
DECISION
SCIENCE AD-A266 360COoNSORTIUM, INC. i l l II ,

* TESTING AND EVALUATING C3I SYSTEMS
THAT EMPLOY Al

(CLIN 0001)

VOLUME 3: A GUIDE TO DEVELOPING SMALL EXPERT SYSTEMS

Deision Sciece Consortium, Inc. D T IC

1895 Preston White Drive, Suite 300 J' :•,.... I T E
Reston, Virginia 22091 -" U ' 91993,"J. .l12 91i9931

January 1991

Final Report
Period of Performance: 16 September 1988 - 15 September 1990

Contract Number: DAEA18-88-C-0028
PR&C Number: W61DD3-8057-0601

AAP Number: EPG 8048

APPROVED FOR PUBLIC RELEASE, DISTRIBUTION UNLIMITED

Prepared for:
U.S. Army Electronic Proving Ground

ATTN: STEEP-ET-S (Mr. Robert J. Harder)
Fort Huachuca, Arizona 85613-7110

The views, opinions, and/or findings contained in this report are those of the authors and should not be
construed as an official Department of the Army position, policy, or decision unless so designated by other
documentation.

TECHNICAL REPORT 90.9

*I 93-14750

93 O0

UNCLASSIFIED
SECURITY CLASSIOUCATION O' R.S PAGE

REPORT DOCUMENTATION PAGE ol,-oIU

REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS
unclassified i_____i___________________

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT
DELN SCHEDULE..' -Approved for public release; distribution

2b. OECLAS$1FICATION i DOWNGRADING SCHEDULEuniid
unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5 MONITORINGf ORGANIZATION REPORT NUMBER(S)

90-9

6&. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL T7. NAME Of MONITORING ORGANIZATION

Decision Science Consortium, (If applicable) US Army Electronic Proving Ground
Inc. I STEEP-ET-S

60- ADORESS (City; State, and ZIP Code) 7b, ADDRESS (City, Statt, and ZIP Code)

1895 Preston White Drive, Suite 300 Ft. Huachuca, Arizona 85613-7110
Reston, Virginia 22091

$a. NAME OF FUNDINGISPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if applicab~le)I STEEP-ET-S DAEA- 1 8-88-C-0028

1c. ADDRESS (City: Siet, Wnd ZJP Code) 10. SOURCE OF FUNDING NUMBERS i _i O IT

PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO ACCESSION NO

11. TITLE (includ or Clasicaton) TESTING AND EVALUATING C3 1 SYSTEMS THAT EMPLOY Al --

VOLUME 3: A GUIDE TO DEVELOPING SMALL EXPERT SYSTE24S

ICF Information Technology, Inc.

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, M PAGE COUNT
Final Technical FROMSep 88 TO Sep 90 1991 January 31,1'

16. SUPPLEMENTARY NOTATION The views, opinions, and/or findings contained in this report are
those of the authors and should not be construed as an official Department of the Army
Position, Policy, or decision unless so desi ated by other doumenta0'n.

17. COSATI CODES 1S. SUBJECT TERMS (Continue on reverse of necesdry and intify by block number)
FI•ELD GRouP SUB-GROUP
FIELD G P SExpert Systems, Testing, Knowledge-Based Systems, Artificial

Intelligence, Multiattribute Utility

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

The "Guide to Developing Small Expert Systems" provides an introduction to expert systems,
then guides the user through the phases of expert system development: Concept, Definition
Prototype Development, Test and Evaluation, Final System Development, and Post-Development.

Each phase is fully defined, and milestones and other important issues are discussed.
The user is guided through the development process by a series of checklists and worksheets

which are to be completed during each phase. Sample forms have been filled out and

included throughout the document to serve as an example. Blank forms are also provided

which can be reproduced for use in actual system development.

A hypertext version of the document is also available on floppy disk. This version was

implemented using interactive software, and includes the full text, graphics, pop-up
windows, reference links, and other useful features.

20. DISTRI$UTION/AVAILABIUTY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
S [UNCLASSIFIEOPUNUMITED 0 SAME AS RPT. DTIC USERS Uncl ssif
US. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (InclUde Area Code) 22c. OFFICE SYMBOL

Mr. Robert J. Harder (602) 538-2090 7 , STEEP-ET-S
00 Form 1473, ;..N 86 Prevous editions are obsosote. SECVRITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

GUIDE TO DEVELOPING

SMALL EXPERT SYSTEMS Acceson For

ITI

PREPARED BY --
ICF INFORMATION TECHNOLOGY, INC. Distibstion

Dist Avail aý;d '
S.... Special

SUPPORTED BY
U.S. ARMY ELECTRONIC PROVING GROUND

UNDER CONTRACT NUMBER DAEA 18-88-C-0028

February 1991

The views, opinions, and/or findings contained in this report are those of
the authors and should not be construed as Department of the Army
position, policy, or decision unless so designated by other documentation.

CONTENTS

Forew ord v

1.0 An Introduction to Expert Systems -I
1.1 Types of Expert Systems 1-1
1.2 Expert System Development Phases -2
1.3 Development Milestones and Critical Factors 1-6

2.0 The Concept Phase .. 2-1
2.1 Is Expert Systems Technology Applicable 2-1
2.2 Benefits to be Achieved 2-9
2.3 Costs to be Incurred 2-10
"2.1 F'.pport for an Expert 'yitcm 2-11
2.5 Sum m ary .. 2-12

3.0 The Definition Phase .. 3-1
3.1 Defining the Scope and Requirements 3-1
3.2 System Design ... 3-4
3.3 Development Team ... 3-7
3.4 Knowledge Acquisition Approach 3-9
3.5 User Contact ... 3-1 1
3.6 Summary .. 3-12

4.0 The Prototype Development Phase 4-1
4.1 Selecting an Appropriate Development Shell 4-1
4.2 Consulting Users on User Interface Issues 4-8
4,3 Knowledge Acquisition Sessions 4-8
4.4 Compiling the Knowledge 4-13
4.5 Converting the Knowledge into the

Selected Knowledge Representation 4-17
4.6 Performing Incremental Testing and Review of the System 4-17
4.7 Preparing Documentation for the Prototype 4-19
4.8 Sum mary .. 4-20

5.0 The Test and Evaluation Phase 5-1
5.1 V erification ... 5-1
5.2 Validation 5-5
5.3 Evaluation of the Documentation 5-5
5.4 Review of System Requirements and Design 5-8
5.5 Sum m ary ... 5-8

6.0 The Final System Development Phase 6-1
6.1 Evaluating User Comments 6-1
6.2 Incorporating the Changes 6-1
6.3 Sum m ary ... 6-3

0i

• . • I I I i i Il I Si b-

7.0 The Post-Development Phase 7-1
7.1 System Maintenance and Upgrades 7-1
7.2 Technical Support .. 7-3
7.3 Training ... 7-3
7.4 D istribution ... 7-4
7.5 System Implementation 7-4
7.6 Sum m ary ... 7-5

G lossary .. I

Bibliography .. vii

Appendix A Overview of Multiattribute Utility A-I

ii0

FIGURES

1.1 Percentage of Time Spent on Each Phase 1-4
1.2 Expert System Development Phases 1-5
1.3 Expert System Development Milestones 1-6

2.1 Sample Concept Phase Checklist 2-2
2.2 Sample Concept Phase Worksheet 2-
2.3 Sample Concept Phase Worksheet (cont.) 2-8

3.1 Sample Definition Phase Checklist 3-2
3.2 Sample Requirements Statement 3-3
3.3 Sample One-Page Design .. 3-5
3.4 Sample Detailed Design ... 3-6
3.5 Methods of Eliciting Knowledge 3-10

4.1 Sample Prototype Development Phase Checklist 4-2
4.2 Sample Prototype Phase Worksheet 4-4
4.3 Sample Expert System Shell Evaluation Matrix 4-5
4.4 The Knowledge Acquisition Process 4-9
4.5 Sample Prototype Phase Worksheet (cont.) 4-11
4.6 Sample Knowledge Acquisition Planier 4-12
4.7 Sample Interview Guide .. 4-14
4.8 Decision Table after First Knowledge Acquisition Session 4-15
4.9 Decision Tree After First Knowledge Acquisition Session 4-15
4.10 Decision Tree After Second Knowidge Acquisition Session 4-16

4.11 Sample Prototype Phase Worksheet (cont.) 4-18

5.1 Sample Test and Evaluation Phase Checklist 5-2
5.2 Sample Expert Evaluation Form 5-3
5.3 Sample Developer Evaluation Form 5-4
5.4 Sample User Evaluation Form 5-6
5.5 Sample User's Manual Evaluation Form 5-7
5.6 Sample Developer's Notebook Evaluation Form 5-9
6.1 Sample Final Development Phase Checklist 6-2

6.2 Evaluating Potential Revisions 6-3

7.1 Sample Post-Development Phase Checklist 7-2

A.1 MAU Framework for Testing and Evaluating Expert Systems A-3
A.2 Utility Curve for Set-Up Time A-4
A-3 Some Possible Shapes for Utility Curves A-5
A,4 Utility Curve for a Discrete Categorical Variable A-5

0 Iiii

iv0

Foreword

The Guide to Developing Small Expert Systems was developed for the U.S. Army Electronic
Proving Ground, in support of their expert system development program. It is Volume 3 of
Testing and Evaluating 0I Systems That Employ Al, a report that was also prepared for the U.S.
Army. Another important part of this report is the MAU Framework for Testing and Evaluating
Expert Systems. The framework and a brief explanation of its components are included as
Appendix A. Although the MAU Framework was designed for larger expert systems, several key
concepts can also be used quite successfully in the development of small expert systems, and will
be referenced throughout this document. Together, these documents provide an excellent means
of reference for those interested in developing expert systems.

Objectives

Expert system development is a learning process. Ideally, it is also a continuous process,
as the success of one expert system motivates the development of future systems. This powerful
technology is increasingly finding a place in organizations, as people realize the tremendous
potential of expert systems, and as users and experts begin to take the initiative in expert system
development. By following the guidelines set forth in this guidebook, an organization is well on
its way to developing successful small expert system applications. This document provides theO basic guidelines for expert system development, and is also intended to increase the level of
interest in expert systems throughout the U.S. Army.

Primary Users

This document is a guidance tool that is designed to show the user HOW to develop an
expert system application. It is intended t3 be used by U.S. Army personnel who are:

* New to expert system development
* Targeting a small PC-based system
* Developing with an expert system tool or "shelf."

The users of this document will be developing small expert systems, consisting of approximately
one hundred rules. The typical development team will be small, ranging from one to three
people. The intended user group may range from a small group of users within the organization
to an agency-wide group of users located around the country.

How to Use the Guide

The main body of the text consists of a step-by-step guide through the phases of expert
system development. It will touch on the main concepts of expert systems, but will focus on the
practical development process. As each step in the development process is described, it is also
illustrated through the use of checklists and worksheets accompanying each phase.

0v

The checklist for each phase summarizes the major tasks to be completed or decisions to
be made in order for the milestone for that phase to be achieved. Some of the phases also use a
supplementary worksheet, that contains detailed breakdowns of the issues in the checklist.
Throughout the text, you will Find samples of these forms, filled out as they would be during
actual expert system development. A blank set of forms is also provided for copying purposes.

The presence of supporting worksheets is indicated on the checklists by a numbering
system (e.g., C.1, C.2, etc.). When these numbers precede an item on a checklist, additional steps
are required and the related section on the worksheet must be completed before the item can be
checked on the checklist.

The checklists and worksheets incorporate several means for completing a task, including
the following:

Two columns of boxes labeled "YES" and "NO" (see Fig. 2.2). The boxes
in each column are given point values of 0 or 1. Put a check mark in the
appropriate boxes and add up the total number of points for each item.
Use the numeric value for each box to determine that the task has been
completed satisfactorily.

A LOW -> HIGH ranking system (see Fig. 2.1). Put a check mark on the
line that is most appropriate. In some cases, each column is assigned a
point value of 1 to 5. Add up the total number of points based on the
numbering system shown.

A single box to check off when the task has been completed, and a line to
indicate the date of completion (see Fig. 4.1). For this type of evaluation,
a check mark indicates the satisfactory completion of the task.

A numeric ranking system (see Fig. 4.2). Each of the items should be
numbered in order of importance, with 1 being the most important.

In order to guide you through the development of an expert system, a sampie expert
system application, called ESTEL, is included in this guidebook. Each of the checklists,
worksheets, and supporting documents have been completed for ESTEL to illustrate the steps
taken during the development of an actual expert system. A brief explanation of each of these is
also provided. ESTEL is a simplified version of a more complex expert system application, XTEL,
that was developed for the Defense Communications Agency to he used in the desizn of military
telecommunications networks (Liebowitz, 1988).

vi

1.0 An Introduction to Expert Systems

An expert system is a software application that contains knowledge about it spciic
subject area, or domain, and uses reasoning mechanisms to pertorm tasks in a manner similar to a
human expert. Such systems are also referred to as knowledge-based systems. advisory systems.
and expert problem-solvers. These alternative terms are useful in describing sytems that involve
a specific body of knowledge or a decision process, but are not intended to replicate an expert's
performance.

Expert systems are an application tool belonging to the field of computer science known
as Artificial Intelligence (AI). Expert systems are not a new development; they have been in
existence since the late 19601's. But only recently have they come into the mainstream of
computing systems. This is due primarily to recent hardware and software advances. The advent
of the Personal Computer (PC) and its accompanying software has made expert system
development accessible to a larger number of people. Other improvements in hardware
capabilities, such as increased memory capacity, enhanced graphics, and ease of portability, have
also contributed to the increased popularity of expert systems.

An important advance is the availability of expert system "shells," such as CLIPS and
EXSYS. These are off-the-shelf expert system development tools, which provide a ready-made
interface and built-in inferencing mechanisms. An expert system shell can be compared to a
spreadsheet package, which has a number of built-in functions, and allows a user without an
accounting background to produce a useful spreadsheet. Many expert system shells are menu-
driven, or use an English-based format for rule development, requiring no previous programming
experience. The abundance of expert system shells has made this technology available to people
who do not have experience in a programming language.

1.1 Types of Expert Systems

Expert systems represent a very versatile technology that can be used to address a br.,:d
range of application areas and uses. Generally, expert systems are designed to serve in one of the
following capacities:

Advisory - acts as an assistant to skilled users; role is to remind user
of known information and facts, suggest promising lines of research,
gather and analyze data from exte,"-l sources and generally support
the user in performing a task.

Process Control - monitors an on-line or rel-time process (e.g.,
production line) and provides feedback to adjust, refine, or correct
processing.

Training - acts as an information source to novices in a skill area,
providing detailed explanation facilities and guidance with a focus

* 1-1

on knowledge transfer rather than problem solving; a tutorial
system may als, diagnose the user's errors and provide lessons to
correct them

Problem Solving - focuses on gathering pertinent information and
providing a specific solution to a problem, often supplying extensive
justification; may also try to minimize resource use (time, number
of questions asked).

Trouble-shooting - also known as fault isolation - a form of
diagnosis aimed at determining w-hich component of a system is
causing an error, once an error ha5, been detected.

Diagnosis - classification type of problem that uses a set of
symptoms to lead to a conclusion or diagnosis; otten used to
identify problems.

Design - focuses on providing a solution to a set of specifications
and constraints, usually emphasizing a minimization of some feature
such as cost, size, or assembly time.

Configuration - similar to design, takes a given seL of components
and suggests a "good" means of combining them; may also identify
missing components.

* Repair - given a system error, proposes a solution to the problem;
often used following a diagnostic system. it may emphasize
minimizing cost or speed to recovery.

Expert system applications can be developed in nearly any subject area, and systems are
currently being used to do everything from performing equipment maintenance and diagnosis to
simplifying government regulations. The chosen subject area is not as important as selecting an
appropriate problem and limiting the scope of the system. as you will learn in the Concept Phase.

1.2 Expert System Development Phases

Developing a successful expert system application is not a simple task. It requires the
support and cooperation of users, management. experts, and developers. This guidebook will lead
you through the phases of the development process. focusing on the important issues to consider.
the common problems that arc encountered, and critical milestones along the way. The
importance of testing the system throughout the development process is also emphasized. The
major phases of expert system development are:

Concept Phase - The problem area is selected and analyzed to
determine if an expert system is the appropriate tool to use. The
feasibility of an expert system application is studied. and team
support of the project is initiated.

1-2

O Definition Phase - The scope and purpose of the expert system is
carefully defined. The Requirements Statement, incorporating the
general purpose, capabilities, and expectations of lhe expert system,
is written. A development team is selected, users are consulted,
and an initial design is produced.

Prototype Development Phase - Developers gather expertise in the
subject area and convert the knowledge into logic in the selected
development tool. A prototype expert system is developed with
input from the users and expert. Documentation of the system is
initiated.

Test and Evaluation Phase - The expert system is verified and
validated by experts and developers. Usefulness, interface, and
documentation issues are addressed by users.

Final Development Phase - Comments from testing are analyzed
and incorporated into the expert system. Revised version is
retested ard prepared for distribution. Documentation is revised
and finalized.

Post-Development Phase - The system is distributed to users, and
training and technical support are provided. Long-term
maintenance issues are addressed.

The development process for a small expert system will range from six to twelve weeks in
length. Variable factors include the availability of team members to work on the project, and the
team's level of familiarity with expert systems and the subject area. Fig. 1.1 indicates the
approximate percentage of the total development time that should be spent on each of the
phases. These should not be regarded as exact figures, but rather as a guideline.

Throughout the phases, it is important to keep in mind that expert system dev'elopment is
an iterative, repetitive process, as shown in Fig. 1.2. During each phase, decisions made earlier
should be re-evaluated, and the data and system operation should be tested. For example, as
knowledge is being acquired and system development begins during the Prototype Development
Phase, issues often zlirface which make it necessary to revise the design or functions of the expert
system. When this occ:1rs, the development team should revisit the decisions made during the
Definition Phase, and make appropriate changes to the Requirements Statement and system
design. Phases can also be repeated as the problem becomes more clearly defined.

Frequent revisions and re-evaluations during the development process should not be
interpreted as mismanagement of the project or a failure to adhere to the original requirements.
On the contrary, this sort of activity is encouraged and indicates that the team is interested in
developing an effective expert system. Because expert systems are applied to problems involving
qualitative reasoning or judgment, most successful systems are significantly refined two to three
times during the development process.

* 1-3

POST-DEVELOPMENT10%
10% CONCEPT

FINAL DEVELOPMENT 5%

10% 7

DEFINITION
"\". 15%

TEST &
EVALUATION'

20%

75

____ýýPýROTOTYPE
DEVELOPMENT

40%/

Fig. 1.1 Percentage of Time Spent on Each Phase

1-4

CONCEPT
PHASE

DEFINITION
PHASE

PROTOTYPE
DEVELOPMENT

PHASE

EVALUATION
PHASE

FINAL
DEVELOPMENT

PHASE

I.4IPOST-DEVELOPMENTPHASE ...

