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SUMMARY

Many ground shock calculations performed for the Defense Nuclear Agency utilize rate-in-
dependent plasticity models with non-associated (i.e., non-normal) flow rules to represent the
behavior of geological materials. In such models the yield surface is used to limit the shear and/or

tensile stresses, while the flow rule is used to independently define the direction of plastic straining
(thereby limiting the dilatancy). The behavior of constitutive formulations of this kind in dynamic
applications is analyzed in this report. By means of a "constructive" proof, it is demonstrated

mathematically that these models lead to multiple, and therefore spurio,,s, solutions in wave
propagation situations; in other words, uniqueness of solution breaks down fo- dynamic in-
itial/boundary value problems. Although a simple class of multiple solutions is presented to

complete the proof for a very simple type of problem, the conclusion is quite general; it is relevant
to all of the practically used ground shock (and some of the structural) plasticity models. The result

implies that normality of flow is a necessary (as well as a sufficient) condition for uniqueness in
dynamic applications of any rate-independent plasticity model.

Obviously, these findings also imply an inherent lack of robustness in numerical analyses
based on non-associated plasticity. Because the use of these models is widespread in ground shock

(and structural) calculations, the fact that they can produce multiple (and therefore spurious)
solutions is significant; it casts serious doubt on the validity of the specific results of any (and every)
calculation based on this kind of constitutive representation. Therefore it is strongly recommended

that ground shock calculators promptly abandon their reliance on such models in all work. To

describe the situation most bluntly, these models do not provide a rational basis for the computations
needed for prediction, desigti and/or analysis applications. In all cases for which an associated flow

rule is deemed inadequate to fit observed material behavior, an approach other than rate-independent
plasticity must be sought in order to represent such behavior in a reliable, self-consistent and rational

manner.

In view of the fact that non-associated plasticity models have already been extensively used

in analyses for DNA, it is recommended that some effort be made to quantitatively assess the
consequences of their use. In particular, the extent to which the model assumptions and parameters

can affect the numerical solutions to various types of problems should be investigated.

PTC .~LJ ...
111.,.;t iý Fo

Ni R-4
C--



CONVERSION TABLE

CONVERSION FACTORS FOR U.S. CUSTOMARY TO
METRIC (SI) UNITS OF MEASUREMENT

M ULTIPLY ----------------------------- ],.. BY .................. ------- >- TO GET
TO GET -'t ............................... BY -.- .......................... DIVIDE

bar 'I->< OO 000 XE+ . kilopascal (kPa)
degree Farenheit OF-32 i .32) / degrees Celsius

foot 3.048 000 X E-I1 meter (in)

foot-pound-force 1.355 818 joule (J)
inch 2.540 000 XE-•2 meter (m)

kip (1000 lbf) 4.448 222X KE + newton (N)
kip/inch 2 (ksi) 6.894 757X E +•a3 kiopascal (kPa)
kips per foot I 4.•932:- kilonewtons per meter
kips per sq. ft. (ksf) 4.78 X:E + 3 pascal (Pa)
ksi 6.894 757 X-E-+6• pascal (Pa)
pound 0.4536 kilogram (kg)
pound-force (Ibs avoirdupois) 4A48 222 . newton (N)
pound-force inch 1.129 848 X E -1 newton-meter (N. -m)
pound-force/inch 1.751 26$ XE + 2 newton/meter (N/m)

pound-force/foot 2  4.788 026 X E -2 kilopascal (kPa)
pound-force/inch 2 (psi) 6 5894 757 kilopascal (kPa)

pressure (psi) 6.894 7• 7 F7 3 pascal (Pa)
square inch 6:452 X E - 4 meter 2 (M 2 )

square foot m9.29xE..2 ieter 2 (m 2 )

"slug 1.459 390 X" E + 1 kilogram (kg)

iv,



TABLE OF CONTENTS

Section Page

SUMMARY ............................................... iii

CONVERSION TABLE ........................................ iv

1 INTRODUCTION .......................................... _

2 RATE-INDEPENDENT NON-ASSOCIATED PLASTICITY ...... 2

3 DERIVATION OF THE TANGENT STIFFNESS TENSOR ....... 5

4 WORK DONE IN AN INFINITESIMAL LOAD-UNLOAD CYCLE 7

5 ELASTIC-PLASTIC WAVE PROPAGATION ................... 11

6 FAST PLASTIC WAVES AND NON-UNIQUENESS ............. 20

7 CONCLUSION ............................................... 27

APPENDIX

DERIVATION OF THE STRAIN INCREMENTS SATISFYING
INEQUALITy (4.7) ....................................... 29



SECTION 1
LNTRODUCTION

To represent geological materials in ground shock calculations, analysts often use rate-in-

dependent plasticity models which are non-associated, i.e., which utilize plastic strain increments
not directed along the normal to the yield surface. Although such models are often fit to quasistatic

material tests, they are used in dynamic ground shock analyses in a rate-independent formulation,
with only the values of the material constants being adjusted to account for dynamic effects. In such
models the yield surface is used to limit the shear and tensile stresses, while the flow rule is used to
independently define the direction of plastic strain (and thereby limit the dilatancy exhibited by the

model).

The wave propagation behavior of these models is analyzed in this report. Although a

considerable amount of test data is consistent with non-associated plastic flow (Lade 1988)1, it is
shown below that the assumption that this applies for all strain rates is not appropriate in dynamic

analysis. Viscosity, size effects, etc., in real materials may affect the flow direction for strain rates
of importance; in fact such effects may preclude any plasticity-based formulation from working
well. The present analysis proves that the rate-independent, non-associated plasticity used in practice
is not rational (i.e., it leads to improperly posed problems possessing multiple - ond therefore
spurious - solutions) whenever inertia effects are included (as is always the case for wave

propagation applications).

This report presents the general equations of rate-independent plasticity in Section 2. This
is followed by a derivation of the plastic tangent stiffness tensor in Section 3, an analysis of certain

infinitesimal load-unload cycles in Section 4, and a derivation of the general equations governing
elastic-plastic wave propagation in Section 5. Finally, the results of Sections 2-5 are utilized in
Section 6 to construct a simple initial/boundary value problem f ,r which the existence of multiple
solutions is easily demonstrated. It has long been known that associated flow is a sufficient condition
for uniqueness in plasticity. This report proves that it is also a necessary condition for uniqueness

for the rate-independent models usd in practical analyses of ground shock.

