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Introduction

Our study of helium clusters was motivated by the desire to understand the scaling of the unusual

properties of bulk “He, a quantum liquid, in finite size systems as one goes from the macroscopic
regime to the regime of molecular dimensions. This is fully in the spirit of general cluster research,
namely to develop our understanding of how the transition from molecular to bulk systems (or vice
versa) is reflected in the intenal structure and dynamics of finite size aggregates. The unique feature
of heiium is its dominant quantum behavior, resulting from a low mass and weak interatomic binding
energy. Clusters of helium are therefore very weakly bound van der Waals species, whose properties
were expected to be dominated by zero point delocalization effects. ‘During this grant period, wc
devoted our attention exclusively to clusters of *He, which are bose systems. These are more strongly
bound than the fermionic species 3HeN,, and are also easier and cheaper to study experimentally.
Furthermore, analogy with the bulk behavior suggests that any superfluid effects if present will occur
at considerably higher and therefore experimentally more readily accessible temperatures for the * He
species. In addition to the helium clusters, we also applied our Monte Carlo techniques to clusters of
molecular hydrogen, which for J=0 are also Bose clusters. These are more strongly bound than
clusters of helium, yet are still verv delocalized by chemical standards and offer an intriguing
possibility of a new superfluid.

Goals of original research plan

1) To understand the size-dependent scaling of superfluid behavior or analogous collective effects in
clusters of 4Hc:N. As a preliminary step this involved analysis of Bose-Einstein condensation in a
weakly interacting bose cluster.

2) Despite much phenomenological progress in the understanding of superfluidity in bulk helium II. a
molecular description for the characteristic excitations of bulk h¢lium found only in the superfluid state
was still missing. By developing a truly microscopic theory of collective excitations in these quantum
clusters involving accurate ground and excited state wavefunction information, we aimed to achieve
new insight into the atomic dynamics underlying the superfluid state in bulk He II by identifying and
analyzing the behavior in finite sized clusters .

3) Determination of feasible experimental probes of the cluster dynamics, in particular of charged
species or of non-dissociative molecular probes. This goal is further related to the more long term aim
of employing the unusual physical properties of these quantum clusters to modify and control the
course of chemical reactions of embedded/attached species at ultra-low temperatures.

4) Development of Monte Carlo methods to provide accurate ground and excited state wavefunctions
for the 4HeN clusters. This original aim was extended to deal also with the more strongly bound (H,)
species, which have more solid-like character.
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Our central achievements at.ained during the grant period are the following:

1) Establishment of a new quantum liquid drop theory for the collective excitations of these Bose
clusters, (papers 1, 2, 4). Together with the accurate ground state wavefunctions described below,
this led to calculations of the compressional excitation spectrum for L = 0 (spherically symmetric) and
L = 1 (dipole) symmetry, for a range of cluster sizes. The size scaling of the excitation spectrum
showed the onset of a roton minimum at sizes N ~ 100, leading to the important physical conclusion
that cluster of size N > 100, corresponding to diameters R 2 10 A can support superfluid flow.

2) Development of accurate Monte Carlo methods for ground state wavefunctions of general quantum
clusters (papers 5, 7, 8, 11). These consisted of both variational and (exact) diffusion Monte Carlo
techniques. While the basic 'unguided' Metropolis sampling of variational cluster wavefunctions had
been previously employed by the nuclear phys::s community, we improved the accuracy and sampling
techniques considerably, by developing new variational wavefunction forms and using guiding
functions to optimize: sampling at small interparticle separations. This resulted in an unprecedented
precision of ~ 5% in density profiles in the interior of the cluster, and led to an unexpected discovery
of a large collinear contribution to the structure of the He, trimer (paper 7). Application of diffusion
Monte Carlo to these weakly bound atomic systems is new, and was performed selectively to calibrate
the variational results (paper 8). The diffusion Monte Carlo algorithm was modified to employ a
constant ensemble size (paper 11), and also to allow modifications of the quantum force in regions of
small inter-particle dis*nce (paper 8). High accuracy for relatively large cluster sizes was achieved as
a result of refining the original diffusion Monte Carlo algorithm (papers 8, 11). These exact
calculations show structure in both density profiles and pair distribution functions which is compatible
with some very weak hard-core packing effects. No such structure is observed at the variational level.

3) Development of a quantum theory for atomic and molecular impurities in helium clusters (papers 7.
11). This has so far been restricted to ground state impurities, and consists of a variational approach to
the new cluster containing the impurity, in which the latter interacts pairwise with the helium atoms.
The variational wavefunction is extended to include pairwise correlation terms between the impurity
and the helium.

This approach was applied first to a H, impurity attached to Hey, N =2 - 19, and structural )

analysis of the resuiting mixed cluster ground state made (paper 7). The lighter impurity H, is

extensively delocalized throughout the cluster, with a peak in the vicinity of the diffuse surface region. -

Quantitative analysis showed that the H, is however still largely in the interior of the cluster for this
range of sizes. The He,; species is unique in the extent to which it expels the H,, suggesting an
unusual structural stability which may be associated with an icosahedral unit. This is particularly
significant in light of the absence of any energetic magic numbers for neutral helium clusters.
Subsequent unpublished calculations for a D, impurity show quite a different situation, with the
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heavier D, species considerably more localized at the cluster center, and with no peak in or near the
surface region. The helium distribution is complementary to the D, distribution, showing a peak away
from the cluster center. However for the trimer species D,He, the central peak corresponding tc near
collinear configurations still persists.

Both variational and diffusion Monte Carlo approaches were then applied to the analysis of SF, in
Hey (paper 11). This is a much more complex system, due to both a greater binding of the impurity
with He, and also to the marked anisotropy of the He-SF interaction potential. New trial
wavefunctions were developed which faithfully incorporated the main features of the potential
anisotropy. Calculations were made for clusters SF, with N varying from 1 (the 'dimer’) to N=499.
The ground state structures of these svstems showed pronounced localizaticn of the helium arcund 2
centrally located SF, impurity. This localization occurs in sequential shells, with the first, nearest
neighbor shell containing about 22-23 atoms at a density comparable to that of bulk solid He at ~100
atmospheres. The shells further away from the impurity contain successively larger numbers of He
atoms, and for sizes up to N=499 are still at densities lower than that of bulk liquid helium. However
it is interesting that the exchange energy for substitution of one He by the impurity (paper 7) appears
nevertheless to have saturated by N=111, despite that fact that the structure has not converged to what
we expect for an SF impurity in bulk helium. For SF¢ we also analyzed the spectral shifts of the v,

vibrational absorption lines due to the instantaneous dipole-induced dipole (IDID) interactions with the
surrounding 'solvent' helium species. This was motivated by recent experimental measurements of
such shifts for SF¢ in Hey (Goyal, S., Schutt, D. L., and Scoles G., Phys. Rev. Lett. 69, 933
(1992)} and in (H,)y, (Goyal, S., Schutt, D. L., Scoles G., and Robinson, G. N., Chem. Phys. Lett.
196, 123 (1992). We find a red-shifted absorption, which increases with size to a value of ~ 0.93
cmr! for N=111, with a half-width of ~ 0.25 cm-!. This is somewhat smailer than the experimental
value (~ 1.5 cmrt) which also differs from our calculation by being split into two components. The
most likely reason for this difference is that in the experiment the clusters are not in the ground state,
but gain a considerable amount of angular momentum from pick-up of the impurity. Large amounts of
angular momentum cause considerable centrifugal distortions, as we summarize in 4) below, and may
cause the SF, to be located in an asymmetric position which can give rise to a line splitting, .g., at a
cluster surface. This possibility can be investigated with Monte Carlo techniques based on trial
wavefunctions combining the features of these impurity functions, and of the excited rotational states
described below. Such studies are planned for future work.

4) Development of quantum theoretical approaches to excited states for the collective modes (papers
2,5, 10). This began with a variational approach to excited compressional states which was based on
the Feynman operator approach (papers 2, 5). The first four excited compressional states for L = 0
were calculated variationally for N = 240, maintaining orthogonality to lower states by a generalized
Gramm-Schmidt procedure. These results showed a significant lowering of the compressional
energies relative to both classical estimates based on the conventional macroscopic liquid drop model.
and also to our new quantum liquid drop model. We have recently extended the variational approach
to excited states of overall rotation of the cluster, employing a differ~nt approach from the Feynman
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excitation operator (paper 10). New trial functions which are eigenfunctions of total angular
momentum and which are physically motivated to have rotational rather than vibrational character,
were developed, and employed in both variational and fixed node diffusion Monte Carlo studies of
He, and of its more strongly bound counterpart (H,);. The rotational energies are considerably lower
than the compressional energies studied previousiy (papers 2, 5). The rotationally excited states for
He, were found to be metastable with respect to dissociation for L 2 2, while (H,), is metastable only
for L > 6. Both species showed very large oblate centrifugal distortion at low L values, which
developed to diffuse toroidal distributions at large L. The distribution of the cluster surface clearly
changes, which has possible consequences on the distribution and spectral shifts of impurities such as
SFg (see 3) above).

5) The ground and excited state Monte Carlo techniques developed for helium clusters have also been
applied to clusters of H, {J = 0), which is also a Bose system (papers 6, 10, 12). We introduccd an
additional element of employing 'shadow wavefunctions' for fictitious particles representing lattice
sites here in order to allow for more rigid structures. The primary goal of this extension of our helium
studies is to determine whether a liquid-like ground state exists for (H,) for N small, and if so,
whether these clusters display similar superfluid behavior to Hey. Our preliminary results (paper 6)
showed that the smallest clusters (N < 7) are extensively delocalized. More recent results based on a
more accurate trial wavefunction and on subsequent diffusion Monte Carlo calculations (paper 12)
show that clusters up to N = 33 still show strong delocalization, although weak features characteristic
of solid like close packed structures are now also apparent. We have analysed the structure of both
these and the He,, clusters in the body fixed frame by computing principal moments of inertia, thereby
avoiding the orientational averaging implicit in usual Monte Carlo sampling for finite systems.
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Superfluidity in Helium Clusters

M.V. Rama Krishna™' and K.B. Whaley*

20.1 Introduction

Theoretical and expcrimental investugations of clusters has been an active and growing area
of research for the past several years. Yet, much of our current understanding of the structure,
dynamics, and cnergetics of clusters is based on cssentially “classical” clusters. By this we
mean that although quantum mechanics is important in the description of their electronic
structure, it does not play a role in the statistical behavior of the atoms (or rather, of the nucler)
themselves. However, when the atoms in the cluster are light, such as H or He, quantum
mechanics plays a significantly different role. It is thus important to study quantum clusters
in order to understand what role quantum statistical effects may play in clusters, and how the
uniquely quantum phenomena such as superconductivity and superfluidity are modified in
finite systems. With this in mind we will discuss clusters of *He, which obey Bose statistics.
The goals are threefold: 1) to understand how superfluidity manifests itself in helium clusters,
2) to determine the energy level spectra of these clusters, and 3) to establish experimental
probes of these clusters.

20.2 Transition Temperatures

Bulk liquid *He is known to undergo a phase transition from a normal to a superfluid state
at about 2.17 K. This phase transition is characterized by a nearly logarithmic divergence of
the heat capacity, and by the fact that the superfluid phase can flow through fine capillaries
with zero viscosity.!!! Quantum statistics is the key to this effect. For example, liquid *He,
which is made of fermions, exhibits superfluid bchavior only at a much lower temperature of
about 1 x 10~3 K. This difference is not simply a mass effect, but results from the need of
the *He nuclei to pair to form effective Bose particles. Other symmetry related properties are
significant as well. For example, if one models liquid *He as a non-interacting Bose gas one
finds that this model exhibits a cusp in the heat capacity curve at about the same temperature
where the experimental heat capacity curve exhibits divergency.!?!

Given these observations, and their relation to the quantum behavior of the particles mak-
ing up liquid *He, we wish to understand how the phase transition is modified in *Hen clusters
due to finite-size effects. Although there is no longer a true phase transition in clusters, it is
reasonable to use the same ideas that have been previously used to understand the phase tran-

* Department of Chemistry, University of California, Berkeley, CA 94720.
1 Present address: Box 955 Havemeyer Hall, Columbia University, New York, NY 10027-6948.
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sition in bulk liquid *He. Consequently, we begin by discussing the “transition temperaturcs”
and the condensate fractions tor clusters.

The Bose-Einstein (BE) condensation temperature of a non-interacting Bosc gas of density
p is given byl3!

2R g (23
nkpgy (2‘612)
4.015 x 10713,%3 K. (20.D

o3
1

i

For liquid helium, Eq. (20.1) gives 'y = 3.13 K, which 15 0.96 K larger than the experimental
value.!! 21 We used Eq. (20.1) 1o calculate Ty i of helium clusters, with the modification that
we subtract 0.96 K from the computed values so that for sufficiently large clusters we recover
the experimental bulk value of T, correctly. These corrected Ty - are given in Table 20.1. The
densities of the clusters are determined using p = 3/(4#r}), where the ro are the calculated
unit radii 14!

One can usc Ginzburg-Landau-Pitacvskii (GLP) theorv to estimate the transition temper-
atures of the interacting system.!>! This is a phenomenological theory in which the free en-
ergy density is expanded in terms of the order parameter, which here is an effective complex
wavefunction of the fluid. The expansion is valid only when the order parameter is small
and the coherence length, which is the length scale over which the order parameter changes,
is large. Consequently, this theory is applicable only when the temperature 7 of the fluid is
close to 7. In the original mean-ficid GLP theory, the expansion coefficients were functions
of integer powers of (T — T).13} Such a mean-field approach neglects fluctuations, which are
very important close to 7. The modern version of this theory due to Mamaladze employs a
modificd free encrgy density that accounts for the fluctuations of the order parameter near 7,
by iaking the tcmperature dependence of the expansion cocfficients from cxpcrimcms.‘é- 7l
The successful applications of this modified GLP theory to the prediction of transition tem-
peratures of helium films and pores!’- 8! gives us confidence regarding its utility in the casc
of clusters. Clearly this theory can not predict critical cxponents as these are put in via the
expansion cocfficicnts. However, these exponents can also be obtained from first principles
starting from the GLP theory and using the renormalization group theory of Wilson. For our
purposes here this is not necessary.

When applied to a spherical cluster, the modificd GLP theory predicts the transition tem-
perature T, 1o be given byl”]

T=Tt - 23 (202)
i

where R is the radius of the clusterin A, T} is the transition temperature of bulk liquid helium,
and T, is that of the cluster. Of course, although the transition temperature is a sharply defined
quantity in macroscopic systems, in clusters we expect that there is rather a temperature range
over which the transition to the superfluid statc takes place. The temperatures predicted above
essentially give the location of the peak values of the rounded heat capacity curves of the
clusters.

To calculate the condensate fraction in these clusters at 7" = 0 K, let us use the model of
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Table 20.1: Transition temperatures and zero-temperature condensate fraction in helium clus-
ters. (R is givenin A , Tyg and T in Kelvin.)

N R Tgg T, aC|
20 74 1.1 09 327
40 88 14 12 271
70 102 16 14 226

112 118 16 1.5 212
240 147 18 1.7 171
728 209 19 19 150
’ 10000 47.8 21 21 122

Liq. He ~ 217 217 92

an imperfect Bose gas for the clusters. This is given byl?!
,\'() 8 372 bl
— = - —=dYe 203
% ENCAG (20.3)

= 1-6.148p'/2, (20.4)

where a = 2.556 A is the experimental scattering length of the helium atoms. The percent
condensation %C is simply No/N x 100. These results are given in Table 20.1.

We see from Table 20.1 that the theoretical estimates of Txpe and T, agree remarkably
well even for a cluster as small as twenty atoms, and that the bulk transition temperature is
depressed by only about 0.5 K in Hease. We also find that the condensate fraction approaches
that of the bulk fluid rather rapidly. Note that the condensate traction is decreasing as T 1s
increasing. This indicates that the strong interactions between particles in the denser (larger)
clusters are depleting the zero temperature condensate, while increasing the transition tem-
peratures.

