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Introduction

Our study of helium clusters was motivated by the desire to understand the scaling of the unusual
properties of bulk 41He, a quantum liquid, in finite size systems as one goes from the macroscopic
regime to the regime of molecular dimensions. This is fully in the spirit of general cluster research,
namely to develop our understanding of how the transition from molecular to bulk systems (or vice
versa) is reflected in the internal structure and dynamics of finite size aggregates. The unique feature
of helium is its dominant quantum behavior, resulting from a low mass and weak interatomic binding
energy. Clusters of helium are therefore very weakly bound van der Waals species, whose properties
were expected to be dominated by zero point delocAlizhtioa effects. -During this grant period, .c

devoted our attention exclusively to clusters of 4He, which are bose systems. These are more strongly
bound than the fermionic species 3HeN,, and are also easier and cheaper to study experimentally.

Furthermore, analogy with the bulk behavior suggests that any superfluid effects if present will occur
at considerably higher and therefore experimentally more readily accessible temperatures for the 4 He
species. In addition to the helium clusters, we also applied our Monte Carlo techniques to clusters of
molecular hydrogen, which for J=O are also Bose clusters. These are more strongly bound than
clusters of helium, yet are still very delocalized by chemical standards and offer an intriguing
possibility of a new superflul.'.

Goals of original research plan

1) To understand the size-dependent scaling of superfluid behavior or analogous collective effects in
clusters of 4HeN. As a preliminary step this involved analysis of Bose-Einstein condensation in a
weakly interacting bose cluster.

2) Despite much phenomenological progress in the understanding of superfluidity in bulk helium II. a
molecular description for the characteristic excitations of bulk.hqlium found only in the superfluid state
was still missing. By developing a truly microscopic theory of collective excitations in these quantum
clusters involving accurate ground and excited state wavefunction information, we aimed to achieve
new insight into the atomic dynamics underlying the superfluid state in bulk He II by identifying and
analyzing the behavior in finite sized clusters.

3) Determination of feasible experimental probes of the cluster dynamics, in particular of charged
species or of non-dissociative molecular probes. This goal is further related to the more long term aim
of employing the unusual physical properties of these quantum clusters to modify and control the
course of chemical reactions of embedded/attached species at ultra-low temperatures.

4) Development of Monte Carlo methods to provide accurate ground and excited state wavefunctions

for the 4HeN clusters. This original aim was extended to deal also with the more strongly bound (H,),,
species, which have more solid-like character.
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Goals achieved during grant eriod

Our central achievements atkained during the grant period are the following:

1) Establishment of a new quantum liquid drop theory for the collective excitations of these Bose
clusters, (papers 1, 2, 4). Together with the accurate ground state wavefunctions described below,
this led to calculations of the compressional excitation spectrum for L = 0 (spherically symmetric) and
L = I (dipole) symmetry, for a range of cluster sizes. The size scaling of the excitation spectrum
showed the onset of a roton minimum at sizes N - 100, leading to the important physical conclusion
that cluster of size N > 100, corresponding to diameters R Ž_ 10 A can support superfluid flow.

2) Development of accurate Monte Carlo methods for ground state wavefunctions of general quantum
clusters (papers 5, 7, 8, 11). These consisted of both variational and (exact) diffusion Monte Carlo
techniques. While the basic 'unguided' Metropolis sampling of variational cluster wavefunctions had
been previously employed by the nuclear physý:s community, we improved the accuracy and sampling
techniques considerably, by developing new variational wavefunction forms and using guiding
functions to optimize sampling at small interparticle separations. This resulted in an unprecedented
precision of - 5% in density profiles in the interior of the cluster, and led to an unexpected discovery
of a large collinear contribution to the structure of the He3 trimer (paper 7). Application of diffusion

Monte Carlo to these weakly bound atomic systems is new, and was performed selectively to calibrate
the variational results (paper 8). The diffusion Monte Carlo algorithm was modified to employ a
constant ensemble size (paper 11), and also to allow modifications of the quantum force in regions of
small inter-particle dis, ence (paper 8). High accuracy for relatively large cluster sizes was achieved as
a result of refining the original diffusion Monte Carlo algorithm (papers 8, 11). These exact
calculations show structure in both density profiles and pair distribution functions which is compatible
with some very weak hard-core packing effects. No such structure is observed at the variational level.

3) Development of a quantum theory for atomic and molecular impurities in helium clusters (papers 7.
I1). This has so far been restricted to ground state impurities, and consists of a variational approach to
the new cluster containing the impurity, in which the latter interacts pairwise with the helium atoms.
The variational wavefunction is extended to include pairwise correlation terms between the impurity
and the helium.

This approach was applied first to a H2 impurity attached to HeN, N = 2 - 19, and structural
analysis of the resulting mixed cluster ground state made (paper 7). The lighter impurity H2 is
extensively delocalized throughout the cluster, with a peak in the vicinity of the diffuse surface region.
Quantitative analysis showed that the H2 is however still largely in the interior of the cluster for this
range of sizes. The He13 species is unique in the extent to which it expels the H2, suggesting an
unusual structural stability which may be associated with an icosahedral unit. This is particularly
significant in light of the absence of any energetic magic numbers for neutral helium clusters.
Subsequent unpublished calculations for a D2 impurity show quite a different situation, with the
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heavier D, species considerably more localized at the cluster center, and with no peak in or near the
surface region. The helium distribution is complementary to the D, distribution, showing a peak away
from the cluster center. However for the trimer species D2He2 the central peak corresponding to near
collinear configurations still persists.

Both variational and diffusion Monte Carlo approaches were then applied to the analysis of SF6 in
HeN (paper 11). This is a much more complex system, due to both a greater binding of the impurity
with He, and also to the marked anisotropy of the He-SF 6 interaction potential. New trial
wavefunctions were developed which faithfully incorporated the main features of the potential
anisotropy. Calculations were made for clusters SF 6 with N varying from 1 (the 'dimer') to N=499.
The ground state structures of these systems showed pronounced localization of :hc h-e!ium anund a
centrally located SF 6 impurity. This localization occurs in sequential shells, with the first, nearest
neighbor shell containing about 22-23 atoms at a density comparable to that of bulk solid He at -100
atmospheres. The shells further away from the impurity contain successively larger numbers of He
atoms, and for sizes up to N=499 are still at densities lower than that of bulk liquid helium. However
it is interesting that the exchange energy for substitution of one He by the impurity (paper 7) appears
nevertheless to have saturated by N= 111, despite that fact that the structure has not converged to what
we expect for an SF 6 impurity in bulk helium. For SF 6 we also analyzed the spectral shifts of the u.
vibrational absorption lines due to the instantaneous dipole-induced dipole (IDID) interactions with the
surrounding 'solvent' helium species. This was motivated by recent experimental measurements of
such shifts for SF 6 in HeN (Goyal, S., Schutt, D. L., and Scoles G., Phys. Rev. Lett. 69, 933
(1992)) and in (H2)N, (Goyal, S., Schutt, D. L., Scoles G., and Robinson, G. N., Chem. Phys. Lett.
196, 123 (1992). We find a red-shifted absorption, which increases with size to a value of - 0.93
cm' for N=l 11, with a half-width of- 0.25 cm-1. This is somewhat smaller than the experimental
value (- 1.5 cm-1) which also differs from our calculation by being split into two components. The
most likely reason for this difference is that in the experiment the clusters are not in the ground state,
but gain a considerable amount of angular momentum from pick-up of the impurity. Large amounts of
angular momentum cause considerable centrifugal distortions, as we summarize in 4) below, and may
cause the SF 6 to be located in an asymmetric position which can give rise to a line splitting, e.g., at a
cluster surface. This possibility can be investigated with Monte Carlo techniques based on trial
wavefunctions combining the features of these impurity functions, and of the excited rotational states
described below. Such studies are planned for future work.