I P.V. Lade, "Effects of Voids and Volume Changes on the Behavior of Frictional Materials",
Intl. J. Num. Anal. Meth. Geomech., Vol. 12, No. 4, p.3 5 1-370, 1988.
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SECTION 2
RATE-INDEPENDENT NON-ASSOCIATED PLASTICITY

Non-uniqueness will be proven by demonstrating that multiple solutions can occur during
an infinitesimally short time interval dt. During such an interval the changes in the displacement

field itself are infinitesimal. Therefore we may linearize the geometric treatment without loss of

generality, provided that we adopt a reference configuration corresponding to the (possibly
deformed) current geometry at the instant of interest. If we adopt such an "updated Lagrangiap"

approach, then we may utilize the linearized "small displacement" kinematic strain decomposition
during the interval dr,

= -E -P (2.1)
Eij =Eij I- Ei

where the components of the strain rate tensor, d "noted by Eij, are measured with respect to a

reference configuration which represents the geometry ai the instant of interest. The superscripts

denote the elastic and plastic strain rates, and the elastic strain is related to the stress through the

elastic stiffness. (In this report we adopt the engineering mechanics convention that stresses and

strains are positive in tension).

Aside from the kinematic decomposition of the deformation into elastic and plastic strains,
all rate-independent plasticity models are characterized by means of four main features. These are

the elastic behavior (to be discussed later), the yield condition, hardening (if any), and the flow rule.

The yield condition can be written most generally as f(ca., Kk)=O, where a0' are the components of

the stress tensor and the Kk, k=l ...n, denote the n hardening parameters in the model (which are

absent in the special case of ideal plasticity). The yield condition may be considered a hypersurface,

called the yield surface, in a six-dimensional stress space. (Each point in such a space corresponds

to a stress state, and the yield surface contains those points corresponding to stresses at which plastic
deformation can occur). Without loss of generality we can associate values f<O with elastic states
"within" the yield surface, while the region f>O "outside" the yield surface is excluded by the theory.
This exclusion implies that f=O for as long as plastic yielding occurs, so that differentiation of the

yield condition with time gives f = 0, the "plastic compatibility condition"

ai ýLij + 'fk*k = 0 (2.2)

2



which must be satisfied during plastic response. (In this report we adopt the notation -= and

utilize the Einstein summation convention concerning subscripted indices, except where explicitly

indicated otherwise).

Because hardening (if any) proceeds according to specified "hardening rules" as plastic

straining occurs,

Kk = (2.3)

where the 1i are coefficients used to represent the hardening behavior. Equation (2.2) therefore

becomes

nr ij = Hij Ei (2.4)

in which

and H __ (2.5.)n ij- a n lCk

It should be noted that the tensor nK corresponds to the outward-drawn "normal" to the yield surface

in stress space and possesses the symmetry nr1 = np (because of the symmetry of yij).

To complete the mc Ael, the flew rule must be specified. This is done in terms of a "direction"

of plastic strain nf so that the flow rule can be written generally as

Ef= X n (2.6)

in which, without loss of generality, nri is chosen so that X>O during plastic deformation (X=O during

elastic deformation), and the magnitudes of nP and X are scaled so that

P P Y Y (2.7)nijn=n3ijnij



P Y
If the "normality condition" nf = nr is satisfied, the flow rule is said to be normal, or associated;

P YP P

otherwise nf * ny and the flow rule is said to be non-associated. It should be noted that nq = nj•

(because of the symmetry of Ejj).

Summarizing, rate-independent plasticity models postulate that material deformation con-

sists of elastic and plastic components, and all such models exhibit four features:

a) an elastic stiffness tensor that defines the functional relationship between the stress
and the elastic strain,

b) a yield function that defines the plastic states of the material, and which is defined
in terms of the stress as well as hardening parameters (except in the case of ideal
plasticity),

c) hardening rules which specify the way the hardening parameters evolve,

d) a flow rule that specifies the "direction" of plastic straining.

Particular choices for the arbitrary functions in a-d define the individual models which are used in

practical applications, and which make up the broad class of models examined in this report-

4



SECTION 3
DERIVATION OF THE TANGENT STIFFNESS TENSOR

We begin our analysis of the wave propagation characteristics of plasticity models by

deriving the general form of the tangent (elastic-plastic) stiffness tensor. The incremental relation-
ship between the stress and strain rates for elastic response is

%CjIEk (3.1)&ij = Cijkl•. 43.]

where Cvk, are the components of the (fourth rank) elastic stiffness tensor. It is well known At

Cijkt possesses the symmetries Cijkl = Cijlk = Cjil= Ck1ij. In the plastic case substituting eq. (2.1)

gives

&mn = Cmnpq (Epq4_.;q) (3.2)

YMultiplying this equation by nnY and substituting eqs. (2.4) and (2.6) leads to

XHmnnnn = nyCmnpq(ipq-•n•q) = :A, Ipqnpq (3.3)

where some dummy indices have been interchanged. Equation (3.3) can be solved for X,

S= QnfmnCmnpq ipq (3.4)

in which

Q1 (3.5)
(nnY Cmn mpq pq + Hpqn Pqq

In standard dynamic computational procedures the constitutive behavior is utilized to

calculate the stresses from strains (which, in turn, are computed from the field equations). We

therefore consider ij to be the input here and aii to be the desired output quantity. According to eq.

(3.1) the quantity Cmnpq ipq represents the rate of change of stress in the case of elastic response

P = Y(i.e., = 0), so the first of eqs. (2.5) implies that the scalar n Cmnpq £pq represents f , the

hypothetical rate of change of the value of the yield function in that case. Because the definition of

f implies that a negative value of wF ,ould indeed be consistent with elastic behavior, plasticity

5



can occur only for non-negative values of fE (otherwise the stress response would not be unique).