20.3 Collective Excitations

Another quantity related to superfluidity is the excitation spectrum.2! For a microscopic un-
derstanding of superfluidity, it is important to understand how the collective excitation spec-
tra of clusters change as a function of cluster size, and how they approach that of the bulk
fluid. With this goal in mind, consider helium clusters as quantum liquid drops of radius R
and uniform intcrior density po. The density wave excitations of the droplet are characterized
by the quantum numbers (/. 1) and n. The momenta Ay, of these excitations are given by the
boundary condition j;(k;, ) = 0. Within this liquid drop model a harmonic analysis of the
collective vibrations of the cluster gives! % R

2,2
heks,

i 20.5
27’"-‘.”'1 (kln)Vln ( )

€in =
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Figure 20.1: Excitation spectra of ! = 0 and 1 modes obtained using Eq. (20.5) for N =2
(circle), 70 (square}, and 240 (trniangle} clusters. The tilled symbols give ! = 0 spectra and the
open ones give [ = 1 spectra. The solid line ( ) is the Bijl-Feynman excitation spectrum
of bulk He IL.

where 5, is the structure funcuon of the cluster, defined as the Founecr Bessel transform of
the density-fluctuation—density-fluctuation correlation function, and v, is the normalizauon
factor for the spherical Besse! functions. Complete details of the theory and calculations are
given in Refs. 10, 11.

Equation (20.5) is the finite cluster analog of the Bijl-Feynman exciiation spectrum for
bulk liquid helium.!! It represcnts the compressional vibrational excitation energics of the
cluster. and in the bulk limit corresponds to the phonon spectrum of liquid He. To get a picture
of these spectra one needs to compute the structure functions .5;. Monte Ccrlo random walk
simulations for { = O and 1, and V = 20, 70, and 240 were performed. The spectra, together
with the Bijl-Feynman excitation spectrum of liquid helium, are shown in Fig. 20.1. We see
that the spectrum of the clusters evolves toward that of the bulk fluid rather rapidly. The
pronounced dip at £ =~ 2 A~! in the liquid helium spectrum is known as the roton region.
The Hes, cluster already shows such a roton structure at about 2 A~ and the spectrum of
Heaqo strongly resembles that of liquid helium. The validity of these results are confirmed
by a more general theory based on Bijl-Feynman wavefunctions for the excited states of the
clusters ']

Since the excited states of a many-body system piay an important role in both the ther-
modynamics and dynamics of the system, the strong resemblance of the excitation spectra of
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Hepn cluster 0 the bulk fluid is indicative that these clusters will also cxhibit similar ther-
modyranuc and dynamic behavior. 1t s rcasonable theretore to expect helium clusters of
about 100 atoms to undergo a normal <= superfluid transition strongly rescmbhing that of
liquid helium. There are additional arguments for making this connection between the excita-
tion spectrum and superfluidity. For example, Bogoliubov first showed that the phonon-roton
spectrum of liquid helium is a result of both interacuons between Bose particles and the pres-
ence of the Bose-Einstein condensate./!?! (Sce also Table 20.1 and the associated remarks
made in Scc. 20.2.) For the simpic model of a weakly interacting Bose gas he obtained

x [ \ 2 >

| ke "N "NAN°
kY= + — - — . 20.6)
(&) \,(Zm V ) ( } ( Y

where {7 = d4xa/m s the interaction encrgy assumed to be constant and repulsive, and £ s
the lincar momentum associated with the excitation. This vields a hinear part (phonon branch)
at small momenta and a quadrauc picce (frec-partcle branch) at higher momenta. and thus
reproduces the mamn features of the phonon-roton spectrum of liquid hehum. Furthermore.,
if either {7 or = N/V s very small. then the spectrum will be completely free-parucle
like. Such a system will not exhibit superfluidity since the minimum velocity needed to excite
the fluid, known as the Landau critical velocity, vanishes in this case.!*! Other liquids, such
as water, which exhibit collective excitations!'3) at large & values (¢ > 1 A~%) also may
not cxhibit superfluidity because these liquids are stable only at high temperatures. In this
regime the thermal excitations dissipate the energy of the moving particles. Although the
model of a weakly interacting Bose gas is not quantitauvely appropriate for liquid helium, the
essental relationship between Bosc-Einstein condensation and the phonon-roton spectrum is
still present. Hence, the onsct of a phonon-roton type spectrum for a Bose fluid is a signature
of a large Bose-Einstein condensate and of superfluidity. Based on this argument the results
presented in Fig. 20.1 give cvidence that clusters of about 70 atoms should be superfluid at
sufficiently low temperatures.

Recently, path-integral Monte Carlo simulations have been used to compute heat capaci-
ties and superfluid densities of Heqs and He, 4 clusters as a function of lcmpcralure.“‘” The
peaks of the computed heat capacity curves yicld “transition temperatures” of 1.6 and 1.8 K,
respectively, in very good agreement with those reported in Table 20.1 for similar sized clus-
ters. The path-integral simulations also indicate that the width of the heat capacity maximum
is increasing while T, is decreasing, with decreasing cluster size. Consequently, we antici-
pate the phase transition to be completely washed out in clusters of about 20 atoms or less. It
will be interesting to pursuc the study of superfluid densities as a function of temperature for
a serics of smail clusters, to sce if some of these clusters are indeed non-superfluid cven at 0
K.

N

20.4 Detecting Superfluidity

Two research groups have been making pioneering cfforts to detect superfluidity in free helium
clusters, but the experimental evidence so far is inconclusive. !5 16) This stems primarily
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electron-helium pseudopotential
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Figure 20.2: New electron-He pscudopotential of Ref. 18 (
previous potential, Ref. 19 (- - - - - ).

from the difficulty in probing these cxtremely weakly bound van der Waals clusters, which
are easily dissociated and whose intemnai excitations have until now been poorly understood.
Heat capacity measurements!!”) on bubbles of helium confined in copper foil have shown
presence of the superfluid state in bubbles of radius 40-60 A, corresponding 1o N > 10°.
These experiments provide direct evidence for the depression of T and rounding of the heat
capacity peak in these finite systems, although quantitative analysis of T is complicated by
the presence of the confining copper matrix.

The possibility of binding an electron to the surface of helium clusters was considered re-
cendy, in order o usc it as a spectroscopic probe of the cluster. A simple but accurate electron-
He interaction potential (pscudopotential) capable of reproducing s- and p-wave scattenng
phase shifts accuratcly over a range of energics is nceded as a start. Such a pseudopotential
has only recently been developed.!'8) In Fig. 20.2, it is compared with the commonly used
prior pscudopotential for this system.[!?! The well depth of about 300 K is almost ter aimes
deeper than the previous pscudopotential. The phase shifts and scattering cross sections cal-
culated using this ncw pscudopotential are given in Table 20.2. These reproduce s- and p-
wave scattering phase shifts to within 1.5%, and total and momentum-transfer cross sections
to within 3% of the exact values,'*?) over a range of electron energies from 0-16 ¢V. This is
a major improvement over the previous pseudopotential, which gives s-wave phase shifts to
within only 38%, and yiclds p-wave phasc shifts with an incorrect sign.

Using this very accurate pseudopotential for the short-range interaction, and a polarization
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Table 20.2: Phasc shifts and cross sccuons calculated using the new pseudopotential. The %
crrors given in the parentheses are calculated using the esumated values given in Tables 111
and IX of Ref. 20. The total and momentum-transfer cross scctions are obtained from the s-
and p-wave phase shifts calculated using the e-He v pseudopotenua! of Ref. 18 and Egs. (7)
and (10)-(12) of Ref. 20.

E{eV) Phase Shifts (radians) Cross Sections (x 107°% em™) 1

s-wave p-wave Total Momenium transfer |
0.136  -0.12700(-0.9)  0.00311 (0.9) 35656 (-1.8) 5929 (-1.8)
0544 -0.26581(0.1) 0.01318(0.5) 6.118(0.2) 6.695(0.3)
1.224 040785 ( 1.4y 0.03069 (0.2)  6.265(2.7) 7107 ( 2.5
2177 054667 (1.5)  0.05526¢0.1) 6151 (2.6) 7157 (2.3
3401 -0.67824(1.5) (LOBS72(-04) 5.860(2.% 6.898 ¢ 2.0)
4.898 080070 ( 1.0Y  0.12035(-04) S5.473(1.3) 64171 1.0)
6.666  -0.91352(0.8) 0.15719¢-1.0) S.047 (0.7 5.802( 0.0
R.707  -1.01691 (0.1)  O.19439(-0.8) 4.616(-0.0) 5131 0.6)
11,020 -1.11137(-0.4) 023043 (-0.0) 120008 4.460 (.0.2)
13.605 -1.19750(-0.7y 0.26422(0.6) 3808 (-0.3) 3830(0.0
16.462 -1.27604 (-0.7) 0.29508 ( 0.6) 3445 (-0.1) 3261 (0.1

potential for the long-range, we obtain a complete e-He potcmia}.”g‘ The energy levels of
the excess electron may now be determined for clusters of various sizes. One of the interest-
ing results of this calculation is that it takes approximately 5 x 10° helium atoms to barely
bind the electron with a binding cnergy of about 0.04 cm ™=}, Also, the clectron is very “dif-
fusely” bound to the clusters (sce Fig. 20.3), which unfortunately makes it insensitive to the
internal structure and dynamics of the clusters. When the cluster is large enough to be consid-
ered bulk liquid helium, the experimental zero-ficld energy levels of the excess clectron are
reproduced.!'8! This gives us confidence in the accuracy of the pseudopotential and also in the
calculated cnergy levels of the excess electron on clusters. While it is possible in principle to
determine the sizes of the large clusters by comparing the experimental and theorctical values
of the energy of the photon needed to barely detach the excess clectron, the very weak binding
does not make this a very useful probe. We are investigating the use of embedded molecules
as altenative indirect spectroscopic probes of the cluster size and dynamics. Morcover, the
accurate electron-He n pscudopotential now available makes it possible to modcl e-Hen scat-
tering experiments, which could possibly provide insight into ways to excite the collective
states of the cluster, and thereby yield experimental confirmation of the calculated excitavan
spectrum.

20.5 Summary

Theoretical evidence has been presented for the existence of superfluid helium clusters at ex-
perimentally accessible temperatures. Large clusters of scveral hundred atoms appear to un-
dergo a transition to a superfluid state strongly resembling that of bulk liquid helium. Exper-
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Figure 20.3: The square of the wavefunction of an excess electron attached to tne surface of
various Hey clusters, versus the distance r from the cluster. The cluster size N is indicated
on the plots.

imental detection of such a superfluid state remains an outstanding problem. Theoretically,
it remains to be investigated whether small clusters with N < 20 will be superfluid in any
sense at any temperature, and what atomic motions are responsible for the superfluid dynam-
ics. Theoretica! efforts are also necessary to determine the best possible experimental means
of detecting superfluid behavior in these extremely weakly bound clusters.
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Monte Carlo study of impurities in quantum clusters: H, He,,, N=2-19
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Variational Monte Carlo techniques are employed in studying ‘He clusters, with and without
an H, impurity. We find that a novel, yet simple, analytic nuclear wave-function form, derived
from a numerical H;He wave function, yields high accuracy in computed ground-state energies

of *He,, . For the clusters studied here, three to twenty atoms, energies range from 94% to
90% of the exact values. Density profiles and distributions of particle separation are also
computed. For reasonable computational cost (¢.8., <20 Cray/X-MP14 minutes for the
largest cluster), density profiles are determined for the first time to high statistical accuracy to
within 0.5 A or less of the cluster center. The density profile of He, is found to possess a
uniquely pronounced peak at the cluster center resulting from contributions of near-collinear
atomic arrangements. We also study the effect of substituting an He by H,, using modified
wave functions containing products of pairwise He-H, terms. For all cluster sizes studied, we
find a lowering of the total energy upon exchanging an He for an H,. The exchange energy
increases in magnitude with increasing cluster size, yet is still well below bulk estimates at

N = 20. Size comparisons with the pure helium clusters show very little change upon He/H,
exchange, e.g., the rms radii differ by <2% for N > 3. Density profiles and bond distributions
show noticeable differentiation between H, and He. For N34, the peak in the H, density
profile is not at the cluster but does remain inside the cluster. This peak is most pronounced for
H:H,c., implying an enhanced resistance to H. penetration for He,,.

I. INTRODUCTION

Clusters of rare zases constitute the simplest van der
Waals aggregates. These species continue to provide much
stimulus for both experimental and theoretical investigation
of size-dependent properties in the regime spanning molecu-
lar and bulk systems.' Theoretical study is especiaily attrac-
tive because the interaction potentials are so well known.
The most weakly bound of these species is ‘Hey, in which
large quantum effects are apparent, making them of special
fundamental interest for the understanding of size-depen-
dent behavior of quantum systems. Recent predictions for
these Bose clusters, based upon scaling of the microscopic
excitation spectra’ and the calculation of the phenomeno-
logically defined superfluid fraction,” has for the first time

* provided a quantum analog to recent extensive analysis of

phase transitions and structural features of classical clus-
ters.*

While these weakly bound species intrinsically provide
ideal testing grounds for new theoretical approaches to large
quantum aggregates, contact with experimental studies has
thus far proved elusive. The ease of dissociation and the li-
quidlike structure of helium clusters, which facilitates the
absorption of foreign species, has also rendered the resuits of
scattering experiments ambiguous.*® Nevertheless, there
does now exist a considerable body of experimental data on

" the pickup abilities and ionization patterns.® It has become

clear that rather than attempting a direct probe of the dy-
namics and excitations of these quantum clusters, indirect
prabes via spectroscopic studies of embedded species, prefer-
ably without the additional complications introduced by dis-
sociation channels, will provide more useful information. In-
frared spectroscopy of small molecules in argon clusters has
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yielded information on the location of the foreign spectes.’
The same information is, in principle, available for the quan-
tum clusters of helium, and furthermore, anaiysis of spectro-
scopic line shapes should give information on the coupling to
the internal cluster excitations and whether these are collec-
tive or single-particle-like.

In this paper we undertake a fully quantum-mechanical
study of an embedded molecule in helium clusters. We em-
ploy variational Monte Cario (VMC) methods in studying
the structurai and energetic effects of adding a foreign spe-
cies, using a new wave-function form based on accurste pair
potentials. The techniques are applied here to H, in Hey
(from here on *He,, is assumed ), a choice motivated by both
the availability of high-quality He-He and H, ~He poten-
tials, and also by prior experimental observations of H, in
bulk helium.* We calculate the ground-state energy of clus-
ters with N<20, with and without an H, species attached,
and thereby the He/H, exchange energy. Analysis of the
density profiles resulting from the optimized wave functions
shows that the embedded H, is extensively delocalized
throughout the cluster, with a small peak in the concentra-
tion beneath the surface. Such structural analysis clearly de-
scribes the location of the foreign species.

Very few species are even metastsble in bulk helium be-
cause of its closed-shell configuration and inert nature.
However, there has been continued interest in the analysis of
impurities in bulk helium because of the properties of these
both as nucleation centers,” and as a source of information
on the induced response and spatial structure of the bulk
medium. The only theoretical work to date for species other
than the isotopic impurity *He has employed paired phonon
analysis in the hypernetted-chain approximation with Len-
nard-Jones potentials.'® As pointed out by Kiirten and Ris-

® 1992 Amencan institute of Physics P
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u1g in Ref. 10, these techniques are subject to large errors.
However. 1t has proven difficult to proceed beyond this level
of description. either by VMC or Green's function Monte
Carlo (GFMC), because of the relatively small contribution
of the impurity to the total energy in the bulk system. Analy-
sis of the cluster energies with and without impurities as a
funcrion of cluster size provides a means of approaching the
bulk impurity problem by extrapolation. and therefore
vields a new microscopic approach to the impunty probe
problem for buik helium as well as for clusters.

The energies computed here for the pure Hey clusters
compare favorably with previous VMC and obtain a high
percentage of the exact diffusion Mente Carlo (DMC) ener-
gies. In our wave functions only two-body correlation fac-
tors are used. One-body factors, often employed in cluster
calculations, are not found to be necessary here, and three-
body factors are seen to become significant only for N 2 20.
Details of the physical motivation of our wave-function form
and a thorough description of the various Monte Carlo ap-
proaches employed are presented elsewhere.'’ The remain-
Jer of this paper 1s organized as follows. Section il contains a
descripgion of our theoretical approach. with a brief sum-
mary of the guided and unguided Metropolis walks used
here. in addition to description of the potentials, wave-func-
non forms. and optimization. Results for pure and mixed
clusters are presented and discussed in Sec. III. Conclusions,
together with a prognosis for further studies of excitations
and dynamics of clusters with foreign species, are presented
in Sec. [V.

it. THEORETICAL APPROACH

The quantum ground states are studied by seeking accu-
rate many-body nuclear wave functions. That is. in place of
unknown eigenfunctions of the nuclear Schrodinger equa-
tion. we obtain wave functions for which the energy
E = (VHIWV)/(VI¥) is minimized. For the systems we
treat here, the Hamiltonian # is, in atomic units,

H=—Z(2m,.)"Vf+ZV,~, (N
4 i<y

where a pairwise potential is considered sufficient for weakly
interacting clusters.'?