Fig. 1.2 Expert System Development Phases

1-5

1.3 Development Milestones and Critical Factors

The milestones involved in the expert system development process build on one another.
as shown in Fig. 1.3, with each step providing a solid base for the next. The critical milestones
during the development process include:

* Selecting expert system technology for the application
• Producing the Requirements Statement

Producing the expert system design
Selecting the development team

* Producing the prototype expert system
• Testing and evaluating the expert system
* Producing the final version of the expert system
* Imnlementing the expert system.

POST-DEVELOPMENT
PHASE SYSTEM

FINAL DEVELOPMENT FINAL SYSTEM
PHASE PRODUCED

TEST & EVALUATION SYSTEM
PHASE TESTED & EVALUATED

PROTOTYPE PROTOTYPE SYSTEM
DEVELOPMENT PHASE PRODUCED

/ DEVELOPMENT TEAM
DEFINITION / .SELECTED

PHSE / REQUIREMENTS [SYSTEM

STATEMENT DESIGN// DEVELOPED [DEVELOPED

CONCEPT EXPERT SYSTEM
PHASE TECHNOLOGY SELECTED

Fig. 1.3 Expert System Development Milestones

1-6

B Although common development problems will be addressed in each section, it is important
to mention three critical factors at this time that will have a major impact on the development of
a successful expert system, and will be mentioned throughout the development phases:

S• Testing
Internal support

* User involvement.

The first important issue is the testing of the expert system. Testing is not a one-time
event, but occurs throughout the development process. A number of steps can also be taken
during the development process that will enhance the ease of full system testing during the Test
and Evaluation Phase. These items will be mentioned throughout the document. The expert,
developers, and users should all be actively involved in testing, in order to fully evaluate the rules,
inferencing processes, and interface, respectively. Throughout this document, references will be
made to the MAU Framework, which discusses methods for testing expert systems.

Second, support of the expert system's development by management or a proponent of the
project is vital to the production of a successful application. Management should be aware from
the outset of the intricacies and issues of expert system development, and also the need for
cooperation and patience in the effort.

The third important issue is to involve the users throughout the development process.
Users are an important link in every phase of development, because they can be instrumental in

* guiding the project. Users can provide valuable insights into alternative means to fulfill the
system design, system objectives, and user interface issues. It is important to keep in mind that a
successful expert system application is one that is placed in production and actually used.
Working with the intended users is the best way to ensure this.

* 1-7

1-8

2.0 The Concept Phase

The primary purpose of the Concept Phase is to determine whetheýr an expert system is
the appropriate technology for the application. In addition, it will be determined whether an
expert system is a feasible project that is supported by the organization. For any given problem,
there may be several technologies that could be used. By fully evaluating all viable paths. the
team can ensure that the problem is not forced into an inappropriate technology. The Concept
Phase Checklist (Fig. 2.1) provides a guide to lead you through the decisions that are made
during the Concept Phase.

The idea for an expert system may be initiated by an expert, a developer of other expert
systems, a potential user, or an outside proponent. Once the idea is presented to an organization.
it must be evaluated to determine if an expert system is appropriate for the application. Although
expert systems have been found to be a very useful technology for a wide variety of applications,
they are not an appropriate solution for all problems. In some cases, a more conventional
technology, such as spreadsheets or databases, are more suitable. In order to determine if an
expert system is appropriate, the four major areas on the Concept Phase Checklist must be
evaluated. These areas are:

* Applicability of the problem area to expert systems
* Benefits achieved by an expert system application

Costs incurred by an expert system application
* Support for an expert system application.

As these areas are considered, they should be rated through the use of the Concept Phase
Checklist. The criteria for determining the applicability of the problem area are fairly
straightforward. The evaluation of the other areas, however, is more subjective, using a low - high
rating scale. In order to rate these items effectively, carefully consider each aspect and use your
best judgment to arrive at an accurate determination.

2.1 Is Expert Systems Technology Applicable?

Five key issues must be resolved in order to determine the applicability of the subject area
to expert systems technology:

• Is the subject area well-defined?
• Is the process decision-based?
* Is an expert system the most appropriate technology?
• Is an expert available?
* Is there a need for knowledge distribution?

These issues are discussed below, and to assist you in the decision process, they have been broken
down into their component parts in the Concept Phase Worksheets (Figs. 2.2 and 2.3).

* 2-1

CONCEPT PHASE CHECKLIST
APPUCABIUTY OF PROBLEM AREA YEs f) NO M)

CA SU&JECT AREA WELL DEFINED 5 -

C.2 DECISION.ASED P>0CESS > ' <3

C.3 EXPERT SYSTEM TECHNOLOGY OWT AOPRIATE _>41 W4

CA4 EXPERT AV'ALABLE >4•, -4

C5 NEED FOR *KtEDGE ISTRI6JTICR 4-. 4
-- ws-s-

BENEFITS TO BE ACHIEVED LOW 1,40H1 2 3 _

IMPROVED PROOUCTnViTY

IMPROVED EFKAY(Me• llE SAVINGS -

IMPROVED ACCURACY _'

AIMPP4VD CONSISTENCY

IMPROVED TRAIMNINO

iMPROVED INFORMATION HANDLING

REDUCED DOWNTIMEAZ

OTHER ISSU E_•____

COSTS TO BE INCURRED LOW HIOG

'IME AND LAO•

HARDWAAE AND SO~riWARE

SYTE IDSTRJSFION AMD UCEN4IIGswel,:•l+•~l. ,-m•_ -_ __

SUPPORT FOR EXPERT SYSTEM LOW HGH

rJ

Through the use of the supporting worksheets, ESTEL's subject area was found to
be applicable to the use of an expert system. The design of telecommunications networks is
an extremely complex and time consuming task, with the current process taklng several
months to complete. Significant time savings are expected through the use of an expert
system, with the processing time being reduced to several days. Training time is also
expected to be reduced dramatically. Costs are expected to be fairly high in the area of staff
time and labor for the development, testing, and maintenance of the system, but the
expected benefits greatly outweigh the production costs. Members of the organization,
including experts, users, and management, are very supportive of the use of an expert system
for this application.

Fig. 2.1 Sample Concept Phase Checklist

2-2

2.1.1 Well-Defined Subject Area

Before an expert system can be developed, the problem area must be identified. An
expert system application requires a well-defined subject area, or domain. A well-defined domain
most meet a number of criteria, as found in the Concept Phase Worksheet, section Ci (Fig. 2.2):

* Subject area contains structured data. The subject area should be
one that goes through a systematic process to solve a problem.
Step-by-step d&casion processes are well-suited to expert systems.

* Subject has clear boundaries. The process must have definite
starting and ending points. The most frequent problem in expert
system development is selecting a large and unwieldy subject area
that has no real starting and ending points. This will lead to
frustration on the part of all involved, and potentially the demise of
the project.

People are available who have knowledge in the subject area.
Expert systems are based on knowledge, so it is critical that there is
someone who can provide that knowledge.

* 0Subject area is at the correct stage of maturity. A new subject
that is unknown to the organization is not appropriate for an expert
system. Neither is an area that is established to the point that a
systematic process requiring little judgment has been developed,
such as accounting or recordkeeping. The correct stage of maturity
for an expert system application lies somewhere between, where
information on the subject is available, but it is not common
knowledge.

Domain of the expert system is narrow and isolated. The subject
area should be of a size that can be addressed by an expert system
of approximately one hundred rules. A problem that can be solved
by the expert over the phone would be a reasonable size for a small
expert system. An isolated domain, or one with no outside effects
or data requirements, is also well-suited to a small expert system.

Subject area is conducive to division into discrete segments or
modules. The subject area should be one that is easily divided into
smaller segments. This will ease the development process,
particularly in the areas of testing and modification.

Incremental progress is possible. Related to the last issue, a
subject area that can be segmented allows for several small expert
systems to be developed incrementally and later linked together.

* 2-3

CONCEPT PHASE WORKSHEET
C.1 WELL-DEFINED SUBJECT AREA

YES (QPT) NO (Pr,)
DATA IS STRUCTURED

aOUNOARIES ARE CLEAR

PEOPLE HAVE KNOWLEOGE IN AREA

KNOWLEDGE IS AT RIGHT STAGE OF MATURITY

SUBJECT IS NARROW A ISOlATED

SUBJECT CAN BE VMDED INTO STAND-ALONE SEGMENTS Lie --

INCREMENTAL PROGRESS IS POSS.UE

TOTAL.L_

C.2 DECISION-BASED PROCESS
YES (IPT.) NO (OPT.)

AEoUIRES Q.LrITATIE OR SU3JECT-VE REASONING

TASK IS COGNIIVE 10

TASK HAS M•Ai' POSSIBLE COMUINATIONS E

TASK INVOLVES CHAINS OF REASONING 1?0

C.3 E•XPERT SYSTEM TECHNOLOGY MOST APPROPRIATE
YPT.) NO (IFT.)

QUANITTTATIVE REASONING

DATA STORAGE & RETREVAI.

WORDRO -SU

MOOIU. & SWULATIONS IL

PROQEOUPAL PROGRAUMMIN

RAPOIY CHANGG DATA L]J
TOTAL

The subject of telecommunications architecture design fits most of the criteria of a
well-defined subject area. Although the subject is not narrowly bounded, it can be easily
broken down into manageable segments. The domain meets all of the criteria for a
decision-based process. The process does involve some quantitative reasoning and
simulations, but these can be incorporated into outside programs.

Fig. 2.2 Sample Concept Phase Worksheet

2-4

This approach also facilitates system testing and maintenance after
implementation.

If five or more of these criteria are met, then the subject area is well-defined (Concept Phase
Checklist, C.1) and would be appropriate for an expert system application. If fewer than five of
the criteria are met, then an expert system would not be appropriate.

2.1.2 Decision-Based Process

The domain of an expert system should be based on decisions, reasoning, or a logical
process that can be duplicated through the use of rules or examples. Decision-based domains
appropriate for expert systems are those that meet the following criteria found in the Concept
Phase Worksheet, section C.2 (Fig. 2.2):

Require qualitative or subjective reasoning. Expert system
domains are generally based on judgmental decisions and heuristics,
or rules of thumb. The subject should involve decisions that are
based on experience rather than definitive facts.

Involve a cognitive task Cognitive tasks are those that you do in
your head, rather than those involving complex computations or
motor skills. These are generally qualitative or evaluative types of
tasks that are well-suited to expert systems.

* Involve many possible combinations. Decision-based subjects
generally involve many combinations and decision paths. As new
problem elements are added, the number of steps required to reach
a solution increase significantly.

Involve chains of reasoning. Decision-based domains generally
include topics that build on each other, and depend on each other
for data. An example would be deciding what type of vehicle to
drive. The selection depends in part on visibility. Visibility
depends on the amount of illumination and weather conditions.
Illumination depends on the time of day, availability of artificial
light sources, and the presence of obstructions. Weather conditions
depend on the time of year, time of day, and local factors.

If three or more of these criteria are met, then the domain is decision-based (Concept Phase
Checklist, C.2), and would be appropriate for an expert system application. If fewer than three
of the criteria are met, then an expert system would not be appropriate.

* 2-5

2.1.3 Expert System Technology Most Appropriate

The next issue to address is whether expert systems are the most appropriate technology
to use for the application. There are several types of applications that are better suited to other
conventional computing approaches. These include the following types of situations, found in the
Concept Phase Worksheet, section C.3 (Fig. 2.2):

Tasks that involve quantitative reasoning. Applications using
extensive quantitative reasoning and calculations are usually better
suited to a spreadsheet application.

Tasks focusing on data storage and retrieval, Tasks requiring the
manipulation of large amounts of data, with little reasoning about
the data, are more effectively handled by a database system.

Applications involving word processing. Word processing and
frequent text changes are also inappropriate for an expert system.

Tasks requiring the use of models or simulations. Specifically
designed modeling and statistical packages are better suited to
applications involving statistical modeling, simulations, and
procedural processes.

Tasks requiring the use of procedural programming. In a
procedural program, the computer is told specifically how to
perform a task, and there is no inferencing involved. Conventional
programming languages are better suited to this type of application.

Subjects undergoing rapid changes. An area that is rapidly
changing in terms of the data or procedures, with new data
becoming available frequently, is probably not appropriate for an
expert system application. A rapidly changing domain of knowledge
can result in the need for frequent upgrades to the expert system
during the Post-Development Phase (see section 7.1).
Furthermore, the system may be obsolete before it is even
implemented.

If two or LESS of these characteristics apply (score > = 4), then expert systems technology is the
most appropriate approach (Concept Phase C1,ecklist, C.3). If four or MORE characteristics
apply (score < 4), then expert systems technology is NOT the appropriate approach for the
application.

2-6

. 2.1.4 Expert Available

A key element in the development of an expert system, as the name implies, is the expert.
Thus, it is necessary to enst,'e that an expert or source of expertise is available before expert
systems technology is selected. The following items, found in the Concept Phase Worksheet,
section C.4 (Fig. 2.3), must be confirmed to determine that an expert is available :

* An expert exists. First, it must be determined that a true expert
exists in the subject area. An expert is someone who is:

- Experienced in the subject area
- Respected and consulted by colleagues
* Better than novices at the task.

A specific expert can be identified. An individual can be identified
who has sufficient experience to provide the basis of knowledge for
an expert system.

Expert is willing to be involved. The existence of an expert is not
enough. The expert must be willing to be involved in the project
and see it through to completion. An unwilling expert can withhold
data, be uncooperative, and jeopardize the project.

O* -Expert is available and accessible. An expert must also have the
time available to commit to the project and be accessible to the
knowledge engineer. Prior to the beginning of development, the
knowledge engineer should draft a schedule of the knowledge
acquisition process and subsequent testing and refinement with the
expert to identify availability and timing issues.

Expert can communicate detailed knowledge. The expert must also
be able to convey the knowledge to the knowledge engineer. The
most knowledgeable people on a subject will be of little or no value
if their knowledge cannot be captured.

If four or more of these items are true, then an expert is available (Concept Phase Checklist.
C.*)ý, and an expert system could be developed. If fewer than four items are true, then an expert
system would not be appropriate for the application.

21.5 Need for Knowledge Distribution

Expert systems are wclH suited to applications where there is a need for the expertise to be
distributed to other users. The domain of an expert system is frequently a complex step-by-step
process which is difficult to learn, but through an expert system, the procedure can be applied by

* 2-7

CONCEPT PHASE WORKSHEET (cont.)

C.4 EXPERT AVAILABLE
YES (1PT. NO (OPT;)

EXPERT EQSTS (METTER THAN AMATEURS)

EVPERT CAN BE IDENTIMED

EVPERT is WILLM OR EAGEA ol

EXPERT IS AVAILABILEANDA AESSISILE

EXPERT CAN COMMUNICATE DETAILED X0VOE1

EXPERT'S NAME &bS$' TOTAL_ýL

C.5 NEED FOR KNOWLEDGE DISTRIBUTION
YES (RPT) NO (OP.)

OTHERS COULD BENEMT FROM KINOWEDGE

PROCESS ULW E IMIPROVED -7
NEED FOR KNOWLEDGE TRANSFER r-V

PROBLEM WITH R•V'T ACCESSIBILIY 7

NEED FOR TRAININIG :001

GEOGRAPHIC 0IM0TISTON PROBLEM

IMPROVEMENiS NEED IN OECSKOMA*G PROCESS .Lao 7

TOTAL-_L_.

Several experts were available on the subject of network design. An expert named
Bob Smith was selected to provide the basis for ESTEL's knowledge base. Although he
sometimes has trouble communicating his ideas, he has a great deal of experience in the
subject area. He is also very interested in the project, and is available to work on it. A
need for knowledge distribution was found in the organization, mainly in the areas of
improving the process and ptuviding training to new staff members.

Fig. 2.3 Sample Concept Phase Worksheet (conL)

2-8

. a large number of people. Common reasons t1-• i.Mowledge to be distributed include the following
(Fig. 2.3, section C.5):

Others could benefit from the knowledge. An understanding or
working knowledge of the subject area could improve the morale or
efficiency of the organization.

Process would be improved. The use of an expert system would
improve the efficiency or consistency of a process.

* Need for knowledge transfer. There is a need to document the
institutional memory of someone who is leaving the organization.
In this way, the individual's experience can still be utilized by the
organization.

Problem with expert accessibility. There is a need to capture the
knowledge of an expert who is often unavailable.

Need for training. The organization has a high turnover rate or a
rapidly growing staff of new pprsonnel who need to be traired.

Geographic distribution problem. Knowledge is needed at a large
number of widely spread locations, requiring the expert to travel
extensively.

Decision-making process would be improved. An -xpert system
would relieve the burden of decision making from ý tingle person,
and allow the expert to concentrate on the most complex problems.

If four or more of these items can be identified, then there is a need for knowledge distribution,
which could be addressed by an expert system (Concept Phase Checklist, C.5). If fewer than four
of the items are identified, then expert systems may not be the appropriate technology to use for
the application.

After items C. 1 - C.5 have been completed on the Concept Phase Worksheets, the results
are entered in the first section of the-Concept Phase Checklist. In order for expert systems to be
applicable to the subject area, at least four of items C.1 - C.5 should be answered with a "YES"
on the Concept Phase Checklist. If more than one of these items reeeives a "NO" response, then
expert systems are not appropriate for the application.

2.2 Benefits to be Achieved

Also critical to the Concept Phase is determining whether an expert system is a cost-
effective solution to the problem. The economic feasibility u[" an expert system can be determined
by comparing the estimated benefits and costs of expert system development. The use of an
expert system can result in benefits in a number of areas. To determine if an expert system would

* 2-9

benefit a given area, pose the following questions and indicate the level of benefits expected on
the Concept Phase Checklist (Fig. 2.1):

• Productivity - Is the process boring or monotonous? Is there a
bottleneck in the information flow of the organization?

* Efficiency and time savings - Is the process time-consuming? Does
it require several people?

* Accuracy - Are the results inaccurate and prone to human error?

* Consistency - Are the results inconsistent? Do the results vary by
person or location?

* Tr. 'ning - Is a lot of time and staff required for training? Are
experienced personnel unwilling to let novices solve problems?

* Information handling - Is the process confusing, or does it involve
several sources of information, resulting in time delays?

* Reduced downtime - Is there excessive downtime that could be
lessened through improved decision-making?

* Other issues - Are there any other areas that would benefit from the use
of an expert system?

These criteria should be rated based on the improvements that are expected through the
implementation of an expert system. Areas where there is currently a problem or bottleneck that
could be corrected through the use of an expert system should be given a high rating. Areas that
are not a problem or would not be improved significantly by an expert system should be given a
lower rating.

The desired benefits of the expert system development effort will be incorporated into the
Requirements Statement during the Definition Phase, then later used during the Test and
Evaluation Phase to measure its economic effectiveness, and the organizational impact of the
expert system, as shown in the MAU Framework (Appendix A).

2.3 Costs to be Incurred

The benefits that will result from a specific expert system application should be assessed
and compared with the potential costs of developing and implementing an expert system. The
level of expected costs should be evaluated on the Concept Phase Checklist (Fig. 2.1). Common
development costs include:

Time and labor - the development process may require a significant
number of hours from several staff members, including the expert.
developer, and manager.

