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This report contains a summary of the main results obtained by research supported
by thus grant.

1. Justification of the basis for weighted rankings analysis

The method of weighted rankings analysis was introduced in Quade (1972,
1979). A brief description is as follows: Let X, j be the yield of the j—th treatment in
the i—th block, fori = 1,...,n and j = 1,...,m and let Rij be the within—block rank of
Xi i Let Di be a measure of apparent variability for the i—th block, Qi be the
corresponding rank. Let tl,...,tm be any constants, and let 81108y be constants such
that 0 < 8y € ... 8. Then a statistic of the form

3 {z 2
S }
o1 liog "9 Ry

may be used for testing the hypothesis of no treatment effects.

The method of weighted rankings is based on the idea that if some blocks
appear more variable than others, then they are perhaps better referred to as more
discriminating. Hence it seems intuitively reasonable that these blocks receive
greater weight in the analysis.

In this research we examine this credability hypothesis and provide objective
evidence showing how the more variable blocks do indeed better reflect any true

treatment effects. The n—block two treatment exponential case was considered, and

the foundation is established to extend the result to the more general cases (see {‘.”'____‘
C ¢
Appendix I). 0
d a
.0
2. A nonparametric multivariate test for homogeneity based on all nearest neighbors
: s . n/ ,
Let {X. 2i=12;j= 1,...,n.} be two independent random samples of tty Co dos |
observations in the Euclidean space Rd where X has distribution function F,. The a“d/ or '

ij
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problem under consideration is to test the hypothesis H0 : F1 = F2, against the
completely general alternative H, : F; # F,.

Let R(i,j;i’,j’) be the rank of observation X, i with respect to nearness to
Xi i we assume that there will be no ties. Then we define Xi, i as "the" k—th nearest
neighbor of X, j if R(i,ji’,j’) = k, and as "a" k—nearest neighbor if R(i,j;i’,j’) < k.
Interest in statistical procedures based on such nearest neighbors has grown as
high~speed computers have made the application of these techniques practicable,
since the idea of making inferences about an object based on nearby objects appears
to be a fundamental mechanism of human perception. A review of early work using

nearest—neighbor approaches to our problem may be found in Schilling (1986).

Schilling’s own approach is as follows. Let
L j(r) = I{r—th nearest neighbor of X, j is in sample i}
fori=1,2;j=1,.., n,;
r=1,.N-1(N= n1+n2),

where I{E} is the indicator function of the event E. Count the number of k—nearest

neighbors to X, ; which are in the i—th (same) sample, viz.
])E,
s = I..(r).
Cuk r=1 1_](r)

Summing these counts over all observations yields what may be called the "Schilling
total", of order k:

ij K

His test statistic for our problem is then
Sk = Tk/Nk,

which is "the proportion of all k—nearest neighbor comparisons in which a point and

its neighbor are members of the same sample" (1986, p. 800), or "Schilling
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proportion" of order k. One would expect S to have a larger value under H, than
under H0 because of a lack of complete mixing of the two samples when the parent
distributions are not identical; hence large values of Sk may be considered significant.
Schilling shows that the asymptotic distribution of S, under H is normal, for every
positive integer k, and that the test which rejects for large values of S, is consistent
against the general alternative Ha’

Schilling’s work suggests that the choice of order is not of great importance;
nevertheless, it is arbitrary, and he gives no guidance for choosing it. To resolve this
issue we propose to take as test statistic the sum of the Schilling totals, which is

equivalent to a certain weighted average of the Schilling proportions:

W=2Tk=NEkSk.

This statistic may have intuitive appeal in that it is equivalent to a sum of N
Wilcoxon rank sums, and is also a linear combination of two U—statistics, as we have
shown. We study some of the exact properties of W. For the asymptotic properties,
we note that W is equivalent to a sum of Schilling proportions, each of which is
asymptotically normal; but asymptotic normality of their joint distribution has not
been shown. Similarly, we have shown that W is a sum of Wilcoxon statistics, each
of which is asymptotically normal; but again asymptotic normality of their joint
distribution has not been shown. We might also attempt to show this by means of
U—statistics theory, but have not yet been able to work out the necessary conditions
on the variance. Nevertheless, it seems reasonable to conjecture that W itself is
asymptotically normal. Computer simulation was used to estimate the 95th
percentile of W, then this value will be used as the critical value for a test. That is,
the null hypothesis will be rejected if W is greater than this critical value. The
empirical power of the test based on W was also calculated based on this critical

