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PREFACE

The oljective of this study is to quantify the effects of fracturing and anisoltrol.V in thc

vi(in~ity of an underground explosion on the resulting seismic radiation pat.terns and( III

plarticular on the generation of shear waves. In previous work under this contract we applied

wavenumber integration and ray-Bon modeling techniques to address this problem. The

present study employs finite difference modeling to compare the effects of anisotropy near

the source with the effects of random heterogeneity and the combined effects of anisotropv

and heterogeneity. The results show that the source radiation pattern does greatly depend

on the medium properties in the source region, and that an explosive source in an anisotropic

iii(ldiuni generates larger shear waves than an explosion in a randomly heterogeneous nic('iuIIR

of similar contrast in parameters. In addition, we review the existing theories of the effective

elastic moduli of micro-fractured and macro-fractured media. We discuss the limitations of

these theories and study their implications for the difference between the shear wave velocity

variations of micro- and macro-fractured media. AcLion For
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RADIATION PATTERNS FROM EXPLOSIONS IN

ANISOTROPIC AND HETEROGENEOUS MEDIA

Summary

The generation of shear waves from an explosive source in a complex medium (includinig

anrisotropy and heterogeneity) has been investigated using theoretical calculations of seis-

itiograins and radiation patterns. We developed a cylindrical coordinate finite difference

algorithm for anisotropic/heterogeneous media to perform these calculations. The algorithm

was applied to models composed of various combinations of anisotropy and random hetero-

geneity, including some where the source and propagation media were different. In agreement

with a similar study of the generation of shear waves from explosions (Mandal and Toks6z,

1990), we find that shear wave generation in two physical types of anisotropic media (media

with micro-fractures and macro-fractures or joints) have different properties. WVe also find

that an explosive source in an anisotropic medium of either type generates larger alnplittlide

sheiar waves than an explosive source in a randomly heterogeneous medium of similar con-

trast in parameters. Finally, we find that the source radiation pattern is controlled primarily

by the medium properties at the source region.
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Introduction

Extensive studies have been done to understand the generation of transverse motion from

underground nuclear explosions (e.g., Kisslinger et at., 1961; Press and Archambean, 1962;

Toks6z et al., 1964; Archambeau and Sammis, 1970; Toks6z and Kehrer, 1972; Mass6, 1981:

Wallace ct al., 1983, 1985; Gupta and Blandford, 1983; Johnson, 1988; Lynnes ajr la.

1988; Priestley et al., 1990; Mandal and Toks6z, 1990, 1991). From these studies variuoli

mechanisms have been proposed, among which are tectonic strain release by relaxation of

the medium around the explosion-generated cavity, triggering of an earthquake, dislocation

across cracks, spallation and "slapdown," anisotropy in the source medium, and scatter-

ing from heterogeneities near the source. It has been concluded that no single mechanism

explains all of the data (Mass6, 1981; Gupta and Blandford, 1983; Johnson, 1988).

The complexity of the explosion-source phenomenon in a variety of media, including het-

erogeneous, anisotropic and pre-stressed media, was reviewed by Patton and Taylor (1991).

They found that the physical structure beneath nuclear test sites is complex and cannot be

modeled as simple (e.g., isotropic and layered) media. Several observational studies have

shown that most crustal rocks have some degree of seismic anisotropy (e.g. Stephen, 1981,

1985; Crampin, 1984; Lo et al., 1986; Thomsen, 1986; Winterstein, 1986; Martin, 1990)

as well as some degree of heterogeneity (e.g., Cassell and Fuchs, 1979; Taylor, 1983; Ken-

nett and Bowman, 1990; Kennett and Nolet, 1990). Seismic anisotropy can be caused by

several mechanisms, such as: (1) preferred orientation of the minerals due to deposition or



metamorphism; (2) geometric effects, such as alternating high- and low-velocity thin beds

(e.g., shales, carbonates); (3) preferred orientation of micro- and macro-fractures in the shal-

low crust; and (4) the presence of local or regional tectonic stress. Moreover, evidence of

anisotropy and small-scale heterogeneity are commonly found in subsurface core data. The

prevalence of anisotropy and heterogeneity in crustal rocks motivates the present study.

Our study examines the influence of anisotropy and heterogeneity at and near the source

on the seismic radiation from explosions. A question of primary concern is the relative

importance of various medium properties as generators of shear wave radiation from explosi ve

sources, a question which bears greatly on the problem of discriminating explosions fromn

earthquakes on the basis of seismic observations. To address this question we model the

source radiation patterns of P and S waves for explosions set off in various complex media

which include anisotropy, small-scale heterogeneity, and mixtures of both. In addition. we

consider media which have different properties in the region of the source compared to the

remainder of the propagation path. Thus', many types of medium complexity are considered.

