6 637 -
Al\)\\\\\\\\\\\\\\\\“\\\\\\\\\\\\\\\\\\\\\\ @

Using Interactive Sketch Interpretation
to Design Solid Objects

DTEC . David Pugh
Qrif) s

CMU-CS-93-147

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

Submitted in partial fulfillment of the requirements
Jor the degree of Doctor of Philosophy

Thesis Committee:
Roger Dannenberg, Chair
Takeo Kanade
Doug Tygar
Rob Woodbury, Department of Architecture

© Tri- 2. ument has been oppxoved
for pjbhc release and sale; ita

diatribution is unlimited, Copyright © 1993 David Pugh

This research was partially supported by a National Science Foundation Graduate Fellowship.
The views and conclusions contained in this document are those of the author and should not be

interpreted as representing the official policies, either expressed or implied, of NSF or the U.S.
Government.

\\‘\\\\\\\\ \\\\\M\\\\\ Gl

THIS DOCUMENT IS BEST
QUALITY AVAILABLE. THE COPY
FURNISHED TO DTIC CONTAINED
A SIGNIFICANT . NUMBER OF
PAGES WHICH DO NOT
REPRODUCE LEGIBLY.

Keywords: Computer aided design, solid modeling, constraint satisfaction, skeich inicrprctation, line-
labeling (for non-trihedral and non-manifold objects)

School of Computer Science

DOCTORAL THESIS
in the field of
Computer Science

Using Interactive Sketch Interpretation
o Design Solid Objects

DAVID PUGH

Submiitted in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy

ACCEPTED:

Iy
‘W‘/!/ LH./(? /45
mssxscc@imrmscmm ! DATE

42 /53

DEPARTMENT HEAD DATE

APPROVED:

20 L 4l

K)

Abstract

Before the introduction of Computer Aided Design and solid modeling systems, designers had
developed a set of methods for designing solid objects by sketching their ideas using pencil and
paper, and refining these ideas into workable designs. These methods are different from those used
for designing objects with a conventional solid modeler. Not only does this dichotomy waste a
vast reserve of talent and experience (people typically start sketching from the moment they first
pick up a crayon), but it also has a more fundamental problem: designers can use their intuition
more effectively when sketching than they can when using a solid modeler.

This dissertation introduces interactive sketch interpretation as a new user interface paradigm
for solid modeling systems. Interactive sketch interpretation makes it possible to use the computer
as a sketchpad for designing three-dimension objects. The premise behind interactive sketch
interpretation is to let the designer change an object’s design by modifying a computer generated
line drawing of the object. Sketch interpretation maps the designer’s changes onto a boundary
representation model of the object. The designer can continue the design process by then changing
the line drawing of the modified object. This design cycle is highly interactive and, as a result,
incorrect interpretations can be easily corrected by the designer.

Viking is a solid modeling system whose user interface is based on interactive sketch interpre-
tation. With Viking, the designer can modify his or her design by either changing the line drawing
or placing geometric constraints on the object. Sketch interpretation changes Viking s model of the
object so that it is consistent with the modified line drawing and the geometric constraints placed
by the user. The resulting user interface combines the “friendliness” of paper and pencil sketches
with the power of traditional solid modeling systems.

Accecion fFor

NTIS CRasd

Cinl 1AT B
oo Jed -
G, e O HETT B .
IS dn iy s vhiws =UISD 3 Justlizehon o
b e I D T

pfrn S0,]
i &i] l
Avanoiiey Lules
Avan sedfor

Dist Spocial

prl]

Contents

1 Introduction

3.3 Finding the best, consistent labeling

1.1 Designing with solid modelers vs. designing withsketches
1.1.1 Solid modelingsystems
1.1.2 Paperand pencilsketches
1.2 Viking: combining solid modeling and sketching
1.2.1 Establishingadesigndialog
122 Capabilities e e
123 AnexampleofusingViking
1.24 Limitations e e e e e
1.3 Successcriteria L. e e e e
14 Relatedwork e
14.1 Directmanipulation oL
142 Sketchinterpretation,
1.43 Geometric constraint satisfaction
1.4.4 Other drawing or computer aided design systems
15 Thesisoutline e
2 The Viking solid modeler
2.1 Vikingsuserinterface e
2.1.1 Sketchingin threedimensions
2.12 Sketchinterpretation L.
2.13 Vikingscommandmodes
22 Examples e
22.1 Creatingachair
222 Anexerciseingeometry e e e
3 Generating topologies from line drawings
3.1 Thearc-labeling algorithm
3.2 Finding the appropriate labelings foreach vertex
3.2.1 Featurebasedrestrictions
322 Userrestrictions v it e e e e
3.2.3 Mutual consistency based restrictions L.
3.24 Anexample of finding the appropriate labelings

........................

O 0L BB W N

3.3.1 Assigningcoststothelabelings
3.3.2 Searching for aconsistentlabeling.
3.3.3 Anexample of searching for a consistent labeling
34 Generatingasurfacetopology
3.4.1 Automatically rejecting a surface topology
342 Selecting thesurfacetopology

35 Problems
3.5.1 Inconsistentinterpretations
3.5.2 Impossibleinterpretations

Solving systems of geometric constraints
4.1 Generating the implicitconstraints

4.1.1 Worldconstraints
4.12 Imageconstraints
4.1.3 Draggingconstraintso e
4.2 Generating the explicitconstraints
4.3 Representing constraints withequations
43.1 Pseudo-variables.
4.3.2 Discarding redundant constraints
44 Solving non-linearequations

44.1 Findingthedisplacement
4.4.2 Finding an approximation to the optimal displacement
443 Adding the displacement to the variables
4.5 Solving non-linear equations and other blackmagic

Finding a vertex’s valid labels

5.1 Line-labelingvs. arc-labeling

52 Testingalabelingforvalidity
5.2.1 Anexample of testing a vertex’slabeling

5.3 Determining the satisfiability of a validity expression
5.3.1 Continuingtheexample

54 Vertextypes i e e e e e e e e e e e e e e e

5.5 Non-manifold surface topologies

Viking s performance
6.1 Surface topology generation
6.2 Constraintsatisfaction L .

Conclusions
7.1 Accomplishments
72 Futurework e e e e e e,

Glossary

i

Viking s user interface primitives
B.l1 Viewactions e e

B2 Imageactions
B3 Menuactions. e
B4 Helpactions e

Equations
C.1 Geometric constraints

C.2 The object space to image space transform

..........

.....................

....................

C.3 The component space to object space transform

Intersection library

E Student feedback

1

67
67
69
71
72

73
73
76
76

78

Chapter 1

Introduction

Sketching has long been an important element of the design process. For hundreds of years,
people have designed by making quick, abstract drawings or “sketches.” Sketching both gave
form to embryonic concepts and helped refine these concepts into workable designs. Thirty or
so years ago, the arrival of Computer Aided Design (CAD) and solid modeling systems began to
revolutionize some aspects of the design process. These programs let designers create a model of a
three-dimensional object on the computer. This model can te analyzed in ways that are difficult or
impossible without the computer. For example, CAD systemis and their associated programs can
display realistic images, perform stress analyses, and generate milling machine programs from the
computer’s model of the object.

Unfortunately, the CAD revolution did not extend to two critical aspects of the *=sign process:
exploring new ideas and refining these ideas into workable designs. With current CAD systems,
the model typically changes in large, discontinuous steps. The designer is often forced to specify a
change completely before he or she has a chance to see how it interacts with the rest of the model.
This makes it difficult to do “feedback driven” design, in which the designer uses feedback from
one change to guide the next change, on a solid modeler: the magnitude of each change is too large
to let the designer use his or her intuition effectively. As a result, designers will often “work out”
changes using pencil and paper before making the change on the computer.

The techniques used to design objects on pencil and paper are different from those used to
design objects on a solid modeler [30]. Sketching, in this context, is a visual and intuitive process
in which a drawing is refined by making small, incremental changes. At each point in the process,
the designer uses feedback from one change — the appearance of the modified sketch — to guide the
next change. This continual feedback lets the designer use his or her intuition effectively.

This thesis presents a solid modeling system, Viking, that uses interactive sketch interpretation
to let the user design three-dimensional objects using techniques normally used to create and
refine two-dimensional sketches. Interactive sketch interpretation provides a “what you draw is
what you get” user interface in which users modify an object by changing its line drawing or
geometric constraints. Sketch interpretation, using topology generation and geometric constraint
satisfaction, finds a new object that is consistent with changes made by the user. The user can then
continue the process of modification and interpretation, gradually transforming a rough sketch into
a description of a precisely dimensioned solid object. The resulting user interface combines the
power of traditional solid modeling systems with the continuous feedback of sketching.

1.1 Designing with solid modelers vs. designing with sketches

The design “process” can be thought of as a cycle in which the designer interprets the design
and then modifies it based on his or her interpretation. This cycle is repeated until the designer is
satisfied with the design. This description of the design process applies equally well to designers
using a solid modeler and designers making pencil and paper sketches. The difference between
these two cases lies in the ways each represents the design internally, how information is displayed
to the designer and the ways in which the designer manipulates the design.

Using a solid modeler for design is similar, in some respects, to the dialogue between a master
and apprentice: the master tells the apprentice what to do, the apprentice does the work and presents
the results to the master. As in the classic tradition, the master must carefully phrase his or her
requests since apprentices are famous for doing what they are told in unexpected ways. Unlike
the classic apprentice, however, a computerized apprentice cannot, currently, learn from his or her
mistakes and it is the master who must learn to accommodate the foibles of the apprentice.

If using a solid modeler is like working with an apprentice, then paper and pencil sketching is
like working alone. Working alone can have some advantages: some tasks are easier to do than
they are to explain. Unfortunately, working alone also means that the designer has to do all the
work, including the boring or tedious parts.

1.1.1 Solid modeling systems

The ways in which a designer can modify a design on a solid modeler fall into four broad
categories: direct generation, constructive solid geometry (CSG), profile manipulation and de-
formable surfaces. Direct generation lets the designer create simpie geometric primitives (cubes,
spheres, cones, etc.) by specifying their type and dimensions. CSG lets the designer use Boolean
operations to create complex objects by combining simpler ones (for example, create a “lens” by
finding the intersection of two offset spheres). Profile manipulation lets the designer create solids
by sweeping two-dimensional profiles through space (for example, create a torus by sweeping a
circular prefile along a circular track). Deformable surfaces let the designer change an object’s
shape by stretching, twisting and bending it [9)].

Strengths

One of the greatest strengths of solid modeling systems is the help they give the designer in
visualizing the object. Because they have a three-dimensional model of the object, solid modeling
systems have enormous flexibility in how they display the object. For example, designers can “see”
their object from any viewpoint or watch an animated sequence of a mechanism in action. The
wide variety of ways to view the object lets the designer pick the best display for understanding
the design and how it might work in the “real world.”

Another advantage of using solid modelers is that their object description can be analyzed
numerically. This, for example, lets designers calculate the stresses within the object and use this
information when modifying the object. As aresult, designers have more information on which to
base design decisions and, therefore, can work faster and with greater confidence.

It is easy to use a solid modeling system to create complex regular objects. These objects, such
as a ventilation grill or threaded bolt, have shapes that can be described algorithmically. Creating

2

these objects by hand is difficult and time consuming.

Weaknesses

One problem with solid modeling systems is that they can be difficult to use. In part, this is
because many of the more powerful operations do not have “real world” analogs and, therefore, are
hard to use intuitively. For example, one of the easiest ways to create a hexagonal slab in the “real
world” is to cut the four corners off a rectangular slab. However, one of the easiest ways to create a
hexagonal slab in a solid modeler is to use Constructive Solid Geometry to find the intersection of
three correctly oriented rectangular slabs [3] (it is also possible to use four CSG “cuts” to remove
the four corners off a rectangular slab).

Another problem with solid modelers is that they often present the designer with a “catch-22”
situation. The designer must precisely describe the geometry of a change before the solid modeler
can make it; but the designer often cannot describe the change precisely until he or she has had
a chance to see how it interacts with the rest of the design. In many cases, the designer will not
know how to describe a change precisely until long after the change has been made.

1.1.2 Paper and pencil sketches

In comparison, paper and pencil sketches are the essence of simplicity: the desizn is represented
by and displayed as a two-dimensional drawing. The designer manipulates the design by modifying
the drawing. Despite this simplicity, sketches perform two valuable functions in the design process.
Sketches help the designer visualize the three-dimensional object represented by the drawing and
they provide a framework in which the designer can split the problem into manageable chunks.

The drawings used in the design process range from abstract sketches, to accurate mechanical
drawings, to realistic illustrations. Different types of drawings are used for different design tasks.
This thesis will concentrate on how sketches are used in design. While accurate or realistic
drawings have their uses, they are not relevant to integrating sketching and solid modeling since
an integrated system can easily produce accurate and realist.c images from the three-dimensional
object description

Strengths

Designers who create a sketch have complete control of the “information flow.” They are
never forced to work in a particular order, or provide information until they are ready to give it.
Sketches let designers pick how much detail and precision to use. And, as designers learn more
about the design, they can modify or refine sketches to make them more detailed or accurate.

Sketching also provides an intuitive environment in which to work. When sketching, the
designer is modifying the sketch directly and there is no uncertainty about how any change will
modify the sketch’s appearance. In contrast, designers using a solid modeling system modify the
underlying three-dimensional object description, which might change the display in unexpected
ways.

Sketching is also a good way to explore new ideas because sketches are refined incrementally.
If a designer wants to try a new idea, he or she can first sketch the broad outlines of the idea and

then refine the sketch as the idea develops. If the idea turns out to be a bad one, it can be abandoned
before the designer has invested significant effort.

Sketches can be used to represent objects with a wide range of complexities. Simple sketches
are easy to create. Complex sketches typically the result of progressively refining simpler sketches.
And, while it may take a iong time to sketch a complex object, it can easily take as long to create
a model of the object using a solid modeler. This is especially true when the object’s geometry is
irregular.

Weaknesses

For all their usefulness, sketches are limited. Although they can help the designer visualize
the design, solid modeling systems do a much better job. Also, there is no way to do numeric
analysis on a sketch besides transferring it, by hand, to a solid modeler. For simple designs, these
are not significant problems: designers may no. need much help to visualize simple objects and
experience can help a designer estimates the properties, such as stresses, that could be calculated
using numeric analysis.

In addition, the process of creating a sketch can be exceptionally tedious. Every line must be
drawn by hand and may, as the design changes, have to be erased and redrawn many times. Many
of the operations that are trivial on a solid modeler are difficult to do on a sketch. For example,
changing the viewpoint means redrawing the entire sketch.

1.2 Viking: combining solid modeling and sketching

The strengths of sketching seem to complement the weaknesses of solid modeling and vice
versa. Therefore, combini:.g ciements from both sketching and solid modeling defines a new design
methodology that is potentially better than either sketching or solid modeling alone. This design
methodology is implemented in Viking by combining direct manipulation, geometric constraint
satisfaction, topology generation, and three-dimensional feedback into a single, integrated design
system.

Direct manipulation is fast but imprecise. Geometric constraint satisfaction lets the designer
precisely specify a desired geometry in a convenient fashion but typically requires initial values
that are close to a solution. The strengths of each technique complements the weaknesses of the
other: direct manipulation lets the designer put vertices in “about” the right position and constraint
satisfaction lets him or her put vertices in exactly the right position. Topology generation lets
Viking generate a fully specified solid or thin-shell object description from the line drawing without
having the designer explicitly specify the object’s faces. This, in turn, lets Viking provide all the
visualization aids (i.e. three-dimensional feedback) that a conventional solid modeler provides
while retaining the “feel” of creating a pencil and paper sketch.

1.2.1 Establishing a design dialog

Viking uses sketches to establish a “dialog” between the designer and the computer. Sketching
is an interactive process in which <ketches serve as additional “working memory” for the designer.
Sketches give designers a forum in which they can easily make a change and “see” the results

4

immediately. This lets the designer evaluate each change and protects it fromn the vagaries of
human memory.

These sketches, however, are more than just line drawings. In Viking, “sketches” are three-
dimensional entities that describe both the appearance of the object and the geometric constraints
specified by the designer. Despite this complexity, however, the designer must be able to easily
modify Viking's sketches. Otherwise, he or she will resort to easily modified pencil and paper
sketches, defeating the purpose of combining sketching and solid modeling.

1.2.2 Capabilities

Viking lets designers change a sketch by:

e drawing new edges or vertices,
e deleting existing edges or vertices,

¢ hiding or exposing individual line-segments,

defining relationships between vertices and edges, and

dragging edges or vertices while maintaining previously defined geometric relationships.

Sketch interpretation is used to map these changes onto Viking s internal model of the object being
designed. This interpretation process takes a variety of forms. It can be an integral part of sketch
manipulation, as when using preferred directions (see Section 2.1.1) to position a vertex in turee
space. It can also be a postscript to a change, as in solving for a new vertex geometry after placing
a new constraint. In either case, the essence of sketch interpretation is to let the designer express
any desired change in a natural and intuitive fashion and automatically apply the change to the
internal model.

Designers can also modify his or her “environnent” by:

e defining preferred directions (see Section 2.1.1),

e defining a cutting plane (see Section 2.1.1),

e moving the cutting plane through the object,

e setting a preferred object type (see Section 3.3.1),

e grouping vertices into components (see Section 2.1.3),

e changing his or her viewpoint, and

e modifying the display parameters.

These changes do not modify the object directly. Instead, they modify either the way that the
designer’s actions are interpreted or the way that the object is presented to the designer.

1.2.3 An example of using Viking

Suppose you wish to create a model of a cube with a notch cut through it. One way to do this
task, using paper »nd pencil, is to:

[—

Figure 1-1a: “Draw in” a Figure 1-1b: Make it look Figure 1-1c: Find an
notch. right. interpretation.

o sketch a cube,
e add the lines forming a notch across the top of the cube,
e erase unwanted lines, and

e redraw the notch’s lines so that they are solid (e.g. visible) or dashed (e.g. hidden) as
appropriate.

One way to do this task, using a solid modeler, is to:

e create a cube,
e create a rectangular block that is longer and narrower than the cube,
e position the rectangular block along the top of the cube so that the two objects intersect, and

e do a CSG “cut” operation: find a new object that corresponds to the volume enclosed by the
cube and not enclosed by the block.

Performing this task on Viking is similar to performing it on pencil and paper, although the
results are the same as those for doing it with a solid modeler. Figures 1-1a, 1-1b and 1-1c show a
sequence of “snap shots” taken while the user is creating a notched block. Starting with a unit cube,
the user has, in Figure 1-1a, drawn in the lines that form the notch. The user has, in Figure 1-1b,
cleaned up the image. Line-segments that would be visible if the notch existed have been made
visible and the unwanted edges have been deleted. Figure 1-1c shows the first interpretation found
for the image in Figure 1-1b. In this interpretation, every edge is adjacent to two faces and the
vertices that form the notch have also shifted slightly to satisfy the implicit constraint that every
face is a planar polygon. This object can be moved and rotated and the drawing will update in
the expected manner: line-segments that should be hidden in a different display will be hidden. I
needed less than 30 seconds to create the object shown in Figure 1-1c using the procedure described
above.

Viking gives designers a new way of using the computer to design solid objects. With Viking,
a designer can sketch the object he or she wishes to create and modify the object by changing the
sketch. This design methodology is most useful when an object’s appearance is important or when

6

&

Figure 1-2b: Reinforced Figure 1-2c: Trimmed

Figure 1-2a: Bracket.
g bracket. bracket.
ap s i,
o ' N
, «"’ §\\
4:”‘%,3’

Figure 1-3a: Widget (28 vertices). Figure 1-3b: “Tesseract” (16 vertices).

Figure 1-3c:
Windmill (16 Figure 1-3d: Starship (175 vertices).

vertices).

the designer can predict an object’s behavior from its appearance. In either case, the design process
is largely a matter of the designer using his or her intuition to correct things that look “wrong.”

The design methodology supported by Viking, however, is useful even when the designer is not
working intuitively. In particular, Viking lets designers use a single technique to modify the object
being designed in a wide variety of ways. For example, the simple bracket in Figure 1-2a has been
modified in two different ways to create Figures 1-2b and 1-2c. In Figure 1-2b, the designer has
added a reinforcing webbing. In Figure 1-2c, the designer has trimmed the upper corners. In both
cases however, the same basic technique was used: draw the changes in, find an interpretation and
use geometric constraints to do the final positioning.

Although Viking was never intended to be a “stand-alone” system, it is powerful and flexible
enough to create a wide variety of objects, as shown in Figures 1-3a through 1-3d. I needed about
6 minutes to design the object in Figure 1-3a. Figures [-3b and 1-3c both took about 4 minutes to
complete. Figure 1-3b is interesting because, by hiding some line-segments and exposing others,
it is possible to define three distinct solid objects that have the same vertex geometry. Figure 1-3¢
demonstrates using Viking to design non-manifold objects. The object in Figure 1-3d is the most
complex object that I have created using Viking.

1.2.4 Limitations

Viking has several significant limitations. Many are simply the result of not having enough
time to implement all of the desired functionality (for example, Viking cannot calculate the volume
of an object under construction). Others are the results of the algorithms used for various tasks.
The effect of these limitations is to restrict Viking to designing objects that meet the following
criteria:

e no vertex has more than four adjacent edges,
¢ no edge has more than two adjacent faces,

e cvery edge is a straight line, and

e every face is a planar polygon.

It should be possible to overcome most of these limitations in future versions of the program (see
Section 7.2).

Topology generator

Viking’s topology generator uses a form of line-labeling [7, 17] to generate a topology from a
line drawing. This algorithm depends on the line drawing being a “general view:” one in which a
small change in the observer’s viewpoint will produce a correspondingly small change in the line
drawing [24]. In Viking, general views have the following properties:
e every face is drawn as a closed polygon with a non-zero area,
e every edge is drawn as a line with a non-zero length, and

e if two adjacent lines are parallel, then the corresponding edges are parallel.

