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Foreword

An important research activity in aerodynamics involves the
dynamics and stability of rotorcraft vortex wakes. This report
summarizes recent work on rotorcraft aerodynamics involving novel
methods for rotor free wake calculations. This research contributes
to improved prediction of rotorcraft performance and vibratory
loading in forward flight and in hover. o

A new method called Analytical/Numerical Matching (ANM)
was developed. ANM is a hybrid analytical and numerical method
that achieves accurate results by combining a low resolution
numerical solution with a high resolution analytical solution. ANM
has some features in common with the method of matched
asymptotic expansions. Although ANM was originally developed for
a specific problem, the method has proven to be of a general nature.
The initial application of ANM to the rotor wake problem shows the
method to be accurate and to provide a significant reduction in
computation time.

The use of ANM also introduces the opportunity to develop
new solution strategies for free wake calculations, including Far-Field
Linearization and Periodic Inversion. These methods afford the
means to obtain accurate solutions over the entire flight regime,
particularly in the difficult transition region between hover and low
speed flight.

Finally, work involving applications of ANM has led to a
scheme that represents vortex filament dynamics by a hierarchy of
nested problems of varying resolution joined by matching solutions.
This approach, called ANM with Pyramiding (ANM/P), has reduced
calculation times by more than a factor of twenty in some sample
problems.
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Problem Statement

Free wake calculations which allow the wake vorticity field to
evolve in free motion are the most. accurate and physically correct
approach to rotorcraft aerodynamics. From their inception, however,
these calculations have faced difficulties, including the inadequacy of
over simplified models of the wake, excessive computer time,
questionable numerical accuracy, and convergence problems. As a
result, ongoing research still has the objective of having free wake
methods achieve their potential for rotorcraft engineering. However,
there has been considerable recent ‘progress. In particular, it is now
apparent that a full-span computational treatment of the blade wake
is necessary. Therefore, modern free wake analyses must deal with
the motion of large, complete vorticity fields in order to be accurate.

The high resolution analysis of multi-blade, full-span free
wakes of extended length is a significant challenge even for modern
computational capabilities. In practice, there is a need to reduce the
computer time of free wake calculations by at least one or two orders
of magnitude. There is also a need to render free wake formulations
more compatible with calculation methods for blade dynamics and
aerodynamics. Finally, there is a need .0 explore free-wake methods
that are not subject to instability in low speed flight and hover.

This research contract addressed the above issues and made
significant improvements in the state-of-the-art by the development
of novel new methods. The main subjects addressed were as follows:

- Development of Analytical/Numerical Matching (ANM), a
new general approach to address numerical resolution and
accuracy problems.

-  Development of Far-Field Linearization, a method of
simplifying far-field contributions in a rotorcraft wakes.

- Development of Periodic Inversion, a time independent
quasi-linear procedure for evolving rotorcraft wake
solutions.

- Development of Solution Pyramiding as an extension of
ANM to greatly reduce computation time for a given
problem size.

Each of these four important results are described in greater
detail in the next section. Also, Appendices A, B, and C contain three
relevant papers that have been presented on these subjects.




Summary of Important Results

Analytical/Numerical Matching
Analytical/Numerical Matching (ANM) is a hybrid technique

that combines analytical and numerical solutions by a matching
procedure. ANM allows a global low-resolution numerical solution
and a local high-resolution analytical solution to be combined
formally by asymptotic matching to construct an accurate composite
solution. Both the numerical and- analytical solutions are simpler and
more easily obtained than the solution of the original problem, and
the overall solution procedure is more efficient computationally than
a direct approach to the original problem. In addition, the ANM
approach has the ability to provide a high degree of spatial
resolution in local areas without great computational burden.

Analytical/Numerical Matching was developed by Professor
Donald Bliss at Duke University. The method has been applied to
several problems in vortex dynamics, aerodynamics, and acoustics.
These protlems include: evaluation of the Biot-Savart integral for a
vortex filamentl.2; the behavior of a vortex filament very near a
surface3:4; vortices cut by a rotor disk3; the roll-up of a two-
dimensional vortex sheet6; an aerodynamic panel method?; and most
recently to acoustic radiation and structural acoustic scatteringd. In
all these cases, very accurate solutions were obtained with a
dramatic reduction in computational cost (factors of three to a
hundred). Ongoing work considers the application of ANM to
problems of unsteady compressible aerodynamics. Although, some
new issues and difficulties may arise due to the propagating nature
of solutions, there appears to be no fundamental reason why ANM
cannot be applied to this case.

ANM is closely related to the method of Matched Asymptotic
Expansions (MAE).9.10 MAE allows certain classes of problems having
two disparate physical length scales to be divided into two simpler
problems. The ratio of the two scales forms a small parameter. A
series expansion is used to separate the problem into an “outer”
problem, associated with the large scale, and an "inner" problem
associated with the small scale. These problems are solved
separately and combined using asymptotic matching to form a
composite solution. The composite solution is the outer solution plus
the inner solution minus the matching solution.  The matching
solution is the inner limit of the outer solution (or the outer limit of
the inner solution). In the outer region the matching solution cancels
the inner solution, whereas in the inner region it cancels the outer
solution. The proper transition between regions requires an




"overlap” region, which will exist if the procedure is done correctly to
an appropriate problem.

ANM is related to the method of Matched Asymptotic
Expansions (MAE),%10 but it differs in several important ways. The
goal of ANM is to find an accurate solution to a physical problem
having small scales or rapid variations that challenge the accuracy of
the numerical method. In ANM, an artificial smoothing of the
physical problem is introduced. The smoothing length scale must be
larger than the scale associated with the numerical discretization,
thereby assuring that the numerical solution of the smoothed
problem 1is very accurate. However, the actual problem has a
physical length scale smaller than the numerical discretization. The
local region associated with the small scale is solved separately
(usually analytically, but perhaps numerically) as an inner problem
that captures the small scales and rapid variations. This inner
problem, because of its idealizations, becomes increasingly invalid
with increasing distance from the local region of rapid change.

The numerical problem and the local problem are combined by
asymptotic matching. This approach requires a matching solution
that is similar to the inner problem but solved with the smoothing
imposed. The composite solution is then given by the low-resolution
global numerical solution plus the high resolution local solution
minus the matching solution, namely:

COMPOSITE SOLN. = LOW RESOLUTION NUMERICAL SOLN.
+ HIGH RESOLUTION LOCAL SOLN.
- SMOOTHED LOCAL MATCHING SOLN.

In the local region, the matching solution subtracts away the
local error associated with the smoothed numerical solution, leaving
the local solution. Far from the local region, the local solution and the
matching solution cancel, since they become identical beyond the
smoothed region. For the method to work well, the smoothing must
be chosen to achieve an overlap so that the transition zone between
the local and numerical solutions is accurate.

The application of ANM to the calculation of a rotorcraft wake
velocity field using the Biot-Savart law proceeds as follows (refer
also to Figure 1). First, a low resolution numerical calculation of the
velocity field is achieved by summing over discrete values of the
Biot-Savart integrand, which is the simplest possible approximation
of the Biot-Savart law. This approach is similar to the use of vortex
particles or vortons, but the vortex particle formula is modified
mathematically to produce a smoothing effect similar to a very large
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(fat) vortex core. When summing the smoothed vortex particles, it
can be shown that, if the cores of adjacent particles overlap slightly,
the discrete numerical result accurately simulates a continuous fat
core filament. This fact allows for the very efficient calculation of a
smoothed fat core flow field by the simplest possible means. If
taken alone, this result gives an accurate answer to the wrong
problem because the core is too fat. .

The solution can then be corrected analytically to remove the
smoothing effect and restore the proper core structure. The local
solution for the velocity field in the vicinity of a curve filament can
be obtained analytically. At the ‘point on the filament nearest the
point of evaluation, two overlaid curved arc solutions are added to
the numerical result. One solution consists of an arc with the
correect core size and the other consists of a fat core arc with the
opposite sign circulation.

Referring to Figure 1, for the portion of the filament nearest
the point of evaluation, the opposite sign fat core arc cancels the fat
core numerical solution in the nearfield, leaving the contribution of
the arc with the correct core size. For the potion of the filament far
away from the point of evaluation, and beyond the egge of the fat
core, the two analytical arc solutions cancel each other leaving the
numerical solution, which is correct at points beyond the fat core
distance. The procedure to construct the solution in this case can be
stated concisely as:

COMPOSITE SCLN. = FAT CORE NUMERICAL SOLN.
+ ACTUAL CORE ANALYTICAL ARC SOLN.
- FAT CORE ANALYTICAL ARC SOLN.

The detailed results presented in Appendices A and B show
that this procedure, when properly implemented, leads to very
accurate solutions with computation time reduced by approximately
a factor of three. The reduction in computer time arises largely from
the relative simplicity of the numerical solution, which is responsible
for most of the computational burden. The analytical corrections are
relatively simple, computationally inexpensive, and fairly easy to
implement.




Far Field Linearization

A problem with traditional free wake methods is that a large
amount of computer time is spent calculating the effect of vortex
elements relatively far from the point of evaluation. The ANM
approach described above provides a formal distinction between
near-field and far-field effects. .

In physical terms, the far field induces a smooth slowly
varying velocity field on the point of evaluation, whereas the near
field is asscoiated with rapid changes and strong interactions. By the
appropriate choice of scales, the numerical fat core free wake and the
(opposite sign) fat core arc solution constitute the effective far-field
solution by virtue of their smoothed, slowly varying nature. The
analytical actual core arc solution, which is the remaining part of the
composite solution, is entirely responsible for the strong, typically
nonlinear, near-field effects. The fact that the near-field/far-field
distinction arises naturally in the ANM method allows for the
implementation of a formally correct procedure to perform partially
linearized wake calculations.

The velocities induced by the far field are spatially linearized
about some initial configuration using a truncated Taylor series in
the wake position variables. As the wake evolves in time, the far-
field velocities are approximated by evaluating the resulting linear
expression, rather than recomputing the exact particle velocities
from the Biot-Savart law. Note that this process involves only a
matrix-vector multiplication. The linearized wake is re-used until
the wake has evolved to the point where it is no longer accurate, at
which time the wake is relinearized. Helicopters at moderate to high
advance ratios have wakes that evolve relatively little, so that one
linearization may suffice for an entire wake convergence calculation.

The linearized free-wake velocity problem takes the form of a
large linear system (far field) with locally embedded nonlinearities
(near field). Consistent with the matched asymptotic expansions
approach of the ANM correction, the far field encompasses all of the
vortex particles since their fat cores remove the strong near-field
behavior. Furthermore, the fat and thin core components of the
near-field ANM corrections may each be linearized. The highest
accuracy results from computing the ANM corrections exactly at each
time step, while the maximum efficiency is found by linearizing both
the particles and the ANM correction, resulting in a complete linear
description of the wake velocities. Between these extremes is the
option of a linearized far field and a nonlinear near field. The
completely linearized velocity expression also has the advantage of
placing the wake velocities in a form functionally similar to the blade




dynamics problem, allowing the opportunity to solve these two
aspects of r“c¢ overall problem simultaneously in future work.
Computer time comparisons for the various degrees of linearization
are miesented in Appendices A and B.

The wuse of vortex particles facilitates the analytical
linearization of the wake velocities due to their simple functional
form. Linearization of the ANM analytical nearfield correction is aiso
possible, but with more effort due to the presence of elliptic integrals
in their expressions. The closed-form derivation of the Taylor
coefficients in the linearization were performed using a symbolic
manipulation computer program. = The velocity expressions are
functions of 12 scalar variables for each element, and the derivative
calculations are quite lengthy. Although the analytical formulation is
more involved than a basic free wake method, the resulting savings
in computer time more than justifies the approach.

Periodic Inversion

From their inception, free-wake calculations have been
hampered by excessive computational effort and poor convergence
behavior at low advance ratios and hover. Convergence in this
context refers to the location of a wake structure which repeats
every rotor revolution and is therfore steady state in a periodic
sense. Indeed, because vortically induced velocity fields are
inherently nonlinear, the existence of unique and stable solutions
remains an open question. Thus it is not surprising that the time-
marching approach to free-wake dynamics has encountered
convergence difficulties.

Time-marching approaches begin with an assumed initial
condition for the wake. As the integration proceeds, the errors in the
initial wake are convected down and out of the free-wake as it
relaxes to a converged configuration. Exact convergence is never
teached by time marching, but is approached asymptotically. In
high-speed flight, the time-marching apprcach converges without
difficulty as the free stream convection dominates the solution,
thereby reducing the strength and frequency of the strongly
nonlinear near-field vortex encounters. However, in low-speed flight
the free stream effect is reduced, resulting in a dense field of wake
vorticity and the dominance of the strong near-field interactions.