The present study extends earlier studies by the authors of near-source anisotropy (NMan-

dal and Toks6z, 1990, 1991). The earlier studies examined the effects of ainisotropy in I j,-

absence of heterogeneity using analytical synthetic seismogram techniques for layered eart li

models (i.e., wavenuriber integration). Such techniques are unable to handle the more COmTI-

plex media addressed in the present study. For this purpose we have developed a fillite

difference algorithm for anisotropic and heterogeneous media.
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Finite Difference Algorithm in Anisotropi( and lt..i,.,, ,-

Media

\W' d(veloped a finiIe difference algor ii hin to stii tI id t •he o r(. i(- tll . , I

AlldI heterogencous media. \Vhen considering a poi It S()1•(l . I Ili.ti i,,:, p''

use a cylindrical coordinate system. Tile two-dimensiornal (Vyir)J aull ,

ence algorithm limits the anisotropic rnedium to all azilniulthaily vlllli,-I, :I I,

algorithm is the discretized form of the first-order velocity-stress forriul,•ti,,,

equation on a staggered grid (e.g., Virieux, 1986; Levander, 19,0). '1 hi,

formulation is known to exhibit smaller grid dispersion and grid aniotl r i,.

gr'id finite (differen(ce algorithms. The basic first-order partial (W iffe.rutllial f.

arursotropic media with a vertical axis of symmetry are given by the wave equal 1i,,f

Pat vt = f + Orc7rr + Odz~r

port'. f. + ,O'z, + Orr.

arid the time derivatives of the stress-strain relations:

8t 0rr= CeI 19tr + Cl3Cztz

OtOzz = C1 3 9rV7r + C33 0 z'V,

O(91 o0 = C1 2 9,Vr + cl 30v,2

atOra = c 4 4 (A
9

V, + OrVZ)
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where vi are velocities, f, are body forces, o'j are stresses, p is density, and cj are the elastic

constants. We consider the r and z axes as the symmetry axes. Simple sponge absorption

layers are used at the bottom and left boundary of the grid to avoid unwanted reflections

at the boundary. The proper discretization in space and time has also been considered

to minimize the well-known dispersion problem for finite difference computation. In this

case, ten points per wavelength grid size with fourth order finite difference in space and

second-order in time scheme sufficiently minimizes the grid dispersion and grid anisotropy

problem.

To minimize the numerical error of the finite difference method, we need huge comrputa-

tional power along with computer storage to compute even a simple physical model. This

is the main drawback of the finite difference method. Recent advances in the technology

of parallel processing allow us to overcome this problem. The parallel processors not only

speed up the computational time, but have also a large memory for a physical model for the

theoretical study of wave propagation. While finite difference algorithms are fundamentally

parallel in nature, their proper implementation on a parallel computer is necessary and must

be tailored to the particular architecture and hardware limitations of the target naclbiiie.

There are a variety of parallel computers. The critical characteristics to consider are t he

number of individual processors, the connectivity and communication mechanism betweenl

processors, the control scheme for running the processors, and the amount of memory acces-

sible by each processor. Among the various types of parallel computers available today, the

4



.lNIY) (Multiple Instruction Multiple Data) architecture computer is highly suitable to I -

rietv of problems, including finite difference pr ,Iteus. We implemented our flit, ,iltrerf in.

Slgorrit Ih in o oilne such machine, the n('U II E-2. The parallel algorithii d(••(,i lO.4 Is III I WI I.tII(

filite difference grid into subgrids. Each processor computes the finite difference ctiripUtta-

tions in the subgrid and exchanges information from the edges of the subgrid with adjacent

processors to which it is connected. The speed of the computational procedure scales almost

iniversely with the number of processors. Our implementation on the n('CBE-2 Is able to

handle the large models needed for practical problems in seismic wave propagation.

Radiation Patterns

Iln our previous studies (Mandal and Toks.z, 1990, 1991) we showed that the radiation

from explosion sources can be affected strongly by the presence of anisotropy, including

the generation of shear waves and radiation patterns that mimic double couple sources ill

isotropic media. Such effects are usually attributed to tectonic release from either tri gered

faults or relaxation of prestress at the shot point. The velocity anisotropy due to aligned

micro- or macro-fractures could be explained in terms of an equivalent med(ium (e.g., I ludson,

1980, 1981; Schoenberg, 1983; Crampin, 1984; Mandal and Toks6z, 1992).

III the present study we model the propagation effects in media which are in ,re c dwl~,\

We consider three types of media: ( 1) homogeneous and atisotropic niedlia; 2) iot iop)i

and randomly heterogeneous media; and (3) media that are both anisotropic and Iatter,tllv



heterogeneous. Some models are composite media, in which a local region around the source

(the "source medium") is of one of the three types while the rest of the medium (the "propa-

gation medium") is of a different type. We studied various media constructed with different

types of source and propagation media.

