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Maximum Likelihood Estimation for Constrained or
Missing Data Models

Alan E. GELFAND and Bradley P. CARLIN

University of Connecticut and University of Minnesota

Key words and phrases: EM algorithm; Gibbs sampler; Monte Carlo approximant.

Abstract

In statistical models involving constrained or missing data, likelihoods containing integrals
emerge. In the case of both constrained and missing data, the result is a ratio of integrais, whica
for multivariate data may defy exact or approximate analytic expression. Seeking maximum like-
lihood estimates in such settings, we propose Monte Cario a.i:proximants for these iﬁtegrals, and
subsequently maximize the resulting approximate likelihood. Iteration of this strategy expedites
the maximization, while the Gibbs sampier is useful for the required Monte Carlo generation. As
a result, we handle a class of models broader than the customary EM setting without using an

EM-type algorithm. Implementation of the methodology is illustrated in two numerical examples.

1 Introduction

In challenging parametric modeling settings the maximum likelihood estimator is generaily
the estimator of choice. This follows from both foundational considerations (e.g. the Likelihood
Principle) as well as practical ones (e.g. good large sample behavior under mild conditions). Here we
propose a Monte Carlo approach for calculation of maximum likelihood estimators which handles
a range of previously inaccessible problems.

The context we have in mind results in a likelihood function which is unavailable explicitly.

Some likelihoods of this type have been analyzed using the EM algorithm (Dempster, Laird and
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Rubin, 1977). As we clarify later in this section, however, the class of models we envision yields a
likelihood which cannot be handled by the customary version of this algorithm.

Though we present our method in terms of general multivariate joint distributions, all of our
illustrations and data examples assume an underlying exponential family of models. This is because
the behavior of the likelihood surface and bence the properties of the MLE are perhaps best
understood in such families (see e.g. Barndor-Nielsen, 1978; Brown, 1986; Jacobsen, 1988, and
references therein). We do not address theoretical concerns regarding e.g. existence, uniqueness,
consistency, or asymptotic normality. Rather, we offer a method for obtaining the maximum of
the likelihood when it is reasonably well behaved. Problems and remedies associated witi pooriy
benaved likelihoods are well discussed in the literature and apply to our approach as wel. In
particular, the use of multiple starting points with a givez maximization routine often heips avoid
convergence to local, rather than global, maxima.

Our models assume the observed data to be constrained in some way. We also allow for the
possibility of missing data with constraints upon the extire set of variabies, bothk observed and
unobserved. As a general version of this setting let x demote the k-dimensional observed data

vector and @ the p-dimensional parameter vector. We suppose that the likeiihood takes the lorm

/
.oe{x: @
L(G;x;:——\—, e
2, 6)
where
a(x:0) = / fix.y0ay | 2
’ veCix,

J is a parametric family of densities, aad
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That is, as a function of x, L(8;x) is a normalized density function. Here Yy is viewed as a t-
dimensional missing (or latent) data vector constrained by the observed x to the set C(x), with
the observed x itself constrained to a set S.

In the case where there is no missing data we take c;(x; 8) to be a parametric family of densities
for x with ¢;(8) being the normalizing constant arising from the restriction of x to S. Computation
of the function ¢,(@) then requires a k-dimensional integration which we presume cannot be carried
out explicitly. In fact with k large and S awkward, evaluation of ¢;(8) at a particular 8y may
defy exact or approximate analytic numerical integration. Hence, we are drawn to Monte Carlo
approaches. In the case of latent or missing data y, computation of the function ¢;(x; 8) requires
a t-dimensional integration over a constrained set C{x), wh.ic}; again we cannot carry out explictly.
Moreover, ¢3(8) now requires a (k + t)-dimensional integrztion.

