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ABSTRACT

The near wall mechanics of three-dimensional turbulent boundary layers were

studied using direct numerical simulation. A fully developed turbulent channel flow

was suddenly subjected to a transverse pressure gradient. An explanation for the

reduction in the Reynolds stresses, observed in experiments, was provided in termjs

of the dynamics of near wall streamwise vortices. A mechanism for the generation of

near-wall strearnwise vortices in turbulent boundary layers was dcscribed. It was

shown that the effect of three-dimensionality is to change the trajectory of fluid

particles in the vicinity of thesc vortices, and how this change leads to reductions

of turbulence stresses. The proposed mechanisms are consistent with nlincroUS

statistical data and correlations which are presented.
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NOMENCLATURE

Roman Symbols

al •/uIV2 + WO2/(u + v- + w-T) (structure parameter).

fz z-component external forces.

kz, kz Components of wave vector.

I shift of the structures in the spanwise direction.

Lz, Ly, Lz Dimensions of the comutational domain in the x, y and z

direction.

Nz, Ny, Nz Number of grid-points in the x, y and z direction.

p, P Pressure and averaged pressure.

Re Reynolds number. Re=- tl.
UL "

ReL Reynolds number. ReL =UL

Rij Two-point velocity correlation tensor.

t Time.
t+ tVl/,o

ur Wall shear velocity VVU-/p.

u(x, z) U(X, z + ).

UI sU2, U3 U, V, W.

ur2D Wall shear velocity in 2D.

u, v) w Velocity components in the x-, y- and z-direction.

U1, U2 , U3  U, v, w.
U00 Free-stream mean velocity in x-direction.

UL Centerline velocity of the laminar flow with the same mass

flux.

U, V, W Mean velocity components in the x-, y- and z-direction.

WY, Ow and OW

WOO w in the free-stream.

Ib W - Woo.

W8  Wall motion in the z-direction.

woo Free-stream mean velocity in z-direction.

X Axis in the initial mean flow direction.

Viii



Y Axis normal to the wall.

Y+ UrY/Vl.

1/20 U1 -2 0 1//l

z Axis normal to x and y.

z + I-O-t 2 .

Greek Symbols

a tan(OR).

71 Angle of maximum streamwise intensity, see eqn. 2.1 d.

Mean velocity gradient angle, see eqn. 2.1 c.

Ys Mean velocity angle, see eqn. 2.1a.

Reynolds shear stress angle, see eqn. 2.1 b.

v Kinematic viscosity.
V2 02 + 02 0

6 Channel half width.

wz,wywz vorticity components in the x-, y- and z-direction.

fnz Mean wz.

OR Angle of maximum auto-correlation.

bX, 8y, bz Grid dimensions.

Special Symbols

0* quantity in rotated coordinates.
(ensemble-averaged quantity.

0' fluctuating quantity.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Turbulent boundary layers (TBLs) of practical interest often have a three-

dimensional (3D) mean velocity profile. This is usually the case when the geometry

is complex, but there are also many important simple geometries with a 3D TBL.

Examples of the latter are the flow over a swept wing and the cooling of a vertical

wall by a non-vertical flow along the wall. The number of detailed experiments on 3D

TBLs is still far lower than in two dimensional (2D) boundary layers, in part because

of the difficulties in predicting 2D turbulent flows, which are presumed to be simpler.

Despite the dearth of experimental results several common features of 3D TBLs, some

unexpected, are reported in several experiments (see the reviews by Johnston 1976,

Cebeci, 1984). These features are outlined below:

First, the eddy-viscosity differs for the streamwise and the spanwise component

of the Reynolds shear stress, which undermines the use of models based on a scalar

eddy viscosity. Second, when a 2D TBL is turned into a 3D TBL by action of, say,

a transverse pressure gradient, the total Reynolds shear stress, 2 + ý-w, is

lower than in a 2D TBL with a similar streamwise pressure gradient. This is counter-

intuitive because the addition of a spanwise mean velocity gradient will generate

spanwise shear stre~s, -v Finally, fbr- is usuAlv a drop in the ratio of the

total Reynolds shear stress to twice the turbulent kinetic energy, called the structure

parameter al. This quantity has a near-constant value of about 0.15 in the outer part

of many 2D TBLs and has therefore been used in turbulence modelling.

The present turbulence models have difficulty predicting 3D TBLs; fcaturcs sEch

as the reduction in the Reynolds shear stress are not predicted. Therefore, an im-
proved understanding of these phenomena would be very useful in the development

of better models. Since al and the total Reynolds shear stress are invariant with
respect to a coordinate rotation in the plane of the wall, the reduction must be due

to changes in the structure of the turbulence rather than simple rotation of the stress

tensor.

: : i i i ii i



In the near-wall region of TBLs, well known contributors to the Reynolds shear

stress and turbulent kinetic energy are the quasi-streamwise vortices, pumping high-

speed fluid toward the wall and low-speed fluid away from the wall (Moin, 1987,

Robinson, 1991). It is therefore believed that this process may have been altered in

3D flows, and the mechanism of this alteration can be found through a study of the
turbulence structures in 3D TBLs. Such a study may also contribute to increased

understanding of the role of these structures in 2D TBLs as well.

1.2 Objectives

The objective of this study is to examine the mechanics underlying the ob-
served 3D phenomena described above, using direct numerical simulation. Turbu-

lence statistics will be accumulated in order to see how they are affected by the three-

dimensionality. Then, the effects of three-dimensionality on the turbulence structures

will be examined to understand the mechanisms leading to the observed changes in

the turbulence statistics.

The advantage of direct numerical simulation is that all essential scales are re-
solved so that modelling is not necessary. It is possible to study the unsteady three-
dimensional turbulence structures directly, as well as using conditional averaging and

other techniques.

1.3 Approach

The computed flow that is the subject of this study is a 2D fully developed.

pressure-driven, turbulent channel flow which is turned by a suddenly imposed span-
wise pressure gradient. A schematic of the channel with the coordinate system is
shown in Figure 1.1. The x- and z-axes are in the directions of the initial mean flow

and the initial spanwise direction respectively, and the y-axis is perpendicular to the
it:"13. In this lw all effects due to three-dimensionalitv will grow outward from the

wall. It therefore differs from spatially developing TBLs, such as that on a swept
wing, where three-dimensionality is generated in the outer part as well (see §1,4.2).

This work is therefore a study of the effects of three-dimensionality on the near-wall
turbulence. Although the presently simulated flow is a channel flow, the results are

relevant to turbulent boundary layers because the near-wall features of both flows are

known to be nearly identical.
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1.4 Three-dimensional turbulent boundary layers

1.4.1 Definition

A turbulent boinoary layer is three-dimensional when, in coordinates fixed to

the wall, the 5irections of the projections of the mean velocity vectors onto planes

parallel to the wall vary with the distance from the wall. It follows that in 3D TBLs

the % -ocity gradient angle, 7g =tan10/ OU), varies with the distance from the

wall. U and W are the streamwise and spanwise mean velocity components in planes

parallel to the wall. The maximum change in the velocity gradient angle across the

TBL can be used as an indicator of the degree of three-dimensionality and is invariant

with respect to coordinate rotation in the plane parallel to the wall. Note that the

mean velocity profiles in the streamwise and the spanwise directions can have different

thickness; this is the case for the present channel flow.

1.4.2 Mechanisms for generation of 3D TBLs

Since the mean velocity gradient angle is non-zero in 3D TBLs, the governingOW
equation for j can be used to identify the different conditions that lead to three-ow
dimensionality. When the boundary layer approximations apply, Qz ; -a- and
the better known transport equation for the mean streamwise vorticity can be used

instead (Bradshaw, 1987). We have chosen not to make this approximation. Differ-

entiating the Navier Stokes equation for W results in,

DWy 0U . I 92p OW OU a2lw, a2, 02wt2'- Of.D-5 =--W+'v wy , y ox =y 2 'yd_ +-, (1.4.1)
Dt x Y p dyiz ax9Y aa 2 aa ,O

where WY- -, x and z are the coordinates in planes parallel to the wall, y is normal

to the wall, and f, is the z-cornponent of the external forces. (U, V, W) and (u', vI, wI)

are the mean and fluctuating velocities in the (x,y,z) directions respectively. The

normal derivative of Wy at the wall is given by the Navier Stokes equation for W,

1W9y I I l9P DW 02 W a2W
py = V IPz + D-t- _ fZl Ox2 - Oz2  (1.4.2)

A term-by-term study identifies the following sources for three-dimensionality

1) A spanwise pressure gradient, 7, will generate a continuous flux of Wy at the

wall, causing three-dimensionality to grow outward from the wall. 9 can also

3



generate three-dimensionality inside the flow directly, which will make the entire

TBL three-dimensional much faster. This occurs when the spanwise pressure gra-

dient varies in x, which would generate "9W" The term -D-'7'f in eqn. (1.4.1)

will then be non-zero -icross the TBL. This effect is often called "inviscid skewing"

since it corresponds to a generation of mean streamwise vorticity by skewing the

mean spanwise vorticity, S:, through the tilting term Q, O For steady flows, the

ensuing spanwise mean velocity gradient angle is often well approximated with

the Squire-Winter-Hawthorne equation, C9= - W)'0t(v), where U is the

mean velocity in the streamwise direction and W is the rorresponding spanwise

component. This is a linearized approximation for low turning angles, but exper-

iments have shown that it is often valid for larger angles as well. The resulting

Johnston- or hodograph-plot, where W is plotted against U in coordinates aligned

with the local free-stream direction, will then be almost triangular in shape. The

term dikP is negligible for thin TBLs, but may play a role when the TBL is thick.

2) If the flow encounters a wall moving in a direction different from the local mean

velocity gradient direction, three-dimensionality is generated at the wall and will

grow outward. These flows are called shear-driven 3D TBLs. In the case of a

constant wall velocity, the only sources of Wy are the horizontal viscous forces

between the moving and the non-moving part of the wall (last two terms in eqn.

(1.4.2)). If the spanwise wall velocity varies in time, a continuous flux of IV is

generated at the moving wJl through the term -9W,-. Note that this term generates

a flux of Wy at the ;'all in the same manner as a spanwise pressure gradient. A

channel flow turned by a constant spanwise pressure gradient is equivalent to a

channel flow turned by a wall accelerating in the spanwise direction at a constant

rate (see §2.5).

3) Body forces can generate 3D TBLs. Gravity is usually not important unless there

is a large temperature difference across the boundary layer which would generate a

buoyancy force. This force can turn a TBL on a non-horizontal wall by generating

Wy across the TBL (Siebers, 1983). The Coriolis force due to Earth's rotation

causes Earth's TBL to be three-dimensional (Coleman et al., 1990).

4) For certain geometries, like non-circular ducts, the Reynolds stress terms in the

transport equation for Wy generate weak three-dimensionality.

5) Wy can enter through the outer edge, notably when a boundat'y layer interacts

with a longitudinal vortex (Bradshaw, 1987).

4



These five ways in which three-dimensionality is imposed on a boundary layer may

affect different regions of the boundary layer and with different intensities. They may

therefore lead to different 3D effects because the turbulc:,ce structures are different

near the wall and in the outer layer. Additional effects may appear when the tuining

is strong. Another important distinction is between equilibrium and non-equilibrium

3D turbulent boundary layers. In non-equilibrium 3D TBLs, a flow which is initially

2D or nearly so, is turned by a transverse force and the observed 3D-phenomena

occur while the turbulence adjusts to the new flow direction. When the 3D TBL is

in equilibrium, the turbulence has had sufficient time to adjust. An example of the

latter is the flow on an infinitely large rotating disk (LiLtell & Eaton, 1992).

1.4.3 Review of previous results

Results from pressure-driven and shear-driven 3D TBLs will be discussed below.

Three-dimensionality generated in other ways is not included.

Pressure - driven flows

Pressure-driven flows are of great practical interest. Important examples are the

flow over a swept witig and flow around buildings and other obstacles.

In the flow over a swept wing, the incoming flow is turned by a pressure gradient

which is roughly perpendicular to the leading edge in plan view. Except at the vtry

front of the wing, the pressure gradient 's adverse and will bend the flow away from

the body of the aeroplane. In order to reducc the number of degrees of freedom,

swept wing experments are set up to approximate an infinitely long constant-cord

wing, such that the flow is homogeneous in the direction of the leading edge.

Reynolds stress data for a 3D TBL were first reported by Bradshaw & Terrell

(1969). This was a flow recovering on a flat plate behind a 45' swept wing. The

three-dimensionality was weak with a maximum angle of 90 between the tunnel axis

and the surface streamline. The only observed 3D effect was a lag between the stress

angle tan-I(") and the mean velocity gradient angle tan- (9-( /-O-/). A practical

consequence of this is that the eddy-viscosity is not a scalar. This prevents a simple

extension of eddy-viscosity turbulence models to apply to 3D flows.

Experiments in a duct shaped to simulate a swept wing were done at the National

Aerospace Laboratory (NLR) in the Netherlands as a response to the need for more

5



data to test and develop 3D turbulence models. The turbulence statistics were re-

ported by van den Berg & Elsenaar (1972), Elsenaar & Boelsma (1974) and van den

Berg, Elsenaar, Lindhout & Wesseling (1975). As in the experiment of Bradshaw and

Terrell, the stress angle lagged behind the mean velocity gradient angle. A new find-

ing was that the structure parameter al = V/u--, + 2 rýv-7-w'/(u2 + v'2 + w' 2 ), dropped

below the commonly reported value of 0.15 in 2D flows. The drop in al in the outer

part of the TBL occurred before the changes near the wall had sufficient time to dif-

fuse outward. This indicated that the inviscid skewing mechanism described earlier

piayed a role in these flows.