Furthermore, if f U.. cq. (3.4) indicates that X = 0, so that Ci =0 from eq. (2.6). Therefore, f*E= 0

also implies that the response is elastic (this situation is called neutral loading). For these reasons,

plastic yielding (if • 0) will occur if and only if
y

nmn Cmnpq epq > 0 (3.6)

P

Because X>O in this case, eq. (3.4) implies that Q >0. For consistency, therefore, flpq must be defined

so that the denominator of eq. (3.5) is always positive. Substituting eqs. (2.1), (2.6) and (3.4) into

(3.1) gives the incremental stress-strain relation

aJj =Cjkl _kI - QCijkI nmnCnnpq Ypq (3.7)

which (after interchanging the dummy indices k,l and p,q in the last term) gives

•ijn Ciyk C'l-Q~p (3.8)

&ij=nCkjkzQCypq fqmn CmnklEkl

Invoking the symmetry Cmnkl = Cklmn leads to

npq Ck-mn nmn (3.9)
'&j=(Cijlk - QCijp fl Ckm ýnkI

The quantity in the parenthesis of eq. (3.9) is the desired tangent stiffness modulus, Lijkt. It

may be written more conveniently as

PQ k (3.10)Lijk! = Cijkl - Qmijrakl (.0

where
P- Y Y (.1

mti =_ Cijpq npq and mi E Cijpq nfpq (3.11)
P Y

Note that for associated flow mi = mi so that, by virtue of eq. (3.10), the tangent stiffness

tensor possesses the "stress-strain" symmetry LijkI = Lktv. For general non-associated flow, how-

ever, eq. (3.10) implies that the tangent stiffness tensor does not possess this particular symmetry,

although, of course, L1kt = Ljikl = LLjjk in all cases.

6



SECTION 4

WORK DONE IN AN INFINITESIMAL LOAD-UNLOAD CYCLE

Consider the response of a rate-independent plastic material subjected to an infinitesimal

load-unload strain cycle. (In order to do this, we refine an analysis previously described in (Sandier
2and Rubin 1987) , which in turn was partially based on arguments first presented in (1I'iushin

1961)3). Refer to Figure 1, which shows a two-dimensional schematic representation of an

infinitesimally small region of the six-dimensional stress space. Point 0 corresponds to any initial

stress state on the yield surface, represented locally by the line OY, while the inclined line OS

represents (locally) the surface orthogonal to the "flow direction" ni (this surface is called the plastic

potential surface). Let Ak, be an infinitesimal strain increment from the state 0 that causes the

response to be plastic. The resulting stress, shown in Figure 1 at P, is given by

=i Q + L.klArkl (4.1)

(The figure indicates some hardening of the yield surface during the loading increment, but this

detail is not significant; for ideal plasticity P lies on OY). The unloading segment PQ, which

corresponds to the strain increment -Akt, is elastic and results in the final stress

�=0-p - Cki kl A (4.2)

The work (energy) required to deform a unit volume of the material through the load-unload

strain cycle C (Acy followed by -Ac,) is given by

AW_ J ai~dij = raydei + raijdEy (4.3)

C

For the infinitesimal cycle ±A+-j the Mean Value Theorem can be applied to obtain

2 I. Sandier and D. Rubin, "The Consequences of Non-Associated Plasticity in Dynamic
Problems", in Constitutive Laws for Engineering Materials - Theory and Applications, Ed. by
C.S. Desai, et al, Elsevier, p. 345-352, 1987.

3 A.A. ll'iushin, "On the Postulate of Plasticity", PMM, Vol. 25, No. 3, p. 503-507, 1961.

7
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FIgure 4. 1. Depiction in stress space of the response of a rate-indePendent non-associated
plasticity model to an infinitesma strain cycle A .
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+ (4.4)

Referring back to eqs. (3.10) and (4.1,4.2) this becomes

AW = IQmijMk&kAij (45)

Substitution of eqs. (3.11) finally gives

AW =! P (4.6)2• Q( CijpAnp ij I C ldrsn r'st•k I 46

Note that for associated flow nP = nr, so that AW can never be negative because the two expressions

enclosed in parenthesis in eq. (4.6) are equal and Q is positive.

In the non-associated case, it is easy to find strain increments A~kl which satisfy the pair of

inequalities

Y P
ni KCi tAV~kl > 0 > ni jClA~kl (4.7)

For example, consider the strain increment defined by the equation

Cijkl nkl = nY- niP (4.8)

In this case, using eq. (2.7), we can calculate the quantities

CnkiA _ni nli =12_(n 1jni +nijn;, _2nip n In -nf 12  (4.9)

nrjjk F~jn 1 n-nn = ny PDf -2n~nf Ln ' Y >

P Y P yP y pY Ynf C11ki&kl = nf nrj -nij niy = nij n -i -nij nj =l-ni CijklAfkl < 0 (4.10)

so that eq. (4.7) will indeed be satisfied. A derivation of the complete (six-dimensional) set of

Ac'kt for which eq. (4.7) holds is given in the Appendix.

9



Consider the geometric interpretation of eq. (4.7). Its first inequality merely implies, from

eq. (3.6), that the strain increment &kl causes plastic loading, with the quantity CijklAEkl representing

the hypothetical stress increment for elastic instead of plastic response. This hypothetical "elastic

stress increment" is shown in Figure 1 as the dashed line OE. According to the second inequality
Pin (4.7), the elastic stress increment must form a negative inner product with ni . Therefore (4.7)

merely requires that the line OE lie within the "wedge" YOS. We have just shown that paths such

as OE exist for non-associated flow, but (4.7) can never be satisfied in the associated case, because

its left and right sides, which have opposite signs, then become equal. (In other words the "wedge"

YOS in Figure 1 collapses into the single line OY when the flow rule is associated).

Let us now return to eq. (4.6). Inequalities (4.7) imply that the factors enclosed in parentheses

in eq. (4.6) are of opposite sign, so that the work AW must be negative (because Q > 0). Therefore,

instead of requiring that work be dissipated during all strain cycles involving plastic response, the

non-associated material model actually supplies energy whenever the cycle ±A-ii satisfies the

inequalities (4.7). In the next two sections we will show how the possibility of such "energy

generation" causes uniqueness to break down and introduces spurious signals into dynamic

initial/boundary value problems.

10



SECTION 5

ELASTIC-PLASTIC WAVE PROPAGATION

In order to understand the behavior of non-associated plasticity models in dynamic problems,
we will first analyze the propagation of simple plane waves. Consider plastic loading waves that

propagate with wave speed c into material at rest in a homogeneous (uniform) stress/strain state 0
at yield, and produce motion behind the wave front in a single spatial direction (which will generally

be different from the direction of propagation of the wave) for all of the particles. The situation is
depicted in Figure 2, in which the unit vectors ai and P3i represent, respectively, the (constant)

direction of wave propagation (normal to the wave front) and the direction of particle motion

(displacement, velocity and acceleration). As shown in the figure, the "local" coordinate system,
dxi, has its origin at an arbitrary point on the wave front at some arbitrarily chosen instant. Let

ds M cdt - aj dxj denote the infinitesimal distance of point dxj behind the wave front at a later time

dt. The particle displacement field g(ds)pi due to the wave produces the displacement field

ui (dxj, dr) = ui(dxj) + g (dSO)i =u9() + -dxj + g (ds) i(5.1)

where u(dx) is the initial displacement field in strain state o, and g is any continuous, non-de-

creasing function of ds behind the wave front and zero ahead of it. Therefore g > 0 and g' > 0. The
remaining relevant field quantities are derivable from ui by means of the equations

aui (52
vi---'= g cg' P i (5.2)

ai=-"=.i= 2 i (5.3)

I 0 01 , 0 (5.5)

Oijq=%¢J + L ijkl (Ekl- E)= a + -LIk (_--al Pk -k P)g = W 0 - Lijkl (xk 0l g" (5.5)

11



Propagation

Direction aj

Particle Motion

"_Wave 
Speed c

dX2

X2 dxj Plane Wave at Tivne t+dt

dx3

X3  X
Plane Wave at Time t

N

Figure 5.1. Plane wave propagating in cai direction with particle
motion in Pi direction.