Periodic Inversion is a new approach for the calculation of
rotor free wakes that guarantees periodic steady-state solutions, and
provides the means to solve for wake dynamics at all advance ratios,
including low speed and hover. This is a unique capability since




traditional time-marching approaches fail at low advance ratios. The
method is based on enforcing periodic boundary conditions over 1/B
cf a rotor revolution, where B is the number of blades. This is
accomplished by defining a new set of wake variables with periodic
behavior, and writing the governing equations in a linear
perturbation form. The problem is written as a large linear system
which 1is inverted for the perturbative correction. Successive
iterations involving relinearization are required to obtain the final
solution to the nonlinear problem:. :

The method of Periodic Inversion allows converged solutions to
be found without the use of artificial damping, even at low advance
ratios and hover, Performance curves are generated by varying the
flight parameters between iterations. The method has been used to
examine the low speed wake structure, which exhibits three unique
forms depending on advance ratio: a helical structure from hover to
some lower bound advance ratic, a roll-up structure above some
higher bound advance ratio, and a rapid transition region between
the two.

Periodic Inversion, which guarantees periodically steady-state
solutions by enforcing periodic boundary conditions, is based on
developing a system of collocation points with periodic behavior, as
opposed to the Lagrangian description used in time-marching
approaches. The vortically induced velocities determined from the
Biot-Savart law are linearized, and the wake dynamics over a fulil
period are written in a linear perturbation form. The
Analytical/Numerical Matching (ANM) wake analysis is used to
define the discrete wake model. The ANM model has been
analytically linearized, as mentioned in the previous section,
providing a basis for extension to Periodic Inversion. A new far-
wake extension, which accounts for the semi-infinite domain of the
wake, was also developed for this method and incorporated into the
ANM model. The resulting problem takes the form of a large linear
system of algebraic equations which is inverted for the perturbative
correction vector., Because this is a linear approximation to a
nonlinear problem, iterative refinement is typically required to reach
convergence.

A primary advantage of Periodic Inversion is that it provides
the means to study wake dynamics at all advance ratios, including
hover. Low advance ratios have previously been unattainable for
traditional time-marching approaches due to poor convergence
behavior., The new method has shown that the wake maintains a
roughly helical structure from hover up to some lower bound on the
advance ratio. As the advance ratio is increased from this lower




bound through a narrow transition region, the wake quickly evolves
into the familiar roll-up configuration characteristic of forward flight.
At advance ratios above the transition region, the wake maintains
the roll-up form and does not qualitatively change. Comparison with
time-marching solutions show excellent agreement for wakes above
the roll-up transition. Wakes within and below the transition regicn
prove difficult for time-marching to converge, but there is evidence
that the periodic solution provides a correct mean wake structure
about which time-marching solutions oscillate.

Periodic Inversion also provides the means to generate
performance curve data. Wake variables such as advance ratio,
thrust coefficient and tip path plane angle can all be varied between
iterations of the method. Points on a performance curve which are
linearly close together caa be incrementally found with one or very
few iterations. This approach was used in the present study for two
purposes. First, the wake was converged at hover by incrementing
the thrust coefficient from 0.001 to 0.003. The thrust coefficient was
then held constant as the advance ratio and tip path plane angle
were increased. The pre- and post-transition range of the advance
ratio were easily solved with a fairly large step size. Within the
transition region, a much finer step size was required to capture the
rapid change in the wake structure. The detailed results of this
study are presented in Appendix C.

There are unique and promising opportunities for further
extensions of the method. A generalization of the periodic variable
description would allow the vortex element density to be increased
in regions of strong vortex interactions, such as the advancing and
retreating side roll up. This would result in a more efficient overall
wake model without compromising accuracy. Coupling the wake
dynamics with blade and body panel methods would allow an
integrated approach to include both blade lift and interactinoal
aerodynamics.  This would result from the generalization of the
linear system to include the lifting and non-lifting body panel
equations. It appears possible to incorporate the blade dynamics
into the method as well.

ANM_with _Solution Pyramidi

An extension of ANM has led to a scheme that represents
vortex filament dynamics by a hierarchy of nested problems of
varying resolution joined by matching solutions.  This approach,
called ANM with Pyramiding (ANM/P), has reduced calculation times
by more than a factor of twenty in some sample problems.
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The method was developed for predicting the dynamics of a
system of free vortex particles ("vortons"), resulting in a new
problem formulation with dramatically increased levels of
computational efficiency over traditional methods. The combined
solution approach, referred to as Analytical/Numerical Matching-
Solution Pyramiding (ANM/P), capitalizes on the fact that many fluid
dynamic structures may be decomposed into spatial near-field and
far-field regions relative to a specified point of evaluation. The
ANM/P technique breaks the problem into a- hierarchy of associated
problems which are easier and more efficient to solve than the
original problem. ' '

The resolution of vortex elements modeling a vortical flow field
is governed by the accuracy required to capture the large volocity
gradients in the spatial near-field. However, the bulk of the element
calculations are in the far field, where the high resolution of the near
field is unnecessary. The ANM methodology involves a low
resolution far-field model that is combined with a high resolution
near-field solution via a matching solution. Computationally, this
composite solution is highly efficient without a significant loss of
accuracy.

To further increase computational efficiency, the ANM
methodology can be applied repeatedly to subdivide the domain of
vortex elements into a series of nested problems. This procedure,
known as Pyramiding, effectively produces a vorticity field
composed of a hierarchy of centroidally grouped vortex elements of
varying strength. This hierarchical structure minimizes the number
of far-field calculations. Due to the matching nature of the ANM/P
methodology, relatively little computation time is needed to define
and index the various levels of centroidally grouped spatial domains.
Typically, a large free vortex problem, such as a free rotor wake, will
involve a flow field domain large enough to support multiple levels
of pyramiding. Pyramiding reduces the computational problem from
order N 2 to a problem approaching order N, where N is the number
of vortex elements.

Although the approach developed here has been applied to
vortex dynamics, it is broadly applicable to a wider range of
problems in mathematical physics. @ A paper on ANM/P is in
preparation, and a thesis on the subject has been completed (see the
next section).
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Yortex Filament Calculations by Analytical/Numerical Matching
With Comparison to Other Methods

Donald B. Bliss* and Wayne O. Miller**
Department of Mechanical Engineering and Materials Science
DUKE UNIVERSITY
Durham, North Carolina 27706

‘Abstract

The calculation of fluid velocity from the Biot-Savart law integrated over vortex filaments has
uaditionallg been computationally expensive. Discretizing the filaments into N vortex elements results
in order N< elemental velocity evaluations per time step. Further, the elemental resolution has been
governed by the need to resolve the large velocity gradients in the near field of the filaments, resulting in
unnecessarily high element densities in the far field, where the velocities are slowly varying. The method
of Analytcal/Numerical Matching (ANM) improves the efficiency of the filament velocity calculation
without loss of near-field accuracy. This is done by using a far field comprised of computationally
inexpensive vortex particles with a large core size for smoothing. The near field is done by an analytical
correction which uses a thin physically correct core size 1o predict the large rapidly varying near-field
velocities, and a second correction with the large core size 1o cancel the local vortex particle error and
match to the far-field solution. As such, the ANM method is similar 10 the method of maiched
asymptotic expansions. The entire approach has been analytically linearized, which provides additional
efficiency and allows unique solution opportunities. Examples are given which illustrate the efficiency

and accuracy of the ANM method in voriex dynamics calculations.

Introduction

There are a number of problems in fluid
mechanics and aerodynamics where the velocity field is
constructed from the fluid vonticity field using the Biot-
Savart law. Such cases often involve simulating the
inviscid flow field from vortex wakes in free motion.
An important application is the vortex wake of a
helicopter rotor, and other exampies include the frailing
wakes of aircraft, shear layers, and the simulation of
separated flows above swept wings. These cases involve
the need to calculate the velocity field of curved, three-
dimensional vortex filaments in an efficient and accurate
manner. |

Vortex filament calculations are solved
numerically in Lagrangian coordinates by discretizing the
filaments into piecewise segments, which are modeled by
vortex elements. These elements represent the analytical
integration of the Biot-Savart law for a short segment of
the filament. Typically, straight-line or curved vortex
elements have been used.! The filaments are followed
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.dynamically by tracing the evolution of the collocation
points, markers on the filaments which are typically used
as the endpoints or centerpoints of the elements. For
free voriex motion, if there are N vortex elements, then
1o calculate the effect of each element on every other
clement requires N2 element calculations. Grid assisted
methods, such as the Cloud-In-Celi (CIC) technique
typically reduce this to order Nlog(N) operations, but are
not appropriate for general wake problems as they require
periodic boundary conditions for efficiency.2.3+4
Furthermore, for problems that require convective
washout of the initially assumed filament shape to
converge o the correct answer, such as helicopter free
wakes, the velocity calculations must be repeated order N
times, resulting in a total of N3 element calculations.
The massive computational burden represented by such
tasks quickly taxes even the fastest computers, and
accuracy typically suffers as the element resolution must
be reduced 10 pose a tractable problem. An important
observation is that while the element resolution is
governed by the required accuracy 1o capture the large
gradient velocities in the local vicinity of a filament, or
"near field", the bulk of the element calculations are in
the "far field", where the high resolution required for the
near field is wasted.

This paper describes a new approach to the vorex
filament velocity calculation calied Analytical/Numerical
Maiching (ANM). The ANM method provides high
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accuracy but with substantial computational savings over
previously used vortex element methods. In brief, the
ANM method allows a low resolution far field model
comprised of simple and efficient elements to be used for
the majority of the velocity calculations. The strong
near field velocities are captured by the addition of a Jocal
analytical correction that is applied only when
appropriate. This analytical comrection also serves as a
mathematical matching of the far field and near field
solutions. As such, the ANM method is similar to the
method of matched asymptotic expansions. Further, the
ANM approach has been analytically linearized to
enhance the efficiency gains. Linearization allows the
velocities to be determined by the simple evaluation of a
perturbative linear system, rather than by recomputing
the Biot-Savart velocities at each time step. Future work
with linearization should also allow examination of the
stability of various wake structures, such as those of
helicopters in hover. Early experience with the ANM
method has shown efficiency gains of better than five
times over curved vortex elements without loss of
accuracy, and an additional factor of two appears
possible. By the addition of linearization, the efficiency
gains increase to roughly twenty times over curved
elements and further refinements are expected.

Yortex Filament Flements

Several voriex filament elements are in common
use and will be described here. Specifically, the vortex
particle, straight line voriex element and the Basic
Curved Vortex Element (BCVE) will be discussed.
Vortex particles, or "vortons”, will be given particular
emphasis as they form a basis for the ANM
methodology. Vortex filament elements are appropriate
fcr madeling potental flows with regions of concentrated
vorticity. The obvious applications of filament elements
are for cases where the vorticity is concentrated along
space curves such as fully developed wing tip vortices,
although vortex sheets and shear layers are also
accurately modeled by a system of filament elements.
Traditionally, sheets have been modeled by a grid or
lattice of elements with varying strength, but a recent
approach which is physically more consistent uses a
contouring system of constant strength non-intersecting
filaments. This is shown in Figure 1 where the full
span wake of a helicopter rotor has been modeled by
BCVE elements.S

Filament elements are based on the Biot-Savart
law for vorticity along a curved line as given by Eq. 1.

v=ol | _TvXds 10}
4 | [R+e]¥
where 1y is the distance from the filament to the point of
evaluation, and ds is the elemental filament length, The
core radius parameter £ used by the authors effectively
spreads the vorticity across a finite radius and removes
the velocity singularity on the filament itself. This
particular core treatment, in addition to being
functionally simple, is also one of the earliest described
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in the literature.® The effect of the core radius on the
swirl velocity about an infinite straight filament is
shown in Figure 2. The velocity reaches a maximum at
the core radius and smoothly reduces 1o zero at the
filament center. At distances on the order of 2-3 core
radii, the velocity quickly returns to that of a singuiar
filament. As discussed below, a favorable effect of the
core can be to spread the velocity field in such a way as
to remove the discretization error associated with vortex

panticles.

N
7

90°

Figure 1. Two azimuthal positions of a full-span free
wake of a four-bladed rotor modeled by vortex filament
elements. Only one wake shown for clarity.
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Figure 2. Effect of core radius £ on 2-D swirl velocity.

The vortex particle is the result of a simple
discretization of the Biot-Savart law. The expression for




the velocity at a point induced by a filament vortex
modeled with voriex particles is given by Eq. 2, where
Iy; is the distance from the ith particle to the point of
evaluation, and l;; is the vector distance between the
particles, essentially an effective element length (Fig. 3).

@

Figure 3. Geometry used for voriex particle evaluation.

The particle expression is both functionally
simple and efficient to compute. Typically the particles
are located coincident with the collocation points and
tangent 1o the filament. The filament geometry is based
on a local curve fit through neighboring collocation
points on the filament. The discretization error of the
velocity field obtained from voriex particles is based on
the relative proximity to the filament and the core size
used as illustrated in Figure 4, where vortex particles
have been used to predict the swirl velocity of an infinite
straight vortex filament. For a given radial distance from
the filament, the discretization error appears as a lateral
variation in the predicted velocity. As the core radius is
increased this error is reduced and is negligible for core
sizes on the order of one particle spacing. Thus the use
of a suitably large core size resuits in a smooth and
accurate velocity prediction for a filament with the same
large core size. Al distances greater than one particle
spacing (r/lg > 1), this error is seen 0 be less than 2%
even without the core effect, indicating that vortex
particles are highly accurate in the far field. At a distance
of 2 10 3 particle spacings, the predicied velocity is
essentially that of a filament without a core as the core
effect decays rapidly with distance from the filament.
Similar results are found for curved filament examples.

