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ABSTRACT

An adaptive algorithm termed "Bootstrapped Algorithm" is proposed and analyzed, and its
performance is evaluated in this report. Using this algorithm as an interference canceler
results in structures which are unique in that they are composed of multi-cancelers; each
uses the outputs of other cancelers as references (desired signals) or in other forms to
further improve performance. As a result of such unique structures, the bootstrapped
algorithm is shown to perform as a "Signal Separator" rather then as an interference
canceler. Clearly, because it does not require a reference signal in the form of decision
feedback or training sequence, it is sometimes justifiably referred to by the term "Blind
Separator."

Due to its many advantages, one might consider many applications for such blind signal
separators ranging from neural networks and pattern recognition, direction finding and
general signal estimation to co-channel interference cancellation and cross polarization
interference suppression. After we present a thorough examination of the steady state
analysis of the two-inputs two-outputs structures without noise, we consider the
bootstrapped signal separator with noise present as a signal estimator and discuss its
properties.

Application to cross-polarization cancellation in M-QAM dual-polarized transmission is
thoroughly discussed. Improvement of error probability by using such a canceler is
quantified. Because of its importance for neural network applications, extension of the
bootstrapped algorithm to multi-inputs multi-outputs is also examined.

Convergence properties of the two-inputs two-outputs and the multi-inputs multi-outputs
cases were also studied. Finally some preliminary results of the algorithm for wide-band
signal cases were obtained.

It was found that the bootstrapped algorithm has many useful properties which make it an
excellent candidate for use as a signal separator or interference canceler when other
algorithms have some difficulties. In some cases, it clearly outperforms other algorithms.
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1 Introduction

Reported below are the results of a study carried out at the Center for Communi-

cations and Signal Processing Research, NJIT, between March 1, 1991 and June 30,

1992. The aim of the research is to propose, analyze and evaluate the performance

of a fast algorithm, termed "Bootstrapped Algorithm." The bootstrapped aigorithm

for interference cancellation was first proposed by the principal investigator in 1981

[1] and later used for cancelling cross polarization in satellite communication (21 and

in the Microwave Terrestrial Radio Link [3-5]. Other possible applications to tactical

communications are included in [6].

The bootstrapped interference canceler is unique in that it is composed of two

separate cancelers each using the output of the other canceler as its reference (desired

signal) input. As a result of such structure. it is shown to perform as a "Signal Sepa-

rator" rather than an interference canceler. Clearly, as such, it does not (like regular

LMS) require a reference signal in the form of decision feedback or training sequence.

Hence sometimes, the term "Blind Separator" is used.

Three different structures are proposed in Fig. 1; (1) Backward/Backward (BB)

(2) Forward/Forward (FF) and (3) Forward/Backward (FB). These are the three pos-

sible interconnections among different noise cancelers. The adaptive weights for these

cancelers can be controlled by minimizing output powers or minimizing the absolute

value of the cross correlation between any two outputs and hence sometimes for the

two-input two-output, we used the names "'Power-Power" (PP), "Power-Correlator"

(PC) and "'Correlator-Correlator" (CC) (see Figs. 2, 3 and 4).
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To understand the behaviour of this newly proposed algorithm, one must discuss

the steady state and show that under accepted conditions it converges to its steady

state which represents the desirable signal separation. Effect of noise on the behaviour

of the algorithm is also of interest. Looking at the algorithm as an estimator of the

desired signal, one might also be interested in examining the properties of this esti-

mator under noise.

Due to many advantages, one might consider many applications for such a blind

signal separator, ranging from neural networks and pattern recognition, direction

finding and general signal estimation to co-channel interference cancellation and

cross polarization interference suppression. In this report, after studying the prin-

ciple property of the algorithm without and with noise, we study the performance

of the Backward/Backward (BB)- Power-Power bootstrapped cross-polarization can-

celer and compare it to that of the Diagonalizer and LMS cancelers. Performance

study of the other two structures. i.e. Forward/Forward (FF) - Correlator-Correlator

and Forward/Backward - Correlator-Power is followed. It is also compared with that

of the BB/PP canceler.

Clearly, for cross-polarization cancellation of a dual polarized channel, we are in-

terested in separating two orthogonal signals and obtaining at the outputs, signals as

clean as possible with low error rates. Hence, we examined the two-input two-output

case. Extension to the multidimensional case is also of interest particularly, as for

example. in neural network applications. This was first done with the BB structure

and then when using the FB and FF structure.

The convergence properties of the bootstrapped algorithm with two-inputs, two-

outputs and multi-inputs, multi-outputs are also examined. Finally some preliminary
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study of the algorithm for wide-band signal is started.

It was found that the bootstrapped algorithm has many useful properties which

make it an excellent candidate for use as a signal separator or interference canceler

when other algorithms have some difficulties. In some cases, it clearly outperforms

other algorithms.

Section (2) below is a technical summary of the study and its results. Detailed

reports, on which this summary is based, are given in the Appendices of this doc-

ument. These appendices each cover a specific part of the research and they are

written in a way that can be read independently of other parts. Section (3) contains

the conclusions and recommendations for further study.

2 Technical Summary

2.1 Bootstrapped Algorithm - Two inputs - Two outputs

2.1.1 Bootstrapped Adaptive Separation of Superimposed Signals - Steady

State Analysis

Consider the two inputs (in complex envelope notation)

VqIM) = Sj(t) + bs2(

t,2 (t) = cs(t) + S2 (t) (1)

where b and c are complex values and 1b62 and Ile2 are the input signal to interference

ratios. .si(t) and s 2(t) are zero mean uncorrelated stationary complex processes. If we

process these two inputs by using Widrow's noise canceler,[7] then the two outputs

will follow the "power-inversion' relation with respect to power ratios at the inputs

to the weighted elements (see Fig. 1 of appendix A). Particularly, when Ibl and lci
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are less than unity, as in a cross pol -Lrization interference case, this canceler is useless.

A novel way to obtain a high signal to interference ratio at both output ports is

to use a bootstrapping approach. In this approach, two cancellation paths and two

summations are used to obtain the system outputs, and an adaptive algorithm is

employed to optimize the signal-to-interference power ratio at the two output ports

simultaneously.

Three different configurations are possible for a bootstrapped algorithm; these

are: (see Fig. 1)

1. The Backward/Backward (BB)

2. The Forward/Forward (FF)

3. The Forward/Backward (FB)

Such interconnections between the two "noise cancelers" help improve the perfor-

mance of each one and result in high quality signal separation.

In order to control the adaptive weights, one needs optimization criteria. For the

two inputs two outputs case, the following are possible,

1. Power- Power

2. Power-Correlation

3. Correlation-Correlation

In the first, the weights are controlled by minimizing the output powers, respectively.

With the third, the absolute values of the cross correlation between one output and a

modified version of the second output, and versa is minimized. The second criterion

is a combination of both. See. for example. Fig. 2 wherein the backward/backward

configuration is used and the weights are controlled by minimizing the powers at the

output.
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To understand the operation of this particular separator, let the power ratio of

the two signals at point No.3 be such that s > n (even if only slightly greater). Point

No.3, being the input to the weighted element of the / processor, (terminal No.1,

is the other input) will result (because of the power-inversion) in n > s at point

No.4 and output vp(t). But point No.4, being the input to the weighted element of

the a processor, (terminal No.2 is its other input) will result in s still greater than

n at point No.3 and hence at output port Vq(t). This process of bootstrapping will

continue resulting in a very high snr at one port and a very high nsr at the other. The

snr and nsr, at these ports respectively, will be upper bounded by values depending

on the noise, the impurities of the systcm and control errors. Consequently, the

power-power canceler of Fig. 2 acts as a high quality power separator. In fact. ideal

separation occurs only in a noise and impurity free case. The operation of the other

configurations are discussed in detail in Appendix A.

One can show that for the backward/backward configuration, power or correlation

minimization are equivalent and either or both of them can be used to control the

two weights. Th: iurward/forward configuration's weights can only be controlled

by de-correlation. The feedback arm of the forward/backward configuration can be

controlled by either minimizing the corresponding power output or by de-correlation

of the output signals. The forward arm of this configuration can be controlled only

by de-correlation (see Fig 5 and 6).

Appendix A of this report contains a detailed study of the steady state analysis

of the bootstrapped adaptive signal separator. This analysis concentrates on three

configuration - optimization structures.

1. Backward/Backward - Power/Power which for simplicity is termed "Power-

Power"

2. Forward/Backward - Power/Correlation which is termed "Power/Correlator"
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3. Forward/Forward - Correlator/Correlator which s termed Correlator/Correlator

After obtaining the optimum complex weights of the three different bootstrapping

configurations, we examine the conditions under which, utilizing an adaptive algo-

rithm, these values are attainable. It is shown that crucial to some of the analytical

results is the assumption that the input de-polarization is always much less than one.

The optimal signal power outputs, for the different configuratiors, are derived and

the optimA signal-to-interference power ratios at the two differePit output ports are

calculated and compared. Also calculated and compared are the input-output trans-

mission ratios and the cancellation factors at the two separate ports. Finally, some

other questions related to the subject of this paper. namely steady state analysis, are

raised.

Finally, we make the following remark in relation to performance comparison of

the three bootstrapping configurations considered in this report: while the symmet-

ric power-power and correlation-correlation schemes produce the same output signal

powers and power ratios. the asymmetric power-correlation scheme has a slightly dif-

ferent signal power and power ratio at its Q port. These differences are only of a

second order and might exist only if, due to some system or input impurities (Gaus-

sian noise, quantization error. etc.). tht ideal optimal conditions are not reached.

The same conclusion is in effect when comparing the input-output transmission or

cancellation factors.

Examination of Figures 2 through 4 reveals the fact that the three configura-

tions proposed require different levels of hardware complexity; some need correlators

(harder to implement) other require power measurements. The correlation-co;relation

scheme is expected to be the most complex while the power-power scheme the least.

Also. different signal paths (through the system's circuitry) are expected to result in

different system delays with the different configurations, and hence different band-

width limitations. The question of a possible trade-off between complexity and band-
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width is raised. This will be addressed in a subsequent report.

Gaussian noise effects on the system performance and the analytical results of this

paper should also be considered. In particular, it is important to investigate the limit

on cancellation depth and hence on the quality of power separation that this noise

might cause.

The above items are problems which are related to the subject of appendix A

namely steady state analysis; but they will be reported separately, in appendix B.

Finally the whole subject of dynamic analysis must be investigated for the three

configurations.

2.1.2 Bootstrapped Adaptive Separation of Superimposed Signals - Effect

of Thermal Noise on Performance

The effect of thermal noise on performance is of great importance. The fact that

bootstrapped algorithms result in total separation of two superimposed signals when

noise is not present needs to be re-examined when thermal noise is added. This

problem is dealt with in appendix B. Again, the different configurations mentioned

in the previous section are considered. From the study of the general case of multi-

inputs, multi-outputs. the analysis in this appendix is then concentrated on a specific

two inputs-two outputs case. In doing so, the effect of the thermal noise on separation

performance in terms of the output desired-signal to overall noise ratio is presented.

It was concluded that unless signals in the control loops are somewhat discriminated,

the separation problem can not be solved. On the other hand, perfect separation is

obtained for infinite signal-to-noise ratio (no noise) even if the discrimination is slight.

It is interesting to note that the bootstrapped algorithm, besides being a signal

separator. can provide an estimate of the model parameters (i.e the ratio the signals

which are superimposed at the input). As such, the question is what kind of estimator

are we dealing with? Without noise the optimal weights converge to the true unbias
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estimate of the model parameter. Additive thermal noise at the separator inputs

causes bias in these estimates. This bias is inversely proportional to the input SNR

and increases with the signal cross coupling. The bias causes degradation in the

separation performance, but this degradation is small if jAISNR >> 1, where A =

1 - bc, is the coupling factor (see eqn. (1)). There exist many practical important

separation problems for which IA[SNR >> 1 (as in the cross polarization example of

section IV. of appendix B). Another question of interest when using the bootstrapped

algorithm is, what happens if only one signal is present ? This case may be realistic if

one of the signals to be separated is temporarily absent. Discussion of this in appendix

B concludes that the bootstrapped algorithm is only applicable for separation of

signals and not for noise reduction, etc. ( as in the LMS algorithm).

2.2 Bootstrapped Algorithm - Application to Cross Polar-
ization Cancellation

2.2.1 "Power-Power" Bootstrapped Cross-Pol Canceler for M-ary QAM

Signals - Performance Evaluation and Comparison with LMS and

Diagonalizer

M-QAM dual-polarized transmission became an important method for frequency

re-use, particularly in microwave radio communication. However, the orthogonally

polarized waves suffer degradation due to cross polarization interference. Different

canceler structures were proposed to mitigate the effect of cross-polarization. Among

theses are the Diagonalizer and the LMS [8]. The bootstrapped algorithm is another

possible signal separator for dual polarized signal.

In appendix C, we study the performance of the "power-power" structure of the

bootstrapped algorithm discussed in section 2.1 and compared to other cancelers. As

dual polarized signals, we use M-ary QAM modulated signals and as a channel we use

non-dispersive fading channel where the depth of fading varies. To deal with realistic
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conditions, we also add thermal noise to the two inputs of the canceler. Hence, it was

necessary to re-examine the parameter of the canceler with digital data (considered

random and uncorrelated).

As a performance measure, we used the error probability. For this we obtained

the Chernoff upper bound. To examine the tightness of these we derive approximates

to the error probabilities using the Gauss Quadrature method. In obtaining our

results, we assumed two kinds of output compensation: amplitude only compensation

(automatic gain control, AGC) and amplitude together with phase compensation

(AGC and output equalizer).

Many results of simulation and computer numerical calculations are included in

appendix C. From these we conclude that, as expected, 16 QAM performance is

much better than 64 QAM. It is also shown that adding phase compensation to the

canceler output adds very little to the performance obtained when only amplitude

compensation is included.

From comparing the results obtained with the moment generating method to

the corresponding Chernoff bound, we concluded that these bounds are sufficiently

tight. Comparing the results when different numbers of moments are used, and the

concluded tightness of the Chernoff bound, we infer that approximately 10 moments

are sufficient for deriving a good approximation for the average probability of error

using the Gauss quadrature rule.

The performance of these three cancelers is compared numerically in Fig. 7 and

Fig. 8 for the 16 QAM with r=-10 dB and -5 dB, respectively. Since the diagonalizer

is shown to be useless for the 64 QAM, we only compare the LMS and power-power

configuration with 64 QAM in Fig. 9 and 10. It is also clear from these figures that

the LMS canceler outperforms the diagonalizer.

The LMS canceler outperforms the diagonalizer particularly when the cross cou-

pling is high. Therefore. in the following figures, we compare the difference in perfor-
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mance between the power-power and LMS when using 16 QAM and 64 QAM. This is

done in Figs. 11, 12 and 13 when r=-15 dB, -10 dB and -5 dB, respectively. Except

for a very low signal-to-noise ratio, the power-power outperforms the LMS with 64

QAM, more than with 16 QAM.

2.2.2 Performance Comparison of Three Bootstrapped Cross-Pol Can-

celers for M-ary QAM Signals

In appendix D we study the error probability performances of another two boot-

strapped structures, namely the -Power-Correlator" and "Correlator-Correlator" when

they are used to cancel cross polarization interference of dual channel M-ary QAM

signals. As in dealing with the -Power-Power" structure, we use the Chernoff upper

bound and Gauss Quadrature method to estimate the error probability as a function

of signal-to-noise ratios.

From the results of this study, we conclude that the bootstrapped Power-Power

structure outperforms the Correlator-Correlator and Power-Correlator structures,

particularly when the cross coupling is high, such as -10 dB. Also, notice that the

performance at the two outputs of the Power-Correlator structure is not the same.

The performance at one output is the same as that of the Power-Power and the other

output performance is close to the performance of the Correlator-Correlator structure.

In Fig. 14, we depict a performance comparison of the three bootstrapped struc-

tures with that of the LMS cross polarization canceler. From this figure, it is clearly

shown that the Power-Power canceler scheme performs better than the others, while

LMS performs better than that of the Correlator-Correlator and that of output-2 of

the Power-Correlator structure.
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2.3 Bootstrapped Algorithm - Multi-Inputs Multi-Outputs
Separator

Beside the cross-polarization cancellation which requires only two inputs-two out-

puts structures and other applications such as in neural networks and signal separation

of multi channel CDMA, there is a need for multi-inputs multi-outputs separators.

Obviously, one can do with multi LMS cancelers when each delivers one signal and

cancels all the others. This approach becomes very complex when the number of

inputs and outputs becomes large. beside its inferiority in performance in comparison

to the bootstrapped algorithms which is discussed in this section.

2.3.1 Multi-Inputs, Multi-Outputs Separator Using the Feedback/Feedback

Bootstrapped Structure

In appendix E. we present the extension of multi-inputs, multi-outputs of the

feedback/feedback structure (see Fig. 15). As an optimum criteria for controlling the

weights, we used the minimization of correlation between one output and the cubic

of the other outputs. Beside the complexity advantage of the bootstrapped structure

to the LMS and the fact that the second needs supervisory reference while the first

does not, we studied, in this part of the research, the speed of convergence property

of the bootstrap in comparison to the LMS algorithm.

It was shown by simulation that the learning process of the bootstrap signal

separator, though requiring fewer weights, is faster than the LMS algorithm. This is

true especially at a high signal-to-interference (SIR) ratio. The learning process of

the bootstrapped algorithm is almost independent of the SIR and converges within a

reasonably small number of iterations. That is, the bootstrapped algorithm is almost

independent of the eigenvalue spread of the input correlation matrix.
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2.3.2 Convergence and Performance Comparison of Three Different Struc-

tures of Bootstrapped Blind Adaptive Algorithm for Multi-signal

Co-Channel Separation

In appendix F, we present the multi-inputs multi-outputs extension of the other

two bootstrapped structures, "Power-Correlator" and "Correlator-Correlator" (see

Fig. 16 and 17). Performance of the separators is studied and compared by examining

the depth of interference residue at each output and by considering the speed of

convergence. Effect of compensation via AGC on the separator performance is also

considered. As in the Power-Power structure discussed in the previous section, the

optimum criteria for controlling the weights, we used minimization of correlation of

the outputs with cubic non-linearities.

For channel inputs we used random bipolar independent sequences. Channel pa-

rameters were chosen to present different desired SIR ratios at the channel outputs.

These parameters determine the canceler's input correlation matrix and hence the

matrix eigenvalue spread. Thermal noise was also added to the output of the chan-

nel.

The optimum weights for all three separators were found analytically in the ab-

sence of noise. The signal separation process was shown via simulation by the outputs

learning curves. These learning curves of the Power-Power separator is compared to

the three outputs learning curves of the Power-Correlator separator when AGC is

added to these outputs (see Fig 18). It was also shown that the three different boot-

strapped separators converge to their steady state almost with the same speed for

two or three signals. lowest for Power-Power and highest for Correlator-Correlator.

One output of Power-Correlator results in residue similar to that of the Correlator-

Correlator. However. adding AGC to the Correlator-Correlator outputs or to one of

the outputs of the Power-Correlator which reduces the amount of residue. so that

when AGC was added (when it was needed), all separators behaved similarly.
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2.4 Bootstrapped Algorithm - Wideband Signal Separator

For superimposed wideband signals we suggest a bootstrap structure whose con-

trolled elements are delays instead of complex weights or digital filters. In principle.,

the structure is the same as the backward/backward structure discussed in earlier sec-

tions (see Fig. 19). It is shown in appendix G that if the source locations are known

then the proposed system provides a least square estimate of the source signals. This

suggests that the backward/backward structure provides a simple implementation of

the least square multisource estimator. Such an estimator, regularly implemented by

a maximum likelihood approach, requires a complex set of software algorithms.

If the source locations are unknown, the algorithm suggested in appendix G con-

verges to the least square solution, provided that some prior information about the

source signal is available. Hence, we show that the bootstrapped algorithm with time

delay control can be used for the separation of wideband superimposed signals.

First, the general wideband multi-source model of the problem is defined. It

assumes having N point sources received by M omnidirectional sensors. This model

is practical in passive sonar wherein the signals are wideband, noise -like random

processes and the unknown source location is to be estimated. In active sonar, the

signals are known and we are interested in estimating the source location. However,

in wideband communication one is usually interested in the source signals themselves

and not in their location.

Working in the frequency domain we first present the expression for the least-

square estimate of the vector of the source signal. Using this expression we depict

the direct block diagram that implements this estimator. Restricting our analysis to

M = N = 2 it is shown that even when the directions of the two sources are known

one needs to transfer function of the form of cos wA or 1/ sin 2 wzA as well as delay (see

Fig. 1 of appendix G). Our bootstrapped approach will remedy this problem and we

only need delay elements and summers.
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We show that with feedback structure the expression for the least square can easily

be implemented (Fig. 19), if we know the location of the sources. If these locations

are unknown then we must use an estimate of these locations. The bootstrapped

algorithm can be used to estimate these locations. In fact, the controlled delays

at the feedback path of the backward/backward structure will give us an estimate

of the delay propagation of the signals' waves impinging on the array and hence

directly related to these signals' directions of arrival. When the algorithm controlling

these delays reaches its steady state, the outputs of the separator will each deliver

sufficiently clean signals at only one output.

3 Conclusions and Recommendations

We have seen that the bootstrapped algorithm has properties which make it

attractive for many applications of signal separation. Without noise the separation is

ideal. Adding noise will degrade the performance however, for signal estimation this

degradation is tolerable. Furthermore, the algorithm has the property to converge

to its steady state where signal separation occurs much faster than other algorithms.

Unlike other algorithms the speed of convergence does not depend on the signal power

ratio and hence does not depend on the eigenvalues spread of the input correlation

matrix. It is also important to note that the algorithm does not require a supervisory

reference signal. Hence in this regard, it is a blind signal separator.

In this research we Atudied three structures of this algorithm and discussed pos-

sible optimization criteria for each. The case of two-inputs, two outputs was studied

in detail. particularly as it is applied to the problem of separating two signals con-

taminated with cross-polarization interference. When handling M-ary QAM signal

we estimate error probabilities without a canceler and with different cancelers. one of

which was the bootstrap separator. It was shown that the bootstrapped structures

always outperform other cancelers,
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The bootstrapped structures were also extended to multi-inputs multi-outputs,

and shown to have similar properties as the two-inputs two-outputs case. For op-

timization criteria we use de-correlation of outputs with cubic nonlinearity. As an

application of multi-inputs we considered superimposed signal with uncorrelated dig-

ital data and for performance we again examined error probabilities.

Some work was also done with wideband signals. When using delay control in the

bootstrapped algorithm, we could prove the very interesting result that this algorithm

exhibits a simple hardware implementation of Least Squares estimator.

The work carried out led us to make a number of recommendations for further

study:

1. Two Input-Two Output Bootstrapped Algorithms

* Study performance of the bootstrapped structure for cross-pol cancellation of

dispersive channels. Examine error probability and suggest co-pol compensation

whenever needed.

SFurther study the dependency of the bootstrapped algorithm on the equivalent

system eigenvalues spread to facilitate comparison with LMS on one hand and

eigen analysis on the other.

* Compare the complexity of this algorithm to those of other algorithms and draw

conclusions regarding its implementation with software or hardware. digital or

analog.

* Although bootstrapped algorithms do not require supervisory inputs, it is im-

portant to examine what improvement in performance one can get if such input

signals are used.

Study dynamic performance of the three structures and examine possible im-

plementation in analog hardware.
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2. Multi-Input Multi-Output Bootstrapped Algorithm

" Further effort is needed to study error probabilities of multi-signal interference.

" Analysis of these cases should be completed and conclusions regarding their

performance, complexity and implementation should be drawn.

- Applications of multi-signal co-channel cancellation should be sought.

SExam ine possible application for neural network im plem entation.

' Study speed of convergence and depth of cancellation and their dependency on

the number of signals being processed.

3. Wideband Application of Bootstrapped Algorithms

SFurther study the bootstrapped time delay estimation of two uncorrelated sources.

- Extend this work to multi-input multi-output.

Examine implementation of such estimators for adaptive wideband interference

canceler and for the signal separator.

Establish the requirement for stable robust control loops.

' Examine the performance of these estimators and cancelers under different en-

vironmental conditions and with different wideband signal modulation.

SCom pare perform ance of these estim ators to those of m axim um likelihood and

eigenanalysis estimators.

" The above would be done using analysis and supported by the needed simula-

tions.
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4. The Bootstrapped Algorithm as a Blind Adaptive Equalizer

Blind equalization is a channel equalizer where the reference signal is obtained

directly from the channel output instead of by using a pilot, training sequence, or

decision feedback. Such an approach has the drawback of being non-adaptive and

lacks the capability of following environmental variation. We suggest using the desired

signal extracted from one bootstrapped algorithm as a supervisory signal for the blind

equalizer. It is believed that such an approach will reduce many problems that current

blind equalizers have.
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Fig. 19 Bootstrapped Implementation of the Least-Squares Separator.
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Appendix A

Bootstrapped Adaptive Separation of Two Superimposed Signals -

Steady State Analysis

Y. Bar-Ness

Abstract

The algorithm presented here differs from other interference cancellation systems

in that it is a power separator rather than an interference canceler. That is, each

of the two input signals interferes with the other and the function of the canceler is

to remove that interference from both input signals rather than just one. A novel

way to obtain high signal to interference ratio at both output ports is to use the

bootstrapping approach.

Three bootstraped configurations are discussed and analyzed herein. They par-

ticularly differ in the criteria used to obtain the optimal complex weight in the can-

cellation path.

Steady state parameters, such as optimal complex weights, optimal signal power

outputs and signal-to-interference power ratios are derived for each of the different

configurations. Also calculated are input-output-signal transmission and cancellation

factors. In performing the analysis. emphasis is on application for cross-polarization

cancellation.
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1 Introduction

System degradations in dual orthogonally polarized communication systems may

be reduced by the use of a cross-pol interference canceler. A cross pol canceler differs

from other interference cancellation systems [1,2] in that it is a power separator rather

than an interference canceler. That is, -ach of the two input signals interferes with the

other and the function of the canceler is to remove that interference from both input

signals rather than just one. A novel way to obtain a high signal to interference ratio

at both output ports is to use a bootstrapping approach [3.4]. In this approach two

cancellation paths and two summations are used to obtain the two system outputs,

and an adaptive algorithm is employed to optimize the signal-to-interference power

ratio at the two output ports simultaneously.

The purpose of this appendix is to report a detailed steady state analysis of the

three bootstrapped configurations, two of which were first discussed in [3] and [4]1.