12



where vi and ai are the velocity and acceleration, respectively, o0 is the initial (uniform) stress, and
d

-- •. (To obtain the above equations the chain rule,

ag& gA _d s = 3g __.a as=c g' (5.6)
*xj - x= -Jg ; and at -ds at

as well as the "strain" symmetry Lijk, = Lijjk were invoked). The equation of motion is

aa.i (5.7)
pai =

in which p is the density of the material. Substituting eqs. (5.3,5.5,5.6) into eq. (5.7) gives

pcgiP = Lk1 Ok j1 , g" (5.8)

behind the wave front. By interchanging dummy subscripts in the last equation we may write

g"(ak Likj a l - pC _c2pi = g"(ak Liklj a, - pc28ij )3j = 0 (5.9)

in which Sy is the Kronecker delta (unity if i=j, zero if i~j). For a (non-trivial) wave solution the

"loading rate" g" will not be zero, so that wave propagation requires that

(Aij - M Kijj =0 (5.10)

in which

Aij-yakLiklj ot ; and M=-pc2  (5.11)

Equations (5.10,5.11), which must be satisfied for a physical wave to exist, form an

eigenvalue problem. The three eigenvalues M of the 3x3 matrix Aij represent the values of the

quantity pc2 for which wave propagation can occur (i.e., for which non-zero eigenvectors D3i are

possible). These values determine the wavespeeds c which are characteristic of the material (at its

current state 0) for the direction of propagation ai, while the three eigenvectors Pi correspond to

the directions of the particle motion in the different types of wave which may occur, We will return

to this point later.
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Equations (5.1) through (5.11) apply as well to elastic wave propagation if the tangent

stiffness Lijkl is replaced by the elastic stiffness Cijkl. Define

EE

Ai0  ak Ciklj a, = ak Ckifj a, = ak Cjlki Oxi = a, Cjkli ak = ak Cjkli a, = AE (5.12)

so that the eigenvalue problem corresponding to elastic waves is

Aij j = ME~i (5.13)

where ME is an eigenvalue of AE. Because Citt is positive definite, the matrix AE is also positive

definite and symmetric in view of eq. (5.12); therefore it has three real and positive eigenvalues,

E tdenoted by Mk and a corresponding set of orthonormal eigenvectors a. If we define Zki as the i

component of a, we can write

Aj ZkJ = Mk Zki (no sumonk) ; where M > M2M > 0 and ZkiZi = kl (5.14)

Therefore three different elastic waves are possible (for k = 1,2 or 3) in which Pi zki. Also, note

that -_k can be chosen instead of _k as an eigenvector of AE1 ; we shall choose each z in such a way

that ZkiLi Ž0 .

As an example, let us consider linear isotropic elasticity. In this simple case the elastic

stiffness is expressible as

Ciktj = (K - y-)SikSlj + G(SilSkj + Sq0kkt)

where K > 0 and G > 0 are the bulk and shear moduli of the material, so that

A0j = ak Ciklj a, = (K- -) a ctj + G aj GSi + Ga ij k ak

G (5.16)=(K+-j ctj 1+GSj

because ak ak = 1ak12 = 1. Multiplying eq. (5.16) by Zkj and subtracting Mk Zki from both sides gives

14



A -M Zk - kE ( =K) +(G- M)zk (no sum on k) (5.17)Aijkj3 - [ 7k K + ) a~i (aj zkj )= G - k~ k

which, after multiplying by oi, leads to

A 1 aicZkji-Mk aiZki =(K +G--Mk) (aiZki)= (no sum on k) (5.18)

sotht iterM =K+ 4G

sothateitherMk = K+ 4 or i Zki = 0 must be satisfied. For the first possibility, which - for reasons

that will become apparent shortly - we will label k=l, substitution for ME, into eq. (5.17) implies

that ai (aj Zlj ) = Zli so that Zji (xi (xj zlj = (aj zlj )2 must be equal to zli zli = 811 = 1. Because we

have chosen z1 i so that zliaOi _ O, zii = +1, implying that zli = a•; such a wave is said to be a

longitudinal, primary or P wave. For the second possibility, ai Zki = 0 implies that zki is perpendicular

to ai so that such a wave is a transverse, shear, secondary or S wave; in this case eq. (5.17) implies

ME = G. Because two orthogonal eigenvectors may be chosen in the plane perpendicular to oti,

ME = G represents a double root and each line in the plane represents one of the possible directions
of polarization of the S wave. Therefore, Z2i can lie in any direction perpendicular to ai with z3i

perpendicular to both aci and to z2i. Summarizing the isotropic linearly elastic case, the wave speeds

must satisfy the inequalities Me, = K + 3G > M--2 = M3 = G > 0, and the direction of particle motion

zli must coincide with a1 , while Z2i and z3i can be chosen as any two mutually perpendicular

directions in the plane perpendicular to ai. We also note that the strict inequality MI > M2 appears

to hold for all elastic solid behavior (anisotropic as well as isotropic); we will utilize this fact later.