The straight-line vortex element is perhaps the
most widely used element. It results from a piecewise
linear fit to the vortex filament and is found by
integrating the Biot-Savart faw between the endpoints of
the linear segments (Fig. 5). The velocity due to a
single element is given in Eq. 3, where a local
cylindrical coordinate system is used. This expression is

more complicated and computationally expensive than
the corresponding vortex particle velocity expression.
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The elemental errors are of two types, position
errors and curvature errors, Position errors arise because
the straight-line elements do not coincide with the
filament position at most points along the curve.
Curvature errors aric. from the failure to duplicate the
local curvature of the filament. The effect of curvature
on filaments of infinitesimal cross section is to produce
a binormal velocity component that depends
logarithmically on the distance from the filament, and is
singular on the filament.” For filaments of finite cross
section (non-zero core size), this results in a finite seif-
induced filament velocity. A detailed study of the errors
associated with both straight line and curved vortex
elements is given in Reference 1. As with the voriex
particle, the errors are Jocal in scope so that at distances
greater than an element length the results are accurate.

STRAIGHT-LINE
ELEMENTS

Figure 5. Local coordinate geometry used for straight-
line element evaluation.

The Basic Curved Vortex Element (BCVE) is a
relatively recent element model which has proven to be
very accurate.1.8.9:10 [t is based on a local parabolic fit
to the filament (Fig. 6) and thus includes the effects of

curvature while reducing positional errors as well.. The -

elemental velocity contribution requires the evaluation of
three related integrals as given by Eq. 4, where the
coefficients ¢, depend on the strength and curvamre of
the BCVE, and on the relative position of the evaluation
point.

3
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The high accuracy and good local fit of the
BCVE allow many fewer elements to be used to model a
filament shape to good accuracy. The relative
complexity of the velocity expression makes the element
more cxpensive to use however: experience has shown
that the BCVE is roughly twice as expensive as the
straight line element, and 5-10 times more expensive
than vortex particles. The relative cost of the BCVE has
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been justified in the past by the need 1o accurately predict
the strong nonlinear interactions of close filament
encounters. This has been of panticular importance for
modeling helicopter wakes, where high resolution of the
wake is necessary for accurate blade load predictions.>+11

VORTEX FILAMENT

Figure 6. BCVE parabolic element fit to voriex
filament.

A nalytical/N ical Matching
The Analytical/Numerical Matching, or ANM,
methodology is based on the observation that many
practical wake structures may be conceptually
decomposed into a near-field and a far-field region relauve
t0 a point of evaluaton as suggested in Figure 7. The
near field is in the immediate vicinity of a vortex
filament and is defined by strong nonlinear induced
velocities with large gradients. The far field compnses
the rest of the wake and is characterized by small slowly
varying induced velocities. In traditional practice the
overall element resolution is governed by the neegi 10
resolve the near field with sufficient accuracy. This is
highly inefficient as the near field consists of only a few
of the elements. The bulk of the elements, which are in
the far field, are an unnecessary computational burden as
the far field can be accurately resolved with many fewer
elements. As the computational effort goes as the square
of the number of elements, the unnecessary elements
quickly overwhelm the velocity calculation.

The ANM approach addresses this issue of
accuracy verses efficiency by accurately resolving the
near-field interactions while using a low resolution far
field. The far field is modeled by relatively few of the
computationally inexpensive voriex particles, which are
very accurate in the far field. The near ficld is done by an
exact analytical result for a curve that locally coincides




with the filament. The analytical correction is applied
only as needed for near-field interactions, and accurately
captures the strong local velocities near the vortex
filament. In particular, the ANM approach has three
components: a far field comprised of vortex particles
with a large, typically nonphysical, core size, a near-field
correction with the physically correct core size, and a
second near-field correction of opposite sign with the fat
core size that is used 1o match the particle and analytical
solutions (Fig. 8). The approach is similar to the
method of matched asymptotic expansions, where the fat
core particle solution is analogous 1o the outer solution,
the thin core analytical solution is like the inner
solution, and the opposite sign fat core analytical
solution acts as the matching solution.

Figure 7. Distinction of small high velocity gradient
near field embedded in a low gradient far field.

VORTEX PARTICLES

MIN. DIST. PT.
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Figure 8. Three-part ANM composite solution:
(1) fat core vortex particle outer solution, (2) thin core
analytical inner solution, and (3) opposite sign fat core
analytical matching solution.
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The outer far-field solution from the fat core
vortex particles encompasses the entire wake structure,
being present even in the spatial near field. This is
possible because the core size is chosen large enough to
remove the steep velocity gradients near the filament
As previously discussed, the fat core also removes the
discretization error of the low resolution particle model.
The outer solution thus represents a smooth and accurate
solution to a filament with the same large core size.
While not physically accurate near the filament, where
the actual velocities are large, the outer solution is valid
at distances on the order of the particle spacing. The
inner near-field solution of the thin core analytical
correction is accurate locally as the curve fit is very good
near the evaluation point. The thin (physical) core used
also captures the physically correct large local velocity
gradients. The inner solution degrades in accuracy with
distance from the filament as the curve used for the
correction is no longer accurately fit 1o the filament.
The matching solution of the opposite-sign fat core
analytical correction provides the transition between the
inner and the outer solutions. In the spatial far field, the
thin and fat core analytical corrections cancel each other,
leaving the outer particle solution. This cancellation is
due 10 the local effect of tie core and to coincident curve
fits used for both analytical corrections. In the near field,
the fat core particle solution and the fat core analytical
solution cancel, ieaving the thin core analytical solution.
The near field cancellation is a result of the small
smooth velocities predicted by both fat core solutions at
distances within a core radius. At intermediate distances
(e.g. one particle spacing), the matching solution
provides a smooth transition between the inner and outer
solutions.

The analytical correction used in conjunction
with the vortex particles may be based on any curve
geometry that allows a tractable solution of the Biot-
Savart integral. The development given here is for a
closed circular ring, although a previous effort
successfully used a parabolic arc. The ring is based on
the filament geometry at the point of minimum distance
from the evaluation point (Fig. 9). The local radius of
curvature is used, and the ring is located in the local
plane of curvature. The Biot-Savan integral with the
core radius (Eq. 1) may be solved in closed form for this
geometry, and the resulting normal and binormal
velocities are given in Egs. 5-7, where vy and vy, are the
ring normal and binormal velocities respectively, and k
is the elliptic modulus.
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The complete elliptic integrals E(k) and K (k) are
evaluated efficiently by the use of simple polynomial
expressions with the proper logarithmic behavior.12
The limiting behavior of the ring solution provides the
proper self-induced velocity for a finite core filament, so
that the solution is valid for all local evaluation points,
including the collocation points themselves.

VORTEX FILAMENT

LOCAL ANM
CIRCULAR ARCFIT

Figure 9. ANM correction arc geometry based on
circular ring fit o local filament geometry.
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One justification of the ANM methodology was
that the near field of a vortex filament is characterized by
a strong, rapidly varying velocity field which cannot be

accurately described by vonex particles alone. By the
same argument, the far field is characterized by a
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relatively weak and slowly varying velocity field, and

these properties make the far field a candidate for
linearization. The velocities induced by the far field are
spatially linearized about some initial filament
configuration using a truncated Taylor series in the
collocation point position variables. As the filament
positions evolve in time, the far-field velocities are
approximated by evaluating the resulting linear
expression, rather than by recomputing the exact particle
velocities from the Biot-Savart law. The Taylor
coefficients are re-used until the filaments have evolved
W a point where the coefficients are no longer valid, at
which point they may be recomputed. Many practical
applications may be accurately modeled with only a
single linearization as the filaments may evolve
relatively little over the course of a computational run.
An important example is the wake of a helicopter rotor
at high advance ratio (fast forward flight).

Linearization may be partial or complete to
provide several levels of efficiency and accuracy. Of
course, the highest accuracy results from computing all
three of the ANM velocity components at each time step
without any linearization. The highest efficiency results
from linearizing all three of the ANM velocity
components, resulting in a completely linearized velocity
expression. Between these extremes is the option of a
linearized far field and a (functionally) nonlinear near
field. The choice of which approach 10 take depends on
the problem being solved, especially on the rate of
filament evolution and the importance of near-field
interactions. The linearized velocity problem may then
take the form of a large linear system (far field) with
locally embedded nonlinearities (near field). Consistent
with the mathematical matching approach of the ANM
method, the far field encompasses all of the vortex
particles plus the analytical fat core arc since their fat
cores remove the strong near field behavior.
Furthermore, the thin core component of the analytical
correction may also be linearized for the fully linearized
case,

Linearization also allows new solution strategies
to be considered. One approach under consideration finds
periodic solutions of rotor wakes directly by inversion of
a linear system derived from the linearized wake
velocities.!? Note that the linear system does not need
inversion for typical time marching integration as the
perturbation distances are known in advance. Future
work with the fully linearized velocities will include
examination of the stability of wake structures by means
of the eigenvalues of the coefficient matrix. This will be
especially interesting for the cases of helicopter wakes in
hover and transitional flight, as they have often proved
difficult to converge, and may well exhibit chaotic
behavior,

As presented here, the geometries of the vortex
particles and the analytical corrections are based on 3-
point circular arcs passed through the particle and its two
adjacent neighbors. The individual velocity expressions
are functionally dependent on the three points and on the
point of evaluation, resulting in 12 scalar variables. The
linearized expression may be expressed as in Eq. 8, where
8k are the individual scalar position variables.
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When the velocity expressions given by Egs. 2
and 5-7 are written in their full functional form, they
present a dauntng task to linearize. Rather than atiempt
the Taylor expansion by hand, the coefficients were
found by using SMP, a symbolic manipulation
computer program similar 1o MACSYMA and
Mathematica. The use of SMP greatly reduced the
chance of human error in these calculations, and
subsequent code verification proved the derivatives to be




correct.  The program was also used 1o translate the
resulting symbolic output directly into FORTRAN
source code,

Results and Comparisons

Several evaluation problems have been used to
examine the accuracy and efficiency of the ANM method.
To begin, the work done in Reference 1 comparing the
accuracy of the straight line and BCVE elements was
extended to include both vortex particles and the full
ANM method. Typical results are given in Figure 10
which presents the error in the normal velocity
component w directly above a vortex ring of
infinitesimal cross section (zero core size). Here end
points, quarter points and mid points refer 1o relative
positions above the vortex clements. It is surprising to
note that the simple vortex particle gives betier accuracy
than the straight line element for all proximities, and is
better by a full order of magnitude at a distance of one
element spacing (1/l; = 1). The ANM correction results
in excellent accuracy which surpasses that of the BCVE
in the filament near field. The error is due to the slight
residual from the cancellation of the fat core paricle
outer solution and the fat core analytical matching
solution. The ANM data was generated using a fat core
size equal to the particle spacing, and a thin core size
cqual to zero.
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Figure 1C. Errors in vertical velocity above a vortex
ring as predicted by the ANM near-field correction,
BCVE elements, voriex particles, and straight-line
elements. Element spacing ls = R A9,
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Recall that for N elements, the number of
clemental velocity evaluations for a single filament
calculation goes as N2, Additional computational efforts
require order N and order 1 calculations. By fiuing the
CPU time to a quadratic polynomial in N, the relative
elemental efficiencies can be compared by looking at the
quadratic coefficient These data are given in Figure 11,
where the coefTicients have been normalized to the BCVE
clement. The ANM method is 3.4 times faster than the
BCVE, and the particles are 5.9 times faster. Typical
filament velocity calculations would primarily use
particles, with a much smaller number of the ANM near
field corrections, resulting in an overall efficiency gain of
roughly 5 or better. These numbers are based on a code
developed in local coordinates, with the overhead of the
coardinate transformations. There is evidence that a code
re-worked in global coordinates would double the
efficiency gains, resulting in an overall efficiency gain of
an order of magniwde over the BCVE. Also shown are
the linearization efficiencies. The time 10 analytically
linearize the complete ANM correction is 1.4 times that
of a BCVE velocity calcvlaton. It includes the ANM
velocity calculation and the Taylor coefficient
evaluations. Once the linearizadon is done, the time 1o
evaluate the resulting linear velocity expression is given
as 0.06 imes a BCVE calculation, or roughly a gain of
20. The efficiency runs were made on a SUNH4
computer, which is a raditional scalar processor. Vecior
machines such as Cray and CONVEX would
substantially improve the linearization evaluation gains
as it is simply a matnix-vector multiplication with 2
vector addition (e.g. Ax + b).
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Figure 11. Computational efficiency for N2 operations
normalized to the BCVE element (N = number of
voriex elements).