If a line drawing does not have these properties, then Viking cannot use it to generate a topology
for the object it represents.

Another limitation in Viking’s topology generator is in the type of faces it can generate. In
particular, Viking can only generate faces that have the following properties:

e no vertex or edge is repeated, and

o there are no “bridging’ edges.

The first property makes it impossible for Viking to generate faces with internal holes. The second
property is a side-effect of the constraints used to test the validity of an interpretation. A “bridging”
edge is one that extends across a face and between two of the face’s vertices. Faces containing
bridging edges are rejected because the edge must lie in the plane defined by the face and, therefore,
cannot satisfy the in front of or behind constraints used to verify the interpretation’s validity.

Constraint solver

Viking s constraint solver, like most others, uses the current position of the vertices as a starting
point when searching for a geometry that satisfies the constraints. This technique is most effective
when there is a “nearby” geometry that satisfies the constraints. It is slow and unreliable when
there is no “nearby” geometry that satisfies the constraints. This means that Viking'’s constraint
solver cannot be used to “unfold” a flat two-dimensional sketch into a three-dimensional object
description. Instead, Viking's users must create a three-dimensional sketch in which the vertices
are drawn so that they are close to their intended x, y and z coordinates. Fortunately, Vikings user
interface provides the tools to make it relatively easy to position vertices in space (see Section2.1.1).

1.3 Success criteria

This thesis describes a new user interface paradigm - interactive sketch interpretation — for
computer aided design and its implementation in Viking. Interactive sketch interpretation makes
it possible to design solid objects using techniques normally associated with making pencil and
paper sketches. It is not the intent of this thesis to make any of the existing solid modeling
techniques obsolete. It is, instead, intended to start exploring the potential of integrating sketching
into computer aided design. Therefore, this thesis will be considered a success if it:

e combines direct manipulation, geometric constraint satisfaction, topology generation and
three-dimensional feedback into a solid-modeling user interface,

e describes the underlying algorithms so that other researchers can implement and experiment
with interactive sketch interpretation, and

e shows that the combined user interface can be used to create precisely dimensioned three-
dimensional models.

1.4 Related work

Viking combines several different ideas to create a user interface based on direct manipulation,
sketch interpretation and constraint satisfaction. Although other systems have used one or more
of these ideas, Viking is the first system to combine all of them into a single system for doing
solid modeling. Direct manipulation and constraint satisfaction were both part of Sketchpad [28].
Sketch interpretation systems using line-labeling have been around for over 20 years [7, 17].
Three-dimensional feedback has been an integral part of solid modeling since its inception.

1.4.1 Direct manipulation

Almost every design system uses some form of direct manipulation. These systems let the user
position vertices and objects by pointing and dragging with the mouse (or other pointing device).
Direct manipulation has also been used to change the view transform [5], or arbitrary parameters

[2].

1.4.2 Sketch interpretation

Traditional image interpretation (generating useful information from a camera image) is
different and more complex than the type of sketch interpretation done by Viking. In particular,
image interpretation must deal with noise, shadows, different surface colors and textures, etc. In
contrast, Viking s sketch interpretation algorithm only has to process a “noise-free” line drawing in
which hidden line-segments and all vertices are explicitly represented.

This problem domain is similar to that used by Guzman [14], Huffman [17] and Clowes [7]
for their work on line-labeling. Huffman-Clowes line-labeling reduces the problem of determining
whether a line drawing represents a trihedral object’ to one of finding mutually consistent labelings
for each intersection in the line drawing. This basic algorithm has been extended since then to
a wide variety of objects and line drawings: scenes containing shadows [29], line drawings in
which hidden lines are visible [24], objects with curved surfaces [6], and thin-shell objects [18].
Also, Waltz [29] introduced an efficient algorithm for filtering out obviously inconsistent labelings,
and Sugihara [27] developed a way to test the feasibility of an interpretation by solving a linear
programming problem. Viking extends line-labeling to non-trihedral objects and potentially to
objects in which edges can be adjacent to three or more faces.

Viking s algorithm for topology generation is view-dependent in that it finds a topology that is
consistent with a line drawing, provided the line drawing corresponds to a general view. There
is another family of view-independent algorithms developed by Hanrahan [16] and Courter [8],
among others, that can be used to generate surface topologies. These algorithms generate a surface
topology for an object by finding the planar embedding of the object’s vertex-edge graph.

Leclerc and Fischler [19], expanding on work done by Marrill [20]), have developed an algorithm
for generating depth information for a line drawing. This algorithm generates a surface topology
from a line drawing and then finds z-coordinates for the points in the line drawing that minimize
the:

1One in which each vertex is adjacent to exactly three faces.

10

o standard deviation between the angles of all lines radiating from each point, and
e non-planarity of all of the faces.

This work is still in the early stages of development, so it is not clear whether this algorithm will
work for a wide variety of objects.

1.4.3 Geometric constraint satisfaction

Viking lets the user define geometric relationships within their models. The problem of finding
a geometry that satisfies these relationships is, however, not easy. Non-linear equations are needed
to model all but the simplest constraints and solving systems of non-linear equations is known to
be a hard problem [13].

Viking reduces the problem of finding a geometry that satisfies the constraints to the following
non-linear satisfaction problem:

Solve for 7 such that:
hi(2) =0 (0<i<|h])
g;(¥) 20 (05 <|gG))

Other algorithms for constraint satisfaction use a similar reduction. DeltaBlue [10] adds a constraint
hierarchy in which constraints are ranked according to their importance and the solver can violate
a constraint in order to satisfy a more important constraint. Witkin’s differential constraint [12]
adds an explicit objective function that is minimized.

Simultaneous constraint solvers

One way to solve a system of equations is to simultaneously manipulate all of the variables.
All of the techniques for doing this can be summarized as follows:

Given zy, h, and §

T <1
Loop:

Z«< Z+82h,3)
Until 7 satisfies the constraints.

In other words: starting from an initial point 2, use the function Sto modify the current position,
Z, until a solution is found. The differences between these techniques lie in how they use to modify
the current position and the types of constraints that they allow.

One of the problems with all of these techniques is that they depend on having 25 be “close” to
a solution. If the constraint solver does not find a solution, then either £y was not close enough to
a solution or the constraints were mutually inconsistent. Unfortunately, there is no reliable way to
determine which problem caused the constraint solver to fail.

All of the algorithms for simultaneously solving systems of non-linear equations use some form
of gradient descent to modify the current position. This is most clearly seen in the Newton-Raphson
algorithm [22] where, at each iteration, the current position is modified by —hA(Z)(Vk(Z))™!.
Unfortunately, this has problems of its own:

11

e The constraint equations might contain singularities.
o The derivatives at £ might be 0.

The first problem can be avoided by picking an initial point that is closer to a solution than it is to
a singularity. The second problem can be managed by using another technique, such as simulated
annealing [15], when needed.

Other constraint solvers

Another way to solve a system of equations is to manipulate only a few of the variables at a
time. These solvers, called incremental solvers, generates a dependency graph for the variables
(e.g. “t depends on z, which depends on y and z”), and then solves for each variable after
solving for the variables on which it depends. This type of constraint solver works well when that
dependency graph is acyclic. They can, however, iterate indefinitely if the constraint’s dependency
graph contains cycles. DeltaBlue [10] is an example of an incremental solver.

1.4.4 Other drawing or computer aided design systems

There are several drawing or computer aided design systems that, like Viking, combine direct
manipulation with geometric constraint satisfaction. The most obvious difference between these
systems is that some can be used to design three-dimensional objects and others are limited to
creating two-dimensional drawings. Less obvious differences are their algorithms for solving
systems of constraints, and their user interface for manipulating the object.

Sketchpad

Ivan Sutherland’s Sketchpad [28] was a two-dimensional design system in which users could
“draw” on the screen using a lightpen. Buttons on a separate control panel let the user switch
between drawing lines, moving points and placing various types of constraints. For example, the
user could constrain a point to lie on a circle by picking it up with the lightpen while holding the
“move” button, dragging it to a position on the circle’s circumference and giving a termination
flick. Sketchpad could also be used for analysis. In one example, Ivan Sutherland modeled a
truss and used Sketchpad’s constraint solver to calculate the reaction forces in response to loads
“placed” with the lightpen.

Sketchpad was a product of a radically different computing environment. Back in 1963,
computer graphics were done on oscilloscopes, menus were what you found in a restaurant and
mice were furry. As a result, Sketchpad may seem slow and clumsy by today’s standards. Do not,
however, let this obscure the fact that Sketchpad introduced many key ideas — direct manipulation,
pointing devices, constraint satisfaction, etc. — that were used by later systems.

Juno

Brian Nelson’s Juno [21] is a constraint-based system for two-dimensional graphic design.
Juno’s user interface gives the user two “views” of the drawing: the drawing itself and a textual
description of a procedure that generates the drawing. The user can either modify the procedure or

12

change the drawing, in which case Juno automatically updates the procedure so that is consistent
with the modified drawing.

Juno uses the Newton-Raphson algorithm [22] to find a solution to the drawing’s constraints.
Juno uses the current geometry as a starting point for the Newton-Raphson algorithm. So, if no
solution is found (or the wrong solution is found), the user can modify the drawing so that it
is “closer” to the desired solution. The constraints themselves can take a wide variety of forms
including parallel, equal length, and orthogonal. These constraints are represented only in the
procedure that describes the drawing. They are not “visible” in the drawing except through their
effect on the drawing’s geometry.

Gargoyle

Eric Bier’s Gargoyle [1] introduced a new design methodology: snap-dragging. Gargoyle lets
the user activate various constraints (for example, activate a “distance = 1” constraint). Gargoyle
then draws construction objects on the screen corresponding to the active constraints (for example,
if the “distance = 1” constraint was activated, Gargoyle would draw unit circles around all of
the points in the drawing). The cursor then snaps to these construction objects, establishing a
precise geometric relationship. In practice, using Gargoyle is similar to, but considerably easier
than, traditional mechanical drawing. Gargoyle could be used for both two-dimensional and
three-dimensional design.

Gargoyle is different from the other systems described in this section in that it “forgets”
geometric relationships once they have been established. If the user wants to modify a design by
moving a point, he or she must manually re-establish all of the affected relationships. As a result,
Gargoyle’s constraint solver only needs to solve for the position of one point at a time. It needs,
however, to do this very quickly: Gargoyle provides continuous feedback on the location that the
cursor would snap to.

Briar

Michael Gleicher’s Briar [11] is a two-dimensional design system that extends the snap-
dragging methodology by adding persistent constraints. Just as with Gargoyle, the user can
activate the desired constraints and the cursor will snap to positions that satisfy them. The user
may also use the cursor to drag points from one position to another and Briar will automatically
adjust the drawing’s geometry to satisfy the previously established constraints.

Briar uses a differential constraint solver [12} to maintain the constraints. Differential constraint
solvers rely on having all of the constraints satisfied initially and trying to find a different geometry
in which an objective function is minimized and constraints are still satisfied. For example, if the
user drags a point in Briar with the mouse, Briar will move the point so that the constraints remain
satisfied while minimizing the distance between the point and the mouse’s current location. The
difficulty behind this approach to solving systems of constraints is that it is most effective when
all of the constraints are initially satisfied. Fortunately, with the snap-dragging methodology, the
active constraints are satisfied whenever a new point or piece of geometry is added to the drawing.

13

Converge

Steven Sistare’s Converge [26] is a three-dimensional constraint based design system. In many
respects, Converge and Viking have similar objectives: three-dimensional design. As aresult, these
two systems have a great deal in common. Both systems, for example, let the user dynamically
adjust the viewpoint, drag vertices while maintaining the constraints, and group vertices into
distinct components.

There are, however, some differences between the two systems. Converge is a notable for
having an efficient and robust constraint solver but it can only be used to design an object’s
geometry. Unlike Viking, it does not let the user specify an object’s topology. As a result, it cannot
generate hidden line displays (which are useful for helping the designer visualize the object’s
three-dimensional structure).

1.5 Thesis outline

This thesis is divided into four distinct parts. Chapters 1 and 2 describe the interactive sketch
intérpretation design methodology and its implementation in Viking. Chapter 2 describes Viking's
user interface and provides two additional examples of using Viking to design three-dimensional
objects.

Chapters 3, 4 and 5 present the algorithms used to perform topology generation and constraint
satisfaction. Chapter 3 describes the algorithm used to generate a surface topology from a line
drawing. Chapter 4 describes the algorithms used to generate and solve systems of non-linear
equations. Together, chapters 3 and 4 describe the algorithms used to generate a three-dimensional
object description from a modified line drawing and a system of geometric constraints. Chapter 5
describes the algorithm used to create Viking s intersection library (see Chapter 3 and Appendix D).

Chapters 6 and 7 describe Viking’s performance and draw conclusions about the interactive
sketch interpretation design methodology and Viking s implementation of it in particular. Chapter 6
plots the time required to find a surface topology or solve for a vertex geometry for objects with 9
to 100 vertices. Chapter 7 contains the conclusions as well as future plans.

The appendices contain technical data. Appendix A is a glossary. Appendix B is a description
of all the different actions that the user can perform. Appendix C contains the equations used to
represent the different geometric constraints. Appendix D contains the intersection library for all
intersections of 2, 3 and 4 lines. Appendix E contains the written feedback from a group of students
who used Viking to create a cuboctahedron as an assignment for a geometric modeling class.

14

Chapter 2
The Viking solid modeler

Viking is a solid modeling system that combines sketching with sketch interpretation. Designers
can “sketch” with Viking in much the same way that they sketch with pencil and paper. The critical
difference is that, in Viking, sketch interpretation maps changes to a sketch onto a description of
the three-dimensional object. For most changes, deducing an appropriate change in the object
description is trivial. For example: if the user erases a line, delete the corresponding edge. With
other changes, such as making a line-segment visible, there is no obvious corresponding change in
the object description. In these cases, Viking used heuristics to generate a new object description
that is both reasonable and consistent with the modified line drawing.

The task of generating an interpretation of a line drawing is split into two parts: finding a
surface topology and solving for a vertex geometry. The first part is done by generating surface
topologies that are consistent with the line drawing until an acceptable one is found. The second
part is done by using a geometric constraint solver to find a vertex geometry that satisfies a set of
constraints that are either derived from the line drawing or placed by the user. The surface topology
and vertex geometry combine to form a three-dimensional object description that is consistent with
both the line drawing and the constraints.

2.1 Viking’s user interface

Figure 2-1 shows Viking’s display after creating an equilateral triangle. The left window
shows a line drawing of the underlying object description and the upper center window shows
the view transform used to generate the line drawing. Both windows let the user directly modify
their contents. The user can, for example, move a vertex by dragging it to a new location with the
mouse. The user can also dynamically change the view transform by dragging the mouse across
the orientation triad, causing the view to rotate about an axis perpendicular to the mouse’s motion.
This particular method of manipulating a view transform is also called a continuous XY controller
[51.

The line drawing displays more than just an object’s shape. Thick, thin and double lines
respectively correspond to edges adjacent to zero, one and two faces in the object description.
Circles correspond to vertices that the constraint solver can move when solving for a vertex
geometry. Triangles correspond to vertices whose positions are considered fixed constants by the
constraint solver. A variety of symbols is used to indicate constraints. Distance constraints, for

15

Solve Split ?
Help window
HLs
Faces Select underlined
IDs Cons PD text to expand
Top | Front l Right | CP 3D mouse)
4D Edit; Change object topology.
— Y Move: Change object geometry.
i @_ Constraint:
@ X Component:
@ (View control)
Edit Help *: Toggle help
Undo: Undo the last search
Move Write: Write the current object
Read: Read a new object
Constraint AutoSolve: Set autosolve switch
Bias: Set search bias
Component Quit: Exit the program
Help off
Undo
— —
—A— Write
Read
Autosolve
Bias
Quit

Figure 2-1: Viking s display.

example, are shown by thin, bent lines. In Figure 2-1, the “A” symbol at the bend indicates that all
three sides of the triangle have the same length.

2.1.1 Sketching in three dimensions

Traditional sketches are two dimensional even though they may represent three dimensional
objects. In Viking, however, sketches are three-dimensional entities in which every vertex in the
sketch has a position in three-space. This helps the user since a three-dimensional “sketch” can
be examined from any angle or viewpoint. But it also means that each vertex must be correctly
positioned in three space.

It, however, is not necessary to specify a vertex’s position precisely. Two-dimensional sketches
are often drawn with little attention to precision since a sketch that is approximately “right” is
both sufficient for much of the design process and easier to create than one that is precisely drawn.
Three-dimensional sketches are similar: they do not have to be accurate to be useful. Viking lets
the user “sketch” in three dimensions by making it easy for him or her to specify the approximate
position of a vertex in three space when it is added to the sketch.

Geometric constraints are not, by themselves, a good mechanism for specifying approximate
vertex positions. In part, this is because the constraint solver works best when all vertices are
near a solution. Relying on the constraint solver to move a vertex a significant distance is, at best,
time consuming and often results in unexpected solutions (assuming a solution is found). A more
fundamental problem with using constraints for rough positioning, however, is their precision.
Often, users do not know the precise location of a vertex until late in the design process. Using

16

o
L 2
1
el i =
Figure 2-2a: Default Figure 2-2b: Default) A al T1:)
o o Figure 2-3: Using cutting
preferred directions for a preferred directions for an
planes.
vertex. edge.

constraints to position a vertex before the user knows its precise location is time consuming since
the user will have to change the constraints later, when the precise dimensions are known. It can
also be intimidating: people do not like answering questions until after they know the answers.

Viking uses three basic techniques to let the user “sketch” in three dimensions. When no other
information is available, Viking uses a simple rule when drawing edges: both of the edge’s vertices
have the same z-coordinate in the display’s coordinate space. For many cases, such as drawing a
short edge from an existing vertex, this is sufficient. And, for situations where this is not sufficient,
Viking provides two additional mechanisms to let the user specify the location of a vertex in three
dimensions: preferred directions and cutting planes.

Preferred directions

Preferred directions are three-dimensional vectors. When the user draws an edge, Viking draws
short lines parallel to each preferred direction at the new edge’s origin. As the uscr moves the
mouse, Viking projects the edge’s endpoint onto the closest preferred direction. In Figure 2-2a, for
example, the edge’s endpoint is being projected onto a preferred direction that is parallel to the
vertical edge adjacent to the starting vertex. In Figure 2-2b, the edge’s endpoint is being projected
onto a preferred direction that is perpendicular to the starting edge and lies in the plane of the
cube’s top face.

Preferred directions can be defined in two ways. First, the user can define vectors in object
space, such as the x, y and z axes, for preferred directions. Any new edge, no matter where it
is drawn, will be able to use these preferred directions. Second, the user can activate automatic
preferred directions. In this case, Viking automatically defines preferred directions depending on
the context in which the user started to draw the new edge. If the user is drawing an edge from
an existing vertex, then the preferred directions are defined to be parallel to each of the edges
radiating from the vertex. If the user is drawing an edge from an existing edge, then one preferred
direction is defined to be parallel to the edge and, for each adjacent face, a preferred direction is
defined to lie in that face’s plane and be perpendicular to the edge. If these rules generate only
one preferred direction, then two preferred directions are added that are perpendicular to both the
original preferred direction and each other. If two preferred directions were generated, then a third
preferred direction is added that is perpendicular to the first two preferred direction.

17

Cutting planes

A cutting plane is a plane defined in object space. Cutting planes are a tool for both positioning
a vertex in .. .c dimensions and helping the user visualize the object’s three-dimensional structure.
The user can position a vertex in three dimensions by moving it parallel to ihe cutting plane or
parallel to the cutting plane’s normal. Forexample, in Figure 2-3, the new vertex is being positioned
so that it is the same distance from the cutting plane that the starting vertex is.

The user can manipulate the cutting plane by moving it parallel to its normal, changing the
orientation of its normal, and controlling the way in which it is displayed. The user can, among
other things, make the cutting plane opaque or translucent, highlight the intersection of the cutting
plane with the object, show the orthogonal projection of the object onto the cutting plane, and draw
height poles between each vertex and the cutting plane.

2.1.2 Sketch interpretation

Viking's implementation of interactiv: sketch interpretation uses two distinct data-structures:
one holds the current object description and the other holds the line drawing displayed to the
user. When the user modifies the line drawing, the changes automatically propagate to the current
object description to maintain consistency between the two data-structures. When the user changes
the viewpoint, the line drawing is recreated from the new view transform and the current object
description.

Viking generates a new object description whenever the user makes a change that cannot be
propagated to the object description automatically. Viking splits the task of generating a new object
description into two parts: finding a surface topology that is consistent with the line drawing and
solving for a vertex geometry that satisfies the object’s implicit and explicit constraints. Together,
the surface topology and the vertex geometry completely describe a three-dimensional object.
The new object description is consistent with both the line drawing created by the user and any
geometric constraints he or she may have specified.

Viking uses arc-labeling [23], an extension of Huffman-Clowes line-labeling {7, 17] to non-
trihedral vertices, to generate a surface topology from a line drawing and an old object description.
The surface topology defines a set of faces that are consistent with the line drawing. Since line
drawings can have many different interpretations, Viking uses a cost heuristic to seek ou« the more
desirable interpretations first. Viking generates surface topologies in order of increasing cost, where
the cost is based on several factors, including:

e how similar the surface topology is to the current object’s surface topology and
e if the user has given a preferred object type, how close the surface topology is to the user’s
preferred type.

Surface topologies are generated until the user either accepts one or aborts the search. In my
experience, the desired surface topology is normally the first surface topology found.

Once an acceptable surface topoiogy has been found, a non-linear constraint solver finds a
vertex geometry that satisfies a system of geometric constraints. These constraints fall into three
categories:

e World: every face is a planar polygon.

18

o Image: hidden lines are behind obscuring faces and lines.
e Explicit: constraints explicitly defined by the user.

