncorrelated signals [5]. In this ap-
pendix, we propose a multi dimensional nonlinear learning algorithm which is based
on minimization of output signal correlations and we also investigate the learning
process of this bootstrapped algorithm compared with that of the LMS algorithm
for different eigenvalue spreads. It has been found from the computer simulations
that the bootstrapped algorithm converges very rapidly with respect to the LMS al-
gorithm. It is important to notice from the computer simulations that the learning

process of the bootstrapped algorithm is almost independent of the eigenvalue spread.
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1 Introduction

Multi channel interference can be a performance limiting factor in signal process-
ing systems. Removal of these interferences can be accomplished by use of adaptive
signal separators. The bootstrapped algorithm, which does not require a training
sequence, has been proposed for two dimensional interference cancellation with dif-
ferent adaptive learning schemes [1]. Several adaptive signal separators which require
a training sequence have been proposed in the literature applied to communication
systems [2].

Our objective in this report is to extend the bootstrapped algorithm to multi
dimensional signal separation applications and to investigate its convergence for dif-
ferent eigenvalue spreads.

In section II. the description of the channel model is given. We discuss the adap-
tive signal separators in section IIl. In section IV the convergence of LMS and boot-
strapped algorithms are compared by a computer simulation. The results of the con-
vergence comparisons are presented in section V. Finally, the conclusion is presented

in section VI.

2 Channel Model and Problem Statement

In matrix notation. a discrete time model of a M-dimensional interference channel

is given by

x(n) = AI(n) + n(n) (1)

where A is the channel matrix. I is the information vector assumed to be an indepen-

dent and identically distributed sequence and n is a white Gaussian noise sequence,




and x is the received signal vectors respectively.
a;p - aM [ Ii(n) n(n)
A= azn aMm , I(n) = I(n) n(n) = na(n) (2)

aM1 cc aMM Im(n) num(n)

The channel is assumed to be slowly time varying and non-dispersive. Hence,
the channel interference coefficients a;; ¢, = 1,2..M are assumed to vary slowly
with respect to the signal rate and assumed to be less than one while the diagonal
coeflicients a;; 1 = 1,2..M are assumed to be close to one.

Our objective is to find a multi dimensional bootstrapped adaptive algorithm
structure that will diagonalize the channel matrix A (that is to find the inverse of A)
without requiring a training sequence and demonstrate its convergence with that of

an LMS algorithm.

3 LMS and Bootstrapped Adaptive Signal Sep-
arator

3.1 Multidimensional LMS Adaptive Signal Separator

The traditional LMS algorithm which minimizes the error E{e?+ €2 +..¢%,} at the
output of the separator (Fig. 1) can be used as a multi dimensional signal separator

and solution of the optimum weights are given by
W, =R™'P (3)

and

I(n) = WT x(n) (4)

where i(n) is the estimate of I(n) information vector.

Wiiopt ct WAL10pt
Woaopt  WM20pt

Wop = . R = E{x(n)xT(n)}, P = E{x(m1"(n)}

W1Afopt . WAL Mopt

(5)
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where using (1) in (5)

R=AR/;AT+R, (6)
where
E{I*}} o0-- 0 H e 0
R, = 0 E{I;"} 0 R, = 0 : (7)
0 . E{I) o 4

The recursive weight updating algorithm to search for the optimum weights is

given by,

wij(n+1) = wij(n) — pei(n)zi(n), j=1,2.M}M,

ei{n) = yi(n) - Li(n) (8)
where I;(n) is the reference signal.

3.2 Multidimensional Bootstrapped Signal Separator

From Fig. 2, it can be easily shown that the output of the bootstrapped algorithm

is given by;
y(n) = w5'x(n) = w5'[AL(n) + n(n)] (9)
where,
1 —wpgy2 °° —UWBIM
wg = —Wwa2xn 1 N —WpRIM (10)
—wpM1 —WBM2 - 1

provided that the determinant of wg is not zero. we suggest the following boot-
strapped recursive algorithm that provides wg,,; = A~! in a no noise condition.
Our approach is to minimize the correlations at the outputs. simultaneously. For

simplicity, we show the optimal weights for two dimensional signal separation.
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Using (1) in (9), one can easily show that,

n(n) = [AK®) + Bh(n)

wln) = £IChin)+ DEn) (11)
where
4 an + anwp12, B = a2+ anwpy;, C =ax +anwpn
D = axn+apwsn, A=1-wpnwsn (12)

3.3 Cube Nonlinearity in Controlling Bootstrapped Algo-
rithm

The recursive algorithm to search for the optimum weights is given by,

{wpij(n + 1) = wpij(n) — uf(yi(n))y;(n), j=1,2.M i# j}Y, (13)
where f(y) = y® is an odd nonlinear function.
To simplify the analysis, the optimum weights are found in a no noise environment.
By taking the expected value denoted by E{(.)} of both sides of (13), and using (11)
in (13), we can write,
Eimua(m)} = E{xlB(n)B° +3h(m)E(m)AB" +