4) Development of quantum theoretical approaches to excited states for the collective modes (paper',
2, 5, 10). This began with a variational approach to excited compressional states which was based on
the Feynman operator approach (papers 2, 5). The first four excited compressional states for L = 0
were calculated variationally for N = 240, maintaining orthogonality to lower states by a generalized
Gramm-Schmidt procedure. These results showed a significant lowering of the compressional
energies relative to both classical estimates based on the conventional macroscopic liquid drop model.
and also to our new quantum liquid drop model. We have recently extended the variational approach
to excited states of overall rotation of the cluster, employing a diff,,6 rit approach from the Feynman
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excitation operator (paper 10). New trial functions which are eigenfunctions of total angular
momentum and which are physically motivated to have rotational rather than vibrational character,
were developed, and employed in both variational and fixed node diffusion Monte Carlo studies of
He 7 and of its more strongly bound counterpart (H2)7. The rotational energies are considerably lower
than the compressional energies studied previously (papers 2, 5). The rotationally excited states for
He 7 were found to be metastable with respect to dissociation for L > 2, while (H2)7 is metastable only
for L > 6. Both species showed very large oblate centrifugal distortion at low L values, which
developed to diffuse toroidal distributions at large L. The distribution of the cluster surface clearly
changes, which has possible consequences on the distribution and spectral shifts of impurities such as
SF 6 (see 3) above).

5) The ground and excited state Monte Carlo techniques developed for helium clusters have also been
applied to clusters of H2 (J = 0), which is also a Bose system (papers 6, 10, 12). We introduced an

additional element of employing 'shadow wavefunctions' for fictitious particles representing lattice
sites here in order to allow for more rigid structures. The primary goal of this extension of our helium
studies is to determine whether a liquid-like ground state exists for (H2)N for N small, and if so,
whether these clusters display similar superfluid behavior to HeN. Our preliminary results (paper 6)
showed that the smallest clusters (N < 7) are extensively delocalized. More recent results based on a
more accurate trial wavefunction and on subsequent diffusion Monte Carlo calculations (paper 12)
show that clusters up to N = 33 still show strong delocalization, although weak features characteristic
of solid like close packed structures are now also apparent. We have analysed the structure of both
these and the HeN clusters in the body fixed frame by computing principal moments of inertia, thereby
avoiding the orientational averaging implicit in usual Monte Carlo sampling for finite systems.

Publications resulting from grant

I. M.V. Rama Krishna and K. B. Whaley, "Collective Excitations of Helium Clusters,"
Phys. Rev. Lett. 54, 1126 (1990).

2. M.V. Rama Krishna and K.B. Whaley, "Microscopic Studies of Collective Spectra
of Quantum Liquid Clusters" J. Chem. Phys. 93 746 (1990).

3. M.V. Rama Krishna and K. B. Whaley, "Superfluidity in Helium Clusters" in "On
Clusters and Clustering:from Atoms to Fractals", ed. P. J. Reynolds, (Elsevier,
Amsterdam, 1993).

4. M.V. Rama Krishna and K.B. Whaley, "Structure and Excitations of Quantum
Liquid Clusters" invited article, Modem Physics Letters B 14, 895 (1990).

5. M.V. Rama Krishna and K.B. Whaley, "Wavefunctions of Helium Clusters", J.
Chem. Phys. 93, 6738 (1990).

6. M.V. Rama Krishna and K. B. Whaley, "The Structure of Small Molecular
Hydrogen Clusters", Z. Phys. D., 20, 223 (1991).

7. R.N. Barnett and K.B. Whaley, "Monte Carlo Study of Impurities in Quantum
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Clusters: H2
4HeN, N=2-19" J. Chem Phys., 96, 2953, (1992).

8. R.N. Barnett and K.B. Whaley, "Variational and Diffusion Monte Carlo for Quantum
Clusters", Phys. Rev. A., 47, 4082, (1993).

9. K. B. Whaley, "Structure and Dynamics of Quantum Clusters" (invited review for
Intemation Journal of Physical Chemistry, in press 1993).

10. M. McMahon, R. N. Barnett and K. B. Whaley, " Rotational Excitations of Quantum
Liquid Clusters", (J. Chem. Phys., submitted May 1993).

I1. R. N. Barnett and K. B. Whaley, "Molecules in Helium Clusters: SF 6HeN", (J.
Chem. Phys., in preparation).

12. M. McMahon and K. B. Whaley, "Monte Carlo Studies of Molecular Hydrogen
Clusters: (H2)N, N=7, 13, and 33" (Chem. Phys. Lett., in preparation).
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Superfluidity in Helium Clusters

M.V. Rama Krishna* t and K.B. Whaley*

20.1 Introduction

Theoretical and experimental investigations of clusters has been an active and growing area
of research for the past several years. Yet, much of our current understanding of the structure,
dynamics, and energetics of clusters is based on essentially "classical" clusters. By this we
mean that although quantum mechanics is important in the description of their electronic
structure, it does not play a role in the statistical behavior of the atoms (or rather, of the nuclei)
themselves. However, when the atoms in the cluster are light, such as H or He, quantum
mechanics plays a significantly different role. It is thus important to study quantum clusters
in order to understand what role quantum statistical effects may play in clusters, and how the
uniquely quantum phenomena such as superconductivity and superfluidity are modified in
finite systems. With this in mind we will discuss clusters of 'He, which obey Bose statistics.
The goals are threefold: 1) to understand how superfluidity manifests itself in helium clusters,
2) to determine the energy level spectra of these clusters, and 3) to establish experimental
probes of these clusters.

20.2 Transition Temperatures

Bulk liquid 'He is known to undergo a phase transition from a normal to a superfluid state
at about 2.17 K. This phase transition is characterized by a nearly logarithmic divergence of
the heat capacity, and by the fact that the superfluid phase can flow through fine capillaries
with zero viscosity.11 1 Quantum statistics is the key to this effect. For example, liquid 3He,
which is made of fermions, exhibits superfluid behavior only at a much lower temperature of
about I x 10-3 K. This difference is not simply a mass effect, but results from the need of
the 3He nuclei to pair to form effective Bose particles. Other symmetry related properties are
significant as well. For example, if one models liquid ' He as a non-interacting Bose gas one
finds that this model exhibits a cusp in the heat capacity curve at about the same temperature
where the experimental heat capacity curve exhibits divergency.121

Given these observations, and their relation to the quantum behavior of the particles mak-
ing up liquid 'He, we wish to understand how the phase transition is modified in "'HeN clusters
due to finite-size effects. Although there is no longer a true phase transition in clusters, it is
reasonable to use the same ideas that have been previously used to understand the phase tran-

"Department of Chemistry. University of California, Berkeley, CA 94720.

I Present address: Box 955 Havemeyer Hall, Columbia University. New York, NY 10027-6948.
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sition in bulk liquid 4He. Consequently, we begin by discussing the "transition temperatures"
and the condensate fractions tor clusters.

The Bose-Einstein (BE) condensation temperature of a non-interacting Bose gas of density
p is given by13 i

T13 E = 4

= 4.015 x 10 ()-2/ 3 K. (20.1)

For liquid helium, Eq. (20.1) gives 'll -. = 3.13 K, which is 0.96 K larger than the experimental
value.1l, 21 We used Eq. (20.1) to calculate 1'uj' of helium clusters, with the modification that
we subtract 0.96 K from the computed values so that lor sufficiently large clusters we recover
the experimental bulk value of TA correctly. These corrected T'P t; are given in Table 20. 1. The
densities of the clusters are determined using p = 3!(4,-rr'), where the ro are the calculated
unit radii.14 1

One can use Ginzburg-Landau-Pitaevskii (GLP) theory to estimate the transition temper-
atures of the interacting system.1 -5 1 This is a phenomenological theory in which the free en-
ergy density is expanded ini terms of the order parameter, which here is an effective complex
wavefunction of the fluid. The expansion is valid only when the order parameter is small
and the coherence length, which is the length scale over which the order parameter changes,
is large. Consequently, this theory is applicable only when the temperature T of the fluid is
close to 77. In the original mean-field GLP theory, the expansion coefficients were functions
of integer powers of (TA - T).151 Such a mean-field approach neglects fluctuations, which are
very important close to TA. The modem version of this theory due to Mamaladze employs a
modified free energy density that accounts for the fluctuations of the order parameter near T\
by taking the temperature dependence of the expansion coefficients from experiments. [6 71
The successful applications of this modified GLP theory to the prediction of transition tem-
peratures of helium films and pores 17' 81 gives us confidence regarding its utility in the case
of clusters. Clearly this theory can not predict critical exponents as these are put in via the
expansion coefficients. However, these exponents can also be obtained from first principles
starting from the GLP theory and using the renormalization group theory of Wilson. For our
purposes here this is not necessary.