The first two types of constraints are implicit constraints since they are automatically generated
by Viking. World and explicit constraints are always part of the system of equations used by the
constraint solver. Image constraints are only used when finding a vertex geometry after finding a
new surface topology for the object.

The constraint solver uses an algorithm developed by Bullard and Biegler [4]. This algorithm
repeatedly solves a system of linear equations derived from the non-li» »ar equations and their
first derivatives until the global error is reduced below a threshold. The vertex positions from the
current object are used as the initial solution for the new system of constraints. The solver tends
to move the vertices only in small, well-controlled steps. As a result, solutions tend not to differ
unnecessarily from the vertex geometry in the current object.

Once an acceptable surface topology and vertex geometry have been found, Viking replaces
the current object description with the new interpretation. A new line drawing is then generated
from the new current object description and the current view transform. The user can manipulate
the new line drawing just like the old one, letting the user continue the cycle of modification and
interpretation.

2.1.3 Viking’s command modes

The four items shown in the center window of Figure 2-1 (Edit, Move, Constraint and
Component) correspond to the four most commonly used modes in Viking. These modes determine
how mouse actions in the line drawing’s window are interpreted. If the user enters either Constraint
or Component modes, the center window is overwritten with a specialized menu.

Edit mode is used for changing the appearance of the line drawing displayed in the image
window. The user can draw new edges, delete existing edges and change the visibility of individual
line segments while in this mode. Both the line drawing and the underlying object description
change as a result of either of the first two actions. The last action, changing the visibility
of a line segment, modifies only the line drawing, making it inconsistent with the underlying
object description. The consistency between these two data-structures is restored by finding an
interpretation of the line drawing. This is done automatically if the Autosolve switch is set.

Move mode is used for placing tacks, and moving vertices and edges. Tacks are constraints that
either lock a vertex into a fixed position or force an edge to pass through a ixed point in space. If
the Autosolve switch is set, Viking will use the constraint solver to maintain the constraints as the
user drags a vertex or edge around with the mouse. Otherwise, the vertex or edge will follow the
mouse without maintaining the constraints.

Constraint mode is used for placing or editing geometric constraints on the object. The
constraint menu lets the user select a constraint template and then define constraints by picking
vertices or edges to “fill in” the blanks. For example, the user can constrain two edges to have the
same length by selecting the “equal length” template and then picking the edges to constrain. The
user can also modify or delete previously defined constraints. Whenever the user adds a constraint,
Viking will attempt to find a solution to the new system if the Autosolve switch is turned on.

Component mode is used for manipulating groups of vertices. A component contains a set of
vertices and a transformation that maps the positions of these vertices from the local component

19

space to the global object space. This coordinate transformation is generated from eleven variables
that control a component’s size (using both an axis-independent variable and three axis-dependent
variables), position, and orientation (using quaternions [25]). The user can lock or free these
variables independently and the constraint solver can manipulate the free variables as needed when
solving for a vertex geometry.

2.2 Examples

2.2.1 Creating a chair

This section describes a session using Viking to create an “easy chair.” This example is
somewhat contrived (for example, chairs are not normally made from homogeneous blocks) but
it does convey the flavor of Viking's user interface. It also demonstrates how modifying the line
drawing can be a substitute for using constructive solid geometry. It took me less than two minutes
to transform the cube in Figure 2-4a into the chair in Figure 2-4i.

Preferred directions (see Section 2.1.1) were on automatic throughout this example. As a result,
whenever the user started to draw an edge, Viking defined a set of context dependent vectors that
could be used to position the edge’s endpoint in three dimensions. For example, in Figure 2-4b, the
new edge was projected onto a preferred direction that was parallel to the cube’s rightmost vertical
edge.

Figure 2-4a shows the initial object: a cube loaded from a library of standard objects. The first
step in turning this cube into a chair is to add a raised back. Figure 2-4b shows the user drawing
a new edge up from the upper-right corner of the cube. The user has finished drawing the edges
for the chair’s back in Figure 2-4c¢ and is in the process of hiding the line-segments that would be
obscured if the chair’s back was solid and opaque.

In Figure 2-4d, the user deleted one unwanted vertex and is in the process of deleting the other
(the user must pick a vertex twice to delete it: the first pick highlights the selected vertex, the
second deletes it). These vertices are unwanted because deleting them and redrawing the missing
edges ensures that the chair’s back is a single, planar surface. If these vertices had not been deleted,
Viking would have found an interpretation in which the chair’s back and sides were each formed
by two faces.

Deleting a vertex also deletes its adjacent edges and faces, although Viking preserves the hidden
status of line-segments whose obscuring face is deleted. For example, in Figure 2-4d, the edge at
the bottom-back of the cube is drawn with a single, thin line (indicating that it is adjacent to only
one face) since the top, back and right faces of the cube were deleted when the first vertex was
deleted. Also, the entire edge remains hidden, even though the face obscuring its right segment
has been deleted.

Figure 2-4e shows the user redrawing some of the edges that were delcted when the user deleted

the unwanted vertices. Figure 2-4f shows, from a different viewpoint. i1 user starting to draw
a lowered seat on the first interpretation found for Figure 2-4e. Thi< rpretation corresponds
to a solid object. By default, Viking searches for “solid” interpretation 111 as a result, may add

faces that are not needed to generate an interpretation that is consistent with the line drawing. For
example, the interpretation in Figure 2-4f contains a face on the front of the chair’s back. An

20

y

Figure 2-4a: Initial object:

a unit cube.

Figure 2-4d: Remove
unwanted vertices and
edges.

Figure 2-4g: Remove
unwanted edges.

L
L&

Figure 2-4b: Drawing the
chair’s back.

Figure 2-4e: Redraw the
missing edges.

Figure 2-4h: Exposing
visible line-segments.

21

A
Daand

o

Figure 2-4c: Hiding
obscured line-segments.

Siia

Figure 2-4f: Drawing the
chair’s seat.

Figure 2-4i: The
“completed” chair.

interpretation that did not contain this face, but was identical to the one in Figure 2-4f otherwise,
would also be consistent with Figure 2-4e.

The user has finished drawing a lowered seat for the chair in Figure 2-4g and is in the process
of removing some unwanted edges. In Figure 2-4h, the user is exposing the line-segments that
would be visible if the chair’s seat was lower than its arm rests. Figure 2-4i shows, from a different
viewpoint, the first interpretation found for Figure 2-4h.

Even though the chair looks correct in Figure 2-41, the geometry is not correct. For example,
some edges that should be parallel to each other are skewed about 10°. These problems can be
fixed in a minute or two by using geometric constraints. But, since the next example demonstrates
the constraint solver, that part of the design process is skipped in this example.

2.2.2 An exercise in geometry

Suppose you have the following problem: if you place a solid equilateral tetrahedron face
to face with a solid equilateral octahedron, how many faces does the resulting polyhedron have?
The polyhedra are positioned and sized so that three of the tetrahedron’s vertices coincide with
three of the octahedron’s vertices. Answering this question, by using Viking to create the object
shown in Figure 2-51, takes me less than threc minutes.

Figure 2-5a shows the user starting to draw the two polyhedra. In Figure 2-5b, the user
has changed the view transform by rotating it about the horizontal axis and is in the process of
completing the octahedron’s wire-frame. Figure 2-5¢ shows the user hiding the line-segments at
the “back” of the polyhedra. Figure 2-5d shows the first interpretation found after hiding the rest
of the line-segments that should be obscured.

The edges in Figure 2-5d were drawn without using either prefe:red directions or a cutting
plane to position the vertices in three dimensions. The user made no attempt to draw the edges so
that they all had exactly the same length. Instead, geometric constraints will be used to turn these
“rough sketches” into equilateral polyhedra.

Figure 2-5e shows the effect of adding and solving for equal length constraints on the tetra-
hedron’s edges by selecting the *“| v,v, |= 1.0 | v.vq |” constraint template from the constraint
menu (see Appendix B) and then selecting a pair edges to constrain. Figure 2-5f shows the effect
of placing a similar set of constraints on the octahedron. The bent lines and “A” symbols indicate
that the tetrahedron’s edges all have the same length. The bent lines and “B” symbols do the same
for the octahedron’s edges. Lengths “A” and “B” may correspond to different lengths. In both
Figures 2-5e and 2-5f, the vertices have moved to accommodate the constraints. Figure 2-5g, in
which display of the constraints has been turned off, shows the two polyhedra from a different

direction.

Figure 2-5a: Drawing the polyhedra. Figure 2-5b: Completing the wire-frames.

22

Figure 2-5c: Hiding obscured
line-segments.

~ g -

Figure 2-5e: Making an equilateral
tetrahedron. octahedron.

Figure 2-5g: Viewing from another Figure 2-5h: Before solving the
direction. coincidence constraints.

<17

Figure 2-5j: An “edge-on” view.

Figure 2-5i: After solving the coincidence
constraints.

Figure 2-5k: The resulting seven-sided Figure 2-51: Figure 2-5k with the constraints
polyhedron. hidden.

23

In Figure 2-5h, the user has added, but not yet solved for, constraints forcing three of the
tetrahedron’s vertices to be coincident with three of the octahedron’s vertices. The bent lines and
“0” symbols indicate that the distance between the vertex pairs should be zero. Figure 2-5i shows
the solution found by the constraint solver to the system described in Figure 2-5h. Figures 2-
Sh and 2-5i have, despite appearances, identical surface topologies: the constraint solver moved
the vertices without changing the underlying structure.

In Figure 2-5j, the view transform has been changed to give a view “straight-down” one of the
edges where the tetrahedron and octahedron are in contact. This view suggests that the vertices to
either side of this edge are co-planar with the edge, forming a single four-sided face. In Figure 2-5k,
the user has merged the six coincident vertices into three vertices, deleted the unwanted edges, and
generated a new, seven-sided, interpretation. Figure 2-51 shows Figure 2-Sk with all constraints
hidden. Viking since it implicitly generates constraints that all faces are planar polygons, would
not have been able to find a vertex geometry for Figure 2-5k unless the quadrilateral faces were
planar polygons. The answer, therefore, to the question posed at the beginning of this section is
that a tetrahedron and octahedron form a seven-sided polyhedron.

24

Chapter 3

Generating topologies from line drawings

Defining an object’s surface topology — a list of an object’s faces and the vertices that comprise
each face - is an integral part of the design process. An object’s surface topology can be used to
calculate the object’s mechanical properties (mass, moment of inertia, etc.). The surface topology
can also be used to generate more “realistic” drawings on the object that help the user see and
understand the object’s shape and structure. This chapter describes Viking s algorithm for generating
an object’s surface topology from a line drawing.

3.1 The arc-labeling algorithm

Viking s users define an object’s surface topology by modifying a line drawing of the object.
Arc-labeling, an extension of Huffman-Clowes line-labeling {7, 17], generates surface topologies
that are consistent with the modified line drawing. In the likely event that there is more than one
consistent surface topology, the user can interactively search through these topologies to find the
desired surface topology. A cost heuristic controls the order in which candidate surface topologies
are generated: surface topologies that have the lowest cost are generated first. If the first surface
topology found is not the one he or she wanted, then the user can guide the search by pointing out
where the topology is “right” or “wrong.”

Using arc-labeling to generate a surface topology from a line drawing is a three step process.
First, all appropriate “labelings” are found for each of we object’s vertices, where each labeling
is a different configuration of surfaces adjacent to the vertex. Second, a branch and bound search
generates mutually consistent labelings for the entire object in order of increasing cost. Third, a
surface topology is found for each consistent labeling as it is generated.

The surface topology generated by this algorithm is displayed to the user, who can either accept
or reject it. If the user rejects the surface topology, then steps two and three are repeated, possibly
using feedback from the user to guide the branch and bound search. If the user accepts the surface
topology, then the geometric constraint solver (see Chapter 4) finds a vertex geometry that satisfies
the implicit and explicit constraints on the object. The surface topology and vertex geometry are
then combined to create a new object description that replaces the current object description.

25

A
a

Figure 3-1: A line drawing that contains an occluding edge.

3.2 Finding the appropriate labelings for each vertex

The vertex labelings used by arc-labeling are a description of the surfaces adjacent to and in the
immediate vicinity of a vertex. A valid labeling for a vertex is one that has a physical interpretation
whose appearance is the same as the appearance of the vertex in the line drawing. An appropriate
labeling is one that is both valid and consistent with other features in the line drawing, the user’s
preferences, and the appropriate labelings for the other vertices.

Viking uses an intersection library to determine the valid labelings for each vertex. Vertices
with two, three or four adjacent edges are grouped into distinct categories so that all vertices in the
same category have the same valid labelings. Chapter 5 describes the algorithm used to generate
the valid labelings for an arbitrary vertex and the criteria used to group vertices. Appendix D
contains Viking's intersection library.

3.2.1 Feature based restrictions

Some of the labelings that are valid for a vertex in general may be inappropriate in a particular
line drawing. For example, in Figure 3-1, the edge between vertices V;, and V; partially obscures
edge V, V.. This situation can only be explained if one or more surfaces extend to the upper-right
of edge V;V,, and no surfaces extend to its lower-left. Therefore, any labeling that violates this
criterion is inappropriate even though it may be locally valid.

The rules used to filter out inappropriate labelings are summarized below:

e Crossing-rule
If two edges cross and one of the line-segments adjacent to the crossing is hidden, then
the obscuring edge must have one or more adjacent surfaces extending over the obscured
line-segment and no adjacent surfaces extending over the exposed line-segment.

This rule assumes that it is possible to distinguish between intersections, where two or more
edges meet at a vertex, and crossings, where two edges pass over one-another in the line
drawing.

e Perimeter-rule
A line-segment on the perimeter of a connected set of lines can only be adjacent to surfaces
extending to the inside of the line drawing.

This rule assumes that the entire object is contained within the boundaries of the line drawing
and that none of the object’s faces contain holes.

Labelings that violate one or both of these rules are eliminated from subsequent consideration.

26

a<

Y Y
| i"c ' i‘ﬁ
v, % ' Ve

Figures 3-2a through 3-2d: Extracting the vertices for labeling.

<

iyt 2 3 4 s 6 7 8 9 1
Ak bl k| ke A
v ¥

12 13 4 15| 16 18

&
AR AR AR AR AR

Figure 3-3a: Valid labelings for V.

v, 1 2 3 4 s 6 7 8 9 11

T] de] k] k] &

del bl de] de | ds

Figure 3-3b: Valid labelings for

oo Vel T E

Figure 3-3c: Valid labelings for V..

Pkl bl k] k] @l del del &) &

AR R A R A RCA A ICA

Figure 3-3d: Valid labelings for V;.

9 20

®
®
& &
K
.

e

27

3.2.2 User restrictions

Viking s users can specify how many faces should be adjacent to an edge when reviewing the
surface topologies generated by arc-labeling. The user may either “sheath” or reject an edge. If
the user sheaths an edge, then the number of surfaces adjacent to that edge will not change. If the
user rejects an edge, then the number of surfaces adjacent to that edge will change. The restrictions
imposed by sheathing an edge remain in effect until explicitly removed by the user. Those imposed
by rejecting an edge only remain in effect until the user accepts an interpretation.

3.2.3 Mutual consistency based restrictions

An edge is consistently labeled if it has the same number of surfaces extending to each
side according to the labeling selected for the * ‘ices at either end. For example, edge V. V.
is consistently labeled if both the labeling selec. for V, and the labeling selected for V. has
one surface extending to the lower-right of V, V.. A vertex’s labeling is considered inappropriate
if, as a result of using it to label the vertex, it becomes impossible to consistently label all the
vertex’s adjacent edges. For example, suppose one of the possible labelings for V,, has two surfaces
extending to up from V,V;. If none of the labelings for V}, has two surfaces extending up from
V. Vs, then the labeling for V, can be rejected as inappropriate.

Waltz filtering [29] is an efficient algorithm for detecting and removing these locally inconsistent
labelings. This algorithm tests each edge to see if the labelings for its vertices are mutually
consistent, and deletes any inconsistent ones. Edges adjacent to a vertex that had one or more
labelings deleted are then retested.

3.2.4 An example of finding the appropriate labelings

Figures 3-3a through 3-3d shows the valid labelings for the vertices in Figures 3-2a through 3-
2d (see Chapter 5 and Appendix D). Note that the valid labelings for V;, V;, and V; are identical,
since these vertices all have the same intersection type (see Section 5.3.1). In these labelings,
the lines represent the portions of an edge in the immediate vicinity of a vertex. The circular
arcs correspond to surfaces between two edges around the vertex. For example, in labeling 2 for
Figure 3-3a, vertex V, is adjacent to one surface that extends left from edge V, V. to the right of
edge V,V;. Note that edge V,V, is drawn with a solid line in Figure 3-3a and it is drawn with a
dashed line in Figure 3-3c. This is because edge V,V. is visible near vertex V, and hidden near
vertex V.. The first step in generating a consistent labeling for Figure 3-1 is to filter out all the
inappropriate labelings for these vertices.

All the vertices in Figure 3-1 lie on the perimeter of the object. Therefore, according to the
perimeter-rule (see Section 3.2.1), a labeling is inappropriate if it has any surfaces extending to the
“outside” of the object. For vertices V,, V; and V;, this eliminates labelings 3, 6-8, 12, 14-16, 18,
19 and 23. For vertex V., this eliminates labelings 10, 16, 17, 21 and 22.

According to the crossing-rule (see Section 3.2.1), V,V; must have one or more surfaces
extending to its upper-right and not have any surfaces extending to its lower-left. Therefore,
labelings 1, 2, 4, 9, 11 and 20 are inappropriate for V, and labelings 1, 4, 5, 11, 13 and 20
are inappropriate for V;. Figures 3-4a through 3-4d show the vertices’ remaining labelings after
applying the feature based restrictions on the labelings.

28

4 5 9

e | &

11

b bLB) b IK_{ be

Figures 3-4a and 3-4b: Appropriate labelings for V, and V; before applying the consistency rule.

|
i
]
|
|
|
|
]

\A q v

by b] b| B g{ b

Figures 3-4c and 3-4d: Appropriate labelings for V. and V; before applying the consistency rule.

If the user has not sheathed or rejected any of the edges (see Section 3.2.2) in Figure 3-1, then
only the mutual consistency restrictions are left to be applied. In labeling 13 of Figure 3-4a, V.V,
has two surfaces extending to the inside of the object. None of the appropriate labelings for V;, in
Figure 3-4b, has two surfaces extending to the inside of the object from V, V;. Therefore, labeling
13 for V, is locally inconsistent with V}’s labelings and can be removed. After comparing the
labelings for V,, and V;, a similar analysis can be used to delete labelings 9 and 20 from Vs list of
appropriate labelings.

3.3 Finding the best, consistent labeling

It is unusual for a line drawing to specify a surface topology uniquely. Normally, a line
drawing will have several different interpretations. Figure 3-1, for example, has the four different
interpretations shown in Figures 3-5a through 3-5d. Since the user is, typically, interested in
only one of the many possible interpretations, some mechanism is needed so that the desired
interpretation is found quickly and easily. In Viking, this is done by assigning a cost to each
labeling and using a branch and bound search to generate labelings for the entire object in order
of increasing cost. This heuristic seems to work well in practice: the first interpretation found by
Viking is normally the interpretation that the user wanted.

7
Y A A A

Figures 3-5a through 3-5d: Interpretations generated for Figure 3-1.

29

3.3.1 Assigning costs to the labelings

A labeling’s cost is based on several factors. The cost of a labeling is the sum of the costs for
each of its adjacent edges. The edge cost is calculated as follows:
Cost = 1 x thechange in the number of adjacent surfaces to either side of the edge +
1 x the number of adjacent surfaces that are different in the current object +
9 x the number of surfaces needed to satisfy the user’s desired object type +

36 if the edge has any adjacent surfaces and passes in front of another edge
without obscuring it +
72 if the edge’s calculated visibility is different than its appearance.

The least important factor is how similar the surface topology described by the labeling is to
the surface topology of the current object description: the more the labeling changes the surface
topology, the greater the labeling’s cost. This cost heuristic favors surface topologies that are
similar to the current object’s surface topology. It means that, normally, the object’s surface
topology only changes in the vicinity of a modification to the line drawing.

The next most important cost heuristic penalizes labelings that do not conform to the user’s
preferred object type. Currently, the user can indicate that he or she desires a “solid” or a “thin-
shell” object. “Solid” objects are ones in which every edge is adjacent to exactly two faces.
“Thin-shell” objects are ones in which every edge is adjacent to one or two faces. For every edge
in a labeling that does not have the desired number of adjacent faces, the labeling’s cost is increased
appropriately. The user may also completely disable this heuristic.

The most important cost heuristic increases the cost of labelings that contain “implausible”
edges. An edge is considered implausible if, using the vertex geometry from the current object, the
calculated visibility of the edge differs from the appearance of the edge in the line drawing. For
example, labeling 4 in Figure 3-4a has a surface between V,V;, and V, V; that crosses V, V.. In order
to be visible, V, V. must be in front of the crossing surface. If, according to the current object’s
vertex geometry, it is not, then V,V, is considered “implausible” and the cost of the labeling is
increased.

3.3.2 Searching for a consistent labeling

Once a cost has been assigned to every labeling for every vertex, a branch and bound search is
conducted to find the least expensive labeling that labels every edge consistently. This is done by
creating a search tree in which every node or leaf in the tree corresponds to a partial labeling of the
object. The search tree is initialized by creating a root node where no labelings have been assigned
to any vertex in the object. Each iteration of the search cycle expands the leaf that has the lowest
expected cost. A leaf is expanded by finding the unlabeled vertex with the smallest number of
labelings that are consistent with the labelings selected for the leaf and its antecedents and creating
a new leaf for each of these labelings. If the leaf being expanded has no unlabeled vertices, then
the leaf is “expanded” by generating the surface topology corresponding to the labelings selected
for each vertex and giving the user a chance to accept or reject it. If there is a tie for the leaf with
the lowest expected cost, then the leaf with the smallest number of unlabeled vertices is selected.