A summary of the results of this appendix is previously reported in the literature [5].

Independently, during the mid-eighties, a group of European researchers addressed

the same separation problem and, under the name of "blind signal separation" devel-

oped a similar adaptive system [6]. More recently, a third group of signal processing

researchers have applied similar ideas to speech signal separation [7].

The three configurations suggested in the appendix differ particularly in the crite-

ria used to obtain the optimal complex weight in the cancellation path. The criteria

used minimize either the interfering signals power at the two output ports, the cor-

relation between the two signals at the two output ports, or simultaneously the in-

terfering signal power at one port and the correlation between the two output signals

at ports. Correspondingly they will be termed: 1) power-power, power-correlation

and correlation-correlation cross pol cancelers. Consequently, the three configura-

tions differ in the topology of their two cancellation paths, and the manner in which

IThis work in reference [3] did not consider the cross polarization problem.
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the adaptive feedback information is derived and hence in their hardware complex-

ity. The use of either of these criteria would lead to the customary power-inversion

result. However, each of the above bootstrapping arrangements results in power sep-

aration (high signal-to-interference ratio at both output ports) through the use of a

discrimination technique.

In this appendix we obtain the optimal complex weights of the three different

bootstrapping configurations. and examine the conditions under which, utilizing an

adaptive algorithm, these optimal values are attainable. It is shown that crucial

to some of the analytical results is the assumption that the input de-polarization

is always much less than one. The optimal signal power outputs, for the different

configurations, are derived and the optimal signal-to-interference power ratios at the

two different output ports are calculated and compared. Also calculated and com-

pared are the input-output transmission ratios and the cancellation factors at the two

separate ports. Finally some other questions related to the subject of this appendix,

namely steady state analysis. are raised. These will be investigated and reported

separately.

Consider the two inputs (in complex envelope notation)

v1(t) = s(t) + bn(t)

V 2 (0 = cs(t) + n(t) (1)

where b and c are complex values and Ib12 and IC12 are the input signal to interference

ratios. s(t) and n(t) are zero-mean uncorrelated stationary complex processes. We

will not indicate the time-dependence of variables in the interest of brevity unless it

is necessary. We now process these two inputs, separately using, the simple "noise

cancelling" scheme proposed by Widrow [1] (see Figure 1). Here we consider each

input as a "reference signal" (in WVidrow's terminology) and sum it with a weighted

version of the other signal to form an output. Two such outputs tcq(t) and vp(t) are
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formed simultaneously. The corresponding weights a and 0 (complex valued ) can

adaptively be adjusted so that the output powers Q and P are minimized, respectively.

From Figure 1 we have

vq(t) = v2(t) + av1 (t) (2)

Q = Iv9(t)- 2 = Ic + al 21sl + I1 + bal- 2 n2 (3)

where the over-bar stands for the expected value. Therefore, tstand JtJ 2 designate

the powers of the two incoming signals respectively. Thus, one can show that,

dQ = 2(c + a)1s' 2 + 2(1 + ba)b*Jn-2  (4)
da

where the derivative of a real function with respect to (w.r.t.) a complex variable

a(a = fR-+ jal) is defined by; d(.)/dt = d(.)/daR+jd(.)/dal. 2 The asterisk denotes

complex conjugate and j = V/2=. Equating (4) to zero we obtain the optimal value

of a

_c~sJ + biJnJ
aop -= ± +bIb_ 2T (5)

Substituting in (3) we obtain the power of the s signal Q, and of the n signal Q,.

These, following simple manipulation, are given by,

- __ 22
- b*(1 - cb)tnt 2/,s1 2Q, •'b (6)

(1 - cb) ]2
t1t 1+ JbJ2ýnl2/s= 2  (7)

and the n signal-to-s signal power ratio is

Q = lbt Int(8)

21n obtaining the complex derivative of a real function A = ld+e612 w.r.t. to the complex variable
6 we used the simple general rule; dA = 2e'(d + e6)
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vp(t) = v1(t) + av 2(t) (9)

P = -Iv(t)l 2 = lb + #12 i4J + I1 + #Cl2 (10)

so that

&n blnI2 + cIsl2 (11)
JnJ2 + Ic12Is12

The power of the s signal and the n signal are, respectively;

. c(1 - cb)'sF2/1n'212  (12)P1 = + IIS1/l-Ff(x

P, (1 -cb) =__2 n2(3
1:8= 1+ IC12IS12/nl2ni 2 (3

and

p.1 = FnF/lCl21 Th (14)

Like (8), equation (14) represents a "power inversion" relation with respect to the

power ratio at the input to the weighted elements. In fact, if Icl # Ibl then we

expect an improvement in power ratio of one signal to the other at one port, while

a degradation of the power ratio of the second signal to the first at the second port.

For example, if Ibi < Icl then Q,/Qn is greater than the s signal-to-n signal power

ratio (snr) at input terminal No.1,while P,,/P. is less than n signal-to-s signal power

ratio (nsr) at input terminal No.2.

Similar results prevail if instead of the criterion of minimizing, separately, the out-

put powers Q and P we would implement the criterion of minimizing the correlation

of each output with the corresponding input. That is to adjust a and /3 so that,

vq(t)v;(t)l2 and IvpMt)v;(t)I 2 are minimized respectively. (See Fig.l)
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In conclusion, the "noise cancelling" scheme can not be used in cross polarization

problems where high quality power separation is required, i.e. improvement in both

snr at one port and nsr at the other. This motivates one to explore the bootstrapping

approach wherein the general idea is to feedback the power-inverted "noise canceler"

output as a "reference signal" for the other "noise canceler" and vice versa. Suitable

feedback arrangements enhance the right power ratios resulting in power separation

with high signal-to-interference ratios at both output ports.

2 Bootstrapping Techniques

2.1 Optimization Criterion

In this section we investigate three bootstrapping configurations in which the

following optimization criterion are employed, these are:

1. Power-Power criterion

2. Power-Correlation criterion

3. Correlation-Correlation criterion

These configurations are depicted in Figures 2 through 4 respectively. The first

configuration follows Bar-Ness and Rokach [4], the second was considered in un-

published communications by Steinberger, while the third resembles the cancellation

network proposed by Brandwood [3]. Notice the discrimination networks in these

configurations. Such a discriminator which depends on the properties of the signals

may turn out to be a limiter, filter, etc. Its sole effect is to slightly emphasize one

signal with respect to the other. Their necessity will be obvious later. In references

131 and [4] where narrow band signals were assumed, hard limiters were implemented

as discrimination techniques. Computer simulations have shown that limiters are

only effective in a narrow class of applications [5]. For satellite communication [5]
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in which the frequency plans for the two polarizations are staggered, a frequency

discrimination technique [8] with simple comb filter was used.

Consider the power-power canceler of Figure 2. Let the power ratio of the two

signals at point No. 3 be such that s > n (even if only slightly greater). Point No. 3

being the input to the weighted element of the # processor (terminal No. 1 is the other

input) will result (because of power-inversion) in n > s at point No. 4 and output.

vp(t). But point No. 4 being the input to the weighted element of the a processor

(terminal No. 2 is its other input) will result in s still greater than n at point No. 3

and hence at output port, vq(t). This process of bootstrapping will continue, resulting

in a very high snr at one port and a very high nsr at the other. The snr and nsr, at

these ports respectively, will be upper bounded by values depending on the noise, the

impurities of the system and control errors. Consequently, the power-power canceler

of Figure 2 acts as a high quality power separator. In fact ideal separation occurs

only in a noise and impurity free case.

In the cross pol canceler of Figure 3, the cancellation weight ,3 is controlled via

a power criterion which minimizes the power P at the vp(t) port. The weight a is

controlled by minimizing the correlation between the two outputs (i.e. jvq(t);(tjj2)

thus, the name power-correlator canceler. Here, to obtain a perfect cancellation of the

n signal at vp(t), it is required that the 0 processor has a clean sample of n signal at

point No. 3 (because of power-inversirn behavior). The correlation processor which

controls a can operate with a sample of the signal n (at point No. 3) which is corrupted

by the signal s. but needs a clean sample of the signal s (at the other correlator input)

to generate its feedback signal. Since one of the two processors 'the correlation) can

in effect defer its need for a clean sample of the signal n, it makes sense to let that

processor perform its cancellation first, making a clean sample of n available to the

other processor (power processor), which in turn provides a clean sample of the signal

s (at point No. 4) to the first processor (correlation processor) to generate a feedback
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signal. Thus, although neither processor can function properly unless the other one

does, both (in bootstrap operation) can operate properly together. Consequently,

the power-correlator canceler of Figure 3 can perform as a power separator. It might

seem complicated to comprehend such a qualitive argument, nevertheless analysis will

support these claims.

Finally, the correlator-correlator canceler of Figure 4 operates as follows: The a

processor can operate with a sample of the single n (at point No. 3) which is corrupted

by the signal s, but needs a clean sample of the signal s (at point No. 4) to generate

its feedback. Similarly with the 3 processor, where the signals n and s (at the point

No. 3 and No. 4) are interchanged. Since initially neither points, No. 3 or No. 4

contains a clean sample of s or n. respectively, neither processor performs properly

unless the other one does. However. if one processor starts its cancellation it results

in a cleaner sample of the proper signal needed by the other processor and vice verse.

This bootstrapping behavior finally results in the desired power separation at the

output ports.

2.2 The Optimal Weights

The optimal weights for the different configurations are now obtained using the

corresponding optimization criterion

2.2.1 The Power-Power Scheme

From Figure 2,

t'p(t) = vi(t) + i3 vq(t) (15)

t'q(t) = v2(t) + avp(t) (16)

By using (1) we get,
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=1 + #cl 21SI + lb + 012-nl2 (17)
P -- Ivp(t)12 

- + 11_-a#912

where we used the fact that s(t) and n(t) are zero-mean uncorrelated processes.

Taking the derivative of (17) we get

aP 2(1 - a#)[(1 + fc)(a + c)S-12 + (b + #3)(1 + ab)*n1]
= I11 - a#14 (18)

From aP/l9fl = 0 we get after simple manipulation,

(aj + c)*(1 + #c)lsl2 + (b + /3)(1 + ab)lnl2 = 0 (19)

and

_ (a + c)Ilsl2 + b(1 + ab)*lnl2
l°" -=- c(a + c)-sl-2 + (1 + ab)*ln, (20)

provided 1 - /36 $ 0. Thus, if a = -c, then/•op = -b and perfect cancellation will

result. Also from Figure 2

Q = ivq(t)1 2 =1 + ablI2ln + Ic + a121SF (21)

Therefore, 9QQ/da = 0 implies

(1 + ba)(b±+ #)*' + (a + c)(1 + #c)*[;1i = 0 (22)

and

(b + 0)*lnl2 + c(1 + Oc)*Isl1
crop = b(b+ 0)'In-' + (1 + Ic)-Is12  (23)

provided 1 - a/O 6 0. Again if b = - 3 aop = -c and perfect cancellation results.
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Comparing (19) and (22), we notice that their left hand side terms form a complex

conjugate pair. Therefore, they constitute a degenerate set of equations which does

not have a unique solution in a and /, so that difficulties are to be expected if aO", •Or

are sought via any search algorithm.

This difficulty can be remedied by using the signals' discrimination networks whose

effect on the two signals is different in some way e.g. complex gain, etc. Such a

network helps distinguish one signal from the other by putting emphasis on either

one. For example, if discriminator No.1 is such that its output power is P1 given by

(17) with si and n1 replacing s and n, respectively, then (19) and (20) will change

accordingly. Similarly using Q2 to drive a, where Q2 is given by (21) with s2 and

n 2 replacing s and n respectively, then (22) and (23) will change accordingly. If we

have at least s, j S2, or ni 5 n2 then the set of Equations (19) and (22) is no longer

degenerate. They are a set of two bilinear equations in a and /3. In fact with the

effect of the discriminator (17) and (21) can be rearranged to get

(0 + c)(1 + Cc)*(IsiI2 Ifn21/lnI1I2 - Is21) = 0 (24)

(/0 + b)(1 + ab)*(ln 2 2 Ts1F 2/fs2F2 - n 112) = 0 (25)

If based on some slight information about the signals, discriminators 3 can be found

such that at their output we have IS,12 I2n2!2 # IS212 In, 12 then the only two solutions

are a = -c and P3= -b or a = 1 and /3 = -I . The second pair is not valid if we
C

constrain Jal and 1,81 to be smaller than unity (b and c are assumed to have magnitude

less than unity). The unique solution aor = -c and 0o,, = -b are the required values

of a and /3 that renders perfect cancellation at both outputs.(see (17) and (21))
3Such discriminator has been shown to exist for satellite communication [5] microwave radio [10]

and narrow-band tactical communication [91 application.
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2.2.2 The Power-Correlation Scheme

From Figure 3,we have

vM(t) = vI(t) + 8vq(t) (26)

vq(t) = V2(t) + aVl(t) (27)

P = IvP(t)I2 = 1(1 + #(a + c)12FSF- + lb + p(1 + ab)12-Fn (28)

where we used the assumption that s(t) and n(t) are zero-mean uncorrelated pro-

cesses. Equating the derivative of (28) with respect to 0 to zero we get

(a + c)' 2sl- + 01a + c12 [s2 + #11 + ab2 7n12+ b(1 + ab)-n = 0 (29)

and
O b(1 + ab)'lnl2 + (a + c)*sI 2  (30)
- 1 + ab121n12 + :• + c121s• 2

Thus if a = -c then /OP = -b/(1 + ab) and a perfect cancellation of the n signal will

result (see(28)). With a close to -c, we can assume that IC + c12 << 1 + abI2 1slF/In124

and hence
b (a + c)* Is12 (31)

1+ab 1I1+ab12FnF(1

Also from Figure 3

Q2 = Ivq(t)v;(t)12 = JA12  (32)

where as it can be easily shown. using the zero correlation property of s(t) with n(t)

that

A = (a + c)(i + 3(a + c))*-s12 + (1 + ab)(b + /(1 + ab))'Ill (33)

Notice that in comparison to the corresponding terms in (17), (21) or (28) the terms

in JA12 do not depend linearly on the independent variable a (see also Appendix A-i)

and hence the general rule for the derivative in the footnote on page 4 is not valid.

"4Since the signal propagate through the same path one can take without loss of generality that
1sF" and ITnr 2 are of the same order.
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However, directly from (P-i) and (P-2) in Appendix A-i, we have

NQ2/aaR = A8OA/I9aR + AAOA/OaR (34)

8Q 2/'aa = A*OA/8a 1 + AaA*/,al (35)

where the subscripts R and I designate the real and imaginary parts, respectively.

From (33),

aA1'9 aR = YSF + 20"(a + c)RISF + Ibl2 -F + 2II(bR + aRIbI')jn-2  (36)

and

OA/Oa1 = jls 2 + 23"(a + c),,sj' + uAbl'InI' + 2I,*(-bi + a,,bl'j2)F (37)

It is clear that OA'/OaR = (d.4/aaR)- and 9A'/Iaa = (OA/daj)'. Equation (34)

and (35) become simultaneously equal to zero if either one of the following conditions

is satisfied.

1. A = A* = 0, OA/OaQR 0 (aAl/OaR 0 0)

and e9A/oa, 0 0 (aA*/8aj 0 0)

2. aA/OaR = 0 and aA/oa, = 0 A 0 0

3. Neither of the terms above is zero, but the corresponding sums in (33) and (34)

are zero.

Under the first condition we have from (33)

(a + c)Isj-/ + /la + ci2 isr + ,311 + abIl2 -'I + b*(1 + ab)-nj2 = 0 (38)

With a close to -c and 1,1 < I we have /RIta + cl2 << (a + c)R and 8t1a + cl <

(a + c)j, and we can neglect the second term in (38) leaving

aop = -c- (1 + aopb)(b+03(i + aopb))1lnl2 /Isl2  (39)
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Again if / = -b/(1 + a0 pb), then ao, = -c and a perfect cancellation of the s

signal at vq(t) will follow. Finally we notice from the conclusion following (30) and

(38) that the condition for the first leads to a result which is needed by the second

equation and vice verse. Hence if these two equations are solved simultaneously, they

lead to the stated aop and 3ov.

As in the power-power arrangement, Equations (29) and (38) constitute a de-

generate set of equation which does not have a unique solution. Therefore signals'

discrimination networks are needed if aop and #3o, the solution of (29) and (38). are

sought via a search algorithm.

Under the third condition above (i.e., when none of the terms A, OA/I9R or

O)A/Oat equals zero, but the corresponding sums of (34) and (3" -, ', it is possible

to show by taking the required derivative that the optimum values of aR and al are

given by

CRIS12 + bRnj Real[A]
S= Isl'-'• + jbt 2ln-' 2ReaI[ABy (40)

CIIS12 - bjnij IM[A]
1t [ -s- + ibI2In-2  2Rea[AB] (41)

By examining the nature of the solution of the minimization problem, a. defined

by (40) and (41), one can show that such a solution can not exist in practice if we

restrict/3 to satisfy

3RImax = [dlmax •ý 1/2v'(IS-I2/Fn2 m,(in(1/1l + abima,,) (42)

or if (using the stronger condition),

PRImax = A3Il max < 1/2v\-(lsl2/Flnl2, 2 /(1 + Ialibilma] (42a)

In which case this extremum point will be either a point of maximum or a saddle

depending whether, or not, JR and i31 are of the same order. Particularly if 3 is

constrained to satisfy (42), then this extreme value of a will not be a minimum point.
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To exhibit numerically the meaning of this design constrain, we first notice using

(30) with a = -c that Iflo.1 = IbI1/ + abl <_ Ib/(] - lailbl) <_ lblm,•/(1 - Iollblm.,).

Therefore for any possible 6,op to be within the value of (42a) it is sufficient to require

that

161 m.l(1 - 1llblm..) 5ý 1I2vf-(lsPF/FnVF), [1/(1 + lallblm,,)] (42b)

Assuming (1s12/ 7nl 2),in ,-- 1 then for lal - c) = blmaz, (41b) is satisfied if lbla,. <

0.295. Let the de-polarization coefficients Ibi and Icl be at most 0.295 (= 10db). then

the upper bound on O3R and /3t given by (42a) equals 0.326.

Notice that for a wider useful range of 0, (1sl2/inrF)m.in should be largest. If,

for example, the expected (TsiF/knP2),in is less than the expected (Jn2/[sP2) then it

is preferable to change the role of the two signals in the system by exchanging the

power processor with the correlation processor and vise versa.

Under the second condition for making (34) and (35) equal to zero (namely when

OA/oc9 aR

= 0 and cgA/c~aa = 0 but A j 0) we notice that (37) can not be made to equal zero

unless 03 is real. Similarly, (37) can not be made to equal zero unless #3 is purely

imaginary. In these particular cases

= 1 cRIsi 2 + bRJn 2  /3 real (43)
20R =S 2 [s + Jb21-n-

aj 1 CIsIS + -bI2In 2  / purely imaginary (44)

respectively. It is shown in Appendix A-2 that these values of aR and a, are points of

maximum for Q2. Furthermore they will not occur in practice since 1431 is constrained

to be small just as Jal.

In conclusion, we observe that in the power-correlation scheme the optimal weight
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for the power processor must satisfy (30), while a, 1 for the correlation processor

can be obtained solely by (30) provided certain design conditions and constraints are

met. These conditions, can easily be met in practical cross polarization problems.

2.2.3 The Correlation-Correlation Scheme

From Figure 4 it is quite obvious that without the signals' discrimination networks,

the control loops axe indistinguishable. Notice that

v,(t) = vI(t) + 0112(t) (45)

vq(t) = avI(t) + v2(t) (46)

and by using (1) we get

Pl "-[vpi(t)vq(t)j'= =AJAI (47)

where

A 1 = (b + 0)(1 + ba)'(6n1)l In-2 + (c + a)'(1 + cr-)(6.i)2  (47a)

and, 6,1 = nI/n and 6.b = sl/s, represent the effect of the discriminator networks. 5

Similarly

Q2 =Vq2(t)Vp(t)l 2 = lA2  (48)

where

.42 = (b + 0)*(1 + bc)(6b2)2 In!2 + (c + a)(1 + IS( 1 2)2 TI (48a)

and, 6b2 = n 2/n and b,2 = s 2/s. In the derivation of (47a) and (48a) we used the

zero correlation property of s(t) and n(t). To derive the optimal weights, aop and

#,op we follow the same steps used in obtaining aop of the correlation processor in the

5For simplicity the effect of discriminator was assumed to cause different real gain for the different
signals.
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previous scheme. That is, to find 3o. of the correlation-correlation scheme, we must

equate .P 1/,3t1 = 0 and aPl/a03R = 0 simultaneously to zero. In Appendix A-3 we

prove that 9Pla/R = 0 and "P1/10t = 0 if and only if A, = 0. This implies, using

(47a),

O b( -4- bcr)(65,i)2jnI2 + (C + Ca)-(bf) 2 jH2  (9= (1 + ba)'(8,i)2"jn2 + c(c + a)*(b, 1 )2 S (49)

Notice that if a = -c then Pp = -b and we get a perfect cancellation of the n signal

at vp(t). We can use a similar argument to find aop from equating, simultaneously,

3 Q2/laR and 9Q2 /1ai to zero, namely

= c(1 + c.3)(6, 2)21S- + (b + 3)s(6).2)1nF---0op (1 + c03)_(6 2 )21sI 2 + b(b+ #)*(b. 2)21n1 (50)

Again if /3 = -b then a0p = -c and we get a perfect cancellation of the s signal

at vq(t). Equations (49)and (50) are the same as (20) and (23), respectively, which

represent the optimal weights for the power-power scheme. Recall that the latter

were obtained with the rather reasonable condition that 11 - ac3 # 0.

To conclude this section, we introduce in Table 1 a summary of the equations rep-

resenting the optimal weights of the three configurations together with the conditions

under which these weights are attainable.

2.3 The Optimal Output Signals' Power and Power Ratios

Using the optimal weights derived in the previous section, we now find the optimal

powers of the two signals at the two different output ports. This we do for the different

cross-pol cancelers schemes by implementing the corresponding optimal weights.
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2.3.1 The Power-Power Scheme

From (20) we get

(1 + ab)(l - cb)lnl 1 2/JsiJ 2

c(a + c)- + (1 + ab)*ln~ll/Is, 12

and
b + = (a +c)*(1 -cb) (52)

c(a + c)" + (1 + ab)*ln1 lF/ls1 12

We also introduce in (51) and (52) the effect of the discriminator network No.1 (see

Figure 2). From (17) we get, by using (51), the s signal's power

= 1 (1 + ab)'(1 - cb)in, I'/ Is,1 2  2

11 - a3l1 - c(a + c) + (1 + ab)' n,1
2/1s,12

and by using (52), the n signal's power

1 (a + c)(1 - cb) 2

Sii- adl' c(o + c- + (I + ab)In, 11
2 /is, 12 (

The signals' power ratio at this port is given by

P -P, 1 + ab 2(I) 2  I 5)
P.P (6,,,/b16,)2F•nF/' (55)

a + cI

where &,I. = nl/n and bj = sI/s. From (55) we notice that the power-inversion

relation has been enhanced. as a result of the bootstrapping arrangement, by the

factor I(1 + ab)/(a + c)12, which approaches infinity (perfect cancellation) if a = -c.

Further enhancement of the s-to-n signals' power ratio prevails if the discriminator

network is chosen such that 6,1 < 6,1. With the smallness condition assumed for Ibi

and Icl and the constraint imposed on jai, we can easily show that the input-output

transmission for the s signal is approximately unity

P./I-', - 1 (56)
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provided that la + ci is very small so that I#/ + bi is approximately equal to zero.

Similarly the input-output cancellation factor is

P./'nI -_ la + cl'/(In, l2/[s1 -11)' (57)

Notice the improvement in cancellation if 6.o <b•,i.

Similar argument leads, for the second part, to

-1 + i (+.,/b.2)--/I2 (58)

as the n-signal to s-signal ratio. Also the input-output transmission for the n-signal

Qn/lnI "- 1 (59)

provided I#• + bi is very small so that la + ci is approximately zero. The input-output

cancellation factor of the s-signal,

Q/11S12 - 13 + bl21(isi2/1ln 2F) 2  (60)

2.3.2 The Power-Correlation Scheme

Using the value of 03o, (Equation 30) we obtain from (28) the optimal output

powers at the P port. The s-signal optimal power,

_ (1 +ab)*(1 - bc)InI 2/IS, 2 (61
P. = II +c +1+ bll is, 1• 2 (61)

1ja + C12 + 11 + ab121n,1 2 11S, 1j 2

where we also introduce the effect of the discriminator network on (30)

The other signal optimal power.

=n (a + c)*(1 -cb) 2 mt2  (62)

jP= + C12 + 1I + ab12in, 12/1 IS 12

The signals' power ratio becomes

PS/P,., = 1 a (b•,2/6.,)2F,,1/lSl (63)
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Furthermore, with the smallness condition assumed for the system inputs and

parameters, ja + c[2 < 1I + abl2 In1 [ 2/Isi j2, we have for the input-output transmission

of the s-signal,
P°/I =1-•bc 2 1 (64)

1I+abI(4

and the input-output cancellation factor of the n-signal is

p./nl-- (a+c)*(l-cb) _ - -

i1 + ob12  /(ln il 2/lsIlS12

-a I + cl2/(F/12/1S1 F)2  (65)

The approximations made in (64) and (65) are true if we further assume, Icl = IbI < 1.

At the Q port of the correlator processor, the output power is obtained by sub-

stituting the optimal weight ao, from (39) we get for signals' power ratio

,/,- b+ 1(1 + a 1 2,b) (68216 2)2Fsl2/lnl2 (66)

and for the input-output transmission of the n-signal;

QnIlnlI = 11 -bcI2 = 1 (67)

provided IbI = Icl < 1. The cancellation factor of the s-signal is

Q./1S12 = lb+ +(1 + acb)I2/(jS2I'2/'n 2l 2)2  (68)

Notice that the output power ratio PI/P, (63) is the same as that obtained with the

power-power scheme (55). Comparing the other port power ratio Q,/Q, (Equations

(58)and (66)), we notice a slight difference which is a direct consequence of the fact

that (39) is a second order equation in a, and that the steady state optimal weight

of the 3 processor for the power-correlation scheme is not exactly the same as that of

the 3 processor for the power-power scheme (compare (20) with (30)). Similar results

are obtained when comparing the input-output transmission for one signal of the
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input-output cancellation factor to the other signal (see (56), (57), (59) and (60) to

the power-power scheme and (64), (65), (67), (75) to the power-correlation scheme).

