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SUMMARY

Many ground shock calculations performed for the Defense Nuclear Agency utilize rate-in-
dependent plasticity models with non-associated (i.e., non-normal) flow rules to represent the
behavior of geological materials. In such models the yield surface is used to limit the shear and/or
tensile stresses, while the flow rule is used to independently define the direction of plastic straining
(thereby limiting the dilatancy). The behavior of constitutive formulations of this kind in dynamic
applications is analyzed in this report. By means of a “constructive” proof, it is demonstrated
mathematically that these models lead to multiple, and therefore spurions, solutions in wave
propagation situations; in other words, uniqueness of solution breaks down for dynamic in-
itial/boundary value problems. Although a simple class of multiple solutions is presented to
complete the proof for a very simple type of problem, the conclusion is quite general; it is relevant
to all of the practically used ground shock (and some of the structural) plasticity models. The result
implies that normality of flow is a necessary (as well as a sufficient) condition for uniqueness in
dynamic applications of any rate-independent plasticity model.

Obviously, these findings also imply an inherent lack of robustness in numerical analyses
based on non-associated plasticity. Because the use of these models is widespread in ground shock
(and structural) calculations, the fact that they can produce multiple (and therefore spurious)
solutions is significant; it casts serious doubt on the validity of the specific results of any (and every)
calculation based on this kind of constitutive representation. Therefore it is strongly recommended
that ground shock calculators promptly abandon their reliance on such models in all work. To
describe the situation most bluntly, these models do not provide a rational basis for the computations
needed for prediction, desigu and/or analysis applications. In all cases for which an associated flow
rule is deemed inadequate to fit observed material behavior, an approach other than rate-independent
plasticity must be sought in order to represent such behavior in a reliable, self-consistent and rational
manner.

In view of the fact that non-associated plasticity models have already been extensively used
in analyses for DNA, it is recommended that some effort be made to quantitatively assess the
consequences of their use. In particular, the extent to which the model assumptions and parameters
can affect the numerical solutions to various types of problems should be investigated.
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SECTION 1
INTRODUCTION

To represent geological materials in ground shock calculations, analysts often use rate-in-
dependent plasticity models which are non-associated, i.e., which utilize plastic strain increments
not directed along the normal to the yield surface. Although such models are often fit to quasistatic
material tests, they are used in dynamic ground shock analyses in a rate-independent formulation,
with only the values of the material constants being adjusted to account for dynamic effects. In such
models the yield surface is used to limit the shear and tensile stresses, while the flow rule is used to
independently define the direction of plastic strain (and thereby limit the dilatancy exhibited by the
model).

The wave propagation behavior of these models is analyzed in this report. Although a
considerable amount of test data is consistent with non-associated plastic flow (Lade 1988)1, itis
shown below that the assumption that this applies for all strain rates is not appropriate in dynamic
analysis. Viscosity, size effects, etc., in real materials may affect the flow direction for strain rates
of importance; in fact such effects may preclude any plasticity-based formulation from working
well. The present analysis proves that the rate-independent, non-associated plasticity used in practice
is not rational (i.e., it leads to improperly posed problems possessing multiple - and therefore
spurious - solutions) whenever inertia effects are included (as is always the case for wave
propagation applications).

This report presents the general equations of rate-independent plasticity in Section 2. This
is followed by a derivation of the plastic tangent stiffness tensor in Section 3, an analysis of certain
infinitesimal load-unload cycles in Section 4, and a derivation of the general equations governing
elastic-plastic wave propagation in Section 5. Finally, the results of Sections 2-5 are utilized in
Section 6 to construct a simple initial/boundary value problem f .r which the existence of multiple
solutions is easily demonstrated. It has long been known that associated flow is a sufficient condition
for uniqueness in plasticity. This report proves that it is also a necessary condition for uniqueness
for the rate-independent models used in practical analyses of ground shock.

1 P.V. Lade, “Effects of Voids and Volume Changes on the Behavior of Frictional Materials”,
Intl. J. Num. Anal. Meth. Geomech., Vol. 12, No. 4, p.351-370, 1988.




SECTION 2
RATE-INDEPENDENT NON-ASSOCIATED PLASTICITY

Non-uniqueness will be proven by demonstrating that multiple solutions can occur during
an infinitesimally short time interval dr. During such an interval the changes in the displacement
field itself are infinitesimal. Therefore we may linearize the geometric treatment without loss of
generality, provided that we adopt a reference configuration corresponding to the (possibly
deformed) current geometry at the instant of interest. If we adopt such an “updated Lagrangian”
approach, then we may utilize the linearized “small displacement” kinematic strain decomposition
during the interval dt,

E,j‘-:EEf'E,P (2“

where the components of the strain rate tensor, d ‘noted by €;;, are measured with respect to a

i
reference configuration which represents the geometry ai the instant of interest. The superscripts
denote the elastic and plastic strain rates, and the elastic strain is related to the stress through the
elastic stiffness. (In this report we adopt the engineering mechanics convention that stresses and

strains are positive in tension).

Aside from the kinematic decomposition of the deformation into elastic and plastic strains,
all rate-independent plasticity models are characterized by means of four main features. These are
the elastic behavior (to be discussed later), the yield condition, hardening (if any), and the flow rule.
The yield condition can be written most generally as f(5;; , k;)=0, where G; are the components of

the stress tensor and the x;, k=1...n, denote the n hardening parameters in the model (which are

absent in the special case of ideal plasticity). The yield condition may be considered a hypersurface,
called the yield surface, in a six-dimensional stress space. (Each point in such a space corresponds
to a stress state, and the yield surface contains those points corresponding to stresses at which plastic
deformation can occur). Without loss of generality we can associate values f<0 with elastic states
“within” the yield surface, while the region >0 “outside” the yield surface is excluded by the theory.
This exclusion implies that f=0 for as long as plastic yielding occurs, so that diff=rentiation of the
yield condition with time gives f = (0, the “plastic compatibility condition”

of . . of . _ (2.2)
30,-,- g+ vy K, =0




which must be satisfied during plastic response. (In this report we adopt the notation 'E% and

utilize the Einstein summation convention concerning subscripted indices, except where explicitly
indicated otherwise).