For the pure He clusters m, = my, and ¥V, = V is the
accurate and widely employed interatomic potential deter-
mined by Aziz. McCourt, and Wong in 1987.'* This poten-
tial has a slightly deeper well than the previous one deter-
mined in 1979,'* and yields a bound state for the He-He
dimer at ~ 10~ * K. For clusters containing H,, vibration of
the foreign molecule is neglected. This should be quite rea-
sonable for these weakly bound clusters since the vibrational
dependence of the H,-He potential is significant only at
small separations R (R is the distance from the H, center of
mass to He). In addition, the H, -He potential is very neariy
isotropic.'* Expanding Vi..ue (R,0) in the Legendre poly-
nomtals P, (cos 8) and P, (cos @) (Ois theangle between the
intermolecuiar axis and R) yields an anisotropic component
¥, (R) with a well depth an order of magnitude smaller than
that of ¥, (R). Therefore, as a further yet still accurate ap-
proximation, we choose ¥y . = ¥,. Thus, in the Hamilto-

L ol LS Y ~

nian we employ, H, acts as a single particle with twice the H-
atom mass and interacts with He via ¥,,.

The potential V,, isa Lennard-Jones plus van der Waals
fit to the ab initio data of Ref. 15.
4e({(a/R)Y? — (0/R)°),

- CyoR ™ ~CyR~* ~C,oR .

R<R..

RoR..

(2
where R is chosen such that the two forms in Eq. ) take
essenually the same value at this point. The van der Waals
parameters are taken from Ref. 15. Table I lists the param-
eters describing V,; and Fig. | compares ¥, with the ab iniio
data points (the root-mean-square deviation is 1.9%). and
with the He-He potential.

Vo(R)=[

A. Wave-function form and optimization

Once a wave-function form s chosen, parameters are
varied t0 minimize the energy, £. Here, v takes a transla-
tionallv invariant product form.

YRy =[] ¢ cr. 3
where for N particles. R is a IN-dimensional vector specify-
ing the particle locations, and », = :r, — r ;. The function
¥, analogous to the £, factor defined in previous studies of
atomic clusters,>'*'* varies with differing particle pairs. 1.e..
He-He or H,-He. Note that a one-body factor £, (r, ) 1s not
emploved. Such a factor introduces undesired center-of
mass motion. [n this event, the assaciated translational ener-
gy must be subtracted (unless N 1s large ), adding to compu-
tational cost. Alternatively, translational invanance may be
maintained by replacing r, byr, — R_ ., where R__ s the
center-of-mass vector, yielding a sum of interparticle separa-
tions. In this case, therefore. /, is actually a many-body fac-
tor. A common motivation for inciuding f; is its use in bind-
ing the cluster and in describing the more diffuse regions.
Since our two-body factor is denived from an exact dimer
(H, He) wave function, in which particular attention 1s paid
to the long-range, diffuse tail, part of the wave funcuon, '’ we
prefer not to modify this by addition of a one-body retaining
factor. [f the cluster is bound, this shouid be reproduced by 3
pairwise wave function, provided it is of sufficiently high
accuracy. Our new approach differs from the original one of
Pandharipande, Pieper, and Wiringa,'® which constrained
the asymptotic form of ¢, by the relation between the pair
distribution function g(7) and the speed of sound in the buik
system. thereby necessitating a one-body factor to yield a
bound finite system. Therefore, although a one-body factor

TABLE L. Parameters of the H, -He interaction potenuisl. ¥.. Eq 1 I:

Parameter Value Units

10% 4189 712 hartrees th)
4 5.671 143 Bohr

R. 8.35110 Bohr

C, 4013 h (Bohr)*
C, $5.69 h (Bohr)*
Co 1031.0 h (Bohr)*

st
——
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FIG | H.-He and He-He potentials. The solid line shows the He-He po-
tential of Ref. 13, and the dotted line shows the H, -He potenual. V.. Eq.
i2) and Tabte 1. The ab 1m0 data povnts for ¥, givenin Ref. 15, are indi-
cated by the soi'd circles.

has proved useful in earlier studies, it is extraneous for our
purposes. We also do not employ a three-body factor here
because of the high-quality wave functions we obtain at the
two-body level of wave-function complexity. We shall refer
to this point again in Sec. 1. The factors ¥, are

v, (r) = r"exp{ P(u) +ar'], €}
P“"='Z a,ut, u=r"" 5
A =0

The i subscripts are omitted from the parameters for conve-
nience: however, parameters describing different interac-
uons, re.. ¥ and V,. are independent. This form was de-
duced from the numerical solution to the Schrodinger
equation employing the H, ~He potential givenin Eq. (2)."'
The wave-function form may now be considered as the
product of a long-range and a short-range factor. At large
interparticle separations where the polynomial P is roughly
constant, the behavior of ¢ is determined by a, b, and a. The
long-range factor, 7 exp(@r”). is very similar to that em-
ployed 1n previous work,*'*'* with the exception that a is
now a variable parameter which when optimized for our
wave functions is different from unity. Note that for
b= — (N —1)""'anda = |, our form reduces to the one-
parameter model asymptotic form for a two-fragment bound
svstem.’” The remaining factor, exp( P(u) ], is most impor-
tant at small separations and can be considered as a general-
1zation of the McMillan form used for bulk He.?® Given the
highly repulisive behavior of the potential at small particie
separations, an increase in wave-function complexity for de-
scribing the short-range interactions should be especially
useful. We therefore include ai/ integer powers up to five in
P. The study of a further improved two-body form, which
vields an entirely new description of the behavior at smail
particle separations tailored to the functional form of the

repulsive part of the potential. will be considered in another
work. '

The major motivation 1in employing such wave func-
tions is our belief that considerabie improvement over pre-
vious two-body forms can be made, to the extent that one can
efficiently obtain high accuracy without the use of a complex
three-body factor. The general questions of what accuracy is
achievable at the two-body level of theory and the extent 10
which our wave functions obtain this accuracy are addressed
in a subsequent publication.'’ A second motivation for pro-
ducing such accurate wave functions is the need for high
accuracy when considering a weakly bound impurnity spe-
cies.

Below we outline our wave-function optimization ap-
proach. Full details are given in Ref. 11. We optimize the
parameters by munimizing fluctuations of the local energy.
E, =WV~ 'HWY, about areference (or guess) energy, £,. over
a fixed set of points in the 3N-dimensional space R. The
quantity of interest is then

[EC(R) = Eg]XW(R)/ W, (R)?

1<

v
S W(R,)/{¥, (R
]
(WI[H - Eg)11W)
(Wiw)
whei o the second equation corresponds to an infinite num-
ber of points sampled from ¥, i’ The essence of this “fixed-
sample” approach?' is that multidimensional integrals are
approximated as summations over points in a distribution
corresponding to an initial (unoptimized) wave function.
V¥, . Parameters are converged to optimum values (1n a local
minimum sense) with a conjugate gradient technique.™
The reference energy £, determines the emphasis given
to mimmizing the energy vs minimizing the varance. [f
Er < E,, minimizing s* is equivalent to minimizing the aver-
age local energy, where

(6)

S E R)|¥(R,)/¥, (R}
= .Z. c(ROTF(R)/%, (R (WIH W)
E, = ~ .M

N
S IW(R /¥, (R (¥IW)

‘=l

However, if £, = E,, then minimizing 5° is equivalent 0
minimizing the variance in the energy. Correspondingly.
choosing intermediate values of E, mixes energy and van-
ance reduction. As we are primarily interested in obtaining
the lowest-energy wave functions possible, we generally
choose the reference energy to be much lower than £, .

Since N is finite ( < S000 points), the summations in Eq.
{6) may be poor approximations to the desired expectation
value. This is especially true when ¥ becomes much different
than W,, which occurs if ¥, is a poor initial guess. Therefore.
we have found it useful to set ¥, = W and to generate a new
ensembie from the updated ¥,. The conjugate gradient
minimization is then continued. This updating procedure
greatly enhances the reliability of the degree of energy min:-
mization indicated by an individual fixed-sample optimiz-
ation. Generally, one or two updatings have proved sufh-
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cient to obtain stable and converged results. The optimized
wave-function parameters are given in the Appendix.

B. Monte Cario approach

We are interasted in computing expectation values of ¥,
which cannot be done analytically. Numencal quadrature
may be employed but, given the high dimensionality in-
volved here, Monte Carlo integration is the most tractable
approach. Here, we employ two variants of the Metropolis
walk.?® The first is the commonly used “unguided™ walk by
which points are sampled from {¥|*. Here, unguided refers
to the fact that the attempted moves underlying the walk arz
completely random. Expectation values are computed, to
within statistical error, as

N
A=N""F AR)~(VI4]|¥)/(VI¥). (8)
1=
All previous VMC cluster studies employed unguided
walks.>'*'® The second approach used here employs a walk
guided by a different function, ¥,. For these walks, attempt-
ed moves are biased towards larger values of the sampled
distribution, : W, |%. (Walks guided by ¥ itself yielded poor
convergence at small particle separations.'’ ) Expectation
values with respect to ¥ now require a weighting procedure,
namely,

— v
Ay =3 AR)V(R)/Y, (R
ra )

v -1
X[Z RO/ (RO 9
R

Generally, the usefulness of a guided walk arises from 1m-
portance sampling, i.e., the preferential sampling of (impor-
tant) regions where good statistics are required for high pre-
co-on in Ay. Here, W, =¥ is chosen so that {¥i® is
preferentially sampled in recions where it is large. The guid-
ing function is also chosen . decay to zerc more slowly than
W at small 7 to facilitate convergence in this domain, where
significant contributions to the energy are typical. A particu-
lar advantage of the “‘guided/weighted™ walk lies in the
flexibility of choosing which regions are to be emphasized.
For example, if high precision is desired at small separations,
choosing ;W,/¥| > | in this domain yields the desired sam-
nling. The guided/weighted walk was most useful for the
smaller clusters studied here. Detailed comparisons of the
various walks and their relative merits for these weakly
bound systems are presented in Ref. 11.

As a final point, we discuss the evaluation of statistical
error. The primary concern is that averaged quantitics be
statistically independent so that the computed statistical er-
ror is unbiased. In our approach this is accomplished by
propagating {(ten) independent ensembies of {100) points
{R,} yielding (ten) independent Monte Carlo estimates.
Ideally, this can be accomplished by a random selection of
points. In practice, for the smallest clusters, the ensembles
are not initially decorrelated but commence with different
random number seeds. The ensembles are propagat2d in par-
allel by a Monte Carlo walk until decorrelation between
them is obtained. Decorrelation may be ascertained from the
stability of the staustica: error in the average of the (ten)

Monte Carlo estimates. Also, if the distance moved 1n con-
figuration space by each member of ail the ensembies 15 sev-
eral times larger than the dimensionality of the cluster, then
the ensembles can be assumed (o be decorrelated. To reduce
this initial decorrelation time, ensembles for larger clusters
are built up from the ensembies of the next smaliest cluster.
In addition. this parallel structure 1s aiso maintasned when
generating ;arge ensembles of points by YVMC walks duning
wave-function optimization. Given that each ensembie 1§
different from the others. employing these ensembles in
Monte Carlo runs yields a set of independent results. This
enables the computation of an unbiased statistical error.
This method of evajuation of the staustical error is used for
all expectation values, including those vielding distnibution
functions such as density profiles.

ill. RESULTS AND DISCUSSION
A. Pure He,,

In this work we study clusters ranging in size from three
to twenty particles, the focus being the ground-state energy
and structure. The primary concern here ts wave-function
accuracy, as measured by the energies obtained. Theretore,
we first compare our pure He cluster energies with those
resulting from other (sometimes more complex) wave func-
tions and with new DMC energies which are exact.

Table I1 compares our optimized He cluster energies
obtained with the new wave function, Egs. (3)-($5). with
those resulting from other work. Exact energies, from which
percent accuracies are obtained, are the DMC values given
in Ref. 11. For N = 3-5, we see that our computed energies
lie below previous VMC values which were computed em-
ploying both one- and two-body factors, indicatng the high
quality obtainable with the our two-body wave functions for
these smali clusters. Similar accuracy has also been obtained
with two-body wave functions for N = 3-7.2* For He., our
new energy reproduces to within the statistical error (gnen
in parentheses) our previous resuft obtained with one-, two-,

TABLE 1. He cluster per particle energies.*

This work Previous YMC

- E/N({K) % of Exact — E/N (K, % of Exact

He, -00415(1) 939
He, -0.357(1) 919

- 0.0388(9) 877
—0.13200100* 913
-0.128° 96.0*
He, -0.2505(1) 93.5 - 0.2440¢(10)* 911
He, - 04838(1) 92.7

He,y, -~ 1.0545(6)
He,, -~ 1.1290(T) 90.% :
He,, ~ 1.510(D) 89.3 ~ L.S14(2)® 89.7

- 1.573(1)¢ 96.7*

—
————

* Here and in Tabie I11, the seatistical error representing one standard gew
auon n the mean is shown in parentheses. Exact energies for the most
recent potental are computed by DMC in Ref. 11.

" Referance 18.

Reference 16.

’Since Ref. 16 employs the previous potentiai of Ref. {4, the exactonurgy 4

taken t0 be the GFMC value of Ref. 25.
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and three-body factors, and gives 89.5% of the exact DMC
energy. ( This is somewhat less accurate than the VMC re-
sult of Pandharipande, Pieper, and Wiringa,'® also obtained
with one-, two-, and three-body factors, for the earlier poten-
tial,'* which yielded 96.7% of the exact GFMC energy.?*)
Given the simplicity of our wave function, the proximity of
our energy to that resulting from one which is more complex
is quite satisfying. However, we see that for very high accu-
racy, three- and perhaps highar-body factors are required for
N=220. In this case, our present wave functions appear to
provide a two-body component of high quality.

Overall, Table II shows that the accuracy of our ener-
gies, vis-a-vis those of DMC, decreases with increasing clus-
ter size. Naturally, this is expected as a pure “two-body”
wave function should be less appropriate as the importance
of three-body and more complex interactions increase, as is
the case for larger clusters. However, it is pleasing to see that,
despite the constant level of wave-function complexity, the
{energy) accuracy does not degrade rapidly. As the cluster
size increases from 7 to 20 atoms, the amount of the DMC
energy obtained decreases by only 3%. In addition, the total
accuracy remains good up to N = 20, with 90% of the DMC
energy obtained for this cluster. Therefore, the wave-func-
tion form employed here is considered to be of sufficiently
high fiexibility for the study of the H, He,, clusters, N<19.