value.
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3. Exact tables for Spearman’s footrule
Spearman (1904) based the measure of rank correlation as his "footrule" on
n
D(o,m) = B _|o(i) —=(i)],
i=1
where o and = are any two permutations of Sn, the set of all permutations of the first
n integers. Ury and Kleinecke (1979) provided the exact commulative distribution of
D for n = 2(1)10. Franklin (1988) has extended the tabulation to n = 11(1)18. The
difficulty in extending these tables is due to the exponential growth rate of time
needed to generate all permutations of Sn‘ By relating D to a Markov chain on Sy
we extend the exact tabulation to n = 19(1)40. We also investigate the adequacy of

approximation to the normal distribution.

4. The asymptotic permutational normality of certain weighted measures of
correlation
Let be given observation (xi’Yi)’ i = 1,...,n, on the continuous bivariate
random variable (X,Y). Without loss of generality we may relabel the X’s to have
ranks 1,...,n: then let the corresponding ranks of the Y’s be Rl""’Rn’ Define
7= £ R <)

where I{E} is the indicator function of the event E, and let

D
T= . T.
=1 WJTJ

where WiresWy is a sequence of weights. Then T may be regarded as a weighted
measure of rank correlation between the X’s and Y’s. This notion was introduced in

Salama and Quade (1982), although they discussed only the special case where w =
1/j.
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In this research, a martingale approach is used to establish the asymptotic

normality of a class of weighted correlation statistics.

5. Spherical uniformity and the Cauchy distribution

To motivate the characterization problems (to be posed), we consider the
following. Let Y be a stochastic (m—) vector for which EY = Xf, where X is a known
mxn (design) matrix and § is an n—vector of unknown regression parameters. Then
23, the least squares estimator (LSE) of S, satisfies the equation: (X’X)E, =X'Y.
When X'’X is not of full rank, additional constraints are imposed on f in order that
the LSE may be defined uniquely. In the absence of a physically natural form of such
a (linear) constraint, often this choice is made rather arbitrarily. In some random
effects or mixed models, when Rank(X’X) = n—1, an additional random constraint is
taken as ¢’ = 0, where |ic]| = 1. In robust regression (cf. Huber (1981, p. 170)),
when n is large, often c is chosen at random with respect to the invariant measure on
the unit sphere ||c/| = 1. In the context of asymptotic normality of estimato-s, Huber
(1981) assumed that Rank(X’X) = n, and we shall see that a different picture
emerges when Rank(X'’X) is less than n. Suppose that Rank(X’X) = n—1 and let
¢’f = 0 be an additional constraint such that ||c|| = 1. Let 3c be the solution
satisfying (X’X)ﬁc = X’Y and ¢’§, = 0. Let v be the eigenvector corresponding to
the null eigenvalue of X’X. Then fic may be wriicen as

ﬂc = ﬂo + ((clﬂo)/(clv))v’ (1)
where ao is any particular solution of (X’X)A = X’Y (and is therefore a random

variable). Thus, given BO’ we may write

(B—By) = vl(c’ By)/(c’ V)], (2)
and its conditional distribution, given 30, is generated exclusively by the uniform

distribution of ¢ on the spherical surface. Note that v is nonstochastic (as X’ X is), so

LF wwar == ST




that the key factor on the right—hand side of (2) is the ratio (c’ﬁo)/ (c’v), where BO i8
held fixed. This leads us to the following problem.

For two arbitrary points b and vin R®, let L(t) = b + tv, t € R be a given
line. Let S = {c:c’c = 1} be the unit sphere, and for every c € 21 et P(c) be
the hyperplane defined by P ¢ = 0, P € R™. Let L(t,) = b + (t_)v be the point at
which L and P(c) intersect, for c € $%71. Define then

X, = X,() = siga(t JIL(t,) = O = siga(tlt ] Ivll, ce 8™ (3

Assuming that ¢ has a uniform distribution on the sphere o1

, we show that for
everyn 2, Xn has the same distribution as aX + d, where a and d are real numbers
and X has the standard Cauchy distribution. Some other related characterization

results are also considered in the same view.