3I3(n)I(n)A’B + I3(n) A%|[I1(n)C + Iy(n)D] (14)

E{L(n)I;(n)} = 6(i - j), E{li(n)}=0 (15)
Using (15) in (14), and assuming E{I?(n)} = E{I3(n)}, and E{I¥n)} = E{I}n)).
E{y(n)ya(n)} = jAl—,.[3E{112(n)}E{13(n)}BA(BC + AD) + E{I}(n)}(4°C + B°D]
similarly
E{y3(n)yi(n)} = %[35{13(71)}5{122(”)}00(30 +AD) + E{[}(n)(AC® + BD?]
(16)
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The optimum weight vector Wp,p: for the bootstrapped algorithm, is the solution of
the nonlinear equations in (16). For i.i.d binary data . I;(n) = %1, from (16), we can
write,
Efyi(niua(n)} = (3B + A)AC + (B +34%) BD]
similarly

E{y3(n)y1(n)}

%[(302 + C*)AC +(D* +3C*)BD) (17)

The desired optimum solution requires A = B = C = D # 0, simultaneously and
A # 0. Two equilibrium solutions that make the equations in (16) equal to zero are
B=C=00r A= D = 0. These optimum solutions are, Wgopnn = —[s-g-,gﬂ- ,

and Wgoptz = —-[%ﬁ, %;J; . The required optimum solution which provides a stable
equilibrium point is Wg,p; - The detail steady state analysis of the solution of the

optimum weights can be found in {1].

3.4 Use of Supervised (reference) Signal in Controlling Boot-
strapped Algorithm

This analysis is done in order to compare the learning process of the least mean
square (LMS) algorithm which uses a supervised signal with that of the bootstrapped

algorithm . The weight updating algorithm is given by;

{wpij(n+1) = wa(n) — pe(n)y;(n). j=1,2.M i# I

€ = y,-(n)—I,-(n) (18)

where I;(n) is the reference signal.
By taking the expected value of the gradient and using (11) and (12) in (18), we

get
Efertmiua(n)} = E(I(m)}(A ~ AIC + E{I}(n)BD)
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similarly

Eleaslmhn(n)} = mB{RMWIAC+E{B@}BOD-8)]  (19)

Similarly, for the optimum wpg,p solution to exist A= B =C =D # 0, simul-
taneously and A # 0 required. At the required equilibrium point B = C = 0, the

optimum weight is Wgopn = —[532, 3],

4 Simulation

The inputs to the channel are assumed to be binary + 1. The two and three
dimensional interference channels are modeled by A matrix (2). The outputs from
the channel are corrupted by additive Gaussian noise with SNR=40 dB. The received
signals are then input to the LMS in one hand and bootstrapped adaptive signal
separators in the other hand.

The results for 500 Monte Carlo runs are given for a two dimensional interfer-
ence channel for different A matrix coefficients essentially for different eigenvalue
spreads. We take signal attenuations @; = 1 and interference constants a;; to
be all the same constant value. By setting all the weights initially to zero, and
providing a constraint wp;, < 1 to search for the optimum wgep in the boot-
strapped blind separator. the learning processes of the LMS algorithm and the boot-

strapped algorithm are compared for different signal-to-interference ratio, (SIR =
o, E{I}(n)}+..4+a% E{I?(n)}

iz

].OIog( a..E{l.’(n)} ) l # j'

In a two dimensional interference case , the eigenvalue spread (%::f) of the (2x2)

input signal correlation matrix R in (5) for @17 = a;2 = 1 and interference constants

aj; = apy , E{I¥(n)} = E{I3(n)} = 1 and zero noise power are given in Table 1.
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SIR | a13 | Amaz | Amin | Amaz / Amin | B

20 0.1]1.21 {0381 1.494 0.826
13.97 1 0.2 [ 1.44 | 0.64 2.25 0.694
10.46 { 0.3 | 1.69 | 0.49 3.449 0.592
7.96 04196 |0.36 5.444 0.51

6.02 {05225 ]0.25 9.0 0.44

442 106 | 2.56 | 0.16 16 0.391

3.01 |0.7]2.89 |0.09 32.11 0.346

194 (0.8 3.24 | 0.04 81.0 0.309

091 {091 3.61 |0.01 361 0.277
0 1.0} 4.0 0.0 oo 0.255

Table 1.
5 Results

In this section, we present the results of the computer simulations for different SIR
and convergence constants z. We have done the experiment in two parts. In the first
part, we compared the learning processes of LMS in (3) and bootstrapped algorithms
in (18) for the separation of two dimensional signal sources by using the reference
signals. The results of the experiment are given in Figs. 3 and 4, for different SIR =
IOIog(E%-) (from Table 1) and for chosen convergence constants u The convergence
constants for these two algorithms are chosen to be less than their maximum values.
In Fig. 5, the learning process of bootstrapped algorithms is depicted for SIR=7.96
dB with different convergence constants.