Helium cluster density profiles are presented in Fig. 2.
The data were obtained by binning the sampled points into
bins corresnonding to AR<0.03 A. Note that the bin volume
and therefore the statistical precision decrease as the cluster
center is approached, as indicated by the fluctuations in p
which well represent statistical error. In spite of this, preci-
sion remains high up to small distances from the cluster cen-
ter. For He,,, for which uncertainty in p is greatest, the com-
puted statistical error in each bin is under 5% from 0.5 to 12
A. Thus, any peculiar behavior at the cluster center, such as

©.020

0.018

0.004

1B

FIG. 2. Helium density profiles for pure helium cluster sizes N = 3-5,7, 13,
20. The bin size is <0.03 A.

a hole, as well as any hard-core structure in the single-parti-
cle distribution function, is mostly precluded by our data.
The computational cost of the He calculations presented
here is very reasonablie, ranging from 4 Cray/X-MP14 min-
utes for He,, to 19 CPU minutes for He,,. These profiles
represent the first Monte Carlo study of any type, VMC,
GFMC, or DMC, which possess this high level of statistical
accuracy in the interior of the clusters. As reflected in Fig. 2,
the efficiency of computing density profiles decreases with
increasing cluster size. For a cluster with N particles, each
point sampled yields N values to be binned. However, the
computational cost increases as N2, causing the efficiency
for this quantity to scale as N~ ',

Figure 2 demonstrates the unique character of the He,
density profile. Approaching the cluster center, the He, pro-
file is similar in character to those of the other clusters up to
the shoulder located at about 2.2 A. After this point, a
marked change in behavior occurs as p increases only slight-
ly from about 2.2 A to 1 A, and then rises rapidly closer in.
These characteristics are presented in greater detail in Fig. 3.
In addition to the density profile, contributions to p are pre-
sented conditional on the largest angle (8,,,) in the He,
triangle being greater than 120°, 140°, and 160". This figure
shows that the rapid rise in p near the origin is due solely to
near-collinear arrangements starting at 8,,, =120°. That
density near the center arises solely from near-collinear ar-
rangements is not unreascacble given the high potential en-
ergy for atoms near the cluster center (and each other) ina
near-equilateral configuration. However, the rapid increase
in p caused by a tendency towards collinearity is interesting
given the large difference of a collinear structure from that of

[}

px10%(A %)

0 1 2 3

R(A)‘

FIQ. 3. Conditional density profiles of He,. The dashed line is the density
profile. The three conditional density profiles, solid lines, are obtained by
binning distances from the cluster center only when the atomic arrange.
ment sampled possesses an angle greater than 120°, 1407, and 1607,
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mimmum potential energy, an equiiateral triangie.

In addition to the density proiiles, we present particle
separation probability density functions p(r) (normalized
such that fp(#)dr = 1) in Figs. 4 and 5. These plots were
obtained by binning particle separations with a bin size
Ar<0.03 A. The curves in Fig. 4 show a trend toward de-
creasing diffuseness as the cluster size in .reases from three
to five atoms, consistent with increasing density and aiso
increasing binding energy per particle. Upon considering the
larger clusters (Fig. 5) this trend reverses. The interparticle
separations increase slightly from He, to He, and more no-
ticeably upon going to He,, and He,,. The He,, root-mean-
square (rms) radii presented in Table IV mirror this behav-
ior, which has been previously noted by Pandhanipande,
Pieper, and Wiringa.'® What is most interesting and novel
here is the appearance of structure in p(r) for He,, and Hey,
(Fig. 5). The behavior of p as it approaches its maximum
clearly differs between He, and He, ;. For He,, theexisience
of a shoulder at a particie separation smailer than that corre-
sponding to maximum p is unambiguous. However, the pres-
ence of a shoulder 1n p for He, , 1s less certain, The He,, plots
of the p and p are virtually identical to those of He,, (and
are. therefore. omitted for clarity}. This similarity between
He,, and He,, is in contrast to the larger differences between
He., and He., _, observed for smaller N (Fig. 4). Therefore,
given the slowly changing nature of p at Nx 13, we conclude
that the onset of the shoulder in p is quite gradual. Such
behavior does appear to correspond to evolution of shell
structure, and is related to the appearance of the second-
nearest-neighbor coordination shell in the pair density dis-
tribution function n, (0,r).'* Our density functions p, to-
gether with the absence of any structure in the single-particle
distribution function (Fig. 2), are consistent with the inter-

IR
He,
9.124
He,
- 7.09 9 He3
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—
Q5 g6
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0.00
0 S 15 20

r (jﬁ)

FIG. 4. Parucle separauson probability denmty function p(r) for the pure
helium clusters. N = 3-5. The function p(r) 1 the probsbility density of
finding any two particies separated by the distance r. The curves are nor-
mahzed 1o unity and bin s1zes sre <0.03 A.
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FIG. 5. Particle separation probabiiity density function gt} for the pure
heltum clusters. N = 7, 13. 20. The normaiszation and bin sizes areasa Fig
4

pretation of He clusters as delocalized, liquidiike cinsters
rather than as crystalline- or molecularlike species.

B. Mixed clusters H, He,,

Table III lists the cluster energies per particle (H, 1s
considered as one particle) and the He/H, exchange energy
as a function of size. The exchange energy (referred to as the
chemical potential for He/H, exchangein Ref. 10} foran N-
particle cluster 1s computed as

Eu(N) = E(H:ch-i ) - E(HCN‘ ).

For the H, He van der Waals complex. numencal solution of
the nuciear Schrodinger equation yields the ground state
bound by 0.0246 K. while the He dimer 1s bound by oniv
=10"* K."* This is not surprising given the greater weil
depth of the H, ~He interaction reiative to the He-He poten-
tial, cf. Fig. 1. As a consequence. negative exchange energies
are observed. The exchange energy increases monotonicaily
with increasing cluster size; however, our value at N = 20.
— 1.68(4) K, is still only a fraction of Kiirten and Ristig's
estimate of the bulk value, — 20 K.'® Tabie III also lists the
unit radii, 7,, defined by

ro = (3(Rl>)l/2‘v—“).

where (R ?) is the expectation value of the squared distance
from the cluster center. The latter is defined as

,=-1;,-Zr,. ) -

i.e., the geometric center. Since the center of mass 1s btased
rowards heavier particles, we employ the geometnic center
the origin in comparing structure and size of pure and miad
clusters, and, most importantly, in studying the relanse o
cation of H, as specified by the density profiles. Lnitke tne

10

SRy
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TABLE l11. Per particle energies, umit radii, and He/H, exchange energy,

Tt <2

t

He. H,;He, _,
N E/N(K) ra (A) E/N(K) ry (A) E,.(NY(K)
b} ~0.04152(8) 5.50 —0.089 38(24) 5.2 —0.143 6(8)
4 ~0.1357(D) 442 —0.2005¢1) 451 —0.259 2(9)
s ~0.250 5(2) 3.76 -03324(2) 3.84 —0.4095(11)
T ~04838(1) 345 - 0575 (S 143 -0.639 1(36)
13 —- 1.054 5(6) 97 - 1.146 1(11) 298 ~ 1.191116)
14 - 1.1290(N 19 - 1.224 2(4) 2.96 —1.333(11)
20 - 1.5100(20) .82 — 1.594 3(8) 2.86 — 1.680(44)

*Statistical error in 7, is less than 0.003 A.

per particle energies, cluster size is largely unaffected by
He/H, exchange. As seen in Table I1I, the unit radii of pure
and mixed clusters differ by only 4% for three parucles and
by 2¢% or less for the other clusters.

In considering the structure of the mixed clusters. in
particular the degree of differentiation between H, and He,
we first turn 1o the root-mean-square distance from the clus-
ter center, R, = ((R*))"2 Values for He and H,, ob-
tained by integrating over the density profiles shown in Figs.
6 and 7, are listed in Table IV. These density profiles,
p(R) = p(R), are normalized as f47R p(R)dR = |, and
as stated above the cluster center is chosen as the origin. The
corresponding values for the pure clusters are also shown for
purposes of comparison. As is the case for the pure clusters,
we see that a minimum in cluster size, as measured by R,
also occurs at five particles for the mixed clusters. The differ-
entiation between H, and He R, values within a given
cluster 1s somewhat small but consistent. For all clusters
studied here. H, is farther from the cluster center on aver-
age. with values of R, being 4.6% to 11% greater than
those of He.

Differentiation between H. and He is also evident in the
normalized density profiles presented in Figs. 6 and 7. To
quantifv this differentiation between H, and He, we com-
pute the probability P of finding H, (or He) outside the
spherical volume. centered at R = 0, containing half of all
the particles. Values of P for both species are also listed in
Table ['V. These values indicate that the degree to which H,
lies outside™ the cluster is generaily not large. For all but
the l4-parucie cluster, 60% or less of the H, density lies
outside the half-particle dividing radius. The exception,
H,He,,, for which 66% lies outside this radius, actually
continues a trend from the four-rarticle mixed cluster which
then reverses in proceeding to H, He,,. This suggests a spe-
cial structural robustness of He,, to H, penetration. Pre-
vious GFMC results for He argue against the presence of
“magic numbers” for the pure clusters, N<33.”’ However,
the effect we see here is small and also may not be deducible
from the energies of pure clusters. Whether the increase in
penetration of H, seen on going to H, He,, continues as N
increases remains to be seen. In the bulk, H, penetration is
observed but the extent is not known."

Following the earlier discussion concerning sampling

efficiency in computing pure cluster density profiles, one
finds that ihe efficiencies for computing the H, and He
mixed cluster_ density profiles scale as N-* and
(N — [)N -2 gaspectively. This fact is manifested by the
relatively large fluctuations in the H, density profile as N
becomes large. cf. Fig. 7. For ail mixed clusters small bin
sizes were employed, AR<0.03 A. These smaller bin sizes
yield a more detailed picture of density profiles but tend to
give larger statistical error, especially near the origin. How-
ever, despite both this and the relative inefficiency of binning
forasingle H, particleinan N-particle cluster, the statistical
error in the H, density profiles is quite reasonable to within
about | A of the cluster center. Even for the largest cluster,
H,He,,, comp.uted statistical error in each bin is 10% or less
from 1 to 10 A. (For He, the precision is of course much
better: less than 5% from 0.5 to 12 A for H,He,,.) Once
again, we point out that computational cost is not large, e.g.,
27 Cray/X-MP14 minutes for the H, He,, calculation.

Figures 6 and 7 demonstrate that H, is delocalized
throughout the cluster, as is the case for He in both the pure
and mixed clusters. This .s not surprising considering the
lighter mass of H, and the similarity of the H,-He and He-
He potentials. Perhaps most interesting is that the greatest
probability is not observed at the origin but peaks at some
distance from the center. This point of maximum H, proba-
bility density increases from roughly 1 to § A as the cluster
increases from S to 20 particles, paralleling the increase in
cluster size. Note that for H, He, the probability density for
H, simply mimics that of He {Fig. 6(a) ] and that both the
H. and the He density profiles are similar to that of He,
(F:2.4). Thisshows that H, can take the piace of a He in any
position, including tne collinear arrangements which lead to
the unique density profiles we have observed.

Table V summarizes a quantitative analysis of the H,
probability peak. The second column measures the absolute
position of the peak, R, (relativeto R, ) and clearly reflects
the increase in size of the cluster as N increases. The third
column measures the degree to which the peak in probability
manifests itself: p,,/p, = pu, (R, )/py, (R =0) isthe ratio
of the maximum H, probability density to its value at the
origin. (For H, He, the second maximum is used as o}
Given the statistical errors in p near the origin and the
widths of the observed peaks, the quantities in Table V are
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estimated with some degree of uncertainty, i.e., 5%-10%.
However, allowing for the qualitative nature of the results, it
is abvious that the pesk at R, becomes more pronounced
for the larger clusters, N>7. Among the larger clusters, the
H, He,, peak value of p,, /p, is significantly greater than the
others, as is evident also from Fig. 7. The fourth column
gives the ratio of the He density at R,_ to its value at the
origin, i.e., py, (R,_)/py, (R = 0). The fifth column shows
the amount of helium contained inside the peak position, i.e.,

R. N. Barnett and K. B. Whalay: Impurities in clusters

Q

ox10%(A-3)

{c)

FIG. 6. Normaiized He and H, density profiles for the mixed clusters: : 2)
H, He,. (b} H, He,, (c) H,He,. Dashed and solid curves refer to He and
H,. respectively, and are normalized to one parucle per cluster. The bin
sizes are <0.03 A and R is the distance from the geometnc center of the
cluster.

f:"'41rp,,, (R)R *dR. Omitting the special H,;He, case.
these last two columns of resuits show that the H, molecule
tends to reside at greater distances from the cluster center for
the larger clusters. However, the H, molecule shows no g-
nificant tendency to move further towards the cluster edge as
the size increases from 13 to 19 He atoms; the peak becomes
less pronounced (third column, Table V) and its positon
relative to the helium density only incresses by a smul
amount (last two columns). In addition, the position o1 the
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> N FIG. 7. Normalized He and H, density profiles (or the mixed clusters: (a)
NI H,He,,, (b) H,He,,. (c) H, He,,. Dashed and solid curves refer to Heand
. H,. respectively. For further details see Fig. 6.

0 5 10 )
8
-} R (A)
TABLE IV. Size comparisons between pure and mixed clusters.®
—
He H,
Cluster (R Cluster ((RW)? P ({RY))17? P
He, 6.14 H,He, 5.67 0487 6.08 0.532
He, 5.44 H, He, 3.43 0.487 5.8 0.526
He, 4.98 H, He, 4.7 0.485 5.17 0.570
He. . H, He, 5.02 0.490 5.37 0.5719
He,, 5.40 H,He,, .39 0.492 .1 0.590
He,. 5.45 H,He,, 548 0.494 6.12 0.657
Hey, 593 H,He,, 5.96 0.494 6.34 0.601

—
*The quantity ((R *))'/? is the rmns distance from the cluster center, in A. Pis the cumulative probability of
finding the particle beyond the spherical shell in which half the particles are found on average (see text).
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TABLE V. H, probability peak charactenstics.*

i

Pu’Po OnlPy % He
Cluster R, (H,} [He] innide
H.He, 23 0.86 0.76 92
H.He, 13 1.0 0.89 21
H,He, 27 1.16 0.38 16.9
H.He. 2.9 128 0.8) 16.7
H.He,, 40 1.32 0.67 298
H.He,, 44 1.68 0.65 358
H.He,, 5.1 1.38 0.6} 403

*R,_ 1sthe position of the H, maximum. in A. P/pe 13 the ratio of the peak
probability i the centrai (R = 0) probability, for H, and He, respective-
ly. The % He inside is measured with respect to R

[&]
~
It

2 094

)

peak lies weil inside the cluster surface, i.c., at least 60% of
the integrated He density lies beyond the H, peak. There-
fore, the H, density profiles show some localization, most
noticeable for the larger clusters (> 12 He atoms), and indi-
cate absorption between the cluster center and its exterior.
This perhaps reflects the fact that H, has been found to pene-
trate bulk liquid helium.?

Figures 8 and 9 show the particle separation probability
density functions p(7) for the He-He (dashed lines) and
H,-He separations (solid lines). These show the same gen-
eral trends with size which are apparent 1n Figs. 4 and §.
Differentiation between H, and He is not large. However,
the H,-He distnbutions are consistently smaller at smail
separations and consistently more diffuse at large separa-

[e)

.09 4

p (A7)

(el

()

(%)
i

[} ‘v‘

{e)

F1G. 8. Particle separation probability density function p(7) for the mixed
clusters: () H, He,, (b) H,He,, (c) H,He,. Solid lines refer 10 H. -He.
dashed lines to He-He. The normalization snd bin sizes are asn Fig 3
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uons than the He-He distributions. The trend at smail 7 is
casily understood from the interaction potentials, cf. Fig. |,
where the H, ~He potential becomes highly repulsive sooner
than that of He-He. The behavior at large r is less transpar-
ent. The H,-He potential has a greater well depth and is
more attractive at larger separations. On the other hand, the
lighter mass of H, tends to reduce H, ~He binding vs He-He
binding. This factor, as well as the fact that heliurn atoms can
get closer to themselves than to H,, may also explain why

.09

.08-1

.03

20

FI1G. 9. Particie separation probability density function pi #) for the mixed
clusters: (a} H,He,,, (b) H,He,,, (¢1 H,He,,. Solid lines refer io H. ~He.
dashed lines to He-He. The normahization and bin sizes are as i Fig. 4.

the maximum probability of finding H, is somewhat re-
moved from the cluster center.