We now return to the analysis of plastic loading waves, as described by eqs. (5.10,5.11).
Applying eqs. (3.10) and (5.12) leads to

A kCikIjalQak m my 0lc = A - Q ak, mP mya (5.19)Aij ~ ~ ~ i =j OIk Cil 1-Qa ik mij

so that

Ay Pj = AE Pj - Q mpi ok (myj (x 0j) = M Di (5.20)
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Define a new quantity yi as the solution of the system of linear equations

Zji Yj - Pi (5.21)

so that, in view of the last of eqs. (5.14), yp = 8pj yj =Zpi zjiyj =Zpi Oi. Multiplying eq. (5.20) by Zqi

and substituting eq. (5.21) leads to

zqj AE zpj yp - Q zqi mikp k (m•jl ZpjYp )=M zqi ZpiTp = M qp Yp (5.22)

From the first of eqs. (5.14)

zqiaAijzpj=ZqiME Zpi M"'8pq (no sum on p) (5.23)

so that, eq. (5.22) implies

E P Y[M -Mq I Yq = Q Zqi mik ak (-imn aX Zrj Yr) (no sum on q) (5.24)

or

Q Zq mai • (5.25)

Yfq = M -M i M a ( n o s u m o n q )

q

where a represents the term in parenthesis in eq. (5.24). Now

a -mY k zpl 'p = -Cklij J ak 1 = -n >• (Cir i + Cijl)cck •l

nrC 1 (526
= , Cvijkl - (--ok 01 - a1 •Xk) = n" Cjk1 (-k - Ek)/g 0 (5.26)

where the last inequality is inferred from eq. (3.6) together with g' > 0 for the plastic loading wave.

Furthermore, from eqs. (5.25,5.26),

3 (5.27)
-a = mir ai Zpj y•p = DaOi Mi Pp )(Qpa

Ii V zJP=~am zPj X 7PI MR kcc) E

Because a > 0 for plastic loading, eq. (5.27) gives
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Pi YI P2 Y2 P3 Y3 1 (5.28)
M_ME+ -+ QM-M~M-M 2 M-M 3 Q•=

in which

Pi =" -tk mP zi and y= -cotkmk zi (5.29)

Equation (5.28) actually represents the secular or characteristic equation for the eigenvalues

Mi in the plastic loading wave; it is equivalent to a cubic equation for M. The quantities pi and qi

depend upon the direction of propagation and on the elastic eigenvectors corresponding to that

direction.

Let us replace the unknown plastic wave speed M in eq. (5.28) b,, T = M - MI, and let

M- =b and ME- E- c, where b and c are positive. After clearing of fractions eq. (5.28)

becomes a cubic in t,

T3 + [Q(pi Yi)+b+c]"r2 + [QPl Yl (b+c) + QP2 Y2 c + QP3 Y3 bit + QPl yl bc = 0 (5.30)

The sign of the constant term in a real cubic equation is always opposite to that of at least

one of the roots (which, of course, must be real). Therefore, if ply, is negative (which cannot occur

in the associated case, because then PI = Yl), at least one value of t must be positive. This m,,ans

Ethat ,q. (5.28) possesses a real root M > M, , so that the corresponding plastic wave travels faster

than any of the elastic waves. It was shown in (Sandier and Rubin 1987) how such a fast plastic

wave speed leads to non-uniqueness; that argument will be reformulated in the next section, but

first we need to determine the conditions under which p l y, is negative. In order to do this, note that

Y71 =- akmklZII= niCkI("CkZIl) (5.31)

and

P m (5.32)
PI =-akMkIzl,= njCjkl(--(ak zl)

Comparing eqs. (5.31,5.32) with eq. (4.7), it is clear that the condition ply, < 0 is equivalent to

requiring that the "stress increment" associated with the "strain path" - CakzII be within the wedge
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in Figure 1. For this reason, any value of oti for which p, and Yi have opposite signs can be used to

construct a "strain path" in the wedge, and represents a direction of propagation for which plastic

waves travel faster than elastic waves.

In order to prove that such propagation directions ct- always exist for the non-associated

flow models used in practical applications, we must introduce a new concept and definition. Note

that in all such practical plasticity models the yield surface limits the shear stresses at many (if not

all) stress states, while the flow rule permits the relatively large shear strains associated with yield
Y Por failure. Let us describe the tensor (or mPj) as "shear-like" if at least one of its eigenvalues is

positive and at least one is negative. In other words, one of the principal directions of a shear-like
tensor represents tension (or extension) while another represents compression (or contraction). With

this definition we can say that all practical plasticity models have many stress states for which m Y

and/or mf is shear-like.

Let Mk1 be any shear-like tensor and consider the value of the product ak ink) Zl1 when Ctk

lies in one of the principal directions of Mik. Then CC* Mk! = m oal, where Xm is the eigenvalue of

mk! corresponding to the chosen pnizcipal direction. The product

Ctk mklZll = Xm ,l ZlI (5.33)

has the same sign as the eigenvalue Xm, because we have chosen the sign of z, in such a way that

a, zll > 0. (We ignore the possibility ca, z1l = 0 because it arises only for degenerate elastic behavior;

note that a, zll = +1 for isotropic elasticity). Because mk, is shear-like, the three Xm have both

positive and negative eigenvalues among them, so that the product tk mkt Zl 1(which is a continuous

function of ak) must pass through zero as axk spans all possible spatial directions. Therefore, for all

practical rate-independent plasticity models, there exist states 0 and directions ack for which Yi

(and/or pl) passes through zero. (For example, in the isotropic elastic case zli = oi, so that yI and
P YP, are the simple quadratic forms -a-imnx and --a.mfaj, respectively; since mi and ri are

shear-like, these forms must pass through zero as cO spans the directions between those correspond-
Y rP)Iticlathtite

ing to the maximum and minimum principal values of mr and in). It is clear that in the

non-associated case, m• m* , the directions corresponding to Yi = 0 will be different from those

for P, = 0. (This can be rigorously proven by means of a straightforward, but lengthy, argument).
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As a consequence, the product p iLY must take on negative values (because its factors pass
through zero one at a time). Therefore in all practical non-associated plasticity models there will
exist states 0 and directions ai for which plastic waves can propagate with a slr" d consistent
with M > M-"-.
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SECTION 6

FAST PLASTIC WAVES AND NON-UNIQUENESS

We now proceed in a manner similar to (Sandier and Rubin 1987) in order to show that the
Eexistence of plastic waves with M > M, implies non-uniqueness. We will do this by constructing

multiple (actually, infinitely many) solutions to a single initial/boundary value problem. Consider

a half space of material initially at rest (at yield state 0) but subjected to a prescribed boundary

traction which varies linearly with time in such a way that it can produce a response involving only

an elastic (i.e., unloading) primary wave. We shall show that this problem has alternative solutions

(involving plastic response) if the normal oti to the boundary plane lies in a direction for which

P, Y, < 0 in state 0.

