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Abstract

One of the core constructs of High Performance Fortran (HPF) is the array-slice assignment statement. combined with
the rich choice of data distribution options available to the programmer. On a private memory multicomputer. the
HPF compiler writer faces the difficult task of automatically generating the necessary communication for assignment
statements involving arrays with arbitrary block-cyclic data distributions. In this paper we present a framework for
representing array slices and block-cyclic distributions, and we derive efficient algorithms for sending and receiving the
necessary data for array-slice assignment statements. The algorithms include a memory-efficient method of managing
the layout of the distributed arrays in each processor’s local memory. We also provide a means of converting the
user’s TEMPLATE, ALIGN, and DISTRIBUTE statements into a convenient array ownership descriptor. In addition,
we present several optimizations for common distributions and easily-recognized communication patterns. The work
presented makes minimal assumptions regarding the processor architecture, the communication architecture. or the
underlying language being compiled.
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1 Introduction

Private memory multiprocessors have made it possible to solve larger problems more quickly compared
to single-processor computers. Problems can be solved more quickly by distributing the work among the
processors. Problems with larger memory requirements can be solved due to the fact that each individual
processor can typically have an amount of private memory on the order of that of a single-processor system,
so the total amount of memory in the system scales up with the number of processors.

When mapping a scientific application onto such a parallel machine, a common approach is to distribute
the array elements among the individual processors. When performing a piece of the computation, paral-
lelism is obtained when related data are found on the same processor, and the absence of data dependences
allows most or all of the processors to compute in parallel. Whenever nonlocal data is needed for a com-
putation, communication is performed. In ‘his approach, all processors follow essentially the same thread
of control, so it usually suffices to write a single source program which is executed on all processors. With
a careful data distribution, the computation can often be distributed evenly among the processors while
maximizing the data locality.

The problem with this approach is that it is usually time-consuming and error-prone for the programmer,
who must manage the memory layout and the communication within the program. The difficulty of
implementing this management correctly can discourage the programmer from experimenting with different
distributions of data, or from even attempting to parallelize the program in the first place.

An obvious solution to this problem is 0 have a compiler which automatically manages the memory
layout and the communication. This approach frees the programmer from these concemns, and allows the
programmer to concentrate on the more important aspects of the algorithm and to experiment with different
methods of data distribution.

There have been several compiler projects with this goal. The AL compiler [17] for the Warp systolic
array allows the programmer to distribute a single dimension of an array across the processors, to specify
array elements that are used in the same computation, and to distribute computation across the processors.
In addition, AL allows the specification of a window relatior. which allows data at block boundaries to be
shared by several processors. Our framework allows window relations in the form of left and right overlap
specified in the ALIGN statement (see Section 11). CM Fortran [16] allows the programmer to specify
parallelism in the form of Fortran 90 [1] array statements, and it gives the programmer some freedom in
choosing a data distribution. Fortran D [9] provides a rich set of data distribution methods, which are applied
independently to each dimension of an array. While Fortran D uses data dependence analysis to determine
which sequential code can be parallelized, Fortran 90D [6] adds the syntax of Fortran 90 array statements to
help derive parallelism. Vienna Fortran [19] allows the programmer to specify the same kinds of alignments
and distributions as in Fortran D, and in fact allows many more Kinds, including user-specified alignment
and distribution functions.

In this paper, we derive the communication and the memory management required to evaluate array
statements similar to those in Fortran 90. The data distribution is given in terms similar to those in Fortran D:
we assume that each dimension of each array is distributed in block-cyclic fashion. This distribution could
be specified by the programmer, or the compiler could automatically derive distributions, using methods
similar to those of Chatterjee et al. [S] or Wholey [18]. Parallelism is expressed in terms of array statements,
as in CM Fortran and Fortran 90D. Thus our approach is similar to that taken by the High Performance
Fortran Forum [8], although we do not explicitly assume Fortran as our input language. The work of
automatically deriving parallelism from sequential code is beyond the scope of this paper.

Chatterjee et al. [4] present a similar framework for compiling array assignment statements, in terms of
constructing a finite state machine. Chatterjee’s approach accesses data in a manner that is more friendly




than our approach to a data cache, especially in the case of block-cyclic data distributions. However, our
approach requires O( P) less buffer space, where P is the number of processors, and our approach allows
more overlapping of communication and computation. Their approach additionally allows an arbitrary
integer affine alignment function, e.g. ALIGN A(ai + b) WITH T(¢), whereas our approach only allows
a to be O or 1. Finally, although Chatterjee’s method can handle the communication for an arbitrary array
assignment statement, such as the communication that arises during a redistribution, it induces two integer
divisions per element within the inner loop, although the extra cost can be made more reasonable when the
divisors are known to be powers of 2.

Although other work [14, 13] addresses compile-time analysis of array statements with block and
cyclic distributions, our approach and Chatterjee’s approach are the only methods to date which address
compile-time analysis of block-cyclic distributions.

A quite different approach for generating communication sets is taken by Saltz et al. [15]. While
the methods described in this paper use compile-time analysis exclusively, their method invokes runtime
analysis, in the form of the inspector/executor model, to generate the communication. Compile-time analysis
is likely to produce faster code, provided that sufficient access and distribution information is known at
compile time, although it does not extend well to handle the important class of unstructured and irregular
data distributions.

The work presented here is meant to be sufficiently detailed to allow a compiler writer to use it as a
manual for implementing a similar compiler. We have validated our work by implementing it in a prototype
compiler, called Fx, for the iWarp system [2, 3]. The Fx compiler takes as input Fortran 77 statements
augmented with whole-array and array-slice syntax and directives for data distribution, and produces as
output Fortran 77 code augmented with communication primitives, which is passed on to the native iWarp
Fortran compiler.

The paper is organized in the following manner: Section 2 gives an overview of the approach taken in the
paper. Section 3 presents the permanent low-level assumptions we make, while Section 4 imposes temporary
restrictions on the form of statements we compile, to simplify the analysis. These restrictions are removed
in Section 10. Section S describes slice intersection, which is the basis of the methods presented in Sections
6 and 7, which describe how to compute the data that is sent and received, respectively, between processors.
Slice intersection is also vital for Section 8, which details how a processor performs its computation after
completing its communication. The communication and computation phases are put together into an overall
algorithm in Section 9. Section 11 describes how processors can determine data ownership, given data
distribution directives provided by the user. Section 12 presents some possible optimizations for common
cases. Section 13 shows how the basic array assignment statement can be easily extended to handle other
useful array constructs.

Note that Appendix D provides a partial glossary of the variable naming notation used throughout the

paper.

2 Opverview of the approach

In our approach, parallelism is expressed as user directives, which are given at the statement level in the
form of array statements. The standard example of an array statement used in this paper is the assignment

statement:
A(fa:ly:sy)=F(B(fg:lp:sB)). (n

which is equivalent to the following sequential Fortran code:

o




iB=fB

DO ig = fa,14,34
T(ia) = B(iB)
iB=1iB+ 3B

END DO

DO i4 = fa,la,84
A(ia) = F(T(ia))

END DO

This sequential code copies the relevant section of B into a temporary array T, and then performs the
assignment to A based on the contents of T. This two-step procedure is used because the semantics of the
assignment statement dictate that the right-hand side terms are first read, and then the results are computed
and the left-hand side terms are written. The procedure is depicted in Figure 1.

/s = >
B $
<
fA S
T $
5, <
2
A $
Ta - Sy <

Figure 1: The two-step procedure for evaluating the basic array assignment statement.

In our approach, when we perform the translation for distributed arrays on a multiprocessor, the array
T will be aligned with A, in the sense that corresponding elements of A and T will always be found on the
same processor. This implies that the relevant section of array B is temporarily realigned with the relevant
section of A to compute the result.

The array expression A(f : [ : s) contains, as its only array index, an array slice. This notation is
identical to the Fortran 90 subscript triplet. An array slice contains three colon-separated components, and
represents an arithmetic sequence of integers (i.e., the difference between any two successive elements of
the sequence is constant). This sequence is given by:

(fvf+3.f+2s,....f+ [l—st>.
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This expression represents the sequence of integers starting at f, with stride s, and bounded above by /
(bounded below by [ when s < 0). Notice that ! is not necessarily a member of the sequence, as in the slice
(1:10: 2), which contains only odd integers.

The elements of arrays A and B are distributed across the processors in block-cyclic fashion. This
method of distribution is pictured in Figure 2. The distribution could be specified by the user, or by a
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Figure 2: An example of a block-cyclic distribution. The shaded elements reside on one particular processor.
The processor owns array elements corresponding to indices beginning with f, in blocks of size n. The
distance between the start of one block and the start of the next is s.

separate compiler phase; in any case, we assume that the distribution has already been determined when our
analysis is applied. For each processor, there is a set of indices denoting the array elements that reside on
the processor. Because of the block-cyclic distribution, this set can be specified using only four parameters.
We say that the processor “owns” the array elements corresponding to this index set.

We assume that scalars are owned by all processors. Therefore, every processor allocates storage for
each scalar, and at any given point in the program execution, all processors have the same value for each
scalar.

For the work presented in this paper, we assume that parallelism is driven by the owner-computes
rule, which states that computation is performed on the processor on which the result is to be stored.
Note that while the owner-computes rule is reasonably simple to implement and likely to be optimal for
many statements, it is not the only model on which to base compilation algorithms. On a private memory
architecture, use of the owner-computes rule implies that the compiler must generate code to perform three
steps for each processor P:

Send: For every processor ¢}, determine which array elements are owned by P and needed for Qs
computation, and send these elements from P to Q.

Receive: For every processor (), determine which array elements are owned by (J and needed for P’s
computation, and receive these elements on P from ).

Compute: For every element on the left-hand side of the equation owned by P, perform the computation
and store the result locally. After having executed the previous two steps, all right-hand side data is
guaranteed to be in local memory on P.

The difficult parts of these steps are:

o determining which array elements to send, and where in local memory these array elements can be
found;

o determining where in local memory to store received elements;

¢ determining which elements to nerform the computation on after receiving from all other processors.

Our approach is to devise a general method to handle all cases, and then to identify and optimize the common
cases. The basis of our general method is to find intersections of slices, which can be used both in array
expressions and to characterize block-cyclic ownership sets. Since a slice can be characterized by three
parameters, and one additional parameter can be used to characterize an ownership set in terms of slices,
the resulting intersections can also be specified using a fairly small number of parameters.




When mapping a single source program to multiple processors, a compiler can take the approach of
either creating a single program to be run by all processors, or creating several different programs that are
mapped onto the set of processors. In our model, parallelism is derived only at the statement (data-parallel)
level, and not at the instruction-parallel level; that is, every processor is assumed to be following the same
thread of control. For this reason, all processors execute similar instruction streams. Hence the analysis
presented in this paper is designed to allow a compiler to produce = single program as output, which is
meant to be executed by all processors, in a Single Program Multiple Data (SPMD) model.

For the remainder of the paper, we proceed using a bottom-up approach. We begin by describing how
to compile the simple array assignment statement given in equation (1). This example captures the essence
of the complexity of compiling array assignment statements. Then we extend the framework to handle
arbitrary statements, and we describe possible optimizations. In describing the compilation of equation (1),
we reduce the communication requirements to that of a single send (and the corresponding receive) between
an arbitrary pair of processors. Section 6 describes how the sending processor determines which data to
send, while Section 7 describes how the receiver processes and “decodes” the received data.

3 Basic requirements

There are certain basic requirements that we impose on the form of the program being compiled, and on the
machine for which the program is compiled. This section describes and motivates these requirements.

We assume the existence of a general message passing system. This message passing system should
be capable of supporting messages sent from one processor to itself, since the algorithms presented here
make no distinction between sends to oneself and sends to a different processor. Messages received within
one phase are allowed to arrive in any order; they can be processed as soon as they arrive. However, to
process an incoming message correctly, the receiving processor must have a means of determining which
processor sent the message. If the message passing system does not provide this functionality, the compiler
must generate code to provide it (e.g., by having the sender provide its identifier along with the message).

All distributions of arrays must be block-cyclic (note that block and cyclic distributions are special cases
of block-cyclic distributions). The primary reason for this choice is that the block-cyclic method provides
a large number of distributions, while requiring a small, fixed number of parameters to describe. Another
reason, as shown later, is that block-cyclic distributions can be described as unions of slices, as in equations
(3) and (4), and slices are closed under intersection. Thus all sets over which we take intersections are
described in terms of slices, as are the intersections.

For a particular array, the block size must be the same for each processor over which the array is
distributed. In a heterogeneous multiprocessing environment, it might sometimes be worthwhile to assign
different proportions of the array to different processors to account for differences in processing speeds.
However, that kind of application is beyond the scope of this paper. In addition, if block sizes are allowed
to be different, certain optimizations, such as the one presented in Section 12.1.1, cannot be performed, and
certain computations must move inside an additional loop.

We use the owner-computes rule to divide the computation among the processors and to determine
the communication. This assumption forms the basis of all the communication and computation analysis
presented here.

Although array ownership is usually disjoint (i.e., each array element is owned by only one processor),
all scalars are replicated. We wish the program execution to be deterministic and to follow the semantics
of an equivalent sequential program. Thus we can think of the parallel execution as having a single thread
of control. At any point in this thread of control, all processors have the same local value of a replicated
variable. This restriction is necessary to preserve the sequential semantics of the program.




The final requirement involves the modulo, or “mod”, operator. Throughout this paper we will use
expressions in the form a mod b, where b will always be positive. However, a will sometimes be negative
in this context. We use the mathematical definition of the modulo operator, in which @ mod b is defined to
return a value between 0 and b — 1, inclusive. Note that in the C programming language, the sign of a%b is
implementation-dependent when either a or b is negative [11].

4 Simplifying restrictions

As our typical array statement, we have chosen the assignment statement given in equation (1). However,
this statement is far from typical in most programs. For example, assignment statements could involve
multiple terms on the right-hand side, arrays with more than one dimension, and scalar subscripts as well as
slices.

For now, we will make a number of additional assumptions concerning the form of the array statements,
all of which will be relaxed in Section 10. The assumptions are the following:

e We are considering only array assignment statements. Most other array constructs are simple exten-
sions of the array assignment statement. The implementation of more array constructs is described in
Section 13.

¢ Each array has only one dimension. For muiltidimensional array assignments, the analysis extends
orthogonally for each dimension of the array, as we will show later.

¢ In each assignment statement, there is only one term on the right-hand side. When this restriction is
relaxed, the analysis also extends orthogonally for each additional term on the right-hand side.