The ability of the ANM method to correct the
particle discretization error is shown in Figure 12. A
vortex ring was modeled with 12 panicles at 30°
azrimuthal spacing, and the normal velocity in the ring
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plane was computed along radii which intersected the
ring at several relative locations between the particles.
Figure 12(A) shows that the uncorrected particles exhibit
substantial variation in the near-field velocities as the
radial azimuth was varied. For this example the particles
were given a small core size to reduce the smoothing
effect. The same positions are shown in rigure 12(B),
but with the addition of the ANM near field correction.
The corrected velocitics at all azimuthal angles are in
excellent agreement with the analytical result.
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Figure 12. Vortex ring swirl velocity along radii of
varying azimuthal angles measured between
collocation points: (A) Vornex particles alone. (B)
Particles with the ANM near-field correction applied

A similar example was done for an ellipse with a
4:1 axis ratio 10 examine the ANM accuracy for non-
circular geometries. Figure 13 presents the normal
velocities evaluated along the major axis as the fat core
size varies from half to twice the local element spacing.
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Figure 13. Normal velocities in the plane of a 4:1
ellipse (major axis length a = 4) predicted by the ANM
method at distances near the fat core radii. Element
spacing = Is.

The larger fat core results are seen to overpredict
the velocity near the filament in the ellipse interior.
There are two combined mechanisms responsible for
this. First, the overpredicted evaluation poinls project 10
two local minima on the ellipse, which are very close
together as this is near a major vertex. As a result, two
ANM corrections are applied in close proximity to each
other. This case may be expected 10 occur in practice as
filaments may be highly curved near an evaluation point
due 10 a tendency 1o intentwine and roll up. Second, the
evaluation points lie near or within the larger core radii,
placing them in the near field of both minima. Also, the
larger fat cores shown are 4 and 8 times bigger than the
(physical) thin core, resulting in non-negligible residuals
from the cancellation of the fat and thin core analyucal
solutions at this distance. The residuals would be
correctly canceled by the fat core partcle solution if the
evaluation points were within only one near-field region.
However, the presence of two overlapping near fields
results in an additional residual velocity that is not
canceled, but incorrectly added 1o the predicted velocity
thus accounting for the overprediction error. The
smallest fat core does not exhibit this problem as the
evaluation points with two minima lie well outside the
near field radius. This shows that as the fat core size
approaches the thin core size, the residual is reduced and
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the above problem becomes less serious. Thus the
choice of the fat core size is not arbitrary: it must be
small enough to avoid this extra residual problem
(typically less than the expected minimum radius of
curvature of the filament), while being large enough to
smooth the particie solution to avoid discretization error.
The important point is that the fat core size must be
chosen appropriately to achieve a proper mathematical
overlap in the composite solution matching.

As a practical application, the ANM
methodology was incorporated into a helicopter free wake
program.1? Helicopter wakes present a demanding test
due to the strong near ficld interactions found in the roll
up of the wake on the advancing and retreating sides.
Figure 14 presents a wake from a single-bladed helicopter
flying at low forward speed (0.1 advance ratio). The
wake was converged from an initial assumed wake with a
simple skewed helix geometry to the convoluted roll-up
shown which is typical of Jow speed flight. The far field
was linearized and the near field used the full ANM
correction. The roll-up was captured with the very low
element density of 12 per rotor revolution. An identical
run using the BCVE elements resulted in 2 nearly
identical wake structure.

Figure 14, Free wake solution for a single bladed rotor
at low forward speed (advance rado = 0.10). Solution
computed using an updated lincarized far field with the
exact ANM near-field correction.

Conclusjons

A new approach to vortex filament velocity
calculations has been developed based an the method of
Analytical/Numerical Matching (ANM). This method
combines the efficiency and far-field accuracy of vorex

particles, which are the simple discretization of the Biot-
Savan integral, with an analytical correction that
provides high near-field accuracy without the need o use
high element densities to meet the near-field accuracy
requirements. The ANM method provides a nanral and
mathematically correct distinction between far-field and
near-field regions in a vortex wake, which 1s
implemented in a manner analogous to the method of
matched asymptotic expansions. Furthermore, the
method is sufficiently simple to allow analytical
linearization of the velocity expressions. As a result, all
or part of the velocity expression can be lincarized,
allowing several options for additional gains in

The results show accuracy comparable to that of
curved voriex elements at a fraction of the cost the
current efficiency gains of a factor of 5 for the fully
nonlinear solution are expected to double (a net of an
order of magnitude) with refinement to a more efficient
code. The linearized velocity expressions can be
evaluated at 1/20th the cost of curved clements on 2
scalar computer, and vectorizing computers should
provide further improvements. The ANM near ficld
correction was shown 1o remove the discretization error
associared with a low resolution vortex particle solution
while accurately predicting the large gradient near ficld
velocities. It was also shown that some care must be
used in selecting the fat core parameter which is used to
smooth the particle solution and to maich the particle
and analytical solutions. The ANM methodology has
been incorporated inta 2 helicopier free wake code, where
it has compared well with the more computationally
expensive curved voriex solutions  *
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Efficient Free Wake Calculations Using
Analytical/Numerical Matching and Far-Field Linearization

Donald B. Bliss® and Wayne O. Miller™*

Duke University, Durham NC

ABSTRACT

A hybrid analydcal and numerical method called
Analytical/Numerical Martching (ANM) is used to calculate the
velocity field of rotor wake vortex filaments. A simple
discreuzaton of the Biot-Savart law is used to obtain an
efficient but low resolution numerical calculation of the
velocity ficld. A fictitious large vortex core is introduced and
the discretized velocity field is calculated accurately for a
smooth large core filament. At points close to the filament, a
local analytcal correction based on the Biot-Savart law for a
curved vortex filament is employed 1o remove the nearfield
error and add the correct nearfield velocity contribution
associated with the actual core size. Because this correcdon
is commputatonally inexpensive, the overall approach is both
very efficient and very accurate. The accuracy of the ANM
method has been studied in detail for vortex rings. Free wake
soludons are obtained much faster using the ANM method in
comparison to other methods with comparable accuracy.
Because ANM is funcdonally simple, it is possible 10 obtain
derivatives of the velocity expressions in closed form using a
symbolic manipulation program. By computng derivatves
of the velocity field the free wake calculatdon has been
linearized. The linearized form is computatonally efficient
since it avoids large numbers of repeutdve Biot-Savart law
calculadons. Linearized free wake problems are solved by a
time marching method and compared with full nonlinear
results. A special mathematical approach to obrin soludons
for linearized periodic wake motion by a method that does not
involve dme marching is also discussed. This approach finds
periodic solutions directly by inversion of a large matix.

Ingoduction

Free wake calculations, which allow the wake
vorticity field to evolve in free modon, are the most accurate
and physically correct approach to rotorcraft aerodynamics.
From their incepdon, however, these calculadons have been
plagued by several difficulties, including the inadeguacy of
oversimplified physical models of the wake, excessive
computer time, questionable numerical accuracy, and
convergence problems. As a result, free wake analyses sall
have not achieved their potential impact in rotorcraft
engineering. However, there has been considerable progress
in recent years. It is now apparent that a full-span
computatonal treaanent of the vortex wake is necessary for
many flight condidons!2, as opposed to earlier codes which
relied on tip voriex models and, at most, a relaavely casual
treamment of the inboard wake. Therefore, for future free
wake analyses 10 be accurate, they must deal computartionally
with the motion of much larger vordcity fields than in the
past. The high resoludon analysis of muld-blade, full-span
free wakes of extended length is a significant challenge even
for modern computagonal capabilies.
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Thus the problems of efficiency, accuracy and
convergence remain.  These probiems maust be judged in the
context of the demands to be placed on codes with realistic
predicdve capabilides. Along with a converged free wake
calculation, such a code must predict blade dynamic motions
and match wim conditions for lift, thrust, and side force. In
the current iteratve approach 10 this multi-faceted problem, it
is acrually necessary to converge the free wake pan of the
solution repeatedly just to gain results for a single trim
condidon. It is worth notng that this iterative approach is
both inefficient and physically incorrect.

In spite of the availability of ever more powerful
computers3, there is a need to reduce the computer time
required for free wake calculations by several orders of
magnitude. The free wake formulation must also be rendered
more compatble with the calculadon methods for blade
dynamics and acrodynamics, so that these aspects of the
problem can be solved simultaneousty rather than itcradvely.

This paper describes a new approach to free wake
analysis intended 1o address these problems of efficiency and
comparibility. This new approach differs from previous
methods in the following respects: it uses an efficient new
method for computing the wake velocity field; it disanguishes

The main features of this research, as they appear in
the pape:, are as follows. A hybrid analytcal and numerical
method called Analyrcal/Numerical Mawching (ANM) is used
to calculate the velociry field of rotor wake vonex filaments.
This approach is found 1o give accuracy comparable to the
best available curved element methods with greatly reduced
computer tme. Sarmple calculatons are presented for vortex
rings and for rotor wakes. Because ANM is functionally
siraple, it is possible to linearize all or part of the free wake
calculation, and thereby avoid large numbers of repetidve
Biot-Savart law calculations. The dme marching soludon
procedure for a linearized free wake is described and sample

Velogine Cal ions Using Analve merical M ing

Analytical/Numerical Matching (ANM) is a hybrid
analyrical and numerical method used to calculate the velocity
field of the wake vortex {llamen:s. This new procedure
obtains an accurate ve o<y field by combining a low
resolution numerical solui.on and a high resoluton analyucal

First a low resolu-on numerical caiculaton of the
velociry field is achieved t - summing over 2 ficld of discrets
values of the Biot-Savart integrand, which gives the simplest
possible approximadon to the Bior-Savart inegral. This
approach 1is similar in some respects to the use of "vortex
particles” or "vortons”, but with an imporzant difference. The
vorex pardcle formula is altered mathemadcally to produce 2
smoothing effect similar o a very large (fat) vortex core. The
expression for the velocity induced at a poiat by a vortex
filament is as follows:
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Here ryj is the distance from the ith vortex element to the

point of evaluation, and Alj is vector distance berween
coliocation poiats (an effective element length). This
equation shows how the Biot-Savart integral is discretized
and how the vortex core effect is inwoduced through the
inclusion of a core size length scale rc. For the case of a
straight voriex filament the above equation gives a two-
dimensional swirl velocity distribution of the form

r T

vV o= - —

28 rep?
For r << r¢ the swirl velociry behaves like solid body
rotation, and for r >> r¢ the swirl velocity behaves like a
potendal flow point voriex. The swirl velocity reaches a
maximum atr = 1. .

Using these fat core vortex partcles, it can be shown
that when the core size length scale 1¢ exceeds the spacing
berween particles, the discrete numerical weatment accurately
simulates a continuous vortex filament with the same large
core properties. This fact, represented schematically in
Figure 1, allows for the very efficient calculation of a
smoothed (fat core) flow field by the simplest possible
means. However, if taken alone this calculation gives an
laccurate answer to the wrong problem because the core is too
arge.

The solution can then be corrected analytically to
obtain the right answer. The local solution for the velocity
field near a curved arc filament can be obtained in closed
form. At the point on the filament nearest the point of
evaluaton (and only at this point), two overlaid curved arc
solutons are added the numerical result. The overlaid
analytical soludon consist of an arc with the correct Core size
and correct sign circuladon and a fat core arc with the
opposite sign circuladon. These analytcal arc solutions are
based on the velocity field around a voriex ring, with the
cllipdc integral functions appearing in this expression
represented by polynomial curve fits.

Referring again to Figure 1, for the portion of the
filament nearest the point of evaluaton, the opposite sign fat
core arc cancels the fat core numerical soluuon leaving the
contribution of the arc with the correct core size. For the
portion of the filament away from the point of evaluadon, and
bevond the edge of the fat core, the rwo analytical arc
solutions cancel each other leaving the numerical solution,
which is accurate at points beyond the fat core. The sum of
the fat core numerical soludon, the actual core arc, and the
opposite sign fat core arc form a uniformly valid composite
soludon (see Figure 1). The procedure to construct the
solution can be stated concisely as:

Composite Soln = Fat Core Numerical Soln |
+ Actual Core Analytcal Soln
~ Fat Core Analytcal Soln

This approach corresponds to the mathemadcal
procedure called Matched Asymptotic Expansions (MAE) in
which a composite solution is constructed by matching inner
and outer solutions. In the present case, the fat core
numerical solution is analogous to the outer solution, the
analytcal arc with the correct core is the inner soludon, and
the opposite sign fat core znalytcal arc is analogous to the
inner limit of the outer solution and the outer limit of the inner
solution. The MAE composite solution is constructed in
exaculy the manner described above, namely

Outer Saln
+ Inner Soln
- InnerQuter (or Quterlnner)

Composite Soln =

|5 )

As in matched asymptotic expansions, the ANM
method requires there 1o be an overlap region berween the
farficld numerical solution and the nearfield analytical
soludon. This overlap is achieved by judicious choice of the
vortex particie core size in reladon to the particle spacing.
The core size must be sufficiently large to have the numerical
calculation of the nearfield velocity be smooth along the
vortex filamen:, as if the filament were continuous rather than
discredzed. In practice, vaiues of r¢ greater than or equal 10
half the filament spacing satisfy this smoothness criterion to
very good accuracy (errors not greater than a few percent
anywhere within the vortex core). On the other hand, if the
core size is too large, the proper cancelladon of terms in the
composite soluton may not be achieved. In the region where
the shape of the local analydcal arc and the acwal filament
become disparate, all the contributors o the composite
soludon must be sufficiently far outside the core that each
appears as a potential flow. Because the core effect decays
reladvely slowly (algebraically), it is best to keep the core as
small as possible and sull sadsfy the smoothness criterion. In
practce, this means that values of r¢ should be between one-
half and one times the element spacing to achieve the best
overall accuracy.