2-10

* lHardware and software - purchasing and licensing fees must be
considered if new hardware or software is required.

System testing - the time of several personnel will be required for
system testing.

System distribution - the distribution of the system may require the
purchase of disks and packaging equipment, as well as the time of a
staff member to prepare the expert systel? for distribution and
maintain information on the users.

System m-' iance - a staff member will be needed to maintain
the system, perform periodic reviews of the system, and provide
technical support.

Upgrade management and version control - a staff member will be
responsibte for keeping track of software upgrades and deciding
when an upgrade of the system is necessary. There may also be a
charge for software upgrades.

Other issues - there may be other costs that are specific to the
organization. These should be noted here.

O These criteria should be rated based on the expenses that can be expected with the
implementation of an expert system. If the expert system would require investments in new
equipment or intensive labor for development and implementation, then these areas should be
given a high rating. If minimal expenses will be incurred, low ratings should be given.

The proposed costs of the expert system application will be recorded in the Requirements
Statement during the Definition Phase. Cost and benefit issues should be kept in mind
throughout the development process, and will be reassessed during the Test and Evaluation
Phase to dctermine the actual impacts of developing the expert system.

2.4 Support for an Expert System

The final component of the Concept Phase is to ensure support for the project. One of
the key factors to consider in determining if an expert system should be developed is whether the
project is important to the organization. Without adequate support, an expert system is likely to
fail, because few resources will be committed to the project and few significant benefits will be
achieved by the organization. When an expert system fails, it also jeopardizes the chances for
future expert system to be developed. Developing an expert system requires the time, effort, and
cooperation of everyone involved. For the project to be successful, it is important that all
affected parties - the developers, expert, management, and users - are aware of the goals,
objectives, and requirements of the expert system. The presence of a proponent - a staunch
supporter of the project, who is either integrally involved in the development, or outside of the
process - can also be a critical factor to the success of the project. Such an individual could

2-11

ensure that development continues to move forward, even if interest wanes among other members
of the team.

To determine thc level of support for an expert system in the organization, an informal
survey should be conducted on the staff members, to determine the amount of time and energy
they are willing to commit to the project. Their responses should be rated accordingly. The
results of this survey should be recorded on the Concept Phase Checklist (Fig. 2.1).

2.5 Summary

By the end of the Concept Phase, the use of an expert system will be fully evaluated for
its applicability, expected benefits and costs, and organizational support. In order to complete the
Concept Phase milestone, the decision is made as to whether expert systems technology is
appropriate for the problem at hand. If at least four of the items C.1 - C.5 are "YES' and the
totals on the Concept Phase Checklist add up to 55 or more, then expert systems technology
should be used for the application. If the total is less than 55 and an expert system is not found
to be an appropriate tool for the job, then another technology should be considered. The
evaluation process should provide a basis for selecting another more suitable technology. If an
expert system is selected, proceed to the Definition Phase.

2-12

3.0 The Definition Phase

Once a decision has been made to go forward with an expert system application, the
Definition Phase begins. It is during this phase that most of the key decisions in the project will
be made. The problem area will be clearly defined, the team members selected, and the
development processes and schedule documented. Actions taken at this time will have a
significant effect on the success of the project, and accordingly, should be given serious
consideration. The Definition Phase Checklist (Fig. 3.1) provides a guide for completing the
tasks involved in the Definition Phase.

3.1 Defining the Scope and Requirements

One of the first and most important steps to be taken after expert system technology is
selected, is to fully define the expert system. This will include addressing the issues of:

* Scope - What will the expert system cover?
• Requirements - Where will it operate, what features and performance are

necessary?
• Purpose - Why is it being developed?
• Intended Users - Who will use it?
* Capabilities - What can it do?
• Limitations - What can it not do?
* Outputs - What solutions will it produce?
* Expectations - What will the benefits be?
• Maintenance - How will it be supported?

Careful definition of the expert system is essential, The developers, users, and management
should have a thorough understanding of the application, including what the system will and will
not do, key assumptions and limitations, system outputs. and conditions of operation. Issues such
as response time, level of accuracy, screen formats, and reports should be presented in sufficient
detail. During the Definition Phase, the knowledge engineer should determine the users' level of
expertise with computers and their familiarity with the specific subject area. This information will
help the developers make the software understandable to the users, but not overly simplistic.

3.1.1 Requirements Statement

Each of the issues in the definition of the expert system will be incorporated into a
document known as the Requirements Statement (Fig. 3.2), the first item on the Definition
Phase Checklist. This is a flexible, working document that will later become a part of the system
documentation. The Requirements Statement need not be a lengthy document; it may be only
one to two pages in length, as long as it covers all of the relevant issues (see Fig. 3.2). It will be
reassessed periodically during the development phases and revised when necessary. As
development progresses, issues will surface that were not apparent when the system was originally
defined. These issues will be reviewed as they arise, and the Requirements Statement will be

* 3-1

DEFINITION PHASE CHECKLIST

SCOPE AND REQUIREMENTS DEFINED* DATE 0
0. 1 REQUIREMENTS STATEMENT COMPLETED __~I c

DESIGN OF EXPERT SYSTEM PREPARED*

0.2 ONE-PAGE DESIGN COMPLETED // /

0.3 DETAILED DESIGN COMPLETED V i 9
DEVELOPMENT TEAM SELECTION*

EXPERT Bo6 •;fk
DEVELOPER(S) (e ov-qe. 1..- 4
MANAGER Af1-r IaJjI;l;mA
OUTSIDE REVIEWER

(IF APPUCABLE)

KNOWLEDGE ACQUISITION APPROACH SELECTION
(INDICATE DEGREE OF USE) LOW

EUCITING KNOWLEDGE HIGH

STRUCTURED INTERVIEWS

UNSTRUCTURED INTERVIEWS - - -

QUESTIONNAIRES

OBSERVATION - o-

DOCUMENTS

DOCUMENTING KNOWLEDGE

DECISION TREES

TABLES
KNbOWLEDGE MAPS-

END USER CONTACT LOW HIGH

LEVEL OF INTEREST -

UNDERSTANDING OF SUBJECT AREA -

LEVEL OF COMPUTER EXPERTISE --

COMMENTS f•.k/" is ;Ie- of_ 44-a. w -re.

I MILESTONES

During the Definition Phase, the Requirments Statement, the One-Page Design
and the Detailed Design for ESTEL were completed. The development team was also
selected. The main method selected for eliciting knowledge was the use of interviews, with
documents and observation being used during the domain orientation period. Decision trees
and tables were selected as the means for documenting the knowledge. The users in this
case are experts on the subject of network design. Thus, they were found to have a high
level of understanding in the subject area, and were also very interested in the use of an
expert system.

Fig. 3.1 Sample Definition Phase Checklist

3-2 0

DA1 REQUIREMENTS STATEMENT

SUBJECT AREA ŽO~ Ieol(LSg\
SCOPE (SPECIFIC BOUNDARIES WITHIN SUBJECT AREA)

dWEýGr~ eyr~A~r,- A&ahme-k I- ao ovcrcii&J le, -'J l~a

SYSTEM REQUIREMENTS (HARDWARE, SOFTWARE, ETC.)
PC wi((Ži'OK(£AA4. 5; "r4 Is *¶pLcoQ-

3-Z 10 eX S' -dy~ew T12 ci-~c-~

PURPOSE (ROLE IN PROCESS, EXPECTED RESULTS, ETC.)

INTENDED USERS WHO WILL USE:r

0 ~CAPABILITIES (WH-AT rrWILuOO)
6Ei.$4,M'.LS 'FAA~ MA, CE 4(ZJ AlhrLk "4 L r QGvAdleJS A Ces1c

LIMITATIONS (WHAT rT iLL. NOT D0)
>T-ýcisvz ctIimze G)~s QIcros6, mk r-kar &a ing~

OUTPUTS (F&LE INTERACýQm, DEPENDENCIES. REPORTS, ETC.)
-,-a;v-910-tJ

EXPECTATIONS (BENEBMS, IMPROVEIENTS, ETC.) A~

Nrý:Le~vro -h -b* A,9, c4s t 2 .,- fir- &/ ýý ee-.S- W e-

ROUTINE MAINTENANCE AREAS
A~*/i~k~%sj ,Mvf~eJ r- p o(icf/ JAPuJS ;g

Fig. 3.2 Sample Requirements Statement0 3-3

updated to adjust to the changing situation. When the initial Requirements Statement is
completed, check this item off on the Definition Phase Checklist (Fig. 3.1) and indicate the date
of completion.

The developers, users, and management should all be involved in the preparation and
revision of the Requirements Statement to ensure that the project remains on track and within
resource constraints. Its main purpose is to serve as a guideline for expert system development
and provide a means for everyone involved to work toward the same goal.

This document will also be particularly useful during the Test and Evaluation Phase. By
using the Requirements Statement, the testing team can determine if the expert system
accomplishes what was intended. A successful expert system application is one that effectively
and accurately performs according to its design. Any goals that have not been achieved will be
addressed during the Final Development Phase, and either incorporated into the expert syrtem or
removed from the Requirements Statement.

3.2 System Design

In addition to identifying and refining the requirements of the expert system, it is also
important to carefully design the expert system during the Definition Phase. Developing an
expert system design, the second item on the Definition Phase Checklist (Fig. 3.1), not only
provides a blueprint for the developers to follow, it also encourages the developers to think
through the entire process and identify all interfaces and interdependencies of the system.

An expert system design is often developed in the form of two documents - the One-Page
Design, and the Detailed Design. These two documents should be developed as fully as possible
during the Definition Phase. They will be reviewed and revised throughout the development
process as more information becomes available to the developers. These documents will also be
re-evaluated during the Prototype Phase and the Test and Evaluation Phase to ensure that
development is progressing according to the design.

The One-Page Design (Fig. 3.3) describes all aspects of the expert system at a high level.
Components of the One-Page Design include:

a System overview
* Listing of system components
a System structure
6 Interfaces
• External calls and data sources
• Knowledge representation
• Inferencing mechanism.

The Detailed Design (Fig. 3.4) goes into more detail, breaking down the system into its
component parts and describing each fully. The Detailed Design should include:

* A breakdown of each component part
* Purpose of each component

3-4

D.2 ONE-PAGE DESIGN

SYSTEM OVERVIEW: Rw. 46ooa., otloa-.r JJL o\

SYSTEM COMPONENTS

BASIC SYSTEM STRUCTURE (ATTACH ,PPUCAUe DRAWINGS)

SYSTEM INTERFACES

EXTERNAL CALLS AND ,ATA SOURCES
IA/ fJ ~ r-ogr-*_rA.- . e7' L ?/e

ro ý,..IcJ V-a

KNOWLEDGE REPRESENTATION

INFERENCING MECHANISM

Fig. 3.3 Sample One-Page Design
e .3-5

D.3 DETAILED DESIGN

COMPLETE THIS FORM FOR EACH SYSTEM COMPONENT

COMPONENT: .•4' s i _ ,o', ()es

PURPOSE: 97 /,llld

Stýe vir- k.'

SCOPE: 06e-s - -k cLJ 1i*• •.•c. A-•

j_ kk d, .• , a"Auvio, . ÷ , , ,

fp~s 4?Cd - C-0t 4$pr¶aALt

NECESSARY INFORMATION: A/cd/eý cL*-ri At

SPECIFIC EXTERNAL CALLS: Mo,.

SPECIFIC DATA SOURCES: _•oc& it, #Ar•if

Fig. 3.4 Sample Detailed Design

3-6

* Scope of each component
* Necessary information
* Specific external calls
* Specific data sources.

Upon completion of these two design documents, check them off on the Definition Phase
Checklist and indicate the dates of completion.

3.3 Development Team

Before the development of an expert system begins, a team is selected. The most
effective team will consist of people who are familiar with or willing to learn the expert system
development process, and are dedicated to producing a successful application. The number of
members on an expert system development team can vary based on the size of the application and
the experience of the team members. In the case of a small expert system application, the team
will consist of one to three members who will perform three main roles:

0 Expert
0 Developer
• Manager.

The users should also be considered members of the team, as they will be closely involved in the
development process, as well as the testing and final acceptance of the system.

In the development of a small expert system, one person is often required to fill multiple
roles. Because expert system shells are widely used, it is common for a single person, who we will
refer to as the developer, to serve as both the knowledge engineer and the programmer. These
two roles fit well together because the knowledge engineer knows how to best record and
document the knowledge for later input into the expert system shell. While programming, this
individual can also locate gaps or contradictions in the knowledge and return this information to
the expert, in the role of the knowledge engineer, for clarification.

By combining the development roles, an expert system application can be completed more
efficiently, and by a smaller team. However, it is important to keep in mind the drawbacks of a
small development team. For example, if one person serves as both the expert and the
knowledge engineer, there is a greater likelihood for the system to be biased, or for information
to be left out. Alternatively, if the knowledge engineer is also a user, the system may be biased
toward this person's specific preferences, while things that might be useful to others are left out.
In cases such as these, where the system of checks and balances provided by a separate individual
for each role is not available, the developers should keep this in mind and arrange for at least one
outside party, such as an independent tester, to review the system.

As the development team members are selected, enter their names on the Definition
Phase Checklist (Fig. 3.1). The selection of a development team is a milestone for this phase of
the expert system development process.

* 3-7

3.3.1 Expert

The first role to be filled is that of the expert, or the source of knowledge. There may be
more than one expert, who:

* Has experience in the subject area
• Is respected and consulted by colleagues
• Has the ability to communicate
• Has time to commit to the project
a Has a desire to share expertise.

If the source of knowledge is a document - such as a set of regulations or a training
manual - there may be no expert.

3.3.2 Developer

Another key role on the expert system development team is the developer, who serves as
both the knowledge engineer and the programmer. In the role of the knowledge engineer, the
developer is instrumental in a number of areas, including:

• Refining the problem area
• Designing the expert system
0 Acquiring knowledge
* Selecting a knowledge representation
• Encoding the knowledge
* Implementing, testing, and evaluating the expert system
• Contacting users for their input.

Also serving in the role of the programmer, this individual should be familiar with computers, and
be willing to learn an expert system development shell. As the programmer, the developer is
responsible for building the expert system in an expert system shell, using the knowledge that was
acquired during the knowledge acquisition sessions, incorporating revisions and changes, and
participating in the testing.

The developer will also be responsible for several other tasks throughout the development
process, including:

• Designing the user interface
• Writing the documentation
• Verifying the expert system
0 Providing training and technical support
• Maintaining the system.

3-8

. 3.3.3 Manager

The final role to be filled is the manager or project proponent. This individual should
possess the following qualities:

* An understanding of the expert system development process
* Good arbitration skills
* The ability to motivate people to work together
* Support for the project and a desire for a successful outcome.

The manager should be involved in all phases of the development process, and should
communicate frequently with the team members to ensure that progress is being made. The
manager will be responsible for making numerous decisions throughout the development process
and ensuring that the schedule and budget are consistent with the project objectives.

3.4 Knowledge Acquisition Approach

An early responsibility of the knowledge engineer is the selection of a knowledge
acquisition approach. Knowledge acquisition is the process by which the knowledge engineer
extracts knowledge from the expert. Because this knowledge will serve as the basis for the expert
system, it is imperative that the knowledge engineer is thorough and effective in eliciting
information from the expert. In selecting a knowledge acquisition approach, the knowledge
engineer must decide on methods to accomplish two major tasks:

* * Elicit knowledge
* Document knowledge.

3.4.1 Methods of Eliciting Knowledge

In the case of one or more human experts, the knowledge is generally elicited through a
series of interviews between the expert and the knowledge engineer. There arc several effective
knowledge acquisition interviewing methods, including:

* Structured interviews
* Unstructured interviews
* Observation.

The knowledge engineer should select one or more methods for interviewing based on the
application requirements and the degree of precision required in the final system. Several
interviewing techniques and other knowledge acquisition methods, as well as their advantages and
disadvantages, are described in Fig. 3.5. The knowledge engineer should become generally
familiar with the application area before interviewing the expert. This facilitates effective
discussion because common terms of the trade can be used to identify key concepts and to save
time.

3-9

TECHNIQUE USES ADVANTAGES i DISADVANTAGES

PROVIDE BACKGROUND. ALLOWS EXPERT TO NO FOCUS. ME

UNWOUCTURED TRODUCTION. EXPOUND, BUIDS CONSUIMING CAN
INTERVIEW FAMILIARCZATION, RAPPOR IDENTFIES RESULT km

EARLY N4 PROCESS IMPORTANT AREAS INCOMPLETE KNOWLEDGE

GATHER SPECIFIC FOCUSES ON PRECISE MAY NOT FO.LOW
STRUCTUREO INFORMATION, KNOWLEDGE, FOLLOWS E:RT'S WAY OF

INTERVIEW ELABORATE ON ALL OUTPUT PATHS TH£GNQ MAY 1E TOO
DETAILED PROCESSES IN A STEP-WISE MANNER RKID AND 0;SCIPL(NED

PROVIDE FOR MORE ALLOWS FOR MORE CAN INTIMIDATE

TWO-ON-ONE EFFICIENT DATA INFORMATION TO BE EXPERT. CAN ALSO

INTERVIEW COLLECTION OBTAINED AND MORE BE VERY TIRING TO
ACCUR.ATE RECORDING EXPERT

PROVIDE GENERAL FAST AND NON- VERY IMITED IN THE
INFORMATION THREATENING. GOOD KNOWLEDGE THAT 6QUESTIONNAIRES ON BASIC QUESTIONS IN CASES WHERE OBTAINED, DOES NOT

EXPERT IS FAR AWAY ALLOW FOR EXPANSION

UNDERSTAND ACTUAL SNOWS HOW EXPERT CANNOT OeSEAWE ENTIRE

OBSERVATION DECISION-MAKING T4INKS AND SOLVES THOUGHT PROCESS.
PROCESS ACTUAL PROBLEMS IMPORTANT MIFERENCES

MAY WE MISSED

Fig. 3.5 Methods of Eliciting Knowledge 0
In some cases, the source of knowledge is a document or set of documents, instead of a

human expert. The knowledge acquisition process must be adapted to accommodate these

conditions. Instead of performing interviews, the knowledge engineer will read the documents to

acquire knowledge. Although there may not be an expert on the subject, there is probably
someone who is familiar with the documents, and whose assistance would be useful to the
kno~wedge engineer. This process takes a little longer because the knowledge engineer does not

have an expert to answer questions,-explain key concepts, important factors, and data inter-
relationships.

The selection of a knowledge acquisition approach is addressed in the Definition Phase
Checklist For each approach, indicate the degree to which each of these knowledge elicitation
methods will be used. A good knowledge acquisition approach will incorporate many or all of
these methods, but the use of interviews should be emphasized. An expert system that is based
mainly on questionnaires and documentation will not be as good as one that is based on an
expert's experience.

3-10

3.4.2 Methods of Documenting Knowledge

Next, the knowledge engineer determines an effective method to document the knowledge
that is acquired during the knowledge acquisition sessions. Common methods of documentation
include converting the knowledge into:

• Decision trees
- Decision tables
• Knowledge maps.