¢ For every slice, the stride component (s) is positive. One reason for this restriction involves Euclid's
algorithm for computing the greatest common divisor of two integers, which requires nonnegative
inputs. A more important reason is that the algorithms that will be presented assume that f is a fower
bound on the sequence and ! is an upper bound. This condition does not hold when the stride is
negative, as in the slice (10 : 1 : —1), where f is an upper bound and / is a lower bound.

e Nested array references are not allowed. An example of a nested array reference is A(B(1)) or
A(B(1 : n)), where A and B are arrays. This paper will not consider ways to efficiently evaluate such
nested array references, since in this case there is no longer a way, in general. to characterize the
sequence of array elements using a small set of parameters.

5 Slice intersection

When deriving the algorithms below, it will be necessary to find intersections of slices. A slice parameterizes
an arithmetic sequence of integers, and we need to find the intersection of two or more such slices, while
preserving the ordering. As we show below, such an intersection either is empty or is another slice: thus slices
are closed under intersection. Our goal is to find the first, last, and stride components of the intersection.
Figure 3 shows two examples of slice intersections.

Our approach for finding the intersection of two slices has three conceptual steps. The first step is
to extend the lower bound and the upper bound of each sequence to —x and 4, respectively, while
remembering the original bounds. The second step is to find the intersection of these infinite sequences,
which, as shown below, will be either empty or another infinite sequence. The final step is to find the
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Figure 3: Two examples of slice intersection. In the first example, we see that the intersection (1 : 48 :
4)N(3:48:6) = (9:48: 12). In the second example, the intersection (1 : 48 : 4) N (4 : 48 : 6) is empty;
the slices cannot possibly share elements, since the first slice contains only odd integers, while the second
slice contains only even integers.

true lower and upper bounds of the interse« tion by using the remembered original bounds. This approach
works well for finding the intersections of three or more slices, since we can avoid the steps of ccnverting
intermediate intersections from finite sequences to infinite sequences, and vice versa. Figure 4 depict: the
three steps of this approach.

Consider the slice (f : [ : s). Recall that f represents the first (smallest) element of the slice, / is an
upper bound on elements in the set. and s is the stride. Assume that s is positive; if ~ is negative, then f is
the largest element and / is a lower bound.

We introduce a modified representation of a slice, (f : [ : s : r), which represents a slice with infinite
bounds, as described above, where f and [ are the original remembered bounds. The s parameter serves the
same purpose as before. The r parameter is a “representative” of the set, in the sense that any member of
the set is equal tc 7 - ns for some integer n. For example, (0 : 10 : 2 : 37) represents the same sequence
as (1: 10 : 2), which is also the same as (1 : 9 : 2). In this representation, the f parameter need not be a
representative of the set, in the same sense that the [ parameter need not be a representative of the set. The
only requirement is that for any integer n, r + ns is a member of the original setifand only if f < r+ns </
in the new representation.

The conversion from one representation to the other is simple. The sequence given by ( f : [ : ~) is the
same as that given by (f : [ : s : f), and the sequence given by ( f : [ : 5 : r) is the same as that given by
(f+((r=f)mods):[:s)

Consider the intersection of the slices 5, = (f; : /, : s, : riJand 5, = (f, :{ 1, 1 r,). Arepresentative
of the intersection is some integer r for which there existintegers m and n suchthatr = r,+ms, = r. +ns..
This equation tells us that:

ms; = r;—-r;, (mods,).

Let z, y, and g be integers such that rs, + ys, = g = ged(s,.s,). These integers can be computed using
Euclid’s extended GCD algorithm [12, Volume 2]. A theorem of modular linear equations {7, Chapter 33]
tells us that a solution exists if and only if gf(r, — r,] [that is, g evenly divides (r, — r,}], and that a value
for m is:

(r,—=r)r
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Figure 4: An iffustration of the three conceptua! steps involved in computing the intersection of two slices,

=(fi:ly :s;)and S; = (f2: [ : 52). Instep (a), we extend the lower and upper bounds to —~x and +x,
respectlvely, yielding S| and S. In step (b), we compute S} = S| N S;. In step (c), we compute the finite
bounds f; and /5.

By substituting:
(r; —ries;
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It is clear that the resulting stride of the intersection will be lem(s;.s,) = s;5;/g. As our new upper and
lower bounds, we must take the tightest of the two original bounds. Therefore:

r=ri+ms =r; +

(fiolizs om0 (fj 085 0ry) = (max(fi, f;) cmin(l. L) 2 sisj/g:ri+ (r; — ri)xs/g). (2)

Note that the representative is not necessarily the same as either of the lower bounds. This observation
provides the motivation for using this modified slice representation. If we are taking the intersections
of three or more slices, as we will in later sections, it will be more efficient to minimize the number of
conversions between representations.




6 Sends

This section describes how a processor determines what data to send to another processor. The data is
described in terms of which elements of the right-hand side array are needed by the receiving processor
and can be supplied by the sending processor. We also describe how the sending processor maps the global
array indices to local memory.

6.1 Derivation

Suppose that we have an assignment statement in the form of equation (1). We want to determine which
elements of B should be sent from processor S to processor D. First, we need a means of describing the
set of array elements that a particular processor owns. Four parameters suffice: f, [, s, and n. The f
parameter is the lowest-numbered index of the array elements owned by the processor; the [ parameter is an
upper bound on the highest-numbered index of the array elements owned; the n parameter is the block size;
and the s parameter is the offset between the start of one block and the start of the next. With these four
parameters, a block-cyclic distribution can be described as the disjoint union of slices UZ;(;( f+k:1:s),
as pictured in Figure 5.

(f+0:1:5) | | T

(f+1:6:5)

(f+2:1:5)

f+3:l:s) 1 |
n-]
VY  EEENEEES 22 GEESESEE  SENSESSS  SESSESES)
k=0

Figure 5: A block-cyclic distribution as a union of disjoint slices.

Since A and B have block-cyclic distributions, we are given integers fp, Ip, np, sp, fs.ls, ns, and sg
such that the portion of A that processor D owns is characterized by:

np—1
Ouwnp(A)= |J (fo+J :ip:sp) (3)
i'=0
and the portion of B that processor S owns is characterized by:
ng—|
Owns(B) = |J (fs + i :1s: ss). (4)
i'=0

Note that the names of processors S and D do not appear in the following analysis; they are implicitly
encoded in the parameters fp and fs. This encoding is described in Section 11. Also note that each
ownership set is the union of disjoint sets, provided that np < sp and ns < ss.

The basic method for determining the communication sets is to compute unions and intersections of
regular sets (i.e., slices), which can be characterized with 3 parameters. Although slices are closed under
intersection, they are not closed under union; hence unions of slices, and intersections of unions of slices,
require more than 3 parameters to represent, and require more complexity than simple slices to enumerate.
Figure 6 gives an example of the communication that might arise between processors during the evaluation
of the assignment statement A(1 : n : 1) = B(1 : n : 1). Each array is distributed over two processors,
where A has a block size of 3 and B has a block size of 5. The shaded boxes represent the elements of each
array that are owned by the corresponding processor. The nrrows represent the array elements that processor
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s must send and that processors d; and d, must receive; hence the arrows correspond to the intersection of
the block-cyclic ownership sets. Each set of arrows represents the intersection of the corresponding unions
of slices; note that it is complex to represent the intersection, even though the ownership sets have simple
representations as unions of slices. The complexity increases when we use non-unit stride components in the
assignment statement. Note also in this example that there is little similarity between the two intersections
(one intersection is represented by upward arrows, the other by downward arrows).

Figure 6: An example of the potential eomplexity of transferring data from one processor s.

The set of indices corresponding to the array elements of A owned by processor D that are used in the
computation is given by S| = Ownp(A) N (f4 : {4 : s4). The set of indices corresponding to the array
elements of B owned by processor S that are used in the computation is given by S» = Owng(B)N(fp : g :
sg). Processor S sends the array element corresponding to the ith member of the sequence ( fg : [g : sg)
if and only if the ith member of the sequence (fg : /5 : sg) is in S> and the ith member of the sequence
(fa:14:54)isin 5. Suppose index z is member i of the sequence ( fp : Ip : sg), where i = O represents
the first member of the sequence. Then, i = ’—:gﬂ. Now member ¢ of the sequence (fy : /4 : s4)is
fa + is4, which is equal to ’—:éﬂs_.\ + f4. Thus processor S sends the array element corresponding to

index z if and only if z € 57 and 55513_4 + f4 € S). Equivalently, processor § sends the array element
corresponding to index y—;ffi.sB + fgifandonlyif y € S, and yff-isB + fg € 5.

The above observation motivates the definition of a Map function, which maps a member of the
sequence (f.4 : 4 : s4) to the corresponding member of the sequence ( fg : Ip : sg). It is defined on an
index y as:

Map(y) =

i Py (5)

S4
and the M ap function is defined on a set or sequence in the obvious fashion. The purpose of this Map
function is to associate A( f4) with B(fg) = B(Map(f4)), to associate A( f4 + s4) with B{ fg + sg) =
B(Map(fa+s4)),toassociate A( f4 +2s.4) withB( fg +2sg) = B(.Map( f4 +2s4)), etc. Then processor
S sends the array element corresponding to index Map(y) if and only if y € Sy and Map(y) € 5.. Thus
the set of elements of B that processor S sends to processor D corresponds to the following set of indices:

U =58 NMap(5) = (Owns(BYN(fg:lg:sp)) N Map{Ownp(A)N (fa:14:54)).

But since Map(fa : la:384) = (fB :1lp : sp), we can remove the ( fg : g : sp) term. Note that we
cannot remove the (f4 : {4 : s4) term, since the Map function is only defined on elements in the set
(fa : 14 : s4). Thus the intersection to compute is the following:

¥ = Owng(BYN Map(OQwnp{A)N(f1:14:54)). (6)
In the following derivation, we ignore the upper bounds of the slices, because in the definition of the

Ownp(A) set in equation (3), the upper bound of each slice is independent of the value of j’. The same
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holds true for Owngs(B) in equation (4). This independence allows us to delay the derivation of the upper
bound of the intersection until the end.
Our basic algorithm for computing ¥ takes the following form:

¥ ={}

DO j' =0 UPTO np ~ 1
DO ¢ =0 UPTO ns — 1
O=VU((fs+i:ls:ss)NMap((fp +j' :lp:sp)N(fa:la:s4))
END DO
END DO

Note that some of the intersections will be empty, regardless of the upper bounds of the slices. Our algorithm
takes this possibility into account, and only iterates over values of i’ and j’ for which the intersection is
nonempty (assuming large upper bounds). Restricting the iteration set is accomplished by transforming the
¢ and j' indices into ¢ and j, with index bounds chosen to avoid empty intersections.

To compute ¥, we first compute the following intermediate set, which is a portion of equation (6):

np-1

Ownp(A)N(fa::sa)= |J {(fo+5 ::8p)N(fa::54)}
7'=0

This intermediate set is computed using the methods described in Section 5. We use Euclid’s algorithm
to find integers zy, y;, and g; such that z1s4 + y15p = g1 = gcd(s4.5p). We define a function R; which
extracts a set of representative from an input set, using the concept of a representative of a slice presented
in Section 5. The subscript I is a list of indices. For each valid instantiation of I, there is one associated
representative. For example, R;;, 1 < ¢ < 10, 1 < j < 10, produces a set of 100 representative elements.
Representatives of the intermediate set, according to equation (2), are:

(fo+j' = fa)x1s4
a1

Ry(Ownp(A)N(fa::84))=fa+

for the values of 0 < j' < np — 1 where g,|(fp + 7' — f4). Where g, does not divide fp + j' — f4, the

corresponding slice intersection is empty and there is no representative. The resulting stride is i.;%n for all
!

7.
We can introduce a new integer variable j where g, = fp + j' — fa, givingus j' = g1 + f1 - fp.
Since 0 < j' < np — 1, we have:

[ID_Q—I_fz_l_] <j< I.fv*ngTnv—lj'

This change of variables allows us to transform our intermediate set representatives to the following:

R;(Ownp(A)N(fy::54)) = fa+Jz184 (7)
- - -1
[fv fA] <j< [fv fa+np } (8)
9 U]
Note that for some possible values of the parameters, the lower bound of ; may in fact exceed the upper

bound, in which case there are no legitimate values of j and hence no representatives. We apply the Map
function to equation (7) to get us one step closer to ¥, and find that a representative is:
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R;i(Map(Ownp(A) N (fa::384))) = fB + jz15B (9)

[fvg‘fA" <j< lfv—ngTnv—lJ

and the new stride is ﬂﬁn, for all j.
Now we intersect equation (9) with Owngs(B) to yield a representative of equation (6):

R;i(¥) =R, ((fa +jzi8B:: 8—3—‘:—”—) N(fs+i:: ss))

[f’D—fA] <i< lfv—fA-l-nv—l
9 9

In the same manner as before, we run Euclid’s algorithm on 1‘3%2 and ss to yield integers ra, ¥,
and g, such that z5 - iﬁg—:ll +hss =g = gcd(i%j-ﬂ, ss). Since the intersection is nonempty only when
@2|(fs + ¥ — fg — jz18B), we define as before an integer i such that g2i = fs + i — fg — jr,sg, or
equivalently, ' = gt — fs + fB + jz1spg. Since 0 < i/ < ng — 1, we find that:

[fs-fsg;jzlsa'l [fs—fB—JZLQB-i-ns— lj

J.ogi’gns—l

<

Once again, note that the lower bound of : could exceed the upper bound, in which case there are no
representatives for that particular value of j. Thus representatives of the final result ¥ are given by:

R;i(¥) = fp+jzise + }ﬁg%s_g (10)
"fv—.f.4lsjslfv—ﬁ4+nv—1j (n
L) g
l'fs—fa—jl'lss'l <i< lfs—fB—jznsB+ns— lj (12)
92 92

The resulting stride is ﬂgilgfs-.
Now that we have the representatives, we can find the corresponding lower bounds of the slices. Let ¢
be the tightest lower bound, given the original lower bounds:; it is defined as:

¢ = max{Map(f4), Map(fp), fs} = max{fg. ‘rfv h] -sg + fB. fs}. (13)

Then as shown in Section 5, the true lower bound of the slice is given as:

c+ ((R]',,‘(‘I’) ~ ¢) mod M) =c+ ((fB + jrisg + Sl il A ¢) mod \Bspss) (14)
9192 9 9192
Finally, we need to find the upper bound of the slices:
in(l4.lp) —-
min{ Map(ls), Map(lp).ls} = min (["““‘ 4] f-*j sm + fB.ls) . (15)
84
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6.2 Algorithm

Given the assignment statement from equation (1), where processor S owns elements of B characterized by
fs. ls, ss, and ngs according to equation (4), and processor D owns elements of A characterized by fp, Ip,
sp, and np according to equation (3), we compute the set of elements of B that processor S should send to
processor D. Figure 7 gives an algorithm, GLOBAL-INDEX~SEND, to determine this set. It is derived from
equations (10), (11), (12), (13), (14), and (15).