Anisotropic and heterogeneous media are constructed by modifying a simple background,

or reference, medium. The background medium we used is a homogeneous, isotropic medium

with a P velocity of 6 km/sec, S velocity of 3.46 km/sec and density of 2.6 gm/cc. Anisotropic

media are derived by introducing micro-fractures or macro-fractures into this isotropic back-

ground. The heterogeneous media are constructed by adding pseudo-random fluctuations in

the parameters generated from a specified stationary random process. For composite media

(different source and propagation media) we defined the source region to be a sphere of I

kin radius centered on the source.

For each medium constructed, a finite difference calculation was performed with the

source taken to be a point dilatation. The source function is bandlimited between 0 and

13 llz with a 5 Hz center frequency. Synthetic seismograms were computed at two circular

arrays in a vertical plane with radial distances of 2 and 4 kin, as shown in Figure 1. We

display the waveforms in radial (away from source) and tangential (along the 0 direction)

components. This display explains the transverse motion as well as the radiation patter.i

from an explosion. To facilitate comparisons between media the seismograms in all figlrcx..

are plotted on a common scale. As a baseline, Figure 2 shows the waveforms due to an

6



explosion source in the reference isotropic, homogeneous medium. Since no conversion to

shear waves is possible in this medium, the radial component seismograms show the complete

dilatation source while the tangential components are zero.

Figure 3 shows the results for an explosive source in a randomly heterogeneous, isotropic

iiwdium. The medium is a realization of a stationary random process. The r.m.s. fluctuation

in the medium parameters (P and S velocities) is 5% of their background values. The process

has an exponential correlation function with the horizontal and vertical correlation length

both equal to 0.5 km. Note that random with exponential correlation functions are generally

rougher than those with Gaussian correlation functions and smoother than those with Von

Karman correlation functions. The results (Figure 3) show the scattering transverse wave in

the tangential direction generated from an explosive source. The P-wave velocity is slower

than the isotropic medium at 4 km distance.

Figure 4 shows the results for another randomly heterogeneous medium, obtained by

letting the correlation lengths in the horizontal and vertical directions differ. That is, the

medium is statistically "anisotropic". The horizontal correlation length is 5 km and the

vertical is 0.5 km. The correlation function (exponential) and r.m.s. variation (5%) are the

same as before. The waveforms in Figure 4 are smoother than those in Figure 3. The

heterogeneity with anisotropic characteristics does not produce large shear waves as occur

in the next examples.

Figures 5-6 show the waveforms for two different kinds of anisotropic media. Figure 5

7



shows the results for the medium whose anisotropy owes to uniformly aligned micro-fractures,

while in Figure 6 anisotropy is caused by aligned joints. The micro-fracture model is created

using second-order Hudson's (1980, 1981) expressions of equivalent elastic constants for

aligned penny-shaped fractures with small aspect ratio. In this case, we use 10% fracture

density and an aspect ratio of 0.001. The equivalent elastic constants for joints are calculated

using the displacement discontinuity model (e.g., Schoenberg, 1983). In this case, we use 100

joints/meter and 15 x 1012 Pa/meter specific stiffness of the joints (the ratio of the incremental

stress across the joints to the incremental displacement that the stress produces). These two

media are designed to yield a similar P-wave velocity variation. The major distinction

between them is the quasi-SV velocity. For a joint medium, the quasi-SV velocity does not

have any variation along the anisotropic plane (e.g., Schoenberg, 1983; Mandal and Toks6z.,

1992). We see from Figures 5 and 6 that both media produce strong shear waves. The

joint medium (Figure 6) produces a radiation pattern similar to a double couple shear wave

source. The micro-fracture model (Figure 5) produces a complicated shear wave radiation

pattern at the near distance (2 km). The P-wave radiation patterns for the two media are

different.

Next, we turn to composite models in which the source medium (within 1 km of the

source) and propagation medium (beyond I km) are different (see Figure 7). The first thre.

cases consider the mixture of isotropic and anisotropic media. Figure 8 shows the radiatiMo

patterns when the propagation medium is the isotropic, homogeneous background and the

8



source medium is the micro-fractured medium that was used in Figure 5. Comparing Figure 8

to Figure 5, we see that the shear wave radiation pattern at 4 km is noticeably altered

by an isotropic propagation medium. For Figure 9, the propagation medium is again the

background, but the source medium is now the macro-fractured medium used in the results

of Figure 6. In the third case, shown in Figure 10, the source and propagation medium

are reversed from Figure 9, i.e., the source medium is the background and the propagation

medium is the anisotropic, macro-fractured medium. In this last case, shear waves cannot

be produced directly by the source but only by P to S conversion at the source/propagation

region interface. Thus the transverse components in Figure 10 are much smaller than the

other models using macro-fractured media (Figures 6 and 9).