Because hardening (if any) proceeds according to specified “hardening rules” as plastic
straining occurs,

where the YJ,‘] are coefficients used to represent the hardening behavior. Equation (2.2) therefore

becomes
Y. P
nz"O"'j=Hg Eij (24)
in which

ro9 . and Hijs_y'f.f'f_ (2.5)

ny ; :
) ao‘] J al(k

It should be noted that the tensor ng corresponds to the outward-drawn “normal” to the yield surface

in stress space and possesses the symmetry n}; = n}; (because of the symmetry of ;).

To complete the me del, the flow rule must be specified. This is done in terms of a “direction”

of plastic strain ng so that the flow rule can be written generally as

P _ o P

in which, without loss of generality, nf;- is chosen so that A>0 during plastic deformation (A=0 during

elastic deformation), and the magnitudes of nf;- and A are scaled so that

PP_YY 2.7
Tn=n (2.7)




If the “*normality condition™ nf; = n,—’} is satisfied, the flow rule is said to be normal, or associated,;

otherwise nf; # nE and the flow rule is said to be non-associated. It should be noted that nf; = n;:

(because of the symmetry of €;).

Summarizing, rate-independent plasticity models postulate that material deformation con-

sists of elastic and plastic components, and all such models exhibit four features:

a)  an elastic stiffness tensor that defines the functional relationship betweenr the stress
and the elastic strain,

b)  ayield function that defines the plastic states of the material, and which is defined
in terms of the stress as well as hardening parameters (except in the case of ideal

plasticity),
¢)  hardening rules which specify the way the hardening parameters evolve,
d)  aflow rule that specifies the “direction” of plastic straining.

Particular choices for the arbitrary functions in a-d define the individual models which are used in
practical applications, and which make up the broad class of models examined in this report.




SECTION 3
DERIVATION OF THE TANGENT STIFFNESS TENSOR

We begin our analysis of the wave propagation characteristics of plasticity models by
deriving the general form of the tangent (elastic-plastic) stiffness tensor. The incremental relation-
ship between the stress and strain rates for elastic response is

: -E
Gij = Cijut €l (3.
where Cjj, are the components of the (fourth rank) elastic stiffness tensor. It is well known at

Cijki possesses the symmetries Cyjyy = Cyjg = Cjipy = Cyy- In the plastic case substituting eq. (2.1)

gives
Srmn = Crunpq (épq'égq) 3.2
Multiplying this equation by n,},',,, and substituting eqgs. (2.4) and (2.6) leads 10
Ayt = ”r}r"ncmnpq(épq'hgq) = mpq”;q 33)
where some dummy indices have been interchanged. Equation (3.3) can be solved for A,
A= 0nYrCounpa Epg (34)
in which
! (3.5)

0=y P P
("mn Cmnpg"pg + Hpq”pq)

In standard dynamic computational procedures the constitutive behavior is utilized to
calculate the stresses from strains (which, in tum, are computed from the field equations). We
therefore consider é,-j to be the input here and 6,-1- to be the destred output quantity. According to eq.

(3.1) the quantity Cpyppye épq represents the rate of change of stress in the case of elastic response

Gi.e., égq=0), so the first of egs. (2.5) implies that the scalar n,},’,,, Cimnpq Epq TEPTESENtS }'E, the

hypothetical rate of change of the value of the yield function in that case. Because the definition of

f implies that a negative value of f F would indeed be consistent with elastic behavior, plasticity




can occur only for non-negative values of f E (otherwise the stress response would not be unique).
Furthermore, if f E. ¢q. (3.4) indicates that A = 0, so that éf;- =0 from eq. (2.6). Therefore, f E=—0
also implies that the response is elastic (this situation is called neutral loading). For these reasons,
plastic yielding (ég # 0) will occur if and only if

n,’:,,, C

mnpq Epq > 0 (3.6)

Because A>0 in this case, eq. (3.4) implies that Q >0. For consistency, therefore, n,’;q must be defined

so that the denominator of eq. (3.5) is always positive. Substituting eqgs. (2.1), (2.6) and (3.4) into
(3.1) gives the incremental stress-strain relation

&= Cijtt €t — QCiikt Mkt PasnComnpq €pg (3.7)
which (after interchanging the dummy indices &,/ and p,q in the last term) gives

&= Cijta €t — QCijpg Mg MaunCrmnkl Eki (3.8)
Invoking the symmetry Cppps = Cyimp leads to

G;= (Cijkl = QCiipa Mg Chtmn "o ¥kt (3.9

The quantity in the parenthesis of eq. (3.9} is the desired tangent stiffness modulus, L. It

may be written more conveniently as
P Y
Lij = Cijg — Qmijmy (3.10)
where

Peoc. oF . Y. Y 3.11
mi; = Cijpg npg 3 and my;= Cypg Rpg .15

Note that for associated flow mf; = mg so that, by virtue of eq. (3.10), the tangent stiffness

tensor possesses the “stress-strain” symmetry Ly, = Ly,;;. For general non-associated flow, how-

ever, eq. (3.10) implies that the tangent stiffness tensor does not possess this particular symmetry,
although, of course, Lyjy; = Ljjxy = Lyjy in all cases.




SECTION 4
WORK DONE IN AN INFINITESIMAL LOAD-UNLOAD CYCLE

Consider the response of a rate-independent plastic material subjected to an infinitesimal
load-unload strain cycle. (In order to do this, we refine an analysis previously described in (Sandler
and Rubin 1987)2, which in tum was partially based on arguments first presented in (II'iushin
1961)3). Refer to Figure 1, which shows a two-dimensional schematic representation of an
infinitesimally small region of the six-dimensional stress space. Point O corresponds to any initial

stress state 03 on the yield surface, represented locally by the line OY, while the inclined line OS

represents (locally) the surface orthogonal to the “flow direction” n,(} (this surface is called the plastic

potential surface). Let Ag,; be an infinitesimal strain increment from the state O that causes the
response to be plastic. The resulting stress, shown in Figure 1 at P, is given by

(4]
Gg = oij + Lt:kaAEkl 4.1)

i

(The figure indicates some hardening of the yield surface during the loading increment, but this
detail is not significant; for ideal plasticity P lies on OY). The unloading segment PQ, which
corresponds to the strain increment —Agy;, is elastic and results in the final stress

O‘g = O'S - Cl:fklAskl (4.2)

The work (energy) required to deform a unit volume of the material through the load-unload
strain cycle C (Ag;; followed by —Aey;) is given by

4.3)

AW= j Oide;i = K Ode;; + fc,-}de‘-j
C

For the infinitesimal cycle +Ag;; the Mean Value Theorem can be applied to obtain

2 1. Sandler and D. Rubin, “The Consequences of Non-Associated Plasticity in Dynamic
Problems”, in Constitutive Laws for Engineering Materials - Theory and Applications, Ed. by
C.S. Desai, et al, Elsevier, p. 345-352, 1987.