See Figs. 4.8 - 4.10 for examples of these graphical representations of the knowledge. Indicate on
the Definition Phase Checklist (Fig. 3.1) the degree to which each of these documentation
methods will be used.

3.4.3 Knowledge Testing Issues

When planning the knowledge acquisition process, it is important for the knowledge
engineer to keep in mind several relevant factors that apply to testing the validity of the
knowledge. First, the knowledge engineer should identify probable areas for gaps or omissions in
the knowledge. It often happens that the knowledge provided by the expert, while correct, is
incomplete. The knowledge engineer should also plan to set aside a number of test cases that will
be used during the Test and Evaluation Phase for the verification of the expert system. By
keeping in mind these testing issues, the developer will have a headstart on the testing process,. and will be better prepared for the later testing of the knowledge base, as shown in the MAU
Framework (Appendix A).

3.5 User Contact

Before the Prototype Development Phase begins, the knowledge engineer and manager
should meet with the users. The purpose of the expert system application, as well as the overall
expert. system development process should be reviewed at this time. The users should also be
given theo opportunity to voice their expectations and concerns about the system, in order for
management to address these issues early in the development process. Using the Definition
Phase Checklist, the knowledge engineer should evaluate the user group for their:

• Level of interest
* Understanding of the subject area
6 Level of computer expertise.

After surveying several users on these issues, an average of the responses should be recorded on
the Definition Phase Checklist (Fig. 3.1). If the ratings are low in each of these areas, then the
response to and use of the system will most likely be low. If this is the case, it may be necessary
to reconsider the use of an expert system for the problem, or to begin educating the users so they
are rrepared for the expert system when it becomes available.

O0 3-11

This information will also be helpful in setting up the user interface, and determining the
focus (if the system. At this time, the knowledge engineer can also identify individuals to

participate in the user testing portion of the Test and Evaluation Phase.

3.6 Summary

By the end of the Definition Phase, the expert system application is fully defined, the
people involved in the development process have been introduced to the project, and
preparations have been made that will be implemented in the remaining development phases.
The following three milestones will also be completed:

* Requirements Statement produced
• Design documents completed
• Development team selected,

These milestones are attained throughout the phase, as each of these items is checked off on the
Definition Phase Checklist.

3-12

4.0 The Prototype Development Phase

The Prototype Development Phase implements the results of the Definition Phase in the
development of a prototype expert system. A prototype expert system is an initial draft of an
expert system, in which the knowledge and processes can be tested aid presented to the users,
then later expanded or improved, if necessary. Though described sequentially, much of the
Prototype Development Phase is iterative, with successive passes incrementally adding to and
refining the expert system. Rapid prototyping techniques are used in the development of expert
systems, as well as conventional computer systems, to produce a working system quickly. This
technique also helps to solidify the requirements by showing the users at a very early stage what
they will be getting in the finished application.

The Prototype Development Phase contains several steps, each of which is present in
some form in every expert system project - regardless of size and complexity. These steps, which
can be traced in the Prototype Development Phase Checklist (Fig. 4.1). are described in further
detail below, and include:

• Selecting a development shell
• Consulting with users on user interface issues
* Completing domain orientation
* Conducting knowledge acquisition sessions
* Identifying test cases for later use
O Converting knowledge into the selected knowledge representation
• Performing incremental testing of the system
• Reviewing Requirements Statement and design documents
• Preparing documentation for the prototype
* Iteratively developing a full prototype system.

As stated previously, it is very likely that many of the items on the list will be performed through
several iterntions, each improving on the prcvious effort. After several preliminary evaluations,
the sytem requirements will begin to stabilize.

4.1 Selecting an Appropriate Development Shell

It is assumed that the expert system application being considered will be devekped using
an expert system shell. Expert system shells are very useful because a non-programmer can
quickly learn the software and develop a small expert system without extensive training.
Advantages of using an expert system shell include reduced development time, ease of use, and a
tested development and delivery environment. Disadvantages include restrictions on user and
developer interfaces, limitations on knowledge representations and inferencing mechanisms, and
constraints on integration with external files and programs.

* 4-1

PROTOTYPE DEVELOPMENT PHASE
CHECKLIST

DEVELOPMENT TASKS DATE(S)

P.1 EXPERT SYSTEM SHELL SELECTED

P,2 USERS CONSULTED ON INTERFACE ISSUES L0 (lq/i•-O/Q

P,3 DOMAIN ORIENTATION COMPLETED 1'Q0

P.4 KNOWLEDGE ACQUISmON SESSIONS . 7 /
COMPLETED

P.5 CASES SET ASIDE FOR TESTING E -7/

KNOWLEDGE CONVERTED INTO Ee ,/,-, /,
KNOWLEDGE REPRESENTATION

INCREMENTAL TESTING PERFORMED 1k 7/~.; /

P.6 REQUIREMENTS STATEMENT REVIEWED e ,, / /10

P.7 DESIGN DOCUMENTS REVIEWED Ee z / (/9

P,9 DOCUMENTATION PREPARED?/1P

MILESTONE
PROTOTYPE EXPERT SYSTEM PRODUCED '• //.'

Fig. 4.1 Sample Prototype Development Phase Checklist
4-2

To select an expert system shell, important evaluation critcria are first identified and then
ranked, using section P.1 in the Prototype Phase Worksheet (Fig. 4.2). Selection criteria for
choosing a specific shell include:

• Availability in the organization
• Knowledge representation
• Inferencing mechanism
* User and developer interface
• External data and program interface
* Development and delivery software costs
* Licensing issues
* Hardware requirements
* Maintenance issues.

For each of the criteria that apply, a rank should be assigned, in order of importance to the
organization. For example, if five of these items are found to be important, they should be
ranked from 1 to 5, with 1 being the most important and 5 the least important. These criteria will
later be used to develop a shell evaluation matrix. After the shell selection criteria have been
considered and are ranked in order of importance, the Expert System Shell Evaluation Matrix
(Fig. 4.3) should be completed. Fill in the most important criteria frorn P. I across the top of the
matrix, and the shells being evaluated along the left side, then check off the criteria that are met
by each shell. Select the shell that best meets the criteria.

The following subsections describe in more detail a number of the expert system shell
evaluation criteria that may be important to an organization.

4.1.1 Current Availability

The current availability of a shell in the organization indicates that someone is already
familiar with the product from a development and/or user standpoint. This existing knowledge of
the software will be beneficial for several reasons. First, the development time will be reduced if
the developers do not have to learn how to use the shell. It will also be easier to discuss the
system with the users if they are already familiar with the software. The overall development
costs may be reduced if the development version of the software is already available. The
licensing and distribution fees may also be taken care of. Possibly the most important factor is
that the presence of the shell in the organization indicates an interest in expert systems, and
improves the chances for a successful system.

4.1.2 Knowledge Representation

The type of knowledge representation available in an expert system shell may or may not
be an important selection factor. In some cases, the type of expert system or the nature of the
knowledge may lend itself to one type of representation over another. The most common
knowledge representations used in expert system development shells are:

* Rules
* Examples.

4-3

PROTOTYPE PHASE WORKSHEET

P.1 EXPERT SYSTEM SHELL SELECTION

SELECTION MITKA: RANK

- AVARLABMY TO ORGAZA1ION

- KN0WELEDE REPRESENTATION

- iNFERENCE ENGWE

- USER AND DEVELOPER WrERFACE

- INF!GRATON W OThER PKOGRA/FLER

COST

EASE OF OISTRSJTION

AOWARE REOUIREMENTS

MwNTENANCE MSUES

OTHERS:

PL1.1 EVUAluATON MATUX COMPLETED

SHEL SEL.ECTED. Cl1-i Ps

P.2 USERS CONSULTED ON INTERFACE ISSUES

OES1RABLE FEA77E SPAW

FUNCrION K

-PFILE MANAGW

- HEP FACUM

SMALFM TO CURPR4T SYST1w

- JUSMAT CAPABUTIE

OTHER&-

Five expert system shell criteria were found to be important by the developers of
ESTEL These five items were ranked in order of importance. A shell selection matrix was
then developed, and the most appropriate shell was identified. Next, users were consulted
on interface issues, and the features most important to them were identified and ranked.

Fig. 4.2 Sample Prototype Phase Worksheet

4-4

P.1.1 EXPERT SYSTEM SHELL EVALUATION MATRIX

CRITERIA Tfqrx~on A~Ltkle- ^Ar ~ Ap~e

__/PS L 1 /

(is C,•.5 U" V/

Fig. 4.3 Sample Expert System Shell Evaluation Matrix

The most prevalent knowledge representation approach for small expert systems, and the one
most commonly used by expert system shells, is rules. This approach is preferred because rules
are easy to understand, logically consistent, and often straight-forward to test. Rules are most
applicable to structured subject areas that step through a number of decision points.

The selection of a shell based on the knowledge representation is more likely to become
an issue if an example-based representation is desired, since fewer shells have this capability.
Examples can be useful when the problem is not particularly well understood and sufficient
quantities of data and case histories are available to use as example cases. The decision produced
by this induction method often requires modification, but it provides a good initial cut at the
problem. In addition, examples can be helpful in refining requirements that may be implemented
later as rules.

* 4-5

4.1.3 Inferencing Mechanism

The selection of an inferencing mechanism is generally not a key issue in the selection of
an expert system shell. An inferencing mechanism uses the information stored in the knowledge
representation to make decisions and derive conclusions. The primary types of inferencing
mechanisms available in exprt systems sieJs ar" forwar',4 and back-ward chaining.

Forward chaining is a data or event driven approach to exploiting rules. This method
deduces its conclusions from the data available. Forward chaining is most commonly used for
applications with a vast number of potential solutions, including design, configuration, and some
types of planning applications.

Backward chaining hypothesizes solutions and attempts to prove or disprove them.
Backward chaining is frequently chosen for classification types of applications with a limited
number of potential solutions, including diagnostics, monitoring, and repair. Backward chaining is
an interactive form of inferencing that focuses on relevant portions of information and thus
provides intelligent user questioning.

Most shells have the capability of processing the logic without the developer having to
worry about which mechanism is being used. The inferencing mechanism could become an issue
if a larger system is developed and efficiency and response time are critical.

4.1.4 User/Developer Interface

An expert system shell's interface is often a major selection criteria. Since many of the
shells are similar in other respects, an easy to use interface that is enjoyable to work with and
meets the needs of the users and developers is often an important aspect of the software.
Important features to look for may include:

0 Menus
• Function keys
0 Graphics
0 Flexibility
* Ease of modification
* Ease of learning
• Similarity to existing software.

4.1.5 Program Interface

Some applications require the expert system to interface with external data files or
programs. When this is the case, it is important to ensure that the shell is compatible with the
software that it will be required to interact with. Also important are factors such as:

• Memory requirements
* System call capabilities
• Disk space
• Operating system version requirements.

4-6 O

. 4.1.6 Cost

The cost of an expert system shell can sometimes be a deciding factor to an organization.
Shells are available in a wide range of prices, from the low hundreds to thousands of dollars. The
available features and functions are generally associated with the cost of the software. Thus, if
cost is a key issue, the price range should be set before some of the other options, such as
interfaces, are evaluated.

4.1.7 Distribution and Licensing

Another important issue to consider is the distribution and licensing of the application.
Most expert system shells are available in two versions - a development version and a run-only, or
delivery, version. The development version is the full system in which the knowledge base.
knowledge representations, inferencing mechanisms, and interface are developed, and internal
testing is performed. This is generally a relatively costly piece of software that is only needed by
the developers and maintenance personnel. Frequently, the users of an expert system only need
to be able to run the application. For this reason, most expert system shells are available in a
run-only version. This is much smaller and less costly than the development version, and is more
appropriate for wide distribution of the application.

The issues that surround the licensing costs of expert system software result from the
various approaches that software companies take regarding run-only versions. In some cases, the.• development version includes a run-only system that can be copied and distributed at no charge.
Some companies sell the run-only systems on an individual basis. Still others sell the rights to
producing an unlimited number of run-only systems for a one-time price. Licensing issues can be
critical to the cost-effective distribution of the application.

4.1.8 Hardware Requirements

Another key factor in expert system shell selection is the hardware requirements. A shell
will not be effective if it cannot be used on the equipment that is available to the developer and
the users. It is important to identify the hardware specifications of the shell early in the decision
process, including factors such as:

* Memory requirements
* Disk requirements
* Graphics compatibility
* Operating system.

4.1.9 Maintenance

The maintainability of the shell can be another important criteria in shell selection. In
order for an expert system to be effective and successful, the developers must be able to maintain
it easily, including revising it in response to shell upgrades. Positive technical support on the part
of the shell manufacturer is a plus in this aspect of expert system development.

0 4-7

4.2 Consulting Users on User Interface Issues

A vital, but often neglected, facet of expert system development is the user interface.
Although there may not be much flexibility in this area when an expert system shell is used, there
are usually some options available to the developer. Because the users will be required to
interact directly with the expert system on a regular basis, it is important that they are involved in
determining the menas of that "rteractien. The deeloper should talk to the users to determine
the most important criteria for the user interface, using section P.2 of the Prototype Phase
Worksheet (Fig. 4.2) as a guideline. After selecting the features that are important to the users,
these items should be ranked in order of importance, for use as reference during the development
of the interface. Other important issues to consider when discussing the user interface incLide:

* What are users familiar with and are currently using?

- How much time is available for the use of the expert system?

How will it be used (e.g., emergency, quick turn-around, planning,
analysis, etc.)?

Which features are most important to them (e g.. maps and graphics
or descriptive text)?

How will the users be presented with questions and what type of
data entry will be involved?

What level of training and computer experience does the typical
user have?

What are the response requirements - are justifications and
rationale needed for a recommendation?

• How critical are the expert system's answers to the users?

Is an audit trail needed that would require a file to be kept of each
session, including the users name, date, and time?

4.3 Knowledge Acquisition Sessions

Knowledge acquisition is the most complex, time-consuming, and unstructured task in
developing an expert system. Knowledge acquisition is not a linear process, but more of an
iterative process, as shown in Fig. 4.4. After knowledge is elicited from the expert during the
interviews, the developer will document and test the knowledge, then convert it into the selected
knowledge representation. At each of these stages, gaps and inconsistencies in the knowledge will
appear. The developer will then return to the expert to clarify the knowledge and elicit further
information. A key to successful knowledge acquisition is proper attention to preparation and

4-8

DOMAIN

ORIENTATION

ELICIT AND
CLARIFY

KNOWLEDGE

DOCUMENT

KNOWLEDGE

TEST

KNOWLEDGE

4
CONVERT

KNOWLEDGE INTO
REPRESENTATION

Fig. 4.4 The Knowledge Acquisition Process

0 4-9

detail. This will not only expedite the knowledge acquisition process. but also facilitate both
testing and maintenance of the final system.

Decisions regarding methods of eliciting and documenting the knowledge were made
during the Definition Phase. During the Prototype Development Phase, each of these aspects of
knowledge acquisition, along with testing the completeness and consistency of the knowledge and
converting it into the selected knowledge representation, will be implemented by the knowledge
elngi•uiT.

4.3.1 Domain and Expert Orientation

In cases where the developer and the expert are not the same individual, the developer
should have an overview level of familiarity with the domain before beginning the knowledge
acquisition sessions with the expert. This domain orientation can be obtained through reading
books and trade journals, observing the expert in action, ond talking to people who are familiar
with the domain. Complete section P.3 in the Prototype Phase Worksheet (Fig. 4.5) as a record
of domain orientation, using form P.3.1 Domain Orientation to record any important information
that is collected.

Following domain orientation, the knowledge engineer should get to know the expert,
review knowledge gathered to date, gather the necessary tools and aids, set up a schedule for the
knowledge acquisition sessions, and plan the first session. Important tools and aids to be used
include interview gfides (Fig. 4.7), process flowcharts, and blank tables or graphs. The session
planning should involve schcduling, topics to be covered, and a preliminary sequence.

The knowledge engineer should also prepare the expert by explaining the project in some
detail, describing what is expected, and motivating the expert. It is important that the expert feels
at ease with the process and the role that he or she is playing. The knowledge engineer can aid
in this by explaining the importance of the expert in the process, and emphasizing that the
purpose of the project is not to replace the expert, but to make his or her expertise more widely
available.

4.3.2 Eliciting Knowledge

Once the knowledge acquisition process has begun, it is important to adhere to the initial
plan - adapting it where necessary - and to be thorough. For each knowledge acquisition session,
a Knowledge Acquisition Planner should be completed (Fig. 4.6). This covers the tasks involved
in eliciting, recording, compiling, documenting, and analyzing knowledge and preparing for the
next session. Mistakes to avoid during knowledge acquisition (adapted from Hart, 1986) include:

• Failing to ask enough questions
• Not adhering to objectives
* Being too general
* Forgetting answers
• Ignoring suggestions
• Making false assumptions
* Misunderstanding jargon.

4-10

PROTOTYPE PHASE WORKSHEET (cont.)

P.3 DOMAIN ORIENTATION

SOURCE OF BACKGROUNO DATA jOENT1FIED

sOucrcS uSEDm ' _ _-7e r-r_

EXPERT(S) OBSERVED AT WORK

GENERAL C NVERSATIONS WT'H PER'T(S')

P 3,1 FINDNGS RECORDED

P.4 KNOWLEDGE ACQUISITION SESSIONS

SCHEDULE DEVELOPED

EXPERT BRIEFED ON PROJECT

KNOWAEDGE AC0UISmDN PLANNER COMP9ErED
FOR EACH SESSION

P.5 TEST CASE SELECTION

TEST CASES IOENMW1ED

AVERAGE/JFREQIENr CASES0 MEVEtS1GDFICAH CASES

TEST CAS SET ASIDE FOR LATE TESWN

Prior to the knowledge acquisition sessions, the developer, who was not familiar with
the network design process, completed the domain orientation. This involved reading a
number of documents and technical reports on the subject, and studying a number of
completed designs. The developer also observed several experts and informally discussed the
design process with them. The expert was briefed on the project, and a schedule of
knowledge acquisition sessions was set up. For each of the sessions, the developer
completed a Knowledge Acquisition Planner and an Interview Guide. Throughout the
knowledge acquisition process, the developer and expert also selected a number of cases to
set aside for later use in the Test and Evaluation Phase.

Fig. 4.5 Sample Prototype Phase Worksheet (cont.)

0 4-11

KNOWLEDGE ACQUISITION PLANNER
(COMPLETE FOR EACH SESSION)

DATE: 7/'/i0 INTERVIEW NO.: 3

INTERVIEW GUIDE DEVELOPED

INTERVIEW PERFORMED

KNOWLEDGE RECORDED

KNOWLEDGE COMPILED

MATRICES, DECISION TREES DEVELOPED

KNOWLEDGE ACCUIRED TO DATE ANALYZED

PROBLEMS IN KNOWLEDGE IDENTIFIED

PROBLEMS IDENTIFIED: ,/L;1s,55 5 0'c.., I:_.

. (' k4#' , cex ni~ 1#

or kw, v 4..'.. ' .vk-J Aj vy . .