A leaf’s estimated cost is the sum of the costs of the labelings selected for the leaf and its
antecedents and an estimate of the cost of labeling the unlabeled vertices. The cost estimate for the
unlabeled vertices is found by totaling the costs the least expensive labeling for every unlabeled

30

Labeling
Vertex | 1| 2 41 5|1 911113 |20
Ve 54 | 36 | 108 | 36 18
Vi 36 18
Ve 36 18 18 0
V4 36 18

Table 3-1: Costs of the appropriate labelings in Figure 3-1.

vertex that is consistent with the leaf and its antecedents. Note that some of the labelings used to
estimate the remaining cost may be mutually inconsistent, which is why this is an estimated rather
than a true cost. This cost estimate is optimistic (i.e. the true cost will always be as high as or
higher than the estimate). As a result, this algorithm is guaranteed to generate labelings in order of
increasing total cost!.

3.3.3 An example of searching for a consistent labeling

Suppose that, for purposes of this example, the costs in Table 3-1 are the costs assigned to the
appropriate labelings for the vertices in Figure 3-1. These costs are similar to the costs that Viking
would assign to the labelings. The only difference is that no penalty was assessed if the surface
topology described by a labeling was unlike the surface topology of the current object. Note that
the cost for V,’s labeling 4 is high because one of its edges is considered implausible (since it is
assumed that V. lies behind the plane defined by V,, V; and V;).

Initially, the search tree contains a root in which none of the vertices are labeled. The estimated
cost for the root node is 54 (18 + 18 + 0 + 18), meaning that the minimum cost to label the entire
object will be at least 54. Since the root node is the only leaf, it is the leaf that is selected for
expansion.

The first step in expanding a leaf is to decide which vertex to label. In this case, both V; and
V,; have two consistent labelings. Assume that Vj is chosen. This creates two new leaves, one in
which V; is assigned labeling 5 and one in which it is assigned labeling 13.

If labeling 5 is selected for Vj, then consistent labelings for the remaining unlabeled vertices
are:

Vertex | Consistent labelings | Minimum cost
Va 1 and 2 36
V. 4 and 13 18
Vi 2and 9 18

Since labeling 5 for V}, has a cost of 36, the expected cost for the new leaf is 108.
If labeling 13 is selected for V}, then the consistent labelings for the remaining unlabeled
vertices are:

Proof: The cost of a terminal leaf — a leaf in which every vertex is labeled — is the true cost for labeling the line
drawing. In order for a terminal leaf to be expanded, its ccst must be as low as or lower than the cost of any other leaf
in the tree. Since the cost of intermediate leaves are optimistic, the true cost of any other labeling must be greater than
or equal to the cost of the terminal leaf.

31

Vertex | Consistent labelings | Minimum cost
Va 4,5 and 11 18

Ve 9 and 20 0

Vi 2and 9 18

Since labeling 13 for V; has a cost of 18, the expected cost for the new leaf i3 54.

Therefore the leaf in which labeling 13 was selected for Vj, has the lowest expected code and it
is expanded next. Since V, and V; are tied for the lowest number of consistent labelings, assume
V. is labeled. This creates two new leaves, one in which V. is assigned labeling 9 and one in which
it is assigned labeling 20.

If labeling 9 is selected for V., then consistent labelings for the remaining unlabeled vertices
are:

Vertex | Consistent labelings | Minimum cost
Va 5 36
Va 2 36

Since the total cost of the labelings selected for V; and V. is 36, the expected cost for the new leaf
is 108.

If labeling 20 is selected for V., then consistent labelings for the remaining, uniabeled vertices
are:

Vertex | Consistent labelings | Minimum cost |
Va 11 18
Vi 9 18

Since the total cost of the labelings selected for V}, and V., is 18, the expected cost for the new leaf
is 54.

Therefore the leaf in which labeling 20 was selected for V, has the lowest expected code and it
is expanded next. Since V, and V; have only one consistent labeling apiece, only one new leaf 1s
created no matter which vertex is labeled. Since the expected cost of this leaf is 54, it is the leaf
selected for the fourth expansion. This creates a new lear with an estimated cost of 54. This leaf
is then “expanded” by generating the surface topology corresponding to selecting, respectively,
labelings 11, 13,20 and 9 for V,, V;, V. and V; (see Figure 3-5a).

If the user rejected this surface topology, Viking would continue the branch and bound search.
For this particular example, there are two leaves that can be expanded: the leaf in which labeling
5 was selected for V;, and the leaf in which labeling 9 was selected for V.. Both leaves have the
same estimated cost: 108. Since the costs are tied, the second leaf is selected because it has fewer
unlabeled vertices. Therefore the next surface topology generated is the one that corresponds to
selecting, respectively, labelings S, 13,9 and 2 for V;, V4, V. and V; (see Figure 3-5b).

3.4 Generating a surface topology

One a consistent labeling has been found, there is still a problem of generating the surface
topology that corresponds to the labeling. A vertex’s labeling only describes the surtaces in
its immediate vicinity. Generating a surface topology is a matter of piecing the local surface

32

descriptions at each vertex together to form polygons. These polygons form the faces that comprise
the object’s surface topology.

The fragment of a surface described by a labeling can be represented as a list of three vertices:
(Va, W, V) describes a surface fragment aajacent to V, that extends clockwise from V, V; around
Vi to V3 V.. Surface fragments can be joined “head-to-toe” to form cycles that eventually define
one of the object’s faces. Two surface fragments can be joined if the last two vertices in the first
surface fragment are the same as the first two vertices in the second surface fragment. For example,
using the labeling found for Figure 3-1 in Section 3.3.3, the labeling for V, descripes two surface
fragments: (V,,V,,V;) and (V,, V;, V;). The labeling for V, also describes two surface fragments:
(Vg Vo, V) and (V,, Vi, V). The first surface fragment for V, can be joined with the second surface
fragment for V;, forming a four vertex surface fragment: (V,,V,,V,, V).

The process of joining surface fragments can be continued until a closed cycle is created.
A surface fragment forms a closed cycle when the first two vertices in a surface fragment are
equal to its last two vertices. For example, V. is adjacent to three-surface fragments: (V4, V., V,),
(Vs, Ve, Vy) and (V,, V., V;). Either the first or the second surface fragment can be joined to the
four vertex surface fragment created earlier. If V_’s first surface fragment is joined, then a new, five
vertex, surface fragment is created: (V,, V,, Vi, V., V;). This surface fragment describes a closed,
three-sided, polygon that corresponds to one of the faces in this interpretation’s surface topology.

If V’s second surface fragment, instead of the first, had been joined to the four vertex surface
fragment, then a different cycle would be created. If the “wrong” surface fragment is picked, then
it is possible to generate an “illegitimate” surface topology. Viking considers a surface topology
illegitimate if it contains a face in which either an edge or a vertex is repeated. In this particular
case, picking V.’s second surface fragment would have led to a cycle in which V.. was repeated and
could have led to a cycle that contained all nine surface fragments and defined a single, twisted
face.

Viking s algorithm for generating a surface topology deals with this problem by using a heuristic
to select the best surface fragment when there is a choice of surface fragments, and backtracking
when the selected surface fragments leads to an illegitimate surface topology. The heuristic used
to select surface fragments is a simple one: since faces are supposed to be planar, the surface
fragment that lies closest to the plane defined by the “growing” surface fragment is selected first.
The following algorithm, assuming that backtracking is implicitly supported, is used to generate a
surface topology from a consistent labeling:

Make one surface fragment the “active” surface fragment.
Find the “best” surface fragment that can be joined to the active surface fragment.
Join the selected surface fragment to the active surface fragment.

Delete the selected surface fragment.

Create the face that corresponds to the active surface fragment.

1
2
3
4
5. If the active surface fragment does not form a closed cycle, loop back to step 2.
6
7 Delete the active surface fragment.

8.

If there are any surface fragments left, loop back to step 1.

33

34.1 Automatically rejecting a surface topology

Although this algorithm will always generate a legitimate surface topology, it may not generate
a “reasonable” one. Two additional checks are performed to detect and automatically reject
unreasonable surface topologies. A surface topology is considered unreasonable if it contains
either a bridging edge or two conflicting edges.

A bridging edge is one that extends across the inside of the face between two of the face’s
vertices. For example, in Figure 3-6a, edge V;V; would be a bridging edge if V. V;V,V, V, V; formed
a single face. This is because, if faces are planar polygons, then a bridging edge must lie in
the plane defined by the face’s vertices. Therefore, it is impossible for the geometric constraint
solver to solve the implicit in front of or behind constraints that might be placed on the edge (see
Section 4.1.2). It is normally possible to resolve the contradictions imposed by a bridging edge by
using that edge to subdivide the “bridged” face. For example, in Figure 3-6a, the face defined by
VeV; V; ViV, V; could be replaced by two faces: V. Vi V;V; and V,V,V; V.

Two edges conflict if they cross, all four line-segments adjacent to the crossing are visible, and
both edges are adjacent to one or more surfaces. Conflicting edges are inconsistent with the line
drawing because an edge with one or more adjacent surfaces must obscure any edge that crosses
behind it. If voth edges have one or more adjacent surfaces and neither edge is obscured, then both
edges must cross behind the other, which is impossible.

3.4.2 Selecting the surface topology

Once a surface topology has been found, it is displayed to the user and he or she is given the
following options:

e The user can accept it.
Constraint satisfaction is then used to find the vertex geometry (see Chapter 4). Assuming
a satisfactory vertex geometry is found, the new interpretation replaces the current object
description.

If a satisfactory vertex geometry is not found, then the user can either use the new surface
topology with the old vertex geometry or continue the search for a surface topology.

e The user can reject it.
Viking then continues the search for a consistent labeling (see Section 3.3.2).

e The user can sheath an edge (see Section 3.2.2).
e The user can reject an edge (see Section 3.2.2).
This option also rejects the surface topology.

In practice, rejecting an edge seems to be the most effective mechanism of guiding the search for a
desired topology. It is rarely needed, however, since the first surface topology found by Viking is
normally the one that the user wanted.

34

a<

— A
é A\
v, g 4 \A %
%
V.
¥ v ' Y
i \
e Y
Y ¥, s % Mg
v o ¢ Ve Vf .
f . A\ V.
© Figure 3-6b: An c d

Figure 3-6a: A line drawing

' Figure 3-7: An edge with no
to be interpreted.

interpretation inconsistent] :
consistent interpretation.

with Figure 3-6a.

3.5 Problems

Most of the time, Viking s topology generation algorithm works correctly. There are, however,
certain situations in which Viking either generates a surface topology that is inconsistent with the
line drawing, or it cannot find the “desired” surface topology. Neither of these situations are
common, but they can confuse the user when they occur.

3.5.1 Inconsistent interpretations

Figure 3-6a shows a line drawing in which the user has bisected the front face of a cube by
drawing a new edge from one side to the other. Figure 3-6b shows one of Viking's interpretations
of Figure 3-6a. This interpretation, however, is inconsistent with Figure 3-6a. In Figure 3-6a, the
user has indicated that the middle line-segment of V, V. should be obscured. But, in Figure 3-6b,
Viking has found an interpretation that contains an opening, bounded by V,, V;, V; and V}, though
which it is possible to “see” the supposedly obscured line segment.

This problem occurred because none of Viking's rules for generating an interpretation required
Viking to create a face bounded by V,V;V;V,. In this particular case, Viking’s analysis of the
crossing between edges V,V, and V;V; could not determine whether V, V. was hidden by surfaces
extending to either side of V;V;, whether it was hidden by some other surface, or both. The same is
true for Viking’s analysis of the crossing between edges V, V. and V,V;,. The interpretation shown
in Figure 3-6b was generated on the incorrect assumption that there was some other surface that
would hide the center line-segment of edge V, V.. Since no such surface exist=d, the interpretaiion
was inconsistent with the line drawing that generated it.

3.5.2 Impeossible interpretations

Another problem occurs when the user attempts to generate an interpretation of a line drawing
like the one shown in Figure 3-7. In this line drawing, at V,, there seems to be one surface that
extends to either side of V.V.. But, at V,, there seems to be one or more surfaces that extend to
the right of V,V.. Unfortunately, this 1 terpretation for V.V, violates the definition of a consistent

labeling for an edge (see Section 3.2.3). Therefore, in this particular case, Viking will not be able
to generate any interpretation of the line drawing, much less the one desired by the user.

If all faces are planar, then this situation is rare since it can only occur if the vertices in a
potential face are not co-planar and the view transform causes the potential face to fold back on
itself as in Figure 3-7. This problem can normaliy be resolved by moving one or more vertices
so that they all lie in the same plane or changing the view transform. If faces can be non-planar,
however, then this situation may be more common since the vertices forming a face are less likely
to lie in the same plane.

One way to avoid this problem is to relax the definition of a consistently labeled edge so that
an edge is considered consistently labeled if it has the same number of adjacent surfaces at both
ends, instead of the same number of surfaces extending to either side at both ends. Unfortunately,
relaxing the definition increases the number of consistent labelings that can be found. This, in turn,
may make it more difficult for the user to find the desired interpretation. A better solution may be
to modify the definition of a consistently labeled edge so that non-planar faces can “switch sides,”

but planar faces can not.

36

Chapter 4

Solving systems of geometric constraints

Viking splits the process of generating a solid interpretation of line drawing into two parts:
finding the surface topology and solving for a satisfactory vertex geometry. Chapter 3 described
an algorithm for finding the surface topology. This chapter describes an algorithm for using that
surface topology to solve for a satisfactory vertex geometry: one that satisfies the object’s explicit
and implicit geometric constraints. Viking solves these constraints by iteratively solving a linear
programming problem generated from the non-linear equations that correspond to the constraints
and their first derivatives.

The explicit constraints let the user precisely define the object’s desired geometry. For example,
the user can specify that an edge has a length of 2.72, that an angle spans 26.57° or that two edges
have the same length. Viking combines these constraints with constraints derived from the line
drawing and surface topology. The resulting constraint network is rewritten as a non-linear
satisfaction problem and solved by “hill-climbing” from the current vertex geometry. As might
be expected, Viking has trouble when the constraints are infeasible or specify a radically different
vertex geometry. The user can alleviate the latter problem, however, by using direct manipulation
to move the vertices to “about” the correct position.

4.1 Generating the implicit constraints

The implicit constraints help ensure that the new object description is consistent with the line
drawing. There are three types of implicit constraints: world, image and dragging.

e World constraints force every face to be a planar polygon.
e Image constraints force hidden lines to pass behind obscuring faces and lines.
e Dragging constraints force a vertex to follow the mouse when the user is interactively moving

a vertex.

These constraints, by themselves, cannot turn a 2D sketch into a reasonable 3D object. For
example, applying these constraints to a “flattened” cube (an object that looks like a cube from
one viewpoint but whose vertices all lie in the XY-plane) will generate a vertex geometry in which
some vertices are slightly displaced in front of or behind the XY-plane. This geometry satisfies the
implicit constraints but it is an interpretation that a reasonable user would neither expect nor want.

37

S

Figure 4-1: Multiple spanning surfaces.

4.1.1 World constraints

The world constraints force every face on the object to be a planar polygon. These constraints
are the easiest type of constraint to generate. Since the object’s surface topology is known,
generating these constraints is simply a matter of constraining the vertices in each face to be
co-planar with one another.

4.1.2 Image constraints

The image constraints help guarantee that an object looks “right” by forcing the hidden parts to
be behind something and the visible parts to be in front of everything. Normally, these constraints
only have an effect on the resulting vertex geometry when the surface topology has changed.
Therefore, in order to improve performance, Viking only generates these constraints after finding a
new surface topology (see Chapter 3).

There are two types of implicit image constraints:

e Crossing constraints: at any crossing where two lines cross one another without physically
intersecting, the visible line must be in front of the hidden or partially hidden line, and

e Spanning constraints: at any visible vertex, adjacent, visible line-segments must be in front
of any spanning surface fragments and adjacent, hidden line-segments must be behind at
least one spanning surface fragment.

The spanning constraints are similar to the first two validity criteria given in Section 5.2.

A problem occurs in situations like that shown in Figure 4-1, where an adjacent, hidden line-
segment that is spanned by two or more surface fragments. A line-segment will be hidden as long
as it is behind one of the spanning surface fragments: it does not have to be behind all of them. This
complicates constraint generation since Viking can only constrain a line-segment with respect to a
single surface fragment: it can not create a constraint that says “V,V; is behind either (V;, V. V;)
or (Ve, Vo, Ve).”

Viking solves this problem by determining which surface fragment must be in front of the others
and constraining the line-segment to lie behind this surface fragment. In Figure 4-1, (V, V,, V%)
must be in front of (V;,V,,V,) since line-segment V.V, is visible. If V,V, were hidden, then
(Vs, Vi, V.) would be in front. It is always possible to determine the foremost surface fragment
when a vertex has four adjacent edges, and the problem does not arise when a vertex is adjacent to
three or fewer edges. Since Viking is limited to objects in which every vertex is adjacent to four or
fewer edges, it is always able to determine the foremost surface fragment.

38

4.1.3 Dragging constraints

A common operation in Viking is when the user drags a vertex to a new position using the mouse
while maintaining the constraints. Viking uses two different techniques to implement dragging,
depending on whether the dragged vertex is a member of a component! or not. No matter which
technique is used, however, the effect is the same: the vertex seems to follow the mouse while the
rest of the object adjusts to maintain the constraints.

If the dragged vertex does not belong to a component, Viking does the following:

. Set the weight of the dragged vertex to 10 (see Section 4.4.1).
Move the dragged vertex to the position indicated by the mouse.

1

2

3. Solve for a new vertex geometry.

4. If the a mouse button is still pressed, loop back to step 2.
5

. Set the weight of the dragged vertex to 1.

Increasing the weight of the vertex makes it more difficult for the constraint solver to move the
vertex away from its new position, aiding the illusion that the vertex is being dragged by the mouse.
One problem with this algorithm is that solving for a new vertex geometry can take several seconds.
If the dragged vertex is a member of a component, then the algorithm given above will not
work since it is not always obvious how to modify the component’s transformation variables to
move the dragged vertex to follow the mouse. The algorithm used in this case is the following:

. Create a new vertex whose weight is 10.
. Add a constraint that the distance between the new vertex and the dragged vertex is 0.
Move the new vertex to the position indicated by the mouse.

1

2

3

4. Solve for a new vertex geometry.

5. If the a mouse button is still pressed, loop back to step 3.
6

. Delete the distance constraint and the new vertex.

The high weight of the new vertex “encourages” the constraint solver to find a solution in which
the dragged vertex seems to follow the mouse.

4.2 Generating the explicit constraints

Explicit constraints are created by the user and stored in the current object description. Viking's
users add constraints to the object by filling in constraint templates. For example, by selecting the
“equal length” template and picking vertices v,, vy, v, and vq the user can add a constraint that the
distance between v, and v, is equal to the distance between v, and vg.

A component is a distinct group of vertices within the object that has its own coordinate transform.

39

4.3 Representing constraints with equations

Every geometric constraint is represented by one or more non-linear equations (see Section C.1).
These equations are, generally, functions of the vertices’ object space coordinates. Combining these
equations defines a non-linear satisfaction problem that has following form:

Solve for Z such that:
hi(Z) =0 (0Lt

: <k)
g;(¥) 20 (0<;5<|d|

)
The coordinates of a locked vertex are treated as fixed constants. The coordinates of a free vertex
are independent variables that can be modified by the constraint solver.

Planarity constraints are unique in that each planarity constraint generates four new variables
that define a common plane for the constraint’s vertices. Another unique aspect of planarity
constraints is that they are placed on either the object space coordinates or the image space
coordinates of the vertices. In the latter case, the new variables describe a plane in image space
that contains the vertices. This plane description is used by the spanning constraints to determine
whether a line-segment is in front of or behind a surface fragment. In either case, the new variables
are automatically locked if the constraint’s locked vertices describe a well defined plane. If the
new variables are not locked, then they can be manipulated by the constraint solver in the same
way that the coordinates of a vertex are manipulated.

4.3.1 Pseudo-variables

Viking's constraint equations (see Section C.1) can be functions of true variables, which are
traditional free variables, pseudo-variables, which are functions of other variables, or both. For
example: a vertex’s image space coordinates are represented by three pseudo-variables that depend
on the vertex’s object space coordinates (which are normally true variables) and the view transform
(see Section C.2). The image space coordinates are used by the image constraints since this is the
most convenient way to express “in front of”” or “behind” constraints.

When a vertex is added to a component, its object space coordinates are then represented by
pseudo-variables that depend on the vertex’s component space coordinates and the component
transform. Modifying the component’s transform is, therefore, equivalent to modifying the object
space coordinates of every vertex in the component. The component transform has four parts (see
Section C.3).

u The uniform scaling parameter (1 variable).

& The axis-dependent scaling vector (3 variables).
& The translation vector (3 variables).

¢ The orientation quaternion (4 variables) [25].

Each of these parts can be independently locked. For example, if the user locks a component’s
scaling variables, then the component will move as if it were a rigid body.

40

4.3.2 Discarding redundant constraints

In general, analyzing geometric constraints for redundancy is difficult. Viking, however, is able
to detect certain classes of redundant constraints on components. For example, if the component
is only free to move as a rigid body, then any angular or distance constraint involving only the
component’s vertices are redundant. The following rules are used to discard redundant constraints
if all of a constraint’s vertices belong to the same component:

o Planarity constraints are always considered redundant.

e Angular constraints are considered redundant if the component cannot scale independently
along each axis (& is locked).

¢ Distance constraints are considered redundant if the component can not scale either uniformly
or independently along each axis (u and & are locked).