A serious critcism of current free wake methods is
that an enormous amount of computer time is spent
calculating the effect of voriex elements relatively far from the
point of evaluaton. Past efforts to circumvent this problem
have been of an approximate narure, typically not updating
certain portions of the wake velocity field in the numerical
routne as the wake evolves. The disuncdon between near-
field and far-field regions is llustrated in Figure 2. The far-
field induces a smooth, slowly varying velocity field on the
point of evaluadon, whereas the nearfield is associated with
strong, rapidly varying interacdons. The current approach
allows a formal distincton between farfield and nearfield
effects. By the appropriate choice of scales, the numerical fat
core free wake plus the (opposite sign) analytcal fat core arc
coastitute the effecrive far field solution, making it
unnecessary to define a special proximity criteria to determine
which poruons of the wake may be simplified for efficient
far-field weamment. The analydcal actual core arc soluton,
which is the remaining part of the overall soludon, is endrely
responsible for the song, rypically nonlinear, nearfield
effects. The fact that the nearficld/farfield distncton arises
naturally in the new method allows for the implementation of
a formally correct procedure for more efficient wake
calculadons, as described larer.

The reladonship between this method and other vortex
clements should be discussed. Previous work has dealt
primarily with elements that provide a geomeric fit o the
vortex filameat. These elements correspond to a closed form
Biot-Savart integradon of a segment of vortex filament. The
overall filament velocity field is then determined by
numerically summing the conzibutons from these individual
segments. Swaight-line elements have been frequendy used
10 provide a piecewise linear fit to curved wake filaments.
Basic Curved Vontex Elements (BCVE's)4 are based on a
parabolic fit and this curved element provides inherendy
bestter 2ccuracy. Although BCVE's are more computationally
expensive on a per element basis, their fiing accuracy is
sufficiently superior that many fewer elements can be used,
leading to 2 net improvement in computational efficiency.
The so-called vortex partcle method, which is merely 2
simple discredzadon of the Biot-Savart integral, is the most
computationally efficient approach by virtue of its functional
simplicity, but it does not represent a geometic
approximadon of the vortex filament. The present method,
which is based in parz on the voriex particle approach, first
removes the severe nearfield discredzadon errors of the
vortex particles by artificially smearing the singularity. This
smearing is achieved by intoducing the core parameter rc into
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the denominator of the Biot-Savart integrand. When properly
done with overlapping cores, the result effectively bridges the
gap between particles, providing the equivalent of a geometric
fit between the filament collocation points. The nearficld
analytical correction is then applied to achieve the correct core
size. This correction is applied only at the point on the
filament where the distance to the point of evaluation is a
minimum, and then only if this point is close enough 1o the
filament for the correction to make a difference. Thus, the
nearfield correction is applied only rarely. The present
method successfully retains the speed and simplicity of vortex
particles, while properly modeling filament curvature cffects
and achieving the high nearfield accuracy associaied with
BCVE’s,

An added advantage of the ANM method, 10 be
discussed later, is that the formulation is sufficiently simple
analytically to allow linearization of the velocity expressions
in closed form. As a result, all or part of the wake velocity
calculation can be linearized, aliowing for additional
simplifications and new soludon strategies for free wake
analysis,

Finaily, it should be mentioned that the method of
Analytcal/Numerical Matching (ANM), developed at Duke
University 1o analyze vortex filament dynamics?, has recently
been applied to other problems in acrodynamics. These
applications include modeling vortices in the nearfield of a
paneled surface for interactional acrodynamics?, and
modeling the high resolution flow field through a tail rotor
disk'9, In fact, ANM appears to have general applicability to
2 number problems involving singularity distibutions, and is
not limited to problems involving vorex filaments.

cv of the ANM meth

The numerical verificadon of the ANM approach was
based on calculating the velocides induced by a closed
circular voriex ring. The ring geomerry was chosen because
a closed-form analyrical result for the induced velocity is
known, and previous ring studies*57 using the BCVE and
straight-line elements were available for comparison. The
ring geomerry used is presented in Figure 3.

A pri advantage of the ANM method over simple
vortex particles is the smoothing of the particle discredzanon
crror which is noticeable at distances less than the particle
spacing. Figure 4 illuszates this smoothing in the swirl
velocity component of a ring with 30-degree particle spacing.
The voriex particle soludon is seen to be strongly affected by
proximiry to individual particles (azimuthal locadon) at
distances from the ring of less than one particle spacing. In
comparison, the ANM solutdon is essenually constant at ail
azimuthal locations, and is accurate at all distances from the
ring. Similar results are obrained for the other two velocity
components. It is possible to smooth out the discrete particle
soludon just by the use of a core size larger than the partcle
spacing, buc large cores are in general non-physical and will
underestmate the strong near-field induced velocides. The
ANM method provides good accuracy using any core size.

The ANM soludon is compared to vortex partcles,
straight line elements and BCVE elements in Figure 5, which

examines the vertical velocity predicdons directly above a -

ring. The ordinate is the normalized velocity error and the
abscissa is the rado of the distance above the ring to the
clement length. The ANM solutdon is seen to be verv
accurate as the ring is approached, surpassing even the BCVE
soludon close in. At a distance of one element spacing, the
ANM soludon is an order of magnitude more accurate than
the voniex partcles, and rwo orders of magninude berter than
the suight line elements. In a practical sense, at distances
larger than one ¢clement spacing all methods are sufficientdy
accurate, reinforcing the observation that the ANM method is

o e - - - .

essendally a near field correcton procedure used to capture
the swong nonlinear nearfield velocides. As the current ANM
implementarion is based on a circular arc geometry, this high
accuracy is 10 be expected, although general curved filaments
are also accurately modeled as suggested in the rotor
simulations discussed later. As with any curve fiuing
clements, the ANM solution deteriorates as the resolution gets
too low (c.g. arcs greater than about 60 degrees between
collocation points). Resolution is a separate issue that must
be addressed when defining the wake model.

The ANM approach was found to be computatonally
efficient as well as accurate. For N vortex clements, the CPU
time for a complete wake velocity computation may be given
by a quadratic in N as T = A+BN+CNZ, which for large N is
dominated by the squared term. Figure 6 compares the
quadratic coefficient C normalized to the BCVE coefficient
for several element types. The coefficient C is of interest
because large free-wake calculations are dominated by this N2
term, which corresponds physically to the effect of every
vortex clement on every other element The ANM method 1s
scen to be more than three times faster than the BCVE
clement, while the vortex particles alone are five times faster
than the BCVE. Recall that the ANM correctons are applied
selectively to the nearfield interactions, while pardcles are
used alone for most of the wake, resulting in an overall
efficiency gain between 3 and 5 tmes that of the BCVE.
There is reason 10 believe that an additonal factor of two can
be achieved by reformuladng the.elements using a paraboiic
fit rather than a circular fit, and by avoiding the local
coordinate transformations used in the present
implementation, resulting in a speed up of 6 to 10 over the
BCVE. Figure 6 also shows the dme necessary to compute
the analytcal linearization of the ANM velocites, which is
discussed below.

inear v . vei

One justficaton for the development of the ANM
method was that the near field of 2 vortex filament is
characterized by a soong, rapidly varying velocity field which
cannot be accurately described by voniex partcles alone. By
the same argument, the far field is characterized by 2
reladvely weak and slowly varying velociry field, and these
properties make the far field a candidate for linearizadon.
Specifically, the velocides induced by the far field are
spadally linearized about some inidal configuradon using a
zuncated Taylor series in the wake position variabies. Asthe
wake evolves in tme, the farfield velocides are approximared
by evaluating the resulting linear expression, rather than
recomputng the exact paracle velocites from the Biot-Savan
law. Note that for cadidonal time-marching integration, this
does not involve inverting the coefficient mawix, but only a
mawix-vector muldplicadon. The linearized wake is re-used
undil the wake has evolved to the point where it is no Jonger
accurate, at which tme the wake is relincarized. Helicoptess
at moderate 1o high advance ratos have wakes that evolve
reladvely linde, so that one linearization may sutfice for an
entire wake convergence calculagon.

The linearized free-wake velocity problem takes the
form of a large linear system (far ficld) with locally embedded
nonlinearides (near field). Consistent with the matched
asymptotc expansions approach of the ANM correction, the
far field encompasses all of the vortex particles since their fat
cores remove the sTong nearfield behavior. Furthermore, the
fat and thin core components of the nearfield ANM
corrections may each be linearized. The highest accuracy
results from computing the ANM correctons exactly at each
tume step, while the maximum efficiency is found by
linearizing both the particles and the ANM correction,
resulting in a complete lincar description of the wake
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velocities. Between these extremes is the option of a
linearized far field and a nonlinear near ficld. As indicated in
Figure 6, the ime 1o compute the complete lincarization is 1.4
tmes that of a BCVE velocity calculatdon. The completely
linearized velocity expression also has the advanmwage of
placing the wake velocities in a form functionally similar 1o
the blade dynamics problem, allowing the opportunity to
solve these two aspects of the overall problem simultaneously
in future work.

The use of voriex parnicles facilitated the analytcal
linearization of the wake velocities due to their simple
functional form. Linecarization of the ANM analytical
nearfield correction was also possible, but with more effort
due 10 the presence of ellipdc integrals in their expressions. It
is interesnng to note that the closed-form derivaton of the
Taylor coefficients in the linearization were performed using
SMP, a symbolic manipuladon computer program similar to
MACSYMA and Mathematica. The velociry expressions are
functdons of 12 scalar variabies for each clement, and the
derivative calculations are quite lengthy. The use of SMP
greatly reduced the chance of human error in these
differendadons. The program was also used to wanslate the
resulting symbolic representations directly into FORTRAN
code. Subsequent code verification proved the derivative
expressions to be correct.

ample Free-Wak jation

The ANM and linearized velocity methods were
incorporated into a rotor free-wake analysis program, adding
to an existing BCVE analysis capability, 1o provide a pracdcal
testng situation. The program allows for multiple rotor
blades with tip and root filaments. The free-wake is not
abruptly truncated in space, but uses an analyrical
correction?.S to extend the wake to infinity, which is
physically consistent with Helmholtz' vorticity theorems.
Two flight conditons are presented here: a two-bladed rotor
at moderately high speed (advance rado = 0.3) using 15
clements per rum of free wake, and a single-bladed rotor at
low speed (advance rado = 0.1) using 12 elements per turn of
free wake. Both cases use 20-foot rotor blades at an angular
velocity of 30 radians/second and a total thrust cocfficient of
0.004. The blade disks have a forward dlt of 10 degrees, and
only tip filaments were used. In both cases the results are
presented as three orthographic projections of the wake (top,
side, front) together with plots of the predicted velocides
induced on the advancing blade. Norte that the advancing
blades have a Blade-Vornex Interaction (BVI) at roughly 80%
of the span. Both cases use three rurns of free-wake, and an
addidonal two tumns of the (infinite) far-wake extension are
shown in the figures.

High-Speed Results ‘ -

The wake at 0.3 advance ratio consists of two dp
filaments generated by two blades. At this moderately high
speed, the wake evolves reladvely litde from the idealized
helical shape as the large filament separations reduce the
strength and occurrence of near-field encounters. The ANM
and BCVE solutions are shown in Figures 7 and 8
respectvely, and are seen to be nearly identical. Both
caprured the downstwream wake evoludon and the advancing
side roll-up. The velocities predicted on the blade differ
slighdy, due primarily to the different analytical weatments of
the vortex core used by the two approaches (the BCVE
method uses a solid-body rotadon core, and the ANM method
uses a core of the rype described earlier).

Figure 9 presents the solution for a wake that was
completely linearized at the outset about a skewed helix inigal
shape. The lincarized wake converged to the configuration
shown without further updates of the linearization. The

advancing side roll-up of the wake was not accurately
captured, dbut is qualitadvely correct. For this rotor loading
(Ct = 0.004), a single lincarization was adequate to locate a
converged solution at this advance ratio and higher. At lower
advance rados, the linearizations needed 1o be updated or
augmented with ANM ncarfield comrections to reach an
accurate converged configuradon. Figure 10 presents the
results for a fully linearized wake, but with an intermediate
update of the lincarizaton. The linearization is updated when
the wake configuration evolves a specified distance from the
linearizatdon configuration, which provides a dynamic scheme
for controlling the overall solution accuracy. The blade
velocities are again predicted with good accuracy, and the
advancing side roll-up is caprured by the soiuton.