When applied to a spherical cluster, the modified GLP theory predicts the transition tem-
perature TA to be given by171

T• = Z• 25.3
TA =T 253j K, (20.2)

where R is the radius of the cluster in \, TA is the transition temperature of bulk liquid helium,
and T, is that of the cluster. Of course, although the transition temperature is a sharply defined
quantity in macroscopic systems, in clusters we expect that there is rather a temperature range
over which the transition to the superfluid state takes place. The temperatures predicted above
essentially give the location of the peak values of the rounded heat capacity curves of the
clusters.

To calculate the condensate fraction in these clusters at T = 0 K, let us use the model of
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Table 20.1: Transition temperatures and zero-temperature condensate fraction in helium clus-
ters. (R is given in X , T•E and T, in Kelvin.)

N R UP,?E T7, %C

20 7.4 1.1 0.9 32.7
40 8.8 1.4 1.2 27.1
70 10.2 1.6 1.4 22.6

112 11.8 1.6 1.5 21.2

240 14.7 1.8 1.7 17.1
728 20.9 1.9 1.9 15.0

10000 47.8 2.1 2.1 12.2
Liq. He -,c 2.17 2.17 9.2

an imperfect Bose gas for the clusters. This is given byv191

. 8 3"' 1 (20.3)N-" 3= 1 - (I /)

S1 - 6.148p'/2 . (20.4)

where a = 2.556 X is the experimental scattering length of the helium atoms. The percent
condensation %C is simply NO/N x 100. These results are given in Table 20.1.

We see from Table 20.1 that the theoretical estimates of TBE and TA agree remarkably
well even for a cluster as small as twenty atoms, and that the bulk transition temperature is
depressed by only about 0.5 K in He 240. We also find that the condensate fraction approaches
that of the bulk fluid rather rapidly. Note that the condensate fraction is decreasing as TA is
increasing. This indicates that the strong interactions between particles in the denser (larger)
clusters are depleting the zero temperature condensate, while increasing the transition tem-
peratures.

20.3 Collective Excitations

Another quantity related to superfluidity is the excitation spectrum.1 21 For a microscopic un-
derstanding of superfluidity, it is important to understand how the collective excitation spec-
tra of clusters change as a function of cluster size, and how they approach that of the bulk
fluid. With this goal in mind, consider helium clusters as quantum liquid drops of radius R
and uniform interior density p0. The density wave excitations of the droplet are characterized
by the quantum numbers (1. tit) and n. The momenta ki, of these excitations are given by the
boundary condition j,(kj,,R) = 0. Within this liquid drop model a harmonic analysis of the
collective vibrations of the cluster gives1 10 , 111

r 2n

Cit - ik,, (20.5)
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Figure 20.1: Excitation spectra of! = 0 and 1 modes obtained using Eq. (20.5) for N = 20
(circle), 70 (square), and 240 (triangle) clusters. The tilled symbols give I = 0 spectra and the
open ones give I = I spectra. The solid line (-) is the Bijl-Feynman excitation spectrum
of bulk He II.

where .S' is the structure function of the cluster, defined as the Fourier Bessel transform of
the density-fluctuation-density-fluctuation correlation function, and vz,, is the normalization
factor for the spherical Bessel functions. Complete details of the theory and calculations are
given in Refs. 10, 11.

Equation (20.5) is the finite cluster analog of the BijI-Feynman excitation spectrum for
bulk liquid helium.I11 It represents the compressional vibrational excitation energies of the
cluster. and in the bulk limit corresponds to the phonon spectrum of liquid He. To get a picture
of these spectra one needs to compute the structure functions 51. Monte Carlo random walk
simulations for I = 0 and 1, and N = 20, 70, and 240 were performed. The spectra, together
with the BijI-Feynman excitation spectrum of liquid helium, are shown in Fig. 20.1. We see
that the spectrum of the clusters evolves toward that of the bulk fluid rather rapidly. The
pronounced dip at k - 2 V' in the liquid helium spectrum is known as the roton region.
The He 70 cluster already shows such a roton structure at about 2 A-' and the spectrum of
He 240 strongly resembles that of liquid helium. The validity of these results are confirmed
by a more general theory based on BijI-Feynman wavefunctions for the excited states of the
clusters.,111

Since the excited states of a many-body system play an important role in both the ther-
modynamics and dynamics of the system, the strong resemblance of the excitation spectra of
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HeN clustei , .o the bulk fluid is indicative that these clusters will also exhibit similar ther-
mody,.an ac and dynamic behavior. It is reasonable therefore to expect helium clusters of
about 100 atoms to undergo a normal <z=' superfluid transition strongly resembling that of
liquid helium. There are additional arguments for making this connection between the excita-
tion spectrum and superfluidity. For example, Bogoliubov first showed that the phonon-roton
spectrum of liquid helium is a result of both interactions between Bose particles and the pres-
ence of the Bose-Einstein condensate. 112 1 (See also Table 20.1 and the associated remarks
made in Sec. 20.2.) For the simple model of a weakly interacting Bose gas he obtained

E 2

(0 = i + - (20,6)

where U = 4ur/i/m is the interaction energy assumed to be constant and repulsive, and k is
the linear momentum associated with 'he excitation. This yields a linear part (phonon branch)
at small momenta and a quadratic piece (free-particle branch) at higher momenta, and thus
reproduces the inain features of the phonon-roton slxpctrum of liquid helium. Furthermore.
if either C or 1, = V/V is very small, then the spectrum will be completely lrec-parucle
like. Such a system will not exhibit superfluidity since the minimum velocity needed to excite
the fluid, known as the Landau critical velocity, vanishes in this case. 121 Other liquids, such
as water, which exhibit collective excitations1 I31 at large k values (A- > I A-1) also may
not exhibit superfluidity because these liquids are stable only at high temperatures. In this
regime the thermal excitations dissipate the energy of the moving particles. Although the
model of a weakly interacting Bose gas is not quantitatively appropriate for liquid helium, the
essential relationship between Bose-Einstein condensation and the phonon-roton spectrum is
still present. Hence, the onset of a phonon-roton type spectrum for a Bose fluid is a signature
of a large Bose-Einstein condensate and of superfluidity. Based on this argument the results
presented in Fig. 20.1 give evidence that clusters of about 70 atoms should be superiluid at
sufficiently low temperatures.

Recently, path-integral Monte Carlo simulations have been used to compute heat capaci-
ties and superfluid densities of He 6 4 and He1 28 clusters as a function of temperature.11 41 The
peaks of the computed heat capacity curves yield "transition temperatures" of 1.6 and 1.8 K.
respectively, in very good agreement with those reported in Table 20.1 for similar sized clus-
ters. The path-integral simulations also indicate that the width of the heat capacity maximum
is increasing while 'TA is decreasing, with decreasing cluster size. Consequently, we antici-
pate the phase transition to be completely washed out in clusters of about 20 atoms or less. It
will be interesting to pursue the study of superfluid densities as a function of temperature for
a series of small clusters, to see if some of these clusters are indeed non-superfluid even at 0
K.

20.4 Detecting Superfluidity

Two research groups have been making pioneering efforts to detect superfluidity in free helium
clusters, but the experimental evidence so far is inconclusive. 115.161 This stems primarily
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Figure 20.2: New electron-He pscudopotential of Ref. 18 (-) is compared with the best
previous potential, Ref. 19 ( -.-.- ).

from the difficulty in probing these extremely weakly bound van der Waals clusters, which
are easily dissociated and whose internal excitations have until now been poorly understood.
Heat capacity measurements 1t 71 on bubbles of helium confined in copper foil have shown
presence of the superfluid state in bubbles of radius 40-60 N, corresponding to N > l04.
These experiments provide direct evidence for the depression of T, and rounding of the heat
capacity peak in these finite systems, although quantitative analysis of T\ is complicated by
the presence of the confining copper matrix.