Figure 11 shows the radiation patterns from a more complex composite model, in which

the source medium is anisotropic and the propagation medium is randomly heterogeneous.

The anisotropy is of the macro-fracture (joints) type, as used for Figure 6, while the het-

erogeneity is the same as that used for Figure 3. The results show that significant shear

waves are generated and that they are distorted by propagation through the heterogeneous

medium. Figure 12 shows the reverse situation from Figure 11, where the source and prop-

agation media are switched. Note that the shear wave amplitude defers distinctly from

Figure 11 owing to the fact that anisotropy at the source is a more efficient generator of

shear wave energy than heterogeneity at the source.

In the last example, we show a medium that is everywhere (source and propagation

9



regions) heterogeneous as well as anisotropic. While the entire earth may not be this complex,

observations show that the subsurface near faulted regions consists of both aligned fractures

and rough spatial variations in elastic properties. We generate a complex model of this type

by representing each anisotropic elastic constant as a spatially random field. That is, we use

the elastic constants for an aligned joint model for 50 joints/meter with 15 x 1012 Pa/meter

specific stiffness as a reference medium, and then add random fluctuations to each elastic

constant which are the realization of a random process. The random process we use has

the same statistics as the earlier medium of Figure 3, with an r.m.s. variation of 5% and an

exponential correlation function with horizontal and vertical correlation lengths of 0.5 kin.

The waveforms for the resulting medium are shown in Figure 13. Comparing to the results

in Figures 3, 6, and 11, we see that the waveforms in this complex medium are dominated

by the effect of anisotropy.

All of these numerical examples are shown to determine whether shear wave generation

from an explosion source can be explained by various propagation effects near the source. To

more easily compare the degree of shear wave generation in various media, we compare t heir

shear to compressional maximum amplitude ratio in Figures 14 and 15. These figures show

the S to P amplitude variation as a function of take-off angle from the source at distances

of 2 and 4 km from the source. The ratios are shown for the ten models described above.

corresponding to Figures 3-6 and 8-13. Note that the models involving anisotropic media

(Micro, Joints, MicroJso, Jointsjso, Joints~letero-1, Hetero+Joints) produce large S to P

10



ratios. In some cases, the shear wave energy can be more than 80% of the P-wave. We also

see that the shear wave energy depends solely on the source medium type. For example,

in all types of heterogeneous media (Hetero-1, Hetero-2, Hetero-lIJoints), the source shows

similar magnitudes of S/P ratios. A third observation we can make is that a source in a

micro-fracture medium (Micro, MicroIso) yields a complicated S/P ratio. This is due to

the complicated distribution of shear wave compliances. Finally, we note that the model

Iso.Joints, with an isotropic source region and anisotropic propagation medium, produces

the smoothest S/P ratio. In this case, the shear waves are generated as a result of conversion

at the isotropic and anisotropic interface. At a distance of 4 km the effect is of a similar

order to the one observed at 2 km.

Conclusions

Using finite difference modeling, we studied two mechanisms of shear energy generation by

explosive sources: anisotropy and random heterogeneity of the medium near the source. Our

calculations show that both mechanisms can generate a significant amount of shear waves and

transverse motion from an explosion. This is explained by the directional dependence of tile

compliance in anisotropic and heterogeneous media. We found that anisotropy at the source

produces stronger shear waves than heterogeneity, even when the statistical characteristics

of the heterogeneity are direction-dependent. We also found that there are two different

radiation patterns for the source in the two different anisotropic models (micro- fractures

11



and macro-fractures/joints). Finally, even when the material closest to the source (with a 1

km radius) is allowed to differ from the material farther away, we find that the characteristics

of the medium at/nearer the source primarily determine the degree of shear wave generation.
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Viglire 1: Schematic diagrarii of the source and receiver geomietry uised III the SvIiI.het iC

seismogram calculations. There are two vertical circular receiver arravs at radii 2 kmn
and 4 kmn, respect P.-ely, fromT the SOUrce. T'he radial (the particle velocity along t li
direction of the radial line) and transverse (perpendicular to the radial line) motions are
ill ust~rated.
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Isotropic Medium, Vp=6 KIm/S, Vs=3.46 Km/S, f_c = 5 Hz

Figure 2: Radiation patterns of an explosive source in a homogeneous, isotropic background
medium. The radiation pattern is displayed as waveforms computed at circular arrays at
a radius of 2 km (top) and 4 km (bottom).
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Distance = 4 km

Heterogeneous-01, f_c = 5 Hz

Figure 3: Radiation patterns in a randomly heterogeneous medium (Hetero- 1) having a 5%

r.m.s. variation in parameters and an exponential correlation function with vertical and
horizontal correlation lengths of 0.5 km.
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ias~ an exponential (urrelatiori fumnctionl and 5'," rixis. virats m~ Fii gure 3.
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Anisotropic Medium (Micro Fracture), fsc = 5 Hz