4.4 Solving non-linear equations

Viking solves systems of non-linear equations by splitting them into their independent compo-
nents using the following algorithm to solve each component:
1. Finding a displacement by creating and solving a linear optimization problem.
2. Finding an approximation to the optimal displacement by using a binary search.
3. Adding this displacement to the variables.
4.

If some of the equations are unsatisfied and satisfactory progress is being made, loop back
to step 1.

4.4.1 Finding the displacement

The goal of each iteration cycle is to reduce the global error in the system of non-linear
equations. The first step in this process is to find a displacement in which the global error
decreases. This is done by creating and solving the following linear optimization problem:

Minimize: S, | e; |+, 55 + v Thoy(we | de |)

Such that: hi(Z)+ Vhi(E)-d+e = 0 0<i<|h|
g;(Z) + Vg;(Z)-d+s; 2 0 0<j<|gl

s; 2 0 0<j5<|g]

'dkl < (b/wk) O§k<n

Solve for: d,€,s
Where:

e 71 is the number of variables.

41

| & | is the number of non-linear equations of the form: k;(Z) = 0.

T
| § | is the number of non-linear equations of the form: g;(z) > 0.

e Z is the initial position vector.
e d is the displacement vector.

e ¢ and s are the remaining error variables.

wy, is the weight for variable & (typically 1 < w; < 10).

v is the displacement bias (currently 10~3).

b is the maximum step size (currently 5% the length of the diagonal of the object’s bounding
box).

This linear programming problem is similar to the one developed by Bullard and Biegler [4] to
solve systems of non-linear equations?. This problem is not in standard form, since the absolute
value function is used in the objective function. It is, however, easy to convert this problem to
standard form by:

e replacing e; with ¢; — r;,
e replacing | e; | with ¢; + r;, and
e adding the equations ¢; > Oand r; > 0.

A similar substitution is used for d.

Since the displacement is found using a linear approximation of a non-linear system, it may
not be optimal for reducing the glcbal error. Indeed, for some systems, the global error will
increase if the vertices are moved by the displacement. Viking uses two techniques to mitigate this
problem. First, because the linear approximations are more accurate for small displacements, the
objective function favors solutions with smaller displacements. Second, Viking searches along the
displacement vector to find the distance that produces the smallest global error.

44.2 Finding an approximation to the optimal displacement

A binary search along the vector defined by the displacement is used to find the displacement
with the smallest global error. The displacement found by the search is only an approximation of
the optimal displacement, since the search is limited to sampling a small number of points along a
single vector that may not contain the true optimal displacement. The algorithm used to perform

2The only significant differences are that, in Bullard and Biegler’s version, v = 0 and a different strategy is used
to find the approximation to the optimal displacement.

42

the binary search is given below (where u(Z) is the global error at £):

Starting with: [< 0.1 (1]
hel 2]
Loop at most 5 times: [3]
m < (I+h)/2
if ((u(F + hd) < p(Z + 1)) A (4(E + hd) < p(Z + md))) [4]
exit loop.
else if (u(Z + Id) < u(Z + hd))
h&sm (5]
else
lem (6]

-

(hd) is the displacement used to move the vertices.

The parameters for this search were determined through trial and error as Viking was being
written. The initial values for 4 and [(lines [1] and [2]) were selected because they seemed to give
the best performance. Different values for 4, for example, seemed to make the system either slower
or less predictable. Setting ! to zero seemed to make it more likely that the system would become
trapped in a local minima. The same is true for the maximum number of times the loop was allowed
to execute (line [3]). When less than five loop iterations were allowed, the algorithm seemed to
“fail” more frequently than it did when five (or more) loop iterations were allowed. Allowing
more than five iterations, however, seemed to increase the time required to find a solution without
noticeably decreasing the number of failures.

The benefit of using the binary search is most clearly seen when 7 is close to a solution for
the system of equations. In this situation, the initial displacement may be too large. Without the
binary search, the vertices would be displaced beyond the solution. On the next iteration, the
displacement may overshoot the solution again and the constraint solver will oscillate around the
solution without finding it. Using the binary search described above mitigates this problem. If
the displacement steps too far beyond the solution, then the global error will not decrease, the test
on line [4] will be false, and the search will continue on either the first half of the displacement
vector (line [5]) or the second half (line {6]). In most cases (such as while solving the systems of
equations generated while creating the examples in Chapter 2), the search loop ended after two or
three iterations.

The global error is the sum over all equations of each equation’s error function (see Sec-
tion C.1). The error functions are similar to the constraint functions used to construct the LP (see
Sections 4.4.1 and C.1). The primary difference is that the constraint functions are, as much as
possible, designed to be have small second (and higher) derivatives and the error functions are
designed to measure the error in units that are roughly proportional to the amount the variables
need to change to eliminate the error. In general, the error function is simply a permutation of
the constraint function raised to some power (see the formulation of the angular constraint in
Section C.1 for an example of this).

43

4.4.3 Adding the displacement to the variables

Once a displacement has been found, it is added to the values of the variables. A check is
then performed to see if satisfactory progress is being made. Viking currently bases progress on
the slope of the change in global error over the past fifteen iterations. If this slope is close to zero
or positive (which would indicate an increasing global error), the search ends even though some
of the constraints are left unsatisfied.

4.5 Solving non-linear equations and other black magic

Solving systems of non-linear equations is, at best, chancy business since there are no algo-
rithms that are guaranteed either to find a solution or to determine that no solution exists. All of the
algorithms for simultaneously solving systems of non-linear equations, therefore, tend to be of the
form: “beat the numbers with a stick until either the numbers break or the stick does.” As might
be expected, these algorithms are very sensitive to the nature of the equations they are solving and
the initial conditions. Change either and an algorithm that worked reliable may fail miserably.

This chapter describes the algorithm Viking uses to solve systems of non-linear equations. It
is the result of combining a theory (based on Bullard and Biegler’s algorithm [4]) with a lot of
tinkering to make it work. Unfortunately, the tinkering process can continue far beyond the point
of diminishing returns. I did not, for example, try every possible formulation of the constraint and
error functions. Instead, I found something that seemed to work most of the time and went on to
other things. In the cases where I did a lot of tinkering (such as the parameters for the search loop
in Section 4.4.2), I have tried to indicate what some of the trade-offs were. In other cases, the first
thing I tried seemed to work (such as the maximum step size in Section 4.4.1) and I do not know
what the effect of changing it would be.

Chapter 5

Finding a vertex’s valid labels

The algorithm described in Chapter 3 for generating a surface topology from a line drawing
used an intersection library (see Section 3.2 and Appendix D) to find the valid labelings: alabeling
was considered valid if and only if it existed in the intersection library. This chapter describes arc-
labeling, which is an algorithm to test the validity of a labeling for arbitrary vertices by determining
whether it has a physical interpretation whose appearance matches the appearance of the vertex in
the line drawing.

Viking's intersection library was created by using arc-labeling to test the validity of every
possible labeling for each distinct vertex types. Arc-labeling, however, is not limited to testing
the validity of labelings for the vertex types in the intersection library. Instead, arc-labeling can
be used with vertices adjacent to any number of edges and labelings containing any number of
surfaces adjacent to each edge.

. 5.1 Line-labeling vs. arc-labeling

In arc-labeling, an edge’s label tells how many surfaces extend to either side of the edge and
indicates the left and right bounding edges for each surface. The surface can be thought of as a solid
arc extending left from one edge around the vertex to the right of another edge. Huffman-Clowes
line-labeling [7, 17], in contrast, uses four different edge labels: convex (where the edge lie< along
a ridge formed by the two surfaces), concave (where the edge lies at the bottom of a valley formed
by the two surfaces), and left or right occluding (where both surfaces extend to the left or right
of the edge). The primary difference between the two systems is that arc-labeling can represent
edges adjacent to any number of surfaces and that line-labeling can distinguish between convex
and concave arrangements of the adjacent surfaces.

Another difference between the two systems is that line-labeling algorithms typically use a pre-
computed intersection “library” (also called a junction library) which contains all valid labelings
for each distinct vertex type. The intersection library is normally hand generated and only contains
vertices with two or three adjacent edges, though there are some exceptions [18]. Arc-labeling can
be used to test the validity of a labeling for any vertex, though the time required to test a labeling
grows exponentially with the number of adjacent edges. In arc-labeling, as with traditional line-
labeling, it is possible to group vertices into distinct types and pre-compute the valid labelings for
each type. Appendix D shows Viking's intersection library, which contains the valid labelings for

45

any vertex with two, three or four adjacent edges.

Both line-labeling and arc-labeling assume that the line drawing represents a general view
of the object [24]. In essence, this is an assumption that a small change in the observer’s view
point will produce a correspondingly small change in the line drawing. This assumption has three
corollaries in Viking:

1. Every face is drawn as a closed polygon with a non-zero area.
2. Every edge is drawn as a hine with a non-zero length.
3. If two adjacent lines are parallel, then the corresponding edges are parallel.

These corollaries eliminate several special cases (in particular, what is left and right for a line with
a length of zero?), but make it impossible to use Viking to analyze many engineering Jrawings
since these drawings often violate one or more of the corollaries.

5.2 Testing a labeling for validity

A model of a vertex’s labeling can be created by assigning a position to the endpoint of
each adjacent edge. Using this model, the visibility of each adjacent edge can be calculated and
the surface fragments can be tested to see if they intersect anywhere except along a common
boundary. If the endpoints can be positioned such that the appearance of the model is the same as
the appearance of the vertex in the line drawing and none of the surface fragments intersect one
another, then a physical model of the labeling exists and labeling is valid.

It is possible to write first order logic expression that corresponds to the criteria above using
the notation in Table 5-1. These expressions (along with their English translations) are as follows:

e Every visible edge is in front of every spanning surface fragment:

(VweV,(VX €S| (vx X), (vt &))) (5.1)
e Either the entire vertex is hidden by a non-adjacent surface or

every hidden edge is behind at least one spanning surface fragment:

(V=0 v(Vhe H,(3X € S | (hx X),(h] &)))) (5.2)
e No two distinct surface fragments intersect anywhere except along a bounding edge:
(VX e S,(VYeS|(Y#X),(XR) ' (5.3)

A vertex labeling is considered valid if and only if it is possible to create a model of the labeling
whose appearance matches that of the vertex in the line dravving. This is possible if and only if all
three of these expressions can be simultaneously satisfied.

Using the other predicates using the expansion given in Table 5-2, the ® predicate can be
written as a more complicated expression using the other predicates. Table 5-2 was generated
by enumerating all valid arrangements of two surface fragments around a point (see Figures 5-1a
through 5-9). The other predicates, except for the f} and |} can be evaluated based on the angle
each edge makes with the horizontal. Therefore, the validity criteria can be reduced to a Boolean
expression containing only f} and |} terms.

The algorithm for determining the validity of an arbitrary labeling is as follows:

46

a,b,... = edges
X,Y,... = surface fragments
V= Setof all visible edges adjacent to the vertex.
H = Set of all hidden edges adjacent to the vertex.
S Set of all surface fragments adjacent to the vertex.
ly = The edge forming the left boundary of &'.
ry = The edge forming the right boundary of X'.

True If X spans a (a lies between the bounding edges of X',
(ex X) = a#lyanda # ry).
False otherwise

(@t &) = True If ais in front of the plane defined by X'
- False otherwise
_ True If a is behind the plane defined by X'
(ad &) = { False otherwise
(X®Y) = True X and) do not intersect except along a bounding edge.
- False otherwise

Table 5-1: Notation key for validity expressions.

. Generate Boolean expressions corresponding to expressions (5.1) —(5.3), based on the vertex
and the labeling.

. Combine the three Boolean expressions into a single e xpression (ANDing the three clauses
together).

. Simplify the Boolean expression by:

e rewriting the @ predicate expressions using the other predicates, and
e evaluating all except the {} and | predicates.

. Rewrite the Boolean 2xpression in disjunctive normal form. This expression will have the
form:

B = CivCyVv---VvC(C, 5.4)
where each C; is an expression of the form:
(T X)) N (a2t)N Alan T X)) A (a1 4 X)) Ao A(am U X)
. Use the algorithm given in Section 5.3 to determine the satisfiability of each C; in expression
(5.4). If one or more terms are satisfiable, the expression as a whole is satisfiable. This means

that the labeling satisfies the validity criteria and, therefore, has a physical interpretation
whose appearance matches the appearance of the vertex in the line drawing.

47

La
Lab
LX

(a ¢)
(X ®Y)

n(X,Y)
n](Xs)”)

m(X,Y)

K(X,Y)

o(X,Y)

o1(X,Y)

02(X,))

(X,))

w(X,Y)

The angle a makes with the horizontal.

The angle counterclockwise from a to b.
The angle between the bounding edges of X'
-(a x X)

(X, V)V E(X, V)V (X, V)V T(X.Y)VYPX, V)V w(X, YV

WY, X)V &YV, X)V oI, X)V (Y, X))V (Y, X))V w(V, X)

(lx x V)A (tx x Y) A (Iy < X) A (1y o< X) A (m(X,Y) V (X, D))

(LX < 180°)A

(Ax WA (2 V) A (Iy $ X) A (ry § X))V
(4N (x LY)A Iy T X)A (ry X))V
(L A (x SVYA(Qy LX) A (rp 1 X))V
(I I A (x V) Ay R X) A (ry 4 &)
(Lrxly < 180°) A (Zryly < 180°)A

((x XA (tx V)N (y T X) A (ry § X))V
((x A (x L Y)A(y 4 X) A (ry f &)))

(lx & V) A (tx < Y) A (ly ¢ X) A (1y o¢ X) A (LX < 180°)A
(e f V) A (rx 2 I))V
(I 4 V) A (rx 4 D))

[Figure 5-1a]
[Figure 5-1b]
[Figure 5-1c¢]
[Figure 5-1d]

[Figure 5-2a]
lFigure 5-2b]

[Figure 5-3a]
[Figure 5-3b]

(Ix x V) A (rx € V) A (ly & X) A (ry oc X) A (01X, D) V 02(X,)))

(ly # rx) A (Lryly < 180°)A
(e t V) A (ry 4 X))V
((Ix $ V) A (1y 1 X))
(ly =tx) A ((LX < 180°) V (LY < 180°))A
(((x t VYA (ry § X))V
((Lx $ V) A (ry 1+ X))

(ly x VIA(tx g VIA(ly ¢ X) A (ry ¢ X) A (LY < 180°)A
((x V)V
(lx 4 3))

(e € M)A (tx & V) A (Iy o X) A (ry o€ X) A (LY < 180°)A
((rx V)V
(rx 4)

(x ¢ Y)A (rx ¢ VYA (ly € X) A (ry ¢ X)A
((Wx # ly)v
((lx = ly) A (LX = 180°%)))

Table 5-2: Boolean expansion of (X ®)')

48

[Figure 5-4a]
[Figure 5-4b]

[Figure 5-5a]
[Figure 5-5b]

[Figure 5-6a]
[Figure 5-6b]

[Figure 5-7a]
[Figure 5-7b]

[Figure 5-8]
[Figure 5-9]

Figure 5-1a: Figure 5-1b: Figure 5-1c: Figure 5-1d:
((Ix PPN A (e YA U A (e f V)A(rx UI)A - (e $ V)A(rx 1 V)N
I X)A(y 4 X)) Iyt Ay 1 X)) Iy X)A(y 1 X)) (Iy ft X)A(ry § X))

1 Figure 5-2a: 1 Figure 5-2b: Figure 5-3a: Figure 5-3b:
i G oI WIS

1 X
X
X l ;-x ’ {X
| 1& Qe vy y
i y
ry A1,]x lx

Figure 5-4a: Figure 5-4b: Figure 5-5a: Figure 5-5b:
LA &) I tNA(y) Wt A L) IV Ay 1)

r
X X
1 x r 1 e 1l x r 1 r lx‘%‘ly
N\,
y y y y y
Figure 5-6a: Figure 5-6b: Figure 5-7a: Figure 5-7b: Figure 5-8: Figure 5-9:
(tx 1+)) (rx 4) (x 1)) (lx 4) (True) (True)

l;(=} Ty =a
]y =a fy==¢
la=180° (X = 270°
Lb=90° LY = 135°

v Lc = 45°
V ={a,c} H={b}
: (b)) (c x X)
Figure 5-10: A vertex Figure 5-11: Proposed labeling '
to be labeled. for Figure 5-10. Table 5-3: Data for

Figure 5-11.

49

5.2.1 An example of testing a vertex’s labeling

Suppose you have a vertex like the one shown in Figure 5-10 and wish to determine whether
the labeling shown in Figure 5-11 is valid. The first step in determining the validity of the labeling,
according to the procedure outlined in Section 5.2, is to translate the first order logic expressions
from Section 5.2 into Boolean expression.

For Figure 5-11, the Boolean expressions corresponding to equations (5.1) - (5.3) are:

(cft &) (5.1)
(({a,e}={0}) v (b4) (5.2)
(XN A (YR X)) (5.3)

Expression (5.2') can be rewritten as the following expression:

(64 Y) (5.2")
Since the @ predicate is commutative, expression (5.3') is equivalent to:
(X®Y) (5.3")

Using Table 5-2, this can be expanded to:

(X®Y) = (X, V)VEX,I)Vo(X, V)V (X, V) VH(X, V)V Ww(X,Y)V
(Y, X)V e, X)V oV, X)V (Y, X))V (Y, X) VP, X) (55)

Each term in expression (5.5) corresponds to a different pattern of spanned edges. The pattern of
spanned edges in Figure 5-11 corresponds to g(&’,)’) — all other terms are false. Therefore, in this
particular case, (X @ V) = p(X,)).

Expanding o(X, Y) and evaluating everything except the {} and |} predicates produces:

o(X,Y) = bxMA(agxV)A(ax X)A(cx X)A (oi(X, D)V 02X, D))
= (gl(va)VQZ(Xay))

o1(X,)) = (a#a)A(45° <10)A(((BE VA (c L X))V ((BIY)A(ch X))
= (False)

02(X,Y) = (a=a)A((270° < 180°) V (135° < 180°)) A

(V) A(cU X)) V(Y Y)A (e &)))

(BN (X)) V(LI A(ch X))

o(X,Y) = (a(X, V)V e X. D))

((False) V 02(X,)))

QZ(va)

(BN V)A{cU X))V (BYI)A(ch X)) (5.3")

50

Combining (5.1'), (5.2") and (5.3") produces:
(et X)AGYIIIA(CRI)A (Y X)) V(B Y)A(ct X))
Rewriting this expression in disjunctive normal form produces:

(et X)AGUIV)ABRY)A(cS X))V
(et X)AGLI)IA B I)A(ct &) (5.6)

If this expression is satisfiable, then the labeling shown in Figure 5-11 is valid.

£.3 Determining the satisfiability of a validity expression

The satisfiability of an expression containing the 1} and | predicates can be evaluated if the
expression can be written in the following form:

C = (et X)A(a2 Nt XA)AA(an T X)) A (Gng1 § Xngt) A= Alam I) (5.7)

This expression is obviously unsatisfiable if it contains (a; 1 A;) and (a; { X;) terms in which
a; = a; and &; = X;. Potentially satisfiable expressions are evaluated using an algorithm similar
to the one developed by Sugihara [27] to test the feasibility of a line drawing’s interpretation.

The first step is to create vectors for each edge and then to find the normal vector for each
surface fragment. These vectors and normals are created as follows:

e Foreacha € U, {a;}, create a vector:
P, < (cos La,sin La,z,)
where z, is unknown (g, is the position of the endpoint of edge a).

e Foreach X € UjL,{&;}, create a vector:

(Prx % P1,) if (LX < 180°)
fix < { (Pr, x (cos Lry +90°,sin Lry +90°,(x)) if (LX = 180°)
(), % Prx) otherwise

where (y is unknown (7i y is an upward-pointing normal for the plane defined by &).

The dot product of p; and 7 ¥ can be used to determine whether p; is above, on, or below X. If
the dot product is positive, p; is above &'; if it is zero, p; is on X'; otherwise, p; is below X'. Using
this, the predicates in C can be evaluated as follows:

e For each predicate (a; f} X;), create the equation: Ry, Po, >0 (1<i<n)
e For each predicate (a; | &j), create the equation: fix, Pa, <0 (n<j<m)
o Foreach X € U], &; | LX = 180°, create the equation: 2., + 2/, =0

The last equation is needed because the normal vector for a surface fragment that spans exactly
180° was generated using the assumption that its bounding edges were parallel.

51

Even though the first two equations are linear, they are not in a form that can be solved using
linear programming. These equations can be converted to forms that can be solved using linear
programming by replacing > 0 and < 0 with > ¢ and < —¢ respectively (¢ is any positive
constant). This modified system of equations is equivalent to the original system'. If this modified
system of equations has a solution, then there is a way to arrange the edges and surface fragments
so that the relations described in C are satisfied.

5.3.1 Continuing the example

The first term of expression (5.6) is clearly inconsistent (for example, ¢ cannot be simultane-
ously in front of and behind &’). The second term can be simplified and written as:

(et X)A(bL D) (5.6

Using the algorithm given in Section 5.3, the following vectors and equations can be generated
from Figure 5-11 and expression (5.6'):

Pa < (cos180°sin180°, z,) [Pn < (-1,0,2,)]
P < (cos90° sin90°, z;) s < (0,1,2)]
P & (cos45°sin45°, 2,) [F. < (V2/2,V2/2,z)]

ﬁ.l’ = ﬁb X ﬁa [ﬁX <~ (zm —Zp, 1)]

Ay < Bxp [y < (2a5qrt2/2 —(2asqri2/2 + =), sqri2[2)
ix-p. > 0 [245qTt(2)/2 + zsqrt(2)/2+ z. > O] (5.8)
ny-pp < 0 [—(2a5q7t(2)/2 + zc) + zps¢rt(2)/2 < O] (5.9)

Equations (5.8) and (5.9) can be satisfied by making the following assignments:

2z <« 0
Zp < 0
ze < 1

Since a solution that satisfies equations (5.8) and (5.9) exists and these equations were the
generated from the validity criteria, the labeling shown in Figure 5-11 is valid. In other words, it is
possible to build a physical model of the labeling shown in Figure 5-11 that matches the appearance
of the vertex shown in Figure 5-10 and in which no two surfaces intersect except at a common
boundary.