3 A.A. Il’iushin, “On the Postulate of Plasticity”, PMM, Vol. 25, No. 3, p. 503-507, 1961.
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AW = °u+ )Aeu "(u*ou)&u) '(u 5)&,, 44

Referring back to egs. (3.10) and (4.1,4.2) this becomes
AW = %ngm{,Aek,Aeij (4.5)
Substitution of egs. (3.11) finally gives
AW=%Q(Ciqu"l}:qA£inCklrs";¥sA5kl) (4.6)

Note that for associated flow n{; = n,?;, so that AW can never be negative because the two expressions

enclosed in parenthesis in eq. (4.6) are equal and Q is positive.

In the non-associated case, it is easy to find strain increments Agy; which satisfy the pair of

inequalities
nfCijtBer > 0 > nfCyidey 4.7)
For example, consider the strain increment defined by the equation
Cijuidey = n,«’} - nf} 4.8)

In this case, using eq. (2.7), we can calculate the quantities

4.9)
Y vy vy vyp_lfyy pp (
njj C,-juAeu:n,-j nij =R ni; = -( nh; SRR 2n,J nj; ):
P P Y _P P_ Y P Y Y
njj Cijiidexy = Mg njj —njj ngg = ng g —njimy; = "u Ciuiber <0 (4.10)

so that eq. (4.7) will indeed be satisfied. A derivation of the complete (six-dimensional) set of
Agy; for which eq. (4.7) holds is given in the Appendix.




Consider the geometric interpretation of eq. (4.7). Its first inequality merely implies, from
eq. (3.6), that the strain increment Agy, causes plastic loading, with the quantity Cj; /A€ representing
the hypothetical stress increment for elastic instead of plastic response. This hypothetical “elastic
stress increment” is shown in Figure 1 as the dashed line OE. According to the second inequality

in (4.7), the elastic stress increment must form a negative inner product with nf;. Therefore (4.7)

merely requires that the line OE lie within the “wedge” YOS. We have just shown that paths such
as OE exist for non-associated flow, but (4.7) can never be satisfied in the associated case, because
its left and right sides, which have opposite signs, then become equal. (In other words the “wedge”
YOS in Figure 1 collapses into the single line OY when the flow rule is associated).

Let us now return to eq. (4.6). Inequalities (4.7) imply that the factors enclosed in parentheses
in eq. (4.6) are of opposite sign, so that the work AW must be negative (because Q > 0). Therefore,
instead of requiring that work be dissipated during all strain cycles involving plastic response, the
non-associated material model actually supplies energy whenever the cycle +Ag;; satisfies the

inequalities (4.7). In the next two sections we will show how the possibility of such “energy
generation” causes uniqueness to break down and introduces spurious signals into dynamic
initial/boundary value problems.

10




SECTION §
ELASTIC-PLASTIC WAVE PROPAGATION

In order to understand the behavior of non-associated plasticity models in dynamic problems,
we will first analyze the propagation of simple plane waves. Consider plastic loading waves that
propagate with wave speed ¢ into material at rest in a homogeneous (uniform) stress/strain state O
atyield, and produce motion behind the wave front in a single spatial direction (which will generally
be different from the direction of propagation of the wave) for all of the particles. The situation is
depicted in Figure 2, in which the unit vectors ¢; and B; represent, respectively, the (constant)
direction of wave propagation (normal to the wave front) and the direction of particle motion
(displacement, velocity and acceleration). As shown in the figure, the “local” coordinate system,
dx;, has its origin at an arbitrary point on the wave front at some arbitrarily chosen instant. Let

ds = cdt — o; dx; denote the infinitesimal distance of point dx; behind the wave front at a later time
dt. The particle displacement field g(ds)p; due to the wave produces the displacement field

o

au .
w (g, i = u?(d) + g (d) By=uP(0) + - +  (d5) By b
J

0
ijs

creasing function of ds behind the wave front and zero ahead of it. Therefore g > 0 and g’ > 0. The
remaining relevant field quantities are derivable from u; by means of the equations

where uio(dxj) is the initial displacement field in strain state €;;, and g is any continuous, non-de-

du; .
"iE‘a_;—'=8 Pi=cg’B; (-2

a=5 =g hi= ’g” B; (5.3)
1,04 du 5 1 , (5.4)
Ej=7 8_xj+ o ) =& +5 (-0 Bi—a;B;)e
I ' _ 0 ’
;=0 + Lijy ey —€f) =05 + SLijut (0 By — 04 B 8" = 04 — Ly 04 B g (5.3)

i1




Propagation
Direction o;

Particle Motion

Bi
Wave Speed ¢

x, Plane Wave at Time t+dt

X

Plane Wave at Time ¢

Figure 5.1. Plane wave propagating in o; direction with particle
motion in f;direction.
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“

where v; and a; are the velocity and acceleration, respectively, 03 1s the initial (uniform) stress, and

’

= -i. (To obtain the above equations the chain rule,

ds
dg _dgds _ dg _dgds_ (5.6)
axj_ dS ax]'—_a]g i and at -ds at—cg

as well as the “strain” symmetry L;z; = L;j were invoked). The equation of motion is

o, 57

pai - axJ

in which p is the density of the material. Substituting egs. (5.3,5.5,5.6) into eq. (5.7) gives

pc?g”B;= Ly oy B 0 " (5.8)

behind the wave front. By interchanging dummy subscripts in the last equation we may write