Figure 5: Radiation patterns in a micro-fractured, anisotropic medium (Micro). The medium
i. simulated by aligned penny-shaped micro-fractures in the reference isotropic medium.
The five elastic constants are evaluated for the equivalent medium with 10% fracture
dtensity and 0.001 aspect ratio.
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U0 050 10(0 1.50 0.00 050 11J) /50

Distance =4 km

Anisotropic Medium (Joints) fc = 5 Hz

Figulre 6: Radiation patterns in a macro-fractured anisotropic medium (Joints). Thle medium
is simulated by aligned joints or macro-fractures in the reference isotropic medium. The
mnedium contains 100 joints/meter with specific stiffness 15 x 1012 Palm.
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Figure 7: Schematic diagram of a composite model in which the source and propagationl
media are different.
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0.00 0 50 1.00 1 50 0.00 0.50 1 0 1 50

Distance = 4 km

1 km Micro Fractrue + Isotropic Medium. fc = 5 Hz

Figure 8: Radiation patterns in a composite model (MicroIso). The source medium (inside
I km radius) is the micro-fracture, anisotropic medium (Micro, used in Figure 5) and the
propagation medium is the isotropic, homogeneous background (used in Figure 2).
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1 km Joints + Isotropic Medium, fc = 5 Hz

Figure 9: Radiation patterns in a composite model (JointsIso). The source medium is
the macro-fracture, anisotropic medium (Joints, used in Figure 6) and the propagation
medium is the isotropic, homogeneous background.
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0.00 050 1,00 IS0 0.00 050 Ifl /50

Distance =4 kmn

1 km Isotropic Medium + Joints, f-c = 5 Hz

Figure 10: Radiation patterns in a composite model (Iso-Joints). The source medium is
the background medium and the propagation medium is the macro-fracture, anisotropic
medium (Joints, Figure 6).
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Macro + Hetero-O 1, f-c = 5 Hz

Figure 11: Radiation patterns in a composite model (Joints-iletero- I1). The source nIIII
is the tmacro- fractUre, an isotropic mnediumn (,Joints, Figure 6) and the propagatlonl rniedI u ii

is the randomly heterogeneous medium (I let cro-i Figure 3).
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Fvrv 1 2: Radiation patterns lit at oMposite model (Iletero- IJoints) V h oremdum
the hoterog(fenoujs mnodel fillftcr0- 1. Figure 3) and the propagation mjediumH is the

iaro~ fratu ime. amlsot ruif1 mni#dinin d oints. Figure 6).
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Anisohetero-01. fc = 5 Hz

Figure 13: Radiation patterns in a medium which is both randomly heterogeneous and
anisotropic (Hetero+.Joints). This medium is created by randomly varying all of the
anisotropic elastic constants. The anisotropic model is a joint model consisting of 50
joints/meter with specific stiffness 15 x 10'2 Pa/m. The heterogecneous fluctuations have
a 5% r.m.s. variation and an exponential correlation function with vertical and horizontal
correlation lengths of 0.5 kin.
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1

S0 Hetero- 1
0OHetero-2

08 _ .AMicro

"Joints

0.611 + MicroIso

A loJointsISO
0.4 A• .A --• •1-• i•~ ~ I qW + | lv Joints Hetero- I

+ 0• 4**qo +Hetro- 1_Joints

0.2 . -± __ * Hetero+Joints
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Degree

Figure 14: The S wave to P wave amplitude ratio at the 2 km circular array. The P/S ratios

are shown for the ten different models used in Figures 3-6 and 8-12. The x-axis is the

propagation direction (take-off angle) from the source, varying from horizontal (00) to

vertical (900). In anisotropic media, the horizontal direction is parallel to the fractures

while the vertical direction is perpendicular to the fractures.
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Figure 15: The S/P amplitude ratio at the 4 km circular array, shown in the same format
as Figure 14.
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SCALE OF ANISOTROPY: A THEORETICAL STUDY OF

VELOCITY ANISOTROPY FOR MICRO- AND

MACRO-FRACTURES

Summary

Theoretical calculations are made to compare the anisotropic velocity variations for rock

masses having micro- and macro-fractures. We use different hypotheses to compute elastic

moduli in these two cases. For micro-fracture models, fracture dimensions are assumed to

be very small compared to the wavelength (e.g., Hudson, 1980, 1981). For a rock mass with

macro-fractures or joints, the stresses are continuous across the fracture but displacemeints

are discontinuous (e.g., Schoenberg, 1980, 1983; Pyrak-Nolte et al., 1990). Both cases show

anisotropic velocity variation but differ in nature. For the micro-fracture model, tile crucial

parameters are the fracture density (CD = Na3 /V) and the aspect ratio (AR = d/a). where

A" is the number of fractures of radius, a, and thickness, d, in volume, V. The riacro-fract iler

model is controlled by the fracture spacing (number of fractures per unit length) and the

specific stiffness of the fractures (the ratio of the incremental stress across the fracture to

the incremental displacement that the stress produces). The value of the specific stiffness

determines the seismic properties of the joints, including the effect of mechanical coupling

between the joint surfaces on the transmission properties across the joint. For examp1le.

an infinite specific stiffness refers to a welded contact and a zero stiffness represents a free
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surface.