Of course, in principle one could attempt a grid search for the maximizing @ in (1). That is, at
a given 6, perform Monte Carlo integrations for ¢; and ¢; to obtain L, and then search through the
space of & for a maximum L. This is in fact the approach that emerges in several papers from the
econometrics literature on simulated moments estimation; see for example McFadden (1989) and
Pakes and Pollard (1989). The primary concern of these papers appears to be the accuracy and
precision of the simulator carrying out the integrations, rather than efficient maximization using
such a simulator. These papers tj}pically assume the observed data x to be a deterministic function
of the latent data y, thus simplifying the structure of the integralsin (1). Constrained multivariate
normal models for y are presumed, resulting in tailored simulators inappropriate for the broader
class of statistical models we envision (see Section 2). Moreover, when p is large a naive grid search
for the MLE 8 may be impractical; for smaller p our proposed method is faster.

The EM algorithm is a widely used tool for handling incomplete data problems. It cannot,

however, accommodate constraints on the observed data. That is, it presumes that that ¢;(x;8)



Gelfand and Carlin: Constrained or Missing Data Models 4

is itself a normalized density in X, so that ¢;(8) in (1) disappears. To clarify, recall the general
version of the EM algorithm as presented in Dempster, Laird and Rubin (1977). At the Ith stage,
given A = 8(!) the E-step computes a function Q(6'10 = 8(") which the M-step then maximizes

over 8'. In the case of (1),

vl ,y|6)d
0(68'0) = Joo f(x YLI()X?i)f(x y|&@)dy ~logex(@).

But since this expression still involves ¢, and ¢;, it is no easier to work with than (1). In summary,
if the likelihood is of the form (1) we need to approximate one or both of ¢;(x;8) and c3(8) as
functions of 8. While Monte Carlo integration seems to be a natural tool in this regard, it is not
immediately clear how to proceed.

We develop Monte Carlo approximants following importance sampling ideas proposed in Geyer
and Thompson (1992). In their setting (an autologistic model), data vectors X;,...,X, come
from an exponential family rp.odel where only the nonnormalized form of the exponential ker-
nel, exp(8'T(x)), is specified. That is, the vector T is chosen such that the sufficient statistic,

.y T(x), is a suitable summary of the data. Hence the normalizing constant, a function of )
and therefore needed for the ML estimation, is unknown and requires integration over X to compute.
Geyer and Thompson introduce a Monte Carlo approximant for this function, as well as an iterative
appréach for carrying out the maximization. We generalize their ideas beyond approxjmation of
the normalizing function to a broad class of constrained or missing data problems.

The format for the remainder of the paper is as follows. In Section 2 we offer a collection of
motivating examples where likelihoods of the form (1) arise. In Section 3 we formalize the Monte

Carlo approach. Finally, Section 4 presents two datasets for whick models of the form (! are used

and the approack of Section 3 is carried out.
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2 Illustrative Examples

In order to demonstrate the range of application of our approach, in the following subsections
we present three situations where the form (1) arises. Two of these are analyzed more fully using
appropriate datasets in Section 4. Other illustrations include multivariate biased sampling settings,

and the analysis of adaptive patient followup schemes for clinical trials data.

2.1 Patterned covariance models

An elementary illustration is provided by a constrained vector x from a multivariate normal
having mean 0 and covariance £(8), assumed to be a patterned matrix. Such structure arises in
variance components modeis, time series models, and moving average processes. Particular forms
indude (a) 4(0) = o°, T,;(8) = po?, (b) T;(8) = o?p¥~Il, (c) Ti(0) = o?by_;;, and (d)
Z,;j(@) =(m-|i-j])o? |t -ji<m; Z;;{(8) =0, [i - j| > m . See also Rubin and Szatrowski
(1982) in this regard. Constraints on x might be {z;| < ¢, i=1,...,korz; <zp <+ < T
In the equicorrelated case (i)”under say the latter constraints, ¢;(x; @) is precisely the multivariate

normal density Ni(0, £(8)) with
ca(8) = / Nu(x]0,5(6)) d=ydzy -+ - dzy .
21 <x3<- Ty

Unless k is very small, calculation of ¢; at a given 8y is only feasible using Monte Carlo methods.