The possibility of binding an electron to the surface of helium clusters was considered re-
cendy, in order to use it as a spectroscopic probe of the cluster. A simple but accurate electron-
He interaction potential (pseudopotential) capable of reproducing s- and p-wave scattering
phase shifts accurately over a range of energies is needed as a start. Such a pseudopotential
has only recently been developed.11 81 In Fig. 20.2, it is compared with the commonly used
prior pseudopotential for this system. 11 91 The well depth of about 300 K is almost ter almes
deeper than the previous pseudopotential. The phase shifts and scattering cross sections cal-
culated using this new pseudopotentidal are given in Table 20.2. These reproduce s- and p-
wave scattering phase shifts to within 1.5%, and total and momentum-transfer cross sections
to within 3% of the exact values, 120 1 over a range of electron energies from 0-16 eV. This is
a major improvement over the previous pseudopotential, which gives s-wave phase shifts to
within only 38%, and yields p-wave phase shifts with an incorrect sign.

Using this very accurate pseudopotential for the short-range interaction, and a polarization

*1
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Table 20.2: Phase shifts and cross sections calculated using the new pseudopotential. The %
errors given in the parentheses are calculated using the estimated values given in Tables IlI
and IX of Ref. 20. The total and momentum-transfer cross sections are obtained from the s-
and p-wave phase shifts calculated using the e-He %, pseudopotential of Ref. 18 and Eqs. (7)
and (10)-(12) of Ref. 20.

E(eV) Phase Shifts (radians) Cross Sections (X :0- cm-)
s-wave p-wave Total Momentum transfer

0.136 .0.12700 (-0.9) 0.00311 (0.9) 5.656 (-1.8) 5.929 (-1.8)
0.544 -0.26581 ( 0.1) 0.01318 (0.5) 6.118 (0.2) 6.695 0.3)

1.224 -0.40785 ( 1.4) 0.03069 (0.2) 6.265 2.7) 7.107 (2.5:
2,177 -0.54667 ( 1.5) 0.05526 . 0.1) 6.151 2.6) 7.157 (2.3)
"3.401 -0.67824 (1.5) 0.08572 (-0.4) 5.860( 2.3) o.898 (2.0)
4.898 -0.80070 (1.0) 0.12035 (-0.4) 5,473 ( 1.3) 6.417 1.0)

6.666 -0.91352 (08) 0.15719 (-1.0) 5.047 (0.7) 5.802(0.4)
8.707 -1.01691 (0.1) 0.19439 (-0.8) 4.616 (-0.0) 5.131 (-0.6)

11.020 -1.11137 (-0.4) 0)23043 (-0.0) 4.200 (-0.4) 4.460 (.0-2)
13.605 -1.19750 (-0.7) 0.26422 (0.6) 3.808 (-0.3) 3.830 (0.0)
16,462 -1.27604 (-0.7) 0.29508 (0.6) 3.445 (-0.1) 3.261 ( 0.1)

potential for the long-range, we obtain a complete c-He,,v potential.1181 The energy levels of
the excess electron may now be determined for clusters of various sizes. One of the interest-
ing results of this calculation is that it takes approximately 5 x 105 helium atoms to barely
bind the electron with a binding energy of about 0.04 cm- '. Also, the electron is very "dif-
fusely" bound to the clusters (see Fig. 20.3), which unfortunately makes it insensitive to the
internal structure and dynamics of the clusters. When the cluster is large enough to be consid-
ered bulk liquid helium, the experimental zero-field energy levels of the excess electron are
reproduced.1 181 This gives us confidence in the accuracy of the pseudopotential and also in the
calculated energy levels of the excess electron on clusters. While it is possible in principle to
determine the sizes of the large clusters by comparing the experimental and theoretical values
of the energy of the photon needed to barely detach the excess electron, the very weak binding
does not make this a very useful probe. We are investigating the use of embedded molecules
as alternative indirect spectroscopic probes of the cluster size and dynamics. Moreover, the
accurate electron-He,,, pseudopotential now available makes it possible to model e-HeN scat-
tering experiments, which could possibly provide insight into ways to excite the collective
states of the cluster, and thereby yield experimental confirmation of the calculated excitatioin
spectrum.

20.5 Summary

Theoretical evidence has been presented for the existence of superfluid helium clusters at ex-
perimentally accessible temperatures. Large clusters of several hundred atoms appear to un-
dergo a transition to a superfluid state strongly resembling that of bulk liquid helium. Exper-
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Figure 20.3: The square of the wavefunction of an excess electron attached to me surface of
various HeN clusters, versus the distance r from the cluster. The cluster size N is indicated
on the plots.

imental detection of such a superfluid state remains an outstanding problem. Theoretically,
it remains to be investigated whether small clusters with N < 20 will be superfluid in any
sense at any temperature, and what atomic motions are responsible for the superfluid dynam-
ics. Theoretica! efforts are also necessary to determine the best possible experimental means
of detecting superfluid behavior in these extremely weakly bound clusters.
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Monte Carlo study of Impurities in quantum clusters: H2 4HeN, N = 2-19
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Variational Monte Carlo techniques are employed in studying 4He clusters, with and without
an H, impurity. We find that a novel, yet simple, analytic nuclear wave.function form, derived
from a numerical H2He wave function, yields high accuracy in computed ground-state energies
of 4He,. For the clusters studied here, three to twenty atoms, energies range from 94% to

- ,, 90% of the exact values. Density profiles and distributions of particle separation are also
computed. For reasonable computational cost (e.g., < 20 Cray/X-MP14 minutes for the
largest cluster), density profiles are determined for the first time to high statistical accuracy to
within 0.5 A, or less of the cluster center. The density profile of He, is found to possess a
uniquely pronounced peak at the cluster center resulting from contributions of near-collinear
atomic arrangements. We also study the effect of substituting an He by H2, using modified
wave functions containing products of pairwise He-H, terms. For all cluster sizes studied, ,.e
"find a lowering of the total energy upon exchanging an He for an H2. The exchange energy
increases in magnitude with increasing cluster size, yet is still well below bulk estimates at
N = 20. Size comparisons with the pure helium clusters show very little change upon He/H 2
exchange, e.g., the rms radii differ by < 2% for N > 3. Density profiles and bond distributions
show noticeable differentiation between H2 and He. For N>4, the peak in the H2 density
profile is not at the cluster but does remain inside the cluster. This peak is most pronounced for
H.He,3 implying an enhanced resistance to H, penetration for He13.

I. INTRODUCTION yielded information on the location of the foreign species.'
The same information is, in pnnciple, available for the quan-

Clusters of rare gases constitute the simplest van der tum clusters of helium, and furthermore, analysis of spectro-
Waals aggregates. These species continue to provide much scopic line shapes should give information on the coupling to
stimulus for both experimental and theoretical investigation the internal cluster excitations and whether these are collec-
of size-dependent properties in the regime spanning molecu- tive or single-particle-like.
lar and bulk systems.' Theoretical study is especially attrac- In this paper we undertake a fully quantum-mechanical
tive because the interaction potentials are so well known. study of an embedded molecule in helium clusters. We em-
The most weakly bound of these species is 'Hem, in which ploy variational Monte Carlo (VMC) methods in studying
large quantum effects are apparent, making them of special the structural and energetic effects of adding a foreign spe.
fundamental interest for the understanding of size-depen- cies. using a new wave-function form based on accurate pair
dent behavior of quantum systems. Recent predictions for potentials. The techniques are applied here to H2 in He,
these Bose clusters, based upon scaling of the microscopic (from here on "HeN is assumed), a choice motivated by both
excitation spectra2 and the calculation of the phenomeno- the availability of high-quality He-He and H,-He poten-
logically defined superfluid fraction,3 has for the first time tials, and also by prior experimental observations of H2 in
provided a quantum analog to recent extensive analysis of bulk helium." We calculate the ground-state energy of clus-
phase transitions and structural features of classical clus- ters with N<20, with and without an H2 species attached,
ters." and thereby the He/H 2 exchange energy. Analysis of the