In the second part of the experiment, we show the comparison of the learning
processes of bootstrapped blind separation algorithm in (13) with respect to the
same updating algorithm by use of the reference signal in (18) for the three signal

separation in Fig. 6.
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6 Conclusion

In this report, it is shown experimentally that the learning process of the boot-
strapped signal separator in Fig. 1 with fewer of weights is faster than the LMS
algorithm in Fig. 2. This can be easily seen from Figs. 3 and 4 especially at high
SIR. At the steady state. the residue power with blind separation (using cube non-
linearity) is more than with respect to the use of reference signal in the bootstrapped
algorithm. As the recursive weight updating algorithm (13) is a nonlinear process,
the search for the global optimum weights is essentia! for the multi-dimension boot-

strapped blind separator.
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z2

Z3

-
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Fig. 1 Multi-Input/Output LMS Signal Separator for 3 input/output
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wyj(n + 1) = wij(n) = pf(n(n))yi(n)

=23
2 n
z2
¥2
z3 Ya

Wyl +1) = wy(n) - fa(m)us(n) |
j=1,3 I

wyi(n + 1) = wy;(n) — uf(ys(n))y;(n)
j=1,2

Fig. 2 Multi-Input/Output Backward/Backward Bootstrapped Signal Separator
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Fig. 3 LMS Signal Separator for Different convergence constants and eigenvalue
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Appendix F

Convergence and Performance Comparison of Three Different Structures
of Bootstrap Blind Adaptive Algorithm for Multi-signal Co-Channel

Separation

Abdulkadir Ding and Yeheskel Bar-Ness

Abstract

Multi-signal co-channel interferences can cause major limitations on the perfor-
mance of communication systems. The multidimensional least mean square (LMS)
algorithm can be used to cancel these interferences. However, such an algorithm
requires the availability of the reference (supervisory) inputs. In some applications.
there is a need for signal separation rather than interference cancellation. That is, the
system must contain more than a single output, (each delivers one signal,) as clean

as possible from other signals (interferences).

In this appendix., we intend to extend the previously reported three structures of
bootstrap blind signal separators to the multi-signal co-channel case, study their per-
formances, their depth of cancellations, speed of convergences and their dependency
on eigenvalue spreads. We also present simulation results comparing the performance
of these three structures for two and three signals separation under white Gaussian
noise environment and for different signal to interference ratios. Particularly, it is
shown analytically. as well as experimentally (by simulation), that the use of equal-
ization (automatic gain control (AGC)) at the output of these structures improves

the depth of interference cancellation dramatically.
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1 Introduction

Although one can design the LMS algorithm to perform signal separation, the com-
plexity of such an approach increases rapidly as the number of signals to be separated
increases. Using the bootstrap algorithm, one can perform such separation without
the need for reference signals in a form of training sequences, decision feedbacks,
or other methods. Three different structures proposed in [1], termed power-power,
correlator-correlator and power-correlator, have also been reported in the open liter-
ature [2]. Its separation capability for two signals was shown and simulation results
using the power-power structure were included. Successful application of the power-
correlator structure for satellite communication was reported in [3-4]. The use of the
power-power structure in cross-polarization cancellation for M-ary QAM was reported
in [5]. Error probability performance was estimated and compared to that of LMS
and other cancelers. It was proven analytically and demonstrated by simulation and
in practical hardware implementation that for the bootstrap algorithms to converge
to a state of signal separation. there is a need for the inclusion of nonlinearity, termed
signal discriminator.

In addition to being capable of high blind signal separation. it was shown that
the power-power structure of the bootstrap algorithm converges faster than the LMS
algorithm and is independent of the eigenvalue spread of the input correlation matrix
6]

In this work, we investigate the convergence properties and performance of three
structures of the bootstrap blind algorithm with different eigenvalue spreads and
extend it to multidimensional signal separation.

In section II a multi-signal co-channel description is given. In section III, the
three different structures of the bootstrap blind algorithm are given. In section IV,
the convergence and the steady state performance of the three structures of bootstrap

blind adaptive algorithms are compared using computer sirulations. The conclusion
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is presented in section V.

2  Multi-signal Co-Channel Model

In matrix notation, the discrete time model of an M-signal co-channel is given by
x(n) = AL(n) + n(n), (1)

where A is the channel matrix, I is the information vector assumed to be independent
and identically distributed sequence, while n is a white Gaussian noise and x is the
received signal vectors, respectively. The channel is assumed to be slowly time varying
and non-dispersive. Hence. the channel matrix A can be approximated by interference
coeficients @;; ¢ # j, 7.7 = 1,2,..M, assumed to vary slowly with respect to the
signal I;(n) rate and to be less than unity in magnitude. The diagonal coefficients

a;; 1 =1,2..M are assumed without loss of generality to be unity.