In a Euromech meeting in Trondheim, Norway, (Fannelop & Krogstad, 1975) the

existing turbulence models were applied to 3D TBLs for which experimental data
existed. During this meeting, known as the "Trondheim-trials", it became clear that

the turbulence models did not perform well for 3D flows like the NLR "wing".

Bradshaw & Pontikos (1985) performed an experiment with a similar geometry to

the NLR. experiments except that the adverse pressure gradient was milder to avoid

separation. They were able to confirm the 3D effects found at NLR. The stress angle

lagged behind the mean velocity gradient angle, though never more than 8', and the

structure parameter dropped below 0.15 across the TBL.

When the flow is turned by an obstacle, the adverse pressure gradient is often

stronger and the turning more rapid than for swept wings. This will usually make

the flow separate earlier and measurements must be made over a shorter range in the

streamwiqe direction. The measured turbulence statistics may therefore not have had

sufficient time to be altered except near the wall.

Johnston (1970) investigated the flow over a 450 swept rectangular step with

a very strong adverse pressure gradient. The vertical pressure gradient may have
affected the three-dimensionality in this flow through the term 92 pa tdyn oh in eqn. (1.4.1).

Because of the strong pressure gradients, the flow turned as much as 35' over a

streamwise distance of only five 6- idary layer thicknesses. As with the earlier

experiments of Terrell and Bradshaw, the Reynolds shear stress angle lagged behind

the mean velocity gradient angle. The difference in angle was as high as 20', much

larger than what is found for swept wings.

Anderson & Eaton (1987, 1989) investigated the TBL around a wedge that was

attached to the wall and pointed in the upstream direction. Two wedge angles were

investigated, 900 and 60'. As with Johnston's experiment, the 3D effects were much

i I i Jl 6



larger than in the swept wing experiments and were largest for the largest wedge

angle. Values of the structure parameter al were as low as 0.03 and the ratio of the

spanwise to strearnwise eddy viscosity, in coordinates aligned with the local mean

flow, was as low as 0.2. The streamwise evolution of al was dominated by the out-

ward diffusion of near-wall effects to a larger extent than in swept-wing experiments.

A comparison of existing 3D data led to the conclusion that the eddy-viscosity ra-

tio decreases with increasing rate of boundary layer turning, defined as the ratio of

boundary layer thickness to free-stream streamline curvature radius, while being in-

dependent of the difference in mean velocity gradient angle between the wall and

the free-stream. However, the structure parameter was found to depend on both. A

significant drop in al and a low eddy-viscosity ratio was also found by Dechow &

Felsch (1977), who investigated the flow around a wing-shaped obstacle.

Moin, Shih, Driver & Mansour (1990) investigated the statistical evolution of a

fully developed 2D channel flow subjected to a sudden spanwise pressure gradient.

The structure of this flow was investigated in the present work. This flow is different

from the previously described flows in that all three dimensionality grows outward

from the wall with no possibility of inviscid skewing. The flow is well suited for the

study of near-wall three-dimensionality because the change in turbulence statistics

from their initial profiles to the final steady state profiles is gradual enough for the

three-dimensional effects on the statistics to be easily observed. The channel flow

displays a drop in the total Reynolds shear stress, the turbulent kinetic energy and the

structure parameter al. Since the magnitude of the total Reynolds shear stress and

the turbulent kinetic energy (normalized with the initial shear velocity and channel

half width) increase with the Reynolds number, they will have higher values in the

final steady state than initially. The reductions must therefore be due to the subtle

effects of three-dimensionality. From the Reynolds stress budgets, they found that

the decrease in -uYv' and u'2 were due to reduced respective productions, while the

pressure-velocity term caused the reduction in vI 2. The Reynolds stress angle

lagged behind the mean velocity gradient angle, with the largest difference at the

wall. The mean velocity, when scaled with the total wall shear velocity, shows a log-

region with a slope lower than the value of 2.4 usually found for 2D flows. Note that

this flow is nominally different from a flow with an impulsively started wall motion

which would be more closely related to experimentally studied flows along a spinning

cylinder (see below).

7



Shear - driven flows

Experimental and computational investigations of flows where wall-motion gener-

ates three-dimensionality will now be discussed. In the absence of additional sources

for three-dimensionality all 3D effects will grow outward from the wall.

There have been several experiments in zero pressure gradient flows along a cylin-

der with a rotating part. Three-dimensionality is generated by circumferential viscous

forces at the wall between the stationary and the rotating parts. If the rotating part is

long enough, the flow, in coordinates moving in the spanwise direction with the speed

of cylinder surface, Wq, will become 2D with an angle tan-'(Ws/Uco) with respect

to the cylinder axis. The flow is then said to be collateral. However, the Reynolds

stresses and the axial wall stress, normalized with U0, are higher in the collateral

flow due to higher effective free-stream velocity, v/U2 -+Ws2, and the radial pressure

gradient (Driver & Johnston, 1990). Therefore, when the flow enters or leaves the

rotating part, an adjustment toward the new 2D profiles will grow outward as the

flow progresses downstream. Results from three cylinder-experiments are described

below.

Bissonnette and Mellor (1973) performed measurements on a cylinder with fixed

forebody and rotating afterbody. They found that the flow remained collateral near

the wall when the flow entered the rotating part, while further out the flow was 3D

and the Reynolds shear stress angle lagged behind the mean velocity gradient angle.

The eddy-viscosity in the spanwise direction was in most cases between 0.5 and 0.8

times the streamwise (axial) eddy-viscosity. Using scaling arguments, they argued

that this was at least in part due to curvature effects. They also investigated the law-

of-the-wall for this flow. Following a suggestion by Clauser, they chose a coordinate

system that moved in the spanwise direction with the wall and aligned with the free

stream velocity VfU_§+W/,W. The slope in the log-region was considerably lower than

in 2D flows. Again scaling arguments were used and it was found that the curvature

contributed to this result. The spanwise wall stress increased "instantly" as the flow

entered the rotating part and decayed downstream, while the streamwise wall stress

increased slightly in the axial direction.

Lohmann (1976) investigated the same geometry, but with a stronger surface to

free-stream velocity ratio. The spanwise TBL did not grow to the same thickness as

the streamwise TBL within the region measured, causing the streamwise boundary

layer thickness, 6, to be unaffected by the spanwise wall movement. When the surface



velocity was increased, the growth of the spanwise TBL increased slightly and the

shape of the spanwise mean velocity profile outside y/i = 0.05 was altered. As in

the experiment of Bissonette and Mellor, the TBL was collateral near the wall and

three-dimensional further out, with the stress angle lagging the mean velocity gradient

angle. The Reynolds stresses increased rapidly near the wall when the flow entered the

rotating part and the increase diffused outward as the flow progressed downstream.

Any weakening of the Reynolds stresses due to 3D effects were therefore difficult to

detect. However, for Ws1Uoo=1.45, the axial wall stress decreased slightly after the

rapid initial increase and then continued to increase toward a new steady state, and

for W,/Uooy=2.2, it remained constant for a while after the immediate increase, and

then increased further to a higher 2D value. This indicates that the 3D effects tend

to reduce the axial wall stress.

Driver & Johnston (1990) reported on a similar flow. In their experiment, a col-

lateral TBL on a spinning forebody became three-dimensional as the flow entered

the stationary afterbody. This makes measurements easier, but it creates the addi-

tional effect that the initial 2D TBL is not aligned with the axial direction. As the

flow enters the stationary cylinder section, the Reynolds stresses reduce to their new

steady state. However, unlike the normal intensities, the axial Reynolds shear stress,
-u t v', fell below its final steady state value and then recovered. The reduction is due

to 3D effects which also caused the structure parameter al to fall below its steady

state value and then recover. Surprisingly, al was as high as 0.17 on the rotating

part. The mean velocity gradient angle relaxed toward zero more rapidly than the

Reynolds shear stress angle.

The main purpose of Driver and Johnston's work was to study the cylinder flow in

an adverse axial pressure gradient. Since there was no spanwise pressure gradient, a

mechanism for three-dimensionality did not exist in the outer part of the TBL. Their

objective was to investigate properties of the outward-growing three-dimensionality

in a TBL with an adverse pressure gradient. Earlier experiments on this flow (except

that the flow progressed from the stationary part to the rotating part) were performed

by Furuya et al. (1977) and Driver & Hebbar (1989). They found the effect of the axial

pressure gradient to be minimal. In the absence of cylinder rotation, the adverse axial

pressure gradient tends to weaken the Reynolds stresses near the wall and increase

them further out. Driver and Johnston found that when the flow is three-dimensional,

the increase in the outer region is less pronounced. Along a stationary cylinder with

9



an axial pressure gradient, al was weakened across the TBL, but its radial gradient

remained close to zero outside the near-wall region. In the 3D TBL, a1 did not drop

near the wall, but further out it dropped increasingly with increasing distance from

the cylinder.

Shear- driven flows in equilibrium

Some studies have been performed in the so-called equilibrium flows, where the

turbulence experiences the three-dimensionality over a long time and has had time to

adjust to it. One of the reasons for studying these flows is that they often have fewer

degrees of freedom. The relevance of these flows to the non-equilibrium 3D flows is

not yet clear, but they show some non-equilibrium characteristics. Three studies are

described below.

The first of these is the direct numerical simulation of a horizontally homogeneous

flow with the free-stream velocity vector rotating about a vertical axis at a constant

rate and a fixed magnitude (Spalart, 1989). In coordinates rotating with the free-

stream, the flow is statistically steady. When the magnitude and rotation rate of the

free-stream vector is used for normalization, the Reynolds number and the distance

from the wall are the only independent variables. The al parameter, when plotted

against y+, is reduced and the amount of reduction increased with increasing Re.

However, the difference between the Reynolds shear stress angle and the mean velocity

gradient angle was small and changed sign several times across the TBL.

The Ekman layer, the prototype of planetary boundary layers, was simulated by

Coleman et al. (1990). In the free stream, the pressure gradient is perpendicular to

the flow direction and is balanced by the Coriolis force. The structure parameter

profile varied greatly, but was mostly below 0.15. It did not seem to have any region

with a constant value. The difference between the Reynolds shear stress direction

and the mean velocity gradient direction was small in this flow as well.

Littell and Eaton (1992) investigated a 3D TBL on a spinning disk. Profiles of

the Reynolds stresses, normalized with the wall shear velocity, collapsed well when

plotted against the distance from the wall, normalized with the momentum thickness,

for different values of rotation rate and radius. Again, the lag between the turbulent

shear stress direction and the mean velocity direction was very small. The structure

parameter had a surprising profile with a peak near the wall and a near-linear drop

further out. Conditional averaged two-point correlations were computed and based
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on these it was suggested that a vortex generates weaker sweep-motion (u' > 0, v' < 0
and -ut'v 1 > 2x/•v-) in a 3D TBL if its sign of rotation is opposite to the mean

strearnwise vorticity at the wall and weaker ejections (u' < 0, v' > 0 and -uYvt >

2V4iv-'ý) if its sign of rotation is the same.

1.4.4 Structural "theories" for the observed 3D effects

It is known that quasi-streamwise vortical structures play an important role in

TBLs. The weakening of the total Reynolds shear stress and other 3D effects are

therefore believed to reflect the effect of three-dimensionality on these eddies.

In the spinning cylinder flow, Lohmann (1976) found an increased contribution

from small scales and a reduced contribution from large scales in the energy spectrum.

He therefore suggested that the transverse shearing motion broke up the large eddies

into smaller eddies and that recovery represented the build-up of large eddies. The

increase in small scales may in part be an artifact of the coordinate system, since the

2D flow has more small and medium size scales in the spanwise direction.

Bradshaw & Pontikos (1985) suggested that the eddies are tilted over in the

spanwise direction by the spanwise strain. Since the eddies near the wall have a low

angle relative to the wall, while further out they appear with high inclination, the

outer eddies are most likely to be toppled. Robinson (1991) described the dominant

vortical structure in the outer part of 2D TBLs, as consisting of an arch-shaped front

with high inclination angle and one or two legs with lower angle closer to the wall.

The strongest ejections in the outer part were found inside the arch. These ejections

would be affected if the arch is convected further in the spanwise direction than the

legs.

Anderson & Eaton (1989) suggested that near the wall the mean streamwise

vorticity will destroy the streamwise vortices with opposite sign of rotation and roll

up into vortices with the same sign of rotation. Vortices with one sign would dominate,

which could reduce the contribution from strong mixing motion between two vortices

of opposite sign.

Simpson & Devenport (1990) suggested that fluid swept toward the wall will in

3D TBLs displace most low-speed fluid in one spanwise direction. This fluid, when

ejected, would generate positive ulw'. However, they pointed out that the fluid need

not eject outward to the same level as in a 2D TBL, because the flow "has a third

dimension of spatial freedom". It is not clear what kind of mechanism this refers to
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since 2D and 3D flow terminology refers to the mean flow only and all turbulent flows

are three-dimensional.

Eaton (1992) suggested that the behavior of an imbedded vortex in 3D TBLs

could cast light on the behavior of naturally occurring near-wall vortices. The latter

are much smaller, but are often single-legged with a low inclination angle. Shizawa &

Eaton (1990) introduced a single, large, longitudinal vortex of either sign into the 3D
wedge-flow of Anderson & Eaton (1989) and found that vortices of both signs decayed

quicker than they would in a 2D TBL. In addition, the ejection-mechanism depended

strongly on the sign of the embedded vortex. If the vortex induced secondary flow

near the wall in the same direction as the spanwise pressure gradient, no secondary
flow separation took place and no low-speed streaks were generated. Vortices of

opposite sign induced motion opposing the 3D TBL and a strong outward motion
took place. Eaton (1992), based on the idea that ejections take place as a result of

streaks becoming unstable, suggested that the reduced number of streaks generated

less ejections and therefore less Reynolds shear stress.
It should be noted that these suggestions are not mutually exclusive. The key

mechanism may depend on the distance from the wall, the turning rate and other
quantities.