(1‘1,?/1791) = euCIid(SA,SD)

(72, ¥2,92) = euclid(spsp/g1,ss)

stride = sgspss/(9192)

last = min(fg + sp|(min(la,lp) — fa)/sa],ls)

¢ = max(fg + sp[(max(fa, fp) ~ fa)/s4], fs)

DO j = [(fp — fa)/g1] UPTO |(fp = fa+np —1)/g1]

DO i = [(fs — fB — jx1sB)/92]1 UPTO |(fs — f — jz1sB + ns — 1)/ 92]

r = fg+ jT15B + iz25BSD /)
first = ¢ + ((r — ¢) mod stride)
output-slice(first,last,stride)

O N — W Wk

Figure 7: GLOBAL-INDEX-SEND algorithm. The numbers in the right-most column refer to the equation from
which the corresponding line was derived.

In practice, when computing the value of the representative r, we can sometimes get a value that is not
expressible in 32 bits. This potential overflow is due to the term iz2spsp /g1, and the fact that ¢ and &3 can
have quite large magnitudes. In this case, we can make use of the fact that we can add or subtract multiples
of the stride and still have a valid representative. For example, we can replace the term izasgsp /g with
2822 ([z5(: mod %-';'—)] mod 2%).

6.3 Local memory

While the analysis above determines which global indices of the array elements should be sent, we still need
to map these global indices to the processor’s local memory. Here we give a mapping function.

One possible mapping is simply the identity mapping, where the global indices and the local indices
are the same. However, the identity mapping is quite wasteful of memory, and one goal of parallelizing
applications is to allow problems with larger memory requirements to be solved.

To minimize the amount of wasted memory space, we will want to compact the array (i.e., place the
blocks contiguously in memory). Hiranandani et al. [10] argue that this compaction is actually necessary,
and should not be viewed merely as an optimization. Given a global index r and a block-cyclic distribution
characterized as above in terms of f;, [;, n;, and s;, we find that the local index LM ;{ ) is defined as:

block
—— offset
T — fi

LMia) = |[Z2L | on 4 T 7 mod o) +x (16)

where K is the index of the first array element. In the C programming language, K is 0; in Fortran K is usually
1. This mapping is illustrated in Figure 8.

Note that equation (16) is only defined on elements owned by the processor, UZ':B'( i+ kL),
However, we will wish to apply the function to last (one of the parameters defined in Figure 7), which
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Figure 8: An example of the local memory mapping function for a particular processor. The processor owns
array elements of A with global indices beginning with f = 5, with block size n = 4 and stride s = 12. These
global indices are mapped to contiguous indices in local memory.

is not necessarily an element owned by the processor. In this case, we must simply ensure that the offset
portion of the equation is less than n;, by the use of the min function.

It is easy to see that LM;(z + s;) = LM;(z)+ n;. This property is useful when doing the local memory
mapping for a slice, where the stride component of the slice is a multiple of s;. In this case, we need only
evaluate the function for the first and the last component of the slice, and not for every element of the slice.

Another useful property of the LM, function can be used in doing the local memory mapping for the
GLOBAL-INDEX-SEND algorithm. We need to compute LM (first), which can be done more efficiently
using the property that the offset portion of LM(first) is (first — fs) mod ss = i, where i’ =
9i- fs+ fB+jz188B.

These observations allow us to formulate an algorithm for computing the local indices of array elements
to send, LOCAL-INDEX-SEND, shown in Figure 9.

(xhyl,gl) = GUClid(SA,SD)

(z2,42,92) = euclid(sgsp/g1,ss)

stride = sgspss/(g192)

lmstride = sgspns/(g192)

last = min( fg + sg|(min(l4,lp) — f1)/sa],ls)

lmlast = |(last — fs)/ss|ns + min((last — fs) mod ss.ns ~ 1) +K

¢ = max(fg + sp[(max(fa, fp) = fa)/s4l. fs)

DO j = [(fp = fa)/@r] UPTO ((fp — fa+np - 1)/g1]

DO i = [(fs — fB — jxisB)/92] UPTO |(fs — fB — jzisB + ns — 1)/92)

=g~ fs+ fp+jziss
r= fg+ jTi1sB + iz2spsp/ g
first = ¢+ ((r — ¢) mod stride)
lmfirst = (first — fs — ')ns/ss + i + K
output-local-slice(lmfirst,1lmlast.lmstride)

Figure 9: LoOCAL-INDEX-SEND algorithm, derived from applying the LM function to the GLOBAL-INDEX-
SEND algorithm.
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7 Receives

This section describes how a processor determines what data to receive from another processor. This
calculation essentially involves determining the order in which the sending processor inserted array elements
into the buffer. As in Section 6, the data is described in terms of which elements of the right-hand side array
are needed by the receiving processor and can be supplied by the sending processor. We also describe how
the receiving processor maps the global array indices to local memory.

7.1 Algorithm

As shown in Figure 1, the first step in the evaluation of the array assignment statement is to copy B( fp :
lp : sg) into T(f4 : "4 : s4). This copy step can involve interprocessor communication. We choose to
copy into this particular section of T so that during the second evaluation step, in which we apply F to T and
assign the results to A, we can use the same array index to access both A and T. (The details of this second
step are described in Section 8.)

To process a received message, we must copy each element from the receive buffer into some location
in T. The mapping of elements from the receive buffer into T is a complex function, and is the subject
of this section. In general, due to the complexity of the formulas in the send algorithm, the receiver must
re-run the send algorithm to determine which elements in the receive buffer correspond to which elements
of B. Then we apply the inverse of the M ap function defined in equation (5) to determine where each buffer
element should be placed within T. Re-running the send algorithm and applying the inverse M ap function
can easily be integrated into a single operation.

To run the algorithm, we of course need to know all the original parameters. Since each processor runs
the same code in the SPMD model, we already know the values of f4, [ 4, s4, fB, [B, and sg. We also
know which portion of the left-hand side array we own, Ownp(A), characterized by the parameters fp,
Ip, sp, and np. The only parameters we don’t necessarily know are fs, Is, ss, and ng. However, in a
block-cyclic distribution, all processors involved in the distribution will have the same values of /s, ss.
and ns. Thus the only parameter that has to be passed along with the message is the sending processor’s
value of fs. Alternatively, if the receiving processor can determine the identity of the sending processor,
the receiving processor can calculate or look up the value of fs itself.

Our algorithm to receive a slice, then, is identical to the send algorithm, except that the inverse of the
M ap function is applied to the assignments to 1ast, ¢, and . In addition, the sg factor in the stride changes
to s 4. The algorithm, GLOBAL-INDEX—~RECEIVE, is shown in Figure 10.

(z1.,91) = euclid(s4,sp)
(z2,42,92) = euclid(sgsp/g1.5s)
stride = s 3pss/(9192)
last = min(la.lp. fa + sal(ls — fB)/5B])
¢ = max( fa + sa[(max(fg. fs)— fB)/s8l. fp)
DO j = [(fp - fa)/g:] UPTO |(fp — fa+np—1)/g]
DO i = [(fs — fp — jx1sB)/g2] UPTO |(fs — fB — jx1sB + ns — 1)/ g2}
T = fa+ jrisa +izasasp/g
first = ¢ + ({(r — ¢) mod stride)
input-slice(first, last.stride)

Figure 10: GLoBAL-INDEX-RECEIVE algorithm.
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7.2 Local memory

As inthe case of sends, we must convert the global indices formed by the GLOBAL-INDEX-RECEIVE algorithm
into local memory indices. The mapping function is the same as before, except that we will use parameters
fp, lp, sp, and np rather than fs, ls, ss, and ns. This substitution is necessary because the former
parameters describe the layout of the left-hand side array, with which the data is to be aligned, while
the latter parameters describe the layout of the right-hand side array, which is being sent. Using the same
analysis as for the LOCAL-INDEX—SEND algorithm, we derive the algorithm, LOCAL-INDEX-RECEIVE, which
determines the local memory indices of the data being received, as shown in Figure 11.

(xl,ylvgl) = GUC].id(SA, SD)
(z2,42,92) = euclid(sgsp/g1,ss)
stride = sa3pss/(g192)
lmstride = synpss/(9192)
last = min(l4,!p, fa + sal(ls — fB)/sB])
lmlast = |(last — fp)/sp|np + min((last — fp) mod sp,np — 1) + K
¢ = max(fa, fo, fa + sa[(fs — fg)/sB])
DO j = [(fo = fa)/¢1] UPTO ((fp - fa+mnp ~1)/gi]
t=(fa+ jz154 — fp) mod sp
DO i = [(fs — fg — jz13B)/g92] UPTO ((fs — fB — jzisB + ns — 1)/g2]
r=fa+jz154 +iz2545D/ 1
first = ¢+ ((r — ¢) mod stride)
lmfirst = (first— fp ~t)np/sp +t+K
input-local-slice(lmfirst,lmlast.lmstride)

Figure 11: LocAL-INDEX-RECEIVE algorithm.

8 Computation

After the communication step completes, all data to be used for the computation will be local to each
processor. In addition, the LOCAL-INDEX-RECEIVE algorithm works in such a way that the portion of the
right-hand side array received will be aligned with the left-hand side array. When the received data is placed
in this manner, we can use the same loop index to access both the left-hand side array and the temporarily
redistributed right-hand side array.

Assume once again that we are executing the statement in equation (1). When we perform the LocAL~
INDEX-RECEIVE algorithm, we store the data in a temporary array T which has the same size and shape as
A. Then we compute by looping through the arrays and assigning the results.

To loop through the arrays, we first need to determine the global indices of the array elements on which
to perform the computation. This set is given by:

Ownp(A)N(fa:la:s4)

From equations (7) and (8), we have that a representative of this set is givenby r = f4 + jr s, for
[lﬁl‘*] <j< LLD:iAgT—"D—'—'-J When we set ¢ = max( f4. fp) to be a lower bound, we find as before
that the true lower bound is given by ¢ + ((r — ¢) mod s4sp/q1).
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However, we still need to map this global index to local memory. We do this by applying the previously
defined LM function from equation (16) to the upper bound and the true lower bound, and converting the
global stride of s4sp /g to sanp/g1.

These observations yield the algorithm COMPUTE-LoOP, shown in Figure 12.

(-’”l,yl,gl) = GuClid(BA,S'D)
stride = s438p/gi
lmstride = ssnp/q1
last = min(l4,!p)
lmlast = [(last — fp)/sp|np + min((last — fp) mod sp,np — 1) + K
¢ = max(fa, fp)
DO j = [(fp — fa)/g1] UPTO [((fp — fa+np —1)/q1]
J=qi+fa-f
r=fa+jz154
first = ¢+ ((r — ¢) mod stride)
lmfirst = (first — fp — j')np/sv +j' +K
DO ¢ = Imfirst UPTO lmlast BY lmstride
A(d) = F(T(3))

Figure 12: CoMpUTE-Loop algorithm, which determines which elements of the array to compute once the
communication has completed.

9 Overall algorithm

From the LOCAL-INDEX-SEND, LOCAL-INDEX-RECEIVE, and COMPUTE-LOOP algorithms, we now have the
means to construct a general algorithm for executing a single array assignment statement. This algorithm,
which executes on all processors in the SPMD style, takes the following form:
/* Send phase x/
S = getmyid()
fs = getfirst(B,S)
DO D=0 UPTO N -1
fp = getfirst(A.D)
CALL LOCAL-INDEX-SEND
END DO
/* Receive phase */
D = getmyid()
fp = getfirst(A,D)
DO $ =0 upTO N -1
fs = getfirst(B,S)
CALL LOCAL-INDEX-RECEIVE
END DO
/* Computation phase */
CALL COMPUTE-LOOP

In this pseudo-code we assume that the system contains .V processors, and each processor has a unique
ID, returned by the function getmyid, between O and NV — 1, inclusive. The function getfirst retums
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the first index of the array (the first function argument) that is owned by the processor (the second function
argument), as given in equations (3) and (4). Note that this overall algorithm implies that a processor may
send a message to itself and correspondingly receive from itself.

An illustration of the communication algorithm is given in Figure 13. In the first conceptual step, a
sending processor computes an intersection of global array indices. In the second step, the processor maps
these global indices to local indices. Next, the processor copies the required array elements into a send
buffer; note the irregular order in which the elements are copied. Finally, the sending processor sends the
buffer to the destination processor. The destination processor receives the data into a receive buffer, and
proceeds to copy the data from the receive buffer into a temporary array corresponding to the left-hand
side array. Now that the destination processor has received messages from both sending processors, it can
continue with its computation.

Each of the N send phases and NV receive phases are data independent and can be executed in any
order if we have a buffered message passing system. However, there is a dependence between the send
on one processor and the corresponding receive on the destination processor. Thus even with a buffered
message passing system, we must schedule the send and receive operations to avoid deadlock. For example,
scheduling deadlock could occur if the first operation on every processor is a receive, since every processor
would be waiting on a receive but no processor would be sending.

Suppose the message passing system is not buffered, and the program is executing on a MIMD archi-
tecture. It is possible for a “fast” processor to complete its communication during phase n, proceed with
its computation, and begin communication phase » + 1, while a “slow” processor is still trying to complete
communication phase n. If the fast processor now sends a message to the slow processor, the slow processor
has the problem of distinguishing phase » messages from phase n + | messages. This potential problem
can be alleviated by inserting a barrier synchronization before each communication phase. No barrier is
necessary on a SIMD architecture, since the synchronization is implicit.

10 Relaxing restrictions

In this section, we relax the simplifying restrictions imposed in Section 4, regarding the format and type of
array statements allowed.

10.1 Multiple right-hand side terms

The right-hand side of the assignment statement could have multiple terms. Each term could take one of
the following forms:

e An array slice, such as B(1 : n)
¢ A single array element, such as B(:)
e A scalar value, suchas3orx

In the first case, the relevant portions of an array slice will be sent to each processor and stored in a
temporary array, aligned with the left-hand side array. In the second case, the single array element will
be broadcast to all processors involved in the computation, and stored in a temporary scalar variable. In
the third case, the scalar value will be used in place without any communication, since its value will be
consistent across all processors.