While these weakly bound species intrinsically provide density profiles resulting from the optimized wave functions
ideal testing grounds for new theoretical approaches to large shows that the embedded H2 is extensively delocalized
quantum aggregates, contact with experimental studies has throughout the cluster, with a small peak in the concentra-
thus far proved elusive. The ease of dissociation and the Ii- tion beneath the surface. Such structural analysis clearly de-

quidlike structure of helium clusters, which facilitates the scribes the location of the foreign species.
absorption of foreign species, has also rendered the results of Very few species are even metastable in bulk helium be-
scattering experiments ambiguous.--' Nevertheless, there cause of its closed-shell configuration and inert nature.
does now exist a considerable body of experimental data on However, there has been continued interest in the analysis of
the pickup abilities and ionization patterns.6 It has become impurities in bulk helium because of the properties of these
clear that rather than attempting a direct probe of the dy- both as nucleation centers,9 and as a source of information
namics and excitations of these quantum clusters, indirect on the induced response and spatial structure of the bulk
probes via spectroscopic studies of embedded species, prefer- medium. The only theoretical work to date for species other
ably without the additional complications introduced by dis- than the isotopic impurity 'He has employed paired phonon
sociation channels, will provide more useful information. In- analysis in the hypernetted-chain approximation with Len-
frared spectroscopy of small molecules in argon clusters has nard-Jones potential&." As pointed out by Kirtrm and Ris-
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tig in Ref. 10, these techniques are subject to large errors. nman we employ, H, acts as a single particle with twice the H-
However. it has proven difficult to proceed beyond this level atom mass and interacts with He via V,.
of description, either by VMC or Green's function Monte The potential V, is a Lennard-Jones plus van der Waals
Carlo (GFMC), because of the relatively small contribution fit to the ab initio data of Ref. 15.
of the impurity to the total energy in the bulk system. Analy- R 4e- 671R) - (a/R) 6 ], R<R..

sis of the cluster energies with and without impurities as a Vo (R) =

function of cluster size provides a means of approaching the - C6R - CsR - C1oR -. RR.
bulk impurity problem by extrapolation. and therefore
yields a new microscopic approach to the impurity probe where R. is chosen such that the two forms in Eq. 2 ) take

problem for bulk helium as well as for clusters, essentially the same value at this point. The van der Waals
The energies computed here for the pure He, clusters parameters are taken from Ref. 15. Table I lists the param-

zompare favorably with previous VMC and obtain a high eters describing V, and Fig. I compares V, with the ab inrio
percentage of the exact diffusion Monte Carlo (DMC) ener- data points (the root-mean-square deviation is 1.9%). .nd
gies. In our wave functions only two-body correlation fac- with the He-He potential.
tors are used. One-body factors, often employed in cluster
calculations, are not found to be necessary here, and three- A. Wave-function form and optimization
body factors are seen to become significant only for N >t 20. Once a wave-function form is chosen, parameters are
Details of the physical motivation of our wave-function form varied to minimize the energy, E. Here, 4' takes a transla-
and a thorough description of the various Monte Carlo ap- tionallv invariant product form.
proaches employed are presented elsewhere. The remain-
Jer of this paper is organized as follows. Section II contains a p'(R) = [ 1 r
descri.1ion of our theoretical approach. with a brief sum-
mary of the guided and unguided Metropolis walks used where for N particles. R is a 3N-dimenstonal vector specify-
here. in addition to description of the potentials. wave-func- ing the particle locat:ons, and r, = :r, - r,;. The function
tion forms, and optimization. Results for pure and mixed di,, anaiogous to the f2 factor defined in previous studies or
clusters are presented and discussed in Sec. III. Conclusions. atomic clusters,2'.'- varies with differing particle pairs. i.e.
together with a prognosis for further studies of excitations He-He or H, -He. Note that a one-body factorf1 (r,) is not
and dynamics of clusters with foreign species. are presented employed. Such a factor introduces undesired center-of-
in Sec. IV. mass motion. In this event, the associated translational ener-

gy must be subtracted (unless N is large), adding to compu-

1I. THEORETICAL APPROACH tational cost. Alternatively, translational invanance may be

maintained by replacing r, by r, - R,,,, where R. . is the
The quantum ground states are studied by seeking accu- center-of-mass vector, yielding a sum ofinterparticle separa-

rate many-body nuclear wave functions. That is. in place of tions. In this case. thereforef, is actually a many-body far-
unknown eigenfunctions of the nuclear Schrodinger equa- tor. A common motivation for includingf, is its use in bind-
ion. we obtain wave functions for which the energy ing the cluster and in describing the more diffuse regions

E =(VH IT)/(OPI4%P) is minimized. For the systems we Since our two-body factor is derived from an exact dimer
treat here, the Hamiltonian H is, in atomic units. (H, He) wave function. in which particular attention is paid

H(2m,"V + I Vii, to the long-range, diffuse tail. part of the wave function. %t
= - 2m -' +• ,1) prefernot tonmodify thisby additionofaone-body retaining

where a pairwise potential is considered sufficient for weakly factor. If the cluster is bound, this should be reproduced by a
interacting clustersni pairwise wave function, provided it is of sufficiently high

For the pure He clusters m, --= m,. and Vq = V is the accuracy. Our new approach differs from the original one of

accurate and widely employed interatomic potential deter- Pandharipande, Pieper, and Wiringa,1 0 which constrained

mined by Aziz, McCourt, and Wong in 1987."3 This poten- the asymptotic form of th,, by the relation between the pair

tial has a slightly deeper well than the previous one deter- distribution function g(r) and the speed of sound in the buik

mined in 1979."' and yields a bound state for the He-He system. thereby necessitating a one-body factor to yield adime at- 1 'K Forcluter cotaiing 2, ibrtio of bound finite system. Therefore, although a one-body factordarner at - t0- ' K. For clusters containing H2, vibration of

the foreign molecule is neglected. This should be quite rea-
sonable for these weakly bound clusters since the vibrational TABLE 1. Parameters of the H. -He interaction potential. V,. Eq
dependence of the H, -He potential is significant only at
small separations R (R is the distance from the H, center of Parameter Value Units
mass to He). In addition, the H2 -He potential is very nearly
isotropic.11 Expanding VK..He (R,O) in the Legendre poly- t0'1 4 189 712 hanrees th)"(7 5.671 145 Bohr
nomials P, (cos 0) and P 2 (cos 6) (0istheanglebetween the R, 9.351 it Bohr

intermolecular axis and R) yields an anisotropic component c. 4.018 h (Bohr),
V. (R) with a well depth an order of magnitude smaller than C. 55.69 h i Bohr)'

that of Vo (R). Therefore, as a further yet stilf accurate ap- CO 10 31.0 h (Bohr)"'

proximation, we choose V, ,Hr -= V,. Thus, in the Hamilto-
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repulsive part of the potential, will be considered in another
work,

5- The major motivation in employing such wave func-
tions is our belief that considerable improvement over pre-

10- vious two-body forms can be made, to the extent that one can

efficiently obtain high accuracy without the use of a complex
5 three-body factor. The general questions of what accuracy is

:achievable at the two-body level of theory and the extent to
3- __- which our wave functions obtain this accuracy are addressed

in a subsequent publication. " A second motivation for pro-
ducing such accurate wave functions is the need for high

I ,:accuracy when considering a weakly bound impurity spe-
-'01 Icies.

Below we outline our wave-function optimization ap-
- proach. Full details are given in Ref. 11. We optimize the

parameters by minimizing fluctuations of the local energy.
--..;>L EL =q/ - '/,4', about a reference (or guess) energy, E,. over

5 6 9 2 15 a fixed set of points in the 3N-dimensional space R. The

R quantity of interest is then

vFIG I H. -He and He-He potentials. The sold line show, the He-He po- S' [EL (R,) - ER ]'.1(R )/(R.V (R, ),2

iential of Ref. 13. and the dotted line shows the H. -He potential. V.. Eq. S2 = -, 1_ _

i-) and Table I. The ab inato data points for V,. given in Ref. 15. are indi- v

cated by the ,oi'd circles.,,

has proved useful in earlier studies, it is extraneous for our ((6)[H - Ef ]2iq)

purposes. We also do not employ a three-body factor here ('IT)
because of the high-quality wave functions we obtain at the whet- the second equation corresponds to an infinite num-
two-body level of wave-function complexity. We shall refer ber of points sampled from iI i'. The essence of this "fixed-
to this point again in Sec. Ill. The factors 0b,, are sample" approach 2' is that multidimensional integrals are

d. (r) r' expf P(u) -+-an. (4) approximated as summations over points in a distribution
corresponding to an initial (unoptimized) wave function.