The general nature of these "spurious" (but nevertheless mathematically valid) alternative

solutions is shown in Figure 3. In this figure the abscissa is ai xi, which represents the position of

any point measured from the boundary plane of the half-space, ai xi = 0. The ordinate is time, t,

measured from some arbitrarily chosen instant t--0. The initial conditions at t = 0 are c$ij = 0i and

vi = 0 with the boundary traction otj oij at the equilibrium value aj oT9. The half-space is subjected

to the traction boundary condition (which holds along the ordinate in Figure 3),
0

jz aij = oV aj,-Bpl zl, t where B is an arbitrarily prescribed positive constant. As shown in the

figure, the alternative solutions that we are about to construct for this problem consist of a quiescent

Zone 1, followed by the front OF (propagating with wave speed c) of a unidirectional plastic loading
wave in Zone 2, followed in turn by a transition OV (which travels with speed V) to elastic behavior

in Zones 3,4,5 and 6. The lines OP, OS and OT separating the elastic zones are characteristics whose

slopes are the inverses of the three elastic wave speeds, For simplicity, we will construct only

continuous, piecewise-linear alternative solutions, i.e., those for which the velocity vector and stress

tensor are linear functions of xi and of t in each of the zones shown in Figure 3.

The unidirectional plastic loading wave in Zone 2 has the motion direction Pi defined by

eqs. (5.21,5.25). For a piecewise linear solution the loading rate g" in Zone 2 is a positive constant,

so that g'> 0 varies linearly with distance behind the wave front. From eqs. (5.2,5.5), vi, and aij

vary linearly with distance behind the wave front,

V! = C Pi g' = C Zri Ym g"s (6.1)
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Figure 6. 1. Characteristic space-time construction showing spurious waves (Resulting From
Homogenous Initial /Boundary Conditions) :

Zone)I is quiescent

Zone 2 involves plastic loading

Zones 3, 4, 5, and 6 involve elastic unloading

c = Plastic Loading Wave Speed

V = Speed of Elastic-Plastic Interface

cE = Primary Elastic Wave Speed
= Secondary Elastic Wave Speed

CE = Tertiary Elastic Wave Speed
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0 ti (6.2)(Tij = aij - Lijkt °ak Zmt "Ym g S(62

where s a ct - ap xP is the distance behind the wave front. Along the plastic-elastic interface, line

OV in Figure 3, the velocity vy and the stress cry may be obtained by setting t = cp xe/V to get

vi = c(--1)g"Ymap Xp Zmi (6.3)

V 0 C (6.4)

(76 = 1i0- (v-1)g"y Lijkl ak cap Xp Zml

The governing equations for the elastic zones consist of the equation of motion,

avi 1 ýi (6.5)

at - ap

and the constitutive relation,

Ii 1 (avk av, 1  av1  (6.6)
at Cijk1-2 a'i axk aXk

Let Rm and Smbe six arbitrary real constants, and let To = Tji be another six real constants which

satisfy the three equations

Tij ,a = O (6.7)

It is easy to show (by direct substitution) that the functions

vi = (Rm t + Sm ap Xp )Zmi (6.8)

and

aij = aG + (Tij + Rm PZmi aj ) c3p Xp + Sm Cijkl ock Zml t (6.9)

identically satisfy the governing eqs. (6.5,6.6), if one invokes the identity

a a(apXp ) a a (6.10)

axj axj a( Xp) ja(cxpXP)
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and uses eq. (6.7). Given suitable auxiliary conditions (such as initial or boundary conditions for

vi and oa1), the relationships (6.7,6.8,6.9) form a system of twelve equations which determine the

twelve constants Rm, SmandTij. We can eliminate the T,. by multiplying eq. (6.9) by a, and using

eqs. (6.7) and (5.12,5.14) to get

j_)5 (6.11)( i-0 )= X(Rm PaP Xp + Sm M,;n )Zmi
m=I

Now eqs. (6.8,6. i I) form a system of six equations for the Rm and Sm, with the Tij being obtainable

directly from eq. (6.9) after Rm and Sm are determined. The new system can be further simplified

by multiplying each equation by Zni (uncoupling the terms corresponding to different values of m)

to get

tRn + Xp Xp Sn = vi Zni (6.12)

£ 2 0a.p xp Rn + (cn ) tSn = aj (ao - a0 )zni/p (no sum on n) (6.13)

in which c- a M p is the nt" elastic wave speed.

Along line OV in Figure 3, where ap xp = Vt, the values of vi and aij in eqs. (6.12,6.13) must

equal v and ay as given by eqs. (6.3,6.4). Therefore, by utilizing eqs. (5.11) we get (after some

algebra),

cV+ (CE2 ,,(6.14)
(c-)

Sn -= £ E)2 cg"yn (no sum on n)

in Zone 3.

In the remainder of the elastic region, R, and Sn must be constant except along the

2 £ 2characteristics (ap xp) (cE 0 , where eqs. (6.12,13) become singular. Along these lines the
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theory of hyperbolic partial differential equations permits the "constants" to have different values

in the two regions on opposite sides of a characteristic as long as the system (6.12,6.13) remains

Esatisfied. In particular, along ctp xp = cr, t the system becomes

Rn + E S =v. Zn/t (no sum on n) (6.16)

E a.( 0- )zni/(pcEn) (no sum on n) (6,17)Rn + cn Sn n (no sumi on n)i

Because the left sides of eqs. (6.16,6.17) involve only the combination (Rn + c S,), the individual

values of the constants may be discontinuous across the characteristic line if the combination is

preserved. Let R. and S. denote the values of the constants behind the n characteristic. Then

E (6.18)
- E E C-C
Rn + c. Sn = Rn + cn S. = - - c(c-V)g"yn (no sum on n)

V+n

As each of the characteristics OP, OS and OT in Figure 3 is crossed in passing from Zone 3 to Zone

6, another pair Rn, S,, jumps to Rn, 5,. For Zone 6 eq. (6.9) implies

(o�Yi-O )=('Rm pxp+SmMmt)Zmi for O<3 tX<c~t

The boundary condition for the problem at hand is aj (tO - oO ) = -BpI zIi t on otp xp = 0

for all t > 0 (i.e., along line ON in Figure 3). Because the Zmi are linearly independent vectors, eq.