Notice, particularly, the slight difference that resulted from having b + 0(1 + aob)

(in (68)) for the power-correlation instead of b + # (in (60)) for the power-power.

However, both terms were found to reach an ideal zero value if the corresponding a

processor approaches its ideal optimal value. Small differences might occur, however,

because the different scheme's structure can result in different final ideal values of

these terms.

2.3.3 The Correlation-Correlation Scheme

From Figure 4, we find the output power,

P = -vp(t)I = lb + 01121n-2 + 1 4- c1l2[sl (69)

Except for the 11 - af3l 2 factor, this is exactly the same as Equation (12) which

represents the output power at the P-port of the power-power scheme. We have also

shown in Section (2.3) that the optimal weights for the correlation-correlation scheme

are the same as those for the power-power. Therefore. we expect to have the same

terms (except for the division by (1-a/8) 2) for the s-signal output power P. (Equation

53), the n-signal output power P,, (Equation 54) and s - to - n power ratio P./P,I

(Equation 55) at thc P port 4nd similarly for Q,.Q, and Q,,/Q, at the Q port. The

same applies for the input-output transmissions and cancellation factors (Equations

(56), (57), (59) and (60)).

In Table 2, we summarize the equations representing the s-signal and n-signal

optimal output powers at the P and Q port of the three different configurations. In

Table 3, we summarize the equations representing the power ratios P,/P,, and Q,/Q,,

at the two ports, respectively. Also represented in Table 3 are the input-output

transmission ratios and cancellation factors for the different configurations and the
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separate ports.

3 Conclusion and Further Work

After demonstrating the fact that the simple "noise cancelling scheme" proposed

by Widrow [1] cannot be used in the cross polarization problem, the bootstrapping

approach was proposed. Three different optimization criterian, namely power-power,

power-correlation and correlation-correlation criterian were considered. Correspond-

ingly, three bootstrapping configurations were examined. For each, the optimal com-

plex weights were found together with the conditions under which these optimal

weights are the unique solutions for the optimization problem and hence will be at-

tainable if an adaptive algorithm (such as the steepest decent) is used. Consequently,

equations for the optimal signal power outputs and signal-to-interference power ratios

at the two different output ports were derived. The input-output signal transmission

and cancellation factors were calculated. It was shown that any of the bootstrapping

arrangements achieves a power separation (high signal-to-interference ratio at both

output ports). However, for a power separation a discriminator technique (which de-

pends on the signals' properties and can take the form of a filter, limiter, etc.) must

be used. The need for such discrimination networks was explained and their effect on

obtaining unique steady state solutions was exhibited.

To conclude, we make the following remark in relation to performance compari-

son of the three bootstrapping configurations considered in this appendix: while the

symmetric power-power and correlation-correlation schemes produce the same out-

put signal powers and power ratios, the asymmetric power-correlation scheme has a

slightly different signal power and power ratio at its Q port. These differences are

only of a second order and might exist only if, due to some system or input impu-

rities (Gaussian noise. quantization error, etc.), the ideal optimal conditions are not

57



reached. The same conclusion is in effect when comparing the input-output trans-

mission or cancellation factors.

Examination of Figures 2 through 4 reveals the fact that the three configura-

tions proposed require different levels of hardware complexity; some need correla-

tors (harder to implement) others require power measurements. The correlation-

correlation scheme is expected to be the most complex while the power-power scheme

the least. Also different signal paths (through the system's circuitry) are expected to

result in different system delays with the different configurations and hence, different

bandwidth limitations. The question of a possible trade-off between complexity and

bandwidth is raised. This will be addressed in a subsequent appendix.

Gaussian noise effects on the system performance and the analytical results of this

appendix should also be considered. In particular it is important to investigate the

limit on cancellation depth and hence on the quality of power separation that this

noise might cause.

The above items are questions which are obviously related to the subject of this

appendix, namely steady state analysis, but they will be reported separately in ap-

pendix B.

Finally, the whole subject of dynamic analysis must be investigated for the three

configurations.
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IV. APPENDICES

A-1

For any function of a complex variable f(P) we have,

E[f (9)f (D)] = E[fR(O) + f?(0)] = E[fR(03)] + E[f2(0)]

where R and I designate the real and imaginary parts, respectively. Since the

two components of f(fl) are in quadrature relation to each other, they can not be

minimized independently.

aE[f ()3)f*(I3)I = E~f(0) af(*1)- ] + E[f#) ( (1)

EfR ORf( 0)9A1 (/]

i9E[f(/3)f*(O)]- E[f(0)9 ] + E=f ()f1 (2)

Accordingly, we define,

I E[f (O)f*(#)] = :-3E[f (O)f *(#)] + 1570E[f (O)f *(,)] (3)

if f(/) is linear in 0

f(0) = al + a20

then
a

-ORE[f(O)f'()] = E[f(13)aJ] + E[f*(I3)a 2]

and

a-E[f(O)f(3)] E[-jf(13)a;] + E[jf (O)a2]

Using (P-3) we get

d E[f(3)f*(0)] = 2E[a~f(03)]
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This is the igular complex algorithm of Widrow [11]. This is also what we termed

the general rule for a complex derivative.

Notice that we can write in an "informal form"

E[f(O)f*(/)] = E[f(/3) df()]+ E[f(3) J (4)
TO3 d,8~E~(3 d,3

This is an informal since df(f3)l)d3 has not yet been defined. If f(/0) is a general

function of 3 then we must use (P-1), (P-2) together with (P-3) to obtain.

dE[f(/3)f*(/)] -= E f(/a*(f) f +( )( f *9 ( E (3))

dO3 O 9R c1 p,1 -90R d31

from which (P-4) results if we define "informal" that for any function f(o)

!Df(= af(fl) + .Of(O)

d/I -01R +3

Notice that 9f(O)/16? is not a complex conjugate of the function 9.f'(3)/10. Also

for f(3) linear in 8 df(-) = 0
dO

A-2

To check the nature of the extremum points defined in (43), for j real, one can

show from (48) and (48a) that

a2Q21aa= 2Real[A2 d2 Al/daa] (5)

and

02A2/dQR = 2,0(U + IbIJnJI)

Hence

Q00'io = 4Real[A,](1s12 + 1b1;112)

= 4(1812 + Ibi nJP)

[R.(I, + c!2 f• + I1 + abl•nP-) + OR((a + c)RIS1 + (bR + QRlbl))f-P)I
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(P-6)

Using (43), (P-6) yields,

Q2 Rla = 4(is-2 + bionT)

[PR(ja -: 2i71* ii + Cb! 2 I) - -(Tsl + lbI2 -In)] (7)

With the smallness condition assumed for b and c and the constraint imposed

on a and fl, q2Q 2/iaq < 0 and the point defined by (43) is a point of maximum.

Similar steps can be used to show that a 2Q/i9l < 0 and the point defined by (44)

with 3 = j03 (pure imaginary) i; a point of maximum.

A-3

Directly from (P-1) and (P-2 and similar to (36) and (37), we have aP 1/Oa =

2Real

[A8aAiI83R] and 9Pj1i9Pj = 2Roai'.4"?aAi,/3A8 . From (47a) we get

E9A,/OR = (1 +(6)T a)-(bj)2 TT (8)

aA aOlt= j(1 + ba)"(., n - + jc(c + a)*(6b,) 2 ST = jaA,]O3,R (9)

Using (P-9) we also have

Real[A;90.-, add = - I,,A;,aOAi/[O3R (10)

Therefore OP1/O19tR = 0 and aP2 031 = 0. simultaneously, if and only if

ila3/ ] = 0 (11)
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Notice that 9Aj/8afR(aA1,9.3) is independent of OR(#lI), therefore A1 is indepen-

dent of P if aA118/R = O(aA1/031 = 0). But for 8Al/afR = 0 we must have

Icbsl2(s•a + (b.2•ln1"-

c-(b2SV• + b(6b1)2InV2

which will not occur in practice if we assume Icl and Ibi are much smaller than unity

and restrict jai to be less than unity. Therefore, 49Ai/c3R or 9A 1 a1j31 = 0 and A1 # 0

do not constitute an extremum point, so that the only point of extremum for P1 is

that which is obtained by equating .41 to zero.

63



v V

2m . sU

CL CVI
.2 TA.

-a u

;.0 1 £a

+0 +
+. +

9L Ila - 0

-- + IV

-~ '- 
V ) *

.4*

Table.

*i~tc.64



rlr

CL.

+ 4'
*- I.E.

+q A
13~

++ 0 0

*+ +

a + i

+to0 4

5e65



The Power- The Power- The Correlation-
Power Scheme Correlation Scheme Correlation Scheme

raP~ I,* 12 (6,,,/6., )2ljn-l/1812 j2  (j 6e 2n12/1112

s/- aa Ia+C'e1..j~
P•., p,/1812 -~ fN1 2 1

P nI I, C2/-F-(/F2. •)'((- n 12 . IT'"•S,

pn/inh l[ + cl2/(.n1/15-12)2 1 1+ 2 c ,2)2 The same as in the power-

~ la + cl2/(In,1•12/ )2 power scheme

QnQ T 1 (6.2/4,2)2812/lnp2 l31+p) 12 (6.z/6u2)2TFI~/lnl

Qwt, Qn/Inl2 ~ bC 12

q./F-'2 I# + bj2/(1a 212/f1nu2 )2  lb + #(1 + a.b)12 /((/n21l 2 )2

Table 3. Summary of equations representing the signals' power ratios (P./P,, Q,/Q, ),

the input-output transmissions (P,/$12, Qn/[lF2 ) and the cancellation factors

(P,,/j2, Q./1,92) for the different configurations.

Table. 3
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input #1: i-- T

vllt):s(t)+b'n(t)

S~vq(t)

input #2:
v2(t)=C-.S(t)+n(t) I "--

Fig. 1 Interference cancelling using two separate -noise cancelling" schemes
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P1 sign"
ftscrim

input #1:
vj(t)=s(t)+b-n(t) P

Vq(t)
IN

input #2:
signaiW V2(t)=C 3(t)+n(t)

discrim. 
02

Fig. 2 Power-Power bootstrapped canceler
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input #1: d1 ' I- scrim"

vj (t)=s(t)+b'n(t)11 .

vp(t)

input #2: # V, / /
v2(t):c's(t)÷n(t) I (3)

o= ' i I -•dicrt " l r • signals'

Fig. 3 Power-Correlation bootstrapped canceler
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vj(t):s(t)+b-n(t) A

Ipt

input #2I

V2(t)=C-s(t)*-n(t) Iqt

Fig. 4 Correlation-Cororrelation bootstrapped canceler
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Appendix B

Bootstrapped Adaptive Separation of Superimposed Signals - Effect of

Thermal Noise on Performance

Y. Bar-Ness, A. Dinq and H. Messer

Abstract

Bootstrapped adaptive signal separation techniques were shown to be powerful

tools for separation of superimposed signals with an unknown parametric model.

Estimation of all unknown model parameters are done simultaneously, using the es-

timated, separated signals under certain optimization criteria. When the signals to

be separated are uncorrelated, random processes the algorithm converges to the un-

known model parameters and the outputs are a clean version of the input signals,

provided that no additive noise is present. In this appendix, we analyze the effect of

additive thermal noise on the performance of the various structures of a bootstrapped

signal separator. We show that this noise introduces bias to the model parameter es-

timates. We study this bias and we derive conditions under which its effect is limited.

We provide a practical example where the separation of the input signals is hardly

degraded due to the presence of additive thermal noise.

71



1 Introduction

Separation of superimposed signals is a major problem in many different fields.

In fact, many problems are strongly related to the separation problem. For ex-

ample, if a desired signal and an interference are considered as two signals to be

separated, the well-known interference cancellation problem can be regarded as a sig-

nals' separation problem. In an interference cancellation application, however, one

is usually not interested in the interference signal while in other applications all the

signals to be separated are of interest. The general formulation of the problem is:

given x(t) = T(s(t), 0) +- n(t), design a separation system G having the input

x(t) and the output y(t) = 9(t); an estimate of s(t) . s(t) = [s(t); ... , sN(t)]T is an

N dimensional signal vector. T(O) is the mixing transformation which depends on

the model parameter vector 0. x(t) =[,(t), ... , xm(t)]T is the M dimensional vector

of the resulting superimposed signals, with

N

Xm(t) = .T,,(s(t),O) + n,m(t), m = 1,2,..M (1)
n=1

Also, G is the separation system and y(t) is the N dimensional vector of the separated

signals. n(t) = [ni(t), ... , nM(t)IT is an M dimensional vector of the additive noise

(see Fig. 1). If the mixture model is linear in s(t) then

[T11(0) ... TIN(O)

T(0) = T,1(0) - (2)

TMI (O) ... TMN(O)

In which case, it may take the form of a constant matrix, T(O) = T, or a linear

time invariant multi-input multi-output (MIMO) system; T(t,O) = F-1 {H(w.O)}

where H(w, 0) is an MxN transfer function matrix, or any non-linear operation which

depends on a parameter vector 0.

If 0 is known, then the problem is that of a multidimensional filtering. If the trans-

formation is linear, its solution is well known. If T(O) is a non-linear transformation,
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the solution of the non-linear filtering problem depends on the type of non-linearity,

but it can usually be found.

In practice, however, 0 is rarely known. Thus. the separation problem is, in-

herently, a non-linear multidimensional filtering problem and is a very complicated

one. Inspired by Widrow's adaptive LMS algorithm [1], Bar-Ness and Rockah [2]

first suggested (for the two-inputs two-output case) to use each of the outputs of

the separator as a refeience input of an LMS algorithm which produces the other

output. Since this arrangement successively improved the purity of the reference in-

puts and hence the corresponding outputs. Bar-Ness called his idea "a bootstrapped

algorithm." The bootstrapped separator idea was extended to three different struc-

tures termed "power-power", "correlator-correlator" and "power-correlator" [3] and

the results were reported in the open literature eg. [4-51. The names of the different

structures were chosen according to the performance indices which were used in each

of these structures' optimal criteria. Application of the bootstrapped separators to

satellite communication, microwave radio and tactical communication were reported

in [4], [6] and [7]. respectively. Independently, during the mid-eighties, a group of

European researchers addressed the same separation problem and, under the name

of "blind signal separation." developed a similar adaptive system [8]. Lately, a third

group of signal processing researchers applied similar ideas to speech signal separation

[9].

In this appendix, we review the three basic bootstrapped algorithm configurations

of the separation schemes and relate them to the -- blind separation " and " multi-

channel separation " schemes. We then analyze the steady-state performance of the

different versions of the algorithms in the presence of an additive thermal noise. From

the study of the very general case, we then move to a specific application - separation

of cross polarized signals in satellite communication where we study the effect of the

thermal noise on the separation performance in terms of the output desired-signal to
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overall noise ratio.

For simplicity, our analysis is carried out for the case where M=N=2 (two complex

signals to be separated, two complex measurements) and the mixture model is a con-

stant, complex matrix. Notice, however, the same analysis principles are applicable

to any (M > N > 2) and other mixture models.

That is, our model is

x(t) = As(t) + n(t) (3)

where s(t) = [si(t) s 2(t)] T n(t) = [ni(t) n 2 (t)]T, A = [ is thewhereI a2 1 1 isth

unknown complex matrix mixture model. (Notice that the assumption that all =

a 22 = I is not limiting in any way since the signals' power is assumed unknown). Thus

x(t) = [XI(t) X2 (t)]T is complex, random vector. Given the vector x(t), separation is

performed using a 2x2 complex matrix W; that is

y(t) = Wx() = 0(t) (4)

In section II, we discuss three different structures for implementing W: a back-

ward/backward (BB) structure, a forward/forward (FF) structure and a forward/backward

(FB) structure. For each structure, we propose different optimization criteria to be

used for finding W that leads to separation, and we summarize the different algo-

rithms which controls W. Then, in section III, we analyze the steady state perfor-

mance of the proposed algorithms in the presence of thermal additive noise. In section

IV, we apply the results to the problem of cross polarization interference cancella-

tion and show that in a practical situation, the effect of the noise on the separation

performance is not dramatic.
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2 Bootstrapped Signals Separator Configurations

2.1 The Backward-Backward Structure

In Fig. 2.a, cross-coupled feedback structure is depicted. w, aiA w2 are com-

plex weights. The input-output relation of the backward- backward configuration is

summarized by

y(t) = WbbX(t) (5)

where

Wbb -- l w r w 1 ] (6)
1-WIW2 [-WL2 J

By substituting (3) in (5) we get

y(t) = WbbAs(t) + Wbbn(t) =. HbbS(t) + nbb(t) (7)

where.

Hbb = la w - w J (8)

and nbb(t) = Wb6 n(t) . Since signal separation is desired, w, and w2 should be chosen

such that Hbb is a diagonal matrix. Here, the desired solution is

w-=a,, w2 =a 2 , (9)

for which Hbb =1 (the identity matrix) and y(t) = s(t) + A-ln(t) is a noisy estimate

of the signal vector (without noise y(t) = s(t)). Notice that (9) is a necessary and

sufficient condition for Wbb = A-', so the weights can be regarded as estimates of a,

and a2. If Wbb $ A- 1 , the output correlation matrix is given by

Rbb = E{y(t)yH(t)} = HbbRsHH + WbbR, WH (10)
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where R. = E{s(t)sH(t)} and R,, = E{n(t)nH(t)} are the signal and the noise covari-

ance matrices, respectively, and the noise and signal vectors are assumed uncorrelated,

H sta,,is for Hermitian. We assume that

S=02 0(11)R ,,=a2I, R. = 1r]

S0 02 (11

That is, the noise processes nl(t) and n2(M) are uncorrelated processes with power

o 2 and the signals to be separated: sl(t) and S2(t). are assumed uncorrelated, with

power al and o,2. respectively. By substituting (11). (S) and (6) in (1'), we get

Rbb = E{y(t)yH(t)}

1 ([?,I r'2l 1-2 2 IWI -(w+ w)] (12)

11 - wuju2jý Q rzi r 22 I-1 2 - w;) 1 -w2

where
"• '2 " 2

ril = a211 - ',0a21 - Or.lc - w11

112 =0'2a 2 - W 2)(1- w0 2 ) + o(al - w1 )(l -

=- 2 )(1 wia2 ) +2 (1- 3))(1 - W2al) =

r22  oI alC2 - W212 + C12 - w2aij1 (13)

The diagonal entries of Rbb are the output power. E{1y1(t)12} and E{Iy 2(t) 12},

-espectively while the off-diagonal terms are tie correlation between the two outputs,

E{yi(t)y;(t)} and E{y;(t)Y2()} . In [31 it was shown that, for c - 0 (no thermal

noise), the two outputs powers are minimal if and only if (9) is satisfied. Thus, simul-

taneous minimization of both output powers has been proposed as an optimization

criterion, and the corresponding configuration was referred to as the "power-power

configuration.� Notice. however that. equating the der;vative of the output power to

zero is a necessary condition for minimization. That is

d, d-E{Iyi(t)l2 } = E{y-.rlx(t)_ w- y2(1)lI}

= E{-2y,'(t)[x1 (t) - wly2(t)} -2E~yl(t)y;(t)} 0 (14)
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and similarly

d- E{1y2(t)12 } = -2E{y•(t)y 2(t)} = 0 (15)
dw,2

where we used, from Fig. 2.a, the fact that, yI(t) = X1(t) - wIy 2(t); y2(t) = X2(t) -

w2yI(t). Although E{ly,(t)12} is not an analytical function, the derivatives in (14)

and (15) are informally defined as follows [1]: if A = jd + ex12 and x is a complex

variable then L- = 2e*(d + ex).

From (14) and (15), we conclude that for minimum output powers. it is necessary

to have minimum cross correlation between the outputs'. Thus, as optimization

critera for the backward-backward (BB) configuration one can either use minimum

output powers or de-correlation of the outputs. It can easily be shown that (14) leads

to

S- W2.)(l - w +0a2) + (al - Wo1)(1 - W2 oal)' = 0 (16)

while (15) leads to the complex conjugate of (16). Therefore, to find the optimal

weights wlo and w2, we must either perform minimum power or de-correlation cri-

terion by simultaneously solving the two dependent equations (14 ) and (15). To

overcome the dependent equation problem, it was suggested in [2-3] and all the suc-

ceeding articles dealing with bootstrapped separators to add what was termed a

"discriminator." This is a certain functional operation performed on the outputs of

the separator and helps break the inherent dependency of the simultaneous equation

to be solved. To choose an adequate discriminator, some designer ingenuity and prior

knowledge of "some" differences between the signals to be separated is required. Ex-

amples of the particular discriminator, suitable for different application, were given

in [4]. [6] and [7]. In [3], it was suggested to present the effect of the discriminator as

follows: For the signal s,(t) and s2 (t), the two discriminator outputs are given by

D,(sI(t) + s52 (t)) = Slt) + 6
12s2 (t)

'it is also a sufficient condition since the power is quadratic function of the weight.
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D2 (sI(t) + s2 (t)) = 62 1 sI(t) + s 2 (t) (17)

where 16121 < 1, 16211 < 1. That is, the discriminator Di slightly emphasizes the signal

si(t) relative to the other signal, i=1,2.

Optimization Criteria and Respective Algorithms

Due to the equivalence cited above, we can use for optimization criteria either

power-power minimization, correlation-correlation magnitude minimization or power-

correlation magnitude minimization on the outputs. Notice that minimization of

correlation magnitude leads to de-correlation.

Together with the effect of the discriminator, these criteria are given by 7

power-power: wt) [ 1 [= E{in)1 2 ]
w~) W[2(0) I ar I E{ID2(Y2(t))I2

correlation-correlation : w(t) = arg min[ iE1D2(yi(t))y(t)}i2]

power-correlation :w(t) = arg min [j~ (ylt)]

correlation-power : w(t) =arg min [E{DI(y,(t))y2(t)}I I]
W E{ ID 2(y2(t))I'}

(18)

By using the steepest descent algorithm with the negative of the terms in (18) as

the forcing increments, we get two linearly independent recursive control equations.

For a2 = 0 (no noise) and for Iwl < 1, and Iw21 < 1, these equations have a unique

solution, w, = a, and w2 = a2 [3] and the bootstrapped separator converges to these

values.

To summarize: with the backward-backward separation scheme, one can use four

different adaptive separation algorithms. They are denoted by BBPP, BBCC, BBPC

and BBCP where the first two letters (e.g. BB) stand for the configuration used

(backward-backward) and the last two letters (say PC) stand for the optimization

criteria used for the first and the second weight. respectively (say power-correlation.
7 By minimization of a vector, we mean - minimization of all its components simultaneously.
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which are minimum power and de-correlation, respectively). The separation algo-

rithms related to the above configurations are depicted in Fig. 3.

2.2 The Forward-Forward Structure

In Fig. 2.b. the forward-forward structure (FF) is depicted. The input-output

relation for this configuration is given by

y(t)- = W x(t) (19)

where

[ 1 -W-11 ( (1- - WlW2 )Wbb (20)

W -W2 1

where Wbb is given in (6). Since., Wff and Wbb differ only by the scalar factor,

1 - wIw 2, we easily adopt the results of section 2.1 to this case. In particular

y(t) = H!fs(t) + W/fn(t) (21)

where Hf= (1 - wlw2)Hbb and

R =f = E{y(t)yH(t)} = 11 - ww 2 12Rm (22)

where Rbb is given in (10). For this configuration it was proved [3] that, when a2 = 0

(no noise), Hf1 is diagonal if and only if Rf/ is. Therefore, de-correlation of the

output signal is a useful criterion for signal separation, as in the BB configuration.

Notice, however that for this configuration

d E{1y,(t)12} = - E{I x(t) - wIX212} = -2E{fx(t)y,(t)} = 0 (23)
dw, dw,

Therefore, in contrast to the BB configuration wherein de-correlation of the out-

puts and minimization of their powers are equivalent, in FF such equivalence does

not exist. Using de-correlation as an optimization criterion, i.e E{y1(t)y;(t)} = 0,

E{y•(t)y 2(t)} = 0, one might control both w, and w 2. It is very clear that, again
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discrimination is necessary and the resultant separation algorithm, denoted by FFCC

(forward-forward correlation-correlation), is depicted in Fig. 4.

As in the previous structure, we may look at each loop as an interference canceler

which attempts to reduce the effect of the other signal. The upper loop in Fig. 4

attempts to cancel the interference caused by the input source s 2(t) into si(t), while

the lower loop attempts to cancel interference caused by the sl(t) into s2(t). By

virtue of discrimination which enhances the signal component due to s 2(t) over that

due to s1(t), the first loop is able to perform partial cancellation of the interference

from s2(t) into si(t). This results in a purer sample of s l (t) provided to the second

loop allowing that loop to perform a partial cancellation in the other direction from

sI(t) into s2(t). The purer sample of s 2(t) is then used by the first loop to improve

cancellation. The above cycle is repeated until essentially perfect signal separation has

been achieved. This argument lead to the term bootstrap, although no feedback has

been employed. In fact, unlike the BB structure, in the FF structure bootstrapping

results from the control. In [3), it was shown that without noise (a 2 = 0), the

resultant algorithm converges to the unique solution wi = a, and w2 = a 2 provided

that jail < 1 and ja2l < 1. Notice, however, that the output signals are then given

by yl(t) = (1 - ala2)sl(t) and y2(t) = (1 - aja2 )s2(f) and not simply yd(t) = si(t) as

in the BB structure. That is, the signals are indeed separated but they are scaled by

a factor which is related to the model parameters.