’”7 ” 2
g (ak Lipj oy B~ pc?B; ): g (ak Ligj 0y~ pcd;; )3;' =0 (5.9

in which 8,-,- is the Kronecker delta (unity if i=j, zero if i#f). For a (non-trivial) wave solution the

” 4

“loading rate” g” will not be zero, so that wave propagation requires that
(A,-j -M 8,-1-)3,- =0 (5.10)
in which
Aj=0yLy0y ; and M= pc? (5.11)

Equations (5.10,5.11), which must be satisfied for a physical wave to exist, form an
eigenvalue problem. The three eigenvalues M of the 3x3 matrix A;; represent the values of the
quantity pc2 for which wave propagation can occur (i.e., for which non-zero eigenvectors J; are

possible). These values determine the wavespeeds ¢ which are characteristic of the material (at its
current state O) for the direction of propagation ¢;, while the three eigenvectors B; correspond to

the directions of the particle motion in the different types of wave which may occur. We will return
to this point later.

13




Equations (5.1) through (5.11) apply as well to elastic wave propagation if the tangent
stiffness L;y, is replaced by the elastic stiffness Cyj,. Define

E_ _ _ _ _ Y
Ajj = 0y Ciggj 0y = O Gy 0y = 0 Cgy 0y = 0 Cigy O = O Ciyj Oy = A (5.12)
so that the eigenvalue problem corresponding to elastic waves is

Af B;=M"B; (5.13)

where ME is an eigenvalue of Ag Because Cjj is positive definite, the matrix Ag- is also positive
definite and symmetric in view of eq. (5.12); therefore it has three real and positive eigenvalues,
denoted by Mf and a corresponding set of orthonormal eigenvectors z;. If we define z;; as the i th

component of z;, we can write
Ag Zy= ME z;; (nosumonk) ; where MY > M5 >ME >0 and 72, = 8y (5.14)

Therefore three different elastic waves are possible (for k = 1,2 or 3) in which B; = z;;. Also, note

E,

ij> we shall choose each z; in such a way

that —z; can be chosen instead of z; as an eigenvector of A

that 04 20.

As an example, let us consider linear isotropic elasticity. In this simple case the elastic
stiffness is expressible as

2G
Ciklj =(K- ?)51@11 + G(Sﬂﬁkj + 5,:’6/(1) (.15
where K > 0 and G > 0 are the bulk and shear moduli of the material, so that
E 26
Ajj =0y Cyjjoy= (K--:,,—-) o; 0;+G oy a;+ G 8y oy oy

=(K+g) (x,-aj—t-GS,-j (516)

because oy oy, = Iozkl2 = 1. Multiplying eq. (5.16) by z;; and subtracting MkE 2x; from both sides gives

14




G
Af - My 7= (K + 3) % (@ 2)+ (G- M)z, =0  (no sumon k) (5.17)

which, after multiplying by «;, leads to

4
Ag o; 4~ Mf o i = (K+TG - Mf)(a,- Z;; )=0 (no sum on k) (5.18)
sothat eitheer =K+ %6- or o; z; = 0 must be satisfied. For the first possibility, which - for reasons

that will become apparent shortly - we will label k=1, substitution for Mf into eq. (5.17) implies
that a; (@ 215 ) = zy; 80 that zy; 0y (@ 215 ) = (@ 2y )2 must be equal to z; z;; = 8;; = 1. Because we
have chosen zj; so that z),0; 20, z;;0; = +1, implying that z;; = @;; such a wave is said to be a
longitudinal, primary or P wave. For the second possibility, &; z; = 0 implies that z;; is perpendicular
to o; so that such a wave is a transverse, shear, secondary or S wave; in this case eq. (5.17) implies
ME = G. Because two orthogonal eigenvectors may be chosen in the plane perpendicular to o,
ME=G represents a double root and each line in the plane represents one of the possible directions
of polarization of the S wave. Therefore, z;; can lie in any direction perpendicular to o; with 23,

perpendicular to both o; and to z;;. Summarizing the isotropic linearly elastic case, the wave speeds

4G
3

zy; must coincide with o, while z; and z3; can be chosen as any two mutually perpendicular

must satisfy the inequalities Mf =K+-—-> Mg = Mg = G > 0, and the direction of particle motion

directions in the plane perpendicular to o;. We also note that the strict inequality Mf > Mg appears

to hold for all elastic solid behavior (anisotropic as well as isotropic); we will utilize this fact later.

We now return to the analysis of plastic loading waves, as described by egs. (5.10,5.11).
Applying egs. (3.10) and (5.12) leads to

P_Y E P_Y
A,J = 0l Ciklj oy - Q Oy Mg mj; o= AU -0 Oy my my; o, (5.19)
so that
E P Y
AU ﬁ] -‘—'A,'j aj - Q my o (ml} oy B]) =M B; (5.20)
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Define a new quantity 7; as the solution of the system of linear equations
ztij‘:Bi (52l)

so that, in view of the last of eqgs. (5.14), Y, = 8,; ¥; =2p; 2j; ¥; =2p; B;- Multiplying eq. (5.20) by z;
and substituting eq. (5.21) leads to

E P Y
2qi Aij 2pj Yp ~ Q 2qi M Otk (mij @) 2 Yp ) = M 24 2 Vo = M 8 (5-22)
From the first of eqgs. (5.14)
Zgi A zpj =Z4i ME b 2pi = =M, & 8y (nosumonp) (5.23)

so that, eq. (5.22) implies

[M-ME 1y, = Q24 mh oy (~m) 0y 2,;Y,) (nosumongq) (5.24)
or
P
Qg KK
Y, = a (nosumon gq)
fomM-ME

where a represents the t=rm in parenthesis in eq. (5.24). Now

Y vl
a=-mj; o 2y Y, = ~Cigij i O By=—n} = 5 (C v+ quk) oy B

Y 1 , 5.26
= nyj Cijpa 5 (0 By — 0y B ) = nf; Cyut (€t —€0)/8’ >0 (3.26)

where the last inequality is inferred from eq. (3.6) together with g’ > O for the plastic loading wave.
Furthermore, from egs. (5.25,5.26),

3 (5.27)
Y Y Py —L9
—a =m0 2p; Yp = Z(a,‘ m;; 2p; ) Zpy My O ) M- ME
p=1 ~Mp

Because a > 0 for plastic loading, eq. (5.27) gives
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Py + P:z)’zE+ P3y3E+i=0 (5.23)
M-M; M-M5 M-Mf Q
in which
P Y
pi=—Ogmpyzy and y;=—0myz; (529)

Equation (5.28) actually represents the secular or characteristic equation for the eigenvalues
M; in the plastic loading wave; it is equivalent to a cubic equation for M. The quantities p; and g;

depend upon the direction of propagation and on the elastic eigenvectors corresponding to that
direction.