Proof: A solution to the modified system of equations is a solution to the original system. Any solution to
the original system can be multiplied a large enough constant that it constitutes a solution to the modified system.
Therefore, if a solution exists to the original system, a solution exists to the modified system

52

[NS 2

Fi 2
igure 5-12a: Figure 5-12b: Figure 5-12¢: Flgure 5.124: Figure 5-12e: T.

Arrow/2. Straight. Arrow/3. Fork/3 ({ca = 180°A
(Lba > 180°) (Lba = 180°) (Lca > 180°) orx/3. Lba > 180°)
b
. g A d b

C

d ;b
- d
. .a ab d

Figure5-12f: ~ [gure>-12g: FigureS-12h: o5 12i K. Figure 5-12j: X.

Fork/4. Psi. 5 T eno
Arrow/4.) (Lea > 180°A (Lea = 180°A (Lda = 180°A (Lea = 1800/\
({da > 180°) Lbd > 180°) Ldb > 180°) Lch > 180°) Lbd = 180°)

5.4 Vertex types

The valid labelings for a vertex are insensitive to the exact position of the edges around the
vertex. In particular, two vertices will have the same valid labelings if:

e the corresponding pairs of edges around each vertex have the same angular sense (less than
180°, equal to 180° or greater than 180°) and

e the corresponding edges around each vertex are both either visible or hidden.
Although I do not have a formal proof for this conjecture, it seems plausible because:

¢ The disjunctive normal form of the validity criteria (see Section 5.2) for identical labelings
on two similar vertices will be identical.

o Therefore, terms that are obviously inconsistent (see Section 5.3) for one vertex will be
obviously inconsistent for the other.

e Also, the linear programming problems generated using the algorithm in Section 5.3 for each
vertex will be similar. The only difference will be the angles used to generate the p, and 72y
vectors.

e Therefore, I believe that, since the LP consists primarily of inequality equations, the LP
generated for one vertex will have a solution if and only if the corresponding LP for the other
vertex has a solution.

If this assertion is true, then it is possible to create an intersection library by pre-computing
the valid labelings for each vertex type. The advantage of using an intersection library is that it is
faster find the valid labelings in the library than it is to generate them from scratch.

33

b
:
H
H

e Y w o

Figure 5-13a: A valid non-manifold labeling

for the vertex in Figure 5-10. Figure 5-13b: An invalid labeling for the

vertex in Figure 5-10.

4 9 ; 10| 13 16 17 . 20 21 . 22 . 24

&\ G| £
&S| &
Figure 5-14: Valid labelings for Figure 5-10 in which edges can have 0 — 3 adjacent
surfaces.

(4

26 28

Figures 5-12a through 5-12j show all distinct arrangements of two, three or four edges around
a vertex. The valid labelings for a vertex can be found by matching it against one of these
arrangements and then finding the entry in the library that corresponds to the pattern of visible and
hidden adjacent edges. Using the intersection library in Appendix D, for example, an Arrow/3
intersection in which every adjacent edge is visible has 19 valid labelings (compared to 23 valid
labelings for an Arrow/3 intersection in which every adjacent edge is hidden).

5.5 Non-manifold surface topologies

An object with a manifold surface topology can be thought of as a “solid” object: it has
a distinct inside and a distinct outside. It is, essentially, the three-dimensional equivalent of a
two-dimensional closed polygon. And, although the majority of object design deals solely with
manifold objects (solid modelers are called that for a reason), non-manifold objects have their uses.
In manifold objects, every edge is adjacent to an even number of faces. Huffman-Clowes
line-labeling [7, 17] is limited to line drawings in which every edge in the corresponding object
is adjacent to exactly two faces. Arc-labeling does not have this limitation: the validity criteria
works even when a labeling calls for an edge to be adjacent to three or more surface fragments.
For example, consider the labeling in Figure 5-13a. This is identical to the labeling in Figure 5-
11 except that a third surface, Z (1z = @ and rz = b), has been added. When testing the validity
of the labeling in Figure 5-13a, equation (5.3’) would include (¥ ® Z) and (Y ® Z) terms. The
end result, however, would be the same: the labeling in Figure 5-13a is valid.
Suppose, as in Figure 5-13b, that Z had Iz = c and rz = a. This is because A" and Z intersect

54

one another at someplace other than a bounding edge?. Since X’ and Z intersect, (X @ Z) is false
and the validity criteria for the labeling can not be satisfied. Therefore is it not possible to create a
model of the labeling whose physical appearance matches Figure 5-13b and the labeling is invalid.

Figure 5-14 shows all of the valid labelings for the vertex in Figure 5-10 if the restrictions on
the number of faces adjacent to an edge were removed. Labeling 10 corresponds to the labeling
shown in Figure 5-11 and labeling 24 corresponds to the labeling shown in Figure 5-13a. Since
the labeling in Figure 5-13b is invalid, there is no corresponding labeling in Figure 5-14.

2Proof: Both surfaces contain edge a and, therefore, contain the line defined by edge a. Since both surfaces span
over 180°, both surfaces must intersect along both a and its reciprocal vector.

55

Chapter 6

Viking s performance

Two critical aspects of an interactive system are how quickly it can react to the user’s actions and
how performance degrades as the problem size increases. Viking's performance as an interactive
system depends on how quickly it can generate surface topologies and solve for vertex geometries,
since these are the only operations that take a significant amount of processing time. Nearly 18
CPU seconds are required to find a surface topology for a line drawing with 100 vertices and over
70 CPU seconds might be needed to find a vertex geometry for an object with 100 vertices and 99
distance constraints. In both cases, performance is a non-linear function of the problem size.

6.1 Surface topology generation

Viking s performance at generating surface topologies was tested by creating several faceted
spheres, such as the one shown in Figure 6-1, and modifying the line drawing by making all of the
line-segments obscured by one face visible. Table 6-1 lists the times required to perform the steps
required to find a surface topology corresponding to the modified line drawing on a Sun SPARC
station 1+, a 16 MIPS workstation.

‘%T 100.00 + Check © Setup
g X Load % Search
8 10.00} 0o Filter ® Total
\J
@ "
g 1.00
oy
2 o0}
S
0.01; 76 3z 64 128
. _ Number of vertices
Figure 6-1: 100 vertex object for Figure 6-2: log/log graph of CPU time vs. number of
testing topology search vertices (topology generator).

performance.

56

| # of vertices | 9] 16] 25] 36| 49| e64] 81| 100 |

of labelings 121 | 375 | 707 | 1691 | 3013 | 3852 | 4777 | 6657
of leaves 15 3| 56| 107 | 164 | 233 311 399
Total memory (MB) | 0.7 1.3 20 38 6.3 84| 110 14.6
Check time 004 | 004 | 009 | 0.13] 0.19| 024 | 033 | 041
Load time 021|060 {1.10| 246 | 419 575 | 7.58| 998
Filter time 0050241047) 067 078 | 095 | 1.03| 1.09
Setup time 007 {015(030] 080} 158 | 222 | 300} 4.21
Search time 006 015|023 038} 062 | 090 | 127 | 1.89
Total time 044 | 1.18 | 2.19 | 436 | 7.36 { 10.06 | 11.23 | 17.58

of labelings is the total number of vertex labelings found in the load step.

of leaves is the total number of leaves in the search tree.

Total memory is the amount of memory used for Viking during the search.

Check time time required to check for obvious inconsistencies.

Load time time required to load the valid labelings for each intersection.

Filter time time required to perform Waltz-filtering {29].

Setup time time required to initialize the search tree.

Search time time required to searcl for the surface topology.

Total time total time required to find the surface topology.

All times are in CPU seconds on a Sun SPARC station 1+
Table 6-1: CPU time requires to generate a surface topology.

Viking s memory requirements are high: over 14 megabytes to find an interpretation of the 100
vertex line drawing. As a result, Viking often spends a significant amount of time page-swapping,
time that is not reflected in the CPU time. For example, finding an interpretation for the 100 vertex
object takes, approximately, 20 “wall-clock” seconds on a SPARC station with 24 MB of RAM
and almost 150 “wall-clock” seconds on one with only 16 MB of RAM.

The examples used in this performance analysis represent, to some extent, Viking’s worst
case performance. For example, Viking needs approximately the same amount of time to find an
interpretation for the 175 vertex object in Figure 1-3d as it does to find an interpretation for the
100 vertex test object. Most of the test object’s vertices are adjacent to four edges and have over
100 valid labelings apiece (see Appendix D). In addition, since there are few occluding edges or
peripheral vertices, only a small fraction of the labelings are rejected by the crossing or perimeter
rules (see Section 3.2). As a result, a large number of possible vertex labelings are found in the
load step and, consequently, Viking spends most of its time loading the possible labelings for each
vertex. This overhead can probably be reduced by changing the way labelings are “loaded.” In
particular, Viking creates a vertex specific instance of each appropriate labeling for each vertex. If,
instead, Viking were to merely reference the labeling in the intersection library and calculate the
vertex specific values on demand, the load step would be significantly faster.

In its current form, Viking requires less than 18 CPU seconds to find an interpretation for a line
drawing like the one shown in Figure 6-1. Also, the CPU time seems roughly proportional to n'-
(where n is the number of vertices), at least for the problem sizes used. The algorithm used to find
a surface topology is one that should exhibit exponential growth. But, at least for problems with

57

| # of vertices | 9] 16] 25] 36] 49] 64 81 100]

Distance | Mintime | 0.13 | 0.26 | 0.61 | 1.89 | 234 | 5.51 | 11.16 | 27.01
Max 0.16 | 046 | 0.98 | 2.61 | 896 | 21.23 | 29.74 | 73.34
Planar Mintime | 023 | 034 | 056 | 093 | 149 | 283 | 348 | 5.28
Max 029 054074126226 321 | 488 | 7.89
Angular | Mintime | 0.33 | 0.74 | 1.61 | 249 | 424 | 7.38 | 10.99 | 16.13
Max 041 {098 | 2.38 | 3.61 | 6.69 | 9.61 | 2298 | 31.29

Mintime best case time required to find a satisfactory geometry.
Max time worst case time required to find a satisfactory geometry.
Times are in CPU seconds on a Sun SPARC station 1+
Table 6-2: CPU time requires to solve a system of constraints.

45 45 4 45

‘) _ 45 4 45
Figure 6-3a: 9 vertex distance constraint

network. i]
Figure 6-3b: 9 vertex angular constraint

network.

less than 100 vertices, the exponential components of the search are dominated by the polynomial
ones. With more efficient algorithms and faster workstations, arc-labeling should allow future
versions of Viking to provide response times appropriate for an interactive system, especially when
used with relatively simple objects.

6.2 Constraint satisfaction

Another aspect of Viking’s performance is the amount of time required to find a geometry
that satisfies a set of geometric constraints. Unfortunately, since different systems of constraints
have radically different behavior, Viking's performance in this area is harder to characterize than
its performance when generating surface topologies. However, by looking at Viking s performance
on several different constraint networks, it is possible to draw some general conclusions.

The following three distinct constraint networks, each using a different type of geometric
constraint, were used to analyze the performance of Viking s constraint soiver (where ¢ is the vertex
ID and [-0.1,0.1] is a randomly generated number between —0.1 and 0.1):

e Distance: every vertex is constrained to be exactly one unit away from its left and right
neighbors (see Figure 6-3a). The initial vertex positions are:
(¢ +[-0.1,0.1},[-0.1,0.1],[-0.1,0.1])

e Planar: every vertex is constrained to be co-planar with every other vertex. The initial vertex

positions are:
(10[-0.1,0.1],10[—0.1,0.1],[-0.1,0.1})

58

100.00 + Distance

L

o Planar

10.00 |-

1.00 \-

CPU time (seconds)

0.10)
8 128
Number of vertices
Figure 6-4: log/log graph of CPU time vs. number of vertices (constraint solver).

e Angular: the angle formed by every vertex’s left neighbor, itself and its right neighbor is
constrained to be 45° (see Figure 6-3b). The initial vertex positions are:
(l#/2] + [-0.1,0.1], (¢ mod 2) + [-0.1,0.1],[—0.1,0.1])

Each combination of network type and problem size was run four times, using different initial
vertex positions for each run. The results are shown in Table 6-2 and Figure 6-4.

Solving for a vertex geometry is, at least with these networks, even slower than finding a
surface topology: over 70 CPU seconds were required in one instance. CPU time seems to be
roughly proportional to n?> (where n is the number of vertices). Fortunately, it is possible to
improve the constraint solver’s performance by locking vertices and using components to reduce
the network’s complexity. This is not, however, a perfect solution since even simple systems can
take unacceptably long to solve and it is not always clear which vertices to lock or how to use
components effectively.

Viking s constraint solver is used in two different ways. The first is when the constraint network
has changed, perhaps because the user added a new constraint. The second is when the user is
interactively dragging a vertex to a new position while maintaining the existing constraints. These
two cases are fundamentally different from one another. In the latter, the constraints are normally
satisfied before the user starts dragging the vertex and performance is critical to providing an
illusion of smooth motion. In the former, some constraints are initially violated and performance
is not as important as it is when the user is dragging a vertex.

The performance of Viking’s constraint solver seems adequate for the cases when the constraint
network has changed. It is, however, too slow when dragging a vertex in anything but simple
constraint networks. It may be possible to improve “dragging” performance by using a different
constraint solver when the user is dragging a vertex. In particular, differential constraints [12] seem
to work well when the constraints are initially satisfied. In addition, differential constraints have
the advantage that the “dragging constraints™ (see Section 4.1.3) can be explicitly represented as a
force on the dragged vertex that “pulls” the vertex closer to the position indicated by the mouse.

59

Chapter 7

Conclusions

Viking is a solid modeling system that uses interactive sketch interpretation to combine the
simplicity of pencil and paper sketches with the power of a solid modeling system. Viking lets
designers draw the object they wish to create and then modify it by changing the line drawing to
make it “look right.” Each action is obvious from context, leaving the designer free to concentrate
on the design itself and not how to convey it to the solid modeler.

This ease of use comes without sacrificing any of the capabilities intrinsic to solid modeling
systems. As with other solid modeling systems, Viking lets the designer manipulate the underlying
object description as if it were a solid object. This provides the designer with a powerful tool for
visualizing an object’s structure. For example, the designer can wiggle the object by dynamically
changing the view transform or drag a translucent cutting plane through the object to see where
vertices lie with respect to one another in three dimensions. And, although Viking's user interface
is based primarily on sketching, the designer can create precisely dimensioned models by using
geometric constraints. This combination of sketching and solid moceling techniques creates an
effective design methodology for developing ideas into practical designs.

7.1 Accomplishments

This thesis sets out to demonstrate and explain a new type of user interface for solid modeling
systems. This user interface uses interactive sketch interpretation and lets designers use the
techniques normally used to make paper and pencil sketches to design solid objects. Interactive
sketch interpretation makes it easier to use solid modelers to explore new ideas and refine these
ideas into workable designs without sacrificing any of their intrinsic capabilities.

This user inteiface lets a designer sketch on the computer in much the same way tiat he or
she would sketch on pencil and paper. Sketch interpretation is the process of using the designer’s
actions to modify a description of a three-dimensional object so that the sketch and the object are
mutually consistent. Sketch interpretation in Viking takes a wide variety of forms. At one extreme,
it is simply a matter of giving the designer the tools to position vertices in three space. At the other
extreme, it is a matter of finding a new object description that is consistent with a line drawing and
a set of geometric constraints.

In the process of developing Viking, I have developed a set of algorithms and user interface
techniques that advance the state of the art. Arc-labeling, used to do topology generation, extends

60

the line-labeling methodology [7, 17] to non-trihedral objects. And, although Viking is limited to
objects in which every vertex is adjacent to four or fewer edges and every face is a planar polygon,
these limits are not intrinsic to arc-labeling. Viking is one of a small number of 3D design systems
that do constraint satisfaction. Viking s algorithm for constraint satisfaction is relatively fast, robust
and capable of supporting a wide variety of constraints. Viking is also the only 3D design system
based on the premise that the designer is sketching: making a “quick and dirty” drawing and then
gradually refining it by making small, incremental changes.

7.2 Future work

Viking's user interface has some significant weaknesses. Some of these are problems that
should not be difficult to solve. Others do not seem to have easy solutions. These problems are
presented in the order that they will be addressed in future research.

CAD modeling interface
Currently, Viking provides few of the capabilities found in conventional solid model-
ing systems. For example, Viking can neither calculate the mass of an object nor find the
intersection of two objects. Combining conventional solid modeling capabilities and inter-
active sketch interpretation should not be difficult: Viking's underlying object description is
equivalent to the boundary representation description used by some solid modelers.

Explicit constraints specification
Viking’s users must explicitly specify every geometric constraint. Other constraint
based design systems, such as Gargoyle [1] and Briar [11], provide mechanisms for defining
constraints implicitly. Incorporating similar mechanisms into Viking could alleviate one of
the more tedious aspects of Viking’s user interface.

Planar faces and straight edges
Viking can, currently, only interpret line drawings of objects whose faces are all planar
polygons. The topology generation algorithm can be extended to objects with non-planar
faces. Modifying the rest of Viking, however, is more difficult. Planar faces provide one
of the better implicit constraints, and designing a good user interface for specifying which
faces are non-planar and controlling the shape of a non-planar face is not easy.

It should, however, be comparatively easy to extend Viking to allow certain types of
non-planar faces. In particular, if the user were allowed to create curved edges, then Viking
could generate surface topologies in which a face is considered non-planar if it is bounded
by one or more curved edges. For example, the user could define a circular “arc edge” using
three vertices. These edges could then be used to define the faces forming a cylinder.

Quadhedral vertices
Viking can only analyze line drawings in which every vertex is adjacent to four or
fewer edges. This is because Viking~ topology generation algorithm must match every
intersection in the line drawing to an entry in a fixed intersection library that contains all
possible labelings, or configurations of faces, around the intersection. The program used to
generate this library, however, is already able to generate both entries for intersections of

61

five or more lines and entries in which edges can be adjacent to three or more faces. Viking
can be modified to use this algorithm to compute the labelings for any intersection not in the
intersection library.

Simple polygonal faces
Faces in Viking must be simple, planar polygons: they cannot have internal holes,
repeated edges or repeated vertices. It should be possible to extend the algorithm to allow
more complicated faces, although it may not be worth the extra processing time required.
The current version of Viking lets the user simulate holes and the like by using artifact edges.

Explicit topology specification
Viking s topology generation algorithm uses the presence of hidden line-segments to
automatically reject inconsistent interpretations. The downside of this is that the user must
correctly indicate which line-segments are hidden. This can be a tedious and time-consuming
process.

Viking lets the user generate a blind interpretation, in which the visibility cues are ignored
and the user does not have to indicate which line-segments are hidden. Blind interpretations
are slower and less discriminating than conventional interpretation, since visibility cues
cannot be used to reject unwanted topologies. Despite this, it is often easier to generate
a blind interpretation and manually reject unwanted topologies than it is to indicaiec which
line-segments are hidden and generate a standard interpretation.

7.3 Open problems

The following section describes problems that do not seem to have easy solutions.

General view
Viking s topology generation algorithm can only interpret line drawings that correspond
to a general view of an object. A general view is one in which a small change in the view
direction makes correspondingly small change in the line drawing [24]. For example, a
general view could not contain any faces that are “‘edge-on” to the viewer (such as Figure 2-
3)).

This is a problem since engineering drawings do not always correspond to general
views. However, it is not clear how significant this problem is. Engineering drawings often
used specialized viewpoints because they were easier to draw or because they illustrated a
particular point. Specialized views are not, for the most part, easier to interpret than general
views and both types of views are easy to generate using the computer.

One possibility for generating interpretations of specialized views is to use graph based
algorithms [8, 16]. These algorithms do not depend on the viewpoint, generating a surface
topology by finding a planar embedding of an object’s vertex-edge graph. Unfortunately, it
may not be possible to modify these algorithms to use heuristics to generate non-manifold
topologies.

62

Topology generation performance

Viking’s topology generation algorithm is not as fast as one might wish, taking almost
three minutes to generate an interpretation of a line drawing containing 100 points. How-
ever most of the time seems to be spent page swapping (see Section 6.1). Although faster
workstations and rore efficient algorithms may alleviate this problem, it is not realistic to
expect that Viking’s topology generation algorithm could be used on large objects (which
might be three or four orders of magnitude more complex than the objects created in Sec-
tions 2.2.1 or 2.2.2). It should, however, be possible to automatically partition a large object
and use topology generation on only the relevant parts.

Constraint satisfaction performance
Viking s constraint solver is used in two basic modes: when one or more constraints have
been added and Viking must solve for a solution and when the user is moving a vertex by
dragging it with the mouse and wishes to maintain the pre-existing constraints. The response
time when dragging is far slower than desired, often taking several seconds to find a solution
that satisfies all the constraints. It might be possible to use differential constraints [12] to
improve response times when dragging.

Constraint satisfaction robustness

Viking'’s constraint solver finds a satisfactory vertex geometry most of the time. There
are some constraint networks, however, for which Viking’s constraint solver cannot find a
solution, even though there is a vertex geometry that satisfies all the constraints. In these
situations, the user is often reduced to either moving vertices in the hopes that Viking will
be able to find a solution from a different initial configuration, or rewriting the constraints
in the hopes that Viking will be able to find a solution to a different but equivalent constraint
network.