2.3 The Forward-Backward Structure

In Fig. 2.c., a forward-backward (FB) bootstrapped structure is depicted. Its

input-output relation is given by

y(t) = Wfbx(t) (24)
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where

S - W2 1ff =Wi+ w 1 w 2eieT, el = (25)

Therefore, this configuration can be alternatively viewed as a FF configuration in

parallel with a direct weighted connection between xl(t) and yl(t) (see Fig. 5). The

relation between the signals to be separated and the output vector is then given by

y(t) = Hfbs(t) + WV1 n(t). where

Hfb = WfbA = Hf1 + wlVW2eieTA

= Hw+ W 1iW2 a,] (26)= H~~wlw 0 01

The output power matrix. Rfh = E{y(t)yH(t)} is given by

Rib = E{y(t)ytl,o}

r2 r:: ] -kW21 -W2 - Wj 1 + 1W21'

where
21, )12

ril = oll - w(a 2 - uw2)J 1aj-wi(1 - alw2)-2

r12 = oa ((a 2 - it,- wi2a, - w2 12 ) - Or(wtV -- I w 2 al12 - ai(1 - 2af)')

r 21 = Ol((a 2 --w2)- wIa2 - U:2 2) -- o'((w~jl -r' 2 al 2 - al(l - 2 al))-- r= 2

r22 = ja 2 - u'21'0 -- I1 - u2(I a; (28)

Unsurprisingly. the output power of y2(t) is as in the FF configuration, while the

output power of y(t) and the correlation E{fy(t)y•(t)} were changed. In [3]. it was

suggested to control u'1 by minimizing the power E{lyi(t)12} and zt'2 by de-coirelating

the two outputs ( or e(Iuivalent ly by minimizing IE{ y2( t)yý(t)}l)1 and hence cailed

power-correlation . \Vith the terminology of the appendix. this is FBPC which is

depicted in Fig. 6.a. However. using Fig. 2.c. we write
d ,d

-- E lyi(t) }= --- Ix,(t) -w_ y2 (t)I2} = -2E{fy,()y.(t)}. (29)
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Therefore, as in the FF structure, we can control w, by minimizing either the

output power E{l y(t)jI' or the magnitude of the correlation IEfy2(t)yw(t)} 12. Also,

similar to the argument in (23), w2. can only be controlled by de-correlating the two

outputs. In conclusion, only two control algorithms are possible for the FB structure:

the power-correlation (FBPC) and the correlation-correlation (FBCC). These two are

depicted in Fig. 6.a and Fig. 6.b. respectively.

In [3] it was shown that if C2 = 0 and Jail < 1 and 1a2l < 1 then the FBPC

algorithm converges to w2 = a2, and w, = a, = . Therefore, the desired1-u"al l-a2al"

outputs are y1 (t) = si(t) and y2(t) = (1 -ala 2)s2 (t) so the first signal is accurately

reconstructed while the second is multiplied by a scalar.

Although all seven possible configurations of the bootstrapped algorithms (Figs. 3.a.

3.b, 3.c, 3.d, 4, 6.a and 6.b) completely separate the signal (in a no-noise environ-

ment), they behave differently. While the BB structure resembles the AR model

process generator, the FF and FB structures resemble the MA and ARMA process

generators, respectively. These principle differences effect stability, bandwidth, con-

vergence, etc. Some of these properties were studied and compared in [10]. In the

rest of this appendix, we concentrate on the effect of noise on the average steady state

behavior of the different structures.
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3 Steady - State Optimal Weight Values

Since we are implementing the steepest descent algorithm, the steady-state values

to which the weights converge (on the average) are the optimal values that satisfy

the corresponding optimal criteria. We now study the steady-state behavior of the

different configurations in the presence of noise. We do that by looking at the values

of the weights w, and w2 which satisfy the criteria of (18). We assume that the

operation of the discriminators is described by (17) and that it does not effect the

noise processes ni(t) and n2(t).

3.1 FF/BB Configurations

Using de-correlation in FF configuration, and due to the equivalence between

power minimization and de-correlation, in case of BB configurations, the steady-

state optimal weights of all FF and BB configurations can be obtained from the

simultaneous solution of

E{DI(y1 )y;} = 0, and E{y;D,(y 2)} = 0 (30)

From (12) together with (13), we find that w 0opt and W2opt must satisfy
6~~~2 a2(lW)_02W I

o,(a2 -- w 2)'(1 - wia 2 ) + 6has(1 - wsai)(ai - w1 ) - "2 (w + Wl) = 0

621a2(a2 - w 2 )(1 - wias) + 2(1 - w2ai)(a, - w,) - o~2(w2 + w;) = 0 (31)

These are two non-linear equations in w, and w2. The solution to the equations

is the mean of the steady-state value of the weights vector wpt = [wlop, W2 op,]T. For

a 2 = 0 the unique solution is W 0opt = a,, W2opt = a2. provided that JaiI < 1, {a21 < 1

[3]. For a 2 0 0, we write

It'lopt = a, --

U"2opt = a 2 - f2 (32)
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Then, using (32) in (31) we get the approximated matrix equation

A 2SNR2 +1 IAXSNR 1 +I 1 [ 1a1=(+a2 ) (33)
,ASNR2 +1I - 622, 1SNRI +1 I~ f2 1[ J

where A = 1 - ala 2 , SNR1  E1E{i1(t)12} and SNR2 = E{ la(t)12 . Thus,

] (a;+a 2 ) o [ A]SNRI(b 1 -1)S----2 (34)
f2 det AS NR 2(6 2 -12 )

and

det = IAI 2SNRISNR2 (61'62 1 - 1) + ASNR2 (b 2 - 1) + A'S.N*Rj(6 - 1) (35)

If a 2 -+ 0 then SNRI - o. SNR2 -- oo and c --+ 0 as expected. If a 2 # 0

then E is inversely proportional to A = 1 - aja 2. Notice that lai < 1, 1a21 < 1 so

IAi < 1. The weights wi and w2 can be regarded as estimates of the unknown model

parameters a, and a2. As such, they are random variables. Their expected value is

given by the solution of (30). From (32), we have

Ejai I = Wo,,p = a, - El

Eja2} = W2ot = a 2 - E2 (36)

Thus, El and f2 of (34) represent the bias in the estimates of the unknown model

parameters. To study this bias we first assume that, b•i = 1, (that is, there is no

discrimination in the corresponding control algorithms). In this case, • = 0

C (a, + a2)ASNR 2(6 2 - 1) (a + a2 ) (al + a2 )

IAI 2SNRSNR 2 (612 - 1) + SNR 2A(622 - 1) SNRA - SNR,(1 -a~a 2 )

(37)

Thus, the bias is inversely proportional to the signal-to-noise ratio (SNR) and to

the coupling effect in the model. A. Notice that for JAI = 0. we must have a, = a2 = I

which means that at the inputs to the separator, the signals are superimposed equally.

'in the transition from (31) to (33) we assume that 1 - w1a1 = A + I 2z A and I - w2al =
A + f , A This assumption will be discussed later.
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IAl = 1, we must have a, = a2 = 0 which means that at the input the two signals are

totally separated. In particular if

i+ 2
a2 > (38)

SNRIA*

then, the bias is larger than the estimated parameter. Similar results can be obtained

for c by letting 6•2 = 1. Thus, as a rule of thumb, it can be said that SNRminA, where

SNRi,, = min{SNR1 , SNR2} is an important design factor. If SNRi,,A >> 1,

the bias in the estimates of the model parameters might be negligible in comparison

to the parameter to be estimated (particularly, if a, and a2 are of the same order of

magnitude) and our assumption in deriving Eq. (33) are satisfied. If, on the other

hand, the SNR is not large enough or the coupling is too strong so JAI << 1, then

the bias may dominate the estimate and may cause severe degradation in separation

performance.

3.2 FB Configuration

For the configurations depicted in Fig. 6.a and Fig. 6.b, w2 = d2 as before, while

w, is not an estimate of a,, but rather related to it through d, = . As in section

3.1. and due to the equivalence between power minimization and de-correlation. we

find the steady-state optimal values of w, and w2 by imposing the de-correlation

requirement of both discriminated output signals. that is from (27) together with

(28), we find that wl0 pt and W2opt must satisfy

2 12)] _a - 2 -W 1, 1-
o1 [(a 2 - W2)*- wi 2 )]- W2 1 (w2 2 w2a 2 - a,( -w2a,))

-47'(w; + w1 + U'w1 w 212 ) = 0

2,0,1 1(a 2 - W2 )- w~ja 2 - W212)]- 1 [')]1 - w2 ajf - a7(1 - w,2a1 )]

-o 2(O2 + w7 + tV;lW21v) = 0(39)
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Define el and e2 as the bias in the estimate of a, and a 2 , respectively, so

W2opt =a 2 - C

w~lopt
-- al -- El

+ + WloptWU2opt

a1 - El (40)
W1opt 1 - (a, - fi)(a 2 - E2)

From (39) we get

(1+ WIW 2) + )+la 2)" + 1 2(2 + aIE2 )E* - (a, + a2 - I(a; - E2)] = 0

(+ WlW 2 ) [bil;A+ qa02 ) + a22A'+ ajc;)cj -o(a, + a; - el- c;)] = (l

Since, jw1w 2 1 < 1 (by restriction), we can write the approximation 9

ASNR 2 + 1 A-'6•SNR 1 +1 2 1

which is exactly the same as in (33). That is, the bias vector for the unknown model

parameters c = [IC f]2 T is the same for all bootstrapped configurations, at least for

small bias, where the approximation holds.

9the assumptions used are: Ea0 << A and (2al << A, which is similar to the assumption in
the BB/FF case, but (I is different here.
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4 Example: Separation of Cross Polarized Sig-
nals

In this section, we apply the bootstrapped signal separation algorithm to the

separation of cross polarized signals [11f. Dual-polarization techniques have been

applied to radio communication networks to increase the transmission capacity of

limited bandwidth channels such as satellite communication channels and microwave

radio channels. In a dual polarized transmission system, the available bandwidth is

doubled by modulating the same carrier frequency with two independent informa-

tion signals. The two modulated signals are then transmitted through the channel,

with one having vertical polarization and the other having horizontal polarization.

Because of antenna imperfections and/or non ideal transmission channel conditions

(caused, for example, by fading), the received signals are not perfectly orthogonal.

Therefore, cross polarization coupling of each information signal to other is created

causing, in some cases, severe degradation in performance. The cross coupling pa-

rameters can be assumed to be slowly time varying and non-dispersive. Bootstrapped

separation algorithms have been proposed [4,6,12.131 to mitigate degradation in per-

formance due to cross polarization interference. It results in an increase in signals

to cross polarization interference ratio and hence, an improved signal separation. In

this application, the normalized coupling factor, Jail and [a2J is sufficiently small,

(-10dB = lOlog[a1i 2 ) and signals-to-noise ratios are of the order of 20 dB or more.

This leads to SNRP,,A >> 1 so that the effect of the additive thermal noise is small.

In the following, we present results concerning the output signal-to-interference plus

noise ratio (SINR) for three configurations.

The input SNIR at the channel output (at the separator input) say x1(t)' 0 , is

given by

'0 Due to symmetry we get similar expression for the other input.
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P12 + Pninput lail2a + u2

( P.i SNRI (3)
P-2 + P )input la,12SNR2 +1

The output SNIR depends on the steady-state values of the weights, and therefore

on f- and f 2. In our example taking jail, la 2 l < 0.3 results in [AI = 11 - aja2 l .• 1,

(this is a fair assumption in the transmission of two orthogonally polarized M-ary

QAM signals [61). By taking SNRR and SNR 2 >> 1, one can show that under these

assumptions the weight bias vector from (34) can be approximated by

[ *; ] : (a,*+a2) f A-SNRI I1 (4
f2 I 1AI 2SNRISNR 2 [ ASNR 2 J'

This approximation is applicable to all configurations. Now, for both BB and FF1

we get by using (12) with (13) and (22) the output SNIR at the separator output at

Yi = si

--1 w'°pta2l 1 (45)

(P$2 + Ja1 - wPntio'u + o"(1 + Iw1o,,,lj2)

Substituting for w1op, from (32) and using the fact that A 1 >> qa 2 and

SNR2 >> 1, we get

(Ps II - aia2 12SNRi

p3 1
2SNR2 + 1p(46)

Using the approximated f from (44), we get

P11 IAI 2SNR, SNR(Ct +a ,~~j (47)
P12 + P,,11 2 12 + a + 2 + 1

A•SNR 2  SNR 2

Notice that as SNR 2 -- oo the output SNIR approaches SNRI, that is, as the

signal-to-noise ratio of the second signal gets stronger, the interference cancellation

"From the relation between Rf! and Rbb in (22) the otitput power ratios are the same as in BB

configuration and given by (45).
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gets better. This result is applicable to both BB and FF configurations for any of the

two outputs.

For the FB configuration, by using (27) with (28) we get the output SNIR at the

separator output y, = ,

P 11 - - W2opt)I I
\P.2+ Pn~output Ia, - w1op,(1 - W2optai)l 2o + o2[rl + Wlo.ptW2optl 2 + Iw1o.tl2]

(48)

at Y2 = s2 , using (27) with (28). the SNIR is given by

.P", ) - 2 I - w2°ptal12SiNR 2  (49)

Po, + P u outpu2 - W2op0 t 2SNR1 + [11 + IW2opt2]

Substituting for w10ot and W2opt from (40) and with high SNR assumption we get
p1 -\I•op a 2 1

2SNRI
P I +W'1 opt Ivd2opt

P(2 + P, Output la, - U/Iopt I2SAR 2 + (1 + I 12)
l +wlop~t u.opt 1 -I.-u' .pt W.2 o~p

JA + Ca21
2SNR1

kcji2 SNR2 + (1 + la, - ElI2)

( P81  ) 4 -±la 212SNRI
P, 2 + Pn output Igxr2SNR2 + 1

Now using e from (44) we get

aI -a I+ ,", :SNR,
put lai+a*12

$2 + P" output IAI2SNR2
( SNR2) 1+2-~ •N

(1 + )Notu2 SNR, (51)\ P32 + P-)utu / ,.,2 +1
SNR2

For SNR2 >> 1, this expression. as (47) can be approximated by simply SNRI

(namely, perfect cancellation). However, for moderate levels of S.R 2, the output

SNIR at yi = il for the FB configuration is slightly higher than that of the BB

configuration or FF configurations. For the other output of the FB configuration, the

output SNIR is exactly as for the BB/FF configurations.

To summarize the results of this section, we notice for cases of small coupling

between the signals and high SNR. such that [AI2SNRISNR 2 >> 1, the output
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SNIR of any of the bootstrapped separators depends on the SNR of the other signal.

Practically, if the other signal SNR is high etiough, the cancellation becomes perfect.

5 Conclusion

To sdmmarize the results in this appendix, we emphasize the following

1. The basic 2-signals' separation cell contains two weighted and two unweighted

paths. Each weighted path can be either a backward (feedback) or a forward directed.

2. The basic optimization criterion for signal separation is the de-correlation of

the output signals. However, the backward path can equivalently be controlled by

minimizing the corresponding output power.

3.Unless signals in the control loops are somewhat discriminated, the separation

problem can not be solved. On the other hand. perfect separation is obtained for

infinite signal to noise ratio (no noise) even if the discrimination is slight.

4. The bootstrapped separation algorithms provide separation of the signals as

well as estimates of the model parameters. With no noise, these estimates are unbi-

ased, in the steady-state. Additive thermal noise at the separator inputs causes bias

in these estimates. This bias is inversely proportional to the input SNR and increases

with the signal cross-coupling. The bias causes degradation in the separation perfor-

mance, but this degradation is small if kAISNR >> 1, where A = 1 - a1a2 is the

coupling factor.

5. The effect of the additive noise is an inherent factor. Since the input to the

separator consists of the superimposed signals and uncorrelated noise processes, the

output, if separation is done, consists of superimposed noise processes and uncorre-

lated signals. That is. the noise processes at the two outputs are inherently correlated.

6. It is interesting to study the case where only one signal is piesent. This case

may be realistic if one of the signals to be separated is absent, temporarily. Formally,

if one takes, say a2 = 0 in (12), we see that any criterian used will result in only one
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control equation (assuming no noise).

S- W2 )(1 - WIW2= 0 (52)

The operation of a discrimination will not produce a second linear independent equa-

tion whether noise is present or not. Thus, the problem is ill-stated and it has no

solution for w, and w2. This can also be explained by the fact that our model assumes

Ja21 < 1 and laiI < 1 meaning that, at the inputs to the separator

1 power of 1 st signal 1
SNR power of 2 nd signal 1a 112

1 power of 1 st signal - 12 < 1
at 2 nd input z2 SNR power of 2 nd signal (53)

Eflsl (t)121 al 2where SNR E{1s1 (t)12 ) Z_+ If ao 0 then S = 0 so Eq. (30a) can never be

satisfied. Thus, the bootstrapped separator is only applicable for separation of signals

and not for noise reduction. etc. (as the LMS algorithm).

7. There exist many practical important separation problems for which ASNR > >

1 ( as the cross polarization example of sect. IV.). In this case, the output SINR is

of the order of the input SNR. namely the separation is practically perfect.

8. All other papers dealing with the same separation problem [3,4] came to a sepa-

ration configuration which is either a BB or a FF one. The papers which use a similar

approach to ours, suggest the de-correlation of the outputs as the only optimization

criteria. No other authors use our "discriminator." However, some suggested the use

of nonlinearities in the control loop, which is a special case of statistical discrimi-

nation. All other papers in which the unknown model parameters are constants are

special cases, mentioned in our appendix. However, there have been efforts to use

similar principals for model parameters which are either digital filters coefficients or

delay lines [14]. In general. similar principles are applicable and similar results are

available. There are, however some differences. For example, in those cases, de-
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correlation of the outputs is a necessary but not sufficient condition for minimization

of the output powers.

Appendix

It is easy to show by using (40) that

-I I (a, - (a2 - 62 a2 (A.1)

la - wi0 pt(1 - W2 optal 2 (a, - 1l)(a2 - E 2 (A.2)

11 + Wlop(W2op1 2a 2  
1  1 12 (A.3)

1+ - (a, - )(a 2 - 62)

I"tl = I - a1 -_ C,-2 12 0• 2 (A.4)
9(a - Ei)(a 2 -2
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Fig. 1 Channei and Canceler Block Diagram
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(3) (6)

11(0 71(d

Fig. 2 The three configuration of the bootstrapped signal separator

a. Backward/Backward Structure
b. Forward/Forward Structure
c. Forward/Backward Structure
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Fig. 5 An Alternative View for Forward/Backward Structure
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Appendix C

Power - Power Bootstrapped Cross-Pol Canceler

for M-ary QAM Signals - Performance Evaluation and Comparison with

LMS and Diagonalizer

Abdulkadir Dinr, and Yeheskel Bar-Ness

1 Introduction

With many transmission systems, capacity can be doubled by using orthogonally

polarized QAM carriers. The orthogonally polarized waves can suffer degradation due

to carrier -to-cross polarization interference (C/XPI). Particularly, during multipath

fading, such degradation could become intolerable.

Many methods have been suggested to cancel the XPI. Among these are the

diagonalizer and the least mean square (LMS) cross-pol canceler proposed in [1). In

this paper, Kavehrad compares the error performance of these two cancelers and

concludes that the LMS is substantially better than the diagonalizer. A similar

diagonalizer was also proposed by Duvoison et. al. [2].

Still another method for cross-polarization interference XPI canceler is termed

bootstrapped cancelers, of which three structures have been proposed and analyzed

in [3,4,5]. It has been shown that, under the assumption of no additive noise or when

the input signals to noise ratio is very high, all these structures converge to a state

of total diagonalization. In other words, the XPI at each of the rancelers. two out-

puts are totally cancelled similar to Kavehrad's or the other diagonalizer considered.

Nevertheless. due to the fact that these bootstrapped structures differ from the diag-

onalizer or the LMS cancelers, the noise terms at their outputs are different and so

is the probability of error performance. Although the bootstrapped structures have

been implemented in different applications, such as satellite dual-polarized communi-

cation [4], QAM microwave radio communication [5] and in tactical communication
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[61, no attempt was made to quantify the bootstrapped cross-polarization cancelers

(BXPC) probability of error performance. In this study, we derive the average proba-

bility of error of the BXPC as a function of its input signal-to-noise ratio and compare

it with the performance of the other two methods, the diagonalizer and LMS which

were presented in [1]. We will show that the BXPC outperforms both the LMS and

the diagonalizer in cancelling XPI.

In this report, we first introduce a model for the dual-channel M-ary transmission

in section (2) and then calculate the error probability caused by cross-polarization

interference as well as the noise section (3). Two interference cancelers, namely the

diagonalizer and the LMS cancelers are introduced and their error probabilities are

estimated in section (4). These results are mostly based on previously published

material and presented in this work for completeness and the convenience of the

reader.

The power-power bootstrapped cross-pol cancelers will be discussed in section

(5). There. after deriving the canceler's parameter such as optimal weights with and

without noise effect, we find the canceler's optimal outputs. Assuming amplitude

compensation alone, or amplitude and phase compensation of the canceler's outputs,

we derive seperately decision parameters for obtaining the corresponding error terms.

In section 5.2. we derive the Chernoff bound on the average probability of error on

on." hand and define an expression to be used in calculating an approximation to the

probability of error by the method of moments, on the other. Finally, in section 5.3.

we present results on the performance of the power-power canceler showing Chernoff

bounds and actual approximations to error probability based on the moments. for

different cases and with different parameters. These results are also compared. in

order to draw the conclusions in section 5.4.
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2 Dual-Channel M-ary QAM Transmission Model

T1hc model for such chaunels have been well presented in the literature [7,8,9,10].

!-ary QAM bandpass signals with the same bandwidth and the same center frequency

transmitted on two orthogonal channels can be presented as

si(t) = Re{.,(t)exp(j2:rfht)} (1)

where Re{.} stands for the real part, f, denotes the carrier frequency and .ý,(t), i = 1.2

is the complex envelopes of each of the orthogonal signals, respectively. These complex

envelope can be expressed as
00

)= IkiOht - kT) (2)

k=O

where Ii, i = 1,2 is a complex information symbol which takes on one of M different

complex values, where Iki = IkR + jIkI, and IkR and I'k (the in-phase and the

quadrature component of the carrier), are independent M-ary symbols from the set

{±c. ±3c ..... ..v..- 1)cl. IkR and Ikt can each take values equal to 21- 1 -

v-M. l = 1. 2.... v/MlA. IkR and Iki are assumed to be statistically independent and

equiprobable. Also, h(t) is a complex low-pass equivalent of the overall system impulse

response. M is the number of signal level of in-phase and quadrature component and

c is a constant which determines the distance to the decision boundary from each

sigiial location.

The channel is assumed to be slowly time varying and non-dispersive. It accepts

two orthogonally independent random data streams lI(n) and l 2(n). It causes dis-

tortion: a fraction of one stream of data is added to the other [10].

In matrix notation the received signal is given by

x(t) = As(t) + n(t) (3)

where A is the dual-channel cross coupling matrix

A= a,, a1 (4)a 21 a22
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a12 and a21 are complex valued constants that denote the channels cross-polarization

(inter-channel interference) responses. The factors all and a22 denote co-polarization

(direct path attenuation) channel constants taken as real valued [IC].

In (3) s(t) = [sl(t),s 2(t)]r and the noise n(t) = [n1 (t),n 2(t)JT with ni(t) =

nR(t) + jnji(t), i = 1, 2

The received signals, sampled after matched filters, are denoted by;(see Fig 1)

x1 (n) = alIll(n) +al 212(n) +n 1 (n)
(5)

X2(n) = a2 1I(n)+a 2212(n)+n 2(n)

where x1 (n) and x2(n) are the sampled received signals at the first and second channels

respectively. Ii(n) and ni(n) are the correspondir-g signals and noises at these outputs.

Also ni(n) and n2(n) are independent samples of Gaussian zero mean random process.

The channel coefficients aii i = 1,2. J = 1,2 are assumed to vary slowly with

respect to the signal rate. These slow variations can be tracked by the adaptive

algorithms.

WVe define the normalized cross-polarization coefficients,

a 12  • a 2 1=tieJ•, - =r~j¢•,(6)
a 22  all

where rl, r2 denote the magnitude of the normalized cross polarization constants and

o0. 2 are the phases of these constants assumed to be independent and uniformly

distributed over [-r, 7r].

3 Performance of Dual Polarized M-ary QAM
System

To estimate the performance of such a system and realize the effect of cross-

polarization, we will find an estimate for the probability of errors that each output

will suffer. As a standard procedure, and based on the kind of signal processing

performed at the outputs of the receiver, we define the decision parameter. In this
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chapter we will take as the decision parameter i1 (n) - ) and yi(n) $ z 1(n)12 . In

all

the next chapter this normalization will be termed "amplitude" only compensation.

Define,

Z, (n) -A il (n) - I, (n) (7)

From (5) and (7), we write

Zi(n) --1 I2(n) + (8)
a11  a,,

Next, we write Zl(n) in terms of its real , ZIR, and imaginary,Z11 , parts. For this,

assuming all = a22 we use (6) in (8) and present 12(n) and nl(n) in terms of their

real and imaginary parts;

Z1R = r1I2Rcos-0, - r 1 12tsinol + n_.R-
all

Z11 = rI2Rsinl ,+rII 2 Icosol+ ni- (9)
all

For a matter of convenience, we dropped in (9) the dependence on the sampling

time n.

Based on the decision parameters in (9), Kavehrad [1] finds the Chernoff bound

on the probability of error at the output. He also uses the Gauss quadrature rule [11]

to obtain an approximate value of the probability of error.

For the convenience of the reader, we will summarize Kavehrad's GQR procedure:

Define,

X1= rl(I2RcOSOI - I 21sinol)

"- iR (10)

all

then

ZIR = X1 + Y (11)
12when we add canceler; yd(n) will be the output of the canceler.
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where Y "s zero mean Gaussian random variable with variance -. Therefore, ZiR

a2
is Gaussian with mean X1 and variance --. It is possible to show that,

all

Pl(IZIRI > c 1,,I2R, I21) = 2 Q(c-1 Xi) (12)

where

Q1 = _ _ _ t2

and cr 2  n

Using the relation between the probability of error PI(e) and PI(IZIRI > c), we

have
1 t(a'c 1 /3SNR\

P,(ekl1,1R.IM 12)= 2(1 - I-)Q -I (c - X-) (13)

where we used the well known relation between SNR and M-QAM signal param-

eter;
Al- 1 c2

SNR = (14)3 or2

Defining the random variable.
x = (15)
C

then, (13) becomes.

PI(elx) 2(0 - )Q(ai(I - x) 3 SN (16)

The average probability can be approximated, using the GQR by;

P1e I21 N al3 SNRI
P, (e) 2(l - V1)1 WQ ,, (1 - Xi) (17)

where xi nd wi are the nodes and weights of the GQR which can be obtained from

the moments of the random variable x defined in (15) together with (10).

Based on (17), we calculate and present in Fig. 2 the probability of error at the

output of a channel for 16 QAM dually polarized signals as a function of the trans-

mitter signal to noise ratio. The cross-coupling assumed to be -15 dB. 32 moments

were used when applying the GQR in (17).
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4 Cross-Polarization Cancelers

We notice from (5) that the output of the channel contains, besides the noise

term, an interference (cross polarization) through the cross coupling a 12 and a21 . This

interference undoubtly causes degradation of performance. Several different canceler

structures were proposed to mitigate the effect of cross-polarization. Among these

are the diagonalizer [10] and the LMS [12] and the bootstrapped canceler [4].