In the micro-fracture model, for a fixed crack density the qSH velocity does not depend

on the aspect ratio. There are smaller velocity variations for qSV and larger variations for qP

with an increase in aspect ratio. Velocity variations for all velocities increase with fracture

densities. Velocity variations are also studied for both Hudson's first- and second-order

theory. The joint model does not produce azimuthal velocity variations of qSV but gives

the (constant) velocity shift for different specific stiffnesses, whereas the velocity variations

of qP and qSH waves are similar to the micro-fracture model.

Introduction

The understanding of the seismic anisotropy of various fractured rock masses is important

to successfully resolve many geophysical problems, such as understanding the local stress

direction, the generation of an SH wave from an explosion source, and the exploitation

of fractured hydrocarbon and geothermal reservoirs. Discontinuities ranging in scale from

micro-fractures to faults are common within the earth's crust. These discontinuities oftc(1

occur as nearly parallel groups or sets, and also control the hydraulic and mechanical be-

havior of rock mass. It is important to locate such discontinuities from seismic information

when solving practical geophysical problems. It is often observed that the presence of stich

discontinuities displays seismic anisotropy in the elastic properties of the rock mass. In this

study we discuss two crack systems: (1) a dilute fracture model, or micro-fracture model,
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where wavelengths are large compared to the size of the cracks, and i 2i , tI w, tidt,. _.

fracture model where the stresses are continuous but displaceniei•s art .di- )[I"

the fracture. Both cases show seismic velocit y anisot rpy %It r,, fra, tir(. i I.it -, . !_

rised in most known investigations. Maacro fracture theoric, .a ,I .ii;aP i ', I .t

parallel joints, faults, etc. that are common iII very shallow , rnit I hiis ,,.

to quarry blasts and nuclear explosions. The purpose of this stiidy- is to ,tt t

compare the nature of velocity variation with different parainiters of the fr.i( 11r,. ire t,.I:,-

derived from existing theories.

Micro-Fracture Model

Thle use of this type of fracture model to represent crack systems is very common. Thl. t hi.or,

for computing the effective moduli of a rock mass containing aligned thin fractures or, ranks

was established by Hudson (1980, 1981). This model assumes that the crack dineriisior

is small compared to the wavelength and that the distribution of parallel penrirv-shapted

cracks is dilute. The effective moduli of the entire rock mass containing such crack syste.tis

were established by introducing first- and second-order perturbations to the isotropic elastic

moduli of the uncracked rock mass, and incorporating fracture density, aspect ratio. a•rd

weakly isotropic filling material. From these effective elastic constants, the seistuinc \elo( it11,

of thli medimn containing parallel cracks were determined.
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Hudson Model

II udson (1980, 1981) established the effective elastic moduli, Cjkj, for a medium with aligned

vertical micro-cracks applicable to the propagation of long wavelength seismic waves as:

C,., = CS, 1, + + c&,,

where

C°• : for uncracked solid,

Q, k I the first-order perturbation, and

C2k : the second-order perturbation of the uncracked solid.

The effective first-order perturbation for the cracks perpendicular to the x-axis (schematic

diagram shown in Figure 1) is

I IJkl

•1 =.;D(A + 2)1 11, ('2222 = C A2(LALAA

"== - `DA(A+2p)Ujj, C2233 =1A'[

(2323 = 0 and ("3.1= -- y-I (11212.

Second-order pertunrbation



C2k
C2 A(CD)

2  ) 2 U2 C 2  A(CD)
2 

X2 U12

152 15 A+2(211'

C 2  = = A(CD) 2 U2 C
2 

U(D2 2 A2 UA 201122 •"C13 15 All C2233 15 A--p III

2323 = 0 and C1313 -- 1212= 15 33

The U,1 , U33, A and A are expressed as:

Ull = 4A+ 2.1 I = 33 16\+2,_ 1
3 A+3+ I+K' 3 3A+4p I+M'

A =15( A)2 + 28A + 28, A -214(3A+8Mu)

where

K =3 A A+2u M 4 A+2,.
WJA(AR) A+p ' Ir(AR) 3A+4p

arid K = A' + 2/3,u' is the bulk modulus of the crack-filling material.