Low-Speed Resulis

The low-speed wake is generated by a single tip
voniex filament. Because the loading is assumed to be the
same as that for the two-blade high-speed case, the single
filament has twice the strength of those at the higher advance
ratgo. This and the fact that a low speed wake is characterized
by frequent near-field filament encounters results in a
complex and convoluted wake structure. The Jow-speed case
is thus a more demanding test of the ANM and linearized
methodologies than the high-speed case. Figures 11 and 12
present the ANM and BCVE cases for comparison. The
predicted wake structures near the blade disks are identical,
but there is again some disagreement in the predicted peak
BVI blade velocities which is araxributable to the different
anaiytcal core treamments of the two methods. The retreadng

-side roll up is essentally the same for both methods, but the

stonger advancing side roll up differs somewhat in strucrure:
the BCVE solution predicts a more pronounced horizontal
rollup waveform as can be seen by comparing the top views
in the two figures. However, the ANM soludon predicts a
stronger verncal rollup waveform which is more difficult to
discern.  The two linearized ANM cases discussed below
each take one of these different forms as well, which
indicates thar the reason is not the unique difference between
the analysis methods. It is presently suspected that these may
represent two valid solutons to the inherently nonlinear wake
evoludon problem.

Figure 13 presents 2 completely linearized converged
wake. The lincarizaton was updated 6 tmes overarun of 11
revolutions to maintain validity as the wake evolved from the
inidal skewed helix, and was able 10 accurately match the
solution reached by the ANM method given in Figure 11.
However, the ANM soludon required only 7 revolutdons to
converge and the BCVE soluton 8 revoludons, indicating
that the efficiency of the completely linearized wake soluton
suffers for sgong low-speed wakes, as might be expected
because these wakes undergo relagvely large displacements
as they evolve. Figure 14 presents 2 hybnd approach that
used a linearized partcle far-field with a nonlinear ANM
nearfield. The far field was linearized rwice over a run of 7
revolutions, and the wake converged 1o a configuragon
consistent with the BCVE soludon (Fig. 12). The blade
velocities predicted by both the linearized and hybrid
soludions are essendally idendcal to the ANM results.

ternagy junon Method

Finally, the linearized formulation of the free wake
problem allows special solution sTaiegies 1o be employed.
Suppose the endre velociry field is linearized, which is a
paracularly good approximaton in high speed flight. The
linear form then allows periodic solutions to this problem to
be found by direct mathemadcal means, without the use of
time marching. This method involves recasting the problem
in terms of constant age points on the filament (different from




the traditional Lagrangian points), linking motions between
adjacent azimuthal locauons, and applying periodicity
conditions. The problem of obtaining a periodic solution is
reduced 10 a single large mawix inversion, for which efficient
methods are available. This approach is capable of finding
periodic solutions directly in an unambiguous manner, since
it does not depend on the convergence of a time marching
process. In fact, such an approach does not require the
temporal swbility of the system, Le. periodic solutions can be
found even if the system is unstable. Nearfield nonlinearity
can be included approximately by successive relaxadons
during which the near field is relinearized each tdme.
Implementation of this scheme, and comparison with time
marching results, will provide a new opportunity to study
free wake convergence and stability in a fundamental way. It
must be emphasized that this solution approach differs from
that undertaken in all previous free wake analyses, although it
bears a definte relationship to the influence coefficient
relaxation method developed previously for wakes in hover
51113, Tt is potentially efficicnt because it avoids the large
number of steps over many blade revolutions needed 0
achieve convective washout of the inital wake shape, as
required by the traditional Lagrangian time marching
approach. Furthermore, the method should be partcularly
efficient when successive points on a performance curve are
1o be obtained; since these points are nearly linearly close
together, very few relaxadon steps are required to move fo
adjacent points. The current status of this latest research is
that the analysis has been completed and a few initial
computer runs have been made to obtain preliminary results. .
Conclusions

A new approach to free wake velocity calculatons has
besn developed based on the method of Analytical/Numerical
Marching (ANM). This method combines the efficiency of
the simplest discretizaton of the Biot-Savart integral with an
analytic correcdon 1o achieve high nearfield accuracy., The
results show that accuracy comparable to that of curved
elements is achieved at a fraction of the cost. The ANM
method provides a natural and mathematically correct
distinction berween farficld and nearfield regions in a vortex
wake, thereby providing an opportunity to simplify farfield
effects in a formally correct manner. Furthermore, the
method is sufficienty simple o allow analytical linearizadon
of the velocity expressions. As aresult, all or part of the free
wake calculation can be linearized. Comparisons have been
presented to show the effects of total linearization and of
farfield linearization in comparison to the full nonlinear
soludon. Furthermore, the effects of occasionally updadng
the linearization have been explored. Computer time and
accuracy comparisons of these various cases have been
presented. The degree 10 which these simplifications can be
udlized without sacrificing accuracy depends on the advance
ratio, the number of blades and the wake strength.
Generally, a greater degree of linearization can be
implemented at higher advance ratio where convective effects
are stronger and free wake adjusuments are smaller. Finally,
linearization allows the implementation of new soludon
srategies for free wake analysis, Some novel methods
involving time marching soludons have been demonstrated in
the paper. Furthermore, a method that involves looking
directly for periodic soludons of linearized wakes without
time marching is also under development.
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Figure 2,  Distinction between near-field and far-field
free wake regions
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TRACT

Periodic Inversion is a new approach for the calculation of rotor free wakes
which guarantees periodically steady-state solutions, and provides the means to solve
for wake dynamics at all advance ratios including low speed and hover. This is a unique
capability since traditional time-marching approaches fail at low advance ratios. The
method is based on enforcing periodic boundary conditions over 1/B of a rotor
revolution, where B is the number of blades. This is accomplished by defining a new
set of wake variables with periodic behavior, and writing the governing equations in a
linear perturbation form. The problem is written as a large linear system which is
inverted for the perturbative correction. Successive iterations involving relinearization
are required to obuain the final solution w the nonlinear problem. The method allows
converged solutions to be found without the use of artificial damping, even at low
advance ratios and hover. Generation of performance curves is demonstrated as the
flight parameters may be varied between iterations. The muthod is used to examine the
low speed wake structure, which exhibits three unique forms depending on advance
ratio: a helical structure from hover to some lower bound advance ratio, a roll-up
structure above some higher bound advance ratio, and a rapid transition region between
the two, Extensions of the method to allow coupling of the wake dynamics with panel
methods and rotor dynamics are discussed, as are eigenvalue stability analysis and local
element refinement.

INTRODUCTION

* nonlinear, the existence of unique and stable solutions

Free wake models, which allow the wake
vorticity field to evolve in free motion, represent the
most accurate and physically correct approach to
rotorcraft aerodynamics. The simpler but less accurate
approaches such as momentum theory and prescribed
wakes have proven to be inadequate for predicting
complicated aerodynamic blade loading [1,2,3]. From
their inception, however, free wake calculations have
becn hampered by excessive computationai effort and
poor convergence behavior at low advance ratios and
hover. Convergence in this context refers to the location
of a wake structure which repeats every rotor revolution
and is therefore steady state in a periodic sense. Indeed,
because vortically induced velocity fields are inherently

Presented at the 46th Annual Forum of the American
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757

remains an open questuon. Thus it is not surprising that
the traditional time-marching approach to free wake
dynamics encounters convergence difficulnes.

Time-marching approaches begin with an
assumed initial condition for the wake. As the
integration proceeds, the errors in the initial wake are
convected down and out of the free wake as it relaxes to a
converged configuration. Exact convergence is never
reached by time marching, but is approached
asymptotically. In high-spead flight, the time-marching
approach converges without difficulty as the free stream
convection dominates the solution, thereby reducing the
strength and frequency of the strongly nonlinear near-fieid
vorex encounters. However, in low-speed flight the free
stream effect is reduced, resulting in a dense field of wake
vorticity and the dominance of the strong near-field
interactions. At advance ratios below p = 0.1, the time-




marching approach begins to exhibit poor convergence
behavior, Initially, excessive time is needed to converge,
but as the advance ratio is lowered the solutions tend to
oscillate about some mean. Finally the solution diverges
at a critical mirimum advance ratio which depends on the
specifics of the wake model. There is a limited amount
of evidence to suggest that the wake dynamics may
become chaotic at low advance ratios {4]. The limiting
case of hover (1 = 0) is unattainable for time marching
codes unless artificial damping is introduced numerically.
However, a special free wake method for hover has been
developed that depends on the steady-state description of
hover wakes in a rotating coordinate system (5]. At
nonzero advance ratios this steady-state behavior is lost,
so the method is not extensible to forward flight. There
remains a range of flight conditions from hover to low
speed which has previously been inaccessible for free
wake models.

The method of Periodic Inversion presented here
provides the means to study wake dynamics at low speed
and hover using the accuracy of free-wake models. It also
presents a method to generate performance curve data by
varying flight parameters such as advance ratio y, thrust
coefficient Cy, and up path plane angle TPP. The
method is based on enforcing the periodic behavior of
wakes in steady flight as a boundary condition. As such,
a full period of wake is found at each iteration of the
solution, compared to a single time step for time
marching. Enforcing the periodic condition allows
convergence of sensitive wake configurations without
using antificial damping. In brief, the method involves
describing the wake as a linear perturbation problem and
solving for the perturbative corrections. The problem
takes the form of a large linear system which describes
the wake over a full period, and which is inverted for the
perturbation correction vector. This description requires
the linearization of the induced velocities given by the
Biot-Savart law. This linearization was recenty achieved
analytically as part of the Analytical/Numerical Matching

(ANM) free wake model which has been previously.

applied to improve the efficiency and accuracy of time-
marching wake dynamics (6,7].

There are some interesting extensions of
Periodic Inversion which have not yet been attempted
that arise from the linearized description. One is the
inclusion of panel methods for blades and bodies in
conjunction with the wake dynamics. Source panels,
lifting panels, and lifting lines may all be included as a
generalization of the l.near system, allowing the
integrated solution of the coupled wake/blade/body
problem, which is presently solved in an uncoupled,
iterative manner., Other options arise from representing
Periodic Inversion as an equivalent system for Floquet
analysis. In this form, the rotor blade dynamics may be
included by extension of present Floquet approaches for
blade dynamics, again allowing the coupled solution of a
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solid/fluid dynamics problem. As the system
eigenvalues are available {rom Floquet analysis, this
approach also allows the study of wake stability, which
is an issue at low advance ratios. An eigenvalue study
may also be done in the present form of a linear algebraic
system, although the potential size of the system may
make this impractical.

VORTEX WAKE DYNAMICS

Rotor wakes are usualiy modeled as concenirated
regions of vorticity embedded in potential flow. This
basic approach is common to the gamut of wake models
from momentum theory through prescribed wakes to fres
wakes. The vorticity is shed from the blade in a sheet
extending the full blade span, but this sheet quickly rolls
up to form a concentrated filament of vorticity near the
blade tip. While vortex sheet elements with two
parametric coordinates have been used to model the wake,
the simpler vortex filament element with a single
parameter has seen much wider use. The obvious
application of vortex filaments is to fully developed tip
vortices, although vortex sheets and shear layers can also
be modeled. A recent approach to modeling full-span
wakes uses a system of non-intersecting filaments laid
out in constant-strength contours [2]. This approach,
illustrated in Figure 1, is physically more consistent
than the older approach of modeling a vortex sheet with a
lattice of shed and wrailed filament elements of varying
strength.

The basic goal of free wake calculations is to
determine the dynamic evolution of the vortex filaments,
The vorticity field evolves along with the material
elements of the fluid, convecting with the local fluid
velocity in a Lagrangian sense. The velocity arises from
two components, the free stream and the induced
velocities. The free stream velocity is typically known,
but the induced velocity must be repeatedly calculated as
it is dependent upon the instantaneous configuration of
the wake. The induced velocity =i any point is found
from integrating the Biot-Savart integral over all of the
free and bound vorticity. The Biot-Savart integral is
given in Eq. (1) in the form used for vortex filaments.

V= -__[:- v X dS \
ar | (R + 81)3’1
Here ds is the differential length element along :
filament, and € is a vortex core radius discussed below
Vortex filament elements are used to discretize th
filament into a piecewise continuous approximation. T
facilitate the evaluation of the Biot-Savart integral, th
elements are based on simple geometric forms such 2
parabolas, polynomials, arcs and points. The endpoin!
of the filament segments are known as collocatic




points, and constitute the discrete set of variablies in the
wake dynamics calculation. The induced velocities are
calculated at the collocation points, and their positions
are updated. At each new position, the filament
geometry is recomputed by using the collocation points
to define the element geometries. Traditionally, the
collocation points have been defined as Lagrangian fluid
markers, so that their positions are found from the
simple kinematic relationship dx = v dt. The method of
Periodic Inversion modifies this Lagrangian description
as discussed at length below.