3 Bootstrap Blind Adaptive Signal Separators

3.1 Multidimensional Power-Power Scheme

It can easily be shown from Fig. 1 that the output is given by

y(n) = wi'x(n) = wi'[AI(n) + n(n)] (2)
where,
1 —wyy - —Wiy
S— —wy 1 N = w2pm . (3)
—wpM1 —WM2 . 1

1 M M
yi(n) = A K“ﬁ + D Wisi + Y WM+ O(M 1) %5 ~ aiin(M—l)w(M—l)M) Ii(n)

I# I#

M M M
+3 (0:‘1 + 3 wijai T Y WiM—j+1) WA=y +1)850 = aile(M-l)w(M-n)M) Iy(n)
11 i I

+n(m)] (4)
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The first term in (4) represents the desired signal at the i th output, the second
term is the residual interference from all other signals. while n,;(n) is the resultant
Gaussian noise at the output. A is the determinant of the matrix w; in (3). Notice
that the desired signal is somewhat distorted and needs equalization. Due to the
complexity of the general expression, we only write the output for the case of two
dimensional signals and no noise environment. Therefore. using (1), (2) and (3), we

get for the outputs

n(n) = -}i[AIl(n)+BIg(n)]

ya(n) = —Al—[Cll(n)+Dlz(n)] (5)

where

A A
A = an+ayw, B=ap+anu;

A a
C = an+angwa, D =az+awy

e

A 1 - Wwy2W71 (6)

Notice that the desired signal is somewhat distorted and needs equalization.

A Recursive Algorithm to Search for Optimal Weights

A recursive algorithm is used to search for optimal weights that result in signal sep-
aration for the three different structures of bootstrapped algorithms. The algorithm
simultaneously minimizes the estimates of the output correlations f[y:(n)]y;(n) i,j =
1,2,..M i # j, where f[.] is an odd memoryless nonlinear transformation. It can
be shown that such nonlinearity satisfies the need for signal discrimination and is
sufficient to make it converge to a state of signal separation. Using steepest descent

recursion. we get
wij(n +1) = wi(n) = uflyi(n)lyi(n), 1,5 =12.M i #]. (7)
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where 4 is the stability convergence constant. In order to have convergence in the
mean of the weights w;;, we must require E{ f[yi(n)]y;(r)} =0, 2,7 =1,2,.M 1 # ;.

In the case of the two dimensional signal, we must have

E{fly1(n)ly2(n)} = E{f[y2(n)]pr(n)} = 0. (8)

Using (4) in (7), with f[y] = 3, we get

E{43(n)ya()} = 7 BE{A(m)} E{(n)} BA(BC + AD)
+E{I}(n)}(A°C + B°D),
E{y3(n)ui(n)} = 5 BE{IH(n)} E{I2(n)} DC(BC + AD)

+E{I}(n)}(AC® + BD?]. (9)

For the sake of simplicity, we take E{I¥(n)} = E{I}(n)} and E{I}(n)} = E{I}(n)}.

Furthermore, for I;(n), taking values +1 with equal probability, (8) becomes

E{y¥(n)ys(n)} = é[(SB’ + A®)AC + (B® + 3A%)BD),

1
E{g3(n)yn(n)} = E[(L’.D2 + CHAC + (D* + 3C?*)BD). (10)
For the two equations in (9) to equal zero, it is necessary and sufficient to have
either B=C =0o0r A= D = 0. These conditions result in two equilibrium points

_ %12 an a2 411
Wopt1 = —'[_- —], Woptea = —|—, —}. (11)
az an a12 an

It can be shown that w,,, is a stable equilibrium point. Using w,p in (4), we

get the optimal separator outputs
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Yiopt(R) = annfi(n) ,  Yaope(n) = azala(n). (12)

With the use of an automatic gain control (AGC), (amplitude compensation) at

the output of the separator, we obtain

é yiopt(n) = l

YiAGC i(n), 1=1,2 (13)

1]

which depicts a total compensated signal separation.

3.2 Multidimensional Correlator-Correlator Scheme

From Fig. 2, we write

y(n) = wx(n), (14)
where
]_ cee le-
wp=| ° 1 : . (15)
wa . . WiM-1),M
wM'(M_l). 1

Using (1) and (14) in (13), the output of this separator is given by

M M M
vi(n) = [aii +> wijaji] Ii(n) + Z[aa +3 wc‘jajl] Ii(n) + n,i(n) (16)

J# l# J#s
The first term in (15) represents the desired signal at the i th output and the
second term is the residual interference from all other signals, while n,(n) is the

resultant Gaussian noise at the output. For the case of the two dimensional signal

and no noise environment. we have from (15)




yi(n) = AlL(n)+ Bly(n)

y2(n) = CI(n) + DIy(n) (17)

where A, B, C and D as in (6). Using the same argument as in (7), we conclude that
for the two dimensional case the optimum weights for the correlator-correlator scheme
are also given by (10). Finally, using W, in (16), we get the optimal separator

outputs

ay2a2 aqa
ylopt(n) = all[l - . l]Il(n) ) y2opt(n) = (122[1 - 12 21}12(77')' (18)
asan G22d11