The above derivations are valid when the crack distribution is dilute, i.e.,

CD(N'a3 /V) << 1. The first-order correction is attributed to a single-scattering effect and

the second-order correction represents crack-crack interactions (Hudson, 1980, 1981). The

first-order perturbations are linear and the second-order perturbations are nonlinear. 'l'hc

first-order perturbations reduce the elastic moduli from uncracked rock moduli, whereas

the second-order corrections add to the effects of crack interactions. To understand more

about these corrections we consider a Poisson solid (A = a) where cracks are filled by fluid
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= 0). For this case, the expressions above reduce to:

3.a

K 2 , M = 0, A 71, A 3 =

U11 2 and U33 = 16

The effective elastic constants are:

Cijk, = Ci + Chki + Ckl:

C1111 = A + 2y - 3(CD)(A + 2y) -2 + l-(CD) 2 (A + 2/u) 2( 1I+K is(I+K)2,

C2222 = C= = A+2,u - (CD)A,--2 + )-. ,

C1122 = C1133 = A - (CD)(A + 21) 2 + D (CD)A ,

2 1[,r\ A 4
C2m= A - (CD)A~-.+- + {-1(0D) 2 _Sr +K

C 2 3 2 3 = u and C1313 = C01212 = 4§(CD)y + R,(CD )2 (L7) 2p.

Iludsoin's formulations of the effective elastic moduli may be valid for small crack density

as we can see in the expression of the Poisson solid where the effective elastic moduli are

negative for large crack density. Examples are shown below.

It is critical to truncate the series of alternate positive and negative elements where one

cannot estimate the series correctly unless full series are used. In this case, one should

not use this formula for large crack density and aspect ratio. The first-order formula may

estimate the elastic moduli correctly when the crack density is near or less than 0.1. The

accuracy could be extended by including the second-order formula. Figure 2 shows the
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azimuthal variation of normalized velocities with different aspect ratios for a crack density

0.1 for (a) only the first-order case and (b) both the first- and second-order cases, where the

parallel cracks in the rock mass are filled with gas and the velocity parameters of the rock

mass are 5.0 (Vp) and 2.9 km/sec (Vs). 0° represents the wave propagation perpendicular

to the crack plane. As the aspect ratio increases, the velocity variation increases for both

qP and qSV waves. The qSH wave variation does not depend on aspect ratios (AR). Note

that here we use the terminology qSV and qSH instead of qSP (shear wave parallel to the

symmetry axis) and qSR (shear wave right angle to the symmetry axis). Our experience

with oil companies and solid earth geophysicists show that it is more convenient to explain

the two shear wave velocities as qSH and qSV or by fast (Si) and slow (S2) shear waves.

Figure 3 represents the velocity variation with different crack densities and aspect ratios

for the wave propagating along the plane 600 from the crack plane (i.e., 300 from the per-

pendicular of the crack plane). In general, the velocity anisotropy increases with an increase

in crack density and aspect ratio. However, the velocity anisotropy behaves nonlinearly at

higher values of the aspect ratio and crack density. For the first-order case and for large crack

densities and aspect ratios, velocities (qP and qSV) go to zero (negative elastic moduli). In

such cases, the second-order corrections cause the elastic moduli to become positive. Both

the first- and second-order corrections give less velocity anisotropy, as shown in Figures 3a

and 3b. The slope of velocity variation changes rapidly at a large fracture density and as-

pect ratio (Figure 3b). Hudson's model, using both first- and second-order perturbat iolls, is
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useful to model a micro-fracture system that may be evenly distributed in the upper crust.

One should, however, consider the limitation of the crack density and aspect ratio discussed

in this paper.

Macro-Fracture Model

We present the systems of parallel joints, faults, etc. that are common in very shallow

crust. This model represents a rock mass containing a single to several non-welded interfaces

represented by displacement discontinuity boundary conditions in the seismic wave equation

(schematic diagram shown in Figure 4). The displacement discontinuity is the ratio of

average stress to the specific stiffness of the interface. The stiffness is related to the density

of coplanar fractures. The dense fracture population refers to a low fracture stiffness, while

the dilute fracture population represents a high fracture stiffness. The specific stiffness is

the ratio of the internal stress across the fracture to the incremental displacement that tile

stress produces. The value of a specific stiffness determines the seismic properties of the

fractures, including the effect of mechanical coupling between the fracture surfaces on the

transmission properties across the fracture. For example, an infinite specific stiffness refers

to tile welded contact and a zero stiffness represents the free surface. In this model tile

main constraint is that the seismic wavelength must be greater than the fracture spacilig

(i.e., the asperities of contact between the two surfaces of the fracture). Theoretical studi.s

involving the general solution of the seismic wave equation for this kind of fracture are given
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by Schoenberg (1980), Park-Nolte et al. (1990), and others. Park-Nolte et al. (1990) also

inivestigated the displacement discontinuity theory considering observed laboratory data.