Pf U) = ' akuk, u =r' (5) •. Parameters are converged to optimum values (in a local
minimum sense) with a conjugate gradient technique.':

The ij subscripts are omitted from the parameters for conve- The reference energy E, determines the emphasis given
nience: however, parameters describing different interac- to minimizing the energy vs minimizing the variance. If
.ions. i.e.. V and V0, are independent. This form was de- ER EL,minimizing s2 isequivalent to minimizing the aver-
duced from the numerical solution to the Schrodinger age local energy, where
equation employing the H., -He potential given in Eq. (2). " I,'

The wave-function form may now be considered as the EL (R,) I ((R, )/1P (R,)7
product of a long-range and a short-range factor. At large ET - ' " ' ._ ('4'H 4> (7)
interparticle separations where the polynomial P is roughly 1 'l'(R, )/*, (R, )I (12,1 )

constant, the behavior of ' is determined by a, b. and a. The t-
long-range factor, rb exp(are), is very similar to that ema- However, if Et = EL, then minimizing s2 is equivalent to
ployed in previous work,"i"i with the exception that a is minimizing the variance in the energy. Correspondingly.
now a variable parameter which when optimized for our choosing intermediate values of Et mixes energy and van-
wave functions is different from unity. Note that for ance reduction. As we are primarily interested in obtaining
b = - ( N - I ) -' and a = i, our form reduces to the one- the lowest-energy wave functions possible, we generally
parameter model asymptotic form for a two-fragment bound choose the reference energy to be much lower than EL.
system. The remaining factor. exp[P(u) 1. is most impor- Since N is finite ((r 5000 points), the summations in Eq.
tant at small separations and can be considered as a general- (6) may be poor approximations to the desired expectation
ization of the McMillan form used for bulk He.20 Given the value. This is especially true when T becomes much different
highly repulsive behavior of the potential at small particle than 'o,which occurs if To is a poor initial guess. Therefore.
separations. an increase in wave-function complexity for de- we have found it useful to set *, = %P and to generate a new
scribing the short-range interactions should be especially ensemble from the updated %Y,. The conjugate gradient
useful. We therefore include all integer powers up to five in minimization is then continued. This updating procedure
P. The study of a further improved two-body form, which greatly enhances the reliability of the degree of energy mint-
yields an entirely new description of the behavior at small mization indicated by an individual fixed-sample optimtz-
particle separations tailored to the functional form of the ation. Generally, one or two updatings have proved suffi-

J Chem. Phys.. Voi 96, No 4. 15 February 1992



2956 R. N Samen and K. 8. Whaley: Impurities n clusters

cient to obtain stable and converged results. The optimized Monte Carlo estimates. Also, if the distance moved in con-
wave-function parameters are given in the Appendix. figuration space by each member of all the ensembles is sex -

eral times larger than the dimensionahly of the cluster. then
8. Monte Carlo approach the ensembles can be assumed to be decorrelated. To reduce

We are interested in computing expectation values of 40, .his initial decorrelauon time, ensembles for larger clusters

which cannot be done analytically. Numerical quadrature are built up from the ensembles of the next smallest cluster

may be employed but, given the high dimensionality in- In addition. this parallel structure is also maintained when

volved here, Monte Carlo integration is the most tractable generating targe ensembles of points by VMC walks dunng

approach. Here, we employ two variants of the Metropolis wave-function optimization. Given that each ensemble is

walk."3 The first is the commonly used "unguided" walk by different from the others, employing these ensembles in

which points are sampled from I D 1. Here, unguided refers Monte Carlo runs yields a set of independent results. This

to the fact that the attempted moves underlying the walk are enables the computation of an unbiased statistical error

completely random. Expectation values are computed. to This method of evaluation of the statistical error is used for
within statistical error, as all expectation values, including those yielding distributionwfunctions such as density profiles.

-N.•• A(Ri ) - OP1.4 l1)/10VIT). (8) S Ill. RESULTS AND DISCUSSION

All previous VMC cluster studies employed unguided A. Pure He,
walks. ̀ " '' The second approach used here employs a walk In this work we study clusters ranging in size from three
guided by a different function, Ts. For these walks, attempt- to twenty particles, the focus being the ground-state energy
ed moves are biased towards larger values of the sampled and structure. The primary concern here is wave-function
distribution, ý %, 12. (Walks guided by tY itself yielded poor adsrcue h rmr ocr eei aefnto
coistrgbuinc at sm(alk gurticed byepar itnself yiEldedtpoor accuracy, as measured by the energies obtained. Therefore.
convergence at small particle separations.g1 ) Expectation we first compare our pure He cluster energies with those
values with respect to 'P now require a weighting procedure, resulting from other (sometimes more complex) wave func-
namely, tions and with new DMC energies which are exact.

Table 1I compares our optimized He cluster energies
A(R,)l4(R,)/*'(R)I' obtained with the new wave funi.tion. Eqs. (3)-(S). with

_, those resulting from other work. Exact energies, from which
x I. i'P(R,)V, (R, ) 1(9) percent accuracies are obtained, are the DMC values given

in Ref. 11. For N = 3-5, we see that our computed energies

Generally, the usefulness of a guided walk arises from in- lie below previous VMC values which were computed ern-
portance sampling, i.e., the preferential sampling of (impor- ploying both one- and two-body factors, indicating the high
tant) regions where good statistics are required for high pre- quality obtainable with the our two-body wave functions for
_,ion in A ,. Here, 'P is chosen so that il'12 is these small clusters. Similar accuracy has also been obtained
preferentially sampled in reions where it is large. The guid- with two-body wave functions for N = 3-7.24 For He,, our
ing function is also chosen '., decay to zero more slowly than new energy reproduces to within the statistical error (gi'en
'V at small r to facilitate convergence in this domain, where in parentheses) our previous result obtained with one-. two-.
significant contributions to the energy are typical. A particu-
lar advantage of the "guided/weighted" walk lies in the
flexibility of choosing which regions are to be emphasized.
For example, if high precision is desired at small separations,
choosing 'qV, /T I > I in this domain yields the desired sam- This work Previous VMC
pling. The guided/weighted walk was most useful for the
smaller clusters studied here. Detailed comparisons of the - E/N (K) %oftEict - E/N (Ki % of Exact

various walks and their relative merits for these weakly He, -0.0415(l) 931 -0-0388(9)6 877
bound systems are presented in Ref. I !. He, - 0.133() 93.9 - 0.132000)" 9 13

As a final point, we discuss the evaluation of statistical - 0.12r 96.00
error. The primary concern is that averaged ouantities be He, -0.2505(2) 93.5 -o.2440|o),' 91U
statistically independent so that the computed statistical er- He, - 0.48311() 92.7

ror is unbiased. In our approach this is accomplished by He,I - 1.0345(6)

propagating (ten) independent ensembles of (100) points He,, - 1.1290(7) 90.5

{R,} yielding (ten) independent Monte Carlo estimates. He~a - 1.310(2) 89.5 - 1.514(3)" 89.7

Ideally, this can be accomplished by a random selection of - 1.53(1)1 96. 7

points. In practice, for the smallest clusters, the ensembles 'Hem and in Table f1l. the statistical error represent.in one standard dei.
are not initially decorrelated but commence with different ation in the mean ia shown in parentheses. Exzaet energies for the -rmi
random number seeds. The ensembles are propagat-d in par- recent potential am computed by DMC in Ref. I I.