For the convenience of the reader, we will summarize Kavehrad's approach to

estimate the performances of the diagonalizer and the LMS cross-pol cancelers. We

will introduce the decision parameters of these cancelers as they have been derived for

M-ary QAM system by Kavehrad, follow his derivation for the Chernoff bound on the

probability of error and compare the results of these two algorithms with each other

for different cross-couplings. It should be noticed that the decision parameters for the

outputs were derived in [1] under the assumption that only amplitude compensation

is used at the output. Also, it should be emphasized that unlike the LMS canceler,

Kavehrad completely neglects the effect of noise on optimal weight when he deals

with the diagonalizer.

4.1 The Diagonalizer and Its Performance

The structure of this canceler is well presented in [10], [1], see Fig 3. The output

of the diagonalizer is given by

yi(n) = w+1x 1(n)+W1 2X2 (n)

y2(n) = w21 x 1(n) + w 22x 2(n) (18)

and substituting (5) in (18). we get

yi(n) = wil[allI,(n) + ai 12 2(n) + ni(n)] + w12[a2111(n) + a22 12(n) + n2(n)]

y2 (n) = w2 1[a,,I,(n) + a, 212(n) + n,(n)] + w22[a2 uI,(n) + a22• 2(n) + n2(n)]"
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(19)

The canceler weights are found by forcing the coefficients of the interference signal

to zero on each channel. Therefore, from (19) we must choose the weights to satisfy,

wllal2 + W12 a 22 - 0

w21all +w 22a21  = 0 (20)

By substituting the constraint of (20) in (19), we get after using (5).

yl(n) = all[1 - rlr 2 fJI A+02)I[IlR(n) + jIIi(n)] + nTR(n) + jnlt(n)

-(n2R + jn2)rlejo)e

y2(n) = a 2 2 [1 - rlr 2eJ(A-l+ 4 2)]I[I 2R(n) + j1 2i(n)] + n2R(n) + jn 2 l(n)

-(niR + jn, I)rj ejoh (21)

Following Kavehrad, we define, i 1(n) = •"(•)as an estimate of the transmittedall

signal 11 (n) and hence definition of decision parameter follows

Z,(n) = i(n) - I,(n) (22)

Using (22) in (21), we write the decision parameter for the output of channel 1,

in terms of its real and imaginary parts;

ZLR = -I-R(n)rlr2cos('kl + 02) + Ilj(n)rlr 2sin(Oj + 02)

+ naR(n) n- R n2-r.'COsO + -- rlsnn .all all all all

Z11 = -- lR(n)rlr2 sin(o~l + 02) - II(n)rlr 2cos(ol + 02)

nil(n) n2R n2R - n2 1
"+ . L-inql - -ricospi (23)

all all all all
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The Chernoff bound on Pl(IZlRI > c) is derived by [1] and some of the steps can

be found detailed in section (5.2.1) From this analysis, we find that the probability

of error is bounded as follows;

1 [ e3 SNR a,, 1 i=1,2 (24)
Pi(e)_ (1- V )exp 12(M -- ) 1 + SNR r2r2tja + rd

where we again use the relation (14);

Kavehrad in a different paper [III uses another form of compensation;

From (21). he first finds the real and imaginary part of the canceler output,

YlR = all[1 - rir 2cos(O 1 + 62)]IIR(n) + ai 1 Ilj(n)rjr 2sin(+ 4+ 02) +4 niR(n)

-n2R(n)rlcos8bl + n21(n)rjsinkj,

Yit = all[1 - rlr 2cos(01 + 6 2)]Ili(n) - allhIR(n)rlr2sZn(¢l + 0 2 ) + nij(T.)

--n2R(n)rlsinfl - n21(n)ricosol,

(25)

then defines an estimate of the real part of II(n),

- ~yiR(fl)]IR(n) = - (2n)
1aii[1 - rlr 2 Cos(Q'l + 92)]' (26)

and similar estimate for the imaginary part of I,(n). For the decision parameter ZIR,

then he uses

ZIR(n) - IiR(n) - IiR(n) (27)

Therefore.

ZlR(n) = x[anlIll(n)rlr 2sin(ol + 02) + nlR(n)- n2R(n)rlcosol + n 2t(n)sin4,] (28)

where

A S ani[I - rlr 2cos(O1 + 62)]. (29)
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This kind of compensation might be considered as "both amplitude and phase

compensation" of the co-pol channel response. In the next chapter, we will use for the

bootstrapped cancelers, a slightly different approach to Kavehrad's compensation; we

will apply compensation on the complex output before making a decision. Obviously,

there will be a difference in hardware needed to implement these approaches.

Both the Chernoff bound and the moment GQR can be used with (28). For the

second approach one can find

PI(eI¢i1,c2, II) =2(1 - 1 M . (30)Q()

where

= rir2IiIsin(k1 + 02)
Ax(01, 02 )
1, nR - n2Rrlcos~j + n21risin-6] (31)

,A(0$1 9 2 )[f1f2rCSk

and a variance

o2 =2(1 + r2)[1 - rir 2cos(0ki + ¢2)]2 (32)

Let x be the random variable

x = rir 2[cos(¢1 + 02) - IjIsin(91 + 02)] (33)

then

1 (/M3S1)1+x)()

PI(eljpl,o 2 ,111 ) = 2(1 - )Q r 3 SNR (1-X) (34)

Equation (34) can be evaluated numerically. Some results on the performance of

the diagonalizer of Kavehrad are given in the following figures. In Fig. 4. we use 16

QAM and compare the error probability obtained with the moment method to the

Chernoff upper bound. The cross polarization used was r=-15 dB Fig. 5 depicts the

same except for using 64 QAM instead. Comparing the performance when r=-10 dB

to that when r=-15 dB is done in Fig. 6 using moment method.
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4.2 LMS canceler

The structure of this canceler (Fig 7), for dually polarized non-dispersive channels

is given in [12].

For the output of this canceler as in (18), Kavehrad performs an amplitude nor-

malization and obtains an estimate of the transmitted signal ji(n) - y,(n)
aii

i = 1, 2. The optimal LMS weights are found by minimizing the sum of the squares

of the errors. E{lei(n)12 + je2(n)12}, where

e,(n) E= 1,(n) - I,(n) 1 = 1,2 (35)

corresponding to the i-th output of the canceler.

These optimum weights are found by solving the matrix equation

Rwopt = S" (36)

where

R_ [xl(n)12 xi(n)x;(n)] (37)

- [ W1iOpt W12°pt] (38)

and W21opt W220pt

and

S= [al a22] (39)

For E{Ii(n)} = E{I 2(n)} and for a complex Gaussian noise, the optimum weights

from (36) can be used in (18) to find the optimal output yi(n). (see appendix B of

[1] for detail).

From the optimal output one can derive the decision parameter, and use it to find

an approximation to. or upper bound on, the probability of error.

Some results of these calculations are given in Fig. 8 to 10.
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5 The Power-Power Cross-Pol Canceler Structure

The system in Fig. 11 depicts the structure of the power-power cross-pol canceler.

It consists of two distinct control loops: Q - w21 loop and the P - w12 loop. Let

the power ratio of the two signals at point 3, be such that I, (n) > I2(n). This being

the input to the weight w12 results in power-inversion in I2(n) > I,(n) at point 4.

However. point 4, being the input to the weight w21, results in I,(n) greater than 12(n)

at point 3. This process continues resulting in a very high I'(n) at one output and12 (n)
"(n) in the other. As a result, the power-power canceler acts as a high quality power
I4 (n)

separator. The adaptive control algorithm varies the cancellation the coefficient w 12.

w21 so as to minimize the power P and Q at the output of the canceler. The blocks

labeled "discrimination" perform functions which make the power detection more

sensitive to the undesired (a 12! 2 at port P) signal than to the desired signal "a[ 1!1 ".

The effect of these blocks which will be discussed in later sections and prove to be

essential for the bootstrapping operation.

5.1 Canceler Scheme and Parameters

As it was discussed in section 2 above, the received signals which are sampled

after matched filters, axe given by;

xi(n) = aij1(n) + a1212(n) + ni(n)

(40)
X2(n) = a211 1(n) + a2 2 12(n) + n2 (n)

where x1 (n) and x2(n) are the sampled received signals at the first and second channels

respectively. Ii(n) and ni(n) are the corresponding signals and noises at these outputs.

5.1.1 Canceler Outputs

From Fig. 11 the outputs y1(n) and y2 (n) of the canceler are as follows

y1 (n) = x,(n) + y2(n)w 12
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y2(n) = x2(n) + yi(n)w21  (41)

Solving the system of equation (41) leads to

Y1 (n) = x(n) + X2 (n)wI 2

1 - w 12w 21

Y2 (n) = X2 (n) + xl(n)w21  (42)
1 - w12w 2 1

Substituting for xi(n) and x2(n) from (40) we get

yi(n) = Ih(n)(al + w12a2l) + I2(n)(a12 + w12a22 ) + n1 (n) + n2(n)wI2 (43)
1 - W12W21

Y2(n) = II(n)(a2i + w21a 1 ) + 12(n)(a22 + w21a12 ) + ni(n)w21 + n2 (n)1-n =(44)
I-w12w21

5.1.2 Optimal Weights

The control algorithm simultaneously minimizes the output powers

P(w' 2 , w,) = E{lY~d(n)I21 (45)

Q(W,12 ,1 ) = E{Iy~d(n)I1} (46)

where yld(n) and Y2d(n) are the samples of the corresponding output after the dis-

criminations. In fact, it simultaneously searches for aE{lyld(n)12 }/8wu2 = 0 and

.9E{jy 2d(n)12 }/1w 21 = 0. where E{.} and I I denote the expected and magni~ade

respectively. The search for optimum weights can be performed by successive use of

the following recursive equations. provided that 1 - w 12w 21 : 0.

a
wt+2 = w,+ I ,W P(w[2. W21) (47)
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= W21 - 1 57WQ(W 12 , w'2) (48)
21

where jl and #2 are the constants which determine the stability of convergence.

The optimum weights that minimize the powers are the steady state weights ob-

tained from

Ow•2 = 0 (49)
aw12

O9Q( wi• wQw2, Wh ) = 0 (50)

From (43) and (44), we first find the powers at the output of the discriminators,

as

P(W 1 2 ,W 2 1 ) = 12 w1l [,iE{IIi(n)12} ail + w,2a2l12

+612E{112(n)I} Ja12 + w12a2212 + E{Ini(n)12 }

+E{ Jn2 (n)12} [w12 12], (51)

Q(w1,,w - - w 2w2)=1 2 621E{Iui(n)12}[a2 l + w2 1 a1112

+6 22E{1l 2(n)12}ja 22 + w21a1212 + E{In,(n)12}wl21 12

+E{In 2 (n)12}] (52)

where bj i.j=1.2 denotes the effect of the i th discriminator on the different signal

(II(n) or I2(n)) powers.
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Notice that in calculating the power, we assumed Ii(n) and 12(n) are uncorrelated

and zero mean. We will take for the derivative of any real function with respect to a

complex variable [13].
a -= - + J.89 (53)

8W iw ' aW,.
where w = wz, +jwi. Hence, for the functions P in (51), we get, after some algebraic

manipulation (see Chapter 3 of [14]).

8P _ 2(1 - w12w21) [)1 2

Ow12  11 - W12W21j 4 (all + w,2a~ l)(a,, + w,,all)*blEjjI,(n

+(al 2 + w1a22)(a22 + W2 1a,2)6uE{112(n)1 2 1

+E{Ijn(n)12 }w 1l + E{1n 2(n)121w 12].

(54)

Similarly the derivative of the power Q in (52) can be finally written as,

wQ 2(1 - W12W21) (a 2 l + w21all)(all + w12a 2 l)'i•2 E{III(n)121

19W 21  11 - W12W211 I~

+(al 2 + w12a22)*(a22 + w2laa2)6b2E{1l2(n)1 2}

+EfE{In,(n)1 2}w 2 1 + E{1n2(n)12}wý2]

(55)

Provided I1 - w1 2w 211 0 0. equating (54) and (55) simultaneously to zero will result

in W12 opt and W2lopt .

-= 1 - [a 1 l(a 21 + W21optall)'E{III(n)12}bii
Wlmopt -- Dw121pt
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+a 12(a22 + W21optau)*E{II2(n)12}612 + w;ioptE{Inl(n)12}1] (56)

where,

Dw1 20pt = a2 l(a 2 l + W21optaii)*E{lII(n)12}6ii

+a 22(a 22 + W2 ioptal 2)*E{1I 2(n) 2 }612 + E{1n 2(n)12 }, (57)

and,

-1 [
W210pt = 1a2l(al + W12 opta 21)*E{JII(n)126b21

tDw 210pt

+a 2 2 (a1 2 + W, 2opta 22 )*E{ I 2(n)1216 22 + W720 ptE{f n 2(n)121] (58)

where

Dw210 pt = all(all + Wl2opta2l)*E{III(n)12} 621

+a 12(a1 2 + W120 pta 22)*E{1I 2(n)12 6 22 + E{Inl(n)12 } (59)

The effect of the discriminators are presented by 6bi i,j = 1.2 which are real

valued satisfying 611622 < b1261. Note that, the first and second terms in (55)

are complex conjugates of the terms in (54). Therefore, to find a unique solution

for w1 2 and w21 using these equations, discriminators which enforce the constant

6,, i,j = 1.2 satisfying the above condition, are essential. The simultaneous so-

lution of these non-linear equations give two equilibrium points- [W1 20pt1, W2 ioptl]

and 1iw, 2opt2. w2iopt2]. One is a stable equilibrium which provides a solution to our

problem.
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5.1.3 Effect of Noise On Optimal Weights

In the absence of noise, that is when E{jni(n)j2 } = E{1n 2 (n)12} = 0 the stable

equilibrium points can easily found to be
a 12  a 21

W12opt a a12 , W21opt = (121 (60). a22 all

With noise, we will write
a1 2  a2I

W12opt - a 1 , W 2lopt = --- + 62. (61)
a 22  all

where iE and f2 are perturbations. due to noise on the optimal weights that we intend

to find.

Using (56) and (60) in (61), we can finally write, after some algebraic manipulation

(see chapter 3 of [141)

aE 222 21 a12 a21 -1)b,,E{ III(n )12 )} E{ Inl(n) 121) ;
L a22 al1 I

+(an2)*E{In,(12} + a-. E{In2 (n)12}].
a1 1  a 22

(62)

where.

A2 a22 (a 2 laiiiE{III(n) 12} + a2 2 a]2 b 2E{II2 (n)I2})f

+a22(a22- a3J!., 2),5, 2E{II 2(n)121 + E{1n 2(n)121}.a11

(63)

Similar steps can be followed to determine c2 from (61) together with (58);

(2 a lal[ a22(- '! - l)6 22E{112 (n)12} - E{ln 2 (n)I2})1
A'f2 [ a22 a, 1

7

+(a22)*E{In2(n)I 2 } + a-21 E{n(n)12}]. (64)
a2 2  all a
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where,

A2= all K (a;jaii6 2 jE{IIi(n) 121 + a12a22 6n2E{ I 2(TL) 1}1),E-

+al- a21 !ii )-b2E{II~I2 } + E{Ini(n)121 (65)
all a12

Equation (62) and (64) can be solved simultaneously to obtain

C1 a2 ( ý,2 ~l)EjI.n~~jbý E~njn)12 a21  1~2}

~(a~~l- 12 2)EI(2} + 1{2ni 11)12}

a12Ejn(~' al~ 1 -2 a2-1)E{III(n)12 li + E{ Ini(n)11
a22 I1 L all a22

(2-1-)E{inj(n)I'1 + ý-E{1n2(fl ) 12} 6'
all a22

a1[a2 -l-2-2)fI()2b2 a Efln n)121l 1Ei~n~ 2}

f2 2~-[2 (1 n- E nn Lfl FI 1 (n)l~I
E7 ~al1 a2 2  H l

alý12)*E{Inn(n)I2l +2[2(1 - ,1-2 a"1 )E{ I12(n)12 }612 + E{ In,(n~~I21
a22 all a22

all a221"

with

L2 1 i.3 )EI 12} + aF2!2
Aa2( 1-2221 )E 1()11 E{ln.(n)I2] 1a1} aj' 1 2 a)

all2\ a2 2  all a2 2

E{III(n)1} 2 + E{Inn(n)j2}l [a2,( -
I1 all a22

+Ejlnn(n)I2 1] a 22( _ a12 an *1Y{1~2(n 2}62 + Ejln,,(n'i1].j
122 a 1 I a22

(68)
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Without loss of generality, we will assume that the noise variance in the V and

H polarized channels are equal: E{Ini(n)[2 } = E{1n 2(n)12} = E{In.(n)12 }. This

assumption is particularly useful when calculating the probability of error. In fact,

this is the most difficult case that puts the worst requirement on the discriminators.

Using this assumption and the definition of the channel parameter. we can write the

final expression of the perturbation e and 6 2 as follows:

First AR and Al be the real and imaginary part of A, that is; A = AR + jAI,

then, some algebraic manipulation leads to,
2 22 2 1 2( 11

AR = al 1 a22(1 - 2rir2cos(o61 02) + r~r2).E{lII(n)l2 }E{lI(n)I2 }

(12621 - 611622) + [ja 22 '2EujI 2(n)12}Elnn(n)12}(1 2 -22) a E{III(n)12

E{In,(n)12 }(62101 6 -)].(1 - rjr 2cos(¢p1 + 02)), (69)

Al [a,2 E{IJI 2 (n)I2(i - 622) - a~1E{jI(n)I2 }(b2i -b1

rir2sin(ki + 0 2)E{In,,(n)12}. (70)

Defining;
CIAR + JflAI (71)

AR + jaI

then.

El= E•R + jfi

1 [
,A• + ..x ([.l4-A,• wiT•a• + j(EI.,-AR - ClAR,.-!)] (72)

with
*ll...t + l:A!/•

CIR = IA2 A (73)
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CIAIAR - CIARAI (74)
€1I = i/1 2  (74)

and
IA12 = A2 + A2. (7.5)

From (66) with the definition of the channel parameter one can easily conclude that,

[ricoso + r2 CoS 2 - r,2r 2CoS(20, + 02)- rjr coso.

E{ In.(n)12 } E { II,(n }(n) , -I b)

CIAI a,, [rlsino, - r2Sin0 2 - r~r2sif(2(?i + 4?2) - rir~sin,6i].

E{In.(n)12}E{[I,(n)I2}(b2l - bl). (77)

f-2AI a a 2 [2-risino, + r2siTZ02 - r 2r2Sin4 2 - rjr 2sin(Ol + 242)]

E{Inn(n)12}E{fI 2 (n)I12 (6i2 - b22). (78)

f2AR a 2 2 [rlcoswl + r2 COS0 2 - r 2r2COS0 2 - rjr 2 cos(Oi + U

E{jn(n)I2} E{II 2(n)j2 }(61 2 - 622), (79)

Clearly,

=2 (2R + J 2I (80)

, + [(f2ARAR - f2A]AI) + j(f2ARAI + E2A1AR)], (81)
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then,

=2ARAR - f2AIAI (82)E2R-- i•1I(82

=2ARAI + IE2AIAR (83)E21 -- 1A1 83

5.1.4 Canceler Optimal Outputs

Next using (61) in (43) with w12 = W12opt and w21 = W21opt. we obtain yl(n)1 + --a 12

yl(n) "- (_--1'+•)(--a1(-a2 + f))ana]

-a12  + ,)-a 2 l 12)nta a22
a22  all

-~-In"~~ + 1 2  i~n r--a12 +1

+ I2(n,)[a] + (- - + I)a22J + ni(n) + n 2 (n) -- + .El]
a 2 2  a22

(84)

and after combining terms,

aull(n)[1 - aa + -I +a2] 4- I2(n)fia22 + n,(n) - n 2 (n)!- + n 2(n)fi
yl(n) - alia 22  all a 22a1al a 1 2  a 21

1 - a!! + a 2 + Ei - fIC2
alla 2 2  a 2 2  all

(85)

5.1.5 Decision Parameters with Amplitude Compensation at the Can-

celer Output

The co-pole horizontally polarized signal at the output of the channel is a1 ll(n)

and hence, it is reasonable to take yl(n)au as an estimate of this signal by compen-

sating for the attenuation in the co-pol by all. Therefore, we will take jl(n) = yj(n)
a11

as an estimate of the transmitted signal I,(n). We will also assume the f1I 2 in (85) is

negligible with respect to the other terms in the denominator of this equation. Hence

from (85) we can write,

119



h~)i-a 2 21 + 212 + 21  a21  +a2 1 2 a-12 f2],(n)[1 aL .-.- f2 + a'2-'El = I,(n)[1 - + _q + aE2al 1 a22  a 22 all al 1a22  all a22  a22

a2 2 +n 1 (n) -a 12  fl
+12(n)E 1- + - + n2(n)( + -)

all all alia 2 2  all

(86)

Define,

Zl(n) A h(n) - I,(n), (87)

with Z1(n) is taken as the decision parameter. That is, the probability of error is

given by Pj(e) = P{IZi(n)I > c) where c is the half of the distance between two

signals in the corresponding signal space. From (86) together with (87), we can drive,

after lengthy algebraic manipulations (see chapter 3 of [141), the real and imaginary

part of the decision variable Zl(n);

Z1R = - [IIR(KRZDR + KIZDI) + III(KIZDR - KRZDI)ZIR = Az 21

+I2R(f1RZDR + ElIZDI)-22 + I21(@1RZDI - EIIZDR)a22
all all

ZDR ZDI+nlRZDRI + nlt•

all all

"•n2R[(I r1R - rc-O84 D (ell rlsinfl )ZDII

all all all all

n2 -i r+sni + (R ,-rcos 4, )z•]• (88)
all all all all

and
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Z11 1A1 [-IIR(KIZDR - KRZDI) - III(KRZDR + KIZDI)

-I2~fIZDI- fIZDR)ý-2 + I21(fE1RZDR + fIIZDI)ý-2all all

ZDI ZDR
-lR- + nljI

all all

+q r i s i r u k 1  ) Z D R ( 8 9)( P

-nR)ZDR +- A a)ZDIIall all all all

where KR and K1 are the real and imaginary part of K given by

KR =KARAR -KAJAI (90)

K1  KARAI +KAJAR (91)

KAR and K(AI are given by

KAR = a22E{In.(n)I21E{II 2(n)}01(62 -b22).

[rj r2COS(61 + 02) - r 3r2 COS(tk1 + 0'2) - r 2r 2cos(2(61 + 0)

(92)

KAI = a 2E{inn(n )IE{II2(n)I2}(b12 -622).

[rjr 2Sin(Oki + P2) - r 3r2Sir(0 1 + 0~2) - r 2r 2sira(2(ol + 02))] (93)
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while AR and AI are given in (69,70). Note that KR and KI are functions of the

random variables 4), and 02. Also, the real and imaginary part of the denominator

ZD = ZDR + j ZDI is given by

ZDR - 1-rlr2cos(Ol + 0 2 ) + KR + VR (94)

ZDI = -rjr 2sin(Oj + 0)2) + KI + V1. (95)

IAzI 2 = ZDR + ZD21. VAR and VAI are the real and imaginary part of V defined

as follows

VR = VARAR + VAIAI (96)vR ~ ~ -- I+•}(6

VI = VAIAR - VARAI (97)v• - R+ I 97

with VAR and VAI are given by

V4R = a21E{Inn(n)I2}E{III(n)12 }(621 - 611) [rr 2Cos(4Ol + 02) + 2

-Trl3 COS(4)i + 02) - r r2cos(2(01 + 02))] (98)

Y 41 = ajiE{In,(n) 1}E{III(n)I2}(6 2i - M)[r~r2sin(01 + 42)

-rr738in(O) + )2) - r 2rsin(2(01 + 0 2))](99)

and AR and Al are given in (69). Similar to the real and imaginary part of K, VR

and VI are functions of the random variables 4)1 and 02.
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Finally we write the real and imaginary parts of Z1 (n) in terms of the random

variable representing the real and imaginary part of signal and noises of channel 1

Z1R = I1RY1 + 11112 + I2RY3 + 12tY4 + nIRYS + n7jY 6 + n2RY7 + n 2tYS (100)

Zi= -I1RY2 + IItYI - I2RY4 + I 21Y3 - tlIRY 6 +- nr1 Y5 -- n 2RY8 + n 21?•7  (101)

where

y -= KRZDR + KIZDI (102)
IAZI2

KIZDR - KRZDI (103)

Y3 = a 22 (IRZDR + fIuZDI (104)
,,1 , I•XzI 2

a22 t1RZDI -- IIZDR (105)
aY4 = oI)Z

2

Y5 = ZDR (106)
aiIIAzi 2

1 = ZDt (107)

(EIR - rlcos6l)ZnR + (El - rlsindb)Z(17• =IJA (108)

= (rlsino, - C1I)ZDR + (f1R - rlcosekl)ZDj (109)
a11 AzI2

I'-IZl2 = z2R + zD2, (110)

Notice that Y1, i'= 1. 2..8 depend only on the random variables 01 and 02.
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5.1.6 Decision Parameter with Both Amplitude and Phase Compensation

at the Canceler Output

Instead of the amplitude compensation used in section 5.1.5, in this section we

use compensation on both amplitude and phase of the co-pol signal. That is at the

output of the canceler, the co-pol signal is the same as that sent by the transmitter

and the error will be caused only by the cross coupling and the noise processes.

From (85) we can write

y1(n) = - [II(n)A, + I2(n)cla 22 + n1 (n) + n2(n)[-a3+3i +22
I ~~a2 2 (1)

where

a l2a 2 l + 162a 12  + fla 2-1  - (IC2

aila 22  a 2 2  all

AV aii1 - al 2a2l + a,, (112)

alia22 all

and with amplitude and phase compensation, we take fi(n) = y1 (n)A-L as estimate of

the transmitted signal II(n).

Define.

Z,(n) - f1 (n) - Ii(n) (113)

with Z1 denotes the amplitude and phase compensated output decision variable at

channel 1.

We will perform an analysis similar to that in the previous section to find the real

and imaginary parts of the decision variable ZI(n).

From (111) and (113) we get.

Z,=(n) - [I2(n)f 1a22 + n1 (n) + n 2(n)[-a12 + fu] (114)
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Using (6) in (114), we get the decision variable.

g = (- [ + jI2l)(,1R +i I1 )a22

+nTR + jniI - rl(n2R + jn 21)(coS01 + jsin~j)

+(n2R + jn2l)(EIR + if 1)], (115)

where we drop the depen. - ce of terms on the sampling time n.