This model also produces anisotropic velocity variation that is different in nature from the

dilute fracture model.

To compute the velocity variation across the non-welded single fracture separated by

two isotropic homogeneous half-spaces (Figure 4), the essential boundary conditions for an

incident compressional plane wave impinging on the fracture are:

u., - u., = 0-,Z uY - U =u - u. = U. ,

'r.= T.'. Tr, 7.2 and T.. r..

Mihere

U = displacement,

T = stress,

S= specific stiffness of the fracture = ,Au l

1,2 = superscripts referring sides of the fracture.

Using these boundary conditions to the plane wave, we get a phase shift (I1 T) of the trans-

mitted wave caused by the non-welded nature of the fracture. For example, the phase shift.

for a normal incidence wave is given by Park-Nolte et al. (1990):

)T = tan-(().

The quantity, Z, is seismic impedance, Z = pV, where p is density, and V is the phase
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velocity. The angular frequency is denoted by wo. This phase shift is dependent on frequency

and the ratio of fracture stiffness to seismic impedance. This phase shift causes a group

delay on the transmitted wave, which is given by

d'1
t9 T = .

Since the phase shift depends on fracture stiffness and frequency, the group delay also varics

with fracture stiffness and frequency. The effective group time delay, tell, for a rnedirIrII

containing a set of N parallel fractures can be obtained from

L
teff = VGCOSO + NtgT'

where

VG : group velocity of the unfractured rock,

L total path length along the line normal to the fracture planes,

0 angle of incidence (00 : perpendicular to the fracture planes).

Now we can compute effective group velocity from the relation

Li/cosO
WGe- f f -- L cs

teff

This effective group velocity depends on the angle of incidence, the ratio of the specific stiff-

ness of the fracture to the seismic impedance of the unfractured rock, and the frequency of
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the plane wave. Figure 5 shows the normalized group velocity variations with an incidence

angle of different frequencies. These theoretical results show that the variation of velocities

are constant for a lower frequency band (0-5,000 Hz). A certain irregularity in the qSV

wave (near 320 incidence) is due to the critical angle for a converted P wave generated by an

incident SV wave. The velocity jump at 90° evaluates the same velocity of the unfractured

rock velocity as the above relation. We also compute the velocity variation (independent of

frequency) using Schoenberg's (1983) average strain method. The effective moduli for the

x-axis perpendicular to the fracture planes are given by

Ciikt :

C1111 = + C2222 = C3333 = [1 +4(I--y)EN]CiIll,

C1 12 2 = C1 ,3 3 = (I - CI,

C 2 3 2 3 = Ai, C 13 13  - C 1 2 1 2 =--- I

where

EN = - Er = Ž' and7 = P-2 7

KN OCT 2(1-a)

The normal and transverse specific stiffnesses are XN and tCT, respectively. As usual the P

and S velocities of the intact rock mass are a and #, respectively. The azimuthal velocity

variations from the moduli using the average strain method are shown in Figure 6. Figure 7

shows a similar velocity variation (for higher specific stiffnesses) using a non-welded fracture

model with the displacement discontinuity boundary condition to the plane wave. From Fig-
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ures 6 and 7 we conclude that the average strain method produces similar velocity variations

at low frequencies for the non-welded fracture model, except the 90* velocity jump (Figures

5 and 7). Several interesting features are observed: (1) the velocity variations for qP and

qSH waves are similar to the microfracture model; (2) qSV waves are entirely different: arnd

(3) there is no azimuthal velocity variation for qSV waves but there is a constant shift for

different specific stiffnesses for the non-welded fracture model. Figure 8 shows the velocity

variation with the number of fractures per unit length and with different specific stiffniesses

for the wave propagating along the plane 600 from the fracture plane.

Comparing the two models, Figure 9 illustrates their differences. In some cases WC Cili

compare the specific stiffness, the aspect ratio, and the fracture per unit length with crack

density for the macro- and micro-fracture models. In this comparison, we consider the

different parameters so that the differences of qP velocity variations are minimized. Both

models are important in interpreting seismic data and in resolving important questioiis

concerning the physical processes in subsurface structures.

Discussion

We review anisotropic velocity variations due to aligned fractures distributed evenly in the

rock mass. The two theoretical approaches contribute different velocity variations. In sorie

cases, the results from these two methods could be correlated. Our study needs fun Herl,

experimental data to confirm the theoretical predictions. In general, the difference betwceii

42



the two approaches could result in significantly different interpretations of the field data.
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Micro-fracture Model
•Y

Figure 1: Schematic diagram of the micro-fracture model. The x-axis is the symmetry axis

and perpendicular to the fracture plane.
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Macro-fracture Model
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