In Chapter 4 the results of our study of the three-dimensional channel flow will

be described in detail. The mechanisms underlying the reduced Reynolds shear stress

will be presented and compared with the previously suggested mechanisms described

above.

12



FIGURE 1.1. Schematics showing the channel flow geometry.
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CHAPTER 2

NUMERICAL AND ANALYTICAL CONSIDERATIONS

In this chapter a description of the geometry, the numerical method and physical

and numerical parameters are presented. In addition, the tools used for the analysis

and postprocessing of the simulation data are described.

2.1 Geometry and coordinates

The simulated flow is initially a fully developed turbulent Poiseuille flow. This

is a pressure-driven flow between two infinitely large, parallel, horizontal walls with

a steady mean velocity, (U(y), 0,0). A constant spanwise pressure gradient is sud-

denly imposed which causes a transient, three dimensional evolution of th- flow. The

perturbed flow eventually becomes 2D and statistically steady in a new direction. It

is the transient behavior which is of interest in this study. The geometry and the

coordinates for the simulated flow are shown in Figure 1.1. The x-axis is aligned with

the initial mean flow direction, the y-axis is normal to the walls, and the z-axis is in

the initial spanwise direction. The velocity components in the (x, y, z) directions will

be denoted by (u, v, w), or (Ul, u2, 113) respectively.

One of the difficulties in studying three-dimensional turbulent boundary layers

is the choice of coordinates. In rotated coordinates the velocity components will be

denoted as (u,, v, w,). There are several characteristic angles, and those used in

the current work are listed below. They will be called the mean velocity angle, the

mean velocity gradient angle, the Reynolds shear stress angle and the intensity angle,

respectively

Vs - tan-t [TV/U] (2.1 a)

'yr = tan-, [v'w/u'v'] (2. 1 b)

'yg = t -OW OU (2.1c)

yi = 0.5 tan-'[2u'wI/(u'2 - ;'2)] (2. 1d)

The latter is the angle of maximum streamwise intensity.
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2.2 Numerical method

The 2D turbulent channel flow was computed by Kim, Moin and Moser (1987).

They used direct numerical simulation technique which resolves all the essential scales

and no modelling is needed. The same computer code is used here in the simulation

of the 3D channel. Several stored velocity fields of Kim et al. were used as initial

conditions for different realizations of the 3D flow. A brief description of the numerical

method is given below. For a detailed description, refer to Kim et al. (1987).

The numerical method is a spectral method with pressure eliminated from the

equations. Fourier expansions are used for computation of the horizontal spatial

derivatives and the Chebychev expansion is used for vertical derivatives. The vis-

cous terms are time-advanced using the Crank-Nicholson method, while the Adams-

Bashforth method is used for the non-linear terms. The discretized equations are

Fourier transformed in the horizontal plane and then solved using the Chebychev-tau

method (Gottlieb & Orszag, 1977) for each wave number. The governing equation

for the vertical component of the vorticity, wy, is solved first, followed by the fourth

order equation for V 2 v which is separated into two second-order equations. The ex-

tra boundary conditions needed at the walls are provided by the continuity equation,

which reduces to - = 0 at y=O. The solution for v and wy together with the con-

tinuity equation and the definition of wy provide equations for u and w. Since the

pressure is not computed as part of the solution algorithm, it is computed separately

using a Poisson-solver when needed.

The turbulence statistics for the 2D data are in agreement with existing experi-

mental results, and have been widely used in turbulence research (Moin, 1987). It is

therefore a well verified code.

2.3 Parameters and grid

The effect of periodic boundary conditions on turbulence statistics is believed to

be minimal if the horizontal dimensions of the computational box are sufficiently large

that all correlations decay to zero in a distance less than half the computational box

size in each of the horizontal directions. In the present study, the physical dimensions

of the computational domain are (Lz, Ly, Lz) = (4r6, 2b, 4rb), where 6 is the channel

half width. The number of grid points is (NX, NY, NZ) = (128,129,128). The

Reynolds number, based on 6 and the 2D wall shear velocity, Ur-2 v-, is 180,

16



which corresponds to a Reynolds number based on the centerline velocity of 3300. For

the 2D flow, the grid dimensions, in wall units, are Ax+ = 17.67 and Az+ = 5.89,

and the first grid point off the wall is at y+ = 0.054.

The governing equations are normalized with the 2D shear velocity, Ur2D, and 6,

which gives an initial non-dimensional streamwise pressure gradient OP = -1. For

the 3D simulation, 8P is set to keep the mean mass flux in the x-direction constant.

The imposed spanwise pressure gradient is set to - 10. For the time-period considered

in this study, the mean flow angle was less than 450, which is low enough for the 3D

flow to be sufficiently resolved with the 2D grid. Some simulations were performed

with an extremely high spanwise pressure gradient, aP=-100. This was done in

order to make the effects large and thus easier to study. For these simulations it

was necessary to use NX=256 because of the large turning angle which required the

horizontal grid to be closer to a square.

2.4 The minimal flow unit

One of the difficulties with the study of organized structures in turbulent bound-

ary layers is the presence of several structures located randomly in space and time.

The minimal flow unit (Jimenez and Moin, 1990) is a channel flow in which the

dynamics is forced to be much simpler. The horizontal dimensions in the channel

flow code are reduced to the smallest size that can maintain turbulence. Only one

low-speed streak and often just two or three vortical structures are found within the

computational domain. The flow is called a minimal unit because, apparently with

a minimum set of structures the basic cycle of turbulence generation and dissipation

is maintained. Even though the flow would not occur naturally, it does satisfy the

Navier-Stokes equations and the turbulence statistics are very similar to those found

in a "regular-sized" channel. It is therefore believed that the key mechanisms that

maintain turbulence in tYe minimal flow are nearly the same as that in the regular

channel.

In the minimal channel, the spanwise dimension of the computational box was

slightly less than 100 wall units and its streamwise dimension was about 250-350 wall

units. These correspond approximately to the mean spanwise distance between the

streaks and the streamwise extent of vortical structures in the channel flow.

17



The minimal flow studied in this work had a Reynolds number, ReL - U

2000 and physical dimensions (Lx, Ly, Lz)=(7rb, 26, ' 6 while the number of grid-

points were (NX, NY, NZ)=(32,129,16), where UL is the laminar center line velocity

with the same mass flux.

In the study to be described in §3.1.3, the minimal channel was used primarily

to obtain an increased understanding of the dynamics of the "2D" wall turbulence.

In addition to the advantage of a simplified turbulence, the small size of the com-

putational domain makes it much easier to follow a single structure in time. Due

to periodic boundary conditions, the structure of interest will remain throughout its

lifetime inside the computational domain which is so small that it can easily be found.

A spanwise pressure gradient was applied to the minimal flow unit as well, but

because the spanwise size of the computational domain is very small, the comput tions

were meaningful only for very small turning angles. The spanwise pressure gradient

was therefore chosen to be lower than in the regular 3D channel, I I' 51=9p I. It

was also useful to apply spanwise pressure gradients of both signs to the same initial

field to see how the same eddy would respond to mean streamwise vorticity of both

signs.

2.5 Preliminary considerations for the 3D turbulent channel flow

The purpose of this section is to show that the 3D channel flow considered in this

study behaves like a shear-driven TBL and to describe its global characteristics. It is

useful to first look at the laminar case. The governing equations are then

Oui Op 1 a 2ui7W=- +-~-~- (2.5.1)at 5x-i + Re ay2

The equations are uncoupled and the ul-profile will not change when the spanwise

pressure gradient is imposed. Because w is independent of u, it will evolve as an

impulsively started 2D channel flow. It is more instructive to consider the governing
OWequation for w =_ and its boundary conditions,

awy I 02wy-t 1 8 2  (2.5.2)

=t Re T y20
w = e yj =0.
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where y = b is '.he channel centerline. It can be seen that the spanwise pressure

gradient doecs not influence 1 inside the flow; it generates a flux at the wall, which

diffuses outward. A spanwise boundary layer will therefore grow outward from the

wall. Outside this boundary layer, w has no spatial gradients, and

i

woo(t) O 7Pt

0

A series solution for w can be found for the entire domain using the method of

separation of variables

p 12 e ((+n)112t 1 -3 1w(t,y) R ---- 2R { y - -2 + n)r] sin[(2 + n)ryJ] (2.5.3)
n=0

A similarity solution exists for the case of infinite distance between the walls
'1

Op t -2 2- 2

r= -a-- t {c(02±1)](72+1) fe-12 d? } (2.5.4)

0

where,
00

-1 = 2 + 1)-2
0c]+le 2 dl, rl= IRe/12v/
0

This solution is in excellent agreement with eqn. (2.5.2) as long as the spanwise

boundary layer is thin compared to the channel half width.

When the flow is turbulent, the governing equations for the mean velocities, Ui,

are
O~~ i O P 1 2U i a tte r'

-i- =- + 1-- (2.5.5)
5- Ox, R-e ay2  19Y

As in the laminar flow, the vertical mean velocity component is zero. It can be shown

that the mean pressure is

P(x, y, z, t) = ax + J3 - pv'(y, 1) (2.5.6)

plus an arbitrary constant, where o. and j/ are the imposed horizontal mean pressure

gradients. Their values in the present flow were given in §2.3. Since tvw' is zero ini-

tially, W will grow like the laminar flow until v'wIv becomes significant. The spanwise

boundary layer will grow outward from the wall in the turbulent case as well, while
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further out W(t) = -opt independent of y. The mean velocity in the x direction,

U, is affected by the spanwise pressure gradient through - only. Any change

in U is therefore due to a change in the structure of the turbulence. When the flow

relaxes back to a new steady state, the Reynolds stresses will be higher than that of

the initial flow since the Reynolds number is higher.

The pressure driven 3D channel flow considered here is equivalent to a channel

flow with walls moving with a uniform spanwise acceleration. This can be shown as

follows. The transformation

W = tb- apt z = i 21z2 (2.5.7a)
TZ 2 Oz

gives
O• 0, O' i 02 ,

t +i = +Re 02 (2.5.7b)

S= o,t) = = 2b,t) = -p t (2.5.7c)O9z

This is the governing equation and boundary conditions for a channel flow whose

walls are accelerating in the spanwise direction at a constant rate.

2.6 ID channel flow vs 3D boundary layers

The 3D channel flow studied here should be contrasted to 3D boundary layers

studied experimentally. As mentioned in Chapter 1, most pressure-driven spatially

evolving 3D boundary layers encounter inviscid skewing of the vorticity vector in the

outer flow. This effect is absent in the present simulations where all 3D effects diffuse

outward from the wall. The present study examines the effect of three-dimensionality

on the near wall turbulence. Most 3D boundary layers studied experimentally or

encountered in applications are statistically stationary whereas the 3D channel flow

of the present study is temporally evolving. Moreover, due to spatial homogeneity, at

any instant the ensemble averaged streamlines are straight. However, the flow features

are similar if the streamwise coordinate and time are related via Taylor's hypothesis.

Figure 2.1 shows the mean flow particle paths in the channel flow, showing the typical

curvature and the wall-normal skewing expected in spatially evolving boundary layers.

Unfortunately, in many experimental studies of 3D boundary layers, the means for

generating the three-dimensionality has also introduced adverse streamwise pressure

gradients. Some of the observed effects may be attributed to the adverse pressure
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gradient rather than to three-dimensionality. The 3D channel flow studied here does

not have such additional complex effects.

2.7 Methods of identifying the mechanics underlying the 3D effects

In this section various statistical methods and a technique for the analysis of the

unsteady flow dynamics are described.

The probability density function (PDF) is a useful quantity for linking changes

in statistical quantities to changes in the turbulence structures. PDFs show the

distribution of a quantity, f, and are normalized such that

] P(f)df = 1. (2.7.1)

where P(f) is the PDF of f. When the PDF is multiplied (weighted) by some function

g(f), the integral over all values of f is equal to §. A plot of the weighted PDFs for

the 2D and the 3D flows will therefore show how much the change in occurrence

of each f-value contributes to the change in §. The joint PDF between two flow

variables, fl and f2, shows how the different combinations of fl-values and f2-values

are distributed. When it is weighted by some function g(fl, f2), it shows how each

combination contributes to r. In the current work, this is used to study how each

combination of uý and u contributes to the change in the Reynolds shear stress uY--.

The quadrant analysis (Willmarth & Lu 1972; Wallace et al. 1972) of uiu'* is a

useful supplement to weighted joint PDFs. Each value of uu' is classified into one of

four quadrants according to the sign of ui and u'.. The Reynolds shear stress can then

be separated into a sum of four terms, each equal to the integral of iurPui, u') over

that quadrant. The change in a term shows the integral effect of all changes within

the quadrant and how it varies with the distance from the wall.

Simpson and Devenport (1990) pointed out the usefulness of an octant analysis

in the study of 3D TBLs. The Reynolds stresses are separated into 8 terms according

to the sign of each of the velocity fluctuations. For example, the first octant-term for

uV1-- is equal to the sum of u vt over all points where u , vt and wt are all positive,

divided by the total number of points. We will use the octant analysis to distinguish

between the contributions to the Reynolds stresses by streamwise vortices of positive

and negative signs of rotation. When the octant-contribution for the 2D flow is

subtracted, it can be seen how each octant contributes to the change in the Reynolds
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stress. In the current work, only the change in magnitude of the contribution for each

octant is considered.