2.2 Categorical data models

Consider the case of truncated multinomial trials. For instance, it is sometimes the case that
the observation of a zero count is truncated. We dichotomize according to presence or absence

and then, if present, record how many. If we assume cell counts arise from independent Poisson
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distributions in this fashion, the conditional distribution of cell counts given the total number
becomes a truncated multinomial. More generally for a fixed number of trials, n, suppose the i**
cell is restricted to have at least r; observations, t = 1,...,k. Let x = (z1,...,zx) where z; denotes
the count in the 7P cell, with z; > r; for each 7, and ¢; is the probability associated with the 75
cell. Then, with @ = (g1,...,q), c1(x;8) = n![I%,, ¢F/z:! and ¢2(6) = T 5c1(x; 8) where now
S = {x: each z; is integer-valued, z; > r;, and 5.5, z; = n}. Other variations include the case
where a particular multinomial cell is known to supply the largest count or where the counts are

constrained to increase up to a particular cell and then decrease thereafter.

2.3 Compositional data models

Frequently samples are taken such that each observation is a vector whose components sum to
1. Examples include land samples described in terms of proportions of different types of vegetation,
soil samples described by proportion of chemical content, and rock samples described by proportion
of mineral content. Such data is referred to as compositional data (Aitchison, 1986). Distributional
models are specified on the simplex {p = (py,P2,.-.,Pk) 1 Pi > O,Zf‘___l pi =1}

Let j{pi0) denote a parametric specification of the joint deasity for p. The most obvious choice
of f, the Dirichlet family, is usually undesirable since it forces an assumption of negative correlation
amongst every (p;,p;) pair, as well as certain conditional independencies. Instead, baseline logit
transformations z; = log(p;/px) are often adopted, with z = (zy,..., 2x—1) assumed to follow, say, a
Ni-1(p, Z) distribution, so that 8 = (u, ). The (k- 1) logits uniquely determire she composition.

The mean u is often expressed as a parametric function of explanatory variables. Of particular
interest is the covariance matrix I, since the nature of covariation between proport.ons is a primary
research question. Usually MLE’s are sought, so that given samples p,, t = I, .., n, we would

convert to z, and then obtain the customary MLE for 1 and I.
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Now suppose there are constraints on the p’s. For instance, we might know that the first
classification is most common, i.e. p; > p;, i = 2,.. -»k, or we might know that the classifications
are in decreasing order of prevalence, i.e. p; > ps > -+ > pi. On the logit scale these convert to
21 2z,t=2,...,k,and z; 2 23 2 --- 2 zx-1 > 0, respectively. If S denotes these constraints
and f(z1,...,2k-1|6) denotes the density of z then ¢2(0) = [5 f(21,...,2k-1]0) dzy - - - dz—;.

Next imagine that, as often happens, the k** classification is a leftover, or “other” category.
Unfortunately what classifcations comprise “othe'r” may vary across data collection sources. That
is, we can think of p as the most refined classification vector, but we actually observe q’s where

components of p are collapsed. Then the likelihood for the observed data qy,...,qn takes the form
— n - )
L(aifll,---;Qn) = H/C‘( )f(?tl:"wptkle) dPtl'“dPtk ) (3)
= qe

where C(q,) reflects the collapsing of p, to give q;. Whether on the p scale or the z scale, expression
(3) is of the form (2). If we also incorporate the previouly described restrictions on p, the likelirood

takes the most general form (1).

3 The Monte Carlo approximant approach

Returning to (1), observe that we may write

-1
cl(x;e)=c1(x;ao)-(/c » f((;‘ ;Lo)f(\'lxe)dy) ( /C (x)f(:y'Ix,Bo)dy) O

and similarly

-1

a(6) = e3(60) - ( Ll f(‘x";jf’)f<x,ywo)dydx) ( Ll f(x,yleo)dydx) . )
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Thus if {w}, j = 1,..., B} are drawn from 9(yIx,8o), the conditional distribution of y given x

and 6 restricted to C(x), then a Monte Carlo approximant for (4) is

By »
(i 8) = cx(xi Bo) - 27“(5??"—,';‘3’—) (6)