If the channel matrix can be approximated by a constant. then AGC can be

implemented at the output leading to

yiopt(n) }
Yisgec = ——ae— = Li(n) , 1=1,2. (19)
a“l{l - :22011J

3.3 Multidimensional Power-Correlator Scheme

From Fig. 3. the output is given by
y(n) = wx(n), (20)

where

(14 wpwyy - 4+ WA WMLy wy,

Wi 1+ Wy + WM WAL >
WAL —1. M
WAL M-, 1

—_
[S%]
—

A

Similarly. us.ng (19) and (20) together with (1), we obtain
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M M M M M
yi(n) = [aii(1+z wijwii)+ Y wijaji] Li(n)+Y_ [ail(1+z wijwji)+Y wijajl] Ii(n)+n,i(n)
J>i J#i l# > J#i (22)

It is similar to correlator-correlator i th output in (15) but, notice the ac'ded term
in the desired response, I;(n). As is shown later, this term causes reduction in the
output equalization requirement without effecting its bandwidth response {7]. In the

case of no noise and two dimensional signal separation, we write from (21)

n(n) = Ali(n) + Bli(n),  ya(n) = Ch(n) + DIx(n), (23)

where

lie

A
(1 + wyaway)ay, + aawiz2 , B = (1 + wi2war)arz + azzunz,

a a
C = an+enwn, D=azx+apws.

(24)
Similarly, using (22) in (7), we get the equilibrium points
a2 as az(l — m;ll au]
W, = —|— y of = - 22221 sy b 25
opel [022[1 — fien | au] Wopt2 a2 az (25)

aan

As before, we can show that only W,p is a stable equilibrium point. Substituting

Wopt1 Of (24) into (22), we get

Yiope(n) = andy(n) . Yao(n) = anfl — 222 I(n), (26)
a22a11

and with the use of a suitable AGC at the outputs of the canceler, we have




_ ylopt(n) _ _ y2opt(n) _
Yuee = = — = h(n), wyuec= amall — s — Iy(n). (27)

a23811

Notice that for the power-correlator structure, one of the outputs requires an AGC
normalization by a;;, the desired signal response, similar to that required in power-
power structure. Particularly, for a;; = 1, AGC is not needed. The other output
needs an AGC which depends on the interfering signals coupling in a manner similar

to that required in the correlator-correlator case.

4 Simulation and Results

In this section, we present the Monte Carlo simulation results for two and three
signal separators based on the three different structures of bootstrap and LMS algo-
rithms. The block diagram for the simulation set up is given in Fig. 4. The channel
input I;(n) 2z = 1,2,3 are random bipolar independent sequences. Channel parame-
ters were chosen to present different desired signal-to-interference ratios (SIR) at the
output. The signal-to-interference ratio is defined by SIR = 10109[%%")}-].
Without loss of generality, we take a;; = 1 and cross coupling a;; to be the same
for all z and j, ¢ # 5. Different q,; causes the canceler’s input correlation matrix to
have different eigenvalue spread. White Gaussian noise is added to the output of the
channel, with signal-to-noise ratio (SNR) of 40 dB. Such high SNR is used in the
simulation to enable better examination of cancellation depth. The blind bootstrap
separator in one hand or the LMS separator in the other are used 1o cancel cross
channel interferences. Finally, wherever needed, AGC is added to the = itput of the
separators.

By setting all the weights initially to zero, and providing a constraint w;; < 1

to search for the optimal weight w;;op1, we obtain learning curves from the average

results for 500 runs. This is done for two and three dimensional interference chan-
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nels. In Fig. 5, we depict such learning curves for power-power, correlator-correlator
and power-porrelator bootstrap separators and the LMS separator with a two sig-
nal channel. Since the first two are symmetric structures, the results from only one
output are shown. For the second, we show both outputs, y;(n) and y;(n), as they
are shown in Fig. 3. As channel coupling parameters, we used a;; = 0.8, and as
a convergence constant g we took values 0.12, 0.08, 0.08 and 0.2 for power-power,
correlator-correlator, power-correlator and the LMS signal separators, respectively.
These values were chosen to be slightly less than the maximum values allowed for
stability. From these results, we note that power-power results in a smaller steady
state interference residue than that of the correlator-correlator separator or output 2
of the power-correlator. However. this residue is larger than that of LMS or output 1
of the power-correlator. The correlator-correlator residue equals that of output 2 of
the power-correlator. Nevertheless. all bootstrap separators converge faster than the
LMS separator.