Also from (112) , real and imaginary part of the denominator A. are respectively

given by,

AVR = [1 - rlr 2cos(Ol + 02) + VR]al, (116)

AYI = [-rjr 2sin(O1 + 02) + V1]al, (117)

where VR and V1 are defined in the previous section. Clearly AyR and Ay, are func-

tions of the random variables 01 and 0 2.

The real and imaginary part of numerator of (115), ZN are given by

ZNR = (I2REIR-- I2-fj)a2.

+nlR + rl2R(flR - ricosol ) - n21(flI - r1 sin01 ) (118)

ZVI = (l2Rf1I + I21teR)a22

+nil + n2R(ilI - rlsinol) + n2l(ClR - ricosk0I) (119)
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Finally, we can write (115) as.

ZI = ZIR + jZ1! = (120)
AVI? + jAV,

with

ZIR = ZNRAYR + ZNIAYI (121)

Z -i = ZNlAI R - ZNRAyl (122)

YR+ tŽJ

Using (116), (117), (118) and (119) in (121) and (122) we can get, after some

simplification which emphasizes the dependency of the different terms on the different

random variables, the real part of the decision variable:

ZIR Al [2•R(qfIR-.R + qIAyl)a 22 + I21(ERAyI - f-IAyR)a 2 2
1A1 2

+nIRAYR + nltAy

+7n2R[( IR - rlcosOe)AyjR + (ell - rjsin4• 1 )Ayt]

+n21[(-EiI + rjsin~h)A,,R + (CIR - ricosOI)A.1 ]] (123)

Similar expression can be found for Z11;

1 r
Z311 = I1 -I2R(-IRAyl - eIJAYR)a22 + 121(F-IRLyR + f-,Ijy)a 22

-- niRAI + nil--,R
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-l2,R[(-f-lI + rlSIn~pl)A,,R + (f IR - ricos4'i)A~l

+T1211(FElR - rlcoso1)A,,R + (ell - rjsin~l),A,,I] (124)

wih AI12 = A2 + A2

Finally we write the real and imaginary parts of ZI(n) in terms of the random

variable representing the real and imaginary part of signal and noises of channel 1

ZIR = I2RY1AP + I2IY2AP + n1RY3AP + nlhIY4AP + fl2RY5AP + nfl2y6AP (125)

=I -I2RY2AP + I2IY1AP - n1RY4AP + nlIY3AP - fl2RY6AP + n 2 A 'SAP (126)

where

YIAP = a22 ERy+fI yl(127)

Y2AP = a22 CIRAvJ - CIAR(128)

Y3AP = AVR (129)

14AP = A1 (130)

Y5AP (f (IR - ?'lcos,6l)AjR + -(f I - rlsiruki,)i.l (131)

1 6AP =(r 1 stfloi - EII)AyR + ((IR - rjcosjL.lk)~ 12

IAI2 = 1 R + I (133)

127



5.2 The Performance Analysis

5.2.1 Chernoff Bound

With Amplitude Compensation

Using the real and imaginary parts of the decision variable for channel 1 (100)

and (101) obtained under the assumption of amplitude compensation, we calculate

an upper bound for the average symbol error probability for the power-power scheme

of BXPC with dual-polarized M-ary QAM system.

An error is made on this channel if the decision variable IZ1RI > c or I I > c.

The probability of error on channel 1 can be written [1] as,

P(e) L P(IZIRI > c) + P(1Z111 > c)} (134)

For a bound on the probability, P(IZIRI > c) or P(IZuI[ > c) we will use the

Chernoff bound [1]. Such a bound is defined as follows: for any random variable Z

and a constant c, one can find a A > 0 such that

P(Z > c) :_ E{e\(Z-c)l A > 0 (135)

Obviously A that minimizes the right hand side of (135) establishes the least upper

bound on P(Z > c). Using (100) in (135) we find

P(IZRI C):ý -• {Eol02fEl.exp(AIIRY1)].Ei,,[exp(AIIII.2)].

E12R[exp(AI2RI3)].E 12,[exp(AI 2IY4)-.

EnR [exp(Anl,R 5• )].E•,,1 [exp( AnjY•)I.
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E..R [exp(An 2RY.)].E,,, [exp(An 2I18)]}, (136)

where we used the fact that IiR, lia, niR and nil, i = 1,2 are independent of each

other. Also note that all the expected value operations inside the large parenthesis,

are conditional on 01 and 02, and hence the random function }'Y I = 1, ..8 conditioned

on 0, and 62 are constant with respect to these operations.

Following Kavehrad [1]. we derive these expected values: The random variable ItR

is a discrete M-ary random variable which takes the values { ±1c. ±3c...+(vM)-

with equal probability. For such a random variable, we derive in appendix A an upper

bound on E{exp(aIR)}, with a given constant a.(see detail in [14]).

2v•7/2

Ejl[exp(.\IRIYl)] cosh[(AYI)(2i - I)c]

A2 2M-I- 1
_ exp(-c 2  Y12) (137)

and terms are in effect for the other terms in (136). The additive noise nr(n) and

n2(n) are assumed to be independent samples of zero mean complex Gaussian random

variables with E{Ini(n)12} = 2a2 i = 1,2. Therefore, niR and n,I i = 1,2 are real.

zero mean Gaussian random variable with variance= a'. For such a random variable

n . we can derive the value of E{exp(an)} with a as given constant. Again noting

that conditioned on 01 and 02, AY• is a constant. and hence

A2

E,,,R[exp(AniRYs)] = exp(-A-c2caI'). (138)

and terms are in effect for the other terms in (136). Finally, by collecting term. we

get

P(IZl RI > c) < Eo,,., 0 {exp(- Ac + A2[U(0 1, 0 2) + W( 0 1.0 2 )])} (139)
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where

C 9M-i(y 2  2 + + 2)u(01, 02) = 2 -3 ( + Y2 Y3 Y4

(140)

W(0 1,,02) = Ln (c + 6 + 2 72 + Y8
2 ++

Minimizing the exponent of (139) with respect to A, we obtain by using (140) the

least upper bound

PARI>C) E.,0 2 {exp( C2 M-1 2 (141)P(IZ, ~~ []c -E-,, exp4 (M3 0u('2) +2-'W (01,'02)]

2 3 2

where.

U1(1,,02) = Y12 + Y22 + Y32 + Y42

(142)

W1 (01, 12) = Y, 2 +Y 2 + Y,2+ Y, 2

Rearranging terms, we get

-- C
2

P(IZIRI >c) :5 E0*1,02 fexp[ 2 -n
2[c2 32

E.0,4 exp-3(SNR)

fE¢,.{exP[2 (M - 1)[(SNR)Uj(0,,02)+ W1(01, 02)12 11

(143)

where in the last step, we used (see [17])

S M 2-1c
SNR = - (144)Y 3 a I

Due to symmetry P(IZIRl > c) =P(1ZII[ > c). By using the minimum upper

bound on P(IZIRI > c) from (143) in (139), we can write the resulting least upper

bound on the probability error
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1 1
P,(e) 7 (1 , 2'

exp [-3 (SNR) 1

(145)

where we used the fact that probability density function of Oi = = 1, 2 are,
1

p(01) = P(02) =

With Amplitude and Phase Compensation

To calculate the Chernoff bound in the case where the decision variable is obtained

with both amplitude and phase compensation, we follow the same steps as in the

previous section except with a different value of Yl i = 1, 2.., 6.

As in (139) we have here

A 2 C 2 2 2 + y 2
{exp[ . + +y2,

+ -- .(y3 "P + YA P + Y.AP)]} (146)

where YiAP i = 1.2...6 are defined by (127) to (132).

Minimizing the right hand side of (146) and taking the expected value over 01

and 02, we write error the bound for the amplitude and phase compensated channel

I output,

1 ) 1
PIAP(e) _ (1 "

f exp[ r-3 (SNR) 1 ]dW, bdP,2(M ,- 1)(SNR)UAP 01o,.o 2 ) + I, AP(O,,o,)

(147)
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where

U I AP(OI, 02) = Y•AP + Y22AP

(148)

WIAp(01,, 2 ) = Y32Ap+y4,, +ys,, +yr2,,

and
S M-1 c2

SNR = 3 M (149)

5.2.2 Method of Moments for Probability of Error Calculation

In some cases, the Chernoff bound might not be sufficiently tight [17]. Therefore

to use it as a measure of performance in comparing different systems might not be

adequate. Hence, in this section. we will present another method which actually com-

putes an approximation rather than a bound for the average probability of error for

the power-power scheme of BXPC. The method is based upon Gauss quadrature rules

(GQR) which were shown to assure accurate and satisfactory results. We will first give

a brief description of GQR and apply it to calculate the average probability of error

of the power-power scheme. These calculations will be performed for both amplitude

compensated, and amplitude and phase compensated received signals. respectively.

With Amplitude Compensation

Using (100) in (134), we find the conditional probability,

P(IZIRI > C101, 02, 1R IlIl, 1iR, 121). For this we define ZIR = X 1 +Y with the random

variable Y = nlRY5 + n1 1'6 + n2RI- + n2t1"s.

The random variable Y is zero mean GauFsian and have variance

2 = (J'2 + 1}-2 + + Y•)u 2  (150)

Conditioned on O1.O•2,iR,I1,, 12R and 121 , the random variable ZIR is Gaussian with

mean equals X, and variance a 01. 02). Therefore

P(IZ7I > Ct41,02,I1RI,10I2R.I21) =
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Hence.

P(IZlRI > ck1,,k2,IIR,I1!,I2R,I2I) = 2Q( c-x) (151)

where

Q(x) = V J exp(_-t2) dt (152)

Again due to symmetry P(IZ1RI > c)= P(Z11j > c), so that together with (134),

we can write

1 c
PI(elx) = 2(1 - - )Q(-X), (153)

wvhere the random variable x;

x = X, (154)

with

ao2 = (Y+Y 6
2 + Y2 + Y 2 )c2 , (155)

is a function of the random variables (01, 02, IIR, III, 12R, 121).

Clearly, the average error probability on channel 1 can be evaluated from

P,(e) = j PI(elx)fx(x) dx (156)

with f.(x) as the pdf of the random variable x.

Using the method of moments in calculating (156), we get by using (149)

1 "L /3(SNR) MP,(e) =2(1 - . v x,i (157)PI~) 21 fM- ti 0 M_1 /

The GQR nodes xi and the weights wi are determined from the moments of

random variable x.

Using the Gauss Quadrature integration, the average probability of error in (157)

can be calculated numerically by evaluating the 2N + 1 moments of random variable

x in (154). One can derive a general equation for the moment of x.
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E ~ ~ k\E•x4 = ( ) l I ){ B(5

where

1=0

En-k-rn n - m - m Y3" n(fl....k...,n...U) y(1m9)
B: ) ,. '' ,2R !a2 (159)

B---- U IN0,n 2

Recall that Iii, i = 1,2, j = R, I are all independent, equally likely M-ary

symbols from the set {-±-l c, 3c ..... ± (V/- 1)c}, and Yk, k = 1, 2..8 are functions

of 4)1 and 0)2 which are independent and uniformly distributed over [-7r, ,.]. In the

processes of evaluating (159), we note that the n th moment of equally likely M-ary

symbol [17,181 is given by

Eh.,{Ifj} = - (2m + 1 -V'M)c, (160)
VM----=O

and for the case of independent and zero mean M-ary symbols Ij, we have

EIjU.ij{,fIk1} = 0 i i k, or 5 1

Ej~lij} = 0 i = 1,2 3 =I,R (161)

Furthermore for the n th moment of Yj i = 1, ..8 which are function of 61 and 0)2,

we use

E•,,. 2,{Y,(Oj1, 2)n } 1j 'i(4)1, 02) f,1,.•2(4)1 02) d4j, d62

-- j -Y;(O•2,,4)2 1f,1 (01)f02 (0 2 ) d&od0 2 i 1.2..8

(162)
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With Amplitude and Phase compensation

Similar analysis is used to find the average probability of error for the case when

the decision variable is obtained with both amplitude and phase compensation.

In this case, using (125). we first calculate the conditional probability,

P(IZlRI > c14 1,042, '2R,I'). That is, we integrate on the joint probability of the

random variable YAP,

Define

YAP =- nlRY3AP + nIJY4AP + n2RYSAP + nt216AP (163)

XIAp = I2RY1AP + I2IY2AP, (164)

then from (125),

ZIR = XIAP + YAP (165)

The random variable YAP is zero mean Gaussian and has variance

ao2AP(01 , 2) = (Y32P + Y4AP + Y52AP + Y62p)un (166)

Also conditioned on 61,02. I2R and 121 , the random variable ZlR is Gaussian with

mean equals XIAp and variance uo2AP(41, 02)- Similar to (153),

PIAP(e1l1o,-0 ,I2, 1MI) = 2(1 - 1 - )Q(C XIA . (167)

or

1 C
P1AP(elXAP) = 2(1 - - )Q(-xAp), (168)

where the random variable XAP,

c - XJAP
XAP - C (169)

OoAP

with

= + .Yop + Y+'A + YAP)C 2 , (170)
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is a function of the random vaxiables (01, 02, I2R, 121). Because of independence as-

sumption,

fxAP(X)- fx2R(I2R)fI21 (I2I)f01 (01)f#2 (02) (171)

Similar to (157), we can use GQR to calculate the probability of error from the

moments of the random variable xAP; viz,

PIAp(e) = 2(1 - - 3(SNR) (172)

where again xi and wi are the nodes and the weights of the GQR.

The moments of XAP can be calculated using the simple binomial rule

E{ °0 ( n Ck(--1)n-k(I2 ,RYIAP + I2ly 2AP)"- (E n Ej (173)

EoA}

We take the expected values of the inner terms in (173), then,

E{x.p} = (n)ck(-)n-E{A.,&Ap} (174)

where n - 1RY' ( ) 2
A.AP = E n -k ) n1 - 0  -o (175)1=--0 I "2 2.AP A

5.3 Results

The Chernoff upper bound on the average probability of error as a function of

signal-to-noise (SNR) ratio is evaluated for various cross coupling constants and for

16 QAM and 64 QAM signals. The Gauss quadrature rule is also used to find ap-

proximations to the probability of errors.

In Fig. 12, the bounds on error probability with 16 QAM and with cross polariza-

tion coupling r= -15 dB, -10 dB and -5 dB are calculated and compared. Equation
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(145) is used in calculating these bounds when only amplitude compensation is em-

ployed, while (147) is used when both amplitude and phase compensation is employed.

Notice that adding phase compensation improves the bound when the cross coupling

is high (i.e., r=-5 dB). The effect of adding phase compensation is hardly noticeable

with low cross coupling (r=-15 dB). Fig. 13 depicts the same for 64 QAM. The effect

of compensation L• similar. Nevertheless, as expected the bounds are higher for 64

QAM displaying possibility of higher error rates with the same SNR. Comparison of

these bounds for 16 QAM and 64 QAM are shown in Fig. 14.

In Fig. 15 and Fig. 16 we depict the probability of error as it is calculated

using the Gauss quadrature rule. for 16 QAM and 64 QAM, respectively. These

calculations were done with cross coupling of -15 dB. -10 dB and -5 dB, and in each

a total of 9 moments were used. Only the case with amplitude compensation was

shown since adding phase compensation did not change these results very much. In

order to show how tight are the Chernoff bounds shown in in Fig. 12, we depict in

Fig. 17 a comparison of the results obtained with GQR moments calculations to their

corresponding Chernoff bounds for 16 QAM and cross coupling of -15 dB, -10 dB and

-5 dB. Fig. 18 shows the same for the 64 QAM case. To show the effect of increasing

the number of moments used in obtaining the GQR results, we show in the next two

figures these results with 7, 9 and 11 moments. Chernoff bound was added to these

curves for comparison. In Fig. 19, we present these comparisons for the 16 QAM

case, while Fig. 20 presents the same for the 64 QAM case.

It is important to emphasize that the error probability, although an important

factor, is certainly not the only advantage of the bootstrapped canceler. We mention

the following other points in favour of these cancelers:

1. Under the same system condition, the bootstrapped canceler steady state in-

terference residue is smaller.
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2. To implement the bootstrapped algorithm one needs less complex hardware

than for the diagonalizer, which needs a zero forcing algorithm, and for the

LMS canceler, which needs decision feedback information. In fact, it is clear

that adding a decision feedback to the bootstrap schemes will result in faster

convergence and still better performance than that which we obtained in the

current analysis.

3. The fact that the bootstrapped cancelers do not need decision feedback makes

them ideal for acquisition and. hence, suitable for channels with fast and deep

fading which causes occasional system outage.

In Fig. 21, we compare the performance of the power-power canceler to that of

the LMS canceler, for 16 QAM and r = -10 dB. Fig. 22 depicts the same comparison

with r = -15 dB. To emphasize the need for cancelers in dual polarized systems, we

add, to these two curves, the error performance without cancelers.

Figs. 23 and 24 are the same as Figs. 21 and, 22 except for the use of 64 QAM

instead of 16 QAM. In the last four figures, the moment method was used. For each

curve, the number of the moments is marked in parentheses.

The three cancelers, power-power canceler, LMS canceler and the diagonalizer,

are compared in Figs. 25 and 26. A 16 QAM signal is assumed in these figures,

with r = -10 dB and r = -15 dB. respectively. Although GQR calculation has

been done for amplitude and the phase compensated diagonalizer (see chapter 2),

the GQR calculation has not been done for the amplitude compensated diagonalizer.

Therefore, the comparisons are based on the Chernoff bound.

5.4 Conclusion

The power-power bootstrapped canceler was analyzed and its performance was

studied in this chapter. In particular the average probability of error was estimated

using the moment generating method or by finding the Chernoff bounds. Results of
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the analysis as well as computer calculations show, as expected, that 16 QAM perfor-

mance is much better than 64 QAM. It is also shown that adding phase compensation

to the canceler output adds very little to the performance, when only amplitude com-

pensation is included.

From comparing the results obtained with the moment generating method to

the corresponding Chernoff bound, we concluded that these bounds are sufficiently

tight. Comparing the results when different numbers of moments are used, and the

concluded tightness of the Chernoff bound, we infer that approximately 10 moments

are sufficient for deriving a good approximation for the average probability of error

using the Gauss quadrature rule.
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WITHOUT CANCELLER
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Fig. 2 Performance of Dually Polarized 16 QAM System, without Cross-Pol
Interference Canceler

143



I II I I 1)

DETECTOR

"•1(21k

Fig. 3 Diagonalizer Cross-Pol Interference Canceler

144
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Fig. 4 Diagonalizer Cross-Pol Interference Canceler. Chernoff Bound and GQR

calculation with amplitude and phase compensation. cross coupling -15 dB.
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Fig. 5 Diagonalizer Cross-Pol Interference Canceler. Chernoff Bound and GQR

calculation. 64 QANM with amplitude and phase compensation, cross coupling -15
dB-
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Fig. 6 Diagonalizer Cross-Pol Interference Canceler. GQR calculation, 16 vs. 64

QAM with amplitude and phase compensation. cross coupling -15 dB. -10 dB.
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Least Mean Square Scheme
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Fig. 8 LMS Cross-Pol Interference Canceler. Chernoff Bound and GQR calculation.
16 QAM with amplitude and phase compensation. cross coupling -10 dB.
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Least Mean Square Scheme
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Fig. 9 LMS Cross-Pol Interference Canceler, Chernoff Bound and GQR calculation.
16 QAM with amplitude and phase compensation, cross coupling -15 dB.
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Least Mean Square Scheme
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Fig. 10 LMS Cross-Pol Interference Canceler, Chernoff Bound and GQR calculation,

64 QAM with amplitude and phase compensation. cross coupling -15 dB.
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Fig. 12 Power-Power Cross-Pol Interference Canceler, Chernoff Bound 16 QAM
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Fig. 13 Power-Power Cross-Pal Interference Canceler, Cheroff Bound 64 QAM
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Fig. 14 Power-Power Cross-Pol Interference Canceler. Chernoff Bound comparison
16 QAM vs. 64 QAM
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Fig. 15 Power-Power Cross-Pol Interference Canceler, GQR calculation, 16 QAM
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Fig. 16 Power-Power Cross-Pol Interference Canceler, GQR calculation. 64 QAM
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Fig. 17 Power-Power Cross-Pol Interference Canceler, Chernoff Bound and GQR
calculation comparison, 16 QAM
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Fig. 18 Power-Power Cross-Pol Interference Canceler, Chernoff Bound and GQR
calculation comparison, 64 QAM
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Fig. 19 Power- Power Cross- Pol Interference Canceler, effect of increasing of
moments on GQR calculation results. 16 QAM
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Fig. 20 Power-Power Cross-Pol Interference Canceler, effect of increasing of
moments on GQR calculation results. 64 QAM
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POWER-POWER vs. LMS CANCELER
1 * #. I .. i .. . .. s i . ..U jU *U

16 QAM
r1=r2 = -10 CB \

1 10

Q) -

-- LMS (II MOMENTS) I
10 - - Power-Dower (11 MOMKNTS)

, , • Ii I U U' ' ; ' ,; , I U , UI ,I~ ,, ,U U Ui 1 , , , ,

5 10 15 20 25 30
SNR dB

Fig. 21 Performance Comparison of Power-Power with LMS cancelers, GQR
calculation, 16 QAM, with amplitude compensation, r, = r2 = -10 dB.

162
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Fig. 22 Performance Comparison of Power-Power with LMS cancelers. GQ.R
calculation, 16 QAM. with amplitude compensation. r, = r2= -15 dB.
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Fig. 23 Performance Comparison of Power-Power with LMS cancelers, GQR

calculation, 64 QAMN, with amplitude compensation, r, = r2= -10 dB.
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POWER-POWER vs. LMS CANCELER
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Fig. 24 Performance Comparison of Power-Power with LMS cancelers, GQR
calculation, 64 QAM. with amplitude compensation, r, = r2 = -15 dB.
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COMPARISON OF LMS
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Fig. 25 Performance Comparison of LMS, Diagonalizer and Power-Power cancelers,
Chernoff Bound . 16" QAM, with amplitude compensation, r, = r2 = -10 dB.
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Appendix D

Performance Comparison of Three Bootstrapped Cross-Pol Cancelers for

M-ary QAM Signals

Abdulkadir Ding, and Yeheskel Bar-Ness

Abstract

M-QAM dual-polarized transmission became an important method for frequency

re-use, particularly in microwave radio communication. However, the orthogonally

polarized waves suffered degradation due to cross polarization interference.

Different canceler structures were proposed to mitigate the effect of cross-polarization.

Among these are the diagonalizer and the LMS canceler. The bootstrapped algo-

rithms have been suggested in the past for different applications such as: satellite

dual-polarized communication, tactical communication and QAM microwave radio,

as well as tactical communication. Nevertheless, no attempt has been made yet to

quantify these cancelers' probability of error. These issues will be addressed in this

appendix and will show that the power-power structure of the bootstrapped cross

polarization always outperforms the other cancelers.
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1 Introduction

In microwave radio communication networks, the transmission capacity can be

doubled by using orthogonally polarized QAM carriers. The orthogonally polarized

waves can suffer degradation due to carrier-to-cross polarization interference (C/XPI).

Particularly during multipath fading, such degradation could become intolerable.

Many methods have been proposed to cancel the XPI. Among these are the diago-

nalizer [11 and the least mean square (LMS) cross-pol canceler proposed by Kavehrad

[2]. In his paper, Kavehrad compares the error performance of these two cancelers

and concludes that the LMS algorithm is substantially better than the diagonalizer.

Still another method for XPI is termed bootstrapped algorithm. It is important

to note that the bootstrapped structure requires no reference signal nor any of t6e

decision feedback methods and hence, it can be classified as a blind canceler; a distinct

important feature.

The bootstrapped structures have been suggested in the past for different appli-

cations, such as in dual-polarized satellite communication [3], QAM microwave radio

communication [4] and in tactical communication [5]. The error performance of one

scheme of bootstrapped algorithms termed power-power, was presented in [6] and

compared with that of LMS and diagonalizer. In this appendix, we intend to extend

the performance analysis to the other structures of the bootst-apped blind canceler

(BXPC) algorithms for M-ary QAM systems and compare the performance of these

structures with each other.

In this study, we derive and compare the average probability of error of the BXPC

as a function of its input signal-to-noise ratio for three different structures of this

canceler. After this introduction we present the mathematical model of the dual

polarized channel in section II. The different structures of the BXPC is described in

section III. In section IV, a summary of the performance analysis of the BXPC for

dual polarized M-ary QAM system over non-dispersive fading channel is presented.
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In section V, the results of these analyses are shown and compared. Also included

are the results of the comparison of the performance of BXPC with that of the other

cancelers.

2 M-ary QAM Dual-Channel

The model for such a channel has been well presented in [1,2]. Two orthogonal M-

ary QAM bandpass signals with the same bandwidth and the same center frequency

can be presented as

si(t) = Re{f,(t)exp(j2:rfct)} (1)

where Re{-} stands for the real part, fc denotes the carrier frequency and 9i(t), i =

1,2 is the complex envelope of each of the orthogonal signals, respectively. This

complex envelope can be expressed as .i(t) = E' Ikh(t-kT) , where Ik is a complex

information symbol which takes on one of M different statistically independent and

equiprobable complex values. The effect of the channel is given by x(t) = As(t)+n(t),

where A is the dual-channel cross coupling matrix, whose elements aij, i,j = 1,2

are complex valued constants that denote the channels co-polarization and cross-

polarization responses, s(t) = [s1(t), s2(t)]T and n(t) = [n,(t), n2(t)]T is a complex zero

mean Gaussian noise vector.

The received signals which are sampled after matched filters, are denoted by

x1 (n) = a,,Ii(n) + a 2I2(n) + n,(n),

X2(n) = a 2111(n) + a 2212(n) + n2(n). (2)

where xj(n) and X2(n) are the sampled received signals at the output of the first and

second channels respectively. /i(n) and ni(n) are the corresponding signals and noises

at these outputs. Also nj(n) and n2(n) are assumed independent samples of the zero

mean complex Gaussian with E{Ini(n)12} = 2a2, i = 1.2.
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3 The Bootstrapped Algorithms

Three configurations of bootstrapped structures, namely, power-power, correlation-

correlation and power-correlation, depicted in Figs. 1-3 were partially reported in the

open literature [3,4,5] . Each configuration consists of two cross coupled interfer-

ence cancellation loops. The power-power scheme is so named because it consists

of two control loops, each of which tries to minimize the power at its output. The

correlation- correlation scheme similarly consists of two control loops, each of which

tries to minimize the correlation between its output and its sample interference. The

power-correlation scheme is a combination of the other two.