Let us replace the unknown plastic wave speed M in eq. (5.28) bv 1=M —-le and let
Mf - M’ZE =b and Mll': - Mf = ¢, where b and c are positive. After clearing of fractions eq. (5.28)

becomes a cubic in 7T,

P+ [O(; )’i)+b+C]1¢2 +[0p1y, (b)) + Qpy yr ¢+ Qp3 y3 bt + Opy y be=0 (5.30)

The sign of the constant term in a real cubic equation is always opposite to that of at least
one of the roots (which, of course, must be real). Therefore, if py; is negative (which cannot occur

in the associated case, because then p; = y;), at least one value of T must be positive. This m.ans

that <q. (5.28) possesses a real root M > MF, so that the corresponding plastic wave travels fastcr
than any of the elastic waves. It was shown in (Sandler and Rubin 1987} how such a fast plastic
wave speed leads to non-uniqueness; that argument will be reformulated in the next section, but
first we need to determine the conditions under which pyy; is negative. In order to do this, note that

Y Y
Y1 == Oy mpg 211 = niCip(—04 21)) (53D
and
P P
Py == 0 myy 231 = nCij(—0y 21)) (5.32)

Comparing eqs. (5.31,5.32) with eq. (4.7), it is clear that the condition py; <0 is equivalent to

requiring that the “stress increment” associated with the “strain path” — oyz;; be within the wedge
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in Figure 1. For this reason, any value of «; for which p, and y, have opposite signs can be used to

construct a “strain path” in the wedge, and represents a direction of propagation for which plastic

waves travel faster than elastic waves.

In order to prove that such propagation directions 0 always exist for the non-associated
flow models used in practical applications, we must introduce a new concept and definition. Note
that in all such practical plasticity models the yield surface limits the shear stresses at many (if not
all) stress states, while the flow rule permits the relatively large shear strains associated with yield
or failure. Let us describe the tensor m,-? (or mg) as “shear-like™ if at least one of its eigenvalues is
positive and at least one is negative. In other words, one of the principal directions of a shear-like

tensor represents tension (or extension) while another represents compression (or contraction). With

this definition we can say that all practical plasticity models have many stress states for which mg

and/or mf} is shear-like.

Let m;, be any shear-like tensor and consider the value of the product o my; zy; when oy
lies in one of the principal directions of my,;. Then o my; = Ay, oy, where A, is the eigenvalue of

my,; corresponding to the chosen priucipal direction. The product
Oy My 2y = A,y O 244 (5.33)

has the same sign as the eigenvalue A,,, because we have chosen the sign of z; in such a way that

o, z1; > 0. (We ignore the possibility o z;; = 0 because it arises only for degenerate elastic behavior;
note that o z;;=+1 for isotropic elasticity). Because my, is shear-like, the three A, have both
positive and negative eigenvalues among them, so that the product o, 7 z1; (Which is a continuous
function of ay) must pass through zero as o, spans all possible spatial directions. Therefore, for all
practical rate-independent plasticity models, there exist states O and directions oy for which y;

(and/or p;) passes through zero. (For example, in the isotropic elastic case z; = 0, so that y; and

. . Y P . Lo Y P
p) are the simple quadratic forms —om;0; and —oymj;0, respectively; since mj; and my; are

shear-like, these forms must pass through zero as ¢; spans the directions between those correspond-

ing to the maximum and minimum principal values of m,-); and mf;-). It is clear that in the

non-associated case, mg # m};,

for py = 0. (This can be rigorously proven by means of a straightforward, but lengthy, argument).

the directions corresponding to y; = 0 will be different from those

18




As a consequence, the product pyyy must take on negative values (because its factors pass
through zero one at a time). Therefore in all practical non-associated plasticity models there will
exist states O and directions a; for which plastic waves can propagate with a sp~~d consistent
with M > Mf
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SECTION 6
FAST PLASTIC WAVES AND NON-UNIQUENESS

We now proceed in a manner similar to (Sandler and Rubin 1987) in order to show that the
existence of piastic waves with M > Mf implies non-uniqueness. We will do this by constructing

multiple (actually, infinitely many) solutions to a single initial/boundary value problem. Consider
a half space of material initially at rest (at yield state O) but subjected to a prescribed boundary
traction which varies linearly with time in such a way that it can produce a response involving only
an elastic (i.e., unloading) primary wave. We shall show that this problem has alternative solutions
(involving plastic response) if the normal o; to the boundary plane lies in a direction for which

P Y1 <0instate O.

The general nature of these “spurious” (but nevertheless mathematically valid) alternative
solutions is shown in Figure 3. In this figure the abscissa is o; x;, which represents the position of

any point measured from the boundary plane of the half-space, o; x; = 0. The ordinate is time, t,
measured from some arbitrarily chosen instant t=0. The initial conditions at t=0 are 6;; = 03 and

v; =0 with the boundary traction o; oy at the equilibrium value o; 0'3, The half-space is subjected
to the traction boundary condition (which holds along the ordinate in Figure 3),
0, ;= 0y Gg—Bpl z1; t where B is an arbitrarily prescribed positive constant. As shown in the
figure, the alternative solutions that we are about to construct for this problem consist of a quiescent
Zone 1, followed by the front OF (propagating with wave speed c) of a unidirectional plastic loading
wave in Zone 2, followed in turn by a transition OV (which travels with speed V) to elastic behavior
in Zones 3,4,5 and 6. The lines OP, OS and OT separating the elastic zones are characteristics whose
slopes are the inverses of the three elastic wave speeds. For simplicity, we will construct only
continuous, piecewise-linear alternative solutions, i.e., those for which the velocity vector and stress
tensor are linear functions of x; and of ¢ in each of the zones shown in Figure 3.