In Fig. 6, we depict the learning curves of the three separators with channel
coupling parameters a,; = 0.4 instead. Residues in this case behave similar to Fig.
5 except for the fact that for correlator-correlator, the residue is slightly larger than
the residue at output 2 of the power-correlator. The convergence constant u was
taken to be equal to 0.2. which is slightly less than the maximum allowable for the
stability for this case of channel parameters. Comparing Fig. 5 to Fig. 6, we notice
that when the channel coupling parameter is smaller, the convergence is faster. To
examine the effect of AGC on the separator’s performance, we show Fig. 7, the
learning curves of correlator-correlator with and without AGC. In Fig. 8, we do
the same for output 2 of the power-correlator separator. Note that these are the
only cases which require equalization via AGC. Fig. 9 and Fig. 10 deal with the
case of the three signals channel. In Fig. 9, we compare the learning curves of the

correlator-correlator separator with and without AGC to that of the power-power




separator without AGC. We again use a;; = 0.4 and p to be the same as in Figs. 6,
7 and 8. From this curve, we notice that by adding AGC, the correlator-correlator
learning curve becomes similar to that of the power-power separator. In comparing
the results of this figure to those obtained with the two-signal channel, we clearly
notice a higher residue with the former, due to the added interfering signal. In Fig.
10, we compare the learning curves of the power-power separator to the three outputs
of the power-correlator separator when AGC is added to the outputs. It is quite clear
from the results with the two and three signals’ channel that, the speed of convergence

is practically the same in both cases.

5 Conclusion

In this appendix, we have extended the previously reported three structures of
bootstrap blind adaptive separators to the multi-signal channel case. We suggested
a recursive weight updating algorithm for the three structures termed power-power,
correlator-correlator and power-correlator. The optimum weights for these separators
were found analytically in the absence of noise. The signal separation process was
shown via simulation by the outputs learning curve. It was shown that the different
bootstrap separators converge to their steady states almost with the same speed for
a two or three signals channel. They all converge faster than LMS regardless of
the value of channel coupling parameters. The steady state interference residues of
the three separators are different, lowest for power-power and highest for correlator-
correlator. One output of power-correlator results in residue similar to that of the
correlator-correlator. However, adding AGC to the correlator-correlator outputs or
one of the outputs of the power-correlator reduces the amount of residue. so that

when AGC was added (where it was needed), all separators behaved similarly.
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Fig. 1 Multi-Inputs Multi-Outputs Backward/Backward Bootstrapped
- (Power-Power) Signal Separator
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Fig. 2 Multi-Inputs Multi-Outputs Forward/Forward Bootstrapped
(Correlator-Correlator) Signal Separator
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Appendix G

Bootstrapped Spatial Separation of Wideband Superimposed Signals

Abstract

Bootstrapped algorithms were developed and used for separation of two signals.
when two versinus of their weighted sum is given. In this paper we apply the bootstrap
principle to the separation of N signals transmitted from point sources at different,
unknown locations, when received by an array of M sensors. We present a general
structure of the separation scheme which consists of delay elements and summation
only. Its input is the M-sensor output signals and its output is the estimates of the N
source signals. We show that if the source locations are known, this system provides
a least squares estimate of the source signals. If not, it can adaptively converge to the
least squares solution, provided that some prior information about the source signals
is available. In particular, we present a detailed study of the bootstrapped algorithm
for the separation of two sources received by two sensors. A simplified version of the
algorithm is presented and the idea of adaptively controlling the unknown delays is
discussed. We show that the proposed algorithm is a powerful tool for the decompo-

sition of spatially mixed wideband signals.
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1 Introduction and Background

This appendix deals with the scenario in which NV point sources are received by M
omni-directional sensors. The received signal at the output of each of the M sensors

can be modeled by:

N
Zm(t) = D sn(t = Tm(0a)) + em(t) m=1,... M ; |t| < T/2 (1)
n=1

where: s,(t) is the signal radiated from the n-th source; 8, represents the coordinates
(location) of the n-th source: and e,,(t) is the additive noise at the m-th sensor. In the
special case of a two dimensional array and far-field sources, 8, is the source bearing.
Tm(0r ), the travel time of the n-th source from the array origin to the m-th sensor is

given by:

Tmlln) = %[xmsin(),, + ymcosb,] (2)

where c is the propagation velocity of the signal wavefront and (Zm,ym) are the
Cartesian coordinates of the m-th sensor. If the array is an equally spaced linear
array (ESLA) then ym» =0 and zm=(m — 1)d, m=1,...,M where d is the separation
between successive sensors and the plane origin is assumed at the coordinates of the

first sensor. Thus, ( 2) becomes:

Tm(0a) = (m ~ l)gsinan (3)

In general there are MxN (or (M-1)xN) delays which are a function of the N
source locations 8;,...0yn . For an ESLA there are only ;" different delays which carry
all the spatial information.