(6.19) can satisfy this boundary condition if, and only if, 32, and 53 are zero and

-S ME-SP1  (6.20)

The elastic region is therefore characterized by the following sets of constants:

R 1, S1, R2, S2, R3 and S3  in Zone 3

RI, S1, R 2, S2, R3 and S3  in Zone 4

R 1, SI, R2 , 0, R3 and S3  in Zone 5

R 1, S1, R2, 0, R3 and 0 in Zone 6
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At this point we have completed the construction of a set of alternative solutions to the simple
initial/boundary value problem posed at the beginning of this section. However, we have not yet
proven that the stress given by eq. (6.9) is actually consistent with the assumed elastic behavior in
Zones 3, 4, 5 and 6. In order to do this, note that eq. (6.9) gives the rate of change of stress in elastic

regions as

6ij = Em Cijkl (tk Zmj (6.21)

in which

/2 _ t(cE )cgwhen V E
Cm

Em~ E 6.2
Ema -Bp 1/MI for m=l (6.22)

J E
0 for m=2or3 m

(Em is undefined at t = atxP
CM

The loading rate relative to the yield surface, f E, is

Y. , y _m(.3
nf lij = Em nij CjkI Oak Zml = Em mu a zmi Em Ym (6.23)

In Zone 3 this becomes,

n V J 2= pm cg (6.24)

after using eqs. (5.25,5.29). The sign of the m = 1 term on the right side of eq. (6.24) is negative

because Q, a, c and g" are all positive, c>V>cfl>o (so that the expression in brackets is positive),

and P, yl is negative. Furthermore, the bracketed expression can be made arbitrarily large in

magnitude for m = I by choosing the value of V to be only slightly larger than c I. Because c2 and

E Ec3 are less than clI, the m = 1 term will then dominate eq. (6.24) and determine its sign. Therefore
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values of Vcan be chosen for which the loading rate is negative in Zone 3 (and therefore consistent

with the presumed elastic behavior of Figure 3).

In Zones 4, 5 and 6 the loading rate is, according to eqs. (6.23,6.22),

ni j =BpI yjM +Ng (6.25)

in which

3 c 2 _ V ,2 p . y .

Qac•,• (-cE_)2 in Zone 4
m=--2 - ,m M-M

NP3Y3 (6.26)
N~~ E c2-I2 _MEY

Vc Min Zone 5

0 in Zone 6

Now, the value of g" can be chosen small enough so that the first term on the right side of eq. (6.25)

dominates the second. Then, because B and M17 are positive and pI yI is negative, the loading rates

in Zones 4, 5 and 6 are negative (and the response is elastic in those zones as required in Figure 3).

Summarizing, we have constructed (and confirmed the validity of) multiple solutions to a
simple initial/boundary value problem. These solutions represent alternatives to the simple solution

(involving only primary elastic unloading waves and corresponding to g" = 0). The existence of

such multiple solutions (involving appropriate values of V and g" > 0) proves that non-associated
flow leads to non-uniqueness. Because the plasticity formulation analyzed here is completely

general, it extends over the entire class of rate-independent plasticity models used for practical

ground shock calculations.
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SECTION 7

CONCLUSION

Many ground shock calculations performed for the Defense Nuclear Agency utilize rate-in-

dependent plasticity models with non-associated (i.e., non-normal) flow rules to represent the
behavior of geological materials. In such models the yield surface is used to limit the shear and/or
tensile stresses, while the flow rule is used to independently define the direction of plastic straining

(thereby limiting the dilatancy). The behavior of constitutive formulations of this kind in dynamic
applications has been analyzed in this report. By means of a "constructive" proof, it has been
demonstrated mathematically that such models lead to multiple, and therefore spurious, solutions
in wave propagation situations; in other words, uniqueness of solution breaks down for dynamic

initial/boundary value problems.

Although a simple class of multiple solutions was presented to complete the proof for a very
simple type of problem, the conclusion is quite general; the proof makes no specific modeling
assumptions, except rate-independence, shear-like plasticity and non-singular elastic behavior (and
is therefore relevant to all of the ground shock, and some of the structural, plasticity models used
in practice). The loss of uniqueness is found to be closely related to the energy generating properties
of the models according to Iil'iushin's postulate (even though the second law of thermodynamics

may be satisfied). The result implies that normality of flow is a necessary (as well as a sufficient)

condition for uniqueness in dynamic applications of any rate-independent plasticity model.

Obviously, these findings imply an inherent lack of robustness in numerical analyses based
on non-associated plasticity. Because the use of these models is widespread in ground shock (and
structural) calculations, the fact that they can produce multiple (and therefore spurious) solutions is
significant; it casts serious doubt on the validity of the specific results of any (and every) calculation
based on this kind of constitutive representation. Therefore it is strongly recommended that DNA

promptly abandon its reliance on such models in all work performed for the Agency. To describe

the situation most bluntly, these models do not provide a rational basis for the computations needed
for prediction, design and/or analysis applications. In all cases for which an associated flow rule is
deemed inadequate to fit observed material behavior, an approach other than rate-independent

plasticity must be sought in order to represent such behavior in a reliable, self-consistent and rational

manner.
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In view of the fact that non-associated plasticity models have already been extensively used

in analyses for DNA, it is recommended that some effort be made to quantitatively assess the
consequences of their use. In particular, the extent to which the model assumptions and parameters
can affect the numerical solutions to various types of problems should be investigated.
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APPENDIX

DERIVATION OF THE STRAIN INCREMENTS

SATISFYING INEQUALITY (4.7)

In this Appendix we present the entire six-dimensional set of strain increments Ack, which

satisfy eq. (4.7) whenever the flow rule is non-associated. Consider the ratio of each of the
Y P

components nr to the corresponding component nif. Either these ratios are all the same (i.e.

independent of i and j) or two (or more) of them differ. If the former possibility holds, we can let r
Y P YY~ PP

be the common ratio, so that nr = r ni for all ij. But in that case n, ni = r2 n nf, so that r = ±:1.
Y P

When r = +1 the flow rule is associated, so this situation is not relevant here. For r = -I, nir = -nfj,

and eq. (4.7) holds for any Aekl satisfying eq. (3.6). The only remaining possibility in the case of
Y P

non-associated flow is that two (or more) of the six ratios nj /nf are different. Then we can select

at least two pairs of subscripts m,n and p,q in such a way that

n~mn~ -,! (no "sum" on mn or on p,q )
Pm P

Let h1, h2, h3 and h4 be four arbitrary real numbers. Form a symmetric tensor hij which has

zero components in the m,n and p,q positions and has h1, h2, h3 and h4 as the other four independent

components (in any order). Also define h Y- n Kh h, Zhu andDas

y P y PD = fnmnnpq - npqnmn 0 (A.2)

Then two additional arbitrary real numbers, g± and v, together with hl, h2, h3 and h4 define a

six-parameter family of "elastic stress increments"