The unidirectional plastic loading wave in Zone 2 has the motion direction B; defined by

egs. (5.21,5.25). For a piecewise linear solution the loading rate g” in Zone 2 is a positive constant,
so that g’ > 0 varies linearly with distance behind the wave front. From egs. (5.2,5.5), v;, and 0;;

vary linearly with distance behind the wave front,

vi=cPBig =c2pmiYm8"s 6.1
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Figure 6.1. Characteristic space-time construction showing spurious waves (Resulting From
Homogenous Initial / Boundary Conditions) :
Zone 1 is quiescent
Zone 2 involves plastic loading
Zones 3,4, 5, and 6 involve elastic unloading
¢ = Plastic Loading Wave Speed
V = Speed of Elastic-Plastic Interface
cf = Primary Elastic Wave Speed
cf = Secondary Elastic Wave Speed

cf = Tertiary Elastic Wave Speed
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O ”
Gijj=0jj — Lijkl % Zmt Tm 8 S (6.2)

where s = ct — 0, x;, is the distance behind the wave front. Along the plastic-elastic interface, line

OV in Figure 3, the velocity v,y and the stress 0,"; may be obtained by setting 1= o, x,/'V to get

v_ € ” 6.3
Vi =¢ ("_,“l)g YmCp Xp Zmi ©3)
v_ 0 ¢ o, 6.4)
C;j =0jj — (-V-l)g Ym Lijkt O Op Xp Zm (
The governing equations for the elastic zones consist of the equation of motion,
i _ 199 (6.5)
ot P Bx]
and the constitutive relation,
aO','j 1{ovy v dy, (6.6)
ot ki 2 ax, axk axk

Let R,, and S,,be six arbitrary real constants, and let T; = T}; be another six real constants which
satisfy the three equations

Tjo0;=0 (6.7)
It is easy to show (by direct substitution) that the functions
Vi= (R t+ S O Xp 2 (6.8)
and

Gi'=0io+ (Tu+Rm PZmi aj) apxp+S,,, Cijkl Oy T ¢ (69)

’

identically satisfy the governing egs. (6.5,6.6), if one invokes the identity

90, %) 3 —g (6.10)
T 0 A(yx,) Y o(a,xy)

9
a.Xj
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and uses eq. (6.7). Given suitable auxiliary conditions (such as initial or boundary conditions for
v; and G), the relationships (6.7,6.8,6.9) form a system of twelve equations which determine the

twelve constants R,,, SpandT;. We can eliminate the T; by multiplying eq. (6.9) by o, and using
eqs. (6.7) and (5.12,5.14) to get

3 6.11)
o (0 — c,? )= Y (R POy X5+ Sy ME),,;
m=1

Now eqs. (6.8,6.i 1) form a system of six equations for the Ry, and S, with the T;; being obtainable
directly from eq. (6.9) after R, and §,,, are determined. The new system can be further simplified
by multiplying each equation by z,; (uncoupling the terms corresponding to different values of m)

to get

IRy + 0, Xp Sy =V 2p; (6.12)

o, X, R, + (£, = o (G- 03 )2,/9  (no sum on n) (6.13)

in which c£ = \/ME/p is the n™ elastic wave speed.

Along line OV in Figure 3, where oy, x,, = V1, the values of v; and 6,;in egs. (6.12,6.13) must

equal v,y and 0',-‘]{ as given by eqs. (6.3,6.4). Therefore, by utilizing egs. (5.11) we get (after some
algebra),

cV+(cH? ; (6.14)
R,=- mc(c—V)g Y, (nosumonn)

2_y2 (6.15)

S,= —C-———E——z- €Y, (no sum on n)
Vi—(chy

in Zone 3.

In the remainder of the elastic region, R, and S, must be constant except along the

characteristics (op xp )2 =(cf t)z, where eqs. (6.12,13) become singular. Along these lines the
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theory of hyperbolic partial differential equations permits the “constants” to have different values
in the two regions on opposite sides of a characteristic as long as the system (6.12,6.13) remains

satisfied. In particular, along o, x, = ¢E ¢ the system becomes
R, + CE Sy =V 2/t (no sum on n) (6.16)
R, + CE Sp=0; (0~ 0,-? )z,,i/(pcf ) (nosumonn) (6.17)

Because the left sides of egs. (6.16,6.17) involve only the combination (R,, + cf S,)., the individual
values of the constants may be discontinuous across the characteristic line if the combination is

preserved. Let E,, and S, denote the values of the constants behind the n™ characteristic. Then

_ - . c—E (6.18)
R,+cySp=Rp+c, Sp=~ +CEc(c-V)g”y,, (no sum on n)
n

As each of the characteristics OP, OS and OT in Figure 3 is crossed in passing from Zone 3 to Zone
6, another pair R,, S, jumps to ﬁn, 5,,. For Zone 6 eq. (6.9) implies

@ (6= 05 )= (R POy X, + Spy Mt 2 for 0Sot,x, <5t (6.19)

The boundary condition for the problem at hand is o; (0;; - cg )=-Bpyzj;tona, x, =0
for all 20 (i.e., along line ON in Figure 3). Because the z,,; are linearly independent vectors, eq.