ISSUES FOR NEXT INTERVIEW:. •o lWS OA

DATE AND TIME OF NEXT INTERVIEW: 7L5-h0
/0 Qy_, IN,

Fig. 4.6 Sample Knowledge Acquisition Planner

4-12

As the knowledge is being elicited, it is important that it be recorded in an orderly and
thorough manner. The knowledge engineer must take careful notes during each interview with
the expert, using the Interview Guide (Fig. 4.7) as a reference. Although this method can slov
down the interview and limit the free flow of information, it is a necessary part of the knowkledge
acquisition process.

During the knowledge acquisition process, it is helpful to discuss numerous example cases.
Many of these cases will be incorporated into the logic of the expert system. At this time, the
knowledge engineer should select a number of these cases to set aside 'ýAc use. during the full
system testing in the Test and Evaluation Phase. Although this may result in a reduction in
knowledge, it will aid in the testing of the prototype expert system by providing cases that were
not used during the development process, and allowing for effective testing of the expert system's
response to new data. Testing scenarios that include average cases, plus extreme cases on the
high and low ends to test the boundaries of the expert system are excellent miethods to test for
outliers and unpredictable results. Testing should also include most frequent cases, most
significant cases, and a worst case scenario, which results in an extreme negative impact. Upon
the selection of suitable test cases, these items should be checked off on the Prototype Phase
Worksheet, section P.5 (Fig. 4.5).

It is important to remember that knowledge acquisition is an incremental process. After
each knowledge acquisition session, th, knowledge engineer will document the knowledge in the
chosen form. This will provide a solid basis for the next knowledge acquisition session and will
also help the knowledge engineer to analyze and test the knowledge to ensure that the full depth
and breadth of the domain is explored. The knowledge engineer should test for missing data,O inconsistencies, and loops in the knowledge. These problems should be identified as early as
possible, and worked out with the expert to avoid problems later in the development process.

When all of the scheduled knowledge acquisition sessions have been completed and the
developer has enough information to provide a basis for the expert system. the knowledge
acquisition process has been completed. Item P.4 on the Prototype Development Phase Checklist
(Fig. 4.5) should be checked off and the date of completion indicated.

4.4 Compiling the Knowledge

Following each knowledge acquisition session, it is important to compile and document the
new knowledge, as indicated in the Knowledge Acquisition Planner (Fig. 4.6). Forms of
documenting the knowledge vary, as discussed in the Definition Phase, but should be easy to use
and conducive to manipulation and testing. Examples of tables and decision trees at varying
stages of knowledge acquisition are shown in Figs. 4.8 - 4.10. Graphical representations such as
these should be prepared following each knowledge acquisition session to assist the developer in
identifying gaps or discrepancies in the knowledge.

New knowledge should be divided into topics and compared to existing knowledge. After
removing redundant and irrelevant knowledge, the remainder is then tested for logical consistency

4-13

INTERVIEW GUIDE

DATE: 715/7 0 INTERVIEW NO.:

EXPERT: 8, 0 ,

KNOWLEDGE ENGINEER: -av.-

TOPICS TO BE COVERED: Pkýsi J -.

ISSUES TO BE RESOLVED: do C-!g 4 ,1&

NEW KNOWLEDGE: , ,4

0 r' 't-Y

I o; d f e- Y 'Y oj,_., a-

Fig. 4.7 Sample Interview Guide

4-14

NODE IS NODE IS AT LEAST NODE IS A LEVEL OF
OVERRUN COLOCATED ONE CRITICAL I MEMBER OF HARDENING ,-,',-

W/ CRITICAL USER IS 2 OR MORE fl:TmQi
USERS SURVIVING NETWORKS _________________

NONE MINIMAL

NO YES YES MINIMAL LIGHT

NO YES YES YES LIGHT MODERATE

NO YES YES YES MODERATE HEAVY

Fig. 4.8 Sample Decision Table After First Knowledge Acquisition Session

Nods as yS NosYES

Fig. 4.9 Sample Decision Tree After First Knowledge Acquisition Session
d Y4-15

is On CrI ahm Moeae!v

Protection

NO YES

Protection, Protection 1114M11I

Fig. 4.10 Sample Decision Tree After 2nd Knowledge Acquisition Session

with existing knowledge. The purpose is to identify and classify knowledge into one of the
following categories:

* New and unique information
• A generalization or specialization of existing information
• An assumption
• Contradictory to previous information.

As new knowledge is compiled, it is a continuing process to identify and correct
discrepancies and gather missing knowledge. Missing knowledge can be classified in terms of
breadth and depth. Breadth refers to the different topics within the problem, while depth
concerns the detail in which each topic is covered. Missing breadth knowledge often arises from
topics newly discovered or not yet considered. Missing depth knowledge, on the other hand,
often results from lack of detail or omitted steps within a process.

Once missing knowledge has been identified, two steps must occur. The first is to
determine whether or not it is important and lies within the scope of the current system. If so,
the second step is to allocate a portion of a future knowledge acquisition session to gathering the
missin.; information.

4-16

* 4.5 Converting the Knowledge into the Selected Knowledge Representation

Once a sufficient body of knowledge has been compiled and analyzed, the final step in the
knowledge acquisit'on process is to convert the knowledge into the appropriate knowledge
representation, whether it be in the form of rules or examples. The conversion of knowledge is
generally the responsibility of the programmer, who takes knowledge from the decision trees or
matrices, and puts it into the format required by the shell that is being used. During the
conversion process, the developer may find additional problems with the data that require further
clarification by the expert.

Because of the poorly structured nature of knowledge engineering, it is normal for the
knowledge acquisition and conversion process to continue well into the expert system
development process. In addition to adding new topics and functionality, further knowledge
engineering refines the existing system to more closely emulate the behavior of the expert.

4.6 Performing Incremental Testing and Review of the System

Throughout the development process, incremental testing of the expert system must be
performed. Just as a conventional programmer would test ten individual subsections of one
hundred lines of code before combining them into a one thousand line program, the expert
system developer tests the system module by module. Errors can be tracked and corrected more
readily using an incremental testing process. Frequent backups of the expert system knowledge
base should be made and versions labeled and archived so the developer can retrieve a past
version that may perform better than after a change was made.

Testing the knowledge base for structural and content items, as well as testing the
performance and usability of the expert system (see Appendix A) during this phase will improve
the expert system, and also prepare it for testing during the Test and Evaluation Phase. Tests for
completeness, accuracy, and consistency are very important in this step. Frequently, careful
documenting of the knowledge identifies areas of omission and conflicting data. Several iterations
may be required to develop a complete base of knowledge for the application. The knowledge
engineer should analyze the knowledge after each knowledge acquisition session, looking for
problems, then present any issues that arise to the expert for resolution. The expert is
responsible for reviewing the logic prepared by the knowledge engineer to ensure that the
knowledge has been interpreted correctly.

At this point in the development process, it is also important to re-evaluate the
Requirements Statement (Fig. 3.2) and the design documents to ensure that system development
stays on track, as indicated in the Prototype Phase Worksheet, sections P.6 and P.7 (Fig. 4.11).
Any discrepancies should be remedied, either by revising the expert system if items have been
overlooked and can reasonably be included, or by revising the documents if they have become
outdated or incorrect.

* 4-17

PROTOTYPE PHASE WORKSHEET (cont.)

P.6 REQUIREMENTS nTATEMENT REVIEWED

REQUIREMENTS REMAIN FEASIBLE

PROJECT STILL CONFORMS TO REQUIREMENTS

CONFLICTS IDENTIWIED.

DOCUMENT MODIFIED ACCORDINGLY

P.7 DESIGN DOCUMENTS REVIEWED

DESIGN REMAINS ACCURATE

PROJECT STILL CONFORMS TO DESIGN

CONFICTS IDENTIFIED

DOCUMENTS MODIFiED ACCORDINGLY

P.8 DOCUMENTATION PREPARED

USER'S MANUAL DEVELOPER'S NOTEBOOK

BACICGROUNO/OERVIEW REQUMEMENTS STATEMENT D
INTENDED USERS SYSTEM DESIGN ie,

ACCESS.ING SYSTEM EWLIOPUENT WORKSHEETS

INTERFACE FORMAT KNOWLEDGE ACQUISMON DATA

USING THE SYSTEM MATRIhS. GRAPHICS

FILES INVOLVIED FILE PROCUSSRG

SAMPLE SESSIONS - MAIITTANCE ISSUES

PROJECT MANAGEMENT AID

During the Prototype Development Phase, the Requirements Statement and design
do,.uments were reviewed. They were found to be acceptable, with the project remaining on
course and conforming to the requirements. The documentation was also prepared at this
time by the developer.

Fig. 4.11 Sample Prototype Phase Worksheet (cont)

4-18

. 4.7 Preparing Documentation for the Prototype

There are typically two types of documentation that should accompany a small expert
system application:

• User's Manual
• Developer's Notebook.

The User's Manual provides guidance on how to operate the expert system, and accompanies all
copies of the expert system that are distributed to users. The Developer's Notebook is designed
to keep a record of the development process, and is used by the individual assigned to maintain
the system, and also by other expert system developers who can use it as an example for future
development. Use section P.8 in the Prototype Phase Worksheet (Fig. 4.11) as a checklist for the
preparation of the documentation. Upon completion of the documentation, check off item P.8 on
the Prototype Development Phase Checklist (Fig. 4.1) and indicate the date of completion.

4.7.1 User's Manual

The User's Manual describes the normal operation of the expert system from a user's
perspective. It contains all of the information needed to run the application, including:

* Navigating the system
• Help functions
O Files used0 * Function keys
* COmmand words
• User interface
° It teracting with the system
• Processing that occurs
• Outputs produced
• Saving files.

It should also include general information about the expert system, such as:

• Purpose and objectives of the system
* Assumptions made during development
• Target users
• Names of development team members
• Date of development
• Where to go for help
• System outputs.

The User's Manual should also include a sample session, showing all of the screens that will be
encountered and the responses requested while running the system. Any information needed on
cxtcrnal processing and file management should also be included in the User's Manual.

4-19

4.7.2 Developer's Notebook

The Developer's Notebook contains key facets of the development of the expert system.
It includes such things as:

* Problem assessment, including paths considered but not taken
* Requirements Statement
• Expert system design
* Decision trees and other diagrams
• Completed checklists and worksheets from this guidebook
• Interview guides and other forms
* Management aids - Gantt charts, PERT charts, etc.
* Documented code
* Test cases
• Verification and validation procedures
• Instructions on system maintenance
* Names of development team members
• Comments made throughout development and testing
* Distribution issues and assumptions.

For the small expert systems that are being defined, some of these items may be only one or two
paragraphs. The Developer's Notebook is a useful tool for those responsible for the maintenance
of the expert system. It also serves as an effective guide for others interested in developing
expert systems, because it documents the entire development process.

4.8 Summary

Upon completion of the Prototype Development Phase, many tasks have been performed
in the development of a prototype expert system. Each of these tasks, from the selection of a
development tool, to the preparation of the system documentation, has been checked off on the
Prototype Development Phase Checklist. When the checklist is completed, the milestone of the
production of a prototype expert system is achieved.

4-20 0

5.0 The Test and Evaluation Phase

After the prototype version of the expert system is completed, it must be carefully tested
and evaluated. Although the expert system has been tested incrementally throughout the
Definition Phase and the Prototype System Development Phase, it must now be fully tested
before it is ready for distribution. The expert and developer will be responsible for verification of
the content and logic of the system, and the users will be responsible for validating the system as
a whole. VERIFICATION ensures that the expert system has been developed correctly and does
not contain technical errors. VALIDATION ensures that the expert system is useful and satisfies
the users' needs.

The Test and Evaluation Phase Checklist (Fig. 5.1) serves as a guide for the testing and
evaluation of the expert system. The testing issues addressed during this phase relate to a number
of areas in the MAU Framework (Appendix A), including the knowledge base, service issues,
performance, and usability of the expert system.

5.1 Verification

The expert system will be verified by the expert to ensure that the rules are appropriate,
correct questions are asked and the correct conclusions are reached. Because it may be difficult
for the expert to follow the format of the knowledge base, it can bc useful for the expert to
perform a desk review of the knowledge base, with the knowledge engineer available to explain
the rules. The expert can also verify the expert system using the test cases that were set aside for
this purpose during the knowledge acquisition process. Additional test cases can also be
developed by the expert at this time for testing purposes. While testing the expert system, the
expcrt should be looking for missing data, incorrect conclusions, correct conclusions that were
improperly derived, and any other discrepancies. The expert should keep a log of the testing on
the Expert Evaluation Form (Fig. 5.2), recording any problems or comments that arise.

While the expert is testing the knowledge, the developer is responsible for verifying the
logic andm inferencing mechanisms of the expert system. The developer checks the system for
loops in the logic, isolated rules, and cases where a conclusion is never reached. The developer
can work directly with the knowledge base, and also run the system to test a variety of scenarios.
The use of an expert system shell can reduce the amount of testing required by the knowledge
engineer due to the existence of an established inference engine, but this should not simply be
assumed to be correct.

The use of an expert syster- shell gives the developer access to a number of tools that
assist in the testing process. Shells often contain a number of useful functions that allow the
developer to observe the rules as they are being fired, query the system as to why a particular
conclusion was reached, and perform many other useful diagnostic tasks. Such features allow the
knowledge engineer to easily trace the logic and verify that it is operating correctly, or identify the
locations where revisions are warranted. Throughout the verification process. the knowledge
engineer should record all findings on the Developer Evaluation Form (Fig. 5.3) for use in the
Final Development Phase.

* 5-1

TEST AND EVALUATION PHASE CHECKLIST

VERIFICATION BY EXPERT

DATE

TESTING COMPLETED .l
FINDINGS RECORDED ~~

E.I EXPERT EVALUATION FORM COMPLETED

VERIFICATION BY DEVELOPER

PERSON RESPONSIBLE (A 1 Mr,~
TESTING COMPLETED E

FINDINGS RECORDED 1 1-/-<

E.2 DEVELOPER EVALUATION FORM COMPLEiE [M/
VALIDATION OF OVERALL SYSTEM BY USERS

TEST 06TRIBIJTED [cle/
TESTING COMPLEE

FINDWNG RECORDED r 'a?
E.3 USER*S EVALUATION FORMS CO)MPLETED ~ /

EVALUATION OF USER'S MANUAL
E.4 UISERS MANUAL EVALUATION FORMS

COMPLETED

EVALUATION OF DEVELOPER'S NOTEBOOK

E.5 DEMELOPEFWS NOTEBOOK EVALUATION Z? 16t,
FORMS COMPLETED

REQUIREMENTS AND DESIGN REVIEWED

REOUIRE&40.(T STAT06MENT REVIEWED 0

DESIGN DOCU.MENTS REviEWED EeZ F

MILESTONE

TESTM~ AND EVLAT)ON COMLETED -o 7

During the Test and Evaluation Phase, ESTEL was carefully verified and validated
by the expert, developer, and users, and their comments were recorded. The documentation
was also evaluated, and the requirements and design were reviewed.

Fig. 5.1 Sample Test and Evaluation Phase Checklist

5-2

EST EXPERT EVALUATION FORM

EXPERT: ,,t 1 m'SA DATE: /!. /,O

TEST CASES APPLIED TO EXPERT SYSTEM
NUMBER

AVERAGE/FREQUENT CASES ;L

EXTREME/SIGNIFICANT CASES to

PROBLEMS IDENTIFIED

KNOWLEDGE /'Cr`04- e- 4 AS ; /'V? 2"/
dk~ds w;+ muitwiple•.' "1-62 -,~~

LOGIC d~t.~ i~~I j eJ(~~l~ -

ORoDE OFUEST1ONUNG 0/X

OVERALL IMPRESSION LOW - ,mi MIU ,1IGI

COMMENTS J(.,)ouU g (;e.. ie bye trj

Fig. 5.2 Sample Expert Evaluation Form

05-3

E.2 DEVELOPER EVALUATION FORM

NAME: r-1,r DATE: F 0

TEST CASES APPLIED TO EXPERT SYSTEM
NUMBER

AVAGEI•REOUENT CASES -- 30

EX7REMEJSIGNIFICANT CASES F

PROBLEMS IDENTIFIED

LOGIC 2 -'7 es (xor. - il &--!,- 0-5

INFERENCING ____

INTERFACE (~ -:6~d-
c- v,,Joi er-5 0 6 ..

COMMENTS A/ee frd

Fig. 5.3 Sample Developer Evaluation Form

5-4

5.2 Validation

While it is important that the expert system is tested internally by the expert and the
developer, it is also critical that it be tested from a user's perspective. It is recommended that a
small group of users participate in the testing process. This group will be responsible for
evaluating the overall usefulress of the system, including items such as:

0 User interface - screens, graphics, menus, etc.
0 System response time
0 User-friendliness
a Appropriateness of subject level
• File management issues.

The developers should send the users guidelines or forms to use in testing the expert system.
This will provide the users with instructions on testing, and aid them in recording their evaluations
of the system. Each user will record all comments and suggestions about the expert system on the
User Evaluation Form (Fig. 5.4) and return it at the conclusion of the testing period.

5.3 Evaluation of the Documentation

An additional task to be performed during the Test and Evaluation Phase is the. evaluation of the documentation. Although it is not as apparent, the documentation is a vital part
of the expert system. If the users do not understand how to operate the system, it cannot be used
effectively. The User's Manual should provide complete instructions on the operation of the
system and provide users with assistance when needed. The Developer's Notebook is critical to
the maintenance of the expert system.

The users are responsible for evaluating the User's Manual. They should focus on
features such as:

* Readability
* Accuracy
• Clarity
• Completeness
* Ease of understanding.

Comments and suggestions on the documentation will be recorded in the User's Manual
Evaluation Form (Fig. 5.5) for use in the Final Development Phase.

O 5-5

E.3 USER EVALUATION FORM

NAME: Su5,-\ DATE: / 7 /?5

COMMENTS

iNTErFACE FAd as Op Y-Jt-- -+

,•,,,- ,,,d.r.ob==. lo o o (d
RESPONSE TIME L 7

USERARIENOUNESSION Low - kt;L

Fig.,~r 5.4 am ple Use Ev~aluto FormiCt

APPROPRIATENESS OF SUBJECT LEVE 0

FILE MANAGEMENT ISSUES AV//A

rOENERAL cOve-r-a-1 IPcrlflCL-nu i~

OVESRAL IMPRESSION LWw HIGH

Fig. 5.4 Sample User Evaluation Form

5-6

E.4 USER'S MANUAL EVALUATION FORM

NAME: r•Jl Ar4tALv- DATE: • q /J

OVERALL DOCUMENT AS NO

READAMl I
ACQAATIE

CLEMR [4r
COMPLETE " LV

EASILY UNDERSTANDABLE Z 1

COMMENTS)4eZSvWv,-arr-.-1-d~

SAMPLE SESSIONS

OE•NO

UNDEASTANDABLE ý

CLEAR

COMPLETE 1 L
OESCRSPVIML L
COMMENI _ _ _ _ _ __ _ _ _ _ _ _ __ _ _ _ _ _ _ _

OVERALL IMPRESSION LOW HK94

Fig, 5.5 Sample User's Manual Evaluation Form

5-7

The developers and manager are responsible for evaiuating the I)evecper's Notebook and
recording their comments on the Developer's Notebook Evaluation Form (Fig. 5.6). This I
document should be evaluated for the same features that are listed above for the User's Manual.