63

Appendix A

Glossary

appropriate labeling A labeling that is both valid for an intersection and consistent with the
restrictions generated from features in the line drawing.

component A group of vertices that form a distinct group within the object. The object space
coordinates of each of a component’s vertices is a function of their position in the component
space and the component’s coordinate transform.

component space A coordinate system defined by a component’s coordinate transform. The
position of a vertex that is a member of a component is defined in terms of the component’s
coordinate system.

consistent labeling A labeling for the entire line drawing in which a labeling has been selected for
each vertex and all of the selected labelings are consistent with one-another. Two labelings
are consistent if there is no edge between the labeling’s vertices or if the edge between the
vertices is consistently labeled. An edge is consistently labeled if its two labels agree on the
number of surfaces extending to either side of the edge.

crossing A place in the line drawing where two edges cross each other in the drawing without
intersecting in three dimensions. For example: edges V,V, and V;V; cross each other in
Figure 3-1 without intersecting.

cutting plane An arbitrary plane in object space. Used to help position the cursor in three
dimensions.

edge An edge between two vertices. Edges can have zero, one or two adjacent faces.

explicit constraint A geometric constraint placed by the user. These constraints are always part
of the system of constraints used to solve for a vertex geometry.

face A planar polygon bounded by three or more vertices. Faces can be bounding faces (i.e.
defining a boundary between the “inside” of the object and the “outside”) or be “thin-shell”
faces (i.e. both sides of the face are on the “outside” of the object).

64

free vertex A vertex whose coordinates can be manipulated by the constraint solver when solving
for a vertex geometry.

image constraint A geometric constraint derived from features in the line drawing. These con-
straints are only part of the system of constraints used to solve for a vertex geometry
immediately after searching for a new surface topology.

image space The coordinate space corresponding to the image displayed to the user. In this
coordinate space, the X-axis is horizontal, the Y-axis is vertical and the Z-axis is into or out
of the screen.

implicit constraint Either an image or a world constraint.
intersection A place in the line drawing where two or more edges meet at a vertex.

label A description of the surface fragments immediately adjacent to an edge near one of its
vertices. In Viking an edge’s label is a list of surface fragments extending to either the left
or right of an edge and, for each surface fragment, a pointer to the surface fragment’s other
bounding edge.

labeling A list of labels for all of the edges adjacent to a vertex.

legitimate surface topology A surface topology in which no face contains a repeated edge or
vertex.

line Equivalent to an edge.

line-segment A portion of an edge between two crossings or intersections. The user can set the
visibility of each line-segment in the line drawing independently.

locked vertex A vertex whose coordinates are treated as fixed constants by the constraint solver.
object space The coordinate space normally used to define the position of the object’s vertices.

preferred direction One of a set of vectors used to help the user position the endpoint of new
edges in three dimensions. By default, new edges are projected onto the closest preferred
direction.

pseudo-variable A variable whose value is a function of one or more variables. For example,
a vertex’s image space coordinates are pseudo-variables that are functions of the vertex’s
object space coordinates and the view transform.

reasonable surface topology A surface topology that is legitimate, consistent with the features in
the line drawing and does not contain any spanning edges.

screen space Equivalent to image space.

spanning edge An edge that extends across the inside of a face between two of the face’s vertices.
The presence of spanning edges disqualify a surface topology since the constraint solver will
not be able to satisfy the image constraints generated for the edge with respect to the face.

65

surface Equivalent to a face.

surface fragment A portion of a face, typically defined by two bounding edges and a common ver-
tex. Surface fragments are joined together to form larger surface fragments and, eventually,
closed polygons when generating an object’s surface topology from a consistent labeling.

surface topology A description of all of the faces forming the object. Each face description
consists of a list of the vertices that form the face’s bounding polygon.

tack An explicit constraint that either forces a vertex to have a fixed location in object space (even
if the vertex is a member of a component), or forces an edge to pass through a fixed location
in space.

true variable An independent variable that can be manipulated by the constraint solver.

valid labeling A labeling for an intersection that is listed in Viking's intersection library (see
Appendix D).

vertex A position in object space. Vertices can have 0 — 4 adjacent edges.
vertex geometry The positions of all of the object’s vertices.

world constraint A geometric constraint generated from the limitations on Viking s object repre-
sentation. In particular, all faces are constrained to be planar polygons. These constraints
are always part of the system of constraints used to solve for a vertex geometry.

66

Appendix B

Viking s user interface primitives

Viking lets the user manipulate the object and program state in a wide variety of ways. This
section lists all of these actions and their effect on the object and program state.

B.1 View actions

The view control window is divided into a panel of thirteen buttons, five “dial” or slider
controls and virtual trackball. The functions of each of these buttons is described below:

Solve Invoke the sketch interpreter or constraint solver.

The effect of picking Solve depends on which mouse button was used.

Left button Invoke the sketch interpreter.
Search for a new surface topology that is consistent with the line drawing displayed
in the image window. If a surface topology is found and accepted by the user, use
the constraint solver to find a vertex geometry that satisfies the implicit and explicit
constraints.

Center button Invoke “blind” sketch interpretation.

Blind sketch interpretation is identical to normal sketch interpretation except that all
visibility cues are ignored. The effect is identical to hiding the entire object behind
some obscuring surface.

Right button Invoke the constraint solver.
Use the constraint solver to find a vertex geometry that satisfies the world and explicit

constraints. Note that the image constraints are not used when this button is used
SplivKill Create a new, independent view of the object/ delete the selected view.

If only one view is displayed, copy it and display both views until the user kills one of them.
Although the view are initially identical, the user can manipulate each view independently.

If two views are displayed, kill the selected view. There is no fundamental reason that Viking
cannot display more than two different views of the object.

67

HLs Toggle the display of hidden line-segments and vertices.

Faces Toggle the display of faces. The faces, if on, are drawn as filled gray polygons before any
edges or vertices are drawn.

IDs Toggle the display of vertex IDs.
Cons Toggle the display of constraints.
PD Enter the preferred direction (see Section 2.1.1) sub-menu. Within this menu the user can:
e Select two vertices and Viking will add the vector between to the list of preferred
directions.

e Add the object space X, Y and Z axes to the list of preferred directions.

e Put preferred directions on automatic so that context dependent preferred directions
will be created when the user starts to draw a new edge.

e Turn preferred directions off.
Top Change the view transform to a view straight down the Y-axis. If this button was picked using

the right mouse button, rotate the current view transform 90° about the screen’s horizontal
axis.

Front Change the view transform to a view straight down the Z-axis.

Right Change the view transform to a view straight down the X-axis. If this button was picked
using the right mouse button, rotate the current view transform 90° about the screen’s vertical
axis.

CP Enter the cutting plane (see Section 2.1.1) sub-menu. Within this menu the user can:
e Activate the cutting plane. The cutting plane defaults the screen’s plane, but can also
be positioned so that is the plane defined by any three vertices.
e Turn the cutting plane off.
e Toggle the display of the cutting plane’s grid.

o Toggle the display of shadows (an orthogonal projection of the object’s edges onto the
cutting plane).

e Toggle the display of poles (lines between all vertices and their orthogonal projection
on the cutting plane).

e Toggle the display of cuts (the intersection between faces and the cutting plane).
e Toggle whether the cutting plane is opaque.
e Change the view transform so that the cutting plane lies in the plane of the screen.

@ Change the translation and scaling components of view transform so that the entire object is
displayed in the image window.

68

¥ Enter the pan and zoom sub-menu. Within this menu, the user can pick two corners of a
rectangle in the image window and the translation and scaling components of view transform
so that the entire object is displayed in the selected rectangle.

If this button was picked using the center mouse button, let the user change the translation
component of the view transform by dragging the image up/down and left/right.

The virtual trackball, also called a continuous XY controller [5], lets the user change the rotation
component of the view transform by dragging the mouse across the triad, the left-right dial or the
up-down dial while holding one of the buttons down. If the mouse started on the triad, the image
will rotate about an axis in the screen plane that is perpendicular to the mouse’s motion. If the
mouse started on the left-right dial, the image will rotate about the screen’s vertical axis. And, if
the mouse started on the up-down dial, the image will rotate about the screen’s horizontal axis.

The image controller window also contains two sliders. The first slider lets the user adjust
the view transform’s scaling component, the amount of face shrink and the view transform’s
perspective distance using, respectively, the left, center and right buttons. Face shrink changes the
way that Viking draws the objects faces. If face shrink is on, then the object’s faces are drawn as
closed polygons that are offset in from the face’s vertices by an amount proportional to the face
shrink. The second slider lets the user drag a cutting plane through the object without changing
the cutting plane’s orientation.

B.2 Image actions

The effect of the user’s actions in the image window depends on the currently selected command
mode. The four most commonly used command modes, Edit, Move, Constrain and Component,
use the following mapping between action and effect:

Edit mode This mode is used to edit the structure of the object being designed. Using the mouse
in the Image window has the following effect, depending on which mouse button is pressed:

Left button Siart drawing new edge. Stop when the user releases all mouse buttons.
If the user starts and ends on the same vertex, toggle that vertex’s locked status.

Center button The selected edge or vertex for deletion. If that edge or vertex is already
marked, delete it.

Right button Toggle the visibility of the selected vertex or line-segment.

Move mode This mode is used to move vertices and edges to new positions. Using the mouse in
the Image window has the following effect, depending on which mouse button is pressed:

Left button Drag the selected edge or vertex as long as a button on the mouse is held down.
If the Autosolve switch is set to automatic solve, attempt to maintain all of the geometric
constraints.

Center button If the user selected a vertex, toggle the locked status of the vertex.

If the user selected a vertex that is a member of a component, place a tack on the vertex
to prevent it from moving.

69

If the user selected an edge, place a tack on the edge at the selected location. The tack
constraints the edge to pass through the tack’s location.

Right button The same as for the left button, but do not attempt to maintain the constraints
even if the Autosolve switch is set to automatic solve.

Constraint mode This mode is used to place geometric constraints on the object. Using the mouse
in the Image window has the following effect, depending on which mouse button is pressed:

Left button Add the selected vertex to the current constraint template. If the user selected
an edge, add both of its vertices instead.
Viking provides the following constraint templates (d, k£ and a are constants that can be
set by the user):
[] | Vo, U |= d
Constrain the distance between v, and v; to be d.
o | v,,(vp,0.) |=d
Constrain the distance between v, and the line defined by vv. to be d.
b ' Va, Up |= k | Vey Vd l
Constrain the distance between v, and v, to equal k times the distance between the
v. and vq.
L4 | vaa(vln vc) |= k | Vd, Ve I
Constrain the distance between v, and the line defined by v, v, to equal k times the
distance between vy and v..
o ' Ua,(’Ub,’Uc) ,= k l V4, (Uea vf) l
Constrain the distance between v,, and the line defined by v,v. to equal k times
the distance between vy and the line defined by vevy.
e Angle(ve,vp,v.) = a
Constrain the angle formed by v, v, and v, to be a degrees.
o Angle(vq,vp, Ve, va) = @
Constrain the angle between the line defined by v,vs, and the line defined by v vg
to be a degrees.
o Planar(vg,vs,...)
Constrain v,, vy, ... to lie in the same plane.
e Equilateral(v,, vy, v.)
Constrain v,, v3, and v, to form an equilateral triangle.
e Rectangular(v,, vy, v, vq)
Constrain v,, v, v., and vq to form a rectangle.

Center button Reset the current constraint template.

Right button Add the constraint under construction to the object’s list of explicit constraints.

Component mode This mode is used to manipulate components. Using the mouse in the Image
window has the following effect, depending on which mouse button is pressed:

70

o
.

Left button Add the selected vertex to the current component. If an edge was selected, add
both of its vertices.

Center button Remove the selected vertex from its component. If an edge was selected,
remove both of its vertices from their component.

Right button Make the component containing the selected vertex the current component.

B.3 Menu actions

Viking continuously displays two menus. The first menu, displayed in the center of the screen,
changes to reflect the current command mode. The second menu, displayed at the bottom center
of the screen, is fixed. The following options are available from the primary variable menu (as
shown in Figure 2-1):

Edit Enter the edit command mode.
Move Enter the move command mode.

Constraint Enter the constraint command mode and replace the variable menu with the constraint
menu.

Component Enter the component command mode and replace the variable menu with the com-
ponent menu.

The following options are available from the fixed menu:

Help off/on Toggle the display of the help window.

Undo Move all the vertices to the positions they had before the constraint solver was last used.
Write Write the current object description to a file.

Read Read a new object description from a file.

Autosolve Let the user change the Autosolve switch. This switch can have four values:

No solve/no search Do not attempt to maintain the geometric constraints or automatically
search for an interpretation after a change.

No solve/automatic search Do not attempt to maintain the geometric constraints, but au-
tomatically search for a new interpretation whenever the user hides or exposes a line-
segment.

Automatic solve/no search Attempt to maintain the constraints as new constraints are added
or the user drags vertices around, but do not automatically search for an interpretation
after a change.

Automatic search and solve Automatically maintain the constraints and search for a new
interpretation.

71

Bias Let the user set the search bias. This switch affects the cost assigned to labelings (see
Section 3.3.1) and can have three settings:
No bias Do not favor any particular type of surface topology.
Surface bias Favor surface topologies in which every has one or two adjacent surfaces.

Solid bias Favor surface topologies in which every edge has two adjacent surfaces.

Quit Exit Viking.

B.4 Help actions

Viking’s help window (the right hand window in Figure 2-1) provides an explanation of the
various buttons and command modes. The help text is divided into two parts: a variable part that
depends on the currently selected command mode and a fixed part. Each part is arranged into
a tree-like data structure, where each line of text corresponds to a node in the tree. Clicking on
a line of text expands the corresponding node, causing the text corresponding to its children to
be displayed below and to the right of the selected line. Clicking again on a line collapses the
corresponding node, suppressing the display of its children.

72

Appendix C
Equations

This appendix describes all of the equations used to represent both geometric constraints and
the transformations between object space and image space, and component space and object space.
The geometric constraints are generally applied to the object space coordinates of a vertex. There
are two exceptions, however: image constraints and component transforms.

Image constraints are applied to the image space coordinates of a vertex. The image space
coordinates are simply functions of the object space coordinates and the view transform, which is
fixed. Itis, therefore, possible to rewrite any constraint on a vertex’s image space coordinates as a
constraint on its object space coordinates.

If a vertex is a member of a component, then its object space coordinates are a function of its
component space coordinates (which are fixed) and the component transformation variables (which
are not). As with the image constraints, constraints on the vertex’s object space coordinates can be
rewritten as a constraint on the component’s transformation variables. In essence, this means that
Viking satisfies the geometric constraints on a member of a component by moving or scaling the
entire component.

C.1 Geometric constraints

Currently, Viking supports five different types of constraints. These constraints are listed below,
along with the equations used to represent them. Each equation has two forms: an evaluation form
used to generate the linear programming problem (see Section 4.4.1) and an error form used to find
the “optimal” displacement (see Section 4.4.2).

The evaluation equations are designed to have simple derivatives. This makes calculating the
derivatives faster and tends to reduce problems due to singularities. Error functions are designed
to calculate an “error” that is roughly proportional to the distance the vertices must move in order
to satisfy the constraint.

73

Planarity constraint:

Planar(%,, 02, ..., U,):
U1, U3, - . . , Un all lie in the same plane.

To add a planarity constraint, create four new variables: a, b, ¢, d,
add the equation:
a*>+ b+ =1,and
for each ¢ such that 1 < : < n, add either the equation:
(¥: - (a,b,¢)) + d = 0 or the equation
(9; - (a,b,¢)) +d = 0.
Where:
5,- is the image space coordinates of ;.
The second form of the equation is used when a, b, c and d are needed for a

Point in front of plane constraint.

The corresponding error functions are:
Error=|a?+ 0¥+ -1
and:
l (61) (a7b7c)) +d I or
Error=| (9; - (a,b,¢)) +4d |.

ey]
2
=
i

Point in front of plane constraint:

PointFront(7, a, b, ¢, d) :
v is in front of the plane defined by a,b,¢,d
(a, b, ¢, d are the variables from the planarity constraint, above).

To add a point in front of plane constraint, add the equation:
@ - (a,b,c) + d)/c> ¢
Where:
J is the image space coordinates of ¥, and

¢ is the minimum separation distance.

The corresponding error function is:
Error = max(0.0,&e — (4 - (a,b,¢) + d)/c)

Line in front of line constraint:

LineFront(%y, 2,03, 04) :
Line &0, passes in front of line ¥37;.

To add a line in front of line constraint, add the equation:
(C-(91~93))/C. 2 ¢

74

Where:
C = ((192 - 19]) X (194 - 193)),
C, is the z-component of C,
v, is the image space coordinates of ;, and
¢ is the minimum separation distance.

The corresponding error function is:
Error = max(0.0,& — (C - (¥, — 43))/C,)

e Distance constraint:

D(kh V1, V25..4, kn7 Van—1, V2n,
kn+1 3 U2n415 V2042, V20435 - -

kn+m, U2n+3m—=2; U2n4+3m-1, v2n+3m)

d
d
d

VoIl IA

The distanccs between the given pairs of vertices must satisfy the linear equation shown
below.

To add a distance constraint, add the following equation:

Li|or =0 | +... 4 kn | O2ney — D2 | +
knt1L(U2n41, U2n42, D2nt3) + ... +

kn+m L(v2n+3m—2 s V2n43m=1, V2n+3m)

VI IA
A, Rl Ry

Where:
L{va, vs,vc) =| (Vo — vp) X (ve ~ 0) | / | ve — v |
(L(va, vs, v.) is the distance between v, and the lii:» defined by v, and v,).

The corresponding error function is either the amount by which the distance constraint is not
satisfied or O if the constraint is satisfied.

e Angular constraint:

‘\ngle({;ﬁ? ﬁl ’ 5‘29 63) =a
The angle between lines v,7, and 7373 is a.

To add an angular constraint, add the following equation:
(U2 — 1) - (s — 53))- | (\02 = 1) - (08 — B3)) | —

cos(a)- | cos(a) | (| (T2 — 1) |- | (85 — @) |)* = O

In addition, add the distance constraints that:

75

D(lO, 172, 171) 2 1\’1, and
D(1.0,74,73) > K,
where K, K, are 10% the initial distance between > and ¢, and ¢, and o

The corresponding error function is:
Error= | \/| (2 — &) - (8 — &) |-
Vicosa) |- [(& =) [| (@ -) ||
if (02 — 01) - (Us — U3)) cos(a) > Qor:
Error=| \/| (%2 — %) - (3 — ©3) |+
Vicos(a) |- [(&= &) [[(& —) | |

otherwise.

C.2 The object space to image space transform

The object space to image space transformation is given by the following procedure:

-

(ll’ y/’ z') = (5+)R
S _ o) (10/s) if perspective is off
?o= (4,7 { (p/(s(p — 2"))) otherwise

Where:

= The object space coordinates.
The image space coordinates.

The translation component of the transform.
The rotation component of the transform.

il

The scaling component of the transform.

N e X ~ Dy
i

= The perspective component of the transform.

C.3 The component space to object space transform
The object space to image space transformation is given by the following equation:
T o= w(FSET@NG) +¢
Where:

= The component space coordinates.
= The object space coordinates.

o>y @ Gy

= The translation component of the component transform.

76

The quaternion vector of the component transform.

The uniform scaling component of the component transform.

The axis-dependent scaling component of the component transform.
The rotation matrix derived from q.

[@+ad -G —¢ 209291 — ¢390) 2.0(g290 + g3q1)
20(g390 + q192) % -ai+a -G 2.0(9302 — 0190)
| 2.0(9193 — g290) 2.0(q1d0 + 9293) G — G — G+ &
The axis-dependent scaling matrix derived from ¢

-0'0 0 0
0 (23] 0
3 0 0 [e))]

77

Appendix D

Intersection library

This section describes all valid labelings for intersections of two, three or four lines. An
example of how to use these figures and tables is given in Section 3.2.4. Intersections in which
only one adjacent line is visible do not have any valid labelings and therefore do not appear in any
of the figures or tables below.

N

4

awaliaea

2 b N

Figure D-1: All valid Arrow/2

R I e I O P P
|

Figure D-2: All valid Straight intersections.

intersections.
Intersection | Visibility | Valid
type ab labelings
Arrow/2 hh 14
vy 1-4
Straight hh 1-6
Vv 1-6

Table D-1: Labeling subsets for all intersections of 2 lines.

YAISAVARVARVARVARARE

RisaiaicaicaCalGaie

13 14 16 171 18

| .

2

F <

&

23

Figure D-3: All valid Arrow/3 intersections.

78

10!

e
> 5

1 2 3 4 5 6

|

3|

6

Y

e
o

g
S

3

Yy Y

Figure D-4: All valid Fork/3 intersections.

N ’h‘k\f@’@j)ﬁ’

3 14 15 16 17 18 9

PR RN PN,

p
| ¢
't

Figure D-5: All valid T intersections.

Intersection | Visibility | Valid
type abc labelings
Arrow/3 hhh 1-23
hvyv 7,15,17,19,22
vhy 4,9,10,13,16,17,20-22
vvh 3,8,10, 12,21
\ARY 1-9, 11-16, 18-20, 23
Fork/3 hhh 1-23
hvv 7,14,18,19,23
vhy 4,9,12,16,20
vvh 3,8,11,15,22
\ARY 1-23
T hhh 1-21
hvv 7,15,18
vhv 4,9,12,13,16,20
vvh 3,8,11
VVYy [1-21

Table D-2: Labeling subsets for all intersections of 3 lines.

79

30i

40

J

50

60

80

90

100

120

i
291

69

89

99

109]

48

68

108

87

97

46

56

66

86

9%

106

25

34

44

54

64

84

94

104

RES

103

22

92|

102

| F |

| | | | ok %

R d AR A SRR AR AR AR

N AR AR AR A R AR AR 2

| k| %

R i ha ah e

& | | k| &

ARG AR AR AR AR

AR AR AR R CARS AR ARV AR

& || k| &

% F | % & %% E

Figure D-6a: Valid Arrow/4 intersections 1 through 120.