For the power-power scheme depicted in Fig. 1, as well as in the others, one

interference cancellation loop attempts to cancel the interference from the signal I2(n)

into the signal 1 (n), while the other loop attempts to cancel the interference from

II(n) into I2(n). By virtue of a discrimination technique which slightly enhances the

signal component due 12(n) over that due to I,(n), the first loop is able to perform a

partial cancellation of the interference from I2(n) into Ii(n). This results in a purer

sample of I(n) provided to the second interference cancellation loop, allowing that

loop to perform a partial cancellation in the other direction, from 11(n) into I2(n).

The purer sample of I 2(n) is then used by the first loop to improve its cancellation,

and so the above cycle is repeated until essentially perfect interference cancellation on

both signals has been achieved. A similar argument shows that the other two schemes

also lead to perfect interference cancellation. Although it is possible to consider more

general terms, we will restrict the channel parameters to

a 12 - . r l , ! -21 = r 2 e J 0 . (3 )

a22  aI1

where ri, r2 denote the magnitude of the normalized XPI constants and 61, 02 are

the phases of these constants assumed to be independent and uniformly distributed

over [-7r, 7r].
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3.1 Power-Power Scheme

From Fig. 1, one can find the output of the canceler

y1(n) = ,x(n) + X2 (n)wI 2  = X2 (n) + XI(,)w1 (4)
I (n = 1 - W12W21

where x1 (n) and x2(n) are given in (2). The control algorithm simultaneously min-

imizes the output powers P1 and Q1, by searching for 3E{Iyld(n)121/9W1 2 = 0 and

E{f1Y2d(n)1 2}/8w21 = 0. This can be performed by a recursive steepest descent al-

gorithm, provided that 1 - w12w21 5 0. Yid(n) is the signal after the discriminator.

It can be shown that w1 2 and w21 converge in the steady-state to

W12opt !- 2 + 6, W21opt - + 62. (5)

a22 all

where e and E2 are the effect of the noise on the steady state weights. They depend

on the channel parameters as well as on the signal and noise powers [7]. Substituting

(5) into (4). we get for the first output

1a 1yj (n) =-[aiiII(n)[1 _ jaa,2~ +q,•],, -t-, + (n)•,Ea22

+ni(n) - n 2(n)-a1 + n2 (n •) (6)
a 22

where

A a1 2 a 21  a 12  a 21Au= 1- + •+u q2 (7)
alia 2 2  a 22  all

The co-pol polarized signal at the output of the channel is given by a1Ij(n), and

hence it is reasonable to take y1(n)aj, as an estimate of this signal by compensating

for the attenuation in the co-pol by a11 . Therefore f1 (n) = 1II()~ as an estimate
all~

of the transmitted signal II(n), and the decision parameter for the first output of

the canceler is defined as. ZI(n) A 11(n) - II(n). We will assume the 'EI2 in (7) is

negligible with respect to the other terms of this equation, and get

Zi(n) = LIi(n)E2.3 + 2(n),() +

3al all
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+n2+n)--a2 +,)1 (8)
all a22

where

AY "• 1 al 2a 21 + a12 a2 + 1 .
alla 22  a 22  all

The probability of error is given by P1 (e) = P{IZi(n)I > c} with c as the half of the

distance between any two symbols in the corresponding signal space. Note that ZI(n)

depends on the random signal and noise variables I,(n) and ni(n) i = 1, 2 and on the

random variables ýj and 62 through the channel parameter and through the weight

perturbation cl and f2. Therefore. in order to be able to calculate the probability of

error, we must find the real and imaginary part of Z1 (n). Algebraic manipulation [7]

leads to

ZIR = IR1 iY + I1112 + I2RI3 + 12,14 + niRYS

+flji1'; + n2RI1 7 + n2 1 1"8 ,

Z'11 = 4 11RY2 + 1)111 - 12RY 4 + 1211'3* n1Rl1 6

+nil;l - n2RY8 + r. 21 Y7.

where we dropped the sampling time n for simplicity, and Yin, m = 1,2,..8 depend

only on the random variables ,1 and 62. Expressions for Ym are given in the appendix.

3.2 Correlation-Correlation Scheme

The outputs yl(n) and y2 (n) from Fig. 2 are as follows

yi(n) = xi(n) + X2 (n)wt 2 ,

Y2(n) = X2(n)+Xl(n)W 2 1. (10)

With this scheme. the algorithm simultaneously minimizes the correlation between

twooutputs. It searches for dIE{ Yd(n)y;(n)})2/1dw 1 2 = 0 and 8JE{f 2 d(n)y7(n))} 2/8w 21 =

0. As in the previous scheme. it can be shown that w12 and w2l converge in the steady
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state to the same values as in (5). Followinig the same steps as in the power-power

scheme, we get the decision parameter

Zi(n) = I+(n)[ a12a2l + la2]++-1[12(n)a 22f1a 2 2all all allt

+nl(n) + n2(n)[-a12 + fl]. (11)
a22

Algebraic manipulations lead to

ZiR = IlRYci + I1 IYc2 + I2RYr3 + I2IYc4 + nflRYs,

+n2RYc + n 2IYc7 ,

ZII = -IIRYc2 + IlIYcl - I2RYc4 + I21Y.3 + nIY.5s.

-n2RYc7 + n2tYc6 . (12)

where again Y, m = 12, . .7 depends only on the random variables 41 and 92.

Expressions for Yc,,, are given in the appendix.

3.3 Power-Correlation Scheme

The outputs yi(n) and Y2(n) from Fig. 3 are as follows

yi~n) = x1 (n)(1 + w12w21) + x 2(n)w1 2 ,

y2(n) = X2(n) + xl((n)W2 1 . (13)

The control algorithm simultaneously minimizes the output power E{Iid( n)I 2} and

the square magnitude of the correlation of output Y2d(n) with y1(n). It searches for

OE{IYid(n) 2 /)1aw1 2 = 0 and aIE{Y2d(n)y•(n)}I 2/Iw 21 = 0. It can be shown that W 1 2

and w21 converge in the steady state to

a 12  a2x
W12°pt = +a2[1 - fa.2a] + 3, W21pt = - + ( 4 . (14)

a22 S2I I. 21P all

Unlike the other two schemes of bootstrapped cancelers. the power-correlator scheme

is not symmetrical; its outputs and hence, the decision parameters for each output are
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different. From (14) with the substitution of W12 0 pt and W2 10pt in (13), we obtain

yl(n) = II(n)a-[1 - 4 + + I2(n)aan.a 22k
ktl2 + a12 , a12a21 1

[C J.'4 + kf3 -+- .3.4 -J + n,(n)(1 +
a 2 2 k a 2 2  a 2 2 all k

a21  a 12  f2  + + ()[ a1 2

all a22 k a22k

y2 (n) = Ii(n)f4ali + I2(n)a 22(1 - L2a2 + .4 a12
alia 22  a 2 2

+n2(n) -fn () a 21 + -41. (15)
all

and the corresponding decision parameters

Z, (n2) I, (n1 t) a--12 f4 + 1-' [I2 (n)a22[--( a1 )2 C4

a22k a l l k a 22

+f 3 k2 ] + ni(n)[1 -- 3k a12 641

all a 22

+f2(n)[-- ++
a 2 2

Z2(n) = l [Il(n)a1 1 f4 + I(n)[ aa 21 + f4a 12

a22L alia 22  a 2 2

+n2(n) + n,(n)[- a2 + E41]- (16)
all

where k S_ 1 - . The real and imaginary parts of Z1(n) and Z2(n) are givenal 1122

by

ZIR = IIRY1 + IIY 12 + I2RY13 + 121114 + nlRY15

+ntjY 16 + n2RYl7 + n 2IYl 8 ,

ZII= -IRY12 + IllYll - I2RY14 + 121113 - nlIRY16

+fnlt"s - n2RYI8 + n21Y1. (17)

Z2R = IRI'21 + I1IY22 + 12R1 23 + 121124 + nIR1 25

+nlij'2 6 + n2RY27,
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Z2I 1= -1RY22 + IIIY2 1 - 1 2RY24 + I 21 Y 2 3 - nlRY26

+nt Y 2j + n 21Y27. (18)

where as before Y11, 1 = 1,2,..8 and Y2,m, m = 1,2,..7 [7] depends only on the

random variables 61 and 02.

4 Performance Analysis

Using the decision parameter of equation (9), (12), (17) and (18) for the three

structures, respectively, we have for the average symbol error probability

PI(e) = -1 {P(iZlRI > c) + P(1Z11 l > c)}. (19)

The least upper bound on P(IZIRI > c), called the Chernoff bound [8], would then

be given by

Pi (e) 7r 7

exp2(M - 1) (SNR)Uj(o1 ,0 2) + Wi ( 1 ,0 2)]

(20)

where, SNR = M--- [8], and UZ('1,q2)and W,(6 1 02), i = 1,2 differ for different

schemes [7].

The power-power scheme

U,(01,,62) = y12 + Y,2 + y32 + y42,

11r(01, 02) =8, • • (21)

where Y'M, m = 1.2...8 is defined in (25).
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The correlator-correlator scheme

Ui(01,, 02) = Y,2 + Y,2 + Ya2 + YC2

wi(0,,0) = Y2 + Y2 + Y (22)

where Yn, m = 1,2,..7 is defined in (27).

Due to the symmetric structure of the power-power and correlator-cor.'elator

schemes, the error probabilities at both outputs of each corresponding scheme are

the same for each structure.

The power-correlator scheme for output-1

wI (1,,02) = Y,•j + Yr,2 + Y,23 + Y,2423
W010 = ¾~Y12,Y',+Y12

7 +Y1 2 (23)

where Y11, I = 1, 2, ..8 is defined in [7].

For output-2

U•(•l,•) ' = 22 + Y222 + Y223Y?
U2(01,02) = YA+21 Y2 3 Y2 4

W2(0,02) - Y22-+Y 2•-+Y2A (24)

where Y2, m = 1,2,..7 is defined in [7].

5 Results and Conclusion

The Chernoff upper bound (20) on the average probability of error as a function

of signal-to-noise ratio (SNR) is calculated for various cross coupling constants for 16

and 64 QAM signals and for the three different structures of the blind bootstrapped

cross polarization canceler.

The performance of these three structures is depicted in Fig. 4. 5, 6 and 7 for the

16 QAM with r= -15 dB and -10 dB. The bounds are higher for 64 QAM indicating
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a possibility of higher error rates for the same SNR. In Fig. 8, we compare the per-

formances of these three structures of BXPC with that of the LMS cross polarization

canceler.

From these figures, we conclude that the power-power scheme outperforms the

correlator-correlator and power-correlator schemes, particularly, when the cross cou-

pling is high , such as -10 dB. Also noticeable is the fact that the performance at

the two outputs of the power-correlator scheme are not the same. The performance

of one output is the same as that of the power-power scheme and the other output

performance is close to the performance of the correlator-correlator structure. In Fig.

8, it is clearly shown that the power-power scheme performs better than the others,

while LMS performs better than that of the correlator-correlator and that of output-2

of the power-correlator scheme.

Appendix

The Power-Power Scheme

KRZDR + KIZDI KIZDR - KRZDI

IZD-2 1ZD12

a 2 2 .IRZDR -t- .IJZDJ

all IZDiP
y 4 = a22 CIRZDI -- •IlZDR

ZDR ZDJYs = ,"Y'
a11jZij,2 ' 6- alIZDI2 '

(EIR - rlcosol)ZDR + (Efl - rlsinoT)ZI
Y7 = ZD 12

(risino1 - flI)ZDR + (EIR - rlcoso1)ZDo (25)

a 1 1 ' ZD 2

ZD = ZDR + JZDl, K =K + jK[,

I" = 'R + jl/h 61 = IR +jEII

E2= E2R+jE2r (26)
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where

ZD , 1 a 1 2 a 21 + a 12 C2 + ! 2 1 f,
a(1 a 22  a 22  all

S, a 12  V.A 1 a2

a 22  a11

The Correlator-Correlator Scheme

Y, I= VR - rlr 2cos(oi + 02),

YC2 = -[V 1 - rr 2•In(o, + 02)],

a/22  a22  1
Y. 3 = ýý-2ER, Yc4 = -- qifl Yc5a l l  a11  a11

fc6 = 1"•-[-rlcosol],
a11

Y7= - [l - risin.ý,], (27)
all

and

I= 1 D [lrl1 r 2e - r2r 2 ej124I+E)

-r., 2 re 1].E{In(n),12 }E{III (n)12}(621 - 611)

1 -j+t[Ie,0 - r 2ej(01 + 202)TD a22 •/: ire-• + r2e Ir

2 122 1 re 12}

-•rr2ejo2].E { In(n)12}E{JI 2(n)1 2}(61 - 622)

where bj A E{f1Id(n)'}J} is the discrimination constant which is the ratio of the mean

square of j th output signal at the output of the i th discriminator to the j th signal.

and yid(n) is the signal after the discriminator.
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input #1: P-i LO

vq(t) /_l.

S input #'2:
12icm 1 v2(t):c-3(t)+nlt0

Fig. 1 Power'-Power Cross- Polarization Canceler
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input #12.

V2(t0SC-(t).fl(t) 1 (3)

Fig. 2 Power-Correlator Cross- Polarization Canceler
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v1(t)=s(t).bon(t) I

vp(t)

input #2:
V2(t):c-s(t)+n(t) Iqt

Fig. 3 Correlator-Correlator C ross- Polarization Canceler
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Fig 4. Power-Power Cross-Pol Canceler, Chernoff Bound comparison 16 QAM vs.
64 QAM
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CORRELATOR- CORRELATOR SCHEME
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Fig 5. Correlator-Correlator Cross-Pol Canceler. Chernoff Bound comparison 16
QAM vs. 64 QAM
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PQWER-CCRRELATOR OUTPUT-?
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POWCR-CORRCLATOR OUTPUT- 2

10 i1
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110Chernof f Bound

(L4

__15 d13

10w' ,-r 2 -- 10 d8
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Fig 7. Power-Correlator Cross-Pol Canceler output-2. Chernoff Bound comparison
16 QAM vs. 64 QAM
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COMPARISON OF THE CROSS-POL
CANCELERS WITH LMS CANCELER

10 """
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Fig 8. Comparison of the Cross-pol Cancelers with LMS Canceler
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Appendix E

Bootstrap: A Fast Blind Adaptive Signal Separator

Abdulkadir Ding and Yeheskel Bar-Ness

Abstract

In this report, we propose a new fast multidimensional adaptive algorithm for

multi signal separation. The method is essentially based on multi-power-inversion

schemes [1]. It separates multi uncorrelated signals imposed on each other. The two

dimensional version of this adaptive algorithm, named bootstrapped canceler, has

been applied to digital communication to mitigate the effect of cross-polarization in

dual polarized M-ary QAM signals [3]. It has been shown that in previous appendices

that the power-power bootstrapped algorithm performs better than the least mean

square (LMS) algorithm in separating the two uncorrelated signals [5]. In this ap-

pendix, we propose a multi dimensional nonlinear learning algorithm which is based

on minimization of output signal correlations and we also investigate the learning

process of this bootstrapped algorithm compared with that of the LMS algorithm

for different eigenvalue spreads. It has been found from the computer simulations

that the bootstrapped algorithm converges very rapidly with respect to the LMS al-

gorithm. It is important to notice from the computer simulations that the learning

process of the bootstrapped algorithm is almost independent of the eigenvalue spread.
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1 Introduction

Multi channel interference can be a performance limiting factor in signal process-

ing systems. Removal of these interferences can be accomplished by use of adaptive

signal separators. The bootstrapped algorithm, which does not require a training

sequence, has been proposed for two dimensional interference cancellation with dif-

ferent adaptive learning schemes [1]. Several adaptive signal separators which require

a training sequence have been proposed in the literature applied to communication

systems [2].

Our objective in this report is to extend the bootstrapped algorithm to multi

dimensional signal separation applications and to investigate its convergence for dif-

ferent eigenvalue spreads.

In section II. the description of the channel model is given. We discuss the adap-

tive signal separators in section III. In section IV the convergence of LMS and boot-

strapped algorithms are compared by a computer simulation. The results of the con-

vergence comparisons are presented in section V. Finally, the conclusion is presented

in section VI.

2 Channel Model and Problem Statement

In matrix notation, a discrete time model of a M-dimensional interference channel

is given by

x(n) = AI(n) + n(n) (1)

where A is the channel matrix, I is the information vector assumed to be an indepen-

dent and identically distributed sequence and n is a white Gaussian noise sequence,
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and x is the received signal vectors respectively.

all ... aim [ Ii(n) n1 (n)

A = 1 a21  . a2M I(n)= 12 (n) n(n)= n 2(n) (2)

aml aMM IM(n) JnM(n)

The channel is assumed to be slowly time varying and non-dispersive. Hence,

the channel interference coefficients ai, i,j = 1,2..M are assumed to vary slowly

with respect to the signal rate and assumed to be less than one while the diagonal

coefficients aii i = 1, 2..M are assumed to be close to one.

Our objective is to find a multi dimensional bootstrapped adaptive algorithm

structure that will diagonalize the channel matrix A (that is to find the inverse of A)

without requiring a training sequence and demonstrate its convergence with that of

an LMS algorithm.

3 LMS and Bootstrapped Adaptive Signal Sep-
arator

3.1 Multidimensional LMS Adaptive Signal Separator

The traditional LMS algorithm which minimizes the error E{e2 + e2 +..e2} at the

output of the separator (Fig. 1) can be used as a multi dimensional signal separator

and solution of the optimum weights are given by

Wopt = R-'P (3)

and

i(n) = wopx(n) (4)

where i(n) is the estimate of 1(n) information vector.

U'1 Iopt • • t 'I opt

=opt t/ 22pt IUM2opt , R = E{x(n)x T (n)}, P = E{x(r )IT(n)}
Wopt "- pt

•1 •f opt 'CU.mgtopt

(5)
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where using (1) in (5)

R = ARIAT + RP (6)

where
EJ2} o... a 2 ... 0
0 ER12[ ... 0 0 ...0K

R, I R,,= (7)
oE IM} 1 0 am

The recursive weight updating algorithm to search for the optimum weights is

given by,

wij(n + l) = wij(n)- pei(n)xj(n), j =

ei(n) = yi(n)- li(n) (8)

where ti(n) is the reference signal.

3.2 Multidimensional Bootstrapped Signal Separator

From Fig. 2, it can be easily shown that the output of the bootstrapped algorithm

is given by;

y(n) = wB'x(n) = wB1 [AI(n) + n(n)] (9)

where,
-- w2 .... WB1M

w = -wB2 1 WB2M (10)

-WBMI -WBM2 1

provided that the determinant of WB is not zero. we suggest the following boot-

strapped recursive algorithm that provides WBopt = A-' in a no noise condition.

Our approach is to minimize the correlations at the outputs. simultaneously. For

simplicity, we show the optimal weights for two dimensional signal separation.
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Using (1) in (9), one can easily show that,

y (n) = l[AII(n) + B12 (n)]

Y2 (n) = •[Cl(n) + D12(n)] (11)

where

A all a+ a21WB,2, B = a 12 + a22WB12, C = a21 + allwB21

D =a 22 + a2wB21, A = 1 - WB12WB21 (12)

3.3 Cube Nonlinearity in Controlling Bootstrapped Algo-

rithm

The recursive algorithm to search for the optimum weights is given by,

{wB,,(n + 1) = wEi,(n) - pf(yj(n))yj(n), j = 1,2..M i # J}Ml (13)

where f(y) = y' is an odd nonlinear function.

To simplify the analysis, the optimum weights are found in a no noise environment.

By taking the expected value denoted by E{(.)} of both sides of (13), and using (11)

in (13), we can write,

E{I (n)Y2 (n)} = E{-I[I2 (n)B 3 + 31,(n)I2(n)AB 2 +

3I(n)I2(n)A 2B + I,(n)A3][II(n)C + !2(n)D] (14)

E{I,(n)Ij(n)} = 6(i- j), E{h,(n)} = o (15)

Using (15) in (14), and assuming E{I?(n)} = E{I 2 (n)}, and E{I4(n)} = E{I2(n)}.

Efy'(n)Y2 (n)} = I-[3E{I2(n)}E{I2(n)}BA(BC + AD) + E{1J4(n)}(A.3C + B 3D]

similarly

E{y2(n)yj(n)} = -[3E{II(n)}E{I2(n)}DC(BC + AD) + E{14(n)}(AC3 + BD3]

(16)
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The optimum weight vector WBopt for the bootstrapped algorithm, is the solution of

the nonlinear equations in (16). For i.i.d binary data. I,(n) = ±1, from (16), we can

write,

E{y'(n)y2(n)) = h((3B2 + A 2)AC + (B2 + 3A')BD]

similarly

E{y'(n)yj(n)} = -[(3D+ C2 )AC + (D2 + 3C 2)BD] (17)

The desired optimum solution requires A = B = C = D 6 0 , simultaneously and

A - 0. Two equilibrium solutions that make the equations in (16) equal to zero are

0or A = D = 0 . These optimum solutions are, WBoptn = [212, ,,],

and WBopt2 -[ . The required optimum solution which provides a stable

equilibrium point is WBopti . The detail steady state analysis of the solution of the

optimum weights can be found in [1].

3.4 Use of Supervised (reference) Signal in Controlling Boot-
strapped Algorithm

This analysis is done in order to compare the learning process of the least mean

square (LMS) algorithm which uses a supervised signal with that of the bootstrapped

algorithm. The weight updating algorithm is given by;

{WBi(nl + 1) = wBij(n) - sej(n)y,(n). j = 1,2..M i 0 $j,

ei = yi(n) - I,(n) (18)

where Ii(n) is the reference signal.

By taking the expected value of the gradient and using (11) and (12) in (18), we

get

E{je(n)y2 (n)} = - 2E{I(n)}(.A - A)C + E{II(n)BD]
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similarly

E{e 2 (n)y,(n)} = -•[E{I;2(n)}AC + E{II(n)}B(D - A)] (19)

Similarly, for the optimum WBoptl solution to exist A = B = C = D # 0 , simul-

taneously and A $ 0 required. At the required equilibrium point B = C = 0, the
= -a=, an].

optimum weight is WBopti = all ]

4 Simulation

The inputs to the channel are assumed to be binary ± 1. The two and three

dimensional interference channels are modeled by A matrix (2). The outputs from

the channel are corrupted by additive Gaussian noise with SNR=40 dB. The received

signals are then input to the LMS in one hand and bootstrapped adaptive signal

separators in the other hand

The results for 500 Monte Carlo runs are given for a two dimensional interfer-

ence channel for different A matrix coefficients essentially for different eigenvalue

spreads. We take signal attenuations aii = 1 and interference constants aij to

be all the same constant value. By setting all the weights initially to zero, and

providing a constraint WBi3 < 1 to search for the optimum WBoptg in the boot-

strapped blind separator. the learning processes of the LMS algorithm and the boot-

strapped algorithm are compared for different signal-to-interference ratio, (SIR =
aI2,2{(n))+..+a 2 E{I (n))

l0log( a.,,f1,(n)} )i#j

In a two dimensional interference case , the eigenvalue spread (.:'Mm) of the (2x2)

input signal correlation matrix R in (5) for all = a 22 = 1 and interference constants

a12 = a21 , E{I2(n)} = E{I.(n)} = 1 and zero noise power are given in Table 1.
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SIR a 12  Am, Am,,,, A,,, / Ami, I
20 0.1 1.21 0.81 1.494 0.826

13.97 0.2 1.44 0.64 2.25 0.694
10.46 0.3 1.69 0.49 3.449 0.592
7.96 0.4 i.96 0.36 5.444 0.51
6.02 0.5 2.25 0.25 9.0 0.44
4.42 0.6 2.56 0.16 16 0.391
3.01 0.7 2.89 0.09 32.11 0.346
1.94 0.8 3.24 0.04 81.0 0.309
0.91 0.9 3.61 0.01 361 0.277

0 1.0 4.0 0.0 oo 0.255

Table 1.

5 Results

In this section, we present the results of the computer simulations for different SIR

and convergence constants A. We have done the experiment in two parts. In the first

part, we compared the learning processes of LMS in (3) and bootstrapped algorithms

in (18) for the separation of two dimensional signal sources by using the reference

signals. The results of the experiment are given in Figs. 3 and 4, for different SIR =

10oog(2-F) (from Table 1) and for chosen convergence constants p The convergence

constants for these two algorithms are chosen to be less than their maximum values.

In Fig. 5, the learning process of bootstrapped algorithms is depicted for SIR=7.96

dB with different convergence constants.

In the second part of the experiment, we show the comparison of the learning

processes of bootstrapped blind separation algorithm in (13) with respect to the

same updating algorithm by use of the reference signal in (18) for the three signal

separation in Fig. 6.
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6 Conclusion

In this report, it is shown experimentally that the learning process of the boot-

strapped signal separator in Fig. 1 with fewer of weights is faster than the LMS

algorithm in Fig. 2. This can be easily seen from Figs. 3 and 4 especially at high

SIR. At the steady state, the residue power with blind separation (using cube non-

linearity) is more than with respect to the use of reference signal in the bootstrapped

algorithm. As the recursive weight updating algorithm (13) is a nonlinear process,

the search for the global optimum weights is essentia! for the multi-dimension boot-

st.rapped blind separator.
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W201
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W•(n + w)= i(n) - pzi(n)C2 .
j=1,2,3 t
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Fig. I Nlulti- Input /Output LMS Signal Separator for 3 input/outp~ut
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w13(n + 1) = wlj(n) - sf(yj(n))yj(n)
j=2,3

zl . " "..*W341

2Y

X3 Y3

w2 ((n +1) = w2i(n) - f(2(,))yi(

j=1,3

[ w3j(n + 1) - w3 (n) -,f(y3(,))yi(n)
j=1,2

Fig. 2 Multi-Input/Output Backward/Backward Bootstrapped Signal Separator
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Fig. 3 LMS Signal Separator for Different convergence constants and eigenvalue
spreads (cross coupling)
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Fig. 4 Bootstrapped Signal Separator with different eigenvalue spreads (cross
coupling)
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LMS Adaptive Signal Seperator
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Fig. 5 Bootstrapped Signai Separator for Different convergence constants with fixed
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Bootstrapped Adaptive Signal Seperator
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Fig. 6 Bootstrapped Signal Separator for with Super-ised and Unsupervised
learning
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Appendix F

Convergence and Performance Comparison of Three Different Structures

of Bootstrap Blind Adaptive Algorithm for Multi-signal Co-Channel

Separation

Abdulkadir Ding and Yeheskel Bar-Ness

Abstract

Multi-signal co-channel interferences can cause major limitations on the perfor-

mance of communication systems. The multidimensional least mean square (LMS)

algorithm can be used to cancel these interferences. However, such an algorithm

requires the availability of the reference (supervisory) inputs. In some applications.

there is a need for signal separation rather than interference cancellation. That is, the

system must contain more than a single output, (each delivers one signal,) as clean

as possible from other signals (interferences).