The above model can match ma: - practical applications in different fields. In
passive sonar the source signals ac¢ v deband, noise-like random processes and the

unknown source location vector. § = 6y, ..,...0x)7 , has to be estimated. In the active
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case the source signals are basically known, but the aim is the same - estimation of the
source locations. However, in a communication system, one is usually interested in

the source signals themselves and not in their locations which are sometimes known.

We assume broadband signals, which are more general than the usually assumed
narrowband case, where a delay can be regarded as a phase shift. The received sensor
data (1) can be represented in the frequency domain:

T/2

Zn(n) = [ (e sm =1, M k=1, (4)

Zm(wi) is the Fourier coefficient of the output from the m-th sensor at frequency

(27/T)k. The processing bandwidth is, therefore, B = L/T. At each frequency, the

array output is given by the m-dimensional vector:

Z(wk) = (Z1(wk), -ovs Zpg(wi))T (5)

Following the model of (1), Z(wx) can be written as

N
Z(wk) = Y Sa(wr)a(wk,0a) + E(wi) = A(wif)S(wi) + E(wr) (6)

n=1

where S(wi) = (Sl(wk),...,SN(wk))T and E(wi = (Ey(wk), o, Ey(wi))T . Sn(wi)
and E,,(wi) are the Fourier coefficients of the n-th source signal and the noise in the

m-th sensor, respectively. Also,

A(wk, 8) = [ay(wk) : ... : an(wi)] (7

where

g(wk,an) = Qn(wk) - (ejhlkﬂ(on)' m,ejwnu(On))T (8)




If M > N the least-squares estimate of the frequency domain vector of source

signals, S(w), given the data vector Z(w), is [1}:

S_(wk) = [A‘(wln Q)A(wk’ Q)]—IA‘(“J’HQ)-Z—(W") (9)

For the special case of M = N = 2 it easily can be verified that

[A% (wk, ) Alwi, 0)} " A™ (wi, 8) Z(wi) =

1 eJweDr _ coskaej“‘*D? e~JweD1 _ coswy Ae~iwkDz (10)
sin2wA \ D2 — coswp AeiwDr  gmiDr _ o AemirDr

where A = Dy — D, . In (8) we also assume that the array origin reference is the mid
location between the elements, so that 71(6;) = —72(61) = Dy, 71(0;) = —72(6;) = D,
. We see that, even if D, and D, are known, the implementation of the least squares
solution of (9) requires filtering the array outputs z;(t) using filters having transfer
functions of the form: coswA or 1/sin?wA, as well as pure delays (see Fig. 1). The
implementation of the trigonometric filters is difficult, especially when é is unknown
and is to be estimated adaptively. One possible approach to deal with this implemen-
tation problem is to approrimate the trigonometric filters by FIR (or IIR) filters. In
the sequel, we show that applying the bootstrap principle to this problem results in
an ezact implementation of (9) which uses only delay elements and summations, in

a feedback configuration.
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2 The Bootstrapped Algorithm

Bootstrapped systems are multi-input multi-output feed-back systems in which
each output "helps” to improve the other outputs. The idea is to assume that a
system output is indeed the desired response and to use it, via feedback, to get other
outputs. This approach has been successfully applied in satellite communication to
improve separation of cross-pol signals [2]. In our problem, given any N-1 source
signals one can get a good estimate of the remaining signal, say s, (t) from any of the

sensor outputs using:

N

Sam(t) = 3a(t = Tm(fn)) = 2m(t) = D si(t —Tm(6:))) (11)

(1=1)ign

If no noise exists, then the left hand side of (11) is indeed a delayved version of
sn(t). However, since noise is never zero, averaging over the estimated version of a

certain signal from all sensor outputs will improve SNR output. Therefore, we have:

$a(8) = 52 3" dum(t+ 7 (8) (12

m=1

The outputs of the proposed algorithm are N signals, y,(t), ..., yn(t) which are
desired to be the best possible estimates of the NV source signals s(t)...., sn(t). Fol-
lowing the bootstrapped approach. we replace the known source signals in (11) by
their estimates {y;}. Therefore. the proposed scheme is described by the NxM equa-

tions:

Ynm(t) = yn(t — Tm(0n)) =

f}

Z yi(t = () ;m=1,...M:in=1....N
(l—l).¢"
(13)

M
yn(t) = T Z nm(t+Tm b; ) (14)
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By transforming (13) to the frequency domain we get

M N
Ya(w) = —Al? Y e?wm(n)(Z, () — Z Yi(w)e )] :m=1,.. . M;n=1,..,.N
m=1 (i=l)i¢n
(15)
In a matrix form this equation is equivalent to
A% (w,0)A(w, )Y (w) = A™(w,8)Z(w) (16)

where A(w,8) is given by (7) and (8). Therefore, the frequency domain representa-
tion of the output vector y(t) = (y1(t), ..., yn(t))7 is exactly the same as S(wi) of (9).
i.e., the system described by (12) is a realization of the least squares estimator of the
source signals. In Fig. 2 we present a block diagram of this system for the special

caseof N=M =2.
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3 Bootstrapped Separation of Sources at Unknown
Locations