80

121

l25: 1

ra

6 129, 130|

(

®,
&,
R
&

139

&) &
&l &
AlC

& R,

142

& & & T &S

143 144 145 146 147 149

R R R,
(R R

Figure D-6b: Valid Arrow/4 intersections 121 through 149.

Intersection | Visibility | Valid
type abcd labelings
Arrow/4 hhhh 1-149
hhvv 13,50, 54, 55, 60, 61, 64, 110, 112, 116, 120, 124-127, 131, 144, 145
hvhv 36, 39, 57,59, 61,75, 79, 84, 98, 105, 107, 114, 117, 121, 125, 127, 138, 142
hvvh 7,21, 23, 25, 36, 39, 43, 67,75, 79, 85, 89, 98, 105, 107, 142
hvvv 7,12, 13, 21, 23, 25, 43, 48, 51, 53-55, 57, 59, 60, 63, 64, 67, 89, 108, 113,
114,117, 122, 124, 126, 129, 132, 134, 146, 148
vhhyv 8, 26, 27, 30, 32, 34, 36, 44, 45, 56, 57, 60, 70, 72, 73, 75, 79, 82, 85, 90-96,
98,100, 102, 104, 105, 114, 116, 117, 119, 122, 124, 126, 135, 137, 140-142,
145, 146
vhvh 16, 22, 23, 34, 36, 66, 67, 71, 75, 79, 81, 84, 96, 98, 104, 105, 138, 142
vhvyv 4,8,13,15, 16, 19, 22, 23, 26, 27, 30, 31, 40, 44, 45, 49, 51, 54-57, 61, 64-67,
69, 71, 73, 74, 78, 80, 90-92, 94, 95, 100, 101, 108, 110, 111, 113, 114, 117,
118,121, 125,127, 130, 132, 135, 136, 139, 147, 148
vvhh 3,14, 16, 18, 27, 29, 37, 66, 71, 72, 76, 80, 86, 91, 95, 99, 139, 140
vvhyv 3,8,9, 14, 16, 18, 26, 28-31, 33, 34, 38, 39, 44-46, 56, 58-61, 66, 69, 71, 74,
77, 81, 87, 90, 92-94, 96, 97, 99-101, 103, 104, 106, 107, 115, 116, 118, 120,
123-125, 127, 135, 136, 143, 144, 147
vvvh 3,6,7, 14, 18,20-22, 24, 25, 27, 29, 34, 38, 39, 42, 43, 68, 72, 77, 82, 87-89,
91,96, 104, 106, 107, 141, 143
VVVvy 1-15, 17-22, 24-26, 28-30, 32, 33, 35, 37, 40-50, 52-56, 58, 59, 62-65, 68, 70,
73, 76, 78, 83, 86, 88-90, 93, 94, 97, 99, 100, 102, 103, 109-112, 115, 119,
123, 128-131, 133, 134, 137, 149

Table D-3: Labeling subsets for Arrow/4 intersections.

81

10}

1

EEEE D E

2R 2R AR 2R A AR ARVARVA

hahahadhahahshuhahuh o

hihdbukahahdhahuhuba

hiahiulhilhulhidh dhdh ik d
tabakakababanakakans

\ahahdhdhdhdhdkahaha

LAk nbubukabdh Ak uhks

hububiahahzh huhiah2ky
tabakababahakabahaks

Lahdbak dhahahdl ahah 2

111 1 ¥ 113 114 115 116 17 118 119 120
Figure D-7a: Valid Fork/4 intersections 1 through 120.

'
5

o
] ‘
o

R
%,

125, |26j 127 128: 129°

o
@
*
4,
ks

1 7 138 139

w

3

w
w

135 136 1

»

1

%,

1

»

2

<

%

®
AR

®

+

H

1

ry

3 145 146 1

o

7! 148 149

H
&
H

1

w

@

152

i .
1 6 157 9:

1%

3 1

3]

B
@
@
@
o
#
4,
H

4 155 1

v
w

3 1

w

o) R b,

1

o

1

@

1

[

2

%
%
%
%
@
€
et
&

N

1 9

o

3 164 165 166! 167, 168] 1
|

=y

|

Figure D-7b: Valid Fork/4 intersections 121 through 169.

Intersection | Visibility | Valid
type abced labelings
Fork/4 hhhh 1-169
hhvv 13, 49, 54, 58, 62, 65, 67, 108, 113, 123, 126, 134, 143, 147, 149, 166
hvhv 34, 37,51, 61, 62,75, 86, 89, 95,101, 103, 110, 114, 124, 126, 131, 137, 145,
153, 155, 161, 168
hvvh 7,20, 24, 25, 37, 41,57, 71, 87, 89,103, 112, 117, 118, 132, 141, 164, 165
hvvv 7, 12, 13, 20, 24, 25, 41, 46, 50, 53, 54, 56, 58, 61, 64-67, 71, 87, 104, 109,
111,116, 128, 135, 138, 140, 142, 144, 146-149, 158, 163, 167, 169
vhhv 8, 26, 30, 32, 42, 43, 59, 73, 81, 90-93, 98, 100, 122, 151, 152
vhvh 22, 32,34, 51, 58, 75, 80, 86, 93, 95, 100, 101, 110, 114, 124, 137, 145, 149,
153,155, 161, 168
vhvyv 4,8, 13,15, 18, 22, 26, 29, 38, 42, 43, 48, 50, 54, 59, 62, 65, 67, 68, 72, 74,
79,90,92,97, 104, 107, 109, 121, 126, 133, 135, 144, 147, 150, 157, 158, 167
vvhh 3,14,17, 27,28, 35,47, 70, 76, 78, 83, 88, 96, 106, 120, 129, 156, 160
vvhyv 3,8,9,14,17, 21, 26-29, 31, 32, 36, 37, 42-44, 47, 59-62, 70, 72, 74,77, 78,
80, 84, 89-94, 96, 97, 99, 100, 102, 103, 106, 119-121, 123, 125, 126, 130,
132, 150, 154, 156, 157, 162, 165
vvvh 3,6,7,14,17,19-25, 28, 32, 36, 37, 40, 41, 47, 55, 56, 58, 69-71, 77, 78, 81,
84, 85, 87-89, 93, 100, 102, 103, 106, 111, 113, 115, 116, 118, 120, 130, 131,
139, 140, 148, 149, 152, 154, 156, 162, 163, 169
\AAA" 1-28, 30, 31, 33, 35, 38-49, 52-55, 57, 59-61, 63-71, 73, 76, 79, 82, 83, 85,
87, 88, 90-92, 94, 96, 98, 99, 105-108, 112, 115, 117-120, 122, 125, 127-129,
133, 134, 136, 138, 139, 141-143, 146, 147, 151, 159, 160, 164, 166

Table D-4: Labeling subsets for Fork/4 intersections.

83

] K] & 3 R

SESEIN NI I NN INS
K¥l& & k& Fd k&

V& & &l& bk k& kK

k| | k| &4 k] k] k| k&
k] k] b kK & & & & &
] & & & & & & & &

K& K& & &k k& R

k| & G dc] k] Qe] K&
¥ ¥ K| & ¥ k| ¥ k] &

?91 92 | 93 @94 @95 g% bw | 98 9 100

101 102 103 104 105 106 107 108 109 110

& && X &TE&

i 12 113 114 115 116 117 118 119 120
Figure D-8a: Valid K intersections 1 through 120.

a 2t 122 123 124 125 126 127, 128; 129 130!
&R RRRE®RE
d ¢ ’ i “]
131 @32 133
Figure D-9b: Valid K intersections 121 through 133.
Intersection | Visibility | Valid
type abed labelings
K hhhh 1-133
hhvv 13,49, 53, 54, 58, 61, 103, 105, 110, 113, 114, 118, 130
hvhv 34,37, 57, 58,72, 76, 80, 90, 92, 98, 100, 111, 113, 114, 126, 128
hvvh 7, 21,23, 25,37, 41, 65, 84, 100
hvvyv 7,12, 13,21, 23, 25, 41, 47, 50, 52-54, 57, 60, 61, 65, 84, 101, 106, 116, 119,
121,132
vhhyv 8, 26, 29, 31, 4244, 55, 68, 70, 85-89, 94, 96, 109, 123, 125
vhvh 16, 22, 23, 34, 64, 65, 69, 72, 76, 78, 80, 90, 92, 98, 126, 128
vhvv |4,8,13,15,16,19, 22,23, 26,29, 30, 38, 42-44, 48, 50, 53-55, 58, 61, 63-65,
67, 69-71,75, 77, 85, 86, 89, 94, 95, 101, 103, 104, 106, 108, 111, 113, 114,
117,119,123 124,127, 131,132
vvhh 3, 14, 16, 18, 28, 35, 64, 69, 73, 77, 81, 93, 127
vvhyv 3, 8,9, 14, 16, 18, 26-30, 32, 36, 37, 42-45, 55-58, 64, 67, 69, 71, 74, 78,
82, 85, 86, 88, 89, 91, 93-95, 97, 99, 100, 107, 108, 110, 112-114, 123, 124,
-131
vvvh Zl’,,zg 7, 14,18, 20-22, 24, 25, 28, 36, 37, 40, 41, 66, 74, 82-84, 99, 100, 129
VVVvVy 1-15, 17-22, 24-29, 31-33, 35, 38-49, 51-57, 59-63, 66, 68, 70, 73, 75, 79, 81,
83-85, 87-89, 91, 93, 94, 96, 97, 102-105, 107, 109, 112, 115-118, 120-122,
125,133

Table D-5: Labeling subsets for K intersections.

85

P e e e [
fatbathahaabahahaab i ab-dh 4
Ran s hanaa b aah b zabzdh b b
hiabatbaivahahaabzdb bk Al
e e
bbb zahah b ahz
haiba v izah b e haaharoah s
il vaslhza bl et hin i hah zah zd b Ak
h bl baahaiatbabat kb abath ah s
S [[[3 [[[[[[3

,,17(\
X

123 124 125 126 127 128 129 130!

AR
¥y

133 134 135 139

L | |44

¢ Py DY,

143 14 145 149

&
&
& |

152

&

Figure D-11b: Valid Psi intersections 121 through 152.

Intersection | Visibility | Valid
type abcd labelings
Psi hhhh 1-152
hhvyv 13, 47, 52, 53, 62, 65, 98, 101, 121, 129, 134, 135, 149
hvhv 33,49, 59, 74,78, 93,99, 103, 113, 119, 132, 140, 151
hvvh 7,21, 23, 25, 39, 56, 68, 84, 105, 106, 109, 127, 148
hvvv 7,12, 13, 21, 23, 25, 39, 44, 48, 51-53, 55, 59, 61-65, 68, 84, 95, 102, 104,
108,116,122, 124, 126, 128,130, 131, 133-137, 143, 147, 150, 152
vhhy 8, 26, 28, 30, 41, 57,71, 72, 86, 89,91, 112, 139
vhvh 16, 22, 23, 33, 49, 67, 68, 74, 78, 93, 99, 103, 132, 140, 151
vhvy 4, 8, 13, 15, 16, 19, 22, 23, 26, 28, 29, 36, 41, 46, 48, 52, 53, 57, 62, 65-68,
70, 72,73, 77,79, 85, 86, 89, 90, 95, 98, 100, 102, 106, 111, 113, 120, 122,
130,131, 134, 135, 138, 142, 143, 150
vvhh 3, 14, 16, 18, 34, 45,67, 75,79, 81,97, 117, 145
vvhy 3,8,9, 14, 16, 18, 26-29, 31, 35, 40-42, 45, 57-59, 67, 70, 73, 76, 82, 85-90,
92,94,97,110, 111,114,118, 138, 141, 142, 146
vvvh 3,6,7, 14, 18,20-22, 24, 25, 35, 38, 39, 45, 54, 55, 69, 76, 82-84, 88, 94, 97,
104,107, 108,118, 119, 125, 126, 136, 137, 141, 146, 147, 152
VVVvy 1-15, 17-22, 24-28, 30-32, 34, 36-47, 50-54, 56-66, 69, 71, 72, 75, 77, 80, 81,
83, 84, 86, 87, 89, 91, 92, 96-98, 100, 101, 105, 107, 109, 110, 112, 114-117,
120, 121, 123-125, 127-129, 133-135, 139, 144, 145, 148, 149

Table D-6: Labeling subsets for Psi intersections.

87

ARV A P AR P A A

ol
S A A A

v b At A A A A A

Gl e i e
s

& B BB B A AP

taharardrararah vy

ddhaduzdhakaddhde dd
Cdnddh dbode db b drdead
£ E BB B F BB

through 120.

Figure D-12a: Valid X intersections 1

88

T

. 127 128
! ’
1
g
'
137 138

133 134 !

-

S

i

&

S

B

) Ty T
B
U

Ty R

‘
! |
147, 148
|
@ 1 @
i

T

R
)
i) B P

54

b, U

Figure D-12b: valid X intersections 121 througa 155.

Intersection | Visibility | Valid
type abcd labelings
X hhhh 1-155
hhvv 13, 46, 51, 69, 63,95, 116, 124, 129, 150
hvhv 32,48, 57,70, 88,97, 108, 114, 127, 136, 139, 143, 148, 152
hvvh 7,21, 24, 38, 54, 79, 99, 103, 122, 147
hvvv 7,12, 13,21, 24, 38,43.47, 50, 51, 53, 57, 59-63, 79, 90, 93, 96, 98, 100, 102,
104,111,117, 119,121, 123, 125, 126, 128-131, 141, 146, 149, 151, 153-155
vhhv 8, 26, 29, 4G, 55, 67, 82, 86, 107, 134
vhvh 22,32,48,70, 74, 88,97, 100, 127, 135, 136, 143, 152, 155
vhvyv 4, 8, 13, 15, 18, 19, 22, 26, 28, 35, 40, 45, 47, 51, 55, 60, 63, 64, 66, 68, 69,
73, 81, 82, 85, 90, 93, 94, 96, 106, 108, 115, 117, 125, 126, 129, 132, 133,
139-141, 149, 151
vvhh 3,14,17,33,44,71,76,92,112, 144
vvhv 3,8,9, 14, 17, 26-28, 30, 34, 39-41, 44, 55-57, 66, 68, 69, 72, 74, 77, 80-85,
87. 89,92, 105, 106, 109, 113, 132, 133, 135, 137, 138, 140, 145
vvvh 3,6,7,14,17,20-25, 34,37, 38, 44, 52, 53, 65, 72, 77-80, 84, 89, 92, 98, 101,
102,104,113, 114,120, 121, 130, 131, 137, 138, 145, 146, 148, 154, 155
vVVVvy 1-27,29-31, 33, 35-46, 49-52, 54-65, 67,71, 73,75, 76, 78, 79, 82, 83, 86, 87.
91,92, 94, 95, 99, 101, 103, 105, 107, 109-112, 115. 116, 118-120, 122-124,
128,129,134, 142, 144,147, 150

Table D-7: Labeling subsets for X intersections.

89

Appendix E
Student feedback

The students in a geometric modeling class were given an assignment to use Viking to create
a cubic octahedron like the one shown in Figure E-1a. Prior to the assignment, the students were
given a lecture on how to use Viking by the course instructor and the only documentation the
students had was the on-line help. The student’s written comments are given below.

e Student 1’s comments:

It took about 5 hours to model the cuboctahedron. I spent more than 2 hours to figure out the
function of ‘constraint’, so I asked my classmate. It was not so easy for me to understand
the function with only the online help.

e Student 2’s comments:

Viking is a special graphics tool to draw a 3 dimensional object. If the methods to apply a
constraint is understood, it can be very easy to draw a solid object. I had spent more than 10
hours to test all the functions to learn how to apply a constraint. I think it is very confusing
to a naive user to use Viking and the help menu is not clear enough (at least to me). If the
author provides a little description on how to apply constraints in Viking, I think a naive
user might draw the cuboctahedron in 20 minutes. This includes the time to understand the

Figure E-1b: A cuboctahedron with
constraints.

Figure E-1a: A cuboctahedron.

method used to apply a constraint. A little manual describing the meaning of symbols on the
screen would also be helpful to understanding Viking.

I spent at least 10 hours to learn how to apply a constraint. Knowing how to use constraints,
I can now draw a cuboctahedron in 20 minutes. I think Viking is a good program.

Student 3’s comments:

For this assignment, it took me about 20 minutes to draw the wire frame and about 30 minutes
to figure out how to make it into a solid. I used this interface before to create a wireframe of
a cube.

Student 4’s comments:

Since this assignment will employ Viking, I used the second method (truncating a cube) to
build a cuboctahedron model. Because the side length and rectangular face is easy to create
using the constraint functions, it took me about 30 minutes. Then I must set the frame model
to be a solid model, which took me about 20 minutes.

Student 5’s comments:

Time to complete the assignment: 4.5 hours

- 1.5 hours Understanding Viking s input (with the help of another student).
— 2 hours input solid and cutting, mostly spent finding the center point of edges.

— 1 hour getting the result, mostly spent understanding and getting output.
My opinion is that Viking should have the following functions:

- Construction functions, such as dividing an edge into 1/2, 1/3, 1/4
— The user should be able to directly enter the z, y, z coordinates of a vertex.

— When the user changes the length of an edge, Viking moves both endpoints. It should
be possible to fix one endpoint and move only the other one.

91

Bibliography

[1] Eric Bier. Snap-dragging in three dimensions. Computer Graphics, 24(2):193-204, March
1990. Proceedings 1990 Symposium on Interactive 3d Graphics.

[2] Alan Borning. ThingLab — A Constraint-Oriented Simulation Laboratory. PhD thesis,
Stanford University, 1979.

[3] Christopher Brown. Padl-2: A technical summary. IEEE Computer Graphics and Applica-
tions, pages 69-84, March 1982.

[4] L.G. Bullard and L.T. Biegler. Lp strategies for constraint simulation. In AIChE ’89 Confer-
ence Proceedings, November 1989.

[5] Michael Chen, S. Joy Mountford, and Abigail Sellen. A study in interactive 3-d rotation using
2-d control devices. In SIGGRAPH '88 Conference Proceedings, pages 121-129, 1988.

[6] R. T. Chien and Y.H. Chang. Recognition of curved objects and object assemblies. In
Proceedings of the 2™ Intemational Conference on Pattern Recognition, pages 496-510,
1974.

[7] M. B. Clowes. On seeing things. Artificial Intelligence, 2:79-116, 1971.

[8] S. Mark Courter and John A. Brewer IIl. Automated conversion of curvilinear wire-frame
models to surface boundary models; a topological approach. In SIGGRAPH '86 Conference
Proceedings, pages 171-178, 1986.

[9] David R. Forsey and Richard H. Barnes. Hierarchical b-spline refinement. In SIGGRAPH
"88 Conference Proceedings, pages 205-212, 1988.

[10] B.N. Freeman-Benson and J. Maloney. The deltablue algorithm: an incremental constraint
hierarchy solver. In Eighth Annual International Phoenix Conference on Computers and
Communications, March 1989.

[11]) Michael Gleicher. Integrating constraints and direct manipulation, 1992. To appear in: 1992
Symposium on Interactive 3D Graphics.

[12] Michael Gleicher and Andrew Witkin. Differential manipulation. Graphics Interface, pages
61-67, June 1991,

92

T ———

[13] James Gosling. Algebraic Constraints. PhD thesis, Carnegie-Mellon University, 1983.
Published as CMU Computer Science Department tech report CMU-CS-83-132.

0 [14] Adolfo Guzman-Arenas. Computer Recognition of Three-dimensional Objects in a Visual
Scene. PhD thesis, Massachusetts Institute of Technology, 1968.

[15] B. Hajek. A tutorial of theory and applications of simulated annealing. In Proceedings of the
24th IEEE Conference on Decision and Control, December 1985.

[16] Patrick M. Hanrahan. Creating volume models from edge-vertex graphs. In SIGGRAPH ’82
Conference Proceedings, pages 77-84, 1982.

[17] D. A. Huffman. Impossible objects as nonsense sentences. Machine Intelligence, 6:295-323,
1971.

(18] 1akeo Kanade. A theory of origami world. Artificial Intelligence, 13:279-311, 1980.

[19] Yvan Leclerc and Martin Fischler. Recovering 3-d wire frames from line drawings. In
Proceedings of DARPA Image Understanding Workshop, January 1992.

[20] Thomas Marrill. Emulating the human interpretation of line-drawings as three-dimensional
objects. The International Journal of Computer Vision, 6(2):147-161, 1991.

[21] Greg Nelson. Juno, a constraint-based graphics system. In SIGGRAPH ’85 Conference
Proceedings, pages 235-243, 1985.

[22] William Press. Numerical Recipes: the art of scientific computation. Cambridge University
Press: Cambridge, Massachusetts, 1986.

[23] David Pugh. Interactive sketch interpretation using arc-labeling and geometric constraint
satisfaction. Technical Report CMU-CS-91-181, Carnegie Mellon University, 1991.

[24] P. V. Sanker. A vertex coding scheme for interpreting ambiguous trihedral solids. Computer
Graphics and Image Processing, 6:61-89, 1977.

[25] Ken Shoemake. Animating rotation with quaternion curves. In SIGGRAPH ’85 Conference
Proceedings, pages 177-186, 1985.

[26] Steve Sistare. Graphical interaction techniques in constraint-based geometric modeling. In
- Graphics Interface '91 proceedings, pages 85-92, 1991.

[27) Kokichi Sugihara. Machine Interpretation of Line Drawings. The MIT Press: Cambridge,
. Massachusetts, 1986.

(28] Ivan Sutherland. Sketchpad: A Man Machine Graphical Communications System. PhD
thesis, Massachusetts Institute of Technology, January 1963.

[29] David Waltz. Generating semantic descriptions from drawings of scenes with shadows.
Technical Report MAC AI-TR-271, Massachusetts Institute of Technology, 1972.

93

[30] Rob Woodbury. Searching for designs: Paradigm and practice. Building and Environment,
26(1):61-73, 1991.

94