6. Topological entropy of countable Markov chains

We consider a symbolic dynamical system (X,o) on a countable state space.
We introduce a kind of topological entropy for such systems, denoted h*, which
coincides with usual topological entropy when X is compact. We use a pictorial
approach, to classify a graph I' (or a chain) as transient, null recurrent, or positive
recurrent. We show that given 0 < a < A < o, there is a chain whose h* entropy is §
and where Gurevic entropy is a. We compute the topological entropies of some
classes of chains, including larger chains built up from smaller ones by a new

operation which we call the Cartesian sum.
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REMARKS ON JUSTIFYING THE INTUITIVE BASIS
FOR THE METHOD OF WEIGHTED RANKINGS

Ibrahim A. Salama, School of Business, North Carolina Central University, Durham
Dana Quade, Department of Biostatistics, University of North Carolina at Chapel Hill

1. INTRODUCTION

Let X;; be the observation of the j-th of m
treatments in the i-th of n complete blocks, and
consider the hypothesis of no trecatment eflects,
specifically
Hy: X4y - X 8re interchangeable for each i.
(By definition random  variables are
interchangeable if their joint distribution function
is invariant under permutation; this implies that
they have identical marginal distributions and
equal — but not necessarily zero -- correlations.)
We assume throughout:

(1) Independent Blocks

For i=1, ..., n, the random vectors X,=(X;,,
.ow  X;m) (the blocks), are mutually
independent.

To simplify the exposition it is convenient also
to assume:

(IT) No Within-Blocks Ties
P{X;;=X_,}=0 for j#j’
ij

Thus with probability 1 there will be no ties
within blocks.

The alternatives under consideration can be
fairly general: however, we have particularly in
mind that there may be additive treatment
effects, as follows:

UNORDERED CASE

Ho[u): There exist quantities 7, ..., Tm
(treatment eflects) not all equal to zero,
such that for i=1, ..., n, X;;—7y, ..,
X,m— Tm are interchangeable.

ORDERED CASE

He[o): The quantities 7,, ..., rm (as above)
satisfly 7, <...<7m, with 7, 7m.

Standard nonparametric procedures for
attacking this problem are based on within-block

rankings: for example, the tests of Friedman
(1937) and Brown and Mood (1951) for Ha[u];
and Lyerly (1952), Page (1963) and Jonckheere
(1954) for Hafo]. Let C , be some measure of
rank correlation between'’block i and block i’.
Then

G = n

C=x,C,/Q
is the average internal rank correlation, and we
reject Hy in favor of Ha[u] if C is too big. (This
is equivalent to Friedman’s test if Spearman
correlation is used.) Similarly let C; be the rank
correlation between block i and the ordering
given by the alternative. Then

C = 'E,C,-/n

is the average external rank correlation, and we
reject Hy in favor of Hs[o] if C is too big. (This
is equivalent to Page’s test if Spearman
correlation is used.)

The standard procedure is parametric two-
way analysis of variance, but this adds two
assumptions:

(I11) Additive Block Effects

There exist quantities 8, ..., fn (block
effects) such that the random vectors
(Xi51—=Bi on X;m—B81) are identically
distributed.

(1V) Normality
The X;;'s are [jointly] normal.

By Assumption Ill, comparisons of observations
are possible between blocks as well as within, so
procedures which use only within-block
comparisons waste information. A method of
weighted within-block rankings, which makes use
of Assumption (II) without requiring
Assumption (IV), has been introduced by Quade
(1972, 1979). The idea behind this method is
that blocks in which the observations are more
distinct are more likely to reflect any underlying




true ordering of the treatment effects. These
blocks, which may be referred to as more
credible, should receive greater weight in the
analysis. (In practice, credibility is measured by
apparent  variability; but note that by
Assumption III the trve variability is the same in
all blocks.)

To determine the weight for the i-th block,
use some location-free statistic D;=D(X;;, ...,
X;m) which measures the credibility of the block
with respect to treatment ordering, and let Q, be
the rank of D; among D,, ..., Da. Again for
simplicity of exposition, make the (unessential)
assumption:

(V) No Between-Block Ties
P{D; =D,} =0fori #i,
]

This assures that there will be no ties in the
ranking of the blocks. Let 0<b,<...<bn, with
0#bn, be a fixed set of block scores; and weight
the i-th block proportionally to b, .

Then in testing against ?ﬁe unordered
alternative we use the weighted average internal
rank correlation

= 3_y2
W= ﬁ?bo‘bo‘,cu, / (£b)*~5b3) .
Against the ordered alternative we use the
weighted average external rank correlation

The purpose of this paper is to examine the
notion on which these weighted rank correlation
coefficients are based, which we call the
credibility hypothesis.