As is the case for the density profiles, the particle separa-
tion distributions p stand out for H, He,,. The greater rela-
tive diffuseness of p for H, -He vs He-He, clearly visible in
Fig. 9. is most pronouncer: for H, He,, amongst the larger
clusters. The implication here. as with the density profiles. s
that He,, possesses a somewhat enhanced degree of stability
with respect to H, penetration.
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TABLE V1. Wave-function parameters for He, (in atomic units).

e
N 3 4 b 7 13 14 20
a/1¢ -0.10229 - 0.10229 ~0.183 63 -0.10700 ~ 10598 - 10706 - 060074
b - 1.340 28 - 134028 - 1.306 76 - 1.41058 - 0.975 88 — 1 046 66 ~ | 046 64
a 1.183 70 1.18378 1.03509 0.526 91 0.603 14 0.545 00 054303
dn 0.146 30 0.146 30 0.146 30 -0971% - 1435987 - 1323 6i - 130801
a, — 20.046 —23.447 - 23034 -23.037 - 29.9599 - 30193 % ~- 188640
a, 151.69 159.923 158.499 138.50 200.994 199 831 110 061
a, - 746.490 — 742.004 - 782.170 - 782.170 - §51.450 —~ 345.306 - 137001
a, 1 709.00 1710.60 1 842.10 i 842,10 1 809.01 1 808.98 248445
a, - 4404.1 - 4403.6 — 43443 ~ 43443 - 43523 - 43541 ~ 36746

IV. CONCLUSIONS

This first quantum-mechanical study of an impunty
species in a rare-gas cluster shows the lower-mass H, impu-
rity to be extensively delocalized in finite helium clusters.
Considering the similar mass and interaction potential with
He (cf. Fig. 1}, this is consistent with observations of 'He
delocalization in bulk helium (*He).?* However, much less
1s known abaut H, or any other molecular impunty in bulk
hetium. it will be useful to follow this trend for cluster sizes
larger than those studied here, to ascertain whether the H,
species s surface attached, or embedded in the interior, as
appears to be the case thus far. 2- we approach bulk systems.
In addition, pussible localization « “the H, and of other im-
purities at larger cluster sizes is of interest. Finally, incorpor-
ating the weak anisotropy of the H,~He potential is worth
considering.

The wave-function forms employed here for both the
mixed clusters H, -He,, and the pure He,, reference systems
present a radical departure from previous analytic forms
used in vanational Monte Carlo ground-state studies. No

TABLE VIl Wave-function parameters for H, He,, (in atomic units).

one-particle term is employed. and the two-particle term 15
explicitly constructed by fitting to the bound numencal solu-
tion of H, He, which allows much greater sensitivity to the
long-range part of the potential than in previous forms. Ac-
curate representation of the diffuse tail of the two-body fac-
tors appears to be extremely important in obtaining accurate
energies. We note here that for He, and He, the energies lie
below the previously computed exact GFMC values. In Ref.
11, we find that this resulis from the use by GFMC of the
1979 potential which is slightly shallower than the most re-
cent one (1987) empioyed here. The high level of accuracy
obtained here at the VMC level with just the two-particle
term, even for N = 20, also suggests that addition of the
three-particle terms known to be important for the larger
clusters may well provide a new level of accuracy at the
VMC level for these larger systems as well, It will be very
interesting to see how well the lack of one-particle term does
at larger N. This term has been required in previous studies
by us and others because of the modified liquid-state asymp-
totic form imposed on the two-particle term. Note that the
new form employed here does have the flexibility to revert 10

He-He parameters for H, He,,

N 2 3 4 6 12 13 19

as1Q ~0.57743 — 0.083 49 -~ 0.391 86 — 0.467 82 ~1.0595 — 10241 ~ 0840 ¥4

b - 1.078 43 - 1.33566 - 159036 - 1371276 - 1.0168S - 102328 - 0976 41

a 0.970 574 1.171 530 0.791 906 0.645 789 0.603 138 0.604 093 0.553 11¢&

a, ~ 1.308 32 0.11479 0.638 34 — 0.758 00 - 1.508 01 - 1.408 82 - 1.386 08

a, ~23932 — 20.046 — 25.642 —24.427 - 30.753 - 31700 - 38878

a, 105.288 151.690 157.665 158.838 202.829 226.526 310.0%9

a, ~ 734.48% — 746.490 - 782.3%0 — 182.049 - 852.536 — 37670 - 13070t

a, 1715.68 1 709.00 1 842.20 1 842.13 1813.57 1792.85 248445

a, -4401.3 - 4404.1 —-4050.3 —4040.3 - 4348 4 —-43%.0 ~-36746
H,-He parameters for H, He,,

N 2 3 4 6 12 13 19

a/100 - 0.65703 ~ 0.050 860 - 0.050 865 —-0.36243 -0.36243 - 041131 - 0.286 01

b -~ 0.625 84 - 143377 ~ 141178 - 1.120 54 -0.73013 - 071538 —0.685°7

a 1.400 470 1.147 770 1.135 880 1.151 390 1.151 390 1.153 680 1069 830

a, - 2.13962 - 0.65703 ~0.164 98 ~087913 - 092728 -0.82508 ~090) ¢

a, - 6.163 ~ 14.043 - 15.359 — 14.923 —12.744 - 14.607 - 14612

a, 112.344 121.898 121.843 123.210 122.727 131,758 131757

a, - 719.100 ~ 710.496 — 710.504 - 710.000 - 711.06) - 730.137 -730M)"

a, 1723.29 172698 1726.97 1727.10 172638 171899 171599

a. -~ 743%.6 — 7 454.4 - 74%4.2 — 74544 ~ 74547 -~ 14580 — 74580
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The Hy-*He dimer and small *He clusters are studied using Monte Carlo sampling techniques. We
consider alternative wave-function forms in order to obtain high accurscy efficiently. For the smaller
systems, both guided and unguided Metropolis walks are used and the eflciencies are studied. Of partic-
ular concern is accurate sampling st smail particle separations and the behavior of the local energy in
this regime. As a final step, we compute exact energies by a diffusion Monte Carlo method. We obtain
converged energies significantly below the Green's-function Monte Carlo values, which employed an ear-
lier He-He potential with a slightly shallower well. For He, and Hey, the Green's-function Monte Cario
energies are reproduced when employing the same potential. However, for the 112-atom cluster, our
converged energy lies below the Green's-function Monte Carlo value. Second-order estimates of the ex-
act density profiles and particle separation distributions, p, are also determined. For the 14~ and 20-atom
clusters, second-order estimates of p show enhanced structure in comparison to varistional Monte Cario
results. Statistically meaningful oscillations in the second-order estimates of the exact density profiles

are not observed.

PACS number(s): 36.40. +d, 67.40.Db, 02.70. —c, 03.65.Ge

N 1. INTRODUCTION

Atomic and molecular clusters have become of interest
to both theorists and experimentalists (1]. Of particular
concern are structure, phase transitions, binding energies,
and excitation spectra, and the behavior of these proper-
ties as the bulk is approached.

We are interested in studying atomic and molecular
clusters, both pure and with impurities attached, using
Monte Carlo techniques. Such approaches thus far pos-
sess the greatest possibility of yielding high accuracy for
theoretical methods. To enhance the capabilities of
Monte Carlo for these systems, we consider alternative
wave-function forms and the efficient optimization of
wave-function parameters in studying weakly bound
quantum clusters. To start with, we study the H;He
complex from here on ‘He is assumed). This system is
quite useful as it provides a very weakly bound, highly
repulsive potential, test case for the initial wave-function
form we employ.

As a further development, we employ diffusion Monte
Carlo (DMC). We use this approach to compute exact
ground-state energies for helium clusters with the most
up-to-date potential. In addition to increased accuracy in
the energy and structural features such as the density
profile, the DMC approach serves to provide benchmarks
for evaluating wave-function quality. This is pertinent
for the helium clusters for which exact energies resulting
from the most recent pair potential have not yet been
computed.

The remainder of the paper is organized as follows, In.

Sec. Il we discuss Monte Carlo integration techniques,
and in Sec. [II the exact diffusion Monte Carlo approach.
The wave-function forms and optimization technique we
employ are presented in Sec. V. In Sec. V we present re-
sults for a range of small clusters (¥ €20 and N =112):

a

Section VI presents conclusions concerning the wave-
function accuracy and sampling cfficiency for &' tech-
niques.

II. MONTE CARLO
INTEGRATION TECHNIQUES

Multidimensional integration is performed by Monte
Carlo in order to obtsin wave-function expectation
values. This is achieved by sampling points,
R=(r,,ry...,ry), from a probability density function
p(R). Expectation values of coordinate operators A(R)
are then computed as :

N
Au=M"'3 AR, 1ty
iy
with {R,}] sampled from p. As M becomes large, A, ap-
proaches the average of 4 (R} over p(R).

We employ two variants of the Metropolis walk [2,3]
to sample p. The first of these is the widely used and very
simple “unguided™ walk. For a point at R, a new point is
sampled from a transition probability density T(R—R’)
which is simply constant within a cube and zero outside.
Thus moves are g° en by

R'=R+A(£-0.51), (2)

where £ is a vector whose components are uniform ran-
dom variates between O and 1.

This “unguided” walk attempts to move uniformly
through coordinate space without regard to the form of
|W{3, Therefore a more efficient scheme of choosing at-
tempted moves is likely. This is the basis of a guided or
“smart"’ Metropolis walk, which is also known as impor-
tance scmpling. We now choose the transition density to
be
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T(R—R')=(4rA)"**%exp|{ —[R'~R—-AF(R)}?/44] .

(3
Sampling from this transition density requires that
R'=R+AF(R)+V24y . @

The components of y are Gaussian random numbers with
a mean of zero and a variance of unity, which we obtain
by the Box-Mueller algorithm [4]. The “guiding force,”
F=V|¥|, acts to push moves in the direction of most
rapidly increasing |W|3.

The major consideration for the approaches discussed
here is the value of A which yields the most efficient sam-
pling. The optimum choice lies between a small value,
which yields a high acceptance rate but a large degree of
correlation between moves, and a large value, which gives
large attempted displacements but a very smail accep-
tance rate so that correlation is large. The optimum A is
often taken to be that which yields an average aceeptance
rate {or ratio) of roughly 0.5. Here we consider a further
quantitative measurement of the efficiency with which
configuration space is sampled, namely, the average dis-
placement of moves during the walk, (AR ). (A rejected
move contributes a value of zero to this average.)

I11. DIFFUSION MONTE CARLO

Although the Metropolis algorithm provides a means
for computing expectation values of a given wave func-
tion, accuracy is limited by the quality of ¥. However,
exact Monte Cario approaches are well known. These
approaches are often generically referred to as quantum
Monte Carlo and fall into two categories, Green's-
function Monte Carlo (GFMC} and diffusion Monte Car-
lo. The former has been applied to a wide range of prob-
lems and derives from consideration of the time-
independent Schrodinger equation. Initial work was on
the helium atom {5} and liquid helium [6,7], and later ap-
plications include electronic structure calculations {8,9)
and ¢omputations on helium clusters [10-12].

DMC starts with the time-dependent Schrddinger
equation in imaginary time and has been employed most-
ly in electronic structure calculations [13-17]. Recent
work has also included helium clusters and other van der
Waals species [18-20]. The DMC approach we employ
is very similar to that of Reynolds et al. [15] and is out-
lined below.

Writing the Schrodinger equation in imaginary time,
t —t /i, and setting =1 we have

_a®(R,1)
o

The reference energy £, only affects the (imaginary) time
dependence of O(R,t). It is easily shown that at large ¢
the ground state dominates, leaving

°=CXP[““E0'—E‘ )]¢o . {6)

Note that the choice of Eg = Ej is uscful in removing the
time dependence from the asymptotic solution.
Importance sampling is implemented by choosing a

=(H —Eg}P(R,1} . (5)
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probnbility_ density function f =¥®, where ¥ is & trial
wave function. Rewriting Eq. (5) in terms of f gives

—%‘L = =DV +DV-[fRRI+{E(R)~Elf, D

where
H=-DV+y, D= (2m,)" 'V},
)

E, =V 'H¥ is the local energy, and once again
F=VIn[¥|%. Note that terms on the right-hand side of
Eg. (7) correspond to diffusion, drift, and branching, re-
spectively. The asymptotic form of f follows from Eq. (€}
and is

SR, =exp[ —t(Eq—E ) [¥(R),(R) . (8)

When f takes this form, expectation values over f atein-
dependent of ¢, i.c.,

(4),=[rR0ARUR [ [ f(R,0aR
= [#RI(RIARIR [ [URI(RIMR .

For A(R)=E(R), it is easily shown that (E, ), =E,,
so that the ground-state energy is obtained as the average
of E, over f. The time development of f is given by

SR t+7)= [dR f(R,NGR—R"7) , E)

where the Green's function G describes a move from R to
R’ in time 7. The Green's function is a solution of Eq. (7)
with the boundary condition G(R—R',0)=§(R-R’).
For all but a few simple Hamiltonians, the Green's func-
tion is unknown. Here, we employ an analytic “'short-
time” approximation to G which takes the form

G,(R—R’,r)=(47D7) "7
Xexp{ —{R'—R—=D7F(R)}*/4D 7}
Xexpl—r{[E (R} +E (R))/2—~Ex}) .
(10}

The approximate nature of G, is clear from Eq. (10): dur-
ing the course of a move from R to R’ in time 7, the drift
(determined by F(R)] and branching {(dependent on E,)
are assumed to be constant. While error in G, vanishes
as 7—0 [21-23], for the practical case, i.e., 770, the
asymptotic f only approximates Wd,, and computed re-
sults will differ from the corresponding averages over
Vdy. This difference, referred to as time-step bias, may
either be removed by extrapolation or made insignificant
by using values of r such that the bias is less than the sta.
tistical error.

To reduce time-step bias, an acceptance-or-rejection
step is employed [15]. That is, moves are accepted with a
probability 4 given by

AR —R',r)=min{L,w(R—R",7)} , an
and
[WRG,(R'—R,7)

w(R—R',7)= n . 12
[W(RWG,(R—R",1)

“
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Including the factor A plays an important role. As W ap-
proaches the exact solution ¢y, the branching becomes
constant and G, is essentially the transition density given
in Eq. (3) with A=Dr. In this instance, DMC reduces to
a guided Metropolis walk and f{(=18,/%) is sampled
without time-step bias—{for any value of 7. Use of A4 has
been found to greatly reduce time-step bias [24] because
the acceptance-or-rejection step eliminates time-step bias
to the extent that ¥ resembles ¢,

We conclude this section with a discussion of several
technical details. In the DMC {and Metropolis-walk or
variational Monte Carlo (VMC)] computations, ten in-
dependent ensembles of 100 walkers are propagated in
parallel yielding ten independent estimates, of, for exam-
ple, the energy, from which the average and its statistical
error are obtained. If greater precision is desired, more
runs are performed in this manner. This structure is use-
ful in that for each set of runs an estimate of statistical er-
ror.unbiased by serial correlation is computed.

Updating the reference energy E, is useful for minim-
izing the time dependence of the ensemble. For a given
number [or population, P{0)] of points sampled from
f(0)=Wd, at the beginning of the DMC walk, we have

P(Oy= [ f(R,0)dR . (13)

From the asymptotic form of f it is easily seen that
P(y=exp{ —1{Eq—ER)IP(0) . (14)

Note that Eq. (14} indicates that an estimate of E, may
be obtained from the change in the ensemble size over
time. This estimate, usually referred to as the growth en-
ergy (E;), often possesses a different dependence on the
time step than does the average of the local energy £;.
Therefore, to reduce the long-term growth or decay of
ensemble size, at each time step we perform a short run
to estimate E; and then set E; equal to this estimate
when computing the reported results.

Another point concerns the renormalization of the en-
semble population P. Even when E, is equal to the
growth estimate of E,, fluctuations in P arise from fluc-
tuations in Eg, which are in turn caused by variations in
the local energy, as the ensemble is propagated. If the
statistical error in E; over the ensemble is O, then

from Eq. (14) the relative statistical error in P is seen to
increasc proportionally to time as

O'P/Pzta'sa. (15}

Therefore, in keeping the ensemble size reasonable, it is
useful to renormalize the population [back to P, (= 100)]
at intervals during the walk. Howecver, as noted previ-
ously [25], renormalization introduces an error which de-
creases as the frequency of renormalization decreases.
{Generally, this error is not noticeable unless the propa-
gation time bectween rcnormalizations is very short.)
Here, we divide each run into blocks, and at the end of
each block the population is renormalized to 100 walkers.
We vary block propagation times (10*-10° hartree ™) to
verify that “‘renormalization® bias is negligible. '
The final point concerns the implementation of branch-

ing. As seen from Eq. (10), the branching factor for a
move from Rto R’ is

b(R.R)=exp(—r([E (R)V+E (R)]/2—Eg}}. (16)

Branching may be implemented by obtaining an integer
M =int[b{R,R’}+£], where int(x) is the largest integer
that is <x and where ¢ is a umform random variate uni-
formly distributed between O and | so that M =5 on
average, and creating M copies of walkers at R, Alterna-
tively, one may assign a weight w(R’)=b(R,R")Jw(R) to
the walker at R’. Since M equals b only on average, as-
signing (or carrying) weights would seem preferable.
However, carried weights diverge towards 0 or « as the
walk proceeds, giving rise to the possibility that an en-
semble may he effectively composed of a few walkers with
very large relative weights. In this event, the sampling 1s
inefficient as only a few of the many walkers being pro-
pagated contribute to the computed averages. Therefore
we employ a combination of carrying weights and copy-
ing. Weights are carried unless w Sw,, ot w2 wy,,. If
either of the bounds are exceeded then M, =inttw +§)
copies are made, and for w 2 w,,, cach copy is assigned a
weight of w/M,. For the DMC resuits reported here,
W =0.1-0.4 and w,,, =2.