J"l

If instead {x;, J =1,...,B,} are drawn from g(x|8y), the distribution of x given 8¢ restricted to

S, and subsequently for each xj a y; is drawn from g(y|x;, 8o), then 2 Monte Carlo approximant
for (5) is given by

' Y516
£2(8) = c2(80) - _Z_]{(_;F:;’IL 0)) (7)
PR ]

Hence we may approximate the log likelihood log L(8;x) by log é,(x; 8) - log ¢2(6). This in turn

implies that an approximate MLE 6 may be found by maximizing

f(x, w3i6) &2, f(x},;10)
oy, AT - e S, ®)

where we have ignored terms free of 8. Thus using the approximants (6) and (7), we have replaced
an intractable form (1) with an explicit form (8). Note that the terms free of 8 involve the unknown
quantities ¢1(x; @) and c3(6), but fortunately these need not be evaluated. Henceforth, we shall
refer to the method of finding & via maximization of (8) as the MCMLE algorithm. Notice that if
there is no missing data y, a Monte Cario approximant is not nesded for ¢1(x; 8) in (1), and (8)

simplifies to
log f(x18) - logz f(x (0) (9)

A byproduct of the explicit Monte Carlo approximant is the possibility of approximation to
tke asymptotic covariance matrix of the MLE. If we calculate (either analytically or numerically)

the Hessian matrix of mixed partial derivatives of (8) with respect to 8 evaluated at the MLE, say
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H(8), then [~ H(8)]! provides a rough indication of the uncertainty associated with @

Implementation of expression (8) poses two cha'lenges: carrying out the required sampling to
create the Monte Carlo approximants, and maximizing the resulting expression. With regard to
the first challenge, the sampling for (6) and (7) requires making draws from a joint distribution
whose form is known perhaps only up to normalizing constant and which is confined to a specified
set. If the joint density for x and y is of the form f(x,y|@), then in (6), given x and 8¢ we need to
sample from f(y|x,80) x f(x,¥y|6o) restricted to C(x) In (7) we need to sample from f(x,y{60)
restricted to the set {(x,y):x € S and y € C(x)}.

In some cases, simple rejection sampling (e.g. generating y from f(y|x,8) and retaining it if it
belongs to C(x)), though inefficient, will be easiest. Alternatively, Markov chain Monte Carlo using
the Gibbs sampler (see e.g. Gelfand and Smith, 1990; Tierney, 1991) is attractive here since required
sampling is from complete conditional distributions, all of which are proportional to the joint density
f(x,¥]0). Let us adopt the notation Y—; = (¥1,. -+, Yie1, Yit+1,- -+, ¥t), With a similar definition for
X-i. Then in (6) we need to draw from f(wly-i,x,8), i = 1,...,t, appropriately restricted. In
(7) we need also to draw from f(zi|x—i,¥,8), ¢ = 1,...,k, again appropriately restricted. At a
particular y; or z; the constraint sets must be viewed in univariate cross sections given the other
variates. This typically results in restriction to an interval or a set of intervals. Receant work of
Geifand, Smith, and Lee (1992) is pertinent here in discussing one-for-one sampling from such
univariate distributions. Though their work is in the Bayesian framework where integration and
sampling is over the parameter space, it is equally well applicable for our situation where integration
and sampling is over the data space.

In the approximations (6) and (7), f(,-|6g) plays theﬁrole of an importance sampling density.
More generally, for instance, th; w;,'s in equation (6) might be drawn from any importance sampling

density hA(y|x) that is appropriately restricted to C(x). But no such single density could possibly
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perform well for all integrands over the range of possible values for 6 On the other hand, adopting
an h that changed with  would require a simuiation for each 8, rendering any naive MLE grid
search algorithm infeasible.