For a wake consisting of N collocation points,
the number of elemental Biot-Savart integratians needed
to determine the collocation point velocities at a single

instant is of order N2, In time marching approaches,

wake convergence typically requires order N3
integrations. Thus computational efficiency is always an
issue. There is a hierarchy of vortex elements that
generally trade off accuracy for efficiency. The Basic
Curved Vortex Element (BCVE) is a very accurate
element based on a parabolic fit, but the analytical
complcxity of the Biot-Savart evaluation makes each
clement computationally expensive {8,9,10].- Straight
line elemenis are a lower order approximation and are less
accurate and less expensive than the BCVE on a per
element basis, although since fewer curved elements can
be used for comparable accuracy the overall BCVE
calculation will still be cheaper. Vortex particles, or
"vortons  arc the lowest order and least expensive
element. The particle velocity is shown in Eq. (2) to be
a sunple Reimann sum approximation of the Biot-Savart
integral.

V=LY [ fvX8s @
4x Z’ ((r3+82)”)i '

Evidence shows that vortex particles compare favorably -

in accuracy (o the BCVE at evaluation distances greater
than one element length (7).

The wake model used for Periodic Inversion is
based on Analytical/Numerical Matching (ANM), which
combines vortex particles with an analytical near “eld
correction. The ANM model is a recent deveiopment in
free wake modeling that provides a 500% gain in
efficiency over the BCVE model while maintaining a
comparable level of accuracy. The ANM model has been
previously applied to a tir: n.ching wake dynamics
code, and compares favoruLiy - 1 the BCVE model [6].
In brief, the inexpensive vartex particles are used alone
for the majority of the. - city evaluations. An
artificially large core radius efy¢ .. used in (2) to smooth
the near-field discretization errors, but the core effect is
local so the velocity contributions ot points not
immediately nearby (effectively the far field) are
accurately represented. Points of evaluation in the near

field have their velocities attenuated by the large core and
are corrected by an analytical correction with two
components. The first component uses a thin core radius
Ethin corresponding to the physically realistic core size,
which can be determined from the blade loading
conditions [11]. This thin core component provides the
physically correct near field velocity. The second
component uses the large core €f5¢ with an opposite sign
circulation. In the near field, the large core particle and
the opposite sign large core correction cancel, leaving the
physically correct thin core velocity. In the far field, the
two correction components are made o cancel, leaving
the large core particle solution which is accurate in the
far field. Thus the ANM method is analogous to
matched asymptotic expansions with the thin core
correciion being the inner solution, the fat core particles
being the cuter solution, and the opposite sign fat core
correction being the matching solution. The ANM
approach is illustrated in Figure 2 which shows the
composite solution as the sum of the three components,
The efficiency of the ANM method results from the bulk

of the N2 elemental velocity calculations being in the far
field, where the inexpensive vortex particles are used
alone. The analytical correction is only applied for the
near-field evaluatons, which are order N in number.

Linearization of the elemental velocity
expressions with respect to the collocation point
variables was necessary to implement Periodic Inversion.
This had previously been accomplished during the ANM
development to provide added efficiency for time-
marching wake calculations {6]. The simple functional
form of the vortex particle provided an efficient analytical
representation of the Taylor expansion. ‘The near-field
analytical correction resulted in a more complicated
expansion, but the infrequent application of the
correction makes the cost reasonable. All derivatives are
found analytically, which is vastly more efficient than
numerical derivative calculations.

The upstream end of a wake attaches to the
trailing edge of the rotor blades, thus maintaining
continuity with the hound vorticity on the rotor surfaces.
The downstream end theoretically extends to infinity for
steady flight, but in practice the free wake model must be
of finite length followed by a semi-infinite prescribed far
wake. At high advance ratios, the absence of the
extension has a negligible effect, but at low advance
ratios and hover the induced velocities of the extensior
are important. The ANM model recently incorporated ar
efficient procedure for including this semi-infiniz
extension based upon a similar approach developed fo
the BCVE model [8). Copies of the last tum of fre
wake are appended to the free wake as shown in Figure 3
The spacing of the added turns is given by the convectio
vector rg, which is an average of the collocation poir
displacements over the last turn of free wake. Eac
element in the last turn of free wake thus becomes




semi-infinite row of elements, The ANM far-wake
extension uses only the fat core particle contribution, as
the uncertainty in the exact extension geometry does not
support the use of the thin core near-field correction. The
exact velocity induced by a semi-infinite row in the far-
field extension is given in Eq. (3).

V = i (ry+ml‘;)>< AS

Am m=0 (lr‘f"mrSIZ +52)

3

2

Provided that the distance to the point of evaluation is
considerably greater than the element spacing, the sum
can be accurately approximated as an integral. This
results in the working form of the far-wake extension
velocity given in Eq. (4), where M is the finite number
of particle velocities used before the integral
approximation is applied.

v=:L (ry+mrg) X As

4 & (jrmrd 2 + &7

(9
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The far-wake extension does not increase the number of
collocation points in the w_ke, and is essentially a
modified element form used for the last turn of free wake.
The extension has been analytically linearized consistent
with the primary ANM model.

PERIODIC WAKE STRUCTURE

Under general transient flight conditions, a rotor
wake is unsteady, and transient solutions must be found
by time integration. As such, the collocation point
variables Pi = (px{, pyi, pzj) may be described as
functions of time Pj(t). However, as steady state flight
conditions such as hover and stzady forward flight are
achieved, an ideal solution emerges which is periodic
with respect to the azimuthal angle . Assume that the
inverse relationship t = t(y) is known, which is trivial
for the case of constant angular velocity of the rotors.
The coilocation points may then be described as Pi(y).
In steady-state flight, a rotor wake is still unsteady in
time, but is ideally periodic with respect to the rotor
azimuth w. Let the coordinate system be nonrotating and
fixed at the blade hub. Then for any given vatue of y the
collocation points are periodic as:
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P;(w + n2m) = Pi(y

S)

n=+/-12,..0 S

Eq. (5) represents the periodic boundary conuitions

necessary for finding the ideal time-independent, steady-
state periodic wake structure.

In the above discussion, some liberty was taken
in advance to define the callocation points in a non-
Lagrangian sense. Since vorticity evolves with material
elements in the fluid, the traditional use of collocation
points has been as Lagrangian markers, i.e. points on a
vortex filament that convect with the fluid. Typically,

. the filaments are modeled with a finite length, so that at

each time step a new Lagrangian collocation point is
added at the point where the free voriex separates from the
blade. This collocation point convects downstream with
the filament over time, and is removed when it reaches
the end of the free-wake portion of the filament. As
such, the Lagrangian collocation points do not represent
a set of variables that behave periodically. After each
revolution, the points have corvected downstrcam or
have been removed entirely. They do not retum to their
positions at the previous revolution. It remains 10
redefine the collocation points as variables with the
proper periodic behavior.

In the geometric sense, a vortex filament is
described as a space curve of two variables, R(s,t), where
s is some general arc length parameter and tis time. In
general, collocation points represent discrete locations on
the curve at constant values of the arc length parameter as
Pi(t) = R(si,t). The Lagrangian collocation points may
be defined at values of the specific parameterization
R(sy,t), where sy, physically corresponds to the time that
the collocation points are introduced at the upstream end
of the filament. This will be referred to as the Lagrangian
parameterization. It is now possible to define a new
parameter defining the age of a Lagrangian collocation
point as so"=t - s{, which is the difference between the
current time and the time that the point was introduced
into the fluid. Thus s5 will be defined as the age
parameter. Note that a vortex filament has a constant
range of age, sa, starting at zero at the blade and
increasing to some maximum value defined by its length,
and that each Lagrangian point varies in age over this fuil
range. A periodic set of variables can be defined by using
age as the arc length parameter R(sa,t). A collocation
point defined at a constant age value, Pi(t) = R(sai.0D.
does return to the same location each period under steady-
state conditions. For example, a point with a constant
age of zero will always be located at the blade release
point, and will return with the blade to the same position
at each revolution. It is these constant-age collocation
points, not the I 1grangian collocation points, that were




used in the discussion of Eq. (5). The relationship
between the two descriptions is illustrated in Figure, 4.

A further parametric generalization which has
not yet been attempted is worth mention. It appears
possible to define an arc length parameter that is periodic
and also allows local element refinement. Efement
refinement refers to increasing the vortex element density
in regions where the added resolution is required, and is
analogous to local mesh refinement in grid-based CFD
methods. For example, in forward flight the advancing
and trailing sides of the wake (y=90,270) are
characterized by strong vortex roll-up, while the central
portion of the wake (y=0,180) is relatively benign.

Increasing the element density on the advancing and .

trailing sides could iead to solution efficiencies with
respect t0 maintaining overall consistency in the
accuracy. For illusiration, such refinement can be
achieved by the following parameuric generalization:

SG=sa+ asin (2 sa) (6}

where Q is the blade angular velocity and a is a constant
defining the strength of the local refinement.

One further aspect of periodic wakes is the
symmclry tntroduced by multiple blades. As a result of
the wake being in a periodic steady-state condition, the
wake trailed from cach blade is a phased copy of all other
blade wakes. Given B blades uniformly spaced around
the hub, the wake can be exactly defined by 1/B blade
revolutions. Thus, to describe a single-blade wake, 360°
of azimuth are required. Extending the model to two
blades doubles the number of vortex elements, but halves
the interval needed to 130° f azimuth. Using the mulu-
blade symmetry results in the solution lime increasing
only linearly with the number of blades.

PERIODIC INVERSION METHOD

The basic descriptions for both periodic
inversion and traditional ime marching come from the
total time derivative of the parametric filament
description R(s,t) given by:

g_R_z.a_iz_gi+~a_B_ (7)
dt ds &t ot

where the total derivative dR/dt is the Lagrangian
velocity V as found by the Biot-Savart law. For the
Lagrangian parameterization, dsp/dt = 0 and Eq. (7)
reduces to the simple kinematic relationship dR = V dt
which is the basis for time-marching integration
approaches. In the age parameterization, dsa/dt = 1 and
Eq. (7) becomes:
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dR; _0R;  JR; @®)

dt  dsa ot
where dR/dsa represents evolution tangent to the
filament, and oR/dt is non-Lagrangian convective
evolution. The subscript index i represents the filament
discretization into the collocation point variables. Note
that if the induced (Biot-Savart) velocity is zero, Eq. (8)
becomes the one-dimensional wave equation that simply
describes the propagation of a disturbance along the
filament.

The filament is now written in the form R(sA.0)
= Ro(sa.t) + T(sa.t), where Ro(sa.b) is prescribed over 2
full period, and r(sp,t) is a perturbative correction 0 be
found. Further, expand the velocity V about Rg to
linear order in a Taylor series with respect to the
collocation points. Making these substitutions in Eq.
(8) and collecting the known terms on the right hand side
results in the following expression:

N
<

ary +ar; . 2 :
a ot 5

SA

aVv;
oRokc

re= Vg - (———aROi + 932’-) ®)
Jsa ot

where the summation is over all collocation points at a
specific instant in time. Equation (9) describes the
instantaneous wake velocity. It is a linearized
approximation to Eq. (8), where the nonlinearity arose
from the Biot-Savart velocity. The wake is discretized in
both the temporal and spaual coordinates. Temporal
discretization is achieved by dividing the rotor period into
a number of intervals, typically of equal azimuthal
increments. Spatial resolution regards the number of
elements or collocation points used to describe each
vortex filament. Equation (9) is evaluated at each
azimuthal increment. The velocity and its derivatives are
calculated from the Biot-Savart law applied o the
prescribed filament at that azimuth, and the partial
derivatives are approximated using finite differencing
which couples the temporal intervals. Applying the
periodicity condition (5) results in a closed linear system
of the form Ar =b. A simple example of this is fourd
by considering the first order equation with a periodic
boundary condition given in Eq. (10). Using three
intervals over the period T and backward differencing for
the derivative term results in the closed linear system
shown in Eq. (11).

x + {0 x = g(0), x(1+T) =x(1) 10
1+fa 0 -1 x! ‘ g'a \
1 1+fa = an

0 '\xﬁ gZAt{
0 1 1+fa x3 \g%z
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As Eq. (9) is a linear approximation to a
nonlinear problem, iterative refinement is necessary to
achieve satisfactory convergence. The solution proceeds
by improving the prescribed wake as Ro(i+1) = Ro() +
r{n) where the perturbative correction is found from r(n)
= A-1(Mp™), The periodicity condition (5) ensures that
each iteration results in a periodic structure. The vector
b is a measure of residual, and liblf — O at convergence,
which can be seen by recognizing that the terms on the
right of Eq. (9) are from the total derivative of the
prescribed wake Rg.

NUMERICAL IMPLEMENTATION

The implementation of the periodic inversion
approach involves two general topics: the specific
numerical methods used to solve the problem, and the
programming considerations. The numerical methods
define the evaluaton of the velocity terms in Eq. (9), the
finite differencing approach used to generate the
coefficient arrays A and b, and the solution of the
resulting linear system. The velocity Vg and its
derivative dV/dR¢ are functions of the vortically induced
velocity, although Vg also includes the constant free-
stream velocity. For each azimuthal step in the period,
the prescribed wake Rg is used to define the
instantaneous wake configuration. Specifically, the
ANM method described earlier is used for the evaluation
of the velocity and velocity derivatives.