If there are several terms on the right-hand side, then we simply perform a communication step if
necessary for each term. The receiving processor must have one temporary array or scalar for each term
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Figure 13: Communication algorithm. Processors s, (top) and s, (bottom) send to processor d (center).
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on the right-hand side. The computation loop is performed as before, except that the right-hand side of the
assignment statement in the inner loop has a reference to each temporary variable.

An even better method for handling multiple right-hand side terms would be to group the messages
together and send only one message to each processor, since this grouping would eliminate the overhead of
the additional messages. The send buffer would then contain data for the entire right-hand side, rather than
for just one right-hand side term. If it was determined that there were no data dependences between several
consecutive statements, a still better method would be to block all data together involving right-hand side
terms for those statements.

10.2 Multidimensional arrays

For the most part, the analysis performed above extends orthogonally for multidimensional arrays. For
example, if we had the statement:

A(slicel,slice2) = F(B(slice3,slice4)),

we would determine the indices of the array elements in the first dimension of B owned by processor S that
needed to be sent to processor D, and then do the same for the second dimension. The Cartesian product of
these two sets would correspond to the array elements to be sent.

For example, suppose {ii,...,im} is the set created by the intersections for the first dimension, and
{j1,---»Jn} is the set created by the intersections for the second dimension. Then the elements to be sent
are B(ilvjl )1 B(ilij)! <« Bli1,7n ), B( 12, J1), B( i21j2)v - Blim.ja)-

But problems arise when an array reference contains both scalar and slice indices, such as in the
statement:

A(i,slicel) = F(B(slice2.j)).

The main problem here is that the analysis presented so far assumes that all array indices are slices, not
scalars. A secondary problem is that the compiler must be sure to match up slicel with slice2. 0
preserve the semantics of the array assignment statement.

To compile multidimensional array statements, we must do the following. We modify the definition
of the Own function such that Own,(C, k) represents the set of indices of array elements that processor p
owns in dimension k of C. We observe that in the above statement, processor S performs a send only if
Jj € Owngs(B,2). Likewise, processor D receives data only if i € Qwnp(A.1). Therefore, each processor
can participate in a send or receive only if it owns the array element corresponding to the index in each
scalar dimension of the array.

After the scalar dimensions are checked, we can match up the slice dimensions one for one and run the
algorithm above. As an example, consider the assignment statement:

A(i),8licel.slice2,ji) = F(B(i. jr.8lice3.slice4d)).

Figure 14 shows the pseudo-code that processor S executes to determine what portion of B to send to
processor D. Note that in the pseudo-code given, we have neglected to perform the mapping to local
memory, but the true compiled code must do the mapping.

Processor D executes a similar loop nest to determine what array elements are sent by processor S. In
addition, processor D executes a similar loop for the computation phase.
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/* Determine send for A(i;,slicel,slice2, j;) = F(B(iz,j2,81lice3,slice4)) «/
If (i1 € Ownp(A,1) and j; € Ownp(A,4)) then
If (13 € Owngs(B, 1) and j, € Owng(B,2)) then
Foreacht, € Owng(B.3) N Map(Ownp(A,2) N slicel)do
Foreach ty € Owns(B,4)N Map(Ownp(A.3) N slice2)do
Add array element B(:2, j3, {1, {3) to the list of elements to send

Figure 14: Pseudo-code to determine the send for a multidimensional array assignment.

10.3 Negative strides

In an assignment statement, it is possible for either or both of the stnde components of the slices to be
negative. Negative strides present problems for a number of reasons.

Consideraslice (f : { : s), and suppose that s is negative. While f is still a representative in the modified
slice representation, it is no longer the case that f is a lower bound and ! is an upper bound. Instead, the
roles of f and [ are reversed when s is negative. In this case, (f : [ : s) isequvalentto ({: f: —s: f)in
the modified slice representation presented in Section 5.

Another problem with negative strides lies with Euclid’s GCD algorithm, which we use to intersect
slices. This algorithm requires bo’h input strides to be nonnegative.

Perhaps the most difficult problem to deal with, however, is with respect to alignment. Recall that one
of the goals of the send and receive loops is for the right-hand side array to be temporarily realigned with
the left-hand siue array, so that the same loop index can be used to access both arrays. When the signs of
the two strides differ, the right-hand side array must be somehow “reversed” during either the send or the
receive phase. This reversal can be accomplished by changing the sign of the stride, and reversing the roles
of the upper and lower bounds.

We address the reversal problem by reversing the order within the send algorithm when sp is negative,
and reversing the order within the receive algorithm when s 4 is negative. However, there are more changes
in the basic algorithm which must be made. In the send algorithm, recall from equation (13) that the lower
bound c is defined as max{Map( f41), Map(fp), fs}. A more general form for the lower bound is:

max{min{ Map(f4), Map(l4)).min(Map( fp). Map(lp)).min( fs.ls)}.
A more general form for the upper bound defined in cquation (15) is:
min{max(Map( f4), Map(l4)).max(Map(fp). Map(lp)).max( fs.ls)}.
The lower bound for the receive algorithm can be defined as:
max{min( f4,04), min( fp,lp).min(Map™'( fs). Map~'{ls))}.
and the upper bound for the receive algorithm can be defined as:
min{max( f4.l4), max( fp.lp).max(Map~'( fs). Map~'(Is))}.

Note that when the resulting stride is negative, ¢ and last are swapped: we use the upper bound for r and
the lower bound for last.

In the definitions of the algorithms GLOBAL-INDEX-SEND, LOCAL-INDEX-SEND, GLOBAL-INDEX-
RECEIVE, LOCAL-INDEX-RECEIVE, and COMPUTE-LooOP, we have assumed that both strides <3 and sg
are positive. For the send and receive algorithms, we must expand the algorithm to consider four cases,
depending on the signs of s4 and sg. The COMPUTE-LOOP algorithm must now have two cases, depending
on the sign of s,4. These revised algorithms are given in Appendix A.

21




10.4 Partially replicated arrays

In a relaxation or convolution operation, each element of an array is set to be some function of itself and its
neighboring clements. A natural way to parallelize this operation is have each processor compute the set of
array elements corresponding to the section of the array it owns. However, there must be communication at
the block boundaries, since at the block boundary some of the neighbors of the boundary element will reside
on adifferent processor. One possibility for dealing with this communication is to temporarily redistribute the
array into a form where copies of boundary elements reside on multiple processors. After the redistribution
takes place, every processor can compute its results locally without any additional communication.

When redistributing the original array A into a temporary array A’, we give A’ a distribution in which
ownership is overlapped at block boundaries. The size of the overlap depends upon the distance of each
element from the neighbors it needs to access. Each array element ..., potentially have muitiple owners.

Allowing such partially replicated arrays will complicate the algorithms presented above only slightly.
In the general case, no changes need be made to the algorithms given. However, in Section 10.1, we state
that if the right-hand side term is a single array reference, such as B(: ), then the owner broadcasts the value.
If this broadcasting is to be done in the case of partially replicated arrays, then each processor must be
prepared to receive multiple broadcasts (depending on how many processors own that array element), or
else it must be the case that no two owners send the array element to the same processor.

10.5 Nested array references

A nested array reference takes the form A(Q), where A is a distributed array and Q is an array slice or an
array element. In general, we know nothing at compile time concerning the evaluation of Q. Therefore, we
have no idea which processor or processors own A(Q). Thus we must broadcast Q to all processors, and then
proceed with the owner-computes rule. This compilation method could, of course, be quite expensive, both
in terms of execution time and memory usage.

Ve achieve efficiency in ordinary array statements by depending on the fact that the sequence of array
indices can be specified as a slice expression. This assumption breaks down in the case of nested array
references. An efficient solution to nested array references is beyond the scope of this paper.

11 Generating array ownership descriptors

In Section 9, the getfirst function was referenced. This function returns the first index of a particular
array that is owned by a particular processor. (Actually, the function should also take a third argument, the
array dimension of interest.) This section describes how this function can be implemented, in terms of the
user-input alignment and distribution directives. In general, this function will be expensive to compute,
so for each array, it may be beneficial to precompute the function value for all possible inputs (the inputs
consist of (processor, dimension number) pairs) and store the resuits in a table. The size of this table will
be equal to the number of processors in the system times the number of dimensions in the array.

In addition to describing the implementation of the getfirst function, this section also describes how
to determine the block size and stride for each dimension of the array, which are the np and <p parameters,
respectively, used in equation (3), and the ns and ss parameters used in equation (4).

If the system contains a large number of processors, memory and time constraints may make it impractical
or impossible to precompute all values of the getfirst function. In this case, the function may have to
perform the computation every time it is called. However, for the reinainder of this section, we will assume
that a table of precomputed results is being built.




If we allow dynamic redistribution of arrays, we will need some runtime ownership descriptor for each
array which is used to hold the parameters required by equations (3) and (4). In addition to the table of
getfirst results, the runtime descriptor should also contain the block size, stride, and dimension size for
each array dimension.

We assume that a subset of the Fortran D and HPF distribution syntax is being used. That is, each array
is ALIGNed with a TEMPLATE, which is DISTRIBUTEd. When the distribution type is specified for a
template dimension, we require that the number of processors over which to distribute the dimension is
given. For example, BLOCK(n) or CYCLIC(n) specifies distributing the dimension over n processors, and
BLOCK-CYCLIC(b, n) specifies distributing the dimension over n processors with a block size of b. We
make the following restrictions on Fortran D’s general alignment and distribution syntax:

¢ Arbitrary alignment functions are not allowed. Only alignment with a constant offset and a stride of
0 or 1 is allowed. For example, if A is an array and T is a template, A(¢) could be aligned with T(/),
T(i + 1), T(i = 3), or T(5), but not T(3¢) or T(4 - i).

The purpose of this restriction is to force array ownership sets to take the form of equations (3) and
(4). With only block-cyclic distributions allowed, the ownership of the template elements can always
be described by these equations, but with arbitrary alignment functions, the ownership of the array
elements is not necessary describable by these equations. With these restricted alignment functions,
the ownership of the array elements can always be described by a block-cyclic distribution.

¢ Every dimension of a template must be distributed as BLOCK, CYCLIC, or BLOCK-CYCLIC. Note
that block and cyclic are special cases of biock-cyclic. Also note that non-distribution of an array
or template dimension is allowed, since it is equivalent to distributing over one processor in the
dimension.

In Section 10.4, we describe overlapped array ownership. Specifying such an overlap can be done witha
simple extension to the AL IGN statement. Rather than usingaconstructsuchas “ALIGN A(/) WITH T(:.”
we might use “ALIGN A(+ — 1 ::+ 1) WITH T(/),” to specify that any processor that owns template
element T(:) also owns array elements A(: — 1 : ¢ + 1). We will refer to the left overlap and right overlap,
which in this case are -- 1 and 1, respectively.

The process of converting an ALIGN statement and a DISTRIBUTE statement into an ownership
description is quite complex. Some of the subtleties involved are the following:

ALIGN A(i.j) WITH T(i). Inthis case, the second dimension of A is not aligned with any dimension of
T. This alignment statement is equivalent to adding a dummy dimension to T, aligning the second
dimension of A with the dummy dimension of T, and distributing the dummy dimension over one
Processor.

ALIGN A(!) WITH T(i.3). Here is an example of alignment with a constant index. If the second
dimension of T is distributed, there may be some processors that do not own any part of A.

ALIGN A(i.j), B(j.¢) WITH T(:.j). Here we have an alignment of B involving index permutation.
When computing the ownership sets of A and B, it will be impostant (o ensure that A(7. j) and B( . )
are owned by the same processor for all legal values of 7 and

When we convert the distribution syntax into an array ownersi-: ¢ . iptor. the minimum requirement
is the following. Suppose we have two arrays, A and B, a template T, and the statements:
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ALIGN A(i) WITH T(:)
ALIGN B(¢) WITH T(i)

We must ensure that A() and B(:) are owned by the same processor, for all legal values of ;. However,
suppose that instead, B is aligned with template U, which is declared and distributed identically to T. Then
there is no explicit requirement that A(¢) and B(z) are owned by the same processor.

Our approach, however, is to define an algorithm which will consistently produce the same ownership
descriptor for a given alignment, distribution, and template definition, regardless of the name of the template.
In the above example, A(?) and B(i) will be owned by the same processor regardless of whether B is aligned
with T or U, provided T and U are declared and distributed identically. Our algorithm takes as input an
ALIGN statement, its corresponding DISTRIBUTE statement, the TEMPLATE definition, and a processor
number ¢q. Each processor has a unique value of ¢ between 0 and N ~— 1, inclusive, where .V is the number
of processors in the system. The algorithm returns a vector £, which contains the index corresponding to
the first element owned by processor ¢ in each corresponding dimension of the array. The algorithm can
also return a “null vector”, which signifies that the processor does not own any part of the array. We will
assume that the compiler has already performed all necessary error checking.

The first step in the algorithm is to convert the TEMPLATE, ALIGN, and DISTRIBUTE statements into
a normal form which includes no index permutation, where each dimension of the array is aligned with a
dimension of the template, and where each dimension of the template is distributed. This conversion is
done in the following manner (an example will follow):

1. Determine the number of processors assigned to each dimension of the template. If a dimension is
specified not to be distributed (i.e., a “+” appears in that dimension in the DISTRIBUTE statement),
change its distribution to be BLOCK-CYCLIC(n, 1), for any desired block size n. The actual block
size chosen is irrelevant; the important issue is that the dimension is distributed over only one
processor. Let vector ¢ contain the quantities of processors assigned to the dimensions of the template
(i.e., there are ¥; processors assigned to dimension i of the template). If [],; #; > .V, where .V is the
number of processors available to execute the assignment statement, then signal an error. If ¢ > [, 7,
where ¢ is the processor number, then return the null vector, since the array is only distributed across
the first []; #; processors.

2. From & and the processor number g, compute the vector p, by setting p; = |¢/[],, ¥;] mod #, for
each value of i. For any two distinct values of ¢ less than [] ; Uj» the corresponding p vectors will
differ in at least one component.

This 7 vector just assigns each processor to a unique nonnegative integer point in the k-dimensional
space bounded by vector 7, where £ is the length of vectors p'and 7.

3. Consider all constant, “+”, and slice indices in the template expression of the AL IGN statement. If the
given processor does not own that part of the template (see below), return the null vector. Otherwise,
remove these types of indices from the template expression of the ALIGN statement. Also remove
the corresponding dimensions from the TEMPLATE statement, the DISTRIBUTE statement, 7, and
p.