How do we avoid this problem? Our selection of g(yix,8) for h(y|x) suggests an iterative
approach to create a sequence of importance sampling densities that improves relative to the density
f at the MLE 8. This approach eliminates the need for grid search‘ and also the costly set-up
time in developing appropriate importance sa.mpliz'1g densities. The idea follows from Geyer and
Thompson (1992), wﬁo observed that starting at some 8(% if we maximize (8) to obtain § we can
take (1) = @ and rerun the entire procedure, resulting in a new 8 and an iterative version of
the procedure. To understand the value of iteration we need to distinguish the maximization of
(8) from the maximization of (1). Expression (8) is an approximation to (1) which depends upon
the accuracy of the approximations (6) and (7). If we view f(x,¥y|8) as an importance sampling
density for f(x,ylé), then for a given By and B2 the Monte Carlo integration for ¢;(x; 9) and cz(é)
improves as f(x,y|0y) gets “closer” to f(x,ylé), i.e. as 8g gets closer to #. Thus the sequence
{61} produced by iteration should be getting closer to the true # which maximizes (1). Since our
objective is only to insure a good Monte Carlo approximant, we need not, however, take more than
a few iterations to obtain 8() in the vicinity of the true §. At this point, one final iteration with
By and B, very large (say 10,000) will produce an accurate final estimate. Thus through a smalil

number of iterations we achieve an efficient and broadly applicable maximization strategy.

4 Numerical Examples

4.1 Truncated Correlated Normal

Consider the equicorrelated k-variate normal distribution described in Subsec:ion ..l where

Zi = L,Lij = p for i # j, subject to truncation to the set § = {x : max|z;| < L} for some
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L > 0. We seek the MLE of 8 = p. Notice that direct standardization of this likelihood involves a
k-dimensional integral for each candidate p value, whereas our Monte Carlo approach requires only
the generation of x}'s from the-truncated correlated normal, given the current approximation pq.
To carry out the required sampling, we note that 231 = ar and }3;;-1 = b for 7 # 7, where
ak = (=(k = 2)p = 1]/[(k ~ 1)¢" = (k - 2)p — 1] and by = p/[(k = 1)p? — (k — 2)p ~ 1] (see e.g. Rao,

1973). Hence for any i,

gS"* N zilzy ) o N (¢p,c~—1 Yoz, 1=p(k - 1)%,«,.-1) L-r,ry(=) 5 (10)
[

where 54, , = 1= (1~ pjax-1. Generation of the necessary samples may now proceed by a Gibbs
sampling algorithm. That is, we successively sample from the complete conditional distributions in
(10), updating the value of 3, z[; as we go. After a suitably large number of “burn-in” iterations
N, the x] values emerging from the sampler are approximately distributed according to their true
joint distribution.

With regard to implementation, we first choose a starting value for 21£1 T{j» then run the
substitution sampling chain for N “‘bumdn” iterations to essentially reach the chain’s ergodic
distribution, and finally continue for an additional B iterations, now retaining the x; values
generated for use in a Monte Cario approximant. Values obtained in this way will of course be
serially correlated, and some authors thus recommend i'efa.ining ;mly every M** sample. Even for
M = 1, however, the x;’s will still be from the correct ergodic distribution; taking B, large will also
help to ameiiorate this problem. Proper selection of NV (ascertaining “convergence” of the sampier)
is another important issue, and a source of much recent research interest (see for example Gelman
and Rubin, 1992; Raftery and Lewis, 1992). In this case, our experience with normal sampling

models convinced us that taking N = 20 would constitute ample burn-in.
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Using our Gibbs-sampled x}'s, the Monte Carlo approximant to the log likelihood (9) for this

model becomes

- - |E=H}/2 exp(~ lx"}:"‘x )
%loglz 1l ‘x 2 lx logz:’_l [2—111/3 (___xuzs'lxo)}

o« —%x’E‘lx logZJ_1 exp[3x}(Z5t - Z-1)x}]

~1Th, [em(Tha @) + (ox - bi)e?] _

~log =22 exp {3 Thy [0 - b)eg(They 23y) + (0 - @k = 607 + 8)232] }

where a; and by are defined as above, and ag’) and bﬁo) are defined similarly but depend on the
fixed value po instead of the unknown p. Note that our calculations feature two levels of iteration

(Gibbs sampling within our MCMLE iterative framework).