In this appendix, we intend to extend the previously reported three structures of

bootstrap blind signal separators to the multi-signal co-channel case, study their per-

formances, their depth of cancellations, speed of convergences and their dependency

on eigenvalue spreads. We also present simulation results comparing the performance

of these three structures for two and three signals separation under white Gaussian

noise environment and for different signal to interference ratios. Particularly, it is

shown analytically, as well as experimentally (by simulation), that the use of equal-

ization (automatic gain control (AGC)) at the output of these structures improves

the depth of interference cancellation dramatically.
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1 Introduction

Although one can design the LMS algorithm to perform signal separation, the com-

plexity of such an approach increases rapidly as the number of signals to be separated

increases. Using the bootstrap algorithm, one can perform such separation without

the need for reference signals in a form of training sequences, decision feedbacks,

or other methods. Three different structures proposed in [11, termed power-power,

correlator-correlator and power-correlator, have also been reported in the open liter-

ature [2]. Its separation capability for two signals was shown and simulation results

using the power-power structure were included. Successful application of the power-

correlator structure for satellite communication was reported in [3-4]. The use of the

power-power structure in cross-polarization cancellation for M-ary QAM was reported

in [5]. Error probability performance was estimated and compared to that of LMS

and other cancelers. It was proven analytically and demonstrated by simulation and

in practical hardware implementation that for the bootstrap algorithms to converge

to a state of signal separation. there is a need for the inclusion of nonlinearity, termed

signal discriminator.

In addition to being capable of high blind signal separation. it was shown that

the power-power structure of the bootstrap algorithm converges faster than the LMS

algorithm and is independent of the eigenvalue spread of the input correlation matrix

[6].

In this work, we investigate the convergence properties and performance of three

structures of the bootstrap blind algorithm with different eigenvalue spreads and

extend it to multidimensional signal separation.

In section II a multi-signal co-channel description is given. In section III, the

three different structures of the bootstrap blind algorithm are given. In section IV,

the convergence and the steady state performance of the three structures of bootstrap

blind adaptive algorithms are compared using computer simulations. The conclusion
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is presented in section V.

2 Multi-signal Co-Channel Model

In matrix notation, the discrete time model of an M-signal co-channel is given by

x(n) = AI(n) + n(n), (1)

where A is the channel matrix, I is the information vector assumed to be independent

and identically distributed sequence, while n is a white Gaussian noise and x is the

received signal vectors, respectively. The channel is assumed to be slowly time varying

and non-dispersive. Hence. the channel matrix A can be approximated by interference

coefficients aij i 5 j, i.j = 1,2,..M, assumed to vary slowly with respect to the

signal Ii(n) rate and to be less than unity in magnitude. The diagonal coefficients

aii 2= 1,2..M are assumed without loss of generality to be unity.

3 Bootstrap Blind Adaptive Signal Separators

3.1 Multidimensional Power-Power Scheme

It can easily be shown from Fig. 1 that the output is given by

y(n) = wi- x(n) = wr' [AI(n) + n(n)] (2)

where,
-W2... WIM

W -Kw21 1 W2M (3)

-- MI -WM2 1

1 K IV[ M
yi(n) aii + E tuijaji + Z Wi(M-3+l)w(f-j+1)jaji - aiiwM(M-l)W(M-i)M /h(Tl)

jli jji

+nodi(n)] (4)
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The first term in (4) represents the desired signal at the i th output, the second

term is the residual interference from all other signals, while noi(n) is the resultant

Gaussian noise at the output. A is the determinant of the matrix wi in (3). Notice

that the desired signal is somewhat distorted and needs equalization. Due to the

complexity of the general expression, we only write the output for the case of two

dimensional signals and no noise environment. Therefore. using (1), (2) and (3), we

get for the outputs

yi(n) = l[AlI(n) + BI2 (n)]

y2(n) = -(CI,(n) + D12(n)] (5)

where

A A

Sal + a 21w12, B A a12 + a22w12

C a21 + a 11 W21, D A a 2 2 + a 12 w 2 1

A - W12W 2 1 (6)

Notice that the desired signal is somewhat distorted and needs equalization.

A Recursive Algorithm to Search for Optimal Weights

A recursive algorithm is used to search for optimal weights that result in signal sep-

aration for the three different structures of bootstrapped algorithms. The algorithm

simultaneously minimizes the estimates of the output correlations f[y,(n)Jyj(n) i,j -

1,2,..M i - j, where f[.] is an odd memoryless nonlinear transformation. It can

be shown that such nonlinearity satisfies the need for signal discrimination and is

sufficient to make it converge to a state of signal separation. Using steepest descent

recursion. we get

wi,(n + 1)= wi,(n) - uf[y,(n)]yj(n), i,j = 1,2..M i $ j. (7)
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where p is the stability convergence constant. In order to have convergence in the

mean of the weights wij, we must require E{ff[y(n)]yj(n)} = 0, i,j = 1,2,..M i 6 j.

In the case of the two dimensional signal, we must have

E{ff[y(n)]y 2(n)} = E{f[y2(n)]yj(n)} = 0. (8)

Using (4) in (7), with f[y] = y3 , we get

E{jy(n)y2 (n)} = b-[3E{Ij2(n)}E{I2(n)}BA(BC + AD)

+E{I4(n)}(A 3C + B 3D],

2y( n A4- [3E{I?(n)}E{I2(n)}DC(BC + AD)

+E{I4(n)}(AC 3 + BD31. (9)

For the sake of simplicity, we take E{I?(n)} = E{I 2 (n)} and E{Ij4(n)} = E{II(n)}.

Furthermore. for Ii(n), taking values ±1 with equal probability, (8) becomes

E Y31 2 22

E{yI(n)y2 (n)} = Z-5[(3B + A 2)AC + (B' + 3A 2)BD],
E JY3 1 2 + 22 C
(n)yl(n)} = 4-[(3D + C2 )AC + (D2 + 3C )BD]. (10)

For the two equations in (9) to equal zero, it is necessary and sufficient to have

either B = C = 0 or A = D = 0 . These conditions result in two equilibrium points

a12 a2 l [a22 a!11
Woptl= . Wopt2 = (

a22 all a12 a21

It can be shown that Wopti is a stable equilibrium point. Using wpt, in (4), we

get the optimal separator outputs
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S= a,,t,(n) Y2opt(n)= a221,(n). (12)

With the use of an automatic gain control (AGC), (amplitude compeasation) at

the output of the separator, we obtain

yiAGC = - Ii(n), i =1,2 (13)
aii

which depicts a total compensated signal separation.

3.2 Multidimensional Correlator-Correlator Scheme

From Fig. 2, we write

y(n) = wx(n), (14)

where whre1 ... wti..

w2= [:~ 1MM..) WM.) (15)
wil W{M-I ),M

WM,{M-1}. I

Using (1) and (14) in (13), the output of this separator is given by

M M AI
yn)= lai+ E w13a,1] Ii(n) + [ail + w,,aji] 11(n) + niz0 (n) (16)

The first term in (15) represents the desired signal at the i th output and the

second term is the residual interference from all other signals, while noi(n) is the

resultant Gaussian noise at the output. For the case of the two dimensional signal

and no noise environment, we have from (15)
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yi(n) = AII(n) + BI 2(n)

y2(n) = CI(n) + DI 2(n) (17)

where A, B, C and D as in (6). Using the same argument as in (7), we conclude that

for the two dimensional case the optimum weights for the correlator-correlator scheme

are also given by (10). Finally, using WoPtl in (16), we get the optimal separator

outputs

yiopt,(n) = a,,[l - a 1]l1(n), Y2opt(n) = a 22 [i a- a ]2(n). (18)
a22alll a 22all

If the channel matrix can be approximated by a constant. then AGC can be

implemented at the output leading to

YiAGC yiopt (n) = Ii(n) , i = 1,2. (19)Yia aii([ ,1- 2.a2e,t]
- 22 l11

3.3 Multidimensional Power-Correlator Scheme

From Fig. 3. the output is given by

y(n) = wx(n), (20)

where

[ ( + +W1. , AfWMI),I w1) 1
W -"wI(1 +" ,+iI "4 IMtMMI),>, ] "

u'.A f- - .

(21)

Similarly. using (19) and (20) together with (1), we obtain
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r MM wi M l
yi~) [ajj(1+E wwj)+F wi]j Min+ MalIEwjji+lwjj Ij(n)L.,(fl

'- >i j~i (22)

It is similar to correlator-correlator i th output in (15) but, notice the added term

in the desired response, Ii(n). As is shown later, this term causes reduction in the

output equalization requirement without effecting its bandwidth response [7]. In the

case of no noise and two dimensional signal separation, we write from (21)

yi(n) = AII(n) + BI 2(n) , Y2(n) CII(n) + Di 2(n), (23)

where

"A A (1 + w12 w21)al, + a21w12 , B & (1 + w12w21)a 12 + a 2 2w12
A =

C -= a21 +a1 lW21 , D ta22+a 12w 21

(24)

Similarly, using (22) in (7), we get the equilibrium points

- - [ a12  a2l] -ot = rT22[ a2al all]. (25)
1a22 1- "' S a2 J -- 2 a,- ' 21 J

As before, we can show that only w,,pt is a stable equilibrium point. Substituting

Wop,, of (24) into (22), we get

yiopt(n) = aiIII(n) Y2ot(n) = a22[1 - a12a 21 (n), (26)
a22a,11

and with the use of a suitable AGC at the outputs of Lhe canceler, we have
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Y1AAG = Yiopt(n) = I,(n) , Y2AGC = a 2[1t(n) 1=2(n). (27)all a22[1 -- =Uf
a22al I

Notice that for the power-correlator structure, one of the outputs requires an AGC

normalization by ai,, the desired signal response, similar to that required in power-

power structure. Particularly, for aii = 1, AGC is not needed. The other output

needs an AGC which depends on the interfering signals coupling in a manner similar

to that required in the correlator-correlator case.

4 Simulation and Results

In this section, we present the Monte Carlo simulation results for two and three

signal separators based on the three different structures of bootstrap and LMS algo-

rithms. The block diagram for the simulation set up is given in Fig. 4. The channel

input Ii(n) i = 1, 2, 3 are random bipolar independent sequences. Channel parame-

ters were chosen to present differtnt desired signal-to-interference ratios (SIR) at the
U a 2u E f E 1 2 ( yi)) -

output. The signal-to-interference ratio is defined by SIR = l0 log['.,,Ef P. W

Without loss of generality, we take ai, = 1 and cross coupling aij to be the same

for all i and j, i -0 j. Different aij causes the canceler's input correlation matrix to

have different eigenvalue spread. White Gaussian noise is added to the output of the

channel, with signal-to-noise ratio (SNR) of 40 dB. Such high SNR is used in the

simulation to enable better examination of cancellation depth. The blind bootstrap

separator in one hand or the LMS separator in the other are used to -&ncel cross

channel interferences. Finally, wherever needed, AGC is added to the i r'ut of the

separators.

By setting all the weights initially to zero, and providing a constraint wij < 1

to search for the optimal weight w~jopt,, we obtain learning curves from the average

results for 500 runs. This is done for two and three dimensional interference chan-

215



nels. In Fig. 5, we depict such learning curves for power-power, correlator-correlator

and power-porrelator bootstrap separators and the LMS separator with a two sig-

nal channel. Since the first two are symmetric structures, the results from only one

output are shown. For the second, we show both outputs, yi(n) and y2(n), as they

are shown in Fig. 3. As channel coupling parameters, we used aij = 0.8. and as

a convergence constant ji we took values 0.12, 0.08, 0.08 and 0.2 for power-power,

correlator-correlator, power-correlator and the LMS signal separators, respectively.

These values were chosen to be slightly less than the maximum values allowed for

stability. From these results, we note that power-power results in a smaller steady

state interference residue than that of the correlator-correlator separator or output 2

of the power-correlator. However. this residue is larger than that of LMS or output 1

of the power-correlator. The correlator-correlator residue equals that of output 2 of

the power-correlator. Nevertheless. all bootstrap separators converge faster than the

LMS separator.

In Fig. 6, we depict the learning curves of the three separators with channel

coupling parameters aij = 0.4 instead. Residues in this case behave similar to Fig.

5 except for the fact that for correlator-correlator, the residue is slightly larger than

the residue at output 2 of the power-correlator. The convergence constant ps was

taken to be equal to 0.2. which is slightly less than the maximum allowable for the

stability for this case of channel parameters. Comparing Fig. 5 to Fig. 6, we notice

that when the channel coupling parameter is smaller, the convergence is faster. To

examine the effect of AGC on the separator's performance, we show Fig. 7, the

learning curves of correlator-correlator with and without AGC. In Fig. 8, we do

the same for output 2 of the power-correlator separator. Note that these are the

only cases which require equalization via AGC. Fig. 9 and Fig. 10 deal with the

case of the three signals channel. In Fig. 9, we compare the learning curves of the

correlator-correlator separator with and without AGC to that of the power-power
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separator without AGC. We again use a,3 = 0.4 and p to be the same as in Figs. 6,

7 and 8. From this curve, we notice that by adding AGC, the correlator-correlator

learning curve becomes similar to that of the power-power separator. In comparing

the results of this figure to those obtained with the two-signal channel, we clearly

notice a higher residue with the former, due to the added interfering signal. In Fig.

10, we compare the learning curves of the power-power separator to the three outputs

of the power-correlator separator when AGC is added to the outputs. It is quite clear

from the results with the two and three signals' channel that, the speed of convergence

is practically the same in both cases.

5 Conclusion

In this appendix, we have extended the previously reported three structures of

bootstrap blind adaptive separators to the multi-signal channel case. We suggested

a recursive weight updating algorithm for the three structures termed power-power,

correlator-correlator and power-correlator. The optimum weights for these separators

were found analytically in the absence of noise. The signal separation process was

shown via simulation by the outputs learning curve. It was shown that the different

bootstrap separators converge to their steady states almost with the same speed for

a two or three signals channel. They all converge faster than LMS regardless of

the value of channel coupling parameters. The steady state interference residues of

the three separators are different, lowest for power-power and highest for correlator-

correlator. One output of power-correlator results in residue similar to that of the

correlator-correlator. However, adding AGC to the correlator-correlator outputs or

one of the outputs of the power-correlator reduces the amount of residue. so that

when AGC was added (where it was needed), all separators behaved similarly.
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Appendix G

Bootstrapped Spatial Separation of Wideband Superimposed Signals

Abstract

Bootstrapped algorithms were developed and used for separation of two signals.

when two versions of their weighted sum is given. In this paper we apply the bootstrap

principle to the separation of N signals transmitted from point sources at different,

unknown locations, when received by an array of M sensors. We present a general

structure of the separation scheme which consists of delay elements and summation

only. Its input is the M-sensor output signals and its output is the estimates of the N

source signals. We show that if the source locations are known, this system provides

a least squares estimate of the source signals. If not, it can adaptively converge to the

least squares solution, provided that some prior information about the source signals

is available. In particular, we present a detailed study of the bootstrapped algorithm

for the separation of two sources received by two sensors. A simplified version of the

algorithm is presented and the idea of adaptively controlling the unknown delays is

discussed. We show that the proposed algorithm is a powerful tool for the decompo-

sition of spatially mixed wideband signals.

229



1 Introduction and Background

This appendix deals with the scenario in which N point sources are received by M

omni-directional sensors. The received signal at the output of each of the M sensors

can be modeled by:

N
zm(t) = E s,(t- 7,.(On)) + em,(t) m = 1,..., M ; Itl _< T/2 (1)

n=1

where: s,(t) is the signal radiated from the n-th source; On represents the coordinates

(location) of the n-th source: and e,(t) is the additive noise at the m-th sensor. In the

special case of a two dimensional array and far-field sources, On is the source bearing.

Tr,,(On), the travel time of the n-th source from the array origin to the m-th sensor is

given by:

S= j"m) flOn + YMCOSOn] (2)

where c is the propagation velocity of the signal wavefront and (x,,,,yn) are the

Cartesian coordinates of the m-th sensor. If the array is an equally spaced linear

array (ESLA) then y, =0 and xm=(m - 1)d, m=l,...,M where d is the separation

between successive sensors and the plane origin is assumed at the coordinates of the

first sensor. Thus, ( 2) becomes:

rm(On) = (M - 1)d-inO• (3)
C

In general there are MxN (or (M-l)xN) delays which are a function of the N

source locations 01 ,... 0N . For an ESLA there are only P' different delays which carry

all the spatial information.

The above model can match maR" practical applications in different fields. In

passive sonar the source signals % _ dleand, noise-like random processes and the

unknown source location vector. 0 -; kO,=..,...OV )T , has to be estimated. In the active
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case the source signals are basically known, but the aim is the same - estimation of the

source locations. However, in a communication system, one is usually interested in

the source signals themselves and not in their locations which are sometimes known.

We assume broadband signals, which are more general than the usually assumed

narrowband case, where a delay can be regarded as a phase shift. The received sensor

data (1) can be represented in the frequency domain:

1,T/2
Zm(Wk) = T zmT/2ZM (t)e-i'kdt ;m =1,...,M ;k = 1,...L (4)

Zm(wk) is the Fourier coefficient of the output from the m-th sensor at frequency

(2r./T)k. The processing bandwidth is, therefore, B = LIT. At each frequency, the

array output is given by the m-dimensional vector:

Z(Wk) = (Zi(WO),..., Z(Uk)) T  (5)

Following the model of (1), Z(wk) can be written as

N

Z(wk) = , S.(wk)a(Jk, O,) + E(wk) = A(wk_)S_(wk) + E(wk) (6)
n=1

where _(wk) = (S1(wk),...,SNu(wk)) T and E(wk = (E1(wk),...,EM(Wk)) T . Sn(wU)

and Em(wk) are the Fourier coefficients of the n-th source signal and the noise in the

m-th sensor, respectively. Also,

A(L',9) = [!(I ): ..-) aN(Wk)] (7)

where

!_(Wk,0.) = &P(k) = (eJ•J•1B•,...,c•w&,M(II)) (8)
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If M > N the least-squares estimate of the frequency domain vector of source

signals, S(w), given the data vector Z(w), is [1]:

S_(wk) = [A*(wk, O)A(wk, _)]-1 A(wk, _)Z(wk) (9)

For the special case of M = N = 2 it easily can be verified that

[A*(wk,_)A(wk,2)]-'A(Wk,)Z(wk) =
1 ( ejwk0l - CoSWkŽ~ejwkD2 e-jwkD, - COSWkzAe-jwkD2

sin 2wAAk ejtkD2 - COSWkAejwkD1 ejWkD2 - cosWzAejwkD,) (10)

where A = D1 - D 2 • In (8) we also assume that the array origin reference is the mid

location between the elements, so that rj(01) = -r2(01) = D1 , 7r(02) = -r2(02) = D2

We see that, even if D1 and D2 are known, the implementation of the least squares

solution of (9) requires filtering the array outputs zi(t) using filters having transfer

functions of the form: coswA or 1/sin 2wA, as well as pure delays (see Fig. 1). The

implementation of the trigonometric filters is difficult, especially when b is unknown

and is to be estimated adaptively. One possible approach to deal with this implemen-

tation problem is to approximate the trigonometric filters by FIR (or IIR) filters. In

the sequel, we show that applying the bootstrap principle to this problem results in

an exact implementation of (9) which uses only delay elements and summations, in

a feedback configuration.
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2 The Bootstrapped Algorithm

Bootstrapped systems are multi-input multi-output feed-back systems in which

each output "helps" to improve the other outputs. The idea is to assume that a

system output is indeed the desired response and to use it, via feedback, to get other

outputs. This approach has been successfully applied in satellite communication to

improve separation of cross-pol signals [2]. In our problem, given any N-1 source

signals one can get a good estimate of the remaining signal, say s, (t) from any of the

sensor outputs using:

N
ý.,,,,(t) = j,(t - 7,,(0,,)) "- z,,,Mt - _, Si(t - -r,,(Oi))) (11)

(i=l1 ~

If no noise exists, then the left hand side of (11) is indeed a delayed version of

s'(t). However, since noise is never zero, averaging over the estimated version of a

certain signal from all sensor outputs will improve SNR output. Therefore, we have:

(ME i-O) + 70)(12)

The outputs of the proposed algorithm are N signals, y1(t), ... , YN(t) which are

desired to be the best possible estimates of the N source signals s(t)0 ... , ,SN(t). Fol-

lowing the bootstrapped approach. we replace the known source signals in (11) by

their estimates {y, }. Therefore. the proposed scheme is described by the NxM equa-

tions:

N

y,,(t) = y.(t - TM(O,)) = zm(t) - -yi(t Tm(0i)) ; m = 1 : .... M:n = 1 .... N

(13)

WO(t) = 1 ynm(t + Tm(00)) (14)
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By transforming (13) to the frequency domain we get

Y,(w) "- 1Y ;7711 ;m ,...,M;n N
A~l __•I~~

(15)

In a matrix form this equation is equivalent to

A*(w,0_)A(w,)__w) = A(Cw,_)Z(w) (16)

where A(w, _) is given by (7) and (8). Therefore, the frequency domain representa-

tion of the output vector yM(t) = (y1(t), ... , YN(t))T is exactly the same as S(wk) of (9).

i.e., the system described by (12) is a realization of the least squares estimator of the

source signals. In Fig. 2 we present a block diagram of this system for the special

case of N = M = 2.
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3 Bootstrapped Separation of Sources at Unknown
Locations

If the sources location is unknown, then 0 = (01, --- ,ON)T is unknown, and Tm(Bi)

in (9) is replaced by its estimate, m, =Trm(i,), m = 1,...,M: i = 1,...,N. In that

case, the frequency domain representation of the output vector is:

Y(Wk) = [A-(Wkj)A4Yki)I'.-(w1, i)Z(Wk) =[A.4iZ-A-z (17)

This is no-longer the least square estimate of S(wk), but only an approximation.

In the sequel, we propose an adaptive algorithm by which an estimate of the de-

lays D, will be found. We show that. in case of no additive noise, the algorithm

converges to the least squares solution of (9). We demonstrate our results for the

special case where N = .11 = 2. However. generalization of the algorithm for any

M > N > 2 is straight forward. Consider the system of Fig. 3. It can be shown that

for r1(01) = -r 2(01) = Di. 71(0 2 ) = -r 2 (0 2 ) = D2, the 2x2 transfer function matrix,

H(w), which relates the two outputs. yl(t) and y2(t) to the two inputs z1 (t) and z2(t)

is exactly the same as those of the system of Figs. 1 and 2. That is, the system

of Fig. 3 is another, alternative implementation of a least squares separator with

H(w) given by (10). If initially r1 0 D1 and/or -r2  D2 , then we intend to adapt rl

and r2 so that in the steady state they reach these optimal values. We notice that

the scheme of Fig. 3 is similar to the bootstrapped "power-power" separator of [2-7]

which is applied to the separate weighted sum of two uncorrelated signals. There, the

delays rl and r2 are replaced by complex weights. say W, and IV'2. In the frequency

domain our unknown delays are represented by e',' and e-j-2 and the input signals

are weighted sums of the uncorrelated frequency domain signals S1(W) and S2 (W).

Therefore, the frequency domain representation of our problem is equivalent to the

time domain separation problem of [2-10] and a similar approach can be considered.

It was shown there that without noise ( nj = n2 = 0 ), the power of the two out-
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put signals is minimal if and only if the controlled weights are equal to the unknown

model parameters. It was also shown that for this configuration, the optimization cri-

terion of minimum power is equivalent to the criterion of zero correlation between the

two outputs [3-4]. By analogy, in our problem the equivalent optimization criterion

should be minimum power (or zero correlation) in the frequency domain. However,

since power and correlation are preserved when transforming from time to frequency

and vice versa (Parseval), this criterion can be applied to our problem either in the

frequency domain, or in the time domain. Inspirated by a possible hardware imple-

mentation using voltage controlled delay lines, we prefer the time domain approach.

That is, we suggest to control the unknown delays r, and r2 by an adaptive algo-

rithm which seeks for the minimum power of both outputs, simultaneously (or, for

the minimum power of their cross correlation signal). Notice, however, that this con-

trol procedure cannot be employed unless some information that distinguishes the

signals to be separated is available. Mathematically, it can be shown that all possible

optimization criteria (zero correlation 13, minimum power) yield the same, or linearly

dependent. control equations. Notice, however, that to control both rl and r2 one

needs two independent equations. This difficulty can also be predicted by considering

the separation problem as a multi-input multi-output identification problem, where

it is well known that weighted sums cannot be separated if nothing is known about

their components. In our application, it is also A•oll known that the resolution ca-

pacity of an array of M sensors is bounded by the number of sensors (i.e., M > N)

if absolutely nothing is known about the signals. Conversely, if prior information is

available, it can be used to discriminate between the two signals in the control loops.

Thus, as suggested in [3,4]. such a dependency problem can be handled by introducing

a "discriminator" which uses the distinguishing information to emphasize sl(t) in one

of the control loops and another one which emphasizes s2(t) in the other loop. This

13Lately the de-correlation approach is also used in [11]
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procedure yields two independent control equations, which guarantees convergence of

the adaptive algorithm to the desired solution rl = D, and r2 = D 2. The possible

control loops are depicted in Fig. 4.

4 Conclusions

For separation of signals radiated from point sources, we propose the system of

Fig. 3. where the delays are controlled by any of the algorithms of Fig. 4 (there

are 4 different combinations, for two unknown delays). We have shown that if the

delays are adapted to the unknown model parameters exactly, then the outputs of

the proposed bootstrapped system are the least-squares estimates of the source sig-

nals. In a further, on-going study we investigate the adaptive algorithm with more

details. we suggest alternative implementations of the separation configuration and

we study the effect of the additive noise on the performance of the proposed separator.
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Fig. 2 Bootstrapped Implementation of the Least-Squares Separator.
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Fig. 3 Alternative Implementation of the Bootsrapped Least-Squares Seperator.
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Fig. 4 Block Diairax of the Delay Control Algorithms.
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