allel by a Monte Carlo walk until decorrelation between Reference IS.
Reference 16,

them is obtained. Decorrelation may be ascertained from the 'Saince Ref. l6empioys the previous potentialt ORef. 14. the exact Intpg s

stability of the statistica, error in the average of the (ten) taken to be the GFMC value of Ref. 25.
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and three-body factors, and gives 89.5% of the exact DMC a hole, as well as any hard-core structure in the single-parti-
energy. (This is somewhat less accurate than the VMC re- cle distribution function, is mostly precluded by our data.
sult of Pandharipande, Pieper, and Wiringa,." also obtained The computational cost of the He calculations presented
with one-, two-, and three-body factors, for the earlier poten- here is very reasonable, ranging from 4 Cray/X-MP 14 min-
tial, " which yielded 96.7% of the exact GFMC energy.'3 ) utes for He3 , to 19 CPU minutes for Hen. These profiles
Given the simplicity of our wave function, the proximity of represent the first Monte Carlo study of any type, VMC,
our energy to that resulting from one which is more complex GFMC, or DMC, which possess this high level of statistical
is quite satisfying. However, we see that for very high accu- accuracy in the interior of the clusters. As reflected in Fig. 2,
racy, three- and perhaps higher-body factors are required for the efficiency of computing density profiles decreases with
N Z 20. In this case, our present wave functions appear to increasing cluster size. For a cluster with N particles, each
provide a two-body component of high quality, point sampled yields N values to be binned. However, the

Overall, Table II shows that the accuracy of our ener- computational cost increases as N2, causing the efficiency
gies, vis-i-vis those of DMC, decreases with increasing clus- for this quantity to scale as N - 1.
ter size. Naturally, this is expected as a pure "two-body" Figure 2 demonstrates the unique character of the He3
wave function should be less appropriate as the importance density profile. Approaching the cluster center, the He3 pro-
of three-body and more complex interactions increase, as is file is similar in character to those of the other clusters up to
the case for larger clusters. However, it is pleasing to see that, the shoulder located at about 2.2 A. After this point, a
despite the constant level of wave-function complexity, the marked change in behavior occurs as p increases only slight-
(energy) accuracy does not degrade rapidly. As the cluster ly from about 2.2 A to I A, and then rises rapidly closer in.
size increases from 7 to 20 atoms, the amount of the DMC These characteristics are presented in greater detail in Fig. 3.
energy obtained decreases by only 3%. In addition, the total In addition to the density profile, contributions top are pre-
accuracy remains good up to N = 20, with 90% of the DMC sented conditional on the largest angle (0,, ) in the He3
energy obtained for this cluster. Therefore, the wave-func- triangle being greater than 12(r, 140r, and 16(r. This figure
lion form employed here is considered to be of sufficiently shows that the rapid rise in p near the origin is due solely to
high flexibility for the study of the H, He, clusters, N< 19. near-collinear arrangements starting at 6,,. = 120'. That

Helium cluster density profiles are presented in Fig. 2. density near the center arises solely from near-collinear ar-
The data were obtained by binning the sampled points into rangements is not unreaso.aable given the high potential en-
bins corre!ponding to AR <0.03 A. Note that the bin volume ergy for atoms near the cluster center (and each other) in a
and therefore the statistical precision decrease as the cluster near-equilateral configuration. However, the rapid increase
center is approached, as indicated by the fluctuations in p in p caused by a tendency towards collinearity is interesting
which well represent statistical error. In spite of this, preci- given the large difference of a collinear structure from that of
sion remains high up to small distances from the cluster cen-
ter. For Hezo, for which uncertainty inp is greatest, the com-
puted statistical error in each bin is under 5% from 0.5 to 12
A. Thus, any peculiar behavior at the cluster center, such as

0.020 2

0,016 C
S 4

He,, X
n 0.012

ie,

o~oo,. 160,iQ,0.008 H 
4

He, 20

He 0
0,004 He 0 1 2 R(A 5 6

0.000
R (A) FIG. 3. Conditional density profiles of He,. The dashed line is the density

profile. The three conditional density profile solid lines. are obtained by
FIG. 2. Helium density profiles for pure helium cluster sizes N - 3-5, 7, 13. binning distances from the cluster center only when the atomic arrange-
20. The bin size is <0.03 A. ment sampled possesses an angle greater than 120', 140', and 160'.
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mimmum potential energy, an equilateral triangle. 05

In addition to the density profiles, we present particle He7  "" He...e, He,3
separation probability density functions p(r) (normalized

such that fp(r)dr= 1) in Figs. 4 and 5. These plots were 0 12 '

obtained by binning particle separations with a bin size

.r<0.03 k&. The curves in Fig. 4 show a trend toward de- He
creasing diffuseness as the cluster size in .reases from three 09 - :0

to five atoms, consistent with increasing density and also j

increasing binding energy per particle. Upon considering the _-,

larger clusters (Fig. 5) this trend reverses. The interparticle Cn. 06

separations increase slightly from He, to He, and more no-
ticeably upon going to He,3 and He2o. The He., root-mean-
square (rms) radii presented in Table IV mirror this behav-

ior, which has been previously noted by Pandharipande. .

Pieper, and Wiringa. o What is most interesting and novel ,

here is the appearance of structure in p(r) for He, , and He.0 "...

(.Fig. 5). The behavior of p as it approaches its maximum 0. 0.

clearly differs between He, and He , 3. For HeO the existence -5 .3 5

of a shoulder at a particle separation smaller than that corre- r (A)
sponding to maximum p is unambiguous. However, the pres-
ence of a shoulder in p for He, is less certain. The He., plots

of the p and p are virtually identical to those of He,, (and FIG- 5. Paricle separation Probability dcnsitY function pt ri for the oure
are. therefore. omitted for clarity). This similarity between helium clusters. N = T. 13. 20. The normalization and bin szes areas in

He, and He,4 is in contrast to the larger differences between 4
He,4 and He, , , observed for smaller N (Fig. 4). Therefore,

given the slowly changing nature ofp at N = 13, we conclude

that the onset of the shoulder in p is quite gradual. Such pretation of He clusters as delocalized, liquidlikt clitsters

behavior does appear to correspond to evolution of shell rather than as crystalline- or molecularlike species.

structure, and is related to the appearance of the second-
nearest-neighbor coordination shell in the pair density dis. B. Mixed clusters H2 He,

tribution function n, (0,r). " Our density functions p, to- Table III lists the cluster energies per particle (H, is

gether with the absence ofany structure in the single-particle considered as one particle) and the He/H, exchange enery

distribution function (Fig. 2), are consistent with the inter- as a function ofsize. The exchange energy (referred to as the

chemical potential for He/H, exchange in Ref. 10) for an N-
particle cluster is computed as

He ,sE,(N) =E(H, He, ,) -E(He,.4
For the H, He van der Waals complex. numerical solution of

S12 -the nuclear Schrbdinger equation yields the ground state

12He. bound by 0.0246 K. while the He dimer is bound by onii

= 10- K." This is not surprising given the greater 'Aetl

0 09 He 3depth of the H,-He interaction relative to the He-He poten-
tial, cf. Fig. I. As a consequence. negative exchange energie,

°<• are observed. The exchange energy increases monotonicail•

6with increasing cluster size; however, our value at N = :0.
- 1.68(4) K, is still only a fraction of Kuirten and Ristigs

estimate of the bulk value. - 20K.'0 Table [lI also lists the
unit radii. ro, defined by

0 03 (-('))' 2)) V-'1 ', 1I

where OR ') is the expectation value of the squared distance

0 00 from the cluster center. The latter is defined as

0 1 15 20 1 N(A) " >r -v ,- I
i.e,. the geometric center. Since the center of mass is biacQ

towards heavier particles, we employ the geometric center j,

FIG 4c Plruice se.3,TupoT probabiiity density function plr) for the p 'he origin in comparing structure and size of pure and mi tihelium ciuatats. N I 3.-S. The fUnction p(r '3is the probability dlensity of

Ainding any two paIuc•la•Separtendby the distate P. The curve are nor- clusters, and, most importantly, in studying the reltazi €c.

maluzed to unity and bin sizes are <0.03 A. cation of H, as specified by the density profiles. Lhnlikc ,.e



TABLE I1l. Per particle energies. unit radii, and He/H, exchange energy,*

He, HHeC.,

N E/N (K) o (AJ E/N (K) rQ (A) E,.(N) (K)