In addition, an evaluation should be made of the supporting information that makes up this
document, including:

* Requirements Statement
* System Design
* Development worksheets
• Knowledge acquisition data
* File processing and maintenance issues.

5.4 Review of System Requirements and Design

To complete the evaluation, the prototype expert system should be compared to the
Requirements Statement and the design documents. To avoid "requirements drift," these
documents were used in the incremental testing process during the Prototype Development PlI-se.
They become even more important at this stage to calibrate the extent to which the prototype
system meets the original expectations. System success is evaluated based on the qualitative and
quantitative benefits documented during the Concept Phase (Fig. 2.1). Benefits can be measured
in terms of the savings in time, staff-hours, costs, etc. that are achieved.

5.5 Summary

At the completion of the Test and Evaluation Phase, all of the items on the Test and
Evaluation Phase Checklist have been completed, using the MAU Framework (Appendix A) as a
guide. The completion of the checklist indicates that the testing and evaluation of the expert
system and supporting documentation is finished, and the requirements for the milestone have
been met.

5-8

E.5 DEVELOPER'S NOTEBOOK

EVALUATION FORM

NAME: /$qtcx WlflUdvYAS DATE: ho

OVERALL DOCUMENT

READABLE

ACCURATE

CLEAR

COMPLETE

EASILY UNDERSTANDABLE

SUPPORTING DOCUMENTS INCLUrIED

REOUIOWENTS STATEMENT

SYSTEM DESIGN OOCL1E1T

DEVELOPMENTWCRKSHETS

*X7MBME A~CQUOION MATERIALS

FILE PAOCUEtdG AND W*KIFNAE ISSESD

PROECT MANGEMW ADS

OVERALL IMPRESSION LOW HI G H*

Fig. 5.6 Sample Developer's Notebook Evaluation Form

5-9

5-10

6.0 The Final Development Phase

At the completion of the Test and Evaluation Phase, the developers receive comments
from each group involved in the testing process - the expert, the developers, and the users.
During the Final Development Phase, these comments are evaluated and incorporated into the
final version of the expert system, using the Final Development Phase Checklist (Fig. 6.1) as a
guideline.

6.1 Evaluating User Comments

The first step in this phase is to evaluate the user comments, and decide which suggestions
will be incorporated into the expert system. Because the user interface is somewhat subjective, it
is quite possible that one user might like a feature that another user finds objectionable. If there
are conflicts such as this, it is best to go with the majority opinion or with the project sponsor. If
there are any major issues, it may be useful to contact the users involved in the testing to clarify
the matter.

Some changes that are suggested may be impossible to incorporate, given the limitations
of the shell used to develop the expert system. Other changes may simply be infeasible, given the
time and resources required to implement them.

To effectively incorporate the user comments, the developers should first prioritize the
suggested changes, with functionality and performance issues being ranked highest, and
appearance and interface issues being ranked lower on the list. The developers can then cstimate
the resources required to make the suggested revisions. This information will be presented to the
project manager, who will determine which of the comments will be incorporated into the final
system, using Fig. 6.2 as a guide.

6.2 Incorporating the Changes

Wthen the user comments have been evaluated and appropriate changes have been
selected for inclusion, these changes, as well as those noted by the expert and developer during
their testing, will be incorporated into the system. It is critical that any problems in the rules or
logic be corrected in order for the system to run correctly. But it is also important to incorporate
as many of the user comments as possible, to ensure their satisfaction with the system.

After changes are made to the expert system, the developer will test it again to ensure
that all of the previously identified problems have been eliminated and no new ones have been
created. This testing period will be shorter, focusing on the portions of the expert system that
were changed, and will not include the users.

During the Final Development Phase, any suggested changes to the User's Manual arc
also b, incorporated into the final version, and any items missing from the Developer's Notebook
incorporated into this document. At the completion of this phase, the expert system should be
adequately tested and evaluated, and the system ready to be prepared (or distribution.

6-1

FINAL DEVELOPMENT PHASE 1
CHECKLIST

EVALUATION RESULTS COLLECTED0
FNO-USEAS ,• %/,0/lql

00WERT Ll,

OeVELOPER(S) L~ /10/~
OTHERS

END-USER COMMENT EVALUATION

COMMENTS COMPILD 70'qh3?

COMIMENTS ANALYZD T /
RELEVANT A FEASIILE COMMENTS SELECTED A

CHANGES INCORPORATED INTO EXPE 5 SYSTEM

END-USERS T 1'/7 V6
EXPERT ~______
DEVELOPE(S) le I, ,.l

OThERS ,._7

EXPERT SYSTEM RETESTED

RULES VEARPED EW :i~/~ 6
LO1C$ VAL.ATED

INTERFACE RIVWWD Ci

CHANGES INCORPORATED INTO DOCUMENTATION

ENO-U5ISEA r-

KNOWI.UOOIUNMHE ' he0

MILESTONE
L WENT _ M PRODUCED____

.During the Final Development Phase, the results of the evaluations of ESTEL were
collected and evaluated. Relevant and appropriate modifications and enhancements were
incorporated into the system. The developer then retested the system to ensure that the
changes were properly implemented. Comments on the documentation were also compiled
and incorporated into the documents.

Fig. 6.1 Sample Final Development Phase Checklist

6-24

THIS

PAGE
IS

MISSING

IN

ORIGINAL

DOCUMENT

,,, i m (i I I i3

THIS

PAGE
IS

MISSING

IN

ORIGINAL

DOCUMENT

==m/ & T l I | I I II I

Policy - the policies that a system is based on may change over
time.

A periodic review of the system should be undertaken every three months to one year, depcnding
on how dynamic the domain is. If changes are extensive, a comprehensive system rewrite may be
required. Information on system reviews and upgrades should be indicated on the Post-
Development Phase Checklist (Fig. 7.1).

An issue related to system maintenance and upgrades is version control. Whenever the
expert system is changed, a new official version will be distributed to all users, along with updated
documentation. At this time, all previous versions arc returned to the developers or destroyed, to
ensure that all users are operating the same version of the expert system. This process can be
facilitated by a-gigning a registration number to each copy of the expert system that is distributed
and recording .- e number assigned to each user (see section 7.4).

7.2 Technical Suport

The individual responsible for developing the expert system will also provide technical
support to the users upon distribution of the system. If the users are in the same location as the
developers, no special plans may be needed. However, if the users are widespread geographically,
it may be necessary to set up a technical support hotline. The technical support person will be
responsible for several areas, including:

O Providing information on how to use the system
o Resolving hardware and interface problems
° Recording bugs and problems reported by the users.

7.3 Training

Training is also an important component of a successful expert system implementation.
The goal is that the us-t. oe knowledgeable about the expert system and software in order to use
it effti-tive;v, A number of user training approaches can be taken, depending on several factors,
such as the:

• Number of users
* Complexity of the system
* Level of required precision
* Users' level of expertise in the subject area
• Volatility of the knowledge base
• Users' level of computer experience.

For simple expert systems, training may be unnecessary beyond the user's manual.
accompanied by a tutorial or demo disk showing a sample session. But in many cases, it is
beneficial to provide more in-depth training to ensure that the users are comfortable and familiar
with the expert system. Training can be provided on an individual basis or for groups. Once a
training strategy has been selected, the trainer muist prepare for it accordingly, developing a

* 7-3

training manual, tutorial disk, and training presentation, based on the users' knowledge of the
subject area and familiarity with computers.

There are a number of important issues to cover in the training sessions. First, it is useful
to explain the purpose of the expert system and its role within the current process. The users will
want to know how the addition of the expert system will affect their everyday duties and
responsibilities. The trainer should also define the intended users and the level of computer and
subject area expertise that is assumed. A major issue that is often left out of the training process
is informing the users of the expert system's intended use, and stressing the risks of improper use
of the system. Any expiration date of the system should also be mentioned during training.

7.4 Distribution

Depending on the number of users of the expert system, distribution can range from a
simple task to a very large operation. In either case, several steps must be taken for it to be
implemented smoothly. A database should first be set up to register the users, containing the
names, addresses, and phone numbers of all users. Each user is contacted to identify the type of
media his or her hardware supports, e.g., high or low density, 5-1/4" or 3-1/2" disks. This data is
also recorded in the user database. Preparations are also made for the packages that will be sent
out to users, taking into consideration the following issues:

* Ordering disks
o Formatting disks
& Producing labels with registration numbers
o Preparing run-only copies of software, if applicable-
* Copying files onto disks
* Preparing letter to accompany expert system
, Producing final documentation
o Preparing packaging for expert system.

While distribution plans are being made, any licensing issues related to the expert system
shell will be resolved. Licensing issues related to distributing an expert system were first
addressed during the Prototype Development Phase, when the expert system development tool
was selected. At this time, any applicable run-only software will be ordered or prepared, and any
remaining licensing issues must be resolved.

7.5 System Implementation

With sufficient preparation, the implementation of the Post-Development Phase steps will
proceed smoothly. Distribution includes preparing the expert system packages, sending the
p:akaiycs to the users, and recording registration numbers. Training sessions will be provided to
the users within the first few weeks of implementation. It may be beneficial to allow the users a
short time to get acquainted with the expert system on their own before training begins, but the
users will lose interest in the system if too much time passes before training is provided. The
individual responsible for technical support should also be readily available and responsive during
the early weeks of expert system use, as users will encounter frequent problems with system
installation and operation during this time.

7-4

After the initial enthusiasm th, t accompanies the distribution of the expert system passes,
it is important that the development team continues to support the project, by maintaining an
interest in improving its performance and responding to the users. The success of an expert
system does not depend exclusively on the distribution and acceptance of a working system. The
desired benefits of the expert system that were identified in the Concept Phase can only be
achieved through the continued support of the developers as well as the users.

7.6 Summary

During the Post-Development Phase, a number of tasks are completed, including planning
the technical support and maintenance strategies, training the users, and distributing the final
system. When the Post-Development Phase Checklist is completed, with the exception of
information on system upgrades, the expert system has been implemented and the requirements
for the milestone have been met. However, this is not the end of the development process, as
technical support, maintenance, and upgrades of the expert system will continue for as long as the
system is in use.

7-5

7-6

GLOSSARY

A
advisory system - An alternative name for an expert system.

artificial intelligence - The subfield of computer science which includes expert systems, robotics,
and neural networks. Artificial intelligence is "concerned with the concepts and methods of
symbolic inference by a computer and the symbolic representation of the knowledge to be used in
making inferences. A field aimed at pursuing the possibility that a computer can be made to
behave in ways that humans recognize as 'intelligent behavior' in each other" (Feigenbaum and
McCorduck, 1983).

B
backward chaining - An inferencing mechanism in which the order that the inferences are drawn
is based on the conclusion. Backward chaining begins with a solution and attempts to prove or
disprove it by searching through the rules or examples in the knowledge base. This is an
interactive form of inferencing that focuses on relevant information and poses only necessary
questions.

breadth - The scope of a problem in terms of the different topics or aspects involved.

C
*• chain of reasoning - A means of making decisions in which topics build on one another and

depend on each other for data.

Concept Phase - The first phase in expert system development, in which the problem area is
selected and analyzed to determine if an expert system would be appropriate for the application.

conflict resolution strategy - A strategy used in the knowledge acquisition process to resolve
discrepancies in knowledge that is collected from several experts.

core deve!opment team - The central figures in the expert system development process. This
team generally consists of one or more persons performing each of the following roles: expert,
knowledge engineer, programmer/software engineer, and manager.

D

decision support system - An alternative name used for an expert system that aids in a decision
process.

decision table - A form of knowledge representation in which the information is placed in a table
or matrix.

decision tree - A form of knowledge representation in which the information follows each
decision point down various paths to reach a conclusion.

0i

Definition Phase - The second phase in expert system development, in which the scope and
purpose of the system are carefully defined, the development is selected, and an initial system
design is produced.

depth - The scope of a problem in terms of the details involved with each topic or aspect.

desk review - A review I zrformed by reading through the source code of the expert system, rather
than running the software.

detailed design - A document prepared during the Definition Phase, which includes a detailed
description of each component of an expert system.

documentation - The text that accompanies a completed expert system application and provides
information on various aspects of the expert system. Typical documentation for a small expert
system includes a User's Manual and a Developer's Notebook.

domain - The subject area in which the knowledge for an expert system resides.

domain orientation - A period of time in which the knowledge engineer becomes acquainted with
the domain through background reading and preliminary interviews. This process occurs prior to
the knowledge acquisition sessions.

E
example-based - A form of knowledge representation in which ilumerous example situations are
developed and used to form the basis of the decision process for an expert system,

expert - A person who is very familiar with and proficient in a subject area and whose knowledge
is used as the basis for an expert system.

expert problem-solver - An alternative name for an expert system.

expert system - A computer system that performs at or near the level of a human expert. Expert
systems are often used to capture the knowledge of an individual who is leaving an organization,
or to capture a complex or tedious decision-making process so that it can be performed by non-
experts, thus reducing the need for training.

expert system development tool - An alternative name for an expert system shell.

expert system shell - A software package which contains the basic components needed to develop
an expert system, including the: user and developer interfaces, knowledge representation,
inferencing mechanism, debugging facilities, and help functions. The developer uses an expert
system shell to enter the expertise into the knowledge representation and quickly develop a
working prototype system.

ii0

Final Development Phase - The fifth phase in expert system development, in which comments
from those involved in testing the system are evaluated and incorporated into the system, the final
system is prepared for distribution, and the final documentation is prepared.

forward chaining - An inferencing mechanism in which a data or event driven approach is used to
search through the knowledge base. In forward chaining systems. the user enters a series of data
and the expert system deduces its conclusions from the data available.

H
heuristic - A "rule-of-thumb" or piece of knowledge that is acquired through experience in a
particular area, and is often not documented.

I
inferencing mechanism - The means by which an expert system uses information to make
decisions and reach conclusions. Common inferencing mechanisms are forward and backward
chaining, and are included as part of an expert system shell.

K
knowledge acquisition - The process in which the knowledge engineer collects the expertise that
forms the basis for an expert system. This is generally accomplishel by interviewing or surveying
one or more experts, or by studying documents on the subject area.. knowledge base - The basis for an expert system that has been converted into the selected
knowledge representation.

knowledge-based system - An alternative name for an expert system.

knowledge engineer - The member of an expert system development team who is often
responsible for designing the system, performing knowledge acquisition, compiling the knowledge,
ard converting it into the appropriate 1nowledge representation.

knowledge map - A form of documenting the knowledge within an expert system which provides a
graphical representation of the decision process.

knowledge representation - The means by which the knowledge within an expert system is
represented. The most common forms are rules and examples.

M
multiattrlbute utility (MAU) analysis - A methodology based in the mathematics of measurement
that provides an appropriate procedure for evaluating expert systems.

S~iii

0
one-page design - A document prepared during the Definition Phase which provides an overview
of an expert system. It includes a description of the system components, basic system structure,
interfaces and external calls, and the selected knowledge representation and inferencing
mechanism.

P
Post-Development Phase - The final phase in expert system development, in which the full system
is distributed to users, and training, technical support. and system maintenance are provided.

proponent - An individual who strongly supports an expert system project. This person may be a
member o" the expert system development team, or may be outside of the development process.

prototype - An initial version of an expert system which is developed to test the expected goals
and requirements of the system. The prototype goes through a number of iterations and tests,
then is developed into a full expert system.

Prototype Development Phase - The third phase in expert system development, in which
knowledge is collected and developed into the knowledge base of the expert system, and a
prototype version of the system and documentation are developed.

R
rapid prototyping - The process of quickly developing knowledge, or a portion of the knowledge,
into a prototype expert system, in order to test the concept and requirements of the system.

requirements drift - A common occurrence in which the requirements of an expert system change
during the development process as need change or new criteria arise.

Requirements Statement - A document prepared during the Definition Phase which defines the
overall expert system ir, terms of scope. purpose. intended users, capabilities, limitations, output,
expectations, and maintenance areas,

rule-based - A knowledge representation in which the information and decision process are
represented in an IF 1 -THENTELSE format. Rules can be very short, containing only single IF and
THEN components, or may be quite complex, consisting of multiple statements with AND/OR
qualifiers.

run-only software - A version of an expert system shell which contains only a user interface, and
does not have access to the source code, knowledge representation, o- inlerencing mechanisms.

T
technical support - Support on installing!, w.ing, and upgrading the svstem that is provided to the
users by an appointed party, often sonmcone involved in the dcvelopment process.

T'est and Evaluation lPhas, - The lourth phase in expert system development, in which the system
is tested, verifled, and vdlidated by users, developers, and expet-s:.

IV

. test case - Sample situations that are set aside and kept out of the development process. in order
to be used during the Test and Evaluation Phase to ensure that the expert system works properly.

U
upgrades - Revised versions of the expert system that are developed due to software
imnrovements, bug corrections, policy changes, etc.

user interface - The portion of the expert system that the user sees and interacts with. This may
include data entry, queries, graphics, reports, etc.

V
validation - The process of testing an expert system to ensure that it is appropriate and usable
from a user's perspective.

verification - The process of testing an expert system to ensure that it operates properly. The
expert is responsible for verifying that the correct conclusion is reached for each situation. and
the knowledge engineer is responsible for verifying that the logic ant inferencing mechanisms are
working properly.

version control - The process of ensuring that all users have the current version of an expert
system when upgrades or new versions are distributed.

0

0

I

I

vi I

BIBLIOGRAPHY

Adelman, Leonard and Jacob W. Ulvila. Testing and Evaluating Expert Systems. Reston, VA:
Decision Science Consortium, Inc., (1990).

Barr, Avron, Paul R. Cohen, and Edward A. Feigenbaum, The Handbook of Artificial Intelligence,
Volume IV, Addison-Wesley Publishing Co., Reading, MA, (1989).

De Salvo, Daniel A., and Jay Liebowitz, ed., Managing Artificial Intelligence and Expert Systems,
Yourdon Press, Englewood Cliffs, NJ, (1990).

Feigenbaum, E.A., and McCorduck, P. The Fifth Generation, Addison-Wesley Publishing
Company, Reading, MA, (1983).

Harmon, Paul and David King, Expert Systems, John Wiley & Sons, New York, NY, (1985).

Hart, Anna, Knowledge Acquisition for Expert Sytems, McGraw-Hill Book Company, New York,
NY, (1986).

Hayes-Roth, Frederick, Donald A. Waterman, and Douglas B. Lenat, ed., Building Expert Systems,
Addison-Wesley Publishing Co., Reading, MA, (1983).. Hertz, David Bendel, The Expert Executive, John Wiley & Sons, New York, NY, (1988).

Liebowitz, Jay, ed., Expert System Applications to Telecommunications, John Wiley & Sons, New
York, NY, (1988).