If the sources location is unknown, then § = (6;,...,0n)7 is unknown, and 7,,(6;)

in (9) is replaced by its estimate, 7m; =7n(6;), m = 1,....,. M, i = 1,...,N. In that

case, the frequency domain representation of the output vector is:

Y(wi) = [A(wr, ) A(wi, 8)] 7 A" (wk, ) Z(wi) = [AA] A" Z (17)

This is no-longer the least square estimate of S(wx), but only an approximation.
In the sequel, we propose an adaptive algorithm by which an estimate of the de-
lays D; will be found. Ve show that. in case of no additive noise, the algorithm
converges to the least squares solution of (9). We demonstrate our results for the
special case where vV = M = 2. However, generalization of the algorithm for any
M > N > 2 is straight forward. Consider the system of Fig. 3. It can be shown that
for 71(61) = —12(01) = D). 11(0;) = —75(0;) = D,, the 2x2 transfer function matrix,
H(w), which relates the two outputs. y,(¢) and y,(t) to the two inputs z,(¢) and z,(t)
is exactly the same as those of the system of Figs. 1 and 2. That is, the system
of Fig. 3 is another, alternative implementation of a least squares separator with
H(w) given by (10). If initially 1 # D, and/or 7, # D,, then we intend to adapt 7,
and 7; so that in the steady state they reach these optimal values. We notice that
the scheme of Fig. 3 is similar to the bootstrapped "power-power” separator of [2-7)
which is applied to the separate weighted sum of two uncorrelated signals. There, the
delays 7, and 7, are replaced by complex weights. say W; and V. In the frequency
domain our unknown delays are represented by e“™ and e~/“™ and the input signals
are weighted sums of the uncorrelated frequency domain signals S)(w) and S;(w).
Therefore, the frequency domain representation of our problem is equivalent to the
time domain separation problem of {2-10] and a similar approach can be considered.

It was shown there that without noise ( n;, = n; = 0 ), the power of the two out-
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put signals is minimal if and only if the controlled weights are equal to the unknown
model parameters. It was also shown that for this configuration, the optimization cri-
terion of minimum power is equivalent to the criterion of zero correlation between the
two outputs [3-4]. By analogy, in our problem the equivalent optimization criterion
should be minimum power (or zero correlation) in the frequency domain. However,
since power and correlation are preserved when transforming from time to frequency
and vice versa (Parseval), this criterion can be applied to our problem either in the
frequency domain. or in the time domain. Inspirated by a possible hardware imple-
mentation using voltage controlled delay lines, we prefer the time domain approach.
That is, we suggest to control the unknown delays 7; and 7, by an adaptive algo-
rithm which seeks for the minimum power of both outputs, simultaneously (or, for
the minimum power of their cross correlation signal). Notice, however, that this con-
trol procedure cannot be employed unless some information that distinguishes the
signals to be separated is available. Mathematically, it can be shown that all possible
optimization criteria (zero correlation '3, minimum power) yield the same, or linearly
dependent. control equations. Notice, however, that to control both 7, and 7, one
needs two independent equations. This difficulty can also be predicted by considering
the separation problem as a multi-input multi-output identification problem, where
it is well known that weighted sums cannot be separated if nothing is known about
their components. In our application, it is also woll known that the resolution ca-
pacity of an array of M sensors is bounded by the number of sensors (i.e., M > N)
if absolutely nothing is known about the signals. Conversely, if prior information is
available, it can be used to discriminate between the two signals in the control loops.
Thus, as suggested in [3.4]. such a dependency problem can be handled by introducing
a "discriminator” which uses the distinguishing information to emphasize s,(t) in one

of the control loops and another one which emphasizes s,(t) in the other loop. This

13Lately the de-correlation approach is also used in [11]
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procedure yields two independent control equations, which guarantees convergence of
the adaptive algorithm to the desired solution 7, = D, and 72 = D;. The possible

control loops are depicted in Fig. 4.

4 Conclusions

For separation of signals radiated from point sources, we propose the system of
Fig. 3. where the delays are controlled by any of the algorithms of Fig. 4 (there
are 4 different combinations, for two unknown delays). We have shown that if the
delays are adapted to the unknown model parameters exactly, then the outputs of
the proposed bootstrapped system are the least-squares estimates of the source sig-
nals. In a further, on-going study we investigate the adaptive algorithm with more
details. we suggest alternative implementations of the separation configuration and

we study the effect of the additive noise on the performance of the proposed separator.
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Fig. 1 Direct Implementation of the Least-Squares Operator.
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Fig. 2 Bootstrapped Implementation of the Least-Squares Separator.
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Fig. 3 Alternative Implementation of the Bootsrapped Least-Squares Seperator.
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Fig. 4 Block Diagram of the Delay Control Algorithms.
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