2. THE CASE OF TWO TREATMENTS
With m=2 treatments, suppose the true

ranking is (1, 2): i.., 7,<7;. Let R;; be the
rank of X;; within the i-th block, and consider

P{(R;;, R;3) = (1, 2)|Q;=k} = 4, (say).
The intuitive notion is that

$1<¢3<... < ¢n,

where of course

L¢;/n = ¢ (say)

is the unconditional probability P{(R,,, R,,
(1, 2)}. With two treatments we may let D;
Xzi—xli. Then

(R Riz) =(1,2) & D; >0
and
Q; = k & |D;| has rank k among |D,|, ..., |Dal.

In the very special case of 2 treatments and 2
blocks, let us define

¢ = P{D, > 0}
and
9 = P{D,+D,; > 0).
Then
¢1= P{D,>0||D,|<[D,|} =¢—(0—¢)=26—6
¢2= P{D,>0||D,|>[D,|} =¢+(0-¢) = 0

and the credibility hypothesis holds if 0>4¢.
Suppose (X;,—r,, X;;—7,) are IID normal with
variance ¢*; then it is easily seen that

To—T To~—T

so(Tr) o=o(5

where & is the standard normal distribution
function, and 0>¢ if r;<r;. On the other
hand, suppose (X;;—7,, X,;;—7,) are IID
Cauchy; then 6=¢, and the credibility
hypothesis does not hold. Note, by the way,
that with only two trcatments the weighted
rankings procedures are equivalent to signed-
rank procedures, which are thoroughly discussed
in Chapter 3 of Pratt and Gibbons (1981).

If we do not limit ourselves to additive
treatment effects, we may consider the
interesting special case where X and Y are
exponentially distributed, with parameters (say)
A and p, respectively. Then it is easily shown
that ¢=X/(A+p), 0=¢%(3—24), and 0>¢ il
and only if A<y,

3. THE GENERAL CASE

We now turn our attention to the general case
where we have m treatments and n blocks.




Write

(Riyy ..o Ryp) = R;,

and consider
P{R;=1|Q;=k}
= nP{R;=t, Q,=k} since P{Q,;=k}=1/n
= nP{R‘-—r, D’l< D; < k
= nP{R;=r, D(4_;y < D; < D)}
where D, ., is the j-th order statistic from a
sample omn—l) values of D [that is, all values

except D,-].

Let g,_;,, be the joint density function of
Dy and D(yy- Then

P{R;=r|Q;=k}

= n?z'P{l_{,.=_ a<D,<b}g,_, 4(a, b)dadb.
Proof:
P(B,=lQ; =k}
= nP{R;=1, Q;=k}
= nP{B. i =I,
Di,<..<D;_<D;<Du<..<D; _ l}

2 1,_y) is & permutation of (1, ...,
. n). This in turn is equal to

where (iy, ..
i—1,i+1,..

nP{R;=r1,d(;_;) < D; < d,,}

where d, ., is the j-Lh order statistic of a sample
(n—1) obscrvations on D, and thence equal to
the integral of the Theorem. QED

This form allows the possibility of actual
computation. The density g is well-known given
the distribution of D. And the probability
expression in the integrand depends only on the
m-dimensional joint distribution of the
observations within a single block. However, it
does involve working with distributions of order
statistics from heterogeneous distributions.

In the special cases of k=1 and k=n we have

P{R,) =1IQ,=1}

< D; < tH;,(t)dt

P{R; = 1|Q; = n}
P(R, =1, ¢

||
°'“8

< D; < 00} f,_p(t)dt

where f,) is the density function of D(,,.
4. AN EXPONENTIAL SPECIAL CASE

In this section we consider an application of
the preceding theorem to a simple and
analytically tractable case. We consider two
treatments realized by the random variables X
and Y, which we assume independent with

probability denslty functions f.(x)=e*,
fy(y)=Xe ", and 0 < X, Y < oo. For the n
blocks we have independent observations

Z;=(X;, Y;), i=1, .., n. Let D,=|X;-Y,],
i=1, .., n Assummg that A>1, the “correct”
ordering of (X, Y) is given by the permutation
0=(2, 1). [The “correct” ordering means
P(X>Y) > P(Y>X)]. (In this notation the
range of the observations in the i-th block is less
than that of the (i+1)** block.)

1if R(.'),1 =2
Since Corr(R(.-), ag) = {
-lif R(,-),, =1

it follows that

E(Corr(Ry;), 0))= P{R(;),= 2}-P{R ;) ,=1}
= P{Ry;),, =2} -[1-P{R(;,=2]]
= 2P{R,,,=2}-1.