(6.19) can satisfy this boundary condition if, and only if, §2, and 53 are zero and
S, ME =-Bp, (6.20)

The elastic region is therefore characterized by the following sets of constants:

Ry, 81, Ry, 83, Ry and S5 in Zone 3
Ry S; Ry, Sy, Ryand Sy in Zone 4
R, S| R5,0, Ryand Sy in Zone 5
R; S, R, 0,Ryand 0 in Zone 6
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At this point we have completed the construction of a set of alternative solutions to the simple
initial/boundary value problem posed at the beginning of this section. However, we have not yet
proven that the stress given by eq. (6.9) is actually consistent with the assumed elastic behavior in
Zones 3, 4, 5 and 6. In order to do this, note that eq. (6.9) gives the rate of change of stress in elastic

regions as
GU = Em C,'ﬂd Ly Zmd 6.21)
in which
' 22 0, X o, X
(4
cg”y when —ELPcr<cL£E
VoEp ™ ™ v o
En=1 6.22
—Bpl/Mf for m= o x (6.22)
when t> —LEE
{ 0 for m=2or3 Cm
o
(E,, is undefined at t = p;p ).
Cm
The loading rate relative to the yield surface, j‘E, is
Y . Y Y
nij Gjj = Ep njj Cijki O 21 = Epy mj O 2y = —Ep Y (6.23)
In Zone 3 this becomes,
Y. | =2 ] PV
nj; 6;;= Qacg” (6.24)

after using egs. (5.25,5.29). The sign of the m = 1 term on the right side of eq. (6.24) is negative
because Q, a, ¢ and g” are all positive, c>V>cf>O (so that the expression in brackets is positive),

and p, y; is negative. Furthermore, the bracketed expression can be made arbitrarily large in
magnitude for m = 1 by choosing the value of V to be only slightly larger than cf . Because cf and

cf are less than cf, the m = 1 term will then dominate eq. (6.24) and determine its sign. Therefore
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values of V can be chosen for which the loading rate is negative in Zone 3 (and therefore consistent

with the presumed elastic behavior of Figure 3).

In Zones 4, 5 and 6 the loading rate is, according to egs. (6.23,6.22),

in which

r

"5 6;= Bp, yl/M;E +Ng” (6.25)
i Cz - Vz Pm¥m
Qac in Zone 4
m=2 V2 - (Cﬁ)z M —Mf,
2 V2 (6.26)
c = P33 .
Qac in Zone 5
V2 —(cH? M-M§
0 in Zone 6

Now, the value of g” can be chosen small enough so that the first term on the right side of eq. (6.25)

dominates the second. Then, because B and M’f are positive and p; y is negative, the loading rates

in Zones 4, 5 and 6 are negative (and the response is elastic in those zones as required in Figure 3).

Summarizing, we have constructed (and confirmed the validity of) multiple solutions to a
simple initial/boundary value problem. These solutions represent alternatives to the simple solution
(involving only primary elastic unloading waves and corresponding to g” = 0). The existence of
such multiple solutions (involving appropriate values of V and g”’ > 0) proves that non-associated
flow leads to non-uniqueness. Because the plasticity formulation analyzed here is completely
general, it extends over the entire class of rate-independent plasticity models used for practical

ground shock calculations.
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SECTION 7
CONCLUSION

Many ground shock calculations performed for the Defense Nuclear Agency utilize rate-in-
dependent plasticity models with non-associated (i.e., non-normal) flow rules to represent the
behavior of geological materials. In such models the yield surface is used to limit the shear and/or
tensile stresses, while the flow rule is used to independently define the direction of plastic straining
(thereby limiting the dilatancy). The behavior of constitutive formulations of this kind in dynamic
applications has been analyzed in this report. By means of a “constructive” proof, it has been
demonstrated mathematically that such models lead to multiple, and therefore spurious, solutions
in wave propagation situations; in other words, uniqueness of solution breaks down for dynamic
initial/boundary value problems.

Although a simple class of multiple solutions was presented to complete the proof for a very
simple type of problem, the conclusion is quite general; the proof makes no specific modeling
assumptions, except rate-independence, shear-like plasticity and non-singular elastic behavior (and
is therefore relevant to all of the ground shock, and some of the structural, plasticity models used
in practice). The loss of uniqueness is found to be closely related to the energy generating properties
of the models according to II’iushin’s postulate (even though the second law of thermodynamics
may be satisfied). The result implies that normality of flow is a necessary (as well as a sufficient)
condition for uniqueness in dynamic applications of any rate-independent plasticity model.

Obviously, these findings imply an inherent lack of robustness in numerical analyses based
on non-associated plasticity. Because the use of these models is widespread in ground shock (and
structural) calculations, the fact that they can produce multiple (and therefore spurious) solutions is
significant; it casts serious doubt on the validity of the specific results of any (and every) calculation
based on this kind of constitutive representation. Therefore it is strongly recommended that DNA
promptly abandon its reliance on such models in all work performed for the Agency. To describe
the situation most bluntly, these models do not provide a rational basis for the computations needed
for prediction, design and/or analysis applications. In all cases for which an associated flow rule is
deemed inadequate to fit observed material behavior, an approach other than rate-independent
plasticity must be sought in order to represent such behavior in a reliable, self-consistent and rational
manner.
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In view of the fact that non-associated plasticity models have already been extensively used
in analyses for DNA, it is recommended that some effort be made to quantitatively assess the
consequences of their use. In particular, the extent to which the model assumptions and parameters
can affect the numerical solutions to various types of problems should be investigated.
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APPENDIX
DERIVATION OF THE STRAIN INCREMENTS
SATISFYING INEQUALITY (4.7)

In this Appendix we present the entire six-dimensional set of strain increments Ag;; which
satisfy eq. (4.7) whenever the flow rule is non-associated. Consider the ratio of each of the
components n,? to the corresponding component ng. Either these ratios are all the same (i.e.
independent of { and j) or two (or more) of them differ. If the former possibility holds, we can let r

be the common ratio, sothatn = rnf, for all ij. But in that case n, n; —rznpn ;, so that r=%1.
ij ij J: i ij

When r = +1 the flow rule is associated, so this situation is not relevant here. For r =~1, n}; = ——nf;,

and eq. (4.7) holds for any Agy; satisfying eq. (3.6). The only remaining possibility in the case of

non-associated flow is that two (or more) of the six ratios n,-}} /nf; are different. Then we can select

at jeast two pairs of subscripts m,n and p,q in such a way that

Yy Y

n (A1)
Zmn  Zpg (no “sum” on m,n oron p,q )
P 7P p

Bmn  Npg

Let hy, hy, hy and hy be four arbitrary real numbers. Form a symmetric tensor k;; which has

zero components in the m,n and p,q positions and has hy, h,, h3 and hy4 as the other four independent

components (in any order). Also define n = nuh,], W = n,jh,] and D as

D= n,’,',,, ;;q pqn,l:m#O (A2)