The average flow field around an event (loosely defined as a fluid motion in

some specified direction) or a structure can be computed using conditional averaging

(Blackwelder & Kaplan 1976; Kim & Moin 1986). We have examined the effect of
three-dimensionality on conditional eddies. In the current work this is done in the

following manner : A range is specified for a chosen quantity at a particular distance

from the wall. For each point which satisfies these conditions, the origin of the coor-
dinate system is moved to that point and the surrounding flow field is added to that

from the previous points.

Two-point correlations are used to extract information about the size and rela-
tive locations of structures. The direction of strongest correlation was used to esti-

mate the average angle of structures as follows. In a horizontal plane, the angle of

maximum correlation, OR, is derived from ,-f(x, z)f(x + Ax, z + atAx) = 0 where

a=_tan(B) . A Taylor expansion and using the horizontal flow homogeneity

and periodicity of this flow leads to

Of Of Of Ofa f af / af af.(2.7.2)

Finally, a non-statistical approach called the companion flows method was used

to study the unsteady flow dynamics. Two simulations, one with and one without a
spanwise pressure gradient, were started from the same "2D" initial field. Gradually,

the two flows deviate due to 3D effects. Comparison of the two flows allow identifica-
tion of 3D effects on the instantaneous structures. For example, the flow field around

a vortex in the "2D" flow can be compared with the field around the same vortex in
the 3D flow and those vortices which generate significantly different fluctuations can

be detected. Comparison is most useful for early times, when large differences are

restricted to a few locations in the flow.
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FIGURE 2.1. Mean flow path lines for y+ = 1 1( - ) and y+D= 2 0 (-... ) obtained
from simulations described in Chapter 4.
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CHAPTER 3

NEAR-WALL TURBULENCE STRUCTURES IN "2D" BOUNDARY LAYERS

We refer to "organized structures" as the non-random component of the velocity

fluctuations in a turbulent flow. To quote Lumley, an organized structure is "a

pattern which is recognizable and recurs throughout the flow". They are known

to be the primary contributors to the Reynolds shear stresses and other statistical

quantities and are also believed to be important in the dynamics which maintains

turbulence. Several types of structures have been identified in boundary layers, but

in this work our discussion tends to focus on the three-dimensional effects on the

widely observed quasi-streamwise vortices, high/low-speed streaks and shear layers.

Strearmwise vortices are associated with large values of v and w and wX, streaks are

associated with large streamwise velocity fluctuations, u', normal vorticity wy, and

spanwise vorticity fluctuations w,; whereas shear layers protruding from the wall are

associated with large w. away from the wall. A brief review of the existing knowledge

and new findings regarding these structures are given below. This study is limited

to the near-wall region because the spanwise boundary layer originates and grows

outward from the wall.

3.1 Quasi-streamwise vortices

A vortex is a swirling motion in coordinates moving with and aligned witil its

axis. Several vortex lines coming together in a compact region of space is also a good

indicator for the presence of a vortex in that region. Both definitions will be used

below. The velocity vectors in any vertical cut normal to the mean flow direction show

that quasi-streamwise vortices are abundantly present in the near wall region and are

associated with intense velocity fluctuations (Figure 3.1 a). Streamwise vortices have

been shown to be responsible for turbulence generation and the so called bursting

event is merely due to the passage of such vortices past the measuring station (Kim

& Moin, 1986). In the near-wall region (y+ < 20) the most intense v', w' and ul > 0

are associated with the vortices closest to the wall (Figure 3.1).
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3.1.1 Average size and location

The mean location of the near wall streamwise vortices is at y+ = 20, (Kim,

Moin & Moser, 1987). Once a streamwise vortex was identified in a (z - y) plane,

its streamwise extent was determined by a sequence of z - y cuts in the positive and

negative x-direction. It was determined that the streamwise extents of the vortices

rarely exceed Ax+ = 350. This is consistent with a mean streamwise spacing between

near-wall vortical structures of 440 reported by Clark and Markland (1971).

3.1.2 Detection of vortices

Both definitions of a vortex in terms of swirling motion and collapsed set of

vortex-lines can be used to identify vortices in instantaneous flow fields. However,

when several vortices are to be visualized in 3D space it is useful to have a function

whose contour surfaces capture vortices. One obvious choice for such a function

is the streamwise vorticity. A study of how well contours of streamwise vorticity

fluctuations capture swirling velocity vectors in the z - y plane reveals that contour

levels of magnitude 60ur2D/ 6 does a fairly good job (Figure 3.1a). In the minimal

channel, streamwise vorticity fluctuations of magnitude 0.5uL/5 were used. Low

pressure regions was used by Robinson (1991) to detect vortices, but in the near-wall

region of the channel flow no threshold on pressure was found which captured most of

the vortices present, and only vortices. The pressure minima in the centers of near-

wall vortices was not sufficiently strong compared to low-pressure events occurring

very close to the wall. One way to compensate for this is to identify regions of local

minima for p. This can be done by plotting high values of V 2p. This procedure

captured vortices slightly better than contour surfaces of W,. Consider the Poisson

equation for pressure,

v 2 P= _Oui Ouj

The dominant source term inside streamwise vortices was found to be O which

is the product of the component terms in wx. Hunt, Wray & Moin (1988) suggested

using the second invariant of the velocity gradient tensor together with low pressure

levels as the detection criterion for vortices. [his did not seem to improve significantly

on the detection of vortices close to the wall, but may be useful further away from

the wall.
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With a few exceptions, surfaces of streamwise vorticity fluctuations will be used

to identify vortices in the present study because w ,is easily computed and gives the

sign of rotation for the vortex as well. For quantitative studies, the swirling velocity

vectors in a vertical plane normal to the vortex-axis were used to identify vortices.

3.1.3 Dynamics of quasi-streamwise vortices in TBLs

The dynamics of quasi-streamwise near-wall vortices was studied using the

minimal channel (see §2.4). It is convenient to study the dynamics in this flow because

the computational domain is small and it is significantly more economical to follow

the temporal evolution of the flow structures.

Any viable description of the flow dynamics is considered complete if it is cyclic.

In the following, the process leading to the formation of streamwise vortices will be

described, i.e. the sequence of events leading to the roll-up of a layer of vorticity into

a streamwise oriented vortex rod will be outlined.

Figures 3.2 and 3.3 show the roll-up of a layer of streamwise vorticity into a

streamwise vortex. Initially, a compact streamwise vortex (shown by dashed lines)

and two layers of streamwise vorticity of opposite sign are discernible. Of interest

is the vortex layer near the wall. The layer is seen to roll-up and form a compact

streamwise vortex. A perspective view of the first roll-up is shown in Figure 3.4.

The sequence of cyclic underlying events for the production of this streamwise

vortex are as follows. We begin with an inclined streamwise vortex near the wall

(corresponding to the vortex marked by the dashed lines in Figure 3.2). Consider the

governing equation for the streamwise vorticity

Dwx Ou Nu Ou

D--- + W + W + V(3.1)

The tilting terms on the right hand side of eqn. (3.1) are simplified as follows

W u Oau 9Va(9 'WaU (3.2)
"T"Y + z Tz=TXT - ,z -zOx ,Oy(.)

Instantaneous contour plots of all the terms in the wx equation clearly revealed

that the regions of large values of the second term in the right hand side of (3.2)

coincide with the layer of streamwise vorticity shown in Figure 3.2 (see Figure 3.5).

Therefore, '9 Ou is the dominant contributor to the formation of the streamwise layer

of vorticity shown. The tilting of the parent streamwise vortex with respect to the
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wall leads to significant 0 (Figure 3.6a). The layer is stronger on the downwash

side of the parent vortex due to higher values of '9 encountered there (Figure 3.2).

This is how the streamwise vortex layer is generated. The layer is unstable

(Jimenez & Orlandi, 1992) and rolls into a streamwise vortex. Examination of the

terms in eqn. (3.1) reveals that once the vortex is formed, the stretching term, WX-V,

becomes dominant and intensifies the vortex (Figure 3.7). The inclination of the

newly formed vortex generates horizontal velocity derivative, ' (Figure 3.6b).

Note the velocity derivative along the axis of the inclined vortex, wi, is

Out = WjWj Oui
&xI Wkwk 8 j

Computation of each term showed that the dominant term is

2
tokwk 19x

It is interesting that even though the vortex is situated near the wall the term

involving OR has less contribution to stretching than the term involving 'u

Note that according to the process described above only tilted streamwise vortices

are capable of self-generation and self-induced stretching. It is well known that

a streamwise vortex near a wall is associated with a concentration of vorticity of

opposite sign at the wall. It is important to distinguish between this vorticity and

the vortex layer of opposite sign described here. In fact, Orlandi and Jimenez (private

communication) have demonstrated that the wall streamwise vorticity doess not play

an important role in the near wall dynamics.

3.2 High- and low-speed streaks

Contours of u' in horizontal planes near the wall are highly elongated in the

streamwise direction, particularly in the viscous sublayer. Low-speed streaks (u' < 0)

are longer than high-speed streaks (Robinson, 1991). The former will usually have a

width between Az+ = 20 and 40 and their lengths can exceed Ax+ = 2000. Contours

of positive u/ cover wider regions and become rapidly shorter with increasing contour-

levels. Their widths vary significantly, but are mostly between Az+ = 40 and 80.

The average distance in the spanwise direction between two streaks of the same type

(according to the sign of u') is well established as being close to Az+ = 100. Streaks

contain most of the intense u , wz and wy near the wall.
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The significant strearnwise extent of ul-contours may be due to a sequence of

vortices following each other, pumping high-speed fluid toward the wall and low-

speed fluid away from the wall. Plots of the velocity vectors in z - y planes along

a randomly chosen low-speed streak support this scenario (a few planes are shown

in Figure 3.8). Note that the vortices seen near the streak in the z - y planes in

Figure 3.8 have alternate signs, and that the distance between the vertical planes is

slightly more than 350 wall units (see §3.1.1). This picture is consistent with the

dynamics of vortex-generation as described in §3.1.3. There, it was argued that near-

wall vortices are generated below tilted near-wall vortices of opposite sign. Since the

newly generated vortex is closer to the wall, it will have a lower streamwise convection

velocity and will therefore end up behind the "parent-vortex". A sequence of vortices

with alternate signs and varying distances from the wall can thus be created.

As pointed out above, contours of positive u' tend to be shorter than those of

negative u'. Marking of an instantaneous flow field according to the sign of v reveals

a streaky pattern (Figure 3.9a). However, contours become rapidly less elongated

when the magnitude of the contour level is increased (not shown) and both high speed

and low speed streaks contain regions of intense v which are not highly elongated.

The relationship between the magnitude of u' and v' can be seen from the joint

probability density function between ul and v' (not shown). It shows that in the

viscous sublayer the magnitude of u' > 0 is correlated with the magnitude of v' < 0

while the magnitude of ul < 0 appears to be independent of the magnitude of v' > 0.

This is seen even more clearly when the joint PDF is weighed by u'2 (Figure 3.10).

Therefore, high speed streaks tend to be shorter than low speed streaks (Figure 3.9b).

The difference in correlation with v' between u' < 0 and ul > 0 is explained as

follows: A high magnitude of vi < 0 near the wall indicates that the fluid is from

a region far away from the wall and will therefore generate high u' > 0. On the

other hand regions with vi > 0 pump low-speed fluid from a rather uniform bed of

low-speed fluid (Figure 3.11).

High-speed streaks tend to be wider than low-speed streaks because the fluid

moving toward the wall is redirected in the spanwise direction by the streamwise

vortices and the wall. A spanwise movement of high-speed fluid will generate a wider

region of u' > 0 while a spanwise motion of low-speed fluid near the wall does not

generate ul < 0 (outward motion does).
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3.3 Near-wall shear layers

When the vortices eject low-speed fluid away from the wall, a strong shear layer

develops between the low-speed fluid and the high-speed fluid it replaces. Thin regions

of « << 0 are therefore seen on top of low-speed fluid (Figure 3.12). The abundance

of shear layers protruding from the wall in transverse views of turbulent boundary

layers was reported by Jimenez, Moin, Moser and Keefe (1988). Johansson, Her and

Haritonidis (1987) pointed out that shear layers have long life times. Together with

the high-speed streaks, the shear-layers contain the strongest vorticity fluctuations

(wi) in a TBL. Robinson (1991) observed that these shear-layers could "shed"

spanwise vortices. This is not believed to be a significant event for the near-wall

turbulence which is the region studied in this work.
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FIGURE 3.1. (a) Sample of velocity field and regions of lwxI > 60u,/b (grey). (b)
regions below y+ = 10 in (a) with Ivi > 0.5ur, (c) IwI > ur and (d) u' > 2ur (black)
and u' < -2ur (grey). The Figure demonstrates that vortices closest to the wall
generate the most intense IvI, Iwl and u' > 0, but not always the most intense u, < 0.
Tic mark are spaced 0.25 apart.
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FIGURE 3.2. Time evolution of contours of w-, in coordinates moving with the
structures. Increment is 0.25UL/ 6 starting with 0.5uL/I ( - ) and -0. 2 5UL/b
starting with -0.5uL/b ( ---- ). Velocity vectors are included for the first frame. Tic
marks are 0.2 apart. The time sequence is a,b,cd,ef
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FIGURE 3.3. Time evolution of fr,nt. part of the vortex f'ormed in Figure 3.2. Contourlevels are the same. F•-st frame c,,ii-,.sponds to ]a.-t frame in Figure :3.2. The Itime
sequence is a,b,c,d,e,f.
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FiGuRE 3.4. Time evolution of contours of wx 0.5uLI 6 in coordinates moving with
the structures. The z - y cuts across the contour surfaces are also seen in Figure :3.2.
Tickmarks are 0.2 apart. The time sequence is a,b,c,d,e,f.
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FiuGRE 3.5. Components of tilting terms for the streamwise vorticity associated with
the vortex formation in Figure 3.2. Contour levels of -9 ' ( ) and V9 OU