The finite differencing scheme used must be
consistent with the hyperbolic nature of Eq. (8). Further,
it should be chosen to provide an advantageous structure
for the coefficient matrix A. The internal structure of A
affects both the storage requirements and the solution
procedure used for its inversion, which are important
considerations due to the potential size of the linear
system. The scalar rank of A is given by (3*N*K)/B,
where N is the number of vortex elements in the wake, B
is the number of blades, and K is the number of
azimuthal steps per period. For example, a two-bladed
rotor trailing tip vortices with five tumns of free wake
each using a 10° step size would result in nearly 20,000
simultanecus equations, and could' require almost
400,000,000 array elements if A were full (fortunately it
is not).

With two exceptions, the finite difference
scheme used at the collocation points is the Lax-
Wendroff method [12, p.101] which is second-order
accurate in both space and time. The velocity terms are
treated as the average between the two time steps used for
the derivative terms, which represents trapezoidal
integration of the velocity. The resulting difference
equation for (9) is given in Eq. (12), where the CFL
number is given by v = A/ASA.
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The first exception is the first collocation point on each
filament. This point is assumed fixed to the blade, so

‘that its kinematic motion is prescribed and provides a

boundary condition. The second exception is the last
point on each filament. An upwind difference scheme
from Warming and Beam is used which is also second-
order accurate {12, p.103]. The resulting equalion is
given in Eq. (13).
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The apparent complexity of Eqs. (12) and (13) hides
some simple rewards. When v = 1, the Lagrangian and
constant age collocation points are coincident, with one
point being added for each azimuthal increment of the
blade. In this case, the truncation errors of both
difference schemes are zero and no dispersion or
dissipation error is introduced. Also for v = 1, in the
absence ofa velocily field, both (12) and (13) rcduce to

Ro} + ? = Rofi’ +l‘*; which simply represents the

propagauon of a dlsturbancc along the filament,
recovering the solution to the linear wave equation.

This difference scheme results in the coefficient
matrix A having a periodic block bi-diagonal structure,
which is analogous to the form shown in Eq. (11) with
the scalar elements replaced by block matrices. The main
diagonal and lower diagonal blocks are fully populated, as
is the upper right corner block, while the remaining
blocks are zero. Each row of blocks corresponds to one
azimuthal rotor step. The sparsity of the matrix results
in an array storage requirement of (18*K*N2)/B, which
for the previous example would result in roughly




40,000,000 elements, about an order of magnitude less
than if A were full. The linear system is solved using a
modification of PBTRIP, a subroutine developed for the
solution of periodic block tri-diagonal systems without a
pivoting strategy [12, p.551). The modification removed
the usage of the upper diagonal blocks, which reduced the
array size and improved the execution speed. However
even though the matrix is sparse and an efficient solution
procedure is avatlable, the size of the system can be
formidable even for supercomputers. A possible future
effort will be to re-cast the problem in terms of a Floquet
analysis rather than as a linear system of equations. This
would have three benefits. First, the size of the problem
would be reduced from (3*N*K)/B linear equations to

3*N coupled ODE's, at the expense of calculating a time-*

dependent coefficient matrix for the Floquet analysis. ..

Second, the eigenvalues of the linearized problem are
readily found from the Floquet solution, allowing the
opportunity to study the stability of wake solutions at
low advance ratios and hover. Third, Floquet analysis is
used in studying blade swuctural dynamics (13]. This
invites the integrated coupling of the solid and fluid
mechanics of the overall acroelastic problem.

The program written for Periodic Inversion
represents about 10,000 fines of FORTRAN, roughly
half of which are comments. Half of the program is the
linearizing ANM code which is in the form of a modular
library, and which is also used by a time-marching wake
dynamics code. The program was developed under a
UNIX environment, and is being run on a Cray Y-MP at
the North Cuarolina Supercomputing Center.  The
primary program task is o converge a wake for a specific
set of performance variables such as advance ratio u,
thrust coefficient Cy, and tp path plane angle TPP. This
inner convergence loop repeatedly iterates the solution in
the manner described in the previous section.
Convergence is defined as a maximum allowable rms
displacement of all collocation points between two
successive iterations. The solution can be used as an

initial condition for restarts at different flight conditions, -

or as an initial condition for time-marching studies for
comparison of the methods.

The generation of performance curve data is an
advantage of periodic inversion, and an outer loop of the
program allows the solution to follow a performance
curve. By selecting points on the performance curve
which are linearly close together, converged wakes at
gach point can be found with one or very few periodic
Inversions, At present u, C; and TPP can be
simultaneously varied in a prescribed manner. The
program maintains an active control over the variable
step sizes. If the solution at a mew point is not
converging, the step size is reduced and the solution at a
closer point on the curve is started.  Also, if the
solution is converging rapidly at several concurrent
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points, a larger step size is atempted to speed the overall
curve generation.

RE T

To illustrate the method, a rotor wake was
converged at hover, and then the advance ratio was
increased into the range of low speed flight where time-
marching approaches are applicable. The model used two
tip vortices to approximate the wake of a twin-bladed
rotar with a 20 ft. radius revolving at 286 rpm. Each
filament extended for four tums of free wake using 24
elements per turn (15° azimuthal spacing). This resulted
in 194 collocation points, 6985 simuitaneous equations,
and required 8.13 Mword of storage for A. The initial
convergence at hover was achieved by starting at a low
thrust coefficient of Cy = 0.001 and then increasing it at
hover to the final value of Cy = 0.003, which was then
held constant as the advance ratio increased. The tip path
plane angle was defined as TPP = 100*u (in degrees) so
that at p = 0.05, TPP = 5°. The specific performance
curve followed is given in Figure 5, which indicates the
individual points found on the curve. The small step
sizes in the range 0.025<u<0.03 were required by the
rapid change in the wake in this region as discussed
below. Convergence at each performance point was
defined by an rms collocation point displacement between
iterations of less than 0.05% of the rotor radius.

The advance from hover to forward flight is
illustrated in Figures 6 to 13, which show isometric
views of the wake. The far-wake extension is shown
appended to the fast turn of free wake, which is why the
wake does not appear to evolve downstream of the fourth
turn. However, at any advance ratio except hover, the
wake does continue to evolve downsteam into a diffuse
vortex pair similar to the contrails of fixed-wing aircraft
The computational burden of capturing this convolution
places a practical limit on the number of turns of free
wake that can be modeled. Even so, the correct behavior
is apparent at the higher advance ratios which show the
roll-up along the advancing and reweating edges of the
wake. It should be noted that the same results were
found in the opposite direction by reducing the advance
ratio from forward flight to hover.

Fc- the range O<pit<0.025, the wake is
approximately a skewed helix, but a distinct
transformation occurs for 0.025<p<0.03 as the roll up
on the advancing and retreating sides develops rapidly.
Above p = 0.03 the roll up is essentially developed and
further changes are in large due to the free stream
convecting the wake further behind the rotor disk. The
specific transition values of p will in general depend on
the thrust coefficient and other wake parameters. Due to
the nonlinearity of the problem it is interesting 0
speculate on the number, stability, and uniqueness of




solutions. The roll up may represent a transition from
an increasingly unstable "helical” structure to a more
stable configuration. It is interesting to note that several
other twin-bladed wake models were attempted with
variations in the free-wake length, element density and
thrust coefficient, They all required fine time steps near
this transition region, suggesting that the rapid transition
to roll-up is physically correct. Certainly the transition
must occur to evolve the wake from ihe syametry ~f
hover 10 the familiar roll-up of forward flight, although
the abruptmess of the transition is surprising.

Given the possibility of several solutions to a
nonlinear system, it must be questioned if the ones found
by Periodic Inversion are unique and physically
meaningful. An exhaustive answer to this issue would
involve a comprehensive parameter study and stability
analysis, which is beyond the present scope. Some
promising evidence that the solutions are unique is
provided by checking the results with time-marching
solutions of the same wake model. The soludons found
by Periodic Inversion at several intermediate advance
ratios were used as initial conditions for time marching
solutions, which were allowed to integrate the solution
for 40 blade revolutions to examine the convergence
behavior To converge, time-marching typically needs to
proceed through slightly more revolutions than the
number of tums of frez wake. Thus 40 revolutions were
chosen to conservatively test the stability of the time-
marching solutions. The convergence results are given
in Figure 14, which presents the rms difference of the
collocation points between the initial condition from the
periodic solution and the value found by time marching
after each revolution. At advance ratios above the
wransition region (it > 0.03), the time-marching solutions
reach a steady state which is essentially the same as
found by Periodic Inversion. The small but constant rms
difference is attributable to the different numerical
schemes of the two approaches. The solution within the
ransition region (1 = 0.025) is seen to oscillate about
the periodic solution with increasing amplitude as the
integration proceeds, and is tending toward divergence at
the end of the run. The solution at . = 0.02 is beiow the
transition region and also oscillates about the periodic
solution for roughly 10 revolutions, but then rapidly
diverges. These resuits suggest three things: first, that
the periodic and time-marching solutions are essentially
identical at advance ratios above the roil-up transition,
Second, the helical wake structures below the transition
region are correct in the mean sense. They provide a
wake configuration about which the transient solution
oscillates before being overwhelmed by the perturbations.
Finally, this reinforces the idea that the helical structure
is less s.able than the post-transition roll-up structure,
providing a quantitative fower limit for the application of
time-marching solutions.
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NCLUSION

A new approach for the calculation of rotor free
wakes has been developed which guarantees periodically
steady-state solations by enforcing periodic boundary
conditions over 1/B rotor revolutions, where B is the
number of rotor blades. The method is based on
developing a system of collocation points with periodic
behavior, as apposed to the Lagrangian description used
in time-marching approaches. The vortically inducea
velocities determined from the Biot-Savart law aras
linearized, and the wake dynamics over a full period are
written in a linear perturbation form. The rzcently
developed Analytical/Numerical Matching (ANM) wake
model is used to define the discrete wake model. The
ANM model has been analytically linearized providing a
straight-forward extension to Periodic Inversion. A new
far-wake extension, which accounts for the semi-infinite
domain of the wake, has been developed for this method
and incorporated into the ANM model. The resulting
problem takes the form of a large linear system of
algebraic equations which is inverted for the perturbative
correction vector. As this is a linear approximation to a
nonlinear problem, iterative refinement is typically
required to reach convergence.

A primary advantage of Peniodic Inversion is
that it provides the means to study wake dynamics at all
advance ratios, including hover. Low advance ratios have
previously been unattainable for traditional time-
marching approaches due to poor convergence behavior.
The new method has shown that the wake maintains a
roughly helical structure from hover up to some lower
bound on the advance ratio. As the advance ratio is
increased from this lower bound through a narrow
transition region, the wake quickly evolves into the
familiar roll-up configuration characteristic of forward
flight. At advance ratios above the transition region, the
wake maintains the roll-up form and does not
qualitatively change. Comparison with time-marching
solutions show excellent agreement for wakes above the
roll-up transition. Wakes within and below the
transition region prove difficult for time-marching to
converge, but there is evidence that the periodic solution
provides a correct mean wake structure about which time-
marching solutions oscillate.

Periodic Inversion also provides the means to
generate performance curve data. Wake variables such as
advance ratio, thrust coefficient and tip path plane angle
can all be varied between iterations of the method.
Points on a performance curve which are linearally close
together can be incrementally found with one or very few
iterations. This approach was used in the present study
for two purposes. First, the wake was converged at
hover by incrementing the thrust coefficient from 0.001
to 0.003. The thrust coefficient was then held constant
as the advance ratio and tip path plane angle were
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increased. The pre- and post-transition range of the
advance ratio were easily solved with a fairly large step
size. Within the transition region, a much finer stcp size
was required to capture the rapid change in the wake
structure. Future work should address the robustness of
the method in this region, as well as investigate the
general character of the solution stability.

There are unique and promising vpportunities
for further extensions of the method. A generalization of
the periodic variable description will allow the vortex
element density to be increased in regions of strong
voriex interactions, such as the advancing and retreating
side roll up. This will allow a more efficient overall

wake model without compromising accuracy. Coupling’

the wake dynamics with blade and body panel methods
will allow an integrated approach to include both blade
lift and interactional aerodynamics. This results from the
generalization of the linear system to include the lifting
and non-lifting body panel equations. It appears possible
to incorporate the blade dynamics into the method as
well.
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Figure 1: Full span rotor wake modeled with constant
strength voriex filaments
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Figurc 2: Schematic representation of the ANM.wake
model used for time marching and Periodic Inversion.
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Figure 3: ANM far-wake extension model
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Figure 4: Comparison of constant age vs. Lagrangian
collocation points.
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Figure 6: Periodic wake at
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Figure 10: Periodic wake at it
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Figure 12: Periodic wake at L = 0.04

Figure 11: Periodic wake at p = 0.03
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Figure 13: Periodic wake atp = 0.05
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Figure 14: RMS convergence history of time-marching
wake dynamics with respect to periodic solution.
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