IV. TRIAL FUNCTION FORM
AND OPTIMIZATION

A. Trial fuactions

We seek ground-state wave functions for bosonic sys-
tems. Such wave functions are nodeless and therefore
may be taken as everywhere positive. A convenient rep-
resentation takes the form

W(R):explz T,(R)] , (17
1
where in the completely general case
T(R)= 3 710 2% 7% /NN I (18)
[N
licjeke )

In practice I is taken to be <3 so that the wave function
is reasonably compact. Since the potential is given by the
sum of pairwise interactions, we omit T, and instead
start with two-body terms. (One-body terms have been
employed in previous studies of clusters {10,26,27}, but
are not necessary.) We then add on three-body terms for
increased accuracy if desired. This reflects the fact that
two-body effects should be most important, especially for
weakly bound clusters, followed by three-body effects,
ete.

As is common practice, we employ a two-body term
which is a function only of particle separations, i.e.,

Tz(R)= 2 ’z(ri,r})= 2 'Z(r‘i) . (‘9)

tj ¥

(i< jl ti<j
This term is both transiationally and rotationally invan-
ant, ie. P, Ty=0 and LT,=0, as required for the

ground-state wave function. Given the importance of
two-body efects, it is useful to explore optimal forms for




47

t;. In this vein, H,He, the first “cluster” in the H,He,
series, provides an excellent test case as a weakly bound
species with an interaction potential very similar to that
of He-He. Therefore a form of t, which accurately de-
scribes H,He may prove advantageous for the helium
clusters as well,

The initial form of ¢, is motivated by our studies of
H,He. For the interaction potential, we use a Lennard-
Jones plus van der Waals fit {28] to the ab initio data of
Vo computed by Meyer, Hariharan, and Kutzelnigg [29).
Since our potential is a function only of the He distance
from the H, center of mass, the Schrodinger equation for
this system can now be reduced to a one-dimensional
problem. A numerical solution for the ground state, ¢3"’,
is obtained wiih the finite difference algorithm of Schatz
{30]. The next step consists of considering forms for W
and fitting them to &Y. The accuracy of both the wave-
function fit and the computed energy expectation value
allow an assessment of the quality of ¥.

In determining a useful analytic form for ¥, we treat
the long- and short-range behaviors separately. That is,

¥ takes the form
Yir)=w (rir), (20)

where s and / denote the short- and long-range functions,
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respectively. The short-range form is chosen to be con-
stant at large 7. Given the form of ¥ at small r, a natural
choice for ¥, is

v, (r)=exp(Plu)), u=r""',

s 20
Pu)=3 a,u*.

k=0

The bound on the powers included in P resuits from the

desire to limit singularities in the kinetic energy to be no

greater than r ~'2, given that this is the dominant singu-

larity in our potential [28). A high-quality form of ¥,

was found to be

¥, =rbexplar?] . 22)
Since W, is very nearly constant at large r, we first it ¥,
to In[#g"'] in this domain to determine a, b, and a. We
then determine the short-range parameters {a,] by
fitting in the highly repulsive and in the well regions.
The range of points included in the short- and long-range
fits determines the parameters, which are listed in Table
1. We find that the analytic wave function ¥ is nearly in-
discernible from the numerical solution ¢§"', and the en-
ergy is reproduced to high accuracy, —0.02443 versus
—0.024 61 K —an error of only 0.7%.

TABLE I. Wave-function parameters.

Cluster
Parameter H,He

HC“ Hem HC||1( Tz) HC”z( T3+T3)
] -0.007 31522 —~0.107 061 —0.062 -0.01000 -0.01400
b —1.438143 —1.046 66 —1.055 —0.85000 -0.8550
a 1.13839 0.559 995 0.545 0.545031 0.545031
aq 0.1536 —~1.32361 -1.30801 —1.30801 -1.30801
a, ~14.042 55 —30.1935 —~38.8646 —38.8646 —38.8646
a; 121.49628 199.831 310.061 310.061 310.061
as —710.897 88 —845.506 -1370.01 —1370.01 - 1370.01
a, 17269756 1808.98 2484.45 2484.45 2484.45
as ~7454.4214 ~4354.11 -3674.60 —3674.60 —3674.60
r 0.012 0.012 0.009
Wy 1.60 1.60 18
ro 5.0 5.0 4.5
A, 0.043 0.043 0.031
Wy 2.025 2.025 2.225
r 3228 3.225 3.228
\ Cluster
Paramh He, He, Hesy
aq —3.2319500 —3247139 —~341398
a, —~0.0684583 - —0.0369850 -0.0191689
a, 8.55 8.65- 9.20
a, 0.8400750 0.914958 0.873 622
8, 0.086 1481 0.069 5676 0.069 1040
ty - 682979 —682.409 —675.000
N 588.918 590.085 590.085
f —~205.068 -203.71713 —203.775
t 34a321 33.1709 331633
e -2.62822 —2.466 31 —-2.48577
ts 0.0601202 00533509 00588524 o
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The H,He wave function gives a two-body function,

)
tyr)=blnr+ar®+ 3 au*, 23
k=0

which we have employed in VMC computations of heli-
um clusters with and without a H, impurity {28). The
form of ¢, is structurally similar to forms used previously
[10,26,27]. The differences are that in the short-range
form all powers of r~' up to five are included here, and
there is an added flexibility in the long-range form, intro-
duced by the exponent a. As discussed above, the short-
range component of f, is based on our H,-He potential
which takes a Lennard-Jones form at small separations
[28]. While the shape of this potential is similar to that
of He-He [31], the analytic forms are quite different.
Therefore it is of interest to consider entirely new forms
for 1, based on the short-range behavior of the He-He po-
tential. We employ here the most recent HFD-B(HE) po-
tential of Aziz, McCourt, and Wong {31] for all caicula-
tions unless it is explicitly stated that the earlier
HFDHE2 [32] potential is used.

-We give special emphasis to regions of small separation
because the:local energy generally possesses its greatest
fluctuations as r becomes small. Therefore a two-body
form which is more physicaily correct in this domain will
reduce fluctuations in £, , yielding greater precision, and
hopefully greater accuracy, in computed energies. Our
new t, takes the form

15n=Tirw(nN+ag+a,r+vyiar, 24)
where
s(r=a,expl —a,r —B,r}) 25)

mimics the short-range form of the He-He potential (31],
and
i
Tin=3 nrt, (26)
. k=0

with n, =5. We have chosen y =0 leaving only a singu-
larity of r "' in E_, arising from the kinetic energy. Oth-
er permissible values are y <+ which give an r~? singu-
larity but a finite statistical error in E;. With y =0, t,a,
negative and large gives a wave function which is very
small but remains nonzero at r =0. This reflects the fact
that the potential converges to a very large but finite
value at r =0.

Overall, in comparison to Eq. (23), ¢} gives added em-
phasis to domains containing smail particle separations
and somewhat less emphasis to large r. It is hoped that,
by directly including a “'potential-like” function in ¥, the
highly repulsive potential term will be better canceled by
the kinetic contribution, producing smaller fluctuations
in E, at small values of r.

The use of a three-body term in ground-state wave
functions has yiclded significant improvements in
descriptions of both Uie liguid {33-37) and clusters [10].
Here, we employ the description of three-hody corrcla-
tions used previously in microscopic studies ¢f quantum
clusters {10,26,27,38], namely,
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T{R)=A 3 [rgm— 3 gg(r,,)]

7 ™)

+,3 [!r,ml’— S g%u,,)r,ﬁ}, Qn

1 {*)
with
Fiy= 3 &trrl, 1=01. 28

[72d
U=

In Eqgs. (27) and (28), we have

£ =(r —r) "y 2]
o{ry={r —rylexp | — ,
0 we I
. (29)
{r-—r,
siry=exp|—
| w

Derivatives of T, are evaluated analytically. This is actu-
ally faster than finite difference because derivatives by
finite difference require three evaluations of the exponen-
tials in Egs. (29) while analytic computation requires only
one. Overall, adding T, to T, only increased computa-
tion time by about 85% for the 14-, 20-, and !12-atom
clusters.

B. Optimization

Wave-function parameters are optimized by hand and
by conjugate-gradient line minimization. Although
crude, varving parameters by hand is quite useful in com-
plementing more sophisticated technigues. Since initial
wave-function parameters are often quite poor, hand op-
timization can quickly yield large improvements. The re-
sulting wave function can then be used as input for the
more sophisticated optimization techniques.

The conjugate-gradient technique {39] seeks a local
minimum by moving in directions in parameter space
which are conjugate to each other, leading to efficient
convergence. Essentially, the algorithm consists of suc-
cessive line minimizations in parameter space. This pro-
cedure requires the computation of the quantity being
minimized and of its first derivatives with respect to the
wave-function parameters. Here, we consider

_AWIE, ~ £, FIW)
B (VIv)

2 {300

This quantity is useful in that one may seck either a
minimum in the energy by choosing £, << (E, ) orin the
variance by choosing E,=(E ). In the first case.
minimizing the encrgy yvields global accuracy, and, in the
second, minimizing fluctuations in the local energy em-
phasizes local accuracy in W. Since computed energies
are most often compared in discussions of accuracy, we
focus on minimizing the energy.

The integrations in Eq. 130) are performed by averag-
ing over a fixed set of points sampled from a distribution
"Wyi? corresponding to an initial set of parameters [40].
Therefore we minimize the estimate of 5° given by




N

8)
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M
~§. [EL(R))—E, PIW(R, 1/|Wy(R,)?
3}’= : o . (31)
S [WIR)/IW(RHI?

imy

The major consideraticn for the stability and accuracy
of the optimization is that s} accurately approximate s?.
For this reason the ratio {W/W¥,l? is included, reflecting
the fact that ¥ changes as parameters are varied, al-
though this requires computing parameter derivatives of
¥. To enhance numerical precision, we adjust the nor-
malization of ¥ so that 3, ;W /W,/?=M. This is useful
for clusters with more than five atoms where changes in
wave-function parameters have a large effect on the nor-
malization of ¥, becuuse of its product form, and could
make {¥/W,!? uniformly exceedingly large or small. The
remaining determinant of the accuracy of 5§ is the num-
ber of points in the fixed sample. While a large number
of points is desired for high accuracy, M is limited by
considerations of computational cost and memory re-
quirements. M is chosen .so that the statistical error in
the average of E; over the points is significantly less than
the desired improvement in the energy. We have em-
ployed 10002000 points for the smaliler clusters, Hey_s 5,
and 5000 points for He,, and He,,.

The final step in obtaining reliable optimizations in-
volves updating the fixed san:ple. As the wave function
changes, the points sampled from iWo!2 become a poorer
choice for computing expectation values with respect to
'W¥i2, This is most noticeable when W, is of poor quality
and W changes significantly during optimization. One
manifestation of this degradation of the fixed sample is
divergence of the energy to unrealistically low values.
Therefore we have found it useful to update the sample
by using a Metropolis walk to generate a new set of
points sampled from the current wave function {which
then plays the role of W,.) Updating is implemented after
the energy has converged or when it begins to diverge.

“While the conjugate-gradient technique has been suc-
cessful for the 3-20-atom clusters, it appears to be much
less practical for larger clusters. (For He;), we started
with the optimized He,, parameters and only reoptimized
the long-range parameters by hand.) As the number of
atoms in the cluster increases, the dimensionality of
configuration space which must be represented by the
fixed sample of points increases. Therefore larger sam-
ples are generally required for the larger clusters.

V. RESULTS AND DISCUSSION

A. Metropolis walks

As discussed in Sec. II, wave-function expectation
values may be computed by the Metropolis approach.
We first consider HyHe. Since the wave function depends
only on the distance of He from the midpoint of H,, r,
the walk takes place in only three dimensions, r.

We start with the unguided walk employing several
values of A in the range 11-40 A and M =5X10". We
find that sampling |W|? for such a diffuse system is not

trivial. The energy is reproduced reasonsbly well, the
computed value is generally within one or two standard
deviations of the analytic, and the average error is 0.1%.
However, we find sizable errors in (r) and
?rms =({r?))1/2. The smallest value of & produces errors
of 6% and 7% in (r) and r ,, rcspcctivcly. Apparently,
poor cfficiency in sampling iW(? occurs in this case.
Upon increasing A to 27 A, giving an acceptance ratio
close to the often assumed optimum of 0.5, errors in (r)
and r . are reduced to 1% and 2%, respectively. In-
terestingly, we find that only at a large value of 4, 40 A
and a relatively small acceptance ratio of 0.35, is accura.
¢y in (r) and r,, comparable 10 that of the energy, i.¢.,
=0.1%,

The average displacement of the moves, { AR ), sheds
light on this behavior. We find that (AR ) monotonical-
ly increases from 24AatA=11A t0dTAata= 4OA
correlating with the monotonic increase in the quality of
{r) and r_,,. The fact that the local energy is relatively
constant at large r, so that the computed energies are
only weakly dependent on the accuracy of the sampling
in this domain, readily explains the difference in behavior
of the energy versus the coordinate expectation values,

As a precursor to DMC, we also performed guided-
walk calculations with A=Dr and F=VIn|¥|2 Note
that T in Eq. (3} is now equivalent to G,, Eq. (10}, if the
branching is omitted. We now encountered difficulty in
sampling this distribution because of the sharp cutoff at
small ». In computing at r=5X10%, 10X10*, and
20X 10* hartree ~!, we found large errors in the energy,
1% for the first two time steps and 5% flor the last,
despite the large number of points sampled,
M =(3-6)X10". The behavior of the computed values of
(r) and r,,, is, however, much different. Good accuracy
and precision are obtained for these quantities at
7=10X 10* and 20X 10* hartree ™"

The reason for the poor estimates of the energy is that
walkers are either - ped at smaller separations or else
they do not sampie these domains. This trapping 1is
caused by the guiding force F being excessively large at
small r, where it is proportional to r ~%, giving acceptance
probabilities practically equal to zero. This in turn yields
a poor representation of the density at small » which does
affect the computed energy because of the large magni-
tude of E; there. This is much less significant for r and
r¥ which are relatively small near the origin. Since the
effect of F on the acceptance probability is renioved ex-
ponentially fast as 7—0, the small-r domain is more ac-
curately sampled as 7 is reduced. However, efficiency is
reduced at small r because the small average step size
gives a larger degree of correlation between moves.

We now consider the pure helium clusters. These <vs-
tems possess a highly repulsive potential as does 1 He
but are more tightly bound. (For example, the tinding
energy of He; is five times greater than that of H He)
This causes the computation of expectation values ky an
unguided walk to be less difficult than for H,He, provime
ably because sampling a slowly decaying distribution at
large r is no longer required. Despite sampling fower
points in calculations on Hey_¢; [M =(2-6)X 10" vcreus
SX 107 for H,He), for each cluster we observe vycilomt
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agreement between computed expectation values over a
range of A, For example, with 2.6 <A < 13.2 A for He,,
the maximum difference in {r ) (the average particle sep-
aration) is only 0.15% and that in the energy is only
0.07%.

While computed averages do not vary significantly as
A is changed, statistical error in coordinate expectation
values, (r) and R, [Rnm=({R2)}/N)'"%, where
R¥*=SN (r,—R_, )?], decreases as A (and (AR)) in-
creases. In going from the smallest to the largest values
of A, statistical error in R, and (r) is continuously re-
duced down to a factor of 2 or more, resulting in a four-
fold or greater increase in computational efficiency for
these quantities. For the energy, small values of A result
in low efficiency. However, once A, and thereby { AR ),
15 ¢of reasonable size, statistical error in the energy is no
longer decreased as A is increased.