(- ) start at 0.05(UL/,l) 2 and increment is O.05(UL/6) 2 . Contour level of Jwxj is
0.5 uL/1 (-----). Tic marks are 0.2 apart.
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(b)

SI

FIGURE 3.6. Horizontal gradients associated with a tilted near-wall vortex. Contours
of w1 = 0.5uL/ 6 (- ) show the newly formed vortex in the last frame in Figure
3.4. Iso-contours of positive ( - ) and negative ( ---- ) values of (a) w and (b) u'
are inclined due to the tilting of the vortex. Tic marks are spaced 0.25 apart.
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(a)

6:

FIGUR.E 3.7. Tilting and stretching terms within a vortex. Contours of Wx = .5u LI6

(i)show the same vortex as in Figure 3.6. Isocontours of (a) Wx a and (6) wy~

+ Wz OU with increment u2j1b2 starting with u2 162 .
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FIGURE 3.10. Contours of the joint PDF between u' and v' weighted by u02 at y+ 5
show that u' < 0 is uncorrelated with v' > 0 (vertically elongated contour lines) while
u/ > 0 ik correlated with v' < 0 (tilted contour lines).
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FIGURE 3.11. Schematics showing the regions of origin for fluid crossing y2+ = 5
over a time At. The region of fluid swept toward the wall originate from regions
extending across the mean velocity gradient while the ejected fluid originates from a
region extending in the horizontal directions.
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CHAPTER 4

RESULTS AND DISCUSSION

The statistics of the 3D flow studied here were reported by Moin et al. (1990).
They found a reduction in the total Reynolds shear stress (Figure 4.1), turbulent

kinetic energy, and the structure parameter, al. The reduction in turbulent kinetic

energy was due to a large decrease in uT2 and a smaller decrease in v-2 (Figure 4.2a).

In coordinates aligned with the Reynolds shear stress direction (see eqn. 2.1 b), the

spanwise intensity was almost unchanged (Figure 4.2b). The Reynolds stress budgets

showed that a reduction in the production terms caused the drops in u'-2 and -u'-vt

while a reduction in -v X- caused the drop in W-2, which does not have a production

term. The Reynolds shear stress angle lagged behind the mean velocity gradient

angle.

In this chapter, the mechanics underlying these changes are described. Emphasis

will be placed on the evolutioui of the six Reynolds strecses, however, evolutions of

the mean velocities (§4.3), vorticity intensities (§4.4) and the two-point correlations

(§4.5) are also d(scussed. The present results will be compared with the experimental

data and the underlying mechanisms suggested in the literature (§4.6).

It is known (see Chapter 3) that the quasi-streamwise vortices are the primary

contributors to the Reynolds shear stress in 2D boundary layers. The dynamics

associated with these vortices will therefore be studied in detail. It turns out that the

flow dynamics associated with positive and negative streamwise vortices (the same

sign as or opposite to the mean streamwise vorticity) are different. In this work

the sign of a streamwise vortex will be defined as that of the streamwise vorticity

fluctuation in the center of the vortex. The mean x-vorticity is positive in the present

flow due to the direction of the imposed spanwise pressure gradient (Figure 4.3).

It will be shown below that the key mechanisms for the reduction in the Reynolds

stresses in the 3D flow are :

I Fluid swept toward the wall by positive vortices will not get as close to the wall

in 3D as in 2D, and will therefore generate less Reynolds stresses. In coordinates

moving with the vortex in the spanwise direction, the fluid will be forced toward

the vortex-center and will therefore experience a lower vortex-induced vertical

velocity (Figure 4.4a).
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II Ejections by negative vortices generate less intense velocity fluctuations because

the lifted fluid originates at a higher distance from the wall in 3D (Figure

4.4b). These ejections will also experience higher viscous forces leading to higher

dissipation in the turbulent kinetic energy equation.

These are the only significant mechanisms during the early evolution of the flow.

Later two other mechanisms contribute significantly to the reduction of the Reynolds

stresses. These are:

III The streamwise vortices are shifted with respect to the wall layer streaks below

them. In the new configuration, the vortices pump high- rather than low-speed

fluid away from the wall. In addition, the flow trajectories are altered with adverse

effect on the Reynolds shear stress (Figure 4.4c).

IV The high speed fluid swept toward the wall by negative vortices is convected away

from the vortex in the spanwise direction by the spanwise mean flow and does

not reach as close to the wall as in 2D (Figure 4.4d).

Since the effect of the spanwise pressure gradient diffuses outward from the wall

in this flow (see §2.5), it is useful to study the initial and later responses separately.

The initial period is defined as the time when the spanwise boundary layer edge is

below y+D 20 (y+ based on 2D wall stress). The quasi-streamwise vortices are

mostly outside the spanwise boundary layer and the flow is still very similar to a 2D

channel flow. Comparison of the 2D and 3D flows is therefore much easier than at

later times and 3D effects can be readily identified. One of the difficulties in studying

the flow during the later period is that the there is no obvious choice of coordinates

in which a comparison with the 2D flow can be made (see §2.1).

4.1 Reynolds stresses during the initial period.

For some time after 0p is imposed, most of the streamwise vortices will be outside

the spanwise boundary layer. They will then convect in the spanwise direction without

turning. A study of the instantaneous flows showed that this lasts for a time 0. 3 6 /Ur2D

when OP = -10 (unless otherwise stated all quantities are normalized with the 2D

wall shear velocity, Ur2D, and the channel half width, 6). This is the time it takes the

spanwise boundary layer to reach the average location of the centers of the near-wall

vortices, Y2D = 20. The lack of turning at t=0.3 can be seen in Figures 4.5 a and b,

where contours of w' of magnitude 60u72D/b ( which in §3.1.2 were found to capture
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vortices fairly well) andi Yj! > 50 at the wall are shown for the two companion

flows described in §2.7. The two simulations were started from the same 2D initial

field t = 0.3 earlier. Both vortices and streaks have been convected in the spanwise

direction, but their shapes have not been altered significantly by the spanwise pressure

gradient. However, the turbulence statistics have been significantly changed within

the viscous sublayer. The total Reynolds shear stress does not play an important

role ;n the viscous sublayer, but a drop of about 10% in this region indicates that a

significant change in turbulence mechanics has already occurred. In this section, the

mechanics causing the altered statistics at t=0.3 will be discussed, and it is assumed

that the mechanics is the same at earlier times.

The investigation of the six Reynolds stresses will be done in two steps. First,

for each Reynolds stress the events which are contributing most to its change are

identified. This is done using probability density functions and quadrant/octant-

analysis as well as the companion flows method (§2.7). Second, these events are

studied in detail and their underlying mechanics are identified.

The percentage changes in the Reynolds stresses are used to identify the locations

where each stress is most affected. At t=0.3, all three intensities have decreased across

the 3D layer. The streamwise intensity, u02 , has dropped by 2% at its maximum

location, YID ,• 15, and the maximum percentage drop is 8% at Y+D z 4 (Figure 4.6).

The vertical velocity intensity, v02 , has a maximum percentage drop of 9% at y!+ z 12

while the spanwise intensity, w,2 , has a maximum reduction of 9% very near the wall

(Figures 4.7, 4.8). The strearnwise Reynolds shear stress, -u'v 1 , has been reduced

by 5% at its maximum location (Y2D ; 30) and the maximum percentage drop is

13% very close to the wall (Figure 4.9a). The spanwise Reynolds shear stress, v'w',

has become slightly negative with its maximum magnitude at y' - 10 and the ratio

of spanwise to streamwise eddy-viscosity is 0.3 across the viscous sub-layer. Finally,
u'w/ has become slightly positive with a maximum value at y+o - 10 which is ten

times the local vlw'-magnitude and half the local uYv'-magnitude (Figure 4.1a).

4.1.1 Probability density functions, octant- and quadrant analysis

The intensity-weighted PDFs, ui P(ui), show which ranges of velocity fluctuation

levels are contributing most to the aforementioned reductions. They are shown in

Figure 4.10 near the y-locations of maximum percentage changes, but the trend is

virtually the same across the viscous sublayer. The streamwise intensity is reduced
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due to a reduction of the most negative and medium-range positive ul while the

vertical intensity is reduced due to reductions of medium-range positive and negative

v1. Medium-range positive w' and a wide range of negative values causes the drop in

the spanwise intensity. The asymmetry of the weighted PDF for at t=0.3 may

indicate that vortices of opposite sign are affected differently. Note that the PDF of

w1 very near the wall is proportional to that of 8'

According to the quadrant analysis (Figure 4.11), the weakening of the events in

the second quadrant, ul < 0 with v' > 0 and in the fourth quadrant, uW > 0 with

v1 < 0, contribute about equally to the reduction in -u'v.

The octant analysis (Figure 4.12) gives key information about the location of
weakened events (Simpson & Devenport 1990). It shows that in the viscous sublayer

the reduced quadrant-2 events tend to be correlated with positive wu while the

reduced quadrant-4 events tend to be correlated with negative w'. Since w' is mostly
associated with streamwise vortices in this early time-period, this indicates that those

quadrant-2 events that are weakencd are generated by negative vortices while reduced

quadrant-4 events tend to be generated by positive vortices (see Figure 4.3). This is

in accordance with mechanisms I and II presented earlier in this chapter. Outside

the spanwise TBL, the octants with u'v' < 0 and w' > 0 are most reduced. The

octant analysis does not provide enough information to establish the sign of the
vortices which generate these weakened events, since in this region these events may

be below or above the vortex-centers. Figure 4.13 shows that the same two octants

are responsible for the reduction in the velocity intensities as well.

The weighted joint PDFs between ut and w' at y'n = 10 (Figure 4.14) show

that the increase in ut wt is due to a reduction of the most negative u' correlated

with positive wu, and of medium-range positive ut correlated with negative w'. This

is consistent with the octant analysis for u'v. The quadrant analysis (Figure 4.15)

shows that both quadrants which generate negative utw' contribute significantly to

the increase in u'wI. The regions of reduced positive and negative u' are therefore

causing the change in this Reynolds stress as well.

The weighted joint PDFs between v' and w' at Y+D = 10 (Figure 4.16) show that

the negative v'w' is due to a reduction of intense positive and negative v' correlated

with intense wt of the same sign (quadrant I and 3). This is supported by the quadrant

analysis (Figure 4.17). The reduced values of w' are well correlated with the reduced

values of v'. Therefore, negative v' wt is generated due to the weakening of certain
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events which is very different from the mixing mechanism typically advanced for

generation of negative uY. It is for this reason that eddy viscosity models can not

predict, at least, the early stages of three-dimensionality. It should be noted that the
mechanisms associated with events I and 11 (Figure -1.4) described earlier have now

also been identified with generation of uVw1 and -v'w'.

4.1.2 The companion flows method

The comparison of the two companion flows (see §2.7) will now be used to confirm
and expand these findings. Regions with lu'l > 2, which according to the PDF of u'

are most affected by the spanwise pressure gradient at y'o = 5, are shown for the two
flows in Figure 4.18. The 3D flow field has been moved in the negative z-direction to

account for the spanwise convection so the two fields become easier to compare. ihe

shifted streamwise fluctuations will be denoted by ii', where fi'(x, z) = u'(x, z + 1)
and 1 = l(y,t) is the spanwise length that the 3D flow has been convected. I was

found by comparing u' in the two instantaneous flow fields at one .- locatio. (Figure
4.19). It can be seen that the two flows are very similar. In order to identify the

subtle events causing the changes in the statistics, the regions which contribulte most
to the change in u'2 are located. These are defined as the regions where "i 0 is

most negative. In Figure 4.20, contours of the most negative -o12 at y'o 5 are
shown. The plot also shows the sign of w'o (tU1D has mostly the same sign as its 2D

counterpart). It can be seen that the rogions which have a reduction in u12 are well

correlated with w' with sign opposite to u' (mechanism I &k II). A corresponding plot
which showed the sign of v' instead indicated that the reduced u'-regions correlate

well with v' of opposite sign. Figure 4.21 shows the regions which contribute most

to the reduction of each of the velocity intensities. It indicates that the evenL:- which

cause the reduction in u'2 are also causing the reduction in ,12 and w,'2 .

The vortices which are associated with reduced u' can be seen in : - y plane; cut

through the regions identified in Figure 4.21. In almost every case the reductions In
positive u' were associated with posit;ve vortices and the reductions in negative I'

were associated with negative vortices. The strengths and locations of the vortices

varied, but most were located between y'o= 20 anti 40 and were of low or medium-

range strengths. A sample of each of the vortices and the corresponding patches of
the affected velocity regions are shown in Figures 4 22 and 4.2-3 it) coordinates moving

with the vortices in the spanwise direction.
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The Reynolds stresses a.e a "ered at t=0.3 because near-wall vortices produce less

intense velocity fluctur-tiun. Wi- these vortices have a positive si;:" of rotation,

they tend to generate reduced u' > 0, v' < 0 and w' < 0 (sweep), and when they

have a negative sign they tend to generate reduced u' < 0, vi > 0 and w' > 0

(ejection). This causes the velocity intensities and -u'v' to be reduced and -vWw',

u1w' to become positive (§4.2.1). The mechanisms underlying these changes V 1'1 now

be discussed.