Liebowitz, Jay and Daniel De Salvo, ed., Structuring Expert Systems. Yourdon Press, Englewood
Cliffs. NJ. (1989).

Oliff, Michael D., Expert Systems and Intelligent Manufacturing. Elsevier Science Publishing Co.,
Inc., New York. NY, (1988).

Shneiderman, Ben, Designing the User Interface, Addison-Wesley Publishing Co.. Reading, MA.
(1987).

Ullman, Jeffrey, Principles of Database and Knowledge-Base Systems, Computer Science Press,
Rockville, MD, (1988).

Winston, Patrick H., and Karen A. Prendergast, ed., The AI Business: Commercial Uses of
Artificial Intelligence, The MIT Press. Cambridge, MA, (1984).

vii

viii I

Appendix A Overview of Multiattribute Utility

This appendix is adapted from the appendix in Volume 5, TESTERC User's Manual, by
Jacob W. Ulvila. It gives an overview of multiattribute utility analysis as applied to testing expert
systems.

Multiattribute utility (MAU) analysis (Keeney and Raiffa, 1976) is a methodology that is
grounded in the mathematics of measurement. MAU provides an appropriate procedure for
evaluation in cases where multiple objectives are important. MAU models reflect explicitly the
relative importance of various performance levels on different objectives and the tradeoffs among
objectives.

"The key stages in a multiattribute utility (MAU) analysis, as they relate to testing, are as
follows:

* identification of what is to be evaluated (e.g., a particular expert system);

• definition of the criteria, factors, or attributes of value;

a evaluation, or "scoring" of systems against the attributes;

0 prioritization of the attributes of value;

* evaluation of systems;

& sensitivity analyses.

Identification of What is to be Evaluated

The first step is to determine what is being evaluated. In the case of a system being tested,
that system is to be evaluated. It is aiso important to identify more precisely whether the evaluation
includes a particular hardware/software system, the system and its human operators, or something
else. This choice will influence the choice of attributes and the scope of testing. For purposes of
this illustration, we will assume that a single, well-defined hardware/software system is being tested
and that these test results are being evaluated to determine the acceptability of the system to perform
functions to assist human operators, but that the operators themselves are not being tested. We
further assume for illustration that it is desirable for the test to identify areas of strength and
weakness in the system as well as indicate its acceptability.

To use MAU analysis for test evaluation, it is also useful to construct additional hypothetical
"benchmark systems" to use as points of reference. For purposes of this analysis, we will specify the
following "systems":

• the test system, which is the system being subjected to testing;

* A-1

a goal system, which is a hypothetical system that fully attains every goal on every
attribute;

a failing system, which is a hypothetical system that fails on every attribute;

a marginal system, which is a hypothetical system that, on balance, would just manage
to pass the test, considering its performance over all attributes.

Introduction of these hypothetical systems enables a tester to apply the test criteria on a
consistent, comparative basis, and to highlight areas of deficient and superlative performance. Of the
hypothetical systems, the marginal one may be most difficult but most important to describe. Any
given system under test is likely to have some areas where it falls short of goals and others where it
exceeds goals. In addition, some of the goals may be set as ideals that could not be expected to be
met. The marginal system provides a way for the tester to interpret performance in a way that
recognizes these possibilities, and to specify in advance a minimal level of acceptable performance.
This specification in advance removes some of the subjectiveness of the process by setting an overall
level of acceptability before test results are known. Note that the marginal system will not generally
be unique. Many possible combinations of performance against attributes may be minimally
acceptable. However, when the MAU model is fully specified, all of these marginal systems should
receive about the same overall evaluation. Specification of one of these systems thus aids in the
overall evaluation of the actual system being tested.

Identifying Attributes of Value

Figure A.1 shows the attributes of value developed in Volume 1: Handbook for Testing Expet
Systems. These attributes are defined at the end of this appendix.

Evaluation on Attributes

Next, a scale is developed for each bottom-level attribute that relates improvements on the
scale to the value to the organization. Often this scale can be developed using natural standard units
(e.g., minutes for time, percent correct for accuracy) when such units exist. The relationship between
changes on the scale and the value of the changes is then established, and the value is transformed
for modeling purposes into a standard scale, such as a 0 to 100 scale. In cases where no natural units
exist, a relative value scale, such as a 0 to 100 point scale, could be used directly. Here, it is
important to define the points on the scale carefully in terms of the attribute being represented so
that unbiased assessments can be made.

For purposes of this report, we define the scales of utility such that a 0 represents failure on
that attribute and 50 represents meeting fully the performance goal on the attribute. This choice is
arbitrary in the sense that these levels of performance could be assigned any numbers, for example,
0 and 100, 0 and 1000, or 27 and 78. However, the points are not arbitrary in their meaning; 0 is
assigned consistently to the failure level, and 50 is assigned consistently to the level of full satisfaction.
This assignment provides a basis for consistent interpretation of the analysis and provides the kind
of consistency that red-'ces bias from the assessments. The scale also allows value to be attached to
performance that exceeds the goal, by scores greater than 50. Scales represent ratio judgments of
value in the following manner. A score of 25 is halfway (in value) between failure and full goal

A-2

2 2

ul 'j

ts

A-33

attainment. This provides for convenient and consistent interpretation of scores. However, scores
represent value on individual attributes only, and a score on one scale is not generally comparable
to a score on another attribute. The weighting procedure described below provides a means for
comparing across attributes.

Since a later step in the analysis makes comparisons across attributes, the method implies that
attributes are, to some degree, compensatory. That is, a low score on some attribute can be
compensated for, at least partially, by high scores on other attributes. If such is not the case, then
a threshold should be established on that attribute. A threshold is a minimal level of performance
on a single attribute that must be met. Failure to meet this performance renders the system under
test unacceptable regardless of its performance in other areas.

Suppose the g--al on set-up time were five minutes and that sixty minutes of set-up time were
considered totally unacceptable. Suppose, further, that the shorter the set-up time, the better, with
instantaneous set-up ideal and that an increase from 5 to 15 minutes was considered as serious as an
increase from 15 to 60 minutes. This would result in the utility curve shown in Figure A.2.

100 1

75 -s0o -•

I 0 " " ' " i25

0 o 10 15 20 25 30 35 40 45 30 55 60

Figure A.2 Utility Curve for Set-Up Time

A utility curve reflects value and thus is inherently subjective. However, the explicitness with which
these values are used in the MAU analysis removes the possibility of evaluation on the basis of a hidden
agenda. The results and outcome of an MAU analysis are reproducible by people who share the same
judgment over appropriate values and tradeoffs to use, and differences in evaluations by different people can
be traced to specific differences in their value structures, which are open to inspection in the MAU analysis.

The utility curve could take on many different shapes. In some cases, utility increases slightly until
some point is reached and then it rises dramatically. In other cases, utility is *all or nothing;* that is, no value
is perceived until a certain point is reached, then all value is obtained. It is also possible for utility to rise up

A-4

* to a target point and then drop off (e.g., for bias, which runs from -1 to + 1. with a target of 0). These
situations could lead to the following types of curve:

Attribute Attribute Attribute Attribute
(a) (b) (c) (d)

Figure A.3 Some Possible Shapes for Utility Curves

There is also no requirement that utility curves be continuous. Sometimes the attribute can be
measured in discrete terms, or categories, even though there is a continuous range for the measure. An
example is shown in Figure A.4.

U

Category

Figure A.4 Utility Curve for a Discrete Categorical Variable

Two important features of utility assignment are worth noting. First, the horizontal axis for each factor is
determined uniquely for that factor. Common sense and logic dictate the appropriate measure. Second, it
is not necessary to develop formally the utility curves themselves. Once the logic behind the curves is
apparent, scores might be directly assessed.

Often, there is not a readily quantifiable measure for an attribute. In these cases, verbal descriptions
of relative measure can be used. An example is the categorical attribute shown in Figure A4. Scaling terms
such as High/Medium/Low, Yes/No, Poor/Good/Very Good, and Go/No might also be used to define
measurement scales.

A-5

Prioritization of the Attributes (Weighting)

In the scoring systems described above, an evaluation scale from 0 to 100 was developed for each
factor. However, each scale is defined independently of all others, and the resulting scores are not directly
comparable. In any real test, some attributes carry more importance than others, and a measure of the
priority, or relative importance, of each factor is necessary for an overall evaluation. This is accomplished
through a weighting system. As with the scores, weights are judgments, and could vary from organization to
organization or from tester to tester. MAU analysis makes such weights explicit, however, and available for
review. (Weights should also be subjected to sensitivity analyses as discussed below.)

The most common perception of a weight is that it answers the question, "How important is attribute
A relative to attribute B?" Unfortunately, such a question often obscures the issue of evaluation. A more
pertinent question to ask is, "How important is the difference along the range in values for attribute A versus
the difference for attribute B?" The subtle differences in wording of these two questions is extremely
important. The latter question includes both the importance of the attribute as well as the "swinge in the
range of values on the attributes. The interpretation of weights and the procedure for assessing them depends
on the form of the model to be employed to aggregate the single-attribute scales. The theoretical basis for
a variety of aggregation models has been developed (see Keeney and Raiffa, 1976), but an additive aggregation
rule is appropriate or a sufficient approximation in most cases. (The additive rule is appropriate if "additive
independence" conditions are met.)

Weighting can be accomplished top-down or bottom-up. Top-down weighting is usually easier. In
the top-down approach, the analyst begins at the highest-level node in the hierarchy and assesses the relative
differences among attributes. A common approach assigns a weight of 100 to the most important swing.
Other weights are then assigned using ratio judgments-that is, if the swing on an attribute is judged to be
twice as important as the swing on another attribute, the former would carry twice the weight of the latter.
Furthermore, with additive independence, weights can be compared in an additive sense. If attribute A is
weighted at 100, attribute B at 75, and attribute C at 50, this implies that, for example, the combined effect
of 50-point swings in both B and C (added vwights equal 125) is more important than a 50-point swing on A
(weight of 100). Such comparisons can se ve as a good calibration check on the weights.

For consistency in the analysis, 'ne weights are often normalized to sum to 1.00 by adding the assigned
weights and dividing each by the sum. The basis for assigning weights might be in a statement of requirements
or other guidance provided to the tester, and this could well vary from one test to another. See Chapter 7
ot Volume 1: Handbook for Testing Expert Systems for more information. In fact, some guidance may be such
that some of the attributes are irrelevant. If this is the case, a weight of zero could be assigned to the
attribute. In any case, assigning weight before the test is conducted is a recommended procedure to reduce
bias.

Evaluation

After scores have been assessed against the attributes and weights have been assigned, evaluations can
be determined. Since an additive MAU analysis is used, the overall evaluation of an alternative is a weighted
average of assessed scores, with the exception that a system is regarded as a failure if any score falls below a
threshold on any attribute. (This is described in more detail in Volume 1: Handbook on Testing Expert
Systems.)

Although the numerical resul* nf a MAU analysis provide a compact representation of the evaluation,
they are not the only results of the analysis. The numerical output can also direct the tester to areas of
strength and weakness in the system under test and thus provide the basis for suggested improvements. The
nume ical output also summarizes explicitly the judgments used and thus provides a basis for building a verbal

A-6

* case for or against the system. Also, the explicit numerical representations of judgment, especially in the form
of weights, provide a means of identifying important differences of opinion it differences exist between testers
and evaluators.

Sensitivity Analysis

Several reasons recommend sensitivity analyses for most test evaluations. First, some parts of the
analysis may not be known with a high degree of accuracy for any of a number of reasons. While it is
desirable to design and conduct tests that provide highly accurate assessments, lack of resources or other
reasons sometimes prevent the level of accuracy desired. At this point, the test evaluator may decide to
include or exclude the data from consideration in the evaluation. We recommend including the data but
running sensitivity analyses over the range of uncertainty. Use of judgmental information is another reason
to perform sensitivity analyses.

There are three major types of sensitivity anaivses. First, the scores that have been assessed can be
modified to determine if results change. This type of sensitivity analysis is appropriate in cases where scores
were assessed with inadequate test data or where judgmental assessments were made. Generally, results are
reasonably insensitive to minor changes in scores, especially with an analysis that uses the whole MAU
framework. Next, several weights can be changed and the overall scores recalculated. This is useful in
examining large-scale changes to the model (such as using weights for a different evaluator), but does not make
it easy to isolate causes of change or disagreement. A third sensitivity analysis is to vary one weight at a time
and identify the regions where evaluations change. Typically, one factor is chosen and its weight is allowed
to vary over a wide range. As the weight increases, the total weight of the other factors must decease but the
weights are kept in the same relative proportion to each other.

. Attribute Definitions

Figure A.1 shows our MAU proposed framework for testing and evaluating expert systems. The overall
assessment of the expert system is composed of five criteria: knowledge base, inference engine, service
requirements, performance, and usability. These are subdivided to the level of attributes as described below.

KNOWLEDGE BASE. These attributes refer to the structure and content of the expert system's
knowledge base. While the descriptions below are phrased in terms of a rule base, analogous attributes would
apply to a frame-based expert system. (See Haves, 1981. fot a discussion of the logical equivalents of rule-
oased iný fxame-based s,'Ntems.)

Structure

Logtcal Consistency. The following attributes would limit the consistency (or correspondence) and
efficiency of a knowledge base. Redundant rules are rules or groups of rules that have essentially the same
conditions and conclusions. Redundancy can be due to duplicate rules or the creation of equivalent rules (rule
groups) by wording variations in the names given to variables, or the order in which they are processed.
Subsumed rules occur when one rule's (or group of rules') meaning is already expressed in another rule (or
group of rules) that reaches the same conclusion from similar but less restrictive conditions. Conflicting rules
are rules (or groups of rules) that use the same conditions, but result in different conclusions, or rules whose
combination violates principles of logic (e.g., transitivity). Circular rules are rules that lead one back to an
initial (or intermediate) condition instead of a conclusion.

Logical Completeness. A knowledge base is complete if it has no holes or gaps in its logic. The following
attributes indicate a logical incompleteness. Unreferenced attribute values are values on a condition that are
not defined; consequently, their occurrence cannot result in a conclusion. Illegal attribute values are values

* A-7

on a condition that are outside the acceptable set or range of values for that condition. An unreachable con-
clusion is a conclusion that cannot be triggered by the rules combining conditions. Dead ends are rules that

do not connect input conditions with output conclusions.

Content

Functional Completeness is the extent to which the knowledge base addresses all domain conditions. All
desired inputs: the knowledge base can handle all input conditions that need to be addressed. Applica-
tion/conclusion completely covered: the knowledge base can trigger all output conclusions that need to be
addressed. Identified knowledge limitations: the rules in the knowledge base can tell the user if input
conditions currently being processed cannot be addressed. Analogously, if the expert system is such that a user
can specify a conclusion in order to identify the input conditions that would generate it (e.g., as in a backward-
chaining system), an expert system that was knowledgeable of its limitations would tell users if a conclusion
currently being processed as input could not be addressed.

Predictive Accuracy. The following attributes address the accuracy and adequacy of the knowledge base.
Problems here may also be related to problems of performance. Accuracy of facts: the quality of the uncondi-
tional statements in the knowledge base. Accuracy of rules: the quality of the conditional statements in the
knowledge base representing expert judgment. Knowledge representation acceptability: whether or not the
scheme for representing knowledge is acceptable to other domain experts and knowledge engineers. Adequacy
of source: the quality of the persons or documentation used to create the knowledge base. Modifiability of
knowledge base: the extent to which the knowledge base can be changed and the control over that change.

INFERENCE ENGINE: the extent to which the inference engine provides error-free propagation of rules,
frames, probabilities, or other representation of knowledge or uncertainties used in the system.

"SERVICE" refers to aspects of the system (computer and others) in which the expert will operate.

Computer System. Design: the extent to which the expert system runs on the approved computer hardware
and operating system and utilizes the preferred complement of equipment and features. In some cases, the
,!(sign system will be stated in a requirements document; in other cases, the tester may need to survey available
equipment at the intended installation. Portability: how easily the expert system can be transferred to other
computer systems.

Computer Usage. Set-up time: the amount of tir. e required for the computer operator to locate and load
the program (if any) and the time to activate the program. Set-up time should be measured under the
expected operating conditions. Run time: the amount of time required to run the program with a realistic
set of input data. This attribute refers only to the time that the computer program takes to run; the time
needec. for the user is under PERFORMANCE factors. Space requirements: the amount of RAM, disk, or
other space required by the program. Hardware reliability: the percentage of time the computer system could
be expected to be operating effectively. Hardware capability: the computer system's total amount of RAM,
disk, or other space. Effect of feature use/jumping: the extent to which moving from various parts of the
program causes errors. Degradation: how well the program saves data and analyses and permits continuation
after an unexpected program or system crash or power outage. Handling input errors: the extent to which
th,- program prohibits a program crash and tells the user what to do after an input mistake.

System integration. Formats: the extent to which the program uses input and output formats that are
consistent with the intended use. This includes any mandated or standard formats that are specific to the
intended user organization, Data requirements: the extent to which th, program's data requirements are
consistcnt in content, quantity, quality, and timeliness with those available to the intended user organization.
The expert system should also be able to interact with specified and appropriate databases and communications

A-8

S systems. Documentation: the adequacy of material regarding the program',, use and maintenance. Copies
of computer code and its supporting documentation should be complete and understandable, and should allow
maintenance by the user organ.zation. (All applicable softrware documentation standards should be met.) Skill
requirements: -the extent to which the program can be operated by appropriately skilled individuals. The
appropriate skill requirement includes grade level (for military enlisted, military officer, or civilian personnel),
users' technical background, and training requirements. The appropriate level may be specified in
requirements or may be determined by reference to the organizational setting of its intended use and to the
personnel assigned to that setting.

PERFORMANCE refers to the operation of the expert system and tne user. It includes both comparisons
with ground truth and judgmental assessments.

Performance against Ground Truth. Speed: the amount of time it takes a user working with the expert
system to solve representative problems. Accuracy: the degree of overlap in the distributions of belief values
when the hypothesis is true versus false (see Chapter 5 of Volume 1, Handbook for Testing Etpert Systems).
Bias: the difference in the proportion of false negatives (hypothesis is true but system says false) to false
positives (hypothesis is false, but system say it's true) (see Chapter 5 of Volume 1, Handbook for Testing Expert
Systems).

Judgmental Performance. Response time: the judgments of users regarding the adequacy of the amount
of time the expert ,vstem takes to react to inputs. Time to accomplish task: the judgments of users regarding
the adequacy of ti. amount of time required to perform the task when using the expert system. Quality of
answers: the judgments of users and experts regarding the system's capability. Quality of reasons: the
judgments of users and experts regarding the adequacy of the system's justification for its answers.

USABILITY is the extent to which the expert system, or parts of the expert system, is used, is acceptable
to individuals, and is acceptable to the organization.

Observable Usability includes aspects of usability that a tester can observe (or a system can record) during
a test without asking the test subjects. Extent of use: how much users employ the expert system to perform
the task (e.g., the proportion of time that the system was used to accomplish tasks assigned in a test). Manner
of use: the way in which users employ the system and its features, including the procedures to access different
modules, the way that intermediate and final outputs are incorporated into the user's results, and the use of
interfaces Features used: the extent to which different aspects of the expert system are employed by users.