The processor determines whether it owns this part of the template by considering the bounds of that
dimension of the template and the block size n;. In a cyclic distribution, the block size is 1, and in a
block distribution, the block size is [5;/7;], where 5, is the number of elements in that dimension,
t, of the template. In a block-cyclic distribution, the block size will be given. Assume that in this
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dimension, i, of the template, indices range from c; to d;; in Fortran, c; is usually 1, and in C, ¢; is 0.
There are three possibilities to consider:

o If aconstant is specified (e.g., ALIGN A(:) WITH T(3)),and (k; — ¢; — p;n;) mod n;7; < n;,
where k; is the constant index (k; = 3 in the example), then the processor owns the template
element.

o If a “x” is specified (e.g., ALIGN A(i) WITH T(+)), and q < []; &, then the processor owns
the section of the template.

o If aslice is specified (e.g., ALIGN A(:z) WITH T(1:10:2)), and the intersection of that slice
and U;‘;};l(c; + pin; + j : d; : n;7;) is nonempty, then the processor owns the template section.

4. If there is a symbolic index (such as 7 or j) in the array expression of the ALIGN statement that does
not appear in the template expression, change that index to a “+” in the array. The goal of this step
is to identify unaligned dimensions of the array. For example, ALIGN A(i,j) WITH T(:) would
change to ALIGN A(i,*) WITH T(¢).

S. For each “+” in the array expression of the ALIGN statement, replace it with a new dummy variable.
Add a corresponding 1 to the end of ¥ and a O to the end of p. Modify the DISTRIBUTE statement
so that each of these dummy dimensions is distributed BLOCK-CYCLIC(n. 1) for any desired value
of n. Add a dimension to the template with the same index bounds as the corresponding dimension
of the array.

6. Permute the indices in the template expression of the ALIGN statement so that they match up with
the indices in the array expression. Apply the same permutation to 7, j, the DISTRIBUTE statement,
and the dimension sizes of the template. For example, ALIGN A(i,j) WITH T(j + 1.i—2) would
change to ALIGN A(:,j) WITH T(: - 2, + 1), and the same permutation would be applied to T,
D, the DISTRIBUTE statement, and the dimension sizes of the template.

Vector ¢ now specifies the number of processors assigned to each corresponding dimension of the array,
and vector p specifies the processor’s order in each dimension of the array.

As an example of the steps performed so far, suppose we have the following statements, and perform
the above steps:

ALIGN A(i,j - 1:j+2,k.0) WITH T(j,3.k.i +2)
DISTRIBUTE T(BLOCK(2),CYCLIC(3),BLOCK(4).CYCLIC(5))

1. The DISTRIBUTE statementyields & = (2,3,4.,5). Note that we musthaveatleast 2x3x4x5 = 120
processors executing this code section.

2. Suppose that our processor is number 119. Then p = (1.2,3.4).

3. There is one constant index in the template expression of the ALIGN statement: the 3. Assume that
this processor owns that part of the template, so we continue. Removing that dimension everywhere
gives us:

ALIGN A(:.j—1:j+2,k) WITH T(j.k.1 +2)
DISTRIBUTE T(BLOCK(2).BLOCK(4),CYCLIC(5))
v =(2,4,5), p=(1.3.4)
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4. The [ appears as an index of the array expression in the ALIGN statement, but it does not appear in
the template expression, so we change it to a «:

ALIGN A(i,j —~ 1:j +2,k,*) WITH T(j, k., +2)
DISTRIBUTE T(BLOCK(2),BLOCK(4),CYCLIC(5))
7=(2,4,5), p=(1,3,4)

5. There is one * in the array expression of the ALIGN statement; replace it by a dummy d, resulting in:

ALIGN A(%,j—1:7+42,k,d) WITH T(j,k,i 4+ 2,d)
DISTRIBUTE T(BLOCK(2),BLOCK(4),CYCLIC(S),BLOCK-CYCLIC(1,1))
7=(2,4,5,1), p=(1,3,4,0)

6. Applying the permutation gives us:

ALIGN A(#,j~1:5+2,k,d) WITH T(: +2.j,k,d)
DISTRIBUTE T(CYCLIC(5),BLOCK(2),BLOCK(4),BLOCK-CYCLIC(1.1))
7=(5,241), p=(4,1,3,0)

At this point, we have converted the specifications to a normal form as described previously. We can
now use the information given by the index bounds and the alignment offsets to generate the result vector.
Suppose that, after applying the above steps, we have the following declarations:

DIMENSION A(a;: zi,a2: 22,...)

TEMPLATE T(c¢;:dy,c3:da,...)

ALIGN A(ij+of i iy +ofl iz + ok iix+ofl...) WITH T(i) + by.ia+ ba...))
DISTRIBUTE T(...)

At this point, we can easily determine which elements of the template that processor q owns, but these
template elements must be translated into elements of the array. In dimension j of the template, the
processor owns the elements of the template corresponding to the indices:

nj -1
U (f; +i:d;:s)).
=0

The parameter ng is the block size in dimension j of the template, which can be found in the DISTRIBUTE
statement; f! = ¢; + p;n}; and s; = n} ;.
When we apply the alignment function, we find that the processor owns the elements of the array

corresponding to the indices:
ny~I

U(f;+i:djzsj)
=0

f;zcj—l)1+ojl»“+13}n3. (17N

where n; = n} + of - of. This f vector is returned.
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As mentioned previously, we need a separate function to determine the block size and stride for a
dimension k of an array, given the TEMPLATE, ALIGN, and DISTRIBUTE statements. The first step
of this algorithm is to determine which dimension of the template with which dimension & of the array
is aligned by considering the ALIGN statement. If the array dimension is not aligned with any template
dimension, then that array dimension is not distributed, and thus each processor owns every element in that
dimension. In this case, we can return any values for the stride and block size, as long as they are equal.

If the array dimension is aligned with a template dimension, consider the distribution of that template
dimension in the DISTRIBUTE statement. The DISTRIBUTE statement gives the number of processors
v over which the dimension is distributed, and it gives some indication of the template block size. If it
is a block-cyclic distribution, the template block size is given explicitly. If it is a cyclic distribution, the
template block size is implicitly 1. If it is a block distribution, the template block size is [S/v], where S is
the number of elements in that dimension of the template. The true block size is the sum of the template
block size and the total overlap in the corresponding array dimension. The stride is simply the product of
the template block size and v. We return the stride and the block size.

12 Optimizations

The algorithms LOCAL-INDEX-SEND, LOCAL-INDEX-RECEIVE, and COMPUTE-LOOP are designed to work
in the worst case, when none of the parameters is known at compile time. However, it is almost never
the case that all parameters are unknown at compile time. For example, quite frequently the strides in the
assignment statement will be 1; and if they are not 1, they are still likely to be compile-time constants.
Knowing both strides at compile time can provide some of the best optimization potential, because Euclid’s
GCD algorithm can be executed at compile time rather than at runtime.

When parameters are known at compile time, potential optimizations can range from simple constant
folding to tightening loop bounds or eliminating certain loops aitogether.

12.1 Reducing potential communication

Recall that in the general algorithm presented in Section 9, the outer loops in the send and receive phases
have each processor considering all other processors for communication. However, one of the user’s goals
(or the goal of a separate compiler phase) should be to carefully align and distribute the arrays to minimize
communication. When the compiler detects “good” alignments and distributions at compile time, it can
achieve further runtime efficiency by generating code that restricts the set of processors to consider at
runtime for communication.

If the alignment and distribution are specified automatically by a separate compiler phase, that phase
might already have determined what communication must occur for a given array statement. Otherwise, we
can look for the common communication patterns described below.

It is important to note below that these tests must be applied separately to each dimension of each array.
If, for example, we determine that communication occurs with at most two processors in each of the two
array dimensions, then overall communication will be with at most four processors. We can only be certain
that communication occurs with at most one processor if we can determine independently for each array
dimension that communication occurs with at most one processor.

12.1.1 Communication with a small number of processors

In some cases, regardless of the upper and lower bounds of the slices, we can determine at compile time
that each processor sends to at most & other processors. and correspondingly receives trom at most & other
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processors, where k is some small integer. This will happen when each array is distributed over the same
number of processors, and the ratio of the strides in the assignment statement is equal 17 the ratio of the
strides of the distributions. As an example of the magnitude of k, when these conditions are met, and the
alignment function contains no overlap, the value of k is at most 2.

More formally, we can determine that we send to at most two processors and receive from at most two
processors when:

348s = SBSD and v4 = vg, (18)
where v4 and vg are the numbers of processors assigned to the respective array dimensions.

For this analysis, we introduce the concept of a virtual processor, for the following reasons. Suppose
we have an infinite number of virtual processors, and block-cyclic distributions. Then we can assign each
virtual processor one contiguous block of array elements. If s 355 = spsp, then each virtual processor
will send to one or two virtual processors which are a fixed (possibly negative) virtual communication
distance to the right, and will correspondingly receive from a fixed virtual distance to the left. Due to
the nature of the block-cyclic distribution, a virtual processor is mapped to a real processor by taking the
virtual processor number modulo the number of real processors. When the virtual communication distance
is fixed, it translates to a fixed real communication distance only when the corresponding array dimensions
are distributed over the same number of real processors (i.e., v4 = vg).

Letca, by, and of{ be the ¢, 7, and ol parameters from equation (17) corresponding to the left-hand side
array of the assignment statement, and let cp, bp, and o} be the similar parameters for the right-hand side
array. We want to find p4 — pg, where p4 is the virtual processor that owns A( f4 + ks4) and pp is the
virtual processor that owns B( fg + ksg), for any value of k. From equation (17), we know that a particular
processor p4 owns the elements cotresponding to indices:

ca~bs+pasp/va+o5:ica—ba+pasp/ea+ol+np -1
and that a particular processor pg owns the elements corresponding to indices:
¢ —bg + ppss/vs + 0f 1 cp — bp + ppss/ve + of + ns — 1.

Given a particular value of k£, we would like to find bounds on p 4 and pg, where p 4 is the processor that
owns array element f4 + ks4 and pp is the processor that owns array element fg + ksg. We know that:

ca~ba+pasp/va+ol < fatksa<ca—batpasp/oatoi+np -1
c —bp + pess/ve + 0p < fp+ksp < cg — bp + ppss/vp + of + ns - 1.
These equations yield the following relations:

fatksa—catbs—of~np+1 <

<py < fa+ksg—cs+by— oﬁ

sp/va spfoy
f3+/c33—ca+b3—ol§—ns+l< <f3+k.s'5—c1;+b3-u§
35/'03 =PB > -"‘S/"B

These equations allow us to find an upper bound on p4 — pg, which is less than or equal to [p4 — pg|
since p4 and pp are integers:

pA-pB < fA+k8.4—C.4+b,4—0ﬁ_ fB+ksp—cp+bg—of—ns+1
- spfog ss/rg
= |y f.-l—CA‘l"bA'f")f{_fB—"B+bB-”;§“"$+]
= |va po= p
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Using similar analysis, we find that a lower bound on p4 — pp is:

pa-pB> [0‘4 (f,g—c,4+b_4+0ﬁ—np+l _fB—CB-f-bB—og)‘l

Sp 3s

Let D| be the lower bound on p4 — pg, and let D, be the upper bound on p4 — pg. Any processor p
will only send to virtual processors p + D, through p + D,, inclusive. Similarly, any processor ¢ will only
receive from virtual processors ¢ — D, through ¢ — Dy, inclusive. Virtual processors are transformed into
real processors by taking the virtual processor modulo the number of real processors in that array dimension.

12.1.2 Small number of senders or receivers

We can detennine that a small number of the processors will perform a send if one of the following conditions
holds:

¢ ns = ss. This property just means that the array dimension is distributed across only one processor.
This information is not particularly useful.

¢ sp is a multiple of ss. This property means that every array element accessed on the right-hand side
is guaranteed to fall on one of a small set of processors (the size of the set is 1 if 0% = oF), regardless
of how many elements are accessed. Bounds on the sending virtual processor, ps, can be determined
by solving the inequality:

¢s — bs + psss/vs + 0% < fB < es — bs + psss/vs + 0% + ns — 1

which yields:

bs — cs — ok — 1 bs — cs — ok
s—cs—0s—ns+ 1+ fp < ps < s —¢s—os+ fp (19)
ss/vs ss/vs

o |(fB~cs +bs)/ns] = |(IB— ¢cs + bs)/ns] and og = of. This property means that fg and /g
fall within the same block and are thus guaranteed to reside on the same processor, as are all elements
that fall between fp and [g. The virtual processor ps is given by equation (19).

Similarly, we can determinc that only one of the processors will perform a receive if one of the following
conditions holds:

¢ np = sp. This property just means that the array din:ension is distributed across only one processor.
This information is not particularly useful.

e sy is a multiple of sp. As above, this property means that every array element accessed on the
left-hand side is guaranteed to fall on one of a small set of processors (the size of the set is 1 if
o{‘, = og), regardiess of how many elements are accessed. The single receiving virtual processor. pp,
can be determined by solving the inequality:

¢p —bp +ppsp/vp + 0k < fa < cp —bp + ppsp/vp + 05 +np — 1

which yields:

L L
bp~cp—op —np+ 14 f4 <pp < bp —cp —op + fa (20)
sp/vp sp/rp
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¢ |(fa —cp +bp)/np] = |(la — cp + bp)/np) and 0§ = of. This property means that f4 and /4
fall within the same block and are thus guaranteed to reside on the same processor, as are all elements
that fall between f4 and [ 4. The virtual processor pp is given by equation (20).

The principal benefit of this single sender/receiver test is that if it applies, we can wrap the send phase or
the receive phase inside a conditional which tests the processor number. In this way, the entire send phase
or receive phase can be climinated from consideration for some processors.

12.2 Eliminating loops

If the send, receive, and computation loops are implemented exactly as described in Figures 9, 11, and 12, it
is possible that the costs of computing the loop bounds will dominate the execution time of the program. One
obvious solution to this problem is for the compiler to perform a kind of constant folding by precomputing
such parameters as strides and the results of Euclid’s algorithm, at compile time. In general, it will be
difficult to precompute the loop bounds, since they depend on fp and fs, which can have different values
for different processors.