We apply the above method to the following vectorof & = 10 obsemtioné: x' = (-0.167,-0.934,
0.175,-0.349, -1.012, -0.378, -0.720, —1.208, —0.664, —1.435). This x was generated from the
truncated correlated normal having p = 0.5 and L = 2. We used an initial guess of pg = p = 0.5, and
a univariate maximization routine with maximum search window 0.1 (recall -1/(k-1)<p <1
in order for ¥ to be nonsingular). Running the MCMLE algorithm for ¢ = 6 iterations (and us-
ing B, = 10,000 replications at iteration 6) we obtained the MLE j = 0.743 and an associated
approximate standard deviation (computed numerically using second differences) of 0.126. In this

example, convergence is rapid even for poor initial choices of py.

4.2 Constrained 2 x 2 Table

One of the datasets presented by Andrews and Herzberg (1985) concerns species composition in
a continuous, roughly semicircular arc of woodlands near Bradford, England. The data, collected
by students at the University of I radford, record counts of various kinds of trees at several sites

within each of the woodlands. Table 1 gives the numbers of oak and sycamore trees in two such sites
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from different woodlands (one in Royd’s Cliffe and one in Dixon’s Wood). However, this selection
was not done completely arbitrarily: Royd’s Cliffe sites having no oak trees were not eligible for

selection.

QOaks Sycamores
Site 1 (Royd’s Cliffe) 2 3
Site 2 (Dixon’s Wood) | 2 8

Table 1: Restricted multinomial data: Tree counts in two woodland sites

Assuming the observations in this table arise as independent Poisson variables, it is customary
to condition on the total count n. This results in a multinomial M(n; @) model with n = 15 and
@ = (q11, ¢12, 921, 422), but under the restriction that z;; > 0. This is a special case of the class
of restricted categorical data models considered in Subsection 2.2. Direct standardization of the
likelihood via simple summation would be possible in this trivariate problem, but a very tedious
accounting problem indeed. We shall use the Monte Carlo approach to find maximum likelihood
estimates for the ¢;;'s and the odds ratio R = (q11922)/(912921), and compare these results to those
obtained presuming an unrestricted model.

The unstandardized likelihond for this model is
c1(x;8) x 111 137 023 g2z T TR 1 L np (1)1 0,...n}(Z12)140,.n} (221)

so that the Monte Carlo log likelihood (9) becomes

z11log g + 12108 12 + z21log ga1 + (n — 21y — 212 — 221) log a2
8l 800, 83 ; Neul  =al . =at .
-log ZB’ S Py CF Py ¥ PSP Rt P ¥
e VI YICH YL NYEC YR PR
1,0 N12,0 21,0 T30

where the x} values have been generated from our truncated multinomial model conditional on the
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parameter values g13,0, 12,0, ¢21,0, and gz2,0. Generating multinomial observations and rejecting
those having 23; = 0 is a crude but effective way of drawing the x;.

Convergence of the MCMLE algorithm was again rapid: only i = 3 iterations were required to
obtain the estimates ¢;; = 0.111, §;2 = 0.204, and §o; = 0.137, with associated standard deviations
of 0.096,0.108, and 0.091, respectively (again arising from a numerically computed Hessian). These
results again used B, = 10,000 Monte Carlo replications at the final iteration. The fact that
§11 < gz is intuitively plausible, since these two cells produced the same observed counts but,
unlike z2;, z1; could not have been 0. The unrestricted MLE’s in this case are of course 2/15 =
0.133, 3/15 = 0.2, and 2/15 = 0.133, respectively. The discrepancy for the odds ratio R is more
pronounced: while the raw sample odds ratio is 2.7, its MLE under the restricted model is only
2.2 (estimated standard deviation 3.0). The MCMLE algorithm’s ability to produce results in such

settings enables comparison of standard models with interesting but unwieldy truncated ones.
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