Opinions about Usability. Confidence: how confident users feel in taking actions based on working with
the expert system. Ease of use: how easy users judge the system is to use after they have completed training
and become familiar with the system. Acceptability of person/machine interaction process: the extent to which
users assess that they and the system are performing the tasks or activities for which they are best suited. Ac-
ceptability of results: the users' judgments regarding the adequacy of the system's capability. Acceptability
of representation scheme: the users' judgments regarding the adequacy of the system's way of presenting
knowledge. Input/output: the umcr's j-u.'.gment about the adequacy of the extent, display, and manner of
accessing the expert system's input and output.

Scope of Application: the users' judgments regarding the adequacy of the expert system in addressing
domain problems.

E~rplanation. Adequacy of presentation and trace: the users' judgments regarding the acceptability of the
system s presentation of its reasoning process. Transparency of expert system: the extent to which the sy'stem's
reasoning process is clear and understandable to its users.

A-9

Organizational Impact. Impact on work style, woikload, skills, and training: the judgments of users
regarding the impact of the expert system on how they do their job, or the skills and training required to
perform it effectively. Impact on organizational procedures and structure: the judgments of users regarding
the impact of the expert system on the organization's operations.

References

Hayes, P.J. (1981). 'The Logic of Frames." B.L. Webber and N.J. Nilsson (Eds.), Readigs in Artificzal
Intelligence. Palo Alto. CA: Tioga, 451-458.

Keeney, R.L. and H. Raiffa (1976). Decisions with Multiple Objectives. New York: Wiley.

0

A-IO

CONCEPT PHASE CHECKLIST
APPLICABIUTY OF PROBLEM AREA YES (Ipt.) NO (Opt,)

C.1 SUBJECT AREA WELL DEFINED >5 <5

C.2 DECISION-BASED PROCESS >3; <3

C.3 EXPERT SYSTEM TECHNOLOGY MOST APPROPRIATE >4 <4

C.4 EXPERT AVAILABLE >4 <4

C.5 NEED FOR KNOWLEDGE DISTRIBUTION >4 1 <4

Total:

BENEFITS TO BE ACHIEVED LOW HIGH
1 2 3 I, 4

IMPROVED PRODUCTIVITY

IMPROVED EFFICIENCY/TIME SAVINGS

IMPROVED ACCURACY

IMPROVED CONSISTENCY

IMPROVED TRAINING

IMPROVED INFORMATION HANDUING

REDUCED DOWNTIME

OTHER ISSUES

Total:

COSTS TO BE INCURRED LOW b HIGH
5 4 3 !,

TIME AND LABOR

H•ARDWARE AND SOFTWARE

SYSTEM TESTING

SYSTEM DISTRIBUTION AND LICENSING

SYSTEM MAINTENANCE

UPGRADE MANAGEMENT AND VERSION CONTROL

OTHER ISSUES

Total:

SUPPORT FOR EXPERT SYSTEM LOW HIGH1 2 3 _7 S
DEVELOPERS

END-USERS

MANAGEMENT
Total:

MILESTONE YES NO

WILL EXPERT SYSTEM TECHNOLOGY BE USED? >55 , _ <55

CONCEPT PHASE WORKSHEET
C.1 WELL-DEFINED SUBJECT AREA

YES (I PT.) NO (OPT.)

DATA IS STRUCTURED

BOUNDARIES ARE CLEAR

PEOPLE HAVE KNOWLEDGE IN AREA ,'

KNOWLEDGE IS AT RIGHT STAGE OF MATURITY

SUBJECT IS NARROW & ISOLATED -

SUBJECT CAN BE DMIDED INTO STAND-ALONE SEGMENTS ___

INCREMENTAL PROGRESS IS POSSIBLE 7

TOTAL:

C.2 DECISION-BASED PROCESS
YES (IPT.) NO (OPT.)

REQUIRES QUALITATIVE OR SUBJECTIVE REASONING -

TASK IS COGNITIVE 77 "'

TASK HAS MANY POSSIBILE COMBINATIONS 7
TASK INVOLVES CHAINS OF REASONING777

TOTAL:

C.3 EXPERT SYSTEM TECHNOLOGY MOST APPROPRIATE
YES (OPT.) NO (I PT.)

QUANTITATIVE REASONING 7
DATA STORAGE & RETRIEVAL 7
WORD PROCESSING 7
MODELS & SIMULATIONS 7
PROCEDURAL PROGRAMMING 7
RAPIDLY CHANGING DATA 7

TOTAL:

CONCEPT PHASE WORKSHEET (cont.)

C.4 EXPERT AVAILABLE
YES (1 PT.) NO (OPT.)

EXPERT EXISTS (BETTER THAN AMATEURS)

EXPERT CAN BE IDENTIFIED

EXPERT IS WILLING OR EAGER

EXPERT IS AVAILABLE AND ACCESSIBLE 7

EXPERT CAN COMMUNICATE DETAILED KNOWLEDGE I

EXPERT'S NAME TOTAL_

C.5 NEED FOR KNOWLEDGE DISTRIBUTION
YES (I PT.) NO (OPT.)

OTHERS COULD BENEFIT FROM KNOWLEDGE Z Z
PROCESS WOULD BE IMPROVEDZ* NEED FOR KNOWLEDGE TRANSFER

PROBLEM WITH EXPERT ACCESSIBILITY Z Li

NEED FOR TRAINING 77 F7

GEOGRAPHIC DISTRIBUTION PROBLEM

IMPROVEMENTS NEEDED IN DECIS!ON-MAKING PROCESS 7

TOTAL:

DEFINITION PHASE CHECKLIST

SCOPE AND REQUIREMENTS DEFINED* DATE

D.1 REQUIREMENTS STATEMENT COMPLETED _

DESIGN OF EXPERT SYSTEM PREPARED*

D.2 ONE-PAGE DESIGN COMPLETED

D.3 DETAILED DESIGN COMPLETED

DEVELOPMENT TEAM SELECTION*
EXPERT

DEVELOPER(S)

MANAGER

OUTSIDE REVIEWER
(IF APPUCABLE)

KNOWLEDGE ACQUISITION APPROACH SELECTION
(INDICATE DEGREE OF USE) IG

ELICITING KNOWLEDGE LOW HIGH

STRUCTURED INTERVIEWS

UNSTRUCTURED INTERVIEWS

QUESTIONNAIRES

OBSERVATION

DOCUMENTS

DOCUMENTING KNOWLEDGE

DECISION TREES

TABLES

KNOWLEDGE MAPS

END USER CONTACT LOW HIGH

LEVEL OF INTEREST

UNDERSTANDING OF SUBJECT AREA

LEVEL CF C" ,MPUTE, EXPEPTISE

COMMENTS

* MILESTONES K

D.1 REQUIREMENTS STATEMENT

SUBJECT AREA

SCOPE (SPECIFIC BOUNDARIES WITHIN SUBJECT AREA)

SYSTEM REQUIREMENTS (HARDWARE, SOFTWARE, ETC.)

PURPOSE (ROLE IN PROCESS, EXPECTED RESULTS, ETC.)

INTENDED USERS (WHO WILL USE IT)

CAPABIUTIES (WHAT IT WILL DO)

LIM!TATIONS (WHAT !T WILL NOT DO)

OUTPUTS (FILE INTERACTIONS, DEPENDENCIES, REPORTS, ETC.)

EXPECTATIONS (BENEFITS, IMPROVEMENTS, ETC.)

ROUTINE MAINTENANCE AREAS

D.2 ONE-PAGE DESIGN

SYSTEM OVERVIEW:

SYSTEM COMPONENTS

BASIC SYSTEM STRUCTURE (ATTACH APPUCASLE DRAWINGS)

SYSTEM INTERFACES

EXTERNAL CALLS AND DATA SOURCES

KNOWLEDGE REPRESENTATION

INFERENCING MECHANISM

D.3 DETAILED DESIGN

COMPLETE THIS FORM FOR EACH SYSTEM COMPONENT

COMPONENT:

PURPOSE:

SCOPE:

NECESSARY INFORMATION:

SPECIFIC EXTERNAL CALLS:

SPECIFIC DATA SOURCES:

PROTOTYPE DEVELOPMENT PHASE
CHECKLIST

DEVELOPMENT TASKS DATE(S)

P.1 EXPERT SYSTEM SHELL SELECTED

P.2 USERS CONSULTED ON INTERFACE ISSUES

P.3 DOMAIN ORIENTATION COMPLETED Z
P.4 KNOWLEDGE ACQUISmON SESSIONS

COMPLFTED

P.5 CASES SET ASIDE FOR TESTING

KNOWLEDGE CONVERTED INTO
KNOWLEDGE REPRESENTATION

INCREMENTAL TESTING PERFORMED

P.6 REQUIREMENTS STATEMENT REVIEWED

P.7 DESIGN DOCUMENTS REVIEWED

P.8 DOCUMENTATION PREPARED

MILESTONE
PROTOTYPE EXPERT SYSTEM PRODUCED

PROTOTYPE PHASE WORKSHEET

P.1 EXPERT SYSTEM SHELL SELECTION

SELECTION CRITERIA: RANK

AVAILABILITY TO ORGANIZATION

KNOWLEDGE REPRESENTATION

INFERENCE ENGINE

USER AND DEVELOPER INTERFACE

INTEGRATION WITH OTHER PROGRAMS/FILES

COST

EASE OF DISTRIBUTION

HARDWARE REQUIREMENTS

MAINTENANCE ISSUES

OTHERS:

* P.1.1 EVALUATION MATRIX COMPLETED

SHELL SELECTED:

P.2 USERS CONSULTED ON INTERFACE ISSUES

DESIRABLE FEATURES: RANK

MENUS

GRAPHICS

FUNCTION KEYS

REPORTS

FILE MANAGEMENT

HELP FACILITIES

SIMILARITY TO CURRENT SYSTEMS

JUSTIFICATION CAPABILITIES

OTHERS:

4:

z

a:

w

C/lu UHrj

PROTOTYPE PHASE WORKSHEET (cont.)

P.3 DOMAIN ORIENTATION

SOURCE OF BACKGROUND DATA IDENTIFIED

SOURCES USED:

EXPERT(S) OBSERVED AT WORK

GENERAL CONVERSATIONS Wfl H EXPERT(S)

P.3.1 FINDINGS RECORDED

P.4 KNOWLEDGE ACQUISITION SESSIONS

SCHEDULE DEVELOPED

EXPERT BRIEFED ON PROJECT

KNOWLEDGE PCOQUSITION PLANNER COMPLETED

FOR EACH SESSION

P.5 TEST CASE SELECTION

TEST CASES IDENTIFIED

AVERAGFEIFREQUE'"4" CAFES

EXTREME/SIGNIFICANT CASES

TEST CASES SET ASIDE FOR LATER TESTING

OL

P.3.1 DOMAIN ORIENTATION

DATE:

REFERENCE SOURCE:

IMPORTANT DATA:

DATE:

REFERENCE SOURCE:

IMPORTANT DATA:

P.3.1 DOMAIN ORIENTATION (cont.)

DATE:

EXPERT:

OBSERVATIONS:

COMMENTS:

I.

KNOWLEDGE ACQUISITION PLANNER
(COMPLETE FOR EACH SESSION)

DATE: INTERVIEW NO.:

INTERVIEW GUIDE DEVELOPED

INTERVIEW PERFORMED

KNOWLEDGE RECORDED

KNOWLEDGE COMPILED

MATRICES, DECISION TREES DEVELOPED

KNOWLEDGE ACQUIRED TO DATE ANALYZED

PROBLEMS IN KNOWLEDGE IDENTIFIED

PROBLEMS IDENTIFIED:

ISSUES FOR NEXT INTERVIEW:

DATE AND TIME OF NEXT INTERVIEW: je

INTERVIEW GUIDE

DATE: INTERVIEW NO.:

EXPERT:

KNOWLEDGE ENGINEER:

TOPICS TO BE COVERED:

ISSUES TO BE RESOLVED:

NEW KNOWLEDGE:

PROTOTYPE PHASE WORKSHEET (cont.)

P.6 REQUIREMENTS STATEMENT REVIEWED

REQUIREMENTS REMAIN FEASIBLE

PROJECT STILL CONFORMS TO REQUIREMENTS

CONFUCTS IDENTIFIED

DOCUMENT MODIFIED ACCORDINGLY

P.7 DESIGN DOCUMENTS REVIEWED

DESIGN REMAINS ACCURATE K]
PROJECT STILL CONFORMS TO DESIGN K7
CONFuCTS IDENT1FiED K7

DOCUMENTS MODIFIED ACCORDINGLY K7
P.8 DOCUMENTATION PREPARED

USER'S MANUAL DEVELOPER'S NOTEBOOK

ACKGROUND/OVERVIEW - REOUIREMENTS STATEMENT F]
INTENDED USERS K7 SYSTEM DESIGN K

ACCESSING SYSTEM []] DEVELOPMENT WORKSHEETS K
INTERFACE FORMAT K] KNOWLEDGE ACQUISION DATA

USING THE SYSTEM K] MATRICES, GRAPHICS K
FILES INVOLVED K7 FILE PROCESSING K

SAMPLE SESSIONS K]MAINTENANCE ISSUES K
PROJECT MANAGEMENT AIDS

0

TEST AND EVALUATION PHASE CHECKLIST

VERIFICATION BY EXPERT

PERSON RESPONSIBLE
DATE

TESTING COMPLETED Z____ _

FINDINGS RECORDED Z_
E.1 EXPERT EVALUATION FORM COMPLETED

VERIFICATION BY KNOWLEDGE ENGINEER

PERSON RESPONSIBLE

TESTING COMPLETED Z
FINDINGS RECORDED

E.2 DEVELOPER EVALUATION FORM COMPLETED

. VALIDATION OF OVERALL SYSTEM BY USERS

TEST DISTRIBUTED _-_

TESTING COMPLETED

FINDINGS RECORDED

E.3 USER'S EVALUATION FORMS COMPLETED

EVALUATION OF USER'S MANUAL
E.4 USER'S MANUAL EVALUATION FORMS _-_

COMPLETED

EVALUATION OF DEVELOPER'S NOTEBOOK
E.5 DEVELOPER'S NOTEBOOK EVALUATION

FORMS COMPLETED

REQUIREMENTS AND DESIGN REVIEWED

E.6 REOUIREMENTS EVALUATION COMPLETED

E.7 DESIGN EVALUATION COMPLETED

MILESTONE

TESTING AND EVALUATION COMPLETED Z

E.1 EXPERT EVALUATION FORM

EXPERT: DATE:

TEST CASES APPLIED TO EXPERT SYSTEM
NUMBER

AVERAGE/FREQUENT CASES

EXTREME/SIGNIFICANT CASES

PROBLEMS IDENTIFIED

KNOWLEDGE

LOGIC 0

ORDER OF QUESTIONING

OVERALL IMPRESSION LOW HIGH

COMMENTS

1*

E.2 DEVELOPER EVALUATION FORM

NAME: DATE:

TEST CASES APPLIED TO EXPERT SYSTEM
NUMBER

AVERAGE/FREQUENT CASES

EXTREME/SIGNIFICANT CASES

PROBLEMS IDENTIFIED

LOGIC

INFERENCING

INTERFACE

COMMENTS

E.3 USER EVALUATION FORM

NAME: DATE:

COMMENTS

INTERFACE

RESPONSE TIME

USER-FRIENDLINESS

APPROPRIATENESS OF SUBJECT LEVEL _

FILE MANAGEMENT ISSUES

GENERAL

OVERALL IMPRESSION LOW HIGH

Ije

E.4 USER'S MANUAL EVALUATION FORM

NAME: DATE:

OVERALL DOCUMENT
YES NO

READABLE Z Z
ACCURATE F77 7
CLEAR

COMPLETE 7
EASILY UNOERSTANDABLE 77 7
COMMENTS

SAMPLE SESSIONS
YES NO

UNDERSTANDABLE 777-
ACCUPAkTE 7
CLEAR 7 7
COMPLETE 77 77
DESCRIPTIVE

COMMENTS

OVERALL IMPRESSION LOW HIGHpp,

E.5 DEVELOPER'S NOTEBOOK
EVALUATION FORM

NAME: DATE:

OVERALL DOCUMENT

YES NO

READABLE 7
ACCURATE I

CLEAR 7E

COMPLETE L7 F7
EASILY UNDERSTANDABL EE

COMMENTS

SUPPORTING DOCUMENTS INCLUDED

YES NO

REQUIREMENTS STATEMENT 1
SYSTEM DESIGN DOCUMENTS 77
DEVELOPMENT WORM- EETS L__
KNOWLEDGE ACQUISITON MATERIALS 7i
FILE PROCESSING AND MAINTENANCE ISSUES WE]
PROJECT MANGEMENT AIDSW]

COMMENTS

OVERALL IMPRESSION LOW HIGH

1.

FINAL DEVELOPMENT PHASE
CHECKLIST

EVALUATION RESULTS COLLECTED DATE COMPLETED

END-USERS

EXPERT

DEVELOPER(S) _7

OTHERS _7

END-USER COMMENT EVALUATION

COMMENTS COMPILED [I
COMMENTS ANALYZED _7

RELEVANT & FEASIBLE COMMENTS SELECTED Z
CHANGES INCORPORATED INTO EXPERT SYSTEM

END-USERS El
EXPERT 1-

DEVELOPER(S) I
OTHERS Z

EXPERT SYSTEM RETESTED

RULES VERIFIED __

LOGIC VAUDATED _7

INTERFACE REVIEWED _7

CHANGES INCORPORATED INTO DOCUMENTATION

END-USERS

KNOWLEDGE ENGINEER

OTHERS F7
MILESTONE

FINAL EXPERT SYSTEM PRODUCED F7

POST-DEVELOPMENT PHASE CHECKLIST

MAINTENANCE/TECHNICAL SUPPORT/UPGRADES
PERSON RESPONSIBLE

YES NO

HOTLINE REQUIRED 7

FREQUENCY OF REVIEW

SYSTEM UPGRADES
REASON DATE

TRAINING (SELECT ALL THAT APPLY)

PERSON RESPONSIBLE

INDMIDUAL Z TUTORIAL DISK Z
GROUP 7 DEMONSTRATIONS F7
TRAINING MANUA

DISTRIBUTION (SELECT ALL THATAPPL,'

PERSON RESPONSIBLE

USER DATABASE PREPARED RUM-ONLY PREPARED

USERS CONTACTED SYSTEM REPRODUCED

DISK4 ORDERED COVER LETTER PREPARED

NUMBER OF 3 1/2? -- OCUMEATION PRODUCED

NUMBER OF 5 1/4' OD PACKAGING PREPARED

NUMBER OF 5 1/4" HD -

DISKS FORMATTED
REGISRATION NO. ASSIGNED

LABELS PRODUCED

MILESTONE
FINAL SYSTEM IMPLEMENTED [DATE: _