At compile time, we are likely to know whether the distribution of any given array is biock, cyclic,
or block-cyclic. If either the left-hand side array or the right-hand side array is block or cyclic, then we
need only one outer loop in the LOCAL-INDEX-SEND and LOCAL-INDEX-RECEIVE loops, rather than two.
If neither array is block-cyclic, we can eliminate the : and j loops altogether. If the left-hand side array is
not block-cyclic, we can eliminate the j loop in the COMPUTE~LOOP algorithm.

These outer loops are due entirely to the block-cyclic distribution. A block-cyclic set is the union of
disjointslices, and characterizing the union requires a loop. In the LOCAL-INDEX-SEND and LOCAL-INDEX-
RECEIVE algorithms, we need two extra loops, since equation (6) involves two block-cyclic distributions in
the intersection.

Both block and cyclic distributions can be specified as a single slice. When f is the index corresponding
to the first array element that a processor owns, [ is the largest array index, and the dimension is distributed
across v processors, a cyclic distribution can be described as:

(f:1:v),

and a block distribution can be described as:

(r:0+]2]-101).

where S is the number of elements in the template dimension that the array dimension is aligned with.

This observation gives more concise ways of defining Ownp(A) and Owng(B) than in equations (3)
and (4). With these new definitions, we can use the methods presented in Section 6 to derive new LOCAL-
INDEX~SEND, LOCAL-INDEX-RECEIVE, and COMPUTE-LOOP algorithms. Notice that there are eight new
sets of communication algorithms to derive, since each of the two arrays in the assignment statement can
have one of three types of distributions, and that there are two new sets of computation algorithms to derive.
The new LOCAL-INDEX-SEND and LOCAL-INDEX-RECEIVE algorithms are given in Appendix B, and the
new COMPUTE-LOOP algorithms are given in Appendix C. '

12.3 Customizing the output

If we are compiling for a MIMD architecture, further optimization can be achieved by producing customized
output for each processor. If we know at compile time that only a certain subset of processors wiil
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be executing certain operations, we normally output code that conditionally executes depending on the
processor ID. But if we create customized code for each processor, the conditionals can be evaluated at
compile time, not at runtime, and some loop bounds can be precomputed. This approach could further speed
up execution.

Note, however, that this approach does not scale well as the number of processors in the system increases.
It could take quite long just to compile if the number of processors is large. Thus we probably will not want
to take this approach unless we truly want the utmost execution speed.

On the other hand, it may be the case that certain subsets of processors usually perform similar operations.
In this case, we might want to partition the processors and generate one customized output file for each
subset of the partition.

12.4 Merging receive and computation phases

Recall that the overall algorithm temporarily rea < ibutes the right-hand side arrays of the assignment
statement to match the distribution of the hand side array, and then performs the computation phase.
We can improve upon this method if there 1. °nly one array slice on the right-hand side, and the memory
accessed by the two array slices is disjoint (i.e., there are no data dependences). In this case, we can
perform all communication of single array elements on the right-hand side (see Section 10.1), and perform
the communication for the right-hand side slice last. However, rather than receiving the slice elements and
storing them in a temporary array, we can receive each element, perform the computation, and directly store
the result into the left-hand side array, thus allowing us to merge the receive and computation phases.

To illustrate, the sequential Fortran code given in Section 2 would conceptually change to the following
after applying this optimization:

ip=fB

DO ig = fa,la,s4
A(i4) = F(B(iB))
ip =1ig+ 58

END DO

13 Further applications of array statements

We have derived a general method for compiling and optimizing general array assignment statements.
However, the programmer will often need to have a larger set of array operations at his disposal. In
this section we describe simple extensions of array assignment statements that allow more powerful array
constructs.

13.1 Redistributing arrays

From time to time, the user (or a separate compiler phase) may wish to change the distribution of an array.
For example, when operating on an array, one algorithm might be more efficient when only the rows of the
array are distributed, while a subsequent algorithm might demand that the array be distributed by columns.

Such aredistribution can be simulated by an array assignment statement. Suppose we wish to redistribute
array A. We can create a declaration for a new array A’, with the same type and dimension bounds as A.
but with the desired new alignment and distribution. The assignment statement A’ = A, when compiled in
the above manner, will generate the necessary communication and copying. To use the redistributed array,
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subsequent references to A should be replaced by references to A’. Provided that the memory space of A is
disjoint with the memory space of A’, the optimization described in Section 12.4 always applies.

Notice that the redistribution method described here requires that distributions be statically known at
compile time. If distributions are not fully known at compile, the compiler must use only the runtime array
ownership descriptors to determine communication. In this case, most of the communication optimizations
described above can no longer apply.

13.2 WHERE statement

The WHERE statement is a valuable construct from Fortran 90. It allows conditional data-parallel execution
of array statements. The general form is (see the Fortran 90 reference [1] for a more precise definition):

WHERE mask-expr
assn-stmt-1
assn-stmt-2

ELSEWHERE
assn-stmt-3
assn-stmt-4

ENDWHERE

The sizes and shapes of the sub-arrays defined by the mask expression and the left-hand sides of the
assignment statements must be the same, and the assignment statements must all be array assignment
statements. We first create a boolean mask-array which has the same distribution as the left-hand side
array. The array is initialized with the mask-expr, and indexed with the same array slices as the left-hand
side of assn-stmt-1. Then assn-stmt-1 is evaluated, subject to the true values in the mask-array. Next, the
mask-array is redistributed (see above) to match assn-stmt-2, and the process is repeated for the rest of
the assignment statements inside the WHERE section. Within the ELSEWHERE section, the same method is
used, except that we use negated values from the boolean mask-array.

As an example, consider the following construct:

WHERE A(fa:la:s4) #B(fB:lB:sB)
C(fc:lc:sc)=D(fp:lp:sp)
E(fe:lg:sg)=F(fr:lF:sF)

ELSEWHERE
G(fe:lc:s6) =H(fu:lu:su)
fr:lr:sp)=3fs:1;:8))
ENDWHERE

The transformations described above would result in the following code:

Mi(fc:lc:sc)=(A(fa:ly:34)#B(fB:lB:58B))
Clfc:lc:sc)=D(fp:Ilp: sp)[subject toM1]
M2(fe:lg:sg)=WM1(fc :lc :sc)

E(fg:lg:sg) =F(fr:lF: sF) [subject to M2]
M3(fc:lg:sc)=M2fg:lg: sg)

G(fg :lg :s¢) =H(fy : Iy : sy) [subject to negation of M3]
Ma(fr:l;:s1)=M3(f e s)

I(fr: 1y :sr) = 3(fy: 1y sy) [subject to negation of M4]
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133 Reduction operatdrs

An array reduction statement takes the form:
x = Reduce(A(fa:14a: 34)),

where Reduce is a reduction operator. A reduction operator is an associative binary operator that reduces
an array or array section to a single scalar value. Typical reduction operators are minimum value, maximum
value, location of maximum value,! sum, and product. Note that these examples of reduction operators are
also commutative. The remainder of this section will assume that the reduction operator is commutative.

The reduction can be evaluated efficiently by having each processor perform a local reduction on the
specified portion of the array that it owns. This local reduction yields one value per processor, and all
processors can then combine their results to yield the global reduction. This final result can be broadcast to
all processors, if necessary.

To perform the local reduction, processor D needs to perform its local reduction on the elements of A
given by indices:

Ownp(A)N(fa:1la:s4)

The calculation of this set is identical to that in Section 8, and the COMPUTE~LOOP algorithm can be used
almost unchanged to calculate the local reduction.

134 Parallel independent loop iterations

Our experience has shown us that the array constructs described so far are simply not powerful enough
in general to produce acceptable performance for many real programs. For example, consider the two-
dimensional Fast Fourier Transform (2D FFT) algorithm. This algorithm first performs a 1D FFT operation
independently on each row of an n X n array, and then performs a 1D FFT operation independently on each
column. The 1D FFT operation is difficult to parallelize, and array assignment statements are simply not
powerful enough to effectively parallelize it.

An obvious source of parallelism for the 2D FFT algorithm is in the outer loop. Since there are no
loop-carried dependences, each iteration, which consists of a 1D FFT operation on a row or a column, can
proceed in parallel. Furthermore, if each processor owns only entire rows (i.e., the array is distributed only
in the first dimension), no communication need occur during the row-wise 1D FFT loop. Similarly, no
communication occurs within the column-wise 1D FFT loop when the array is distributed only in the second
dimension. These observations motivate the definition of a basic parallel loop construct.

This parallel loop can take the following form:

PDO i = f,l,8
INPUT A(:,:)
OUTPUT B(:,%)
... statements reading A(1,:) and writing B(:, i)
END PDO

The INPUT section lists the distributed array sections that are read in each loop iteration, and the
OUTPUT section lists the distributed array sections that are written. The PDO loop index may only appear
in one dimension of these array sections. To compile this loop, we first choose an arbitrary one-dimensional

The location of minimum/maximum value reduction operator actually returns a vector. rather than a single scalar value, when
the reduced array expression is multidimensional. :
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template and distribution, and we redistribute the arrays in the input and output sections so that the dimension
containing the loop index is now aligned with the new template, using the method of redistribution described
above. This redistribution ensures that all data read or written during any one iteration of the loop is owned
by one processor, and thus no intra-iteration communication is necessary. Each processor independently
iterates through the indices of the template that it owns and that are in the slice ( f : [ : s). This intersection
can be found using equations (7) and (8). At the completion of all the loop iterations, the arrays are
redistributed to their original forms.

As an optimization, the compiler can try to choose a new template and distribution that matches as many
arrays in the input and output lists as possible. When the distribution and template match that of an array in
the input list, it is not necessary to redistribute that array.

14 Conclusion

As High Performance Fortran (HPF) comes of age, compiler writers who wish to implement HPF for a
private memory multiprocessor will first need to implement communication and memory management for
distributed arrays. We have reduced this problem to finding intersections of index sets characterized by
the three-parameter array slice notation, ( f : [ : s). By treating block-cyclic distribution sets as unions of
disjoint slices, we have derived an efficient means of calculating the communication between processors.
This calculation includes the mapping of global indices into local memory.

In addition to calculating the communication, we have provided a means of converting TEMPLATE,
ALIGN, and DISTRIBUTE statements into array ownership descriptors which are needed at runtime.
Finally, we have derived communication optimizations for many common cases. All derivations are
presented in detail to allow the compiler writer to gain a better understanding of the final results.

This work has been validated by the implementation of the Fx compiler on the iWarp system, a private
memory multiprocessor, and the results, including optimizations for common cases, have been promising.
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A Extended algorithms for sigr ed strides

In the derivations of the GLOBAL—~INDEX-SEND and LOCAL-INDEX-SEND algorithms presented in Section 6,
the GLOBAL-INDEX-RECEIVE and LOCAL-~INDEX-RECEIVE algorithms in Section 7, and the COMPUTE~
Loop algorithm in Section 8, we assumed that the strides . . .nd sp specified in the assignment statements
were positive. In Section 10.3, we described at a high level how to modify the algorithms when one or both
strides are negative. This appendix contains the algorithms which account for the signs of the strides in the
assignment statement.

A.1 Extended LOCAL-INDEX-SEND algorithm

In this algorithm, note that there are four main parts. In each of the last three parts, lines that contain a
difference between the corresponding line in the first part are preceded by an asterisk (*).

IF s4 >0 AND sg > 0 THEN
(z1,41,91) = euclid(s,sp)
(z2,¥2,92) = euclid(sgsp/g1,3s)
stride = sgspss/(9192)
lmstride = sgspns/(9i92)
last = min(fg + sgl(min({4.lp) — f4)/s4].Is)
lmlast = |(last — fs)/ss|ns + min((last — fs) mod ss.ns — 1) +K
¢ = max(fpg + sp[(max(f4, fp) — fa)/s4l. fs)
DO j = [(fp — fa)/g1] UPTO [(fp — fa+np —1)/41]
DO i = [(fs — fB — jz1sB)/92] UPTO |(fs — fB — jz1sp+ ns — 1)/g2;
i!=gi~fs + feg+jTi5B
r = fB+ jz15B + ix2555D/ g1
first = ¢+ ((r — ¢) mod stride)
Imfirst = (first — fs — I')ns/ss + V' +K
output-local-slice(lmfirst,lmlast. lmstride)
* ELSE IF 54 >0 AND sg < 0 THEN
(z1,,491) = euclid(s4,sp)
*  (12,42,92) = euclid(—sgsp/gi, ss)
stride = sgspss/(g192)
lmstride = sgspns/(gi192)
* last = max(fp + sgl{(min({3.lp) — f4)/s4]. fs)
lmlast = |(last — fs)/ss|ns + min((last ~ fs) mod ss.ns) + K
+  c=min(fg + sg[(max( fa. fp) — ja)/sal.ls)
DO j=[(jp— fa)/g1] UPTO [ fp — fa+np—1)/m]
DO i = {(fs — fB — jr1sB)/g2] UPTO |(fs — fB — jrisg+ ns — 1)/92]
=gy~ fs+ fe+izisp
r=fg+jrisg + izasgsp/
* first = c¢—- ((c— r) mod (—~stride))
lmfirst = (first — fs — i')ng/ss + ' + K
output-local-slice(lmfirst,lmlast,lmstride)
+ ELSE IF s4 < (0 AND sg > 0 THEN
* (r,y1.91) = euclid(—s4.5p)
(r2.y2,92) = euclid(sgsp/gi.ss)
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stride = sgspss/(9192)
lmstride = spspns/(9192)
*  last = min(fp + sp|(max(l4, fp) - fa)/sa],ls)
lmlast = |(last - fs)/ss|ns + min((last — fs) mod sg.ns — 1) + K
*+  c=max(fp + sg[(min(fa,lp) = fa)/s4l, fs)
DO j = [(fo - fa)/g1] UPTO |(fp - fa+np —1)/q1]
DO i = [(fs = f — jz15B)/92] UPTO |(fs — fp — jzi1sB + ns — 1)/g2]
! =gyi— fs+ fB + jT15B
r= fp+jz18B + iT25BSD/ g
first = ¢+ ((r - ¢) mod stride)
Imfirst = (first — fs — ¢')ns/ss + ' +K
output-local-slice(lmfirst,lmlast,lmstride)
* ELSE IF s4 <0 AND sp < 0 THEN
*  (21,91,91) = euclid(—s4, D)
*  (z2,%,92) = euclid(—-spsp/g1,ss)
stride = sgspss/(g192)
lmstride = sgspns/(g192)
*+  last = max(fp + sg|(max(la, fp) — fa)/sal.fs)
lmlast = |(last — fs)/ss|ns + min((last — fs) mod ss.ng) + K
* c=min(fg+ sg[(min(fs,lp) = fa)/s4].1s)
DO j = [(fo— fa)/g]l UPTO |(fp — fa+np —1)/ai]
DO i = [(fs = fB — jz15B)/92] UPTO |(fs — fB — jz1sB + ns — 1)/92]
i=gi-fs+ fp+jrisp
r= fg+jzrisp +ir2885p/ 0
* first = ¢ — ((¢ — r) mod (—stride))
Imfirst = (first — fs ~ i'yng/ss +i' +K
output-local-slice(lmfirst,1lmlast.lmstride)
ENDIF

A.2 Extended LOCAL-INDEX-RECEIVE algorithm

As before, there are four nearly identical parts to this algorithm, and differences are noted by asterisks.