Particle trajectories about negative vortices

When fluid particles enter the viscous sublayer, their paths will be affected by

the spanwise mean velocity gradient. This change in trajectory is linked to the

alteration of the Reynolds stresses. In what follows it is most convenient to :1sider

the equivalent flows where the qow becomes 3D due to a spanwise acceleration of the

walls (eqn. 2.5.7), because then the vortices will not move significantly in the spanwise

direction. "Streamlines" within the z - y plane (5y, = 1) will therefore indicate how

the particle paths are affected by the spanwise TBL. Figures 4.24 shows "streamline"-

segments for the sample-vortices in Figures 4.22 and 4.23. Lines for both companion

flows are shown together, traced to or from a common point. The discussion below

is based on these figures.

In 2D, vortices with a negative sign of rotation will move fluid particles in the

positive z-direction below their centers. In 3D this motion is opposed by the spanwise

mean flow. If a fluid particle is sufficiently close to the vortex-center, it will encounter

a small spanwise mean motion and will have sufficient momentum to move in the

positive z-direction and be ejected as iii 2D. However, a fluid particle which in 2D

moves down close to the wall and is then ejected (and generates uf << 0), will be

redirected by the moving wall and dragged away from the vortex along the wall (see

also sketch in Figure 4.4b). In 3D the fluid which is ejected by the vortex is convected

toward the vortex by the moving wall and will tend to originate further away from

the wall than the fluid ejected in 2D (Figure 4.24b). Recall that the PDF's of u'

indicated that the most negative values of u' were most affected in 3D. Such large

negative values are generated by fluid originating from the closest proximity of the

wall. In Figure 4.24b the fluid particles originating below the vortex and closest to

the wall are swept to the left in 3D and are not shown. Only "streamlines" near

the region of significant reduction in the magnitude of u' are shown. The strongest
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vortices close to the wall at t=0.3 are able to move fluid in the positive z-direction

below y2D = 5 as well as lifting fluid convected toward them. They will therefore

generate intense u' < 0 in 3D as in 2D. In 2D these streamlines originate from below

the vortex and in 3D they originate from the far right of the vortex.

Moin et aL. (1990) reported a higher dissipation of turbulent kinetic energy in

3D. This appears to be due to the spanwise convection of the ejected low-speed fluid

over high-speed fluid regions and thereby increasing the magnitude of ' 0 (Figure

4.25). As will be shown later, the probability density function of vorticity fluctuations

show that the probability of large negative .u' increases significantly.

Particle trajectories about positive vortices

Vortices with a positive sign of rotation will in 2D move fluid toward the wall

in the negative z-direction below their centers. In 3D the spanwise TBL will drag
this fluid toward the vortex-center, where the vortex-induced vertical motion is lower.

Therefore, it will not reach as close to the wall as in 2D (Figure 4.24a, 4.4a). This
reduces the magnitudes of both positive u' and negative v'. The large values of w'

near the wall are due to redirection of the fluid swept toward the wall. Therefore, the

reduction of negative w' close to the wall is consistent with this scenario.

This concludes the dynamics of near-wall fluid motions associated with positive

and negative vortices. In addition, as seen in Figure 4.9 the -u'v is also reduced

outside the spanwise boundary layer. The same approach was followed in order to
identify the regions of reduced -uYv' in the outermost spanwise boundary layer. At

/2D = 25, the regions where -u'v' were most reduced were found to correlate well with
W/ > 0 which is consistent with the octant analysis. Vertical cuts through regions of

reduced quadrant-2 events show that they are associated with negative vortices with

centers further away from the wall (such that w' > 0 below them, see sketch in Figure
4.26). In the same way it was found that the reduced quadrant-4 events at y+ = 25

were associated with positive vortices with centers closer to the wall (w' > 0)(see

sketch in Figure 4.26 & Figure 4.27), The signs of the vortices which are associated

with reductions in these quadrants are therefore the same across the TBL. That is,

negative vortices are associated with quadrant 2 reductions and positive vortices with

quadrant 4 reductions. The vortices linked to the reduced quadrant-4 events tend to

be closer to the wall than those linked to reduced quadrant-2 events (see sketch in

Figure 4.26).
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4.2 Reynolds stresses during the later period of three-dimensionality

After t , 0.3, the flow becomes more obviously three-dimensional in the sense

that the streamwise vortices start to turn in the direction of the mean spanwise

pressure gradient. The vortices closest to the wall become submerged in the spanwise

boundary layer. Figure 4.28 shows surfaces of streamwise vorticity fluctuations equal

to 60ur2D/I (which in §3.1.2 were found to adequately capture streamwise vortices)
at t=0.45 and t=0.60. Contours of I "'I > 50 at the wall are also included to show the

streaks. The turning of vortices makes the flow more difficult to analyze, because the

vortices now contribute to all the Reynolds stresses. In 2D, u' is mostly generated due

to transport of high or low speed fluid in the vertical direction by the vortices whereas

v/ and wl are mostly due to the swirling motion. Because the vortices have varying

turning angles according to their size and distance from the wall, it is impossible to

find a unique coordinate system for comparison of the 2D and 3D flows using the

companion flows technique.

4.2.1 Changes in the Reynolds stresses

At t=0.9, the velocity intensity in the initial mean flow direction, u,2 , reaches

its maximum percentage drop of 28% at Y+D - 8 and recovery starts at the wall

(Figure 4.6a). When the coordinates are rotated to keep the streamwise intensity at
a maximum (eqn. 2.1d), uT2 starts to recover at t=0.6 and the maximum percentage

reduction is 19% (Figure 4.6b). The vertical intensity, vt2 , starts a slow recovery

near the wall soon after t=0.3 (Figure 4.7). At t=0.9, the vertical intensity has

almost recovered to its initial values near the wall, while at Y"o •" 40 it reaches a

maximum percentage reduction of 19%. The spanwise intensity, w,2 , increases rapidly

after t=0.3 (Figure 4.8). In coordinates rotated to keep the spanwise intensity at a

minimum (eqn. 2.1d), wl. remains slightly lower than the 2D profile in the time-period

studied (Figure 4.2b). The turbulent kinetic energy reaches a maximum percentage

drop of 17% at t=0.7 and Y+o - 10 and then starts to recover. The Reynolds shear

stress, -u'v', attains its maximum percentage drop of 23% at Y+ D • 30 and 1=0.9

(Figure 4.6a). The total Reynolds shear stress, Vv72 + ?w72,which is invariant

with respect to coordinate rotation, reaches a maximum percentage drop of 21% at

t = 0.8 (Figure 4.9b). Figure 4.1a shows the increase in the spanwise Reynolds shear

stresses -v'w7 and u'w' due to the turning of the structures. u1•w should be viewed as
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a velocity correlation rather than a shear stress because it does not contribute to the

mean momentum equations. The Reynolds shear stress angle where v'w, = 0, eqn.

(2.1b), and the intensity angle, where u'*w, = 0, eqn. (2.1d), are shown in Figure

4.29. It can be seen that the latter angle lags behind the former.

The changes in the turbulence statistics can be attributed to the structural

changes, to the rotation of the coordinate system aligned with the streamwise vortices,

and to the increased mass flow rate. Coordinate rotation effects can be eliminated by

considering quantities which are invariant with respect to coordinate rotation. One

may also consider a coordinate system which minimizes the turning effect on the

flow quantity being examined. There are two characteristic angles for the Reynolds

stresses: the Reynolds shear stress angle, eqn. (2.1b), and the intensity angle, eqn.

(2.1d). When the coordinates are rotated with the stress angle, we have v'w',=O

and - - + A 71tation of the coordinates with the intensity angle

maintains * at a maximum, w- at a minimum and uw,'=O. In the latter coordinate

system, for example, it would be legitimate to compare the 2D and 3D PDFs of

streamwise velocity fluctuations. The increased mass flow leads to increased Reynolds

stresses and flow recovery.

In the following section the structural changes causing the reduction in the

Reynolds stresses will be identified and the underlying mechanisms will be discussed.

Most of the studies were conducted at t=0.6 when many statistical quantities were

near their maximum change.

4.2.2 Identification of the most-affected events in the late period

It will be shown in this section that the reduction of the Reynolds stresses is

due to a weakening of sweeps and ejections by vortices of both signs, but as in the

initial period, sweeps by positive vortices and ejections by negative vortices are most

affected.

In coordinates aligned with the maximum streamwise intensity (eqn. 2.1d) the

intensity-weighted PDFs (Figure 4.10) show the same trend as in the initial period.

That is, the streamwise intensity is reduced because there are fewer medium-range

positive and intense negative u,, the normal intensity is reduced because there are
0 w',

fewer medium-range v' of either sign, and a reduction of negative 07y- causes the
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reduction in spanwise intensity. The latter is consistent with a reduction of sweeps

associated with positive vortices.

The quadrant analysis for u'v' at t=0.6 indicates that, as in the early period

(Figure 4.11), both sweeps and ejections are weakened (Figure 4.30). This result is

independent of the choice of coordinates. In general, the analysis of Reynolds stresses

containing ut and/or v) was qualitatively independent of the choice of coordinates,

while stresses containing w'. were strongly coordinate-dependent.

Conditional averaging (see §2.7) was used in order to establish how the changes in

sweeps and ejections by vortices of each sign contribute to the changes in the Reynolds

stresses. The primary difficulty with conditional averaging is to find the condition

which captures the structure of interest. The changes at t=0.3 can be used to test

the choice of condition, since the most affected events at this time are known to be
Ow'

sweeps by positive vortices and ejections by negative vortices. Conditioning on

at the wall has the advantage that no subjective choice of location inside the flow is
needed. The range 20 < V < 50 and -50 < 3 < -20 gave the correct trends

(Figure 4.31). A narrower range (30-40) also revealed the correct features. In the
Ow'. = ±(20- 50) at the wall waslater period, the conditional eddy corresponding to 5 a

used, where w. is the spanwise velocity in coordinates rotated with the intensity angle

(eqn. 2.1d). In these coordinates, the rms of is at a minimum. The conditionally

averaged flow shows a reduction of sweeps and ejections by vortices of both signs, but

the two events which were most affected during the initial period, sweeps by positive

vortices and ejections by negative vortices, are also most affected during the later

period.

In order to obtain less coordinate-sensitive conditionally-averaged data, we

experimented with conditioning on v. If a vertical motion is part of a vortex, it

will be accompanied by a vertical motion of opposite sign either to its right or to

its left according to the position of the vortex. Several locations and ranges for

v were tested. Unfortunately, the results were highly dependent on the choice of

conditioning, but those which gave the correct trend for the initial period showed

the same trend in the later period as well. Figure 4.32 shows the averaged field of

negative u, around -0.25 < v < -0.2 at y+j, = 10. It can be seen that the negative
values of u', to the right (positive z) are most reduced, which implies that negative

vortices are most affected (Figure 4.3). Note that the u', fields corresponding to both

positive and negative vortices are depicted in the conditionally averaged field.

52



The octant analysis was very useful in the initial period. In the later period, the

coordinate-dependence of w. poses a problem. Although a study of the instantaneous

flow fields indicated that w, in coordinates aligned with either the Reynolds shear

stress (eqn. 2.1b) or the direction of maximum intensity (eqn. 2.1d) was a good

indicator of the sign of the vortices, the respective octant analyses led to qualitatively

and quantitatively different conclusions. The only consistent trend resulting from

both octant analyses was strong reductions from ejections generated by negative

vortices. In general, there were reductions of sweeps and ejections by vortices of

both signs, but the magnitudes of the reductions varied strongly. The octant analysis

for utv' in coordinates aligned with the shear stress direction is shown in Figure 4.33.

In order to develop a less coordinate-dependent octant analysis, w' was replaced

by the streamwise vorticity fluctuation, w,, as a better indicator of the sign of the

vortices. However, this approach was unsuccessful because it did not correctly predict

the well-established trends for the early period.

In conclusion, sweeps and ejections by vortices of either sign generate reduced

fluctuations in the later period. The two events which were most affected during the
initial period (I and II in Figure 4.4) continue to be most affected in the later period.

In addition the other sweep and ejection events by vortices of both signs are weakened

(111 and IV in Figure 4.4).

4.2.3 Underlying mechanisms in the late period
C9 W'.

Conditional averaging (Figure 4.31) and the intensity-weighted PDF's for j at

the wall (Figure 4.10c) indicate that sweep-motions by positive vortices are reduced

in the later period as well. The mechanism is believed to be the same: in 3D, fluid will

be moved toward the vortex-center (in coordinates moving with the vortex) where

the vertical velocity is lower, and it will therefore not reach as close to the wall as in

2D (Figure 4.4a).

The weakening of ejections associated with negative vortices are believed to be
caused by the same mechanisms as in the initial period: that is, the fluid closest to the

wall is convected in the spanwise direction instead of being lifted (Figure 4.4b), and

the ejected fluid experiences more viscous dissipation due to convection of low-speed

fluid on top of high-speed fluid in 3D (Figure 4.25). This is supported by the budgets

for the Reynolds stresses which show continued reductions due to less production and

more dissipation (Moin et al. 1990). It is also supported by the weighted PDF for it,
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(Figure 4.10a) which shows reductions in the magnitudes of the most negative values

of u' which result from the transport of fluid from near the wall.

Ejections due to positive vortices generates less intense fluctuations in the later

period. Two mechanisms are believed to be responsible for this. First, the low- and

high-speed streaks are shifted with respect to the vortices above them (Figure 4.4.c).

The vortices then pump higher-speed fluid away from the wall and thereby generate

less Reynolds shear stress than if they had pumped low-speed fluid. It can be seen

in Figure 4.34c that in 3D high-speed fluid indeed resides under the ejection side of

the vortex shown. A second mechanism is the change in particle trajectories. Fluid

which is ejected will simultaneously be convected away from the vortex into a region

of weak vortex-induced vertical motion. This is seen in Figure 4.34a where "stream-

lines" within a vertical plane normal to a vortex indicate the trajectory of ejected

fluid.