Y 1Akti[lv~rj(+v)nP]+hi -- ('P hPn Y ) U -hP hp Y) i,, (A3+(h,- nlmn mn)Uupq pq npq)Uijmn

in which UUm j (Aimjn + 8inSjm). By multiplying eq. (A.3) by nK and nf, respectively, it is
Y P

straightforward to verify that eq. (4.7) is satisfied for all gx > 0 and lvM < n, n.
+ni nop"
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FIELD COMMAND DEFENSE NUCLEAR AGENCY AT'TN: TECH LIBRARY

2 CY ATTN: A MARTINEZ

ATTN: FCNM OFFICE OF CHIEF OF NAVAL OPERATIONS
ATTN: FCTP ATTN: OPO3EG
ATTN' FCTP J RENICK

ATTN: FCTP R REINKE OFFICE OF NAVAL RESEARCH
ATTN: FCTT ATTN: CODE 1132SM

STRATEGIC & SPACE SYSTEMS DEPARTMENT OF THE AIR FORCE
ATTN: DRE SEVIN

AFIS/INT
DEPARTMENT OF THE ARMY ATTN: INT

ARMY RESEARCH LABORATORIES AIR UNIVERSITY LIBRARY
ATTN: TECH LIB ATTN: AUL-LSE

U S ARMY BALLISTIC RESEARCH LAB PHILLIPS LABORATORY
ATTN: SLCBR-SS-T ATrN: NTES LTCOL T BRETZ

U S ARMY CORPS OF ENGINEERS DEPARTMENT OF ENERGY
ATTN: CERD-L

DEPARTh;F!NT OF ENERGY
U S ARMY ENGINEER DIV HUNTS\,LLE NEVADA OPERATIONS OFI-ICE

ATTN: HNDED-SY ATTN: OTIS D H MARTIN

U S ARMY ENGINEER DIV OHIO RIVER DPEARTMENT OF ENERGY
ATTN: ORDAS-L ATTN: DR C V CHESTER

U S ARMY ENGR WATERWAYS EXPER STATION LAWRENCE LIVERMORE NATIONAL LAB
ATTN: CEWES J K INGRAM ATTN: R DONG
ATTN: D RICKMAN CEWES-SE&R ATTN: R SCHOCK
ATTN: E JACKSON CEWES-SD-R
ATTN: J ZELASKO ,EWES-WO-R LOS ALAMOS NATIONAL LABORATORY
ATTN: RESEARCH LIBRARY ATTN: B SWIFT

ATTN: BOB DEUPREE
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ATTN: FRED APP KAMAN SCIENCES CORPORATION
ATTN: R P WEAVER ATTN. .jASIAC
ATTN: D STROTTMAN
AT•N: REPORT LIBRARY KTECH CORP

ATTN. S TAYLOR ATTN: E GAFFNEY
ATTN: F DAVIS

SANDIA NATIONAL LABORATORIES
ATTN: A CHABAt DIV 9311 LACHEL AND ASSOCIATES, INC

ATTN: DIV 9311 L R HILL ATTN: J BECK
ATTN: DR CARL W SMITH DIV 9311 LOCKHEED MI$aILES & SPACE CO, INC
ATTN: MIKE FURNISH ATTN: PHILIP UNDERW S OOD
ATTN: TECH LIB 3141
ATTN: 9311 C W SMITH LOGICON R & D ASSOCIATES
ATTN: 9311 D GARBIN ATTN: C K B LEE

OTHER GOVERNMENT ATTN: D SIMONS
ATTN: LIBRARY

CENTRAL INTELLIGENCE AGENCY 2 CY ATTN: T PUCIK

ATTN: OSWRINED LOGICON R & D ASSOCIATES

DEPARTMENT OF DEFENSE CONTRACTORS ATTN: B KILLIAN
ATTN: J WALTON

AEROSPACE CORP ATTN: L GERMAIN
ATTN: LIBRAHY ACQUISITION

MAXWELL LABORATORIES, INC
APPLIED RESEARCH ASSOCIATES, INC ATTN: J MURPHY

ATTN: C J HIGGINS
MCDONNELL DOUGLAS CORPORATION

APPLIED RESEARCH ASSOCIATES, INC ATTN: R HALPRIN
ATTN: S BLOUIN

MISSION RESEARCH CORP
APPLIED RESEARCH ASSOCIATES, iNC ATTN: TECH LIBRARY

ATTN: R FRANK
PACIFIC-SIERRA RESEARCH CORP

BDM FEDERAL INC ATTN: H BRODE
ATTN: E DORCHAK
ATTN: J STOCKTON S-CUBED

ATTN: DR J L STEVENS
CALIFORNIA INSTITUTE OF TECHNOLOGY ATTN: DR K L MCLAUGHLIN

ATTN: T AHRENS ATTN: S PEYTON

CALIFORNIA RESEARCH & TECHNOLOGY, INC S-CUBED
ATTN: J THOMSEN ATTN: L KENNEDY
ATTN: K KREYENHAGEN

SCIENCE APPLICATIONS INTL CORP
CARPENTER RESEARCH CORP ATTN: TECHNICAL REPORT SYSTEM

ATTN: H J CARPENTER
SCIENCE APPLICATIONS INTL CORP

HORIZONS TECHNOLOGY, INC ATTN: W LAYSON
ATTN: B LEE

SOUTHERN METHODIST UNIV
lIT RESEARCH INSTITUTE ATTN: DR BRIAN STUMP

ATTN: A BUTI
ATTN: DOCUMENTS LidRARY SRI INTERNATIONAL
ATTN: M JOHNSON ATTN: A FLORENCE

ATTN: D KEOUGH
INSTITUTE FOR DEFENSE ANALYSES

ATTN: CLASSIFIED LIBRARY TECH REPS, INC
ATTN: F MCMULLAN

JAYCOR
ATTN: CYRUS P KNOWLES TERRA TEK, INC

ATTN: C FELICE
KAMAN SCIENCES CORP

ATTN. '_ MENTE TITAN CORPORATION

ATTN: LIBRARY ATTN: LIBRARY
ATTN: S SCHUSTER

KAMAN SCIENCES CORP
ATTN: DASIAC
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TRW SPACE & DEFENSE SECTOR WEIDLINGER ASSOCIATES, INC
ATTN: W WAMPLER ATTN: T DEEVY

WEIDLINGER ASSOC, INC WEIDLINGER ASSOCIATES, INC
ATTN: H LEVINE 2 CY ATTN: I SANDLER

ATTN: M BARON
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