IF s4 >0 AND sg > 0 THEN
(1, 41.91) = euclid(sa, sp)
(z2,¥2.92) = euclid(sgsp/gi,3s)
stride = s spss/(g192)
lmstride = synpss/(g192)
last = min(l4,lp. fa + s4|(ls ~ fB)/s8B])
lmlast = [(last — fp)/sp|np + min((last — fp) mod sp.np — 1) + K
c = max(fa, fo, fa +s4[(fs - fB)/sB])
DO j = [(fpo — fa)/gi] UPTO ((fp - fa+np—1)/gi]
t=(fa+jz154 — fp) mod sp
DO i= [(fs - fo — jz1sB)/g2] UPTO |(fs — fe — jrisp+ ns — 1)/g2]
r=fa+jris4 + izr2843p/g
first =c+ ((r — ¢) mod stride)
lmfirst = (first - fp - t)np/sp+t+K
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input-local-slice(lmfirst,lmlast,lmstride)
* ELSE IF s4 > 0 AND sg < 0 THEN
(zhyhgl) = euCIid(SA,SD)
*  (22,92,92) = euclid(-spsp/gi,5s)
stride = s43pss/(9192)
1lmstride = SAn‘DSS/(glg2)
*+  last = min(la,lp, fa + sal(fs — fB)/s8))
lmlast = |(last — fp)/sp]|np + min((last — fp) mod sp,np — 1) + K
*+ ¢ =max(fa, fp, fa+sal[(ls — fB)/sB])
DO j = [(fo - fa)/g1] UPTO |(fp — fa+np —1)/g1]
t=(fa+jzi84 ~ fp) mod sp
DO i = [(fs — fB — jz15B)/g92] UPTO |(fs — fB — jzisg + ns — 1)/g2]
r= fa+jz184 +iz2548D/
first = ¢+ ((r — c) mod stride)
Imfirst = (first — fp — t)np/sp + t + K
input-local-slice(lmfirst,1lmlast,lmstride)
*ELSE IF s4 <0 AND sg > 0 THEN
*+  (z1,y1,91) = euclid(—s4,5p)
(z2,¥2,92) = euclid(sgsp/g1,5s)
stride = s45pss/(g192)
lmstride = ssnpss/(g192)
*  last = max(l4, fp, fa + s4|lls - fB)/58))
lmlast = |(last — fp)/sp|np + min((last — fp) mod sp.np) + K
* c=min{fq,lp, fa + s4[(fs — fB)/sB])
DO j = [(fp — fa)/;] UPTO {(fp — fa+np —1)/qi}
t=(fa+Jjr1s4— fp)modsp
DO i = [(fs — fB — jz15B)/92] UPTO ((fs — fp — jz1sB+ ns — 1)/g2)
r=fqg+jzi54 + 122535p /g
first = ¢ - ((¢ — r) mod (—stride))
Imfirst = (first — fp —t)np/sp + t + K
input-local-slice(lmfirst,lmlast,lmstride)
* ELSE IF s4 <0 AND sg < 0 THEN
*  (Z1,91.91) = euclid(—s4,5p)
*  (Z2,42,92) = euclid(—-sBsp/gi,ss)
stride = s45pss/(g192)
lmstride = synpss/(g192)
+  last = max(l4, fp. fa+sal(fs — fB)/sB))
lmlast = |{(last — fp)/sp|np + min((last — fp) mod sp.np) + K
« c=min(fa,lp, fa+ sallis - fB)/sB])
DO j = {(fo— fa)/gi] UPTU [(fp— fa+np—1)/q1]
t=(fa+jr184 — fp) mod sp
DO i = [(fs — fp — jz13B)/92] UPTO '(fs— fp—jrisp+ ns — 1)/ga]
r= fa+jTisq +iT2845p/0)
* first = c¢— ((¢c — r) mod (—stride))
Imfirst = (first — fp - t)np/sp +t +K
input-local- .lice(lmfirst.lmlast.lmstride)
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ENDIF

A.3 Extended COMPUTE-LOOP algorithm

In this algorithm, there are two similar cases. Differences are once again marked by an asterisk.

IF s4 > 0 THEN
(z1,¥1,91) = euclid(syu, sp)
stride = s4sp/gi
Imstride = s4np/g
last = min{l4,!p)
lmlast = [(last — fp)/sp]np + min((last — fp) mod sp.np — 1) +K
¢ = max( fa, fp)
DO j = [(fp — fa)/e1] UPTO |(fp - fa+np - 1)/g1]
JI=qi+fa-fo
r=fa+jz154
first = ¢ + ((r — ¢) mod stride)
Imfirst = (first - fp — 7)np/sp + 7' +K
DO i = lmfirst UPTO lmlast BY lmstride
A(2) = F(T(2))
* ELSE IF s4 < 0 THEN

*  (21,41,91) = euclid(-s4,sp)
* stride = —s48p/q1
* lmstride = —s np/gi
* last = min(f4,lp)
*  lmlast = |(last — fp)/sp|np + min((last — fp) mod sp.np — 1) +K
x+ ¢ =max(ls, fp)
DO j = [(fp - fa)/g1] UPTO |[(fp — fa+np —1)/gi]
F=gii+fa-fo
r=fa+jzi54
first = ¢+ ((r — ¢) mod stride)
lmfirst = (first — fp — j')np/sp + j' + K
DO i = 1lmfirst UPTO lmlast BY lmstride
A(i) = F(T(i))
ENDIF

B Optimized communication for block and cyclic distributions

When the distributions of one or both arrays are known to be block or cyclic, rather than block-cvclic.
our send and receive algorithms can be optimized. When both distributions are block-cyclic, the send and
receive algorithms contain three nested loops: the j loop, the ¢ loop, and the slice loop (see Figure 7 for
an example). The j loop is due to the left-hand side array being block-cyclic, and the i loop is due to the
right-hand side array being block-cyclic.

When either anay is distributed block or cyclic, we no longer need its corresponding outer loop to
characterize the intersections. Although some optimizations could be applied by substituting constants into
the equations, we will still always have the three nested loops. We can achieve the most efficiency by
rederiving the equations with the new definitions of Ounp(A) and Quwns{B).
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Here we show the new LOCAL-INDEX-SEND and LOCAL-INDEX—RECEIVE algorithms.

B.1 Case A: block-cyeclic, block
Array A is block-cyclic, and B is block. The ownership sets are given by:

n-D—I

Ownp(A) = U (fo+j:lp:sp)
3'=0

Owns(B) = (fs: fs +ns—1:1)
The revised LOCAL-INDEX—SEND algorithm is the following:

(z1,41,91) = euclid(s4, sp)

stride = sgsp/qi

lmstride = sgsp/g;

last = min(fp + sp|(min(l4,lp) — fa)/s4].fs + ns = 1)

lmlast = min{last - fs,ns — 1) + K

¢ = max(fp + sp[(max(fa, fp) — fa)/s4l. fs)

DO j = [(fp = fa)/g1] UPTO |(fp — fa+np — 1)/gi]
r=fp+jzi1s8
first = ¢+ ((r — ¢) mod stride)
imfirst = first — fs + K
output-local-slice(lmfirst, lmlast,lmstride)

The revised LOCAL-INDEX-RECEIVE algorithm is the following:

(z1.41,91) = euclid(sy4. sp)
stride = s4sp/gi
lmstride = s np/g)
last = min(l4,lp. fa + sal(fs + ns ~ 1 = fg)/sB])
lmlast = |[(last — fp)/sp]np + min((last — fp) mod sp.np — 1) +K
c=max(fa.fp.fs+3s4[(fs = fB)/5B])
DO j={(fo — fa)/g]l UPTO ((fp— fa+np—1)/q1]
t=(fy1+ jz154 — fp) mod sp
r=fa+jzi8a
first = c+ ((r — ¢) mod stride)
lmfirst = (first — fp — t)np/sp+t +K
input-local-slice(lmfirst.1lmlast.lmstride)

B.2 Case B: block-cyclic, cyclic

Array A is block-cyclic, and B is cyclic. The ownership sets are given by:

np—~1

Ownp(A) = U (fo+J lp:sp)
j’=0

Owng(B)=(fs :ls: ss)
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The revised LOCAL-INDEX-SEND algorithm is the following:

(z1,41,91) = euclid(sa, sp) /* z| must be nonnegative */
(1'2, 3/2192) = GUCIid(SBSD/gl,SS)
(23,93,93) = euclid(zsg, g2)
stride = spspss/(9192)
lmstride = sgsp/(9192)
last = min(fp + sp|(min(l4,lp) = fa)/sa)ls)
lmlast = |(last — fs)/ss] +K
¢ = max(fB + sg[(max(fa, fp) = fa)/sal. fs)
IF (fp — fs) mod g3 == 0 THEN
¢; = [(fo — fa)lal
DO j =c; + ((fs — fB)z3/93 — ¢;) mod g3 UPTO |(fp — fa+np —1)/q1]
BY ¢2/93
r= fg +jz1sB +(fs — fB — jz15B)z25B5D/(9192)
first = ¢+ ((r — ¢) mod stride)
Imfirst = (first — fs)/ss +K
output-local-slice(lmfirst,lmlast,lmstride)

The revised LOCAL-INDEX-RECEIVE algorithm is the following:

(z1,¥1,91) = euclid(sa, sp) /* ) must be nonnegative */
(z2,¥2,92) = euclid(spsp/g1.ss)
(z3,¥3,93) = euclid(z)sg, 92)
stride = s43p3s5/(9192)
lmstride = sanpss/(9192)
last = min(lq,lp, fa+ sallls — fB)/sB])
lmlast = |(last — fp)/sp|np + min((last — fp) mod sp.np — 1) +K
¢ = max(fa, fp, fa +s4[(fs — fB)/sB})
IF (fp — fs) mod g3 == 0 THEN
¢j = [(fo - fa)lal
DO j =¢; + ((fs — fB)z3/g3 — ¢;) mod g3 UPTO [(fp — fa+np —1)/g1]
BY g2/93
r=fa+jzisa+(fs — fB —jrisB)T2345D/(9192)
t=(f4+ jr154 — fp) mod sp
first = ¢ + ((r — ¢) mod stride)
lmfirst = (first — fp —t)np/sp + t + K
input-local-slice(lmfirst.lmlast.lmstride)

B.3 Case C: block, block-cyclic

Array A is block, and B is block-cyclic. The ownership sets are given by:

Ownp(A)=(fp: fo+np-1:1)
ng—1

Owns(B)= |J (fs+i:ls:ss)
1'=0 .
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The revised LOCAL-INDEX-SEND algorithm is the following:

(z2,¥2,92) = euclid(sg, ss)
stride = spss/g
lmstride = sgns/g2
last = min(fg + sp|(min(la, fp + np — 1) ~ fa)/s4].ls)
lmlast = |(last — fs)/ss]ns + min((last ~ fs) mod ss,ns — 1) + K
¢ = max(fp + sp[(max(fa, fo) — fa)/s4l, fs)
DO i = [(fs ~ fB)/92] UPTO |(fs — fp + ns —1)/g2]
V=gi-fs+ fp
r = fB + iz2sB
first = ¢+ ((r — ¢) mod stride)
lmfirst = (first — fs —i)ng/ss +i' + K
output-local-slice(lmfirst, lmlast,lmstride)

The revised LOCAL-INDEX-RECEIVE algorithm is the following:

(z2,y2,92) = euclid(sp,ss)

stride = s485/92

lmstride = 5485/¢2

last = min(ly, fp + np — 1, fa + sal(ls — fB)/sB])

1lmlast = min(last - fp,np — 1) +K

¢ = max(fa, fp. fa +sa[(fs — fB)/sB])

DO i = [(fs - fB)/92] UPTO |(fs - fp + ns —1)/g2]
r= fa+izasy
first = ¢+ ((r — ¢) mod stride)
Imfirst = first - fp + K
input-local-slice(lmfirst,lmlast,lmstride)

B.4 Case D: block, block

Array A is block, and B is block. The ownership sets are given by:

Ownp(A)=(fp: fo+np—-1:1)
Ouwns(B)=(fs: fs+ns—1:1)
The revised LOCAL-INDEX—SEND algorithm is the following:

stride = spg

Ilmstride = sp

last = min(fg + sg{(min(la. fp + np — 1) ~ fa)/sa]. fs + ns — 1)
lmlast = min(last - fg.ng - 1) +K

c = max(fg + sg[(max(fa, fp) = fa)/s4l, fs)

r=fp

first = ¢ + ((r — ¢) mod stride)

lmfirst = first — fs + K
output-local-slice(lmfirst,1lmlast,lmstride)
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The revised LOCAL-INDEX-RECEIVE algorith 1 is the following:

stride = s4

Imstride = s4

last = min(IA,fp +np-1,fa+ SAL(fs +ng -1~ fB)/sBJ)
lmlast = min(last — fp,np — 1) +K

c= max(f,;, f'D9fA + 384 f(fs - fB)/sB])

r=fa

first = ¢+ ((r — ¢) mod stride)

lmfirst = first — fp +K
input-local-slice(lmfirst,1lmlast,lmstride)

B.S Case E: block, cyclic
Array A is block, and B is cyclic. The ownership sets are given by:

Ownp(A)=(fp: fp+np—-1:1)

Owns(B) = (fs :1s : ss)
The revised LOCAL-INDEX-SEND algorithm is the following:

(z27 y27g2) = GUClid(SB, 35)
stride = spss/g2
Ilmstride = sg/g»
last = min(fp + sp|(min(la, fp + np — 1) — f4)/54].ls)
lmlast = [(last — fs)/ss| +K
¢ = max(fg + sg[(max(fa4, fp) — fa)/s4]. fs)
IF (fg — fs) mod g == 0 THEN
r= fp+(fs - fB)z258/92
first = ¢+ ((r ~ ¢) mod stride)
lmfirst = (first — fs)/ss +K
output~local-slice(lmfirst, lmlast,lmstride)