Thus, we compute

P, = P{R(X,)=2|R(D,)=k}, k=1, .., n+1
and show that {P,} is strictly monotone
increasing in k. The following lemma will be
used in showing the result.
Lemma:
Let X ay - X( ) be the order statistics for a

sample of size n from Il(x), 0 < x <l. Let

,.-E()((,=+ J-E(X(,, If h(x) is monotone
increasing (decreasing), then {d,} is monotone
decreasing (increasing) in k.




Proof:
E(X(.))
H“‘(x)h(x)[l H(x)]" *dx

—é (‘“’}ﬁ’&)r 19h(x)™x}

—?‘gk('i‘)ﬂ"(x)[l-H(x)]""dx

- 2:": (M) )l - A )™,

i=k

So

d, = E(X(k“)-—E(X(,))

= }(ﬁ)ﬂ"(x)[l—}l(x)]"“‘dx.

Let y=H(x), so x=H"(y), and set u(y)=dx/dy.
Then

d, = 2 #(y)({:)y"(l-Y)""‘dy
=[uLy My (oay).

Clearly, L,(0)= Lﬁ(l) =0, L, is unimodal, and
there exists a y' such that 0<y <1 with
Ly(y*)=Ls1(y*). Now if h(x) i¢ monotone
increasing, then u(y) is monotone decreasing and

Ay =] s () - Laly)ldy
y
—2’ BY)Li(y) =Ly yr(y)ldy
< u(y‘)}. {Lisr(y)—La(y)dy
y

= #(y*)] [La(9) = L (1)}
= #(Y‘)Z(Lm(Y)—L.(y)ldy
= 0.
[Note Ly (r)dy=JLy(x)y=517 |

Hence {d,} in monotone increasing in k. The
case where h(x) is monotone decreasing is

similar.

Theorem:

Let (x4, Y1)y .-+ (Xn, ¥n) be the observations
corresponding to a design with two treatments
and n blocks. Assume that X and Y are
independent, wntll density functions fz(x) = ¢*
and fy(y) = A"’ 0 < X,Y <oo. Let P,
P{R(X,) = 2|R(D; ) = k}, where D,=|X; Y |
If A>1, then {P,} is monotone in k; that is,
P,<P,<...<Pn.

Proof:
Let D(X, Y)=|X-Y]|, then

= — __'\_ -t 1 At
G(t)=P(D<t)=1 ry \ B vy LY
g(t)_lH(e +e "‘), 0<t<oo.
We also have
P{R(X)=2, 05D<t}=H_—"-x(l-—e“),
-t -t
P{R(X)=2, t, <D<t} =p5(c '~ ?),

and

P{R(X)=2, t<D<oo}_l+'\ e’

By the preceding theorem, for k=2,
have

..., N we

P,=P{R(X)=2|R(D)=k}
oo f2
=n £ {P{R(X):?, t,<D<t,}
g(,_,,,)(t,,t,)dt,dt
t

oo t2 -ty -
=n g {(1—%])(5 e ‘2)8(k-1,g)(tzv t)dt,dt,

-t (n-1)!
—¢ Vi) 10!

[G(T)]* ?8(t))g(t,)[1=G(t,)] " Hdt,dt,

0 o0

=1 gt =5 ] < gyt

% _¢
{ e gu)(t)dt=




T e OO el -G Hat
00 -ty (n- 1)!

=[e (k-l)!(n-l-k)![l_l-l-A

-t_ A -dt
I+x°

n-1-&

* l—'\-x (€4t A e +1—-‘\—X At dt
¥ +

Py (o X
=f x( X :I
n-1- E

0 ‘kfl)!(n-l-k)'[l ——xx
*(ﬁx (x+x'\)[—7x+——xx"] x.

(via the transformation X=¢"*)
x"]

(TAX)(HXM) 1+,\x+1+xx'\]d

1 (n-1}!
=X Do

e (n)
’{x(k.l)?(n.l-k)v[‘ X

H™"E(x)h(x)[1 - H(x)]}*"'dx,

where H(x) is the distribution function given by
=2 1 yA
Thus we have
m -
g € 'gay()dt=E(X (1)),

where X, is the k-th order statistic of a sample
of size n-1 from H(x). Now

(n+1)A
Pe=1 [E(x(u-t+l)—E(x(n-k))]
and for A>1, h(x) is strictly monotone

increasing, hence P,>P,_, ... > P,.
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