Sweep-motion by negative vortices generate lower levels of velocity fluctuations in

the later period (Figure 4.4d). This is contrary to the initial period, when this type

of event generated slightly more intense fluctuations than in 2D (see octant analysis

in Figure 4.12). When the vortices are submerged in the spanwise boundary layer,

the fluid swept toward the wall will simultaneously be swept away from the vortex

and will not reach as close to the wall. This is seen in Figure 4.35 which shows

selected "stream-lines" around a negative vortex in the 3D flow. This completes the

presentation of the evidence and the corresponding mechanisms for the affected events

sketched in Figure 4.4.

There are two characteristic directions for the Reynolds stresses. These are the

direction of maximum streamwise intensity (eqn. 2.1 d) and the direction of maximum

streamwise Reynolds shear stress (eqn. 2.1b). The latter leads the former (Figure

4.29) and the reason for this will now be discussed. The difference between these

angles is believed to be due to different turning angles of the vortices according to

their distance from the wall. The vortices which are closest to the wall generate

the highest magnitudes of positive u' and negative v'. Their high turning angles

are therefore responsible for high stress- and intensity angles. Vortices further out

generate significant levels of negative u', but generate low levels of positive v (§3.1).

These vortices (with lower turning angles) will therefore contribute more to the

intensity angle than to the shear stress angle. Thus, the intensity angle is lower
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because it has more contributions from the slightly turned vortices further from the

wall than the shear stress angle.

Finally, a change which is clearly seen in the instantaneous flow fields is the

kinking and later break-up of the wall layer streaks (Figure 4.36). It is not known to

what degree this phenomenon affects the Reynolds stresses. The break-up mechanism

is primarily in the horizontal plane. Vortices which in 2D are aligned with each other
in the streamwise direction next to a streak turn in 3D. They will then no longer be

aligned behind each other and the streak breaks up. Since intense high-speed regions
on the high-speed streaks are well correlated with near-wall vortices, these regions

turn swiftly and significantly (Figure 4.36).

In the late period, turbulent intensities near the wall begin to recover. The early

part of the apparent recovery is not due to diminishing of 3D effects. It will be

shown below that the 3D effects are still present; however, they are overcome by

the increased mass flow. Recovery from 3D effects should occur when the vortices

begin to align with the mean velocity gradient direction. In order to find when this

occurs, it is necessary to estimate the angle of these vortices as a function of time and

distance from the wall. One way of doing this is to compute the direction of strongest

correlation for quantities which best capture vortices. The expression for this angle in

the horizontal plane, OR, is given in eqn. (2.7.2). In Figure 4.37, the angles of strongest

auto-correlation for p!, V2p' and w,' cos(OR)+wz sin(0R) are shown at t=0.6. All three

angles are nearly the same (except in the viscous sublayer). The mean velocity in the

direction normal to OR increases continuously in magnitude during the time-period

studied (Figure 4.38). Thus, the three-dimensional effects in the late period have not

diminished and recovery is caused by the increased "streamwise" mass flow.

4.3 Mean velocities

The mean velocity component in the x-direction, U, is virtually unchanged during
the initial period (t < 0.3). Later, U is reduced near the wall and since the mass flow

in the x-direction is fixed, it increases further out. The percentage reduction is largest
very close to the wall, where a u ndergoes its maximum drop of about 8% (Figure

4.39). This is the only observed quantity which was still dropping at t=1.05, when
the accumulation of statistics was ended. During the initial period, the weakening

of the events with highest and lowest u cancelled their respective contributions to

U. In the later period, the turning reduces the magnitude of positive ut more than
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the magnitude of negative ut because the vortices closest to the wall (which turn)

generate the most intense positive ut while vortices further out (which don't turn)

generate as intense negative u' as vortices close to the wall. The net effect is a reduced

U near the wall in the later period.

The spanwise mean velocity component, W, is identical to the laminar profile

(§2.5) during the initial period. When the structures turn, they make the Reynolds

shear stress vector turn as well and the W profile is no longer laminar (Figure 4.40).

However, W does not develop a logarithmic region during the time-period studied.

4.4 Vorticity intensities

In 2D channel flows, the x-vorticity intensity, 412, is mostly due to quasi-

streamwise vortices and the secondary vorticity they create below them (Kim et al.

1987). Because the sign of the secondary vorticity is opposite to that of the primary

vortex, there is a local minimum in the viscous sublayer (Figure 4.41a). At t=0.3, W4

is reduced all the way out to Y2oD - 80 with the largest percentage reduction of 9% at

the wall. The reason for the reduction near the wall, where 4-2 ; -'-/y 2 , has already

been discussed in Section 4.1. The reduction outside the spanwise boundary layer

is believed to be due to reduced gradients caused by the weakened ejections from

the near-wall region. After t=0.3, the shear layers which contain strong spanwise

vorticity begin to turn. Since W'2 is significantly larger than w42 in near-wall 2D flows,
the turning tends to increase 42 in this region. Outside Y'i = 50, the two vorticity

intensities are of about equal magnitude, and 4 is reduced due to weakened ejections

from the near-wall region. The weighted PDF for w' at y+' = 20 shows an increase

in negative values and a decrease in positive values at t=0.6 (Figure 4.42a). This is
aw,

consistent with the turning of the shear-layers which generate more j < 0. Note

that the turning transforms some of 19" < 0 of the shear layers to - < 0.

Figure 4.41b shows that the vertical vorticity intensity, W2 , drops across the

boundary layer. Note that wy is invariant with coordinate rotation. The maximum

percentage reduction is 20% at t=0.75 and y+D= 3 8 ; recovery starts at t=0.5 near

the wall. The weighed PDFs (Figure 4.42b) show that both positive and negative

values of significant magnitude are reduced. These values are usually found between

near-wall streaks, and next to shear layers further out (high 191 in both cases). The

reduction is therefore consistent with the reduced values of ut. Recovery starts earlier
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than for the strearnwise velocity intensity and the turbulent kinetic energy, which

indicates that the normal vorticity is more directly affected by the break-up of the

streaks (§4.2.3) than the streamwise velocity fluctuations.

The spanwise vorticity intensity, w?, (Figure 4.41c) is proportional to u'2 very

close to the wall and decreases due to the weakening and turning of the streaks.

During the initial period, an increase occurs between Y+D = 7 and 25 because of the

increased dissipation associated with ejections generated by vortices with a negative

sign of rotation (§4.1.2). The PDF for wz at t=0.3 (Figure 4.42c) shows an increase

in contribution from w. > 0 which is consistent with more intense jy < 0. Later,

this increase develops into a plateau due to the turning of the vortices (see profile of

2_ Figure 4.41 a).

4.5 Two-point correlations and energy spectra

Two-point velocity correlations

Rij(Ax, Az, y, y', t) = ut(x,z,y,t)ulj(x + Ax, z + Az, y',t) (4.5.1)

contain information about the size and relative locations of structures. In a 2D near-

wall layer, R 1 1 is used to study the properties of the streaks while R22 and R33 are

used to extract information on the average size and intensity of the quasi-streamwise

vortices. In 3P, correlation contour lines in vertical planes are skewed (shown for R 1I

in Figure 4.43), while in the horizontal plane they reflect the weakening and turning

of the turbulence structures (see below). Below, the correlations of the velocities

in the rotated coordinates in horizontal planes are discussed. The rotation angle

corresponds to the direction of maximum streamwise velocity intensity (eqn. 2.1 d).

Thus, Rii. is defined as in eqn. (4.6.1) with ui replaced by uý, (§2.1).

Figures 4.44, 4.45, 4.46 show the evolution of velocity two-point correlations at

Y+2D = 10. At t=0.3, W = 0.99Woo at Y+D = 20 and the structures have turned very

little. The changes in the correlation length and magnitude are therefore mainly due

to the weakening of the velocity fluctuations. Later, the most pronounced turning-

effect is the formation of a kink in the contour lines for R1i, and a significant difference

in the directions of maximum correlation for short separations between the three

auto-correlations. The angle of maximum correlation for R11 , remains fairly close

to the Reynolds shear stress angle for a wide range of distances from the wall and
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times, while the angles for R22 and R33 , are larger. Figure 4.47 shows the angles of

maximum correlation obtained from eqn. (2.7.2) as a function of the distance from

the wall.

Differences in correlation angles are believed to be due to the variation of the

turning angles of the vortices with distance from the wall. A review of the discussion

of Figure 3.1 regarding the relation between the distance of a vortex from the wall

and the velocity fluctuations it generates in 2D flows is therefore useful. The vortices

which are closest to the wall turn the most and are the primary contributors to all the

two-point correlations near the wall. Vortices further out generate fairly low velocity

fluctuations near the wall except for negative u?, and, therefore, contribute with their

low turning angles, more to Rll, than to R22 and R33 ,. The angle of maximum

correlation for Rll, is therefore the lowest of the three near the wall.

The kink in Rll, is believed to be due to the turning of the near wall vortices.

For large separations Ax and Az, u'(x, z) and u'(x + Ax, z + Az) are generated by

different vortices. Therefore, the correlation angle tends to be lower than the angle

for short separations where the two points would be located on a single vortex (see

sketch Figure 4.48). R22 and R33, show a weaker kink. This is because the vortices

in Figure 4.48 contribute to R22 and R33, over long distances only if they both are

located near the wall. On the other hand, vortices both near and away from the wall

contribute to intense u' < 0 near the wall.

The two-dimensional energy spectra for the ui, velocities, Ell,, E22 and E33,

are shown in Figures 4.49. Ell* in the 3D flow shows that the large scales (low

frequencies) havy rotated less than the the small scales. This is another manifestation

of the kink in Rll,. R11 , at large separations is mostly made up of large scale

structures which have turned by a smaller angle. The lack of pronounced kinks in

R22 and R33 , is related to a more uniform angle of spectral contours for E22 and

E 3 3 ,.

4.6 Comparison with previously suggested mechanisms

The mechanisms for the reduction of Reynolds stresses in 3D flows which have

been suggested in the literature were described in §1.4.4. These mechanisms have

been tested in the channel flow of the present study. The results of these tests are

described below.
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Lohmann (1976) suggested that in a flow along a cylinder, part of which is

spinning, the vortices would be torn apart when they encounter the cross-flow. Such

a break-up was not observed in the current work (compare x-vorticity contours in

Figures 4.5 and 4.28), but the vortices in Lohmann's flow experienced a stronger and

more sudden cross-flow which may have caused additional effects.

Vortices outside the inner layer tend to have arch shaped heads which induce
ejections (Robinson, 1991). Bradshaw and Pontikos (1985) suggested that in 3D

boundary layers the heads are tilted sideways and become less efficient in producing

Reynolds shear stress. This hypothesis can not be tested in the current flow due to

the lack of inviscid skewing mechanism (see §1.4.2).

Anderson and Eaton (1989) suggested that the mean streamwise vorticity, OX,
generated in 3D, leads to the cancellation of the natural boundary layer vortices of

opposite sign, and also rolls up into streamwise vortices of the same sign. Thus, a

preference for vortices of one sign is developed, resulting in fewer strong ejections in
between vortices of opposite signs. There are two ways in which fx might reduce

the number of vortices of opposite sign: either the generation of these vortices is

inhibited and/or the existing vortices are destroyed. The mechanics of the formation

of streamwise vortices were discussed in §3.1 for 2D boundary layers. It was found

that sheets of wz were formed close to the wall which rolled up into vortices. The

vorticity of the sheet was of opposite sign to the primary vortex that generated the

sheet. This process was not significantly affected when a spanwise pressure gradient

was imposed. Using the minimal channel (§2.4) as the basic test set-up, a 2D flow

with a strong streamwise vortex of negative sign was selected. Then two simulations
with the imposed pressure gradient in the positive and negative z-directions were run.

Comparing the 3 simulations (2D and two 3D's) did not reveal a marked difference
in the process of formation and roll-up of a positive vortex sheet into a streamwise

vortex (Figure 4.50). Note that in Figure 4.50c the vorticity of the vortex sheet is

stronger than that in 2D because it is superimposed on the mean streamwise vorticity.

However, the Figures showing the roll-up process (b, d, J) furthei- downstream are very

similar.

In addition, conditional averaging was used to study whether there were fewer
vortices of one sign in the 3D channel. Several conditions were attempted (various

ranges of w., and v') and, depending on the condition used, the results sometimes

indicated a weak preference for negative vortices, but never a preference for positive
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vortices (mean streamwise vorticity is positive in the present flow). The mechanism

proposed by Anderson and Eaton (1989) therefore does not to occur in this flow.

Simpson and Devenport (1990) argued that low-speed fluid which is pushed

sideways by high-speed fluid near the wall need not be ejected away from the wall in

3D flows due to the extra "spatial degree of freedom". The reduction in strength of

the ejections is consistent with the findings of the present study (Figure 4.4b and c).

However, their reasoning in terms of a third dimension of spatial freedom is unclear

since the "three-dimensionality" only referred to in the mean flow and both 2D and

3D flows are three-dimeitsional.

Eaton (1992) suggested that the near-wall streamwise vortices respond to 3D

effects in the same manner as the large imbedded vortices investigated by Shizawa

and Eaton (1990) would. They found that vortices with sign of rotation opposite to

+h1at of the mean streamwise vorticity interacted with the cross-flow in a very different

manner than those of opposite sign. Much weaker negative streamwise fluctuations

were produced (weaker ejections) if the vortex-generated motion near the wall was in

the same direction as the mean cross-flow while vortices of opposite sign generated

stronger ejections of low-speed fluid. The imbedded vortices were well outside the

location of maximum spanwise cross-flow such that the cross-flow below them was

the same in both fixed coordinates and coordinates moving with the vortices (see

sketch in Figure 4.51). This is not the case for the naturally occurring streamwise

vortices closest to the wall in the 3D channel flow. That is, in the 3D channel flow

in coordinates moving with the vortices, the ejections are most reduced for vortices

with induced motion near the wall opposite to the mean spanwise flow (Figure 4.4b).