The revised LOCAL-INDEX—RECEIVE algorithm is the following:

(z2,12,92) = euclid(spg, ss)
stride = s45s5/92
lmstride = s485/92
last = min(ly, fp + np — 1, fa + s4l(ls - fB)/sB])
lmlast = min(last — fp,np — 1)+ K
¢ = max(fa, fo,fa+sal[(fs — fB)/s8])
IF (fg — fs) mod g2 == 0 THEN
r= fa+(fs - fB)T254/92
tirst = ¢+ ((r — c) mod stride)
lmfirst = first — fp +K
input-local-slice(lmfirst,lmlast.lmstride)
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B.6 Case F: cyclic, block-cyclic

Array A is cyclic, and B is block-cyclic. The ownership sets are given by:

Ownp(4) = (fp :lp : sp)

ng—1

Owngs(B) = U (fs+1:1ls:ss)

=0

The revised LOCAL-INDEX-SEND algorithm is the following:

(z1,y1,91) = euclid(sa, sp)
(22,42,92) = euclid(spsp /g1, ss)
stride = spspss/(9192)
lmstride = spspns/(9192)
last = min(fg + sp|(min(la,lp) = fa)/s4],1s)
lmlast = [(last — fs)/ss|ns + min((last — fs) mod ss.ns — 1) +K
¢ = max(fp + sg[(max(fa, fp) — fa)/sal, fs)
IF (fa — fp) mod g == 0 THEN
DO i = [(fs — fB = (fr ~ fa)z138/91)/92] UPTO
(fs ~ fB = (fo — fa)x1sB/91 + ns — 1)/ g2]

' =gi~fs+ fo+(fo— fa)rise/9

r=fp+(fo — fa)rise/91 + iz2385D/ 1

first = ¢+ ((r — ¢) mod stride)

Imfirst = (first — fs — i')ns/ss + 1 +K

output-local-slice(1lmfirst,lmlast,lmstride)

The revised LOCAL-INDEX—RECEIVE algorithm is the following:

(zl,yl»gl):= GUCIid(SA,SD)

(z2,92,92) = euclid(spsp/gi,ss)

stride = 845pss/(g192)

lmstride = 3455/(9192)

last = min(l4,!p, fa + sal(ls — fB)/sB])

lmlast = |(last — fp)/sp] +K

¢ = max(fa, fo, fa +34[(fs — fB)/s8])

IF (fA - fp) modg. == (Q THEN

DO i = [(fs - f8 = (fo — fa)z1s8/91)/g2] UPTO
Wfs—fB—=(fp— fa)xisg/g1 + ns = 1)/g2]

r=fa+(fo - fa)T184/91 + iz2545D/ 9
first = ¢+ ((r — ¢) mod stride)
Imfirst = (first — fp)/sp +K
input-local-slice(lmfirst.lmlast.lmstride)

B.7 Case G: cyclic, block

Array A is cyclic, and B is block. The ownership sets are given by:




Ownp(A) = (fp:lp :sp)

Owns(B) = (fs: fs+ns—1:1)
The revised LOCAL-INDEX-SEND algorithm is the following:

(z1,y1,91) = euclid(s4,9p)
stride = sgsp/gi
lmstride = sgsp/gi
last = min(fp + sg|(min(la,lp) - fa)/s4], fs + ns ~ 1)
lmlast = min(last — fs,ns — 1) +K
¢ = max(fp + sg[(max(fa, fo) ~ fa)/s4l, fs)
IF (fa — fp) mod g, == 0 THEN
r=fB+(fp— fa)zisB/o
first = ¢+ ((r — ¢) mod stride)
Imfirst = first — fs + K
output-local-slice(lmfirst,1lmlast,lmstride)

The revised LOCAL-INDEX-RECEIVE algorithm is the following:

(z1,91,91) = euclid(sa, sp)

stride = s43p/g)

lmstride = s4/9;

last = min(l4,!p, fa + sal(fs + ns — 1 = fB)/sB])
lmlast = (last — fp)/sp] +K

c= max(anf‘D’fA + SA[(f.S - fB)/SB])
IF (fa — fp) mod g == 0 THEN

r=fa+ (fo— fa)zrisa/a

first = ¢+ ((r — ¢) mod strida)

lmfirst = (first — fp)/sp +K
input-local-slice(lmfirst, lmlast,lmstride)

B.8 Case H: cyclic, cyclic
Array A is cyclic, and B is cyclic. The ownership sets are given by:

Ownp(A) = (fp :lp : sp)

Owns(B) = (fs : Is : s5)
The revised LOCAL-INDEX-SEND algorithm is the following:
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(xlvylagl) = GUCIid(SA, SD)

(z2,¥2,92) = euclid(spsp/g1,ss)

stride = sgspss/(g192)

lmstride = spsp/(g192)

last = min(fg + 3g I_(min(lA,lp) - fa)/sal,ls)

lmlast = |(last — fs)/ss] + K

¢ = max(fp + sg[(max(fa, fp) — fa)/sal, fs)

IF (fa— fp)mod gy ==0 AND (fg + (fp — fa)z188/91 — fs) mod g, == 0 THEN
t=(fp~ fa)z1ss/9
r=feg+t+(fs — fB—t)r2585p/(9192)
first = ¢+ ((r — ¢) mod stride)
Imfirst = (first — fs)/ss +K
output-local-slice(lmfirst, lmlast,lmstride)

The revised LOCAL~INDEX-RECEIVE algorithm is the following:

(z1,¥1,91) = euclid(sa,sp)

(z2,%2,92) = euclid(spsp/g1.ss)

stride = s45ps5/(9192)

Imstride = 3455/(g192)

last = min(l4,lp, fa + sal(ls — fB)/sB])

lmlast = |[(last - fp)/sp] +K

¢ =max(fa, fp, fa+sa[(fs — fB)/sB])

IF (fa— fp)mod g, ==0 AND (fg+ (fp — fa)z1sB/91 — fs) mod g == 0 THEN
t=(fp— fa)zisB/g
r=fa+(fo - fa)zisa/g+ (fs — fB — t)x2545D/(9192)
first = ¢+ ((r — ¢) mod stride)
lmfirst = (first — fp)/sp +K
input-local-slice(lmfirst,1lmlast.lmstride)

C Optimized computation for block and cyclic distributions

As in Appendix B, we can use an optimized version of the COMPUTE-LOOP algorithm when the distribution
of the array on the left-hand side of the assignment statement is known to be block or cyclic. Since the
distribution of only the left-hand side is relevant, we need to derive only two additional algorithms, rather
than eight.

C.1 Case A: block

Array A has a block distribution. The ownership set is given by:

Ownp(A)=(fp: fo+np~-1:1)

The revised COMPUTE-LOOP algorithm is the following:
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stride = s4

lmstride = s4

last = min(l4, fp + np — 1)

lmlast = last — fp + K

¢ = max(fa, fp)

r=fa

first = ¢ + ((r — ¢) mod stride)

Imfirst = first — fp + K

DO ¢ = lmfirst UPTO 1lmlast BY lmstride
AGi) = F(1(9))

C.2 Case B: cyclic

Array A has a cyclic distribution. The ownership set is given by:

Ownp(A) = (fp : lp : sp)

The revised COMPUTE-LOOP algorithm is the following:

(z1.91,91) = euclid(sa, sp)

IF (fa — fp)mod g; == 0 THEN
stride = s43p/g)
lmstride = s4/g;
last = min({4,!p)
lmlast = |[(last - fp)/sp| + K
¢ = max(fa, fp)
r=fat+(fo - fa)zisa/q
first = ¢+ ((r — c¢) mod stride)
lmfirst = |(first — fp)/sp] +K
DO i = lmfirst UPTO lmlast BY lmstride

A(i) = F(T(3))

D Notation

There are many variables and conventions used throughout the paper. In this appendix, we provide a
description of many of these variables.

W: The set of global array elements to be sent from one processor to another.
A: The array on the left-hand side of the assignment statement.
B: The array on the right-hand side of the assignment statement.

b;: The alignment offset for an array dimension. The subscript refers to either a particular dimension of a
template or a particular one-dimensional array.

c;: The lower index bound of a template dimension with which a particular array dimension is aligned. The
subscript refers to either a particular dimension of a template or a particular one-dimensional array.
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F: An arbitrary element-wise intrinsic function, such as sin, log, or the identity.
f: The first component of aslice, asin (f : {: s).

fa: The first component of the slice on the left-hand side of the array assignment statement, as in A( f4 :
l1:s4)=F(B(fB:lB:sB))

fB: The first component of the slice on the right-hand side of the array assignment statement, as in
A(fa:la:sa)=F(B(fB:1B: sB))

fp: The index of the first element of the left-hand side array owned by receiving (destination) processor D).
fs: The index of the first element of the right-hand side array owned by sending processor S.
g: The greatest common divisor (GCD) of some pair of input integers.

K: The first index of a particular array. In the C programming language, K is always 0; in Fortran K is
usually 1.

l: The last component of aslice, asin (f : {: s).

{4t The last component of the slice on the left-hand side of the array assignment statement, as in A( f; :
la:s4)=F(B(fB:lp:sB)).

[g: The last component of the slice on the right-hand side of the array assignment statement, as in A{ f; :
l4:54) B(fs:1p:sg)).

{p: The index of the last element of the left-hand side array owned by receiving (destination) processor D.
ls: The index of the last element of the right-hand side array owned by sending processor S.

LM: A function that maps a global array index into an index of a local array on a processor. L./ is defined
in equation (16).

Map: A function that maps a global index of an array into an index of a per-processor local array. Map is
defined in equation (5).

np: The block size of the distribution of the left-hand side array.
ns: The block size of the distribution of the right-hand side array.

n’: The block size of the template with which the array is aligned. This parameter differs from the block

size, n, of the array when ol # of. The identity n’ = n + of — o always holds.
y ) 3

of: The alignment overlap on the left. This value is O except in the case of partially replicated distributions
(see Section 10.4).

o®: The alignment overlap on the right. This value is 0 except in the case of partially replicated distributions
(see Section 10.4).

Ownp(A): The set of indices corresponding to the elements of left-hand side array A owned by receiving
(destination) processor D). This set can be represented using the four parameters fp,/p. sp.and np.
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Owng(B): The set of indices corresponding to the elements of right-hand side array B owned by sending
processor S. This set can be represented using the four parameters fs, Is, ss, and ns.

Pt A processor ID expressed as a vector, with one component for each dimension of the array, where
0 < p < 7. Two different processors will differ in at least one component of their corresponding ;7
vectors.

Ri,;..: A function that returns a representative of an input set. The subscript of R is an index list. For each
valid instantiation of the indices in the index list, there is a different representative. Associated with
R is a lower bound, an upper bound, and a stride, each of which is independent of the indices in the
index list. Each representative, along with the lower bound, upper bound, and stride, defines a slice,
and the union of the slices over the valid instantiatiors of the index list results in the input set.

r: A representative element of an infinite slice, as described in Section 5.
s: The stride component of a slice,asin (f : [ : s).

s4: The stride component of the slice on the left-hand side of the array assignment statement, as in
A(fa:la:s4)=F@B(fB:lB:sB))

sp: The stride component of the slice on the right-hand side of the array assignment statement, as in
A(fa:la:sa)=F(B(fz:lp:sB)).

sp: The stride of the distribution of the left-hand side array. The distribution stride is defined as the
difference between the starting points of two consecutive blocks owned by a processor.

ss: The stride of the distribution of the right-hand side array. The distribution stride is defined as the
difference between the starting points of two consecutive blocks owned by a processor.

7 A vector giving the number of processors assigned to each corresponding dimension of an array.

r: An integer that satisfies az + by = gcd(a. b) for nonnegative integers a and b, for an integer y. Given «
and b, the integers z, y, and gcd(a, b) can be found by using Euclid’s extended GCD algorithm.

y: An integer that satisfies ar + by = gcd(a.b) for nonnegative integers a and b, for an integer . Given «
and b, the integers z, y, and gcd(a, b) can be found by using Euclid’s extended GCD algorithm.

49




REPORT DOCUMENTATION PAGE

Form Approved
OMS No. 0704-0188

Mm“hﬁ“d“nm.miwwmmmmm
um-l’l‘u- raducing this 10 Weshingion Hesdauirtaes Services, Directarate

g inets -] g dats
outharng snd mmmum mmmam anz&nmmmu other spuct of thin

any
nformetion Opevations and Mport, 1213 jefferson

Ouvis oginvey, Suilte 1204, Arfingesn, V. mmmummammmwmmow ‘W), Weshingeon, DC 20503.

1. AGENCY USE ONLY (Leave D/ank) | 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

4. MITLE AND SUBTITLE

Efficie..t Compilation of Array Statements
for Private Memory Multicomputers

6. AUTHOR(S)

James M. Stichnoth

S. FUNDING NUMBERS

MDAS72-90-C-(035

7. PERFORMING ORGANIZATION NAME(S) AND ADDR(SS(!S;

Carnegie Mellon University

8. PERFORMING ORGANIZATION
REPORT NUMBER

CMU-CS-93-109

YTty TSy vy
9. SPONSORING / MOMITORING AGENCY NAME(S) AND ADDRESS{ES)

10. SPONSOTING / MONITORING
AGENCY REPORT NUMBER

| o v T ————— YTy
11. SUPPLEMENTARY NOTES

Y TSy T~
123. DISTRIBUTION / AVAILABILITY STATEMENT

unlimited

12b. DISTRIBUTION CODF

13. ABSTRACT (Maximum 200 words)

(cee title page)

One of the core constructs of High Performance Fortran (HPF)

T ———————
14. SURJECT TERMS

OFf ABSTRACT

15. NUMBER OF PAGES

16, PRICE COOE

4 17. SECURITY CLASSIFICATION | 18. SECURITY CLASSIFICATION ]19. SECURITY ‘
. . CLASSIFICATION | 70. LIMITATION OF ABSTRA
OF REPORT OF THIS PAGE STRACT

NSN 7340-01-280-3300

Standard Form 298 (Rev 2-89)
Preverised by ANY Yo 23918
198102

53-85




School of Comguter Science
Carnegie Mellon University
Pittsburgh, PA 15213-3890

, o
. ,
LT 1 .
IS I Y O T P I T L S P ST PR PN S L £ P RN
Moy i ety ST, G s A e Bt e St ey 1
T R Y M y L

A AR R AN ARV