Overall, we find the average displacement (AR ) to be
a useful measurement of the sampling efficiency in that
larger values tend to give smaller statistical errors, most
noticeably for R, and {r). We point out here that the
sampling required to obtain (AR ) to high precision is
quite small. Therefore finding the value of A which yields
the greatest average displacement may be accomplished
with very little computation. Finally, as was the case
with H;He, the acceptance ratios corresponding to the
largest (AR ) were less than 0.5, i.e., 0.38 for He, and
0.40 for He,.

We now turn to the guided walk, which encounters
difficulty when sampling at small » for H,He and does
not, therefore, appear useful for helium clusters. Howev-
er, since the DMC walk we employ consists of the guided
walk described above with branching, evaluating the
practicality of this guided watk is important in ascertain-
ing the feasibility of our DMC approach for obtaining ex-
act results.

As discussed in Sec. IV, acceptance probabilities in the
guided walk globally increase as the time step is reduced.
If a time step can be found which is smail enough to re-
move trapping at small r, so that convergence in sam-
pling !W!? can be obtained, without excessively degrading
. sampling efficiency, DMC may be practical for helium
(and other) quantum clusters. Therefore we now deter-
mine values of r which yield high accuracy in the guided
walk for He,_s.

Table il presents guided-walk energies and statistical
errors (per point sampled) for He,_s at several values of 7.
The effect of trapping is immediately evident from the
data in Table II. At the larger time steps the energies are
of poor quality. In these walks we have observed that
atoms which are too close together do not move during
the entire course of a run. (Trapping is found by record-
_ ing the number of accepted moves for cach particle.) As
the time step is reduced, particles are no longer trapped
throughout the run. The result is a noticeable (and for
Hes a dramatic) improvement in the cnergy. Finaily, we
sce that at sufficiently smull time steps, guided-walk ener-
gies are in exccllent agreement with those computed by
the unguided approach.

The small-r behavior of the sampling, and its depen-
dence on 7, is illustrated i Fig. 1. This figure compares
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TABLE 1. Guided-walk results for He,_,. Time steps are
given in hartree "' lengths are in A, and energies are in K.

1074 (AR) E/N olE/N)
He,

25.00 2.14 ~0.0369(33) 74

12.50 1.60 —-0.0367(27) 6.0
5.00 1.09 —0.038 1(14) 3.1
2.50 0.80 ~0.0397(16) 5.1
1.28 0.58 —-0.041 8(7) 44
0.75 045 ~0.04141(12) 1.1

Unguided 2.78 -0.04147(7) 0.14
HC‘

25.00 1.86 -0.1269(26) 14

15.00 1.55 —~0.128 806} 2.1

10.00 1.34 ~0.128 1(3) 1.1
5.00 1.04 ~0.1329(23) 92
2.50 0.78 —0.136 3(19) 10.7
1.25 0.57 —=0.136 1(T) 44

Unguided 2.21 —0.1356(1) 0.2
HC,

10.00 1.17 —-0.34(10 200
5.00 0.96 —0.34(10) 200
2.00 0.69 —-0.2487(12) 34
1.00 0.51 —0.25017{63} 22
0.50 0.37 —Q.25048(51) 2.5

Unguided 1.65 —Q0.25023(13) 0.3
.28
(1302 4
3

— 300)91

<
Q.

£.3006 4
13054 . \,1

oo

21 2.2
»

r (A)

FIG. 1. Convergence of p(r} at small r in the guided walk for

He;. The solid line (

) is the unguided walk, the chain-

dashed line {—-—-) is the guided walk at 7=50000 hartree "',
the long-dashed line {— — ~) is at 7=25000 hartree ™', the
short-dashed line (- - -) is at 7=12 500 hartree ', and the dotted
line { - )is at r=7500 hartree *'. Note the improving agree-

ment batween unguided and guided as the time step tor the
Latter 18 reduced. The gunded-walk energies follow the same
trend, see Table {1
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the probability density functions p(r) at small particle
separations (7} corresponding to several values of 7, with
that of the unguided walk for He;. Fluctuations in p indi-
cate trapping in certain regions and lack of penetration
into others. These fluctuations decrease as r is reduced,
resulting in convergence to the unguided probability den-
sity function and agreement in the computed energies.

It is important to point out that the error in the energy
at the larger time steps is not systematic. The irapping of
points, or conversely the inability to sample certain
domains at small particle separation (for a practical
«nount of sampling), will result in energies either too
high or too low, depending on the sign of the local energy
at small r and whether p is too high or too fow. For the
same reasons, statistical error may be artificially high or
jow when obtaining an accurate representation of pir) at
small r is problematic.

For purposes of comparing efficiency with the unguid-
ed walk. the statistical error in the energy per point sam-
pled, o, is presented in the last column of Table II. For
M points, g is equal to the statistical error in the average
tumes V.M. This siatistic depends on the sampling
inefficiency of the algorithm, i.e., the degree to which suc-
cessively saﬁxpled points are correlated, as well as the
nonconstancy of E;, which is determined by the wave
function. Since ¥ is the same for the computations on a
given cluster, algorithm efficiency may be directly com-
pared. Table II shows that while agreement with unguid-
ed energies is obtained by the guided walk at sufficiently
small 7, the unguided walk is consistently more efficient,
with ¢ an order of magnitude smaller, yielding a decrease
in computational efficiency of two orders of magnitude.
Correspondingly, for the guided walk at the smallest time
step, the average step size ((AR )} is four to five times
smaller than that for the unguided walk. Nevertheless
the guided walk still gives good precision for reasonable
computational effort. If this is also the case with the
DMC approach, the increase in accuracy will be well
worth the computational effort.

The guided-walk approach we have employed is
inefficient because of the rapid increase in the guiding
force as atoms coalesce. This suggests that a guided-walk
approach with a better behaved force will not encounter
the difficulties found here. We have investigated two
such cheices in a few selected applications. The first,
“weighted unit force,” approach simply employs ¢F, in
place of F, =V,In{¥|? when moving particle i. Thus the
direction of the original F is preserved while its magni-
tude c is held constant. In the second, a ““damped force™
approach, x,F, replaces F,, where

Zfﬂmw. (32)

FAR )]

X, =exp

and a, in ¢, becomes an adjustable parameter. Once
again, the direction of the force is left unchanged but now
its magmtude is most greatly affected only in the trapping
regions, i.e., |x,F;| —0 when ¥ —0.

For the H,He test case the parameters governing the
force, ¢ and a,, are varied together with 7 to obtain max-
imum (AR ), which is roughly the same for the two guid-
ed walks. Trapping is not obscrved in cither case and
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values of (AR) are obtained which are a factor of 2
greater than the maximum obtainable in the unguided
walk. However, the statistical error in the energy shows
little variation among the unguided, weighted, and
damped approaches. On the other hand, guided-walk
statistical errors in both (r) and r,, are about 25%
lower than those of the unguided waik.

For the second test case, He,,,, only the damped force
approach was compared against the unguided walk.
While exhibiting no trapping, the damped force walk
yielded no increase in efficiency over the unguided walk.
Therefore we conclude that the simple unguided walk is
competitive with the guided-walk approaches studied
here.

B. DMC Computations on helium clusters

For the DMC walks, inaccurate sampling at small »
can have an eflect significantly greater than that observed
for the guided walk. If points are temporanly trapped in
a region where the local energy is very low, as we have
seen can easily occur at small 7, the branching factor will
be very large, resulting in a quickly increasing number of
walkers at small r. Although the particles trapped at a
small separation may move to larger r after a short period
of time, the continuous generation of new walkers at this
point will yield a high degree of oversampling and there-
by a higaly biased (too low) energy. Therefore, at a given
time step, trapping may not be problematic for the guid-
ed walk but nevertheless gives instability in the DMC ap-
proach. So we expect that smaller time steps will be re-
quired to obtain convergence in the DMC walk than in
the guided walk. This is investigated below.

Given the instabilities possible in DMC, we take two
steps to monitor the behavior of the walk. First, we al-
low the ensemble to only reach twice {or four times for
the larger clusters) its original size. If the maximum en-
semble size is attained, this event is recorded and all
weights are carried so that the copying of walkers is no
longer employed. To some extent this step controls insta-
bilities arising from trapping in that the continuous repli-
cation of trapped walkers is not permitted. Additionally,
if the weight of any walker exceeds a given value (10), the
weight is recorded in the output file.

Results for the energy and its growth estimate E; are
presented in Table 111 and plotted in Figs. 2(a)~2(c) for
He; . Block length, on the order of 10°-10° hartree ™',
was varied by factors of 2-4 resulting in no significant
change in the computed energies. Also, maximum en-
semble sizes (200} and excessive weights (10), while found
at the larger time steps, were not observed at the smaller
tlast two or three) values of =. Given this, and the statist-
ical agreement of the energies at the smaller time steps,
the DMC energies we have computed are deemed to be
well converged. However, we do see that much smaller
values of 7 are indeed required than was the case for the
suided walk; approximate comparisons are 1000 versus
12500 hartree ' for He,, 1500 versus 25000 hartce '
for He,, and 1500 versus 10000 hartree ™' for Hey icom-
parc Tables IT and 11

Umrigar, Runge, and Nightingale have recently de-
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TABLE 1II. DMC energy vs time step for He,_ ;. The average of the local energy is £ and the
growth estimate is £;. Time steps are given in hartree ~ !, lengths are in A, and encrgies are in K. AR

denotes the acceptance ratio.

10-3r AR (AR) E/N Eg/N
Heg
40 0.9963 0.62 —-0.0486(14) -0.044 17}
Jo 0.9975 0.54 —0.046 24 T) —0.044 28(35)
20 0.9986 0.44 —0.044 33(16) —0.04406(1
1.0 0.9995 0.31 —0.044 05(18) -0.04398(17)
0.5 0.9998 0.22 ~0.044 28(20) —0.04393(23)
He,
5.0 0.9908 0.69 —~0.1750%{90) —0.1455(7)
25 0.9965 0.49 ~0.151 4(38) —~0.1454(6)
20 0.9975 0.44 —0.148 1116) -0.145U7)
1.5 0.9983 0.33 —0.1445(3) —0.144 8(4)
1.0 0.9991 0.31 —0.144 5(3) —0.1444(3)
Heg
20 0.5963 0.45 —0.282(13) —0.268 2(8)
1.5 0.9975 0.38 —0.268 3(5) ~0.267 5(4)
1.0 0.9986 0.31 —0.267 3(11) —0.2674(10)

scribed a DMC approach which controls the magnitude
of F near its singularities and yields a better approxima-
tion to the Green's function in this domain [41]. It will
be of interest to see if this method will reduce time-step
bias, and thereby increase efficiency by allowing greater
values of 7, in DMC computations on helium clusters.

Neglecting the different time-step scales, the behavior
of the DMC energies is very similar to those of the guid-
ed watk. In essence, both walks are affected by trapping,
which is magnified by the branching in the DMC walk.
As was also the case for the guided walk, the coordinate
expectation values, (r) and R, were not visibly
affected by 7. This is not surprising as these quantities
are only weakly influenced by sampling accuracy at small
particle separations. This lack of time-step bias is also
seen for the particle separation density functions p(r) (ex-
cept of course at small r), as well as for the density
profiles.

Computational cost in obtaining converged DMC ener-
gies was large but not excessive. While He, presented an
especially difficult case requiring five Cray X-MP14 CPU
hours for all (not each) of the time steps, He, and He,
took only one and two hours, respectively. As for H.He
at the VMC level of theory, the smallest and most diffuse
cluster gave the greatest difficulty in obtaining the accu-
racy and precision desired.

Having successfully obtained converged energies for
the smaller clusters, it was of interest to see if this could
also be achieved for the larger clusters. We found for
Hey, N=17, 14, 20, and 112, DMC energies converged at
about 7= 500-1500 hartree™!. Even at the largest time
step of 2000 hartree ~!, the encrgies were very close to
those computed at the smallest values of 7. Qverall, the
dependence of /£ /N and E /N versus the time step mim-
ics that of the smaller clusters. At “targer™ 7 (=2000
hartree '), bias is noticeable and large weights and fluc-
tuations in ensemble size occur. At “smaller™ 7 ( = 1000

hartree ™ "), stability in the DMC energies, weights, and
ensemble sizes is obtained. Therefore, while the required
time step for unbiased energies is greatly reduced for
DMC versus the guided walk, this is not the case for
larger clusters versus smaller clusters. Unbiased energies
are obtained at 7=1000-1500 hartree ™! for 3-5 atoms
and 7=500- 1500 hartree ' for 7, 14, 20, and 112 atoms.
{Here, absence of bias, i.e., it being masked by statistical
error, is relative rather than absolute. For example, a
bias of 0.005 K is very large for Hey, 119% of E /N, but on
the order of the statistical error for Hyy,, 0.19% of E/N.)
This is explained by the fact that convergence in DMC is
most affected by trapping combined with large fluctua-
tions in the local energy at small r—effects which are
governed mostly by the wave-function form rather than
by cluster size. Total computational cost was roughly 2,
4, 5, and 17 Cray X-MP14 CPU hours for N=7, 14, 20,
and 112, respectively.

The DMC results are summarized and compared to
GFMC [10,11] and other recent DMC results (18] (Heyg
and He,;,) in Table IV. The results we compare against
were obtained with the HFDHE2 potenual [32] which
predates the most recent, HFD-B(HE), potential [31)
used here. The two potentials possess practically identi-
cal functional forms but with different sets of parameters.
Perhaps most significant is the 1.3% increase in weil
depth. For the unit radius, ro=V'5/3R ., /N'", we em-
ploy a “second-order” approximation of exact expecta-
tion values (7] defined as

(A =2(W|Aldy) /{Widy) —(WIA[W) , (33)

with A =R Writing W=3,+8 shows that { A ), differs
from the exact value, (8, 4.85), by integrals involving
5. (This approximation is uscful when A does not com-
mute with the Hamiltenian. Methods for computing
{byi A 1dg) have been deseribed elsewhere [42,43].)
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The DMC energies we compute with the HFD-B(HE)
potential are significantly below the GFMC energies re-
sulting from the previous, HFDHE2, potential. The rela-
tive discrepancies tend to decrease with increasing cluster
size. For He, our energy is 13% lower than the GFMC
value while for He;, and He,, the differences are only
3.39% and 3.7%, respectively. However, as seen in Table
1V, for He, and He,, our DMC energies are in excellent
agreement with GFMC when the same potential
tHFDHE2)} is employed. In contrast, our HFDHE2? ener-
gy does not agree with GFMC for He,,,. The new poten-
tial fowers our He|,; DMC energy by 3.2%. Such sensi-
tivity to small changes in the potential has been observed
previously. Kalos et al., employing the HFDHE?2 poten-
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tial in their study of liquid ‘He, obtained a 6% decrease
in the energy for a 1.9% increase in the well depth [44).
Upon considering He,,, and comparing with the DMC
energies computed by Chin and Krotscheck [18] (CK),
employing a DMC algorithm different than our own {45],
discrepancies not atiributable to the potential arise. For
Heyo, we see in Table IV that CK's energy is 2% below
both our DMC and the GFMC values, when all three cal-
culations employ the same (HFDHE2) potential. For
He,,,, further disagreement occurs with the same poten-
tial as our and CK's energy lie roughly 2% and 3%, re-
spectively, below GFMC, This is not readily explained
by statistical error which, for both GFMC and DMC, is
an order of magnitude smaller than these differences. It
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FIG. 2. Local (circles) and growth (squares) energy estimates of the exact energy vs = for @ He,, (b} He,, and (o) Hee




tion has equilibrated. This was done for He,, reducing
the discrepancy between the two energy estimates from
0.99% 10 0.5%, thereby giving near statistical agreement.
For the unit radii ry, we first compare our DMC and
the GFMC values for He, and He,, computed using the
same potential {Table IV). While agreement is observed
for He,, a large difference of 8% is seen for He,. This
difference is well beyond our statistical error of 19%. (Ex-
cept for He,, statistical error in DMC values of 7 is well
under 1%, ie., 0.01-0.02 A.) Furthermore, this
disagreement with GFMC does not appear to be caused

. by error in our second-order estimate of ry. The error in

the second-order estimate of 7y, = {(8/R?%8), should be
less than the difference between the VMC and DMC
vilues, = (8'RIW), which is only 297, For the largest
cluster, ¥ =112, disagreement resurfaces when compar-
ing our value of ry against GFMC obtained with the

p (A

p (A7)

R (A)
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same potential. The difference between our VMC and
DMC values is only 0.6%, implying an error of much less
than 0.6% in the second-order estimate. Statistical error
in the second-order values, 0.003 A or less, cannot be the
cause of the 2% discrepancy between second-order DMC
and GFMC,

The unit radii computed by CK differ slightly from our
own, 1.5% below fci He,q and 0.8% above for Heyy;.
These differences are most likely caused by the differences
in the DMC solutions obtained, as reflected by the ener-
gies, rather than by the second-order approximation.
This is supported by the fact that CK also obtain very
guod agreement between their VMC and second-order
unit radii.