It therefore seems that the imbedded vortices behave differently from the near-wall

vortices in TBLs. We note that the embedded vortices of Shizawa and Eaton were

much stronger than naturally occurring vortices in TBLs. In order to study the effect

of the cross-flow on the most intense vortices in the channel flow, the average flow

fields around a strong vortex was computed using conditional averaging. At t=0.0,3w'.
0.3 and 0.6 the ensemble averaged flow field around points with ]-5g > 100 at the

wall was computed (Figure 4.52). It can be seen that, the conditionally averaged flow

is consistent with the experimental result for the imbedded vortices. That is, strong

vortices with induced motion in the direction of the mean spanwise flow generate the

weakest ejections. A plausible ez-planation is that negative vortices of m-ledium or low

strength are unable to oppose the mean cross-flow and lift. the fluid closest to the wall
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as described in §4.1.2 (Figure 4.4.b). However, the strongest "ortices are able to lift

fluid from very close to the wall as well as the fluid being convected toward them.

Finally, Littell and Eaton (1991) measured turbulence statistics in an equilibrium

3D turoulent boundary layer on a spinning disk (see §1.4.3). Conditionally averaged
two-point correlations offered information consisteit with the present findings on

the effect of the cross-flow on the streamwise vortices. Their results indicated that

vortices with the same sign as the local spanwise mean velocity gradient generated

weaker sweep-motion while vortices of opposite sign gene-ated weaker ejections.
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63



(a)

6-

,% 
%

3-

0 20 40 60 s0 100 120 140 160 180

Y2D

7 ~ (b)

5-

ltU*

2

11

0 _____

o 20 40 80 80 100 120 140 16O 180

Y2o

FIGURE 4.2. Intensity profiles in (a) initial coordinates and (b) coordinates aligned
with the direction of maximum streamnwise intensity (see eqn. 2.1d). Starting from
t=0.0 - with increments, At = 0.1-5.

64



y W

o7 +

z

FIGURE 4.3. Schematics showing the sign convention for strearnwise vortices.

65



II

W-W-

y

.30

yt

III

3D 
20

IV

W-. P.

FIGURE 4.4. Schematics showing the underlying mechanisms I-IV which lead to the
reduction of the Reynolds stresses. The observer is moving in the spanwise direction
with the center of the streamwise vortex.

66



Af/.5

-im 4 ' r

F-i R 'P
wil PIP

.~ .. .

6-Y

(WIwZI > 60uT2D/b) for the companion flows at t=0.3. (a) 2D flow and (b) 3D flow.
Tic marks are 0.5 apart.

67



(a)

0

-10-

-15-

-20

-25

-30
0 20 ;0 60 80o 1;00 '120 140

Y2D

5 (b)

0

C -a 5

1 -10

-15-

4 t-20 ,

o 20 0 60o 8o 1;0 120 140

Y2D

FIGURE 4.6. Percentage reduction of streamwise velocity intensity in (a) initial
coordinates and (b) coordinates aligned with the direction of maximum velocity
intensity. Starting with t=0.3 with increments, At = 0.15.

68



5

0

C4

- -5O

C4

o -10

-20
0 20 40 60 so 100 120 140

!/2D

FIGURE 4.7. Percentage reduction of the normal velocity intensity. Starting from
t=0.3 with increments, At.. 0.15.

70

60

50i

Q 40-

Ms30

20-

0-

-10 1.. . ......

0 20 40 6;0 180 100 120 140

Y2D

FiGURE 4.8. Percentage change in spanwise velocity intensity in initial coordinates.
Starting with t=0.3 with increments, At = 0.15.

69



10-
(a)

05

-10

0

- -15

-20

-25
0 20 40 60 80 100 120 140

Y2D

10- (b)

010

S -15

lO

-20-

-25

0 20 40 go 80 100 120 140

Y2D

FiGuRE 4.9. Percentage reduction of streamwise Reynolds shear stress in (a) initial
coordinates and (b) coordinates aligned with the Reynolds shear stress direction (eqn.
2.1b). Starting with t=0.3 with incremenL, At = 0.15.

70



-,(a)

0.2

0 -4 -3 -2 . 06- 7 U,

0.06. (b)

0.05-

0.04-

0.03O"--"•:• o•.'/ ,C

0.01 -

-1.5 -v.0 -. 5 0.5 1.0 1.5

8()

7

* 2 -

-200 -150 -100 -50 0 50 100 150 200

FIGURE 4.10. Intensity-weighted PDF for (a) u' at Y'D = 5, (b) v' at Y'D = 10 and (c)

at the wall. ( - ),t=0.; (t= ) I=0.3; ( -------- ), 1=0.6. zz4 and w, are rotated

with the direction of maximum intensity (eqn. 2.1d) for t=0.6 and is unrotated for
t=0.3.

71



0.005-

0-

-0.005- ' * ------ -

-0.010-

-0.015 -......... ..

-0.020-

-0.025-

-0.030 1
0 20 40 60 80o 100

Y2D

FiGURE 4.11. Change in magnitude of the contribution from each quadrant for uYv
at t=0.3. u' >0and vi >O(--- ), u'<0and v' > O-) u' <O0and v'<O0

(.--)Ul >O0and v' <O(.....

72



0.010 

_

0,005 .. .

-0.005-

-0.010"

-0.015-

-0.020

-0.025 ' " ,,,,,, -- '

0 2 4 6 8 10 12 14 16 18 20
Y2D

FIuGRE 4.12. Change in magnitude of the contribution from each octant to uýv7 at
t=0.3. Legend as in Figure 4.11 , except x on lines represent w' > 0 and no x
represent w' < 0.
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FIGURE 4.22. Sample vortex from the companion flows with positive sign of rotation
for (a) 2D flow and (b) 3D flow at 1=0.3. Contour lines below Y'D 10 ( -
u1 > 5 with increments Au' = 0.5 and ( .... ) u' < -1 with Aut = -0.5. The tic
marks are separated by 0 05.
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FIGUREa 4.26. Schematics showing the events in which uv vis most reduced at. Y = 25.
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FIGURE 4.28. Top view of streaks (jo'l' > 50 at the wall, shaded grey) and vortices

(jwý'j > 60) for (a) 1=0.45 and (b) t=0.6. Tic marks are separated by 0.5.
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FIGURE 4.29. Angle of maximum Reynolds shear stress (-) and angle of maximum
velocity intensity (-- .Starting frorn t=0.15 with increments, A1t = 0.15.
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FIGURE 4.33. Change in magnitude of the contribution from each octant to utl
at t=0.6 in coordinates aligned with the Reynolds shear stress. u, > 0 and z' > 0
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FiGURE 4.34. Regions of uii > 0 (grey) extend toward the ejection-region in 3D. This
effect is weak during the initial period as seen by comparing the 2D (a) and the 3D (b)
companion flows at 1=0.3. At 1=0.6 (c) the effect is much stronger. In addition, the
particle trajectories will be altered by the cross-flow. This effect is seen in (a) where
some "streamlines" for both the 2D) (--) and the 3D (-.... ) companion flows are
shown traced from common starting points. This effect will increase in importance
with increasing spanwise boundary layer thickness.
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FIGURE 4.35. "Streamlines" for a sample-vortex at t--O,6 in a vertical plane rotated
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FIGURE 4.39. Percentage reduction in the x-component of th rriean velocity. U,
starting from t=0.15 with increments, At = 0.15.
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velocity profiles, W, starting from t=0.15 with increments, At = 0.15.
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FwuRE. 4.43. R11 at (a) t=0. and (6) t=0.6 around y-D = 10. Positive contour
levels are incremented by 0.5, starting from I (-)and negative contours are
incremented by -0.5, starting from -0.5 ( ---- ). Tic marks are 0.1 apart.
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FIGURE 4.44. ft 11* (based on the velocity components in the direction of maximum
intensity) at y' 10 for (a) 1=0.0, (b) t=0.3 and (c) t=0.6. Positive contour levels
are incrementeA by 1, starting from I - and negative contours are incremented
by -0.25, starting from -0.5 ( .Tic marks are 0.1 apart.
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FIGURE 4.46. R33. (based on the velocity components in the direction of maximum
intensity) at Y+D = 10 for (a) t=0.0, (b) t=0.3 and (c) t=0.6. Positive contour
levels are incremented by 0.1, starting from 0.2 (-) and negative contours are
incremented by -0.005, starting from -0.025 (i.... ). Tic marks are 0.1 apart.
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FIGURE 4.47. Angles of maximum correlation in the horizontal plane for ( - )
Rll*; ( ---- ) R22 and ( ........ ) R33, at t=0.6. The velocity fluctuations are rotated
to the direction of maximum streamwise intensity.

z

302

AX2

FIGURE 4.48. View of two vortices from below (grey) in 3D flow. Angle for short
streamwise separation (01) is larger than the angle for large separations (02).
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FIGURE 4.49. Ell*, E22 , E33, (left to right) for t=O, 0.3, 0.6 (top to bottom) at
Y2D = 10. Contour levels: 0.1, 0.01, 0.001... Spacing between tic marks is 10.

108



yb(a) (b)

/b(C) Y6(d)

............ .

.... .....

Y/6 (e) (f)

Fir~uR 4.50. Formation of a vortex sheet with w,, > 0 in flow with f1 ., 0 (a, b),
Il > 0 (c, d), flz < 0 (e, J). Figures to the left show plane across aft of the sheet
and figures to the right show a plane across the front part of the sheet. Contour lines
represents wz, with increment 0.25 starting with 0.5 (- ) and with increment -0.25
starting with -0.5 (-.-)Grey regions show areas with w,, < 0.
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FIGURE 4.51. Schematics showing the spanwise mean velocity profile in coordinates
aligned and moving with a vortex which is (a) above and (b) near the location of
maximum cross-flow. Even though the profile is the same in coordinates fixed to the
wall, the spanwise mean velocity below the two vortices are of opposite sign.
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CHAPTER 5

CONCLUSIONS

TIe effect of an impulsively started transverse pressure gradient on turbulence

structures in a planar channel flow was studied using direc' numerical simulation.

In agreement with experiments, the simulation showed a reduction in the Reynolds

shear stress. It also showed a drop in the turbulent kinetic energy. To understand the

underlying mechanisms for these seemingly counter-intuitive observations we focused

our study on the effects of three-dimensionality on the wall layer structures. To
this end we performed a detailed study of the dynamics of the energy producing

structures in both 2D and 3D channel flows. This study included detailed examination

of the instantaneous flow fields, probability density functions, two-point statistics

and conditional averaged fields. The mechanisms described are consistept with all

statistical data as well as observations of instantaneous fields.

In the 2D channel flow our study of the near wall structures revealed a mechanism
for the generation of streamwise vortices. The cycle of events begins as follows. An

inclined sheet of streamwise vorticity is generated below an existing inclined stream-

wise vortex through tilting of normal vorticity. The sheet is unstable and rolls up into,

an inclined streamwise vortex which will grow due to stretching. The key element

for the stretching is the inclination of the vortex and the transport of fluid by the
vortex in the wall-normal direction. The extent of stteamwise vortices in the channel

were rarely more than Ax+ = 350. Near-wall streaks are generated and maintained

by a string of these vortices. Low-speed streaks are longer than high-speed streaks

because the magnitude of negative u' generated by a vortex is fairly independent of

the distance of the vortex from the wall and hernce vor,;ces at various locations con-

tribute to a low speed streak. On the other hand an increase in the height of a vortex

above the wall tends to decrease the magnitude of positive a it generates near the

wall.

In the 3D channel the reduction in tota! Reynolds shear stress and turbulent ki-

netic energy were shown to be due to changes in the particle trajectories associated
with streamwise vortices. Most affected are trajectories on the sweep-side of vortices

which move fluid below them in the same direction as the spanwise mean velocity in

coordinates moving with the vortex, and on the ejection-side of vortices of opposite
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sign. These sweeps are weakened because the fluid moving toward the wall is con-

vected toward the vortex-center where the vertical vortex-induced motion is low. The

fluid will therefore not reach as close to the ,,all in 3D and hence its contribution

to the Reynolds stresses is reduced. The Reynolds stresses generated by ejections

due to vortices of opposite sign are reduced because the lifted fluid originates further

away from the wall in 3D. In addition these ejections are reduced due to increased

viscous dissipation when low-speed fluid is convected sideways above high-speed flui i.

Reynolds stresses generated by other sweep and ejection motions are also reduced due

to changes in particle trajectories.

Among the other observed phenomena of interest were the break-up of the wall

layer streaks during the later period of three-dimensionality. This break-up was at-

tributed to the differential turning of the streamwise vortices according to their dis-

tance from the w;ll and with respect to the streaks.

In sumrr'ary, our numerical study of the various stages of development of a 3D

flow driven by a spatially homogeneous spanwise pressure gradient has illuminated the
reasons why the extra increase in the total shear rate leads to decreases in turbulent

kinetic energy and total shear stress. Future work should include experimental veri-

fication of this study. In most cases experimental verification is feasible only through

novel conditional a"erages and two-point correlations. Direct numerical simulations

of a spatially developing 3D turbulent boundary layer is highly desirable. Such a

computation will include inviscid skewing effects which is an important feature of

maay of the experimentally studied 3D flows.
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