Then two additional arbitrary real numbers, p and v, together with hy, h;, hy and hy define a

six-parameter family of “elastic stress increments”

C ke = I~ (Lev)nE by +B nh=hF ny ) Ui —h 1~ nf YU (A3)

in which Uy, = —2-1—D— (8imBjn + 8ind;m). By multiplying eq. (A.3) by n,-}; and ng, respectively, it is
1-ninf
straightforward to verify that eq. (4.7) is satisfied for all p >0 and Ivi < —l———r%.
+n; nyj
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A N: CODE Le4 LORY

NAVAL POSTGRADUATE SCHOOL
ATTN: CODE 1424 LIBRARY

NAVAL RESEARCH LABORATORY
AT N: CODE 5227 RESEARCH REPORT

NAVAL SURFACE WARFARE CENTER
ATTN: CODE K42 R ROBINSON
ATTN: CODE K42 S HUGHES

NAVAL WEAPONS EVALUATION FACILITY
ATTN: CLASSIFIED L:BRARY

NEW LONDON LABORATORY
ATTN: TECH LIBRARY

OFFICE OF CHIEF OF NAVAL OPERATIONS
ATTN: OP O3EG

OFFICE OF NAVAL RESEARCH
ATTN: CODE 11325M

DEPARTMENT OF THE AIR FORCE

AFIS/INT
ATTN: INT

AIR UNIVERSITY LIBRARY
ATTN: AUL-LSE

PHILLIPS LABORATORY
ATTN: NTES LTCOL TBRETZ

DEPARTMENT OF ENERGY

DEPARTMINT OF ENERGY
NEVADA OPERATIONS OFHICE
ATTN: OTIS D H MARTIN

DPEARTMENT OF ENERGY
ATTN: DR C V CHESTER

LAWRENCE LIVERMORE NATIONAL LAB
ATTN: R DONG
ATTN: R SCHOCK

LOS ALAMOS NATIONAL LABORATORY
ATTN: B SWIFT
ATTN: BOB DEUPREE
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ATTN: FRED APP

ATTN: RP WEAVER
ATTN: D STROTTMAN
ATTN: REPORT LidRARY
ATTN: S TAYLOR

SANDIA NATIONAL LABORATORIES
ATTN: A CHABA: DIV 9311
ATTN: DIVG311 LRHILL
ATTN: OR CARL W SMITH DIV 9311
ATTN: MIKE FURNISH
ATTN: TECH LIB 3141
ATTN: 9311 C W SMITH
ATTN: 9311 D GARBIN

OTHER GOVERNMENT

CENTRAL INTELLIGENCE AGENCY
ATTN: OSWR/NED

DEPARTMENT OF DEFENSE CONTRACTORS

AEROSPACE CORP
ATTN: LIBRARY ACQUISITION

APPLIED RESEARCH ASSOCIATES, INC
ATTN: C J HIGGINS

APPLIED RESEARCH ASSOCIATES, INC
ATTN: S BLOUIN

APPLIED RESEARCH ASSOCIATES, INC
ATTN: R FRANK

BDM FEDERAL INC
ATTN: E DORCHAK
ATTN: J STOCKTON

CALIFORNIA INSTITUTE OF TECHNOLOGY
ATTN: T AHRENS

CALIFORNIA RESEARCH & TECHNOLOGY, INC

ATTN: J THOMSEN
ATTN: K KREYENHAGEN

CARPENTER RESEARCH CORP
ATTN: HJ CARPENTER

HORIZONS TECHNOLOGY, INC
ATTN: B LEE

IIT RESEARCH INSTITUTE
ATTN: ABUTI
ATTN: DOCUMENTS LisRARY
ATTN: M JOHNSON

INSTITUTE FOR DEFENSE ANALYSES
ATTN: CLASSIFIED LIBRARY

JAYCOR
ATTN: CYRUS P KNOWLES

KAMAN SCIENCES CORP
ATTN: "_MENTE
ATTN: LIBRARY

KAMAN SCIENCES CORP
ATTN: DASIAC

KAMAN SCIENCES CORPORATION
ATTN. UASIAC

KTECH CORP
ATTN: E GAFFNEY
ATTN: F DAVIS

LACHEL AND ASSOCIATES, INC
ATTN: J BECK

LOCKHEED MISSILES & SPACE CO, INC
ATTN: PHILIP UNDERWOOD

LOGICON R & D ASSOCIATES
ATTN: CKBLEE
ATTN: D SIMONS
ATTN: LIBRARY

2CY ATTN: T PUCIK

LOGICON R & D ASSOCIATES
ATTN: B KILLIAN
ATTN: J WALTON
ATTN: L GERMAIN

MAXWELL LABORATORIES, INC
ATTN: J MURPHY

MCDONNELL DOUGLAS CORPORATION
ATTN: R HALPRIN

MISSION RESEARCH CORP
ATTN: TECH LIBRARY

PACIFIC-SIERRA RESEARCH CORP
ATTN: H BRODE

S-CUBED
ATTN: DR JL STEVENS
ATTN: DR KL MCLAUGHLIN
ATTN: SPEYTON

S5-CUBED
ATTN: L KENNEDY

SCIENCE APPLICATIONS INTL CORP
ATTN: TECHNICAL REPORT SYSTEM

SCIENCE APPLICATICONS INTL CORP
ATTN: W LAYSON

SOUTHERN METHODIST UNIV
ATTN: DR BRIAN STUMP

SRI INTERNATIONAL
ATTN: AFLORENCE
ATTN: D KEOUGH

TECH REPS, INC
ATTN: F MCMULLAN

TERRA TEK, INC
ATTN: C FELICE

TITAN CORPORATION
ATTN: LIBRARY
ATTN: S SCHUSTER




TRW SPACE & DEFENSE SECTOR
ATTN: W WAMPLER

WEIDLINGER ASSOC, INC
ATTN: HLEVINE

Dist-3
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WEIDLINGER ASSOCIATES, INC
ATTN: T DEEVY

WEIDLINGER ASSOCIATES, INC
2 CY ATTN: | SANDLER
ATTN: M BARON