Finally, in comparing results using the HFD-B(HE)
potenual for Hey(;, we note that the difference between
VMC and DMC is only 0.6%. Therefore, in this case, we

“ang
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FIG. 3. VMC and sccond-order density profiles for (a) Hey, 7= 500 hartree !, (b) Hey, =500 hartree ™', (¢} Hesgo 172750 har-
troe Fand fds Heygs, 7 1000 hartree Y The dotted line is the VMC and the selid line is the sccor'\d-ordcr apprommation to the ex-
act {Eq. 133, The straght line 1 1d) represents the experimental iquid-helium density of 0.021 85 A 7%,
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also expect our computed value of r, to be accurate to
the number of figures shown. The change in rg on com-
paring the old- versus the new-potential values (2.396
versus 2.390 A) is only 0.3%, significantly less than the
1% difference we find for He,,. In all cases where com-
parison is made, r, is reduced when employing the poten-
tial with the deeper well, as expected. This effect de-
creases by an order of magnitude, 3.8% to 0.3%, in pass-
ing from three to 112 atoms and contrasts with the
change in the energy, 13.2% to 3.2%.

Of greater interest is the reliability of our reported esti-
mates of r, obtained with the most up-to-date potential.
We have found that the differences between VMC and
DMC reach a maximum of only 3% (He, and He,)

(a)

0.18

0.12 4

0.04

0.00 Y 7

—

Therefore we expect an accuracy of at least 3% in our cs-
timates of r,. However, the accuracy is probably much
better; for He; 0.5% agreement is obtained from wave
functions wnh noticeably different VMC values of rg,
5.50and 5.74 A, i. e., above and below the estimated exact
value.

Figures 3(a)-~3(c) resent VMC and second-order
(7=500~1000 hartree ™'} {see Eq. (3%)] density profiles
for He;, He,,, and Hey. The bin sizes are very small,
0.026 A for He, and 0.019 A for He;, and He,, This al-
lows for very fine detail in p, and although there is
enhanced statistical error near the origin, it remains
below 10% down to about 0.2~1 A. We see for these
clusters, as well as for the other clusters not shown, that

= 1o

0.12 4

0.04

0.124

<L 5.08-
Q

(c)

[ ]
r {A)
FIG. 4. VMC and second-order probability density functions of particle separation for (a) He,, 7= 500 hartree ™', (b) Heyy, =500
hartree ™', and (c) Heyq, 7==750 hartree ~'. The dotted linc is the VMC and the solid line is the second-order approximation to the ex-

act.
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the qualitative behavior is unchanged between the VMC
and second-order profiles. The sharp increase in p near
the cluster center for He;, which we first observed at the
VMC level of accuracy and which arises from a
significant contribution of near-collinear configurations
to the density (28], remains in DMC. For 14- and 10-
atom clusters, very little structure is evident. The He,,
density rises slightly near the origin while that of He,,
reaches a constant value at about 2.5 A and then fluctu-
ates about 0.019 A ~% This is in good agreement with
GFMC [10] and the oscillations seen by CK are not ob-
served here.

¥YMC and second-order (=500 hartree™") density
profiles for He,); are computed with a bin size of 0.13 A
and are presented in Fig. 3(d). The experimental liquid-
helium density of 0.02185 A is shown for comparison
as a solid line. Statistical error is 10% for the points
nearest the origin, then decreases rapidly at greater dis-
tances, and finally begins to rise near the cluster edge,
reaching about 109 at 11 A. Unlike any of the smalier
clusters, structure in the density profile now appears to be
present. However, further analysis indicates that the
fluctuations at R <§ A are statistical. Only in a very
small gegion, 2.10-2.35 A, is statistical error (4.59%)
significantly below the deviation from the liquid density
(6% ~10%). Thus, out to 4.8 A, the density is very nearly
constant to within reasonable statistical error (under 5%
for R >1.5 A). However, a shoulder is present at 6.2 A
where statistical error is very small, 1.5%. Further out,
another shoulder at 9.6 A is barely discernible. This is in
good agreement with CK (bin size is 0.24 A), who also
observe shoulders in these regions. We have also com-
puted a second-order density profile for He,, employing
the HFDHE?2 potential. The results are very similar to

. those we obtained above.

In summary, our second-order densities for N = 14, 20,
and 112 rise up to their central values at some distance
from the origin. The value of this central density and the
distance to which it extends increases with cluster size.
The He,, central density is clearly below that of liquid
helium and p begins to drop off at about 1 A. That of
He,y, is in good agreement with the liquid-He density
and extends out to about 4.5 A while the He,, case is in-
termediate between He,, and He,,;. These conclusions
differ from those of CK, who obtain oscillations in their
density profiles as the origin is approached for both He,q
and He,j,. We see no such oscillations for He,, while
those of He,,, are mostly remaved upon considering the
small (296-5%) statistical error. However, we do see
shoulders in the He,,, density at larger R.

For all clusters, the quantitative differences between
the YMC and second-order density profiles are not large.
The small changes we observe in passing from VMC to
second order lead us 1o believe our estimate of exact den-
sity profiles by second-order profiles is well justified (sce
discussion concerning the unit radii). Comparison
against density profiles computed by VMC {26] or
GFMC [10} shows little variation in the central density,
despite the different potentials and wave functions em-
ployed. A mujor difference does arise for He, which has
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FIG.S. VMC( P and DMC plots of p(r! at short range
for He,g at 7=2000(—-—-), 1000 (= — —), and 500 (- - - har-
tree .

a sharp increase in p at about 2 A [28] which is not evi-
dent in GFMC [10].

In order to gain further insight into cluster structure
and its changes as accuracy is improved from VMC to
the second-order approximation, we compute particle
separation probability density functions p{r). Figures
4(a)-4(c) present VMC and second-order plots of p () for
He,, He,,, and Hey,. For He,_,, qualitative distinctions
are not discernible between the VMC and second-order
density functions, just as for He,. For those clusters
which show structure in p with VMC, He,, and He,,,
qualitative differences between VMC and second-order
densities are now apparent. We see that the implied
shoulder in p found by VMC becomes much more pro-
nounced as we progress to the second-order level of accu-
racy. It would be interesting to see if this onset of “shell™
structure is progressive or abrupt as cluster size is in-
creased from 7 to 14 atoms. We point out once more that
both p and p are essentially independent of the time step
employed (for the range of r we have considered). The
exception of course is for p at small 7. An example of this
is given in Fig. 5 which presents the VMC and scveral
second-order estimates in the region p{(r)/py,, <Sx10*
for He;,. Note that by 7= 1000 hartree "' convergence is
quite good, as is the case for the energy. (See Table 1V
and associated discussion.)

C. New two-body form and T,

We have employed our new two-body form, 1 (see Eq.
(24), in unguided-walk computations on Hey, N =3, 7,
and 20. For each cluster the same value of A is employed
for 1, and 1). We find that 1, yiclds the best energy for
Hey, 5% below that of ry. However, for the larger clus-
ters, smalt but significant {i.e., well beyond statistical er-
ror) reductions are obtained with ¢4, i.e., 27 for He, and
192 for Hey,. For He,, the most diffuse cluster, the re-
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duced flexibility of ¢, in describing Jong-range behavior is
significant. In addition to yielding a poorer energy, !;
also gives an unrealistically low unit radius. For the
more tightly bound clusters, for which short-range in-
teractions are more important, an improvement with ¢ is
obtained. Also, 15 yields a 30% reduction in statistical
error in the energy, even for He,, presumably by better
describing the short-range behavior where the local ener-
gy possesses its greatest fluctuations. Consequently, we
expect that further accuracy may be obtainable by in-
creasing the fong-range flexibility of ¢3.

In addition to seeking better two-body wave functions,
accuracy can also be increased by including three-body
‘and higher) effects, as discussed in Sec. IV A. We treat
here the larger clusters, whose wave functions should
possess the greatest need for three-body correlations. For
He, and He,,, the initial parameters in T, (¢, here} are
obtained from a conjugate-gradient optimization. For
Hey,, initial parameters are those for He.q and are then
varied by hand. As seen in Table 1. optimization resulted
from changing only the long-range parameters. Upon ad-
dition of T, parameters are varied by hand in a set of
short Monte Carlo runs. At this stage, only variation of
the T, parameters and of the long-range parameters in
T, was found to be fruitful. Despite the approximate lev-
el of optimization, a significant reduction in the energy is
observed in all cases. The optimized T; term yielded
about a 6% improvement in the energy for He,, and
He,,. As expected, the He,,, energy is reduced by a
greater amount (99%) than for the smaller clusters. The
final result is that the VMC energies of the N =14, 20,
and 112 clusters are quite good; 96.1%% of the computed
exact value is obtained for He,, and this decreases only
by 1.5%% upon going to Hey ;.

Wave-function quality is also improved in other
respects. The data listed in the middie of Table V show
that the relative statistical error in the energy decreases in
every case. The increased computation when 77y is in the
wave function ranges from 82% for He,, to 88% for
He,),. Allowing for this, the efficiency ithe inverse prod-
uct of the variance and the computation time) in comput-
ing the energy is increased by a factor of 2 for He,, and
He,;;. Interestingly, however, efficiency is decreased by
19% for He,. This contrast with the He,, and He,y,
cases may arise from incomplete thand) parameter optim-
izztion or from use of the energy, rather than variance,
minimization criterion. [t could also be magnified by the
generally large uncertainties in computed statistical er-
ror.

TABLE V. Accuracies and precisions for two- and three-
bady wave functions.

Accuracy in E/N  olE/NY/E/N)  Accuracy in r,
(7a) %)

N T, T.+T, T, T.+7 T, Ty+T,

14 90.5 %6.1 1.00 0.52 32 1.2
20 895 95.3 0.93 0.76 4.7 28 .
112 857 4.6 0.23 011 49 1.2

In the last two columns of Table V, percent differences
between VMC and second-order unit radii r, are listed
for the T; and T, + T, wave functions of He,,, Hey,, and
He, ;. We expect these differences to be good estimates
of the deviation from exact values. giver our confidence
in the accuracy of our second-order estimates of rg, see
Sec. V B. In each case agreement with second-order esu-
mates of r, is noticeably enhanced upon addition of the
three-body correlation functions. The result is that very
good agreement { = 19%) with estimated exact unit radii is
obtained at the VMC level of theory with the three-body
wave functions. The exception is again He, with a VMC
value of r; differing by 3% from the second-order esti-
mate.

VL. CONCLUSIONS

We have studied wave-function forms and Monte Car-
lo integration techniques for H.He and Hey,
N =3-20,112. As a very diffuse system with a highly
repulsive potennal, H.He presented special difficulties for
the VMC computations. While the YMC approaches
used here are without bias, errors in computed quantities
can arise for a finite ivet large) amount of sampling if
efficiency is sufficiently poor. Therefore only for very
large attempted displacement sizes A is good accuracy
obtained in the unguided walk. Furthermore, these
values of A correspond to acceptance ratios of 0.35-0.40,
well below the often assumed optimum of 0.5.

Despite the increased dimensionality in comparison to
H.He (3.V versus 3). the less diffuse helium clusters are
much more amenable to Monte Carlo integration. For
the unguided walk, consistency in computed expectation
values is obtained over a wide range of A. However, we
do find that staustical error in both (r) and in R, is
noticeably lower at large A. Once again, these values of
A corresponded to the largest average displacement of an
attempted move, (AR ), rather than to an acceptance ra-
tio of 0.5.

Directly including importance sampling by using a
walk guided by F=V W:* yielded inaccurate H,He ener-
gies. Although most of configuration space was well sam-
pled. as indicated by accurate values of {r} and r .
large values of the force F caused trapping at small r.
The resulting inaccuracy in the density gave rise to
significant errors in the computed energy because, al-
though the wave function is small, the large magnitude of
the local energy at small separations requires accurate
sampling in this region. However, trapping is readily cir-
cumvented by employing a better behaved force. Two
such approaches, which stull dircct moves teward a fecal
maximum in (W[4 were applied to H.He and He,,,.
Compared to an unguided walk, efliciency was increased
slightly for H,He but not for Hey,.

As scen for H.He, errors in the energy arise in a walk
guided by F =9 In,WI° due to poor convergence at smail
r iwhich is practically mfinitely long unless 7 15 vory
small In hght of the desire to compte exact energies by
DMC, however, it was of interest to determine the
domain of rat which high accuracy could be obtained by
this euided walk. We tind that, though initially qunte
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poor at large 7, accurate energies are obtained at smaller
values. “Convergence” in the guided-walk energies is
directly correlated, as expected, with improving accuracy
in p{r) at small r as the time step is reduced. This was
also the case in the DMC calculations, demonstrating
that accuracy in the (DMC or YMCQC) energy is critically
dependent on the sampling at small r. In light of this dis-
cussion, we point out that a DMC approach similar to
that employed here but which bounds the magnitude of F
near ¥ =0 has been described recently [41] and may be of
use for the systems studied here.

Although small time steps are required, well-converged
DMC  energies have been obtained for Hey,
N =3-5,7,14,20,112. The steps taken to ascertain con-
vergence, variation of the time step and block size, com-
parison of the local and growth energy cstimates, and
convergence of p at small r, all support the reliability of
the computed energies. As we have already found with
VMC for He, and He, {28], energies well below those of
GFMC [10,11] are obtained. For He; and He,,, these
discrepancies are clearly caused by the use of different
potentials. It is reasonable to_conclude that this is also
the case for all the 3-20 atom clusters studied here. The
agreemend we obtain with GFMC for an identical poten-
tial leads us to believe in the reliability of our DMC ap-
proach and the exactness of our computed energies with
the most up-to-date potential. However, energies below
GFMC (but with the same potential) have been obtained
by CK using a modified DMC approach for He,, V =20,
40, 70, and 112 [18}, and by us for N=112. While the
discrepancy between DMC and GFMC is smaller in our
calculation than in CK’s, our energy is still significantly
lower than the GFMC result. Further disagreement
occurs when comparing our DMC energies with those of
CK. For both ¥ =20 and 112, we compute slightly
higher energies.

We see a sizable lowering of the energy below that ob-
tained from the earlier, HFDHE2, potential when em-
ploying the most recent, HFD-B(HE), He-He interaction
potential, 139 for three atoms and 3.2% for 112. This
reflects primarily the lower well depth of the newer po-
tential. Decreases in the unit radius are also observed,

3.8% for He, 10 0.3% for He|;;. Finally, as do CK, we
see fluctuations in the He,), density profile which have
not previously been observed at either the VMC or
GFMC level of theory. However, our fluctuations at
small R are beneath statistica} error as differences from
the liquid-helium density are generally less than one stan-
dard deviation in this region, R <5 A.

In an effort to improve accuracy at the two-body level,
we have studied an entirely new form describing these
effects. This form gives added emphasis at small » and
contains a factor which mimics the potential in this
domain. Optimized wave functions for He, and Hey,
gave slightly improved energies, despite the reduced flex:-
bility at large r. For the more diffuse He,, the older form
gave a lower energy. In addition. statistical error in the
energy was reduced by about a third. It is expected that
a better description of the long-range behavior will yield
further improvements.

In order to investigate the accuracy obtainable by
current VMC approaches, a three-body factor was added
to the 14-, 20-, and 112-atom two-body wave functions.
Substantial improvement in the energy is obtained. and
for He,, and He),, an increased efficiency in compuung
this quantity also results, despite the greater complexity
of the wave function. More sophisticated optimization
algorithms for the parameters in T, may yield a further
lowering of the VMC energy. It also remains to be seen
whether 3, combined with T, will yield better agree-
ment with exact energies, and whether the use of such
complex wave functions will be advantageous for DMC.
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