3 -004152(8) 5.50 -0.08938(24) 5.21 -0.1436(8)
4 -0.1357(2) 4.42 - 0.200 5(1) 4.51 -0.2592(9)
. -02505(2) 3.76 -0.3324(2) 3.84 - 0.409 5( 11)
. -0.4838(I) 3.45 -0.575 1(5) 3.43 - 0.639 1(36)

13 - 1.0545(6) 2197 - 1.146 (11) 2.98 - 1.191 t16)
14 - 1.1290(7) 2.92 - 1.2242(4) 2.96 - 1.333(11)
:0 - 1.5100(20) 2.82 - 1.594 3(g) 2.86 - 1.680(44)

'Statistcal error in rP is less than 0.003 A.

per particle energies, cluster size is largely unaffected by efficiency in computing pure cluster density profiles, one
He/H, exchange. As seen in Table III, the unit radii of pure finds that the efficiencies for computing the H, and He
and mixed clusters differ by only 4% for three particles and mixed cluster, density profiles scale as N - 2 and
by 2% or less for the other clusters. (N - I )N - t spectively. This fact is manifested by the

In considering the structure of the mixed clusters, in relatively large fluctuations in the H, density profile as N
particular the degree of differentiation between H, and He, becomes large. cf. Fig. 7. For all mixed clusters small bin
we first turn t6 the root-mean-square distance from the clus- sizes were employed, R R<0.03 k. These smaller bin sizes
ter center. R_,, = ( (R 2) ) /2. Values for He and H,, ob- yield a more detailed picture of density profiles but tend to
tained by integrating over the density profiles shown in Figs. give larger statistical error, especially near the origin. How.
6 and 7, are listed in Table IV. These density profiles, ever, despite both this and the relative inefficiency of binning
p(R) = p(R), are normalized as f41rR 2p(R)dR = I, and forasingleH 2 particle in an N-particle cluster, the statistical
as stated above the cluster center is chosen as the origin. The error in the H2 density profiles is quite reasonable to within
corresponding values for the pure clusters are also shown for about I A of the cluster center. Even for the largest cluster,
purposes of comparison. As is the case for the pure clusters, H2 He,,, computed statistical error in each bin is 10% or less
we see that a minimum in cluster size, as measured by R,.,, from I to 10 A. (For He, the precision is of course much
also occurs at five particles for the mixed clusters. Thediffer- better: less than 5% from 0.5 to 12 A for H2 He,,.) Once
entiation between H 2 and He R,_, values within a given again, we point out that computational cost is not large, e.g..
cluster is somewhat small but consistent. For all clusters 27 Cray/X-MP14 minutes for the H, He,, calculation.
studied here. H, is farther from the cluster center on aver- Figures 6 and 7 demonstrate that H, is delocalized
age. with values of R,,, being 4.6% to I1% greater than throughout the cluster, as is the case for He in both the pure
those of He. and mixed clusters. Thib .j not surprising considering the

Differentiation between H, and He is also evident in the hghter mass of H, and the similarity of the H, -He and He-
normalized density profiles presented in Figs. 6 and 7. To He potentials. Perhaps most interesting is that the greatest
quantify this differentiation between H2 and He. we com- probability is not observed at the origin but neaks at some
pute the probability P of finding H2 (or He) outside the distance from the center. This point of maximum H2 proba-
spherical volume, centered at R = 0, containing half of all bility density increases from roughly I to 5 A as the cluster
the particles. Values of P for both species are also listed in increases from 5 to 20 particles, paralleling the increase in
Table IV. These values indicate that the degree to which H2  cluster size. Note that for H2 He2 the probability density for
lies "outside" the cluster is generally not large. For all but H, simply mimics that of He (Fig. 6(a) 1 and that both the
the 14-particle cluster, 60% or less of the H2 density lies H, and the He density profiles are similar to that of He,
outside the half-particle dividing radius. The exception. (Fa. 4). Thisshowqthat H2 can take the placeofa Hein any
H, He,., for which 66% lies outside this radius, actually position, including tne collinear arrangements which lead to
continues a trend from the four-inirticle mixed cluster which the unique density profiles we have observed.
then reverses in proceeding to H, He,,. This suggests a spe- Table V summarizes a quantitative analysis of the H.,
cial structural robustness of He,, to H2 penetration. Pre- probability peak. The second column measures the absolute
vious GFMC results for He argue against the presence of position of the peak, R, (relative to R, ) and clearly reflects
"magic numbers" for the pure clusters, N(33.15 However, the increase in size of the cluster as N increases. The third
the effect we see here is small and also may not be deducible column measures the degree to which the peak in probability
from the energies of pure clusters. Whether the increase in manifests itself: p,,/po = p 2 (R, )/PPH (R = 0) is the ratio
penetration of H2 seen on going to H, He,, continues as N of the maximum H, probability density to its value at the
increases remains to be seen. In the bulk, H2 penetration is origin. (For H2 He, the second maximum is used as p,, )
observed but the extent is not known.' Given the statistical errors in p near the origin and the

Following the earlier discussion concerning sampling widths of the observed peaks, the quantities in Table V are
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2 55-

H2He2  2 H2He6

0.5 0.5

0 4 0
0 5 10 i5 0 5 to 15

a(A) ,, R (A)

2.5 H_. 2~ HHe 4

< HFIG. 6. Normalized Heand H, densty profiles for the mixed clusters- 1 1)
Cr) 1.5
CD H, He2, (b) HI He,, (c) H, He.. Dashed and solid curves refer to He and

H,. respecuvely, and are normalized to one particle per cluster The bin
X,< sizes are <0.03 A and A is the distance from the geometric center of Uhe

cluster.

0.5

0*
0 5 10 15

(b) R (A)

estimated with some degree of uncertainty, i.e., 5%-10%. f"'"4 1rp., (AR)R 'dR. Omitting the special H2 He, case.
However, allowing for the qualitative nature of the results, it these last two columns of results show that the H, molecule
is obvious that the peak at R,. becomes more pronounced tends to reside at greaterdistances from thecluster center for
for the larger clusters, N> 7. Among the larger clusters, the the larger clusters. However, the H, molecule shows no m I -
H2 He,3 peak value ofp,./po is significantly greater than the nificant tendency to move further towards the cluster ed e as
others, as is evident also from Fig. 7. The fourth column the size increases from 13 to 19 He atoms; the peak become%
gives the ratio of the He density at A,. to its value at the less pronounced (third column. Table V) and its position
origin, i.e.,p,. (R,.)/pH (R = 0). The fifth column shows relative to the helium density only increases by a smrnl
the amount of helium contained inside the peak position, i.e., amount (last two columns). In addition, the position ot'! he

J, Chet. Phys.. Vol. 96. No. 4, 15 Febnjary 1992
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2.5 H 2.5-

21 H 2 H12- H2He19

0' .5 0' .5

0 0

0 5 10 15 0 5 50

.,R (AO ,,,

2.5

H H2He 13

CV) 1.5

FIG. 7. Normalized He and H, density profiles for the mixed clustes; (a)
S• .H 2 He,., (b) H2Heil (c) H.,He,.. Dashed and solid curves rterto Heand

"H,. respectively, For further details see Fig. 6.

.3.5

0 5 10 15

,0, aR(A)

TABLE IV. Size comparisons between pure and mixed cluster.'

He H2

Cluster ((R')))'" luatr ((RW))' P ((R8))",z P

He, 6.14 H2He,  5.67 0417 5.05 0.532
He. 5.44 H, He, 5.41 0.487 5.85 0.526
He, 4.98 H, He. 4.75 0.485 5.17 0.570
He. 5.11 HHe. 5.02 0.490 5.37 0.579
He,, 5.40 Hz Hell 5.39 0.492 5.77 0.590
We,. 5.45 H, Het; 5.48 0.494 6.12 0.657

He,, 5.93 HHeM 596 0.494 6.34 0.601

'The quantity ( (R • ) is the rms distance from the cluster center, in A. P is the cumulative probabdity of
finding the panicle beyond the spherical shell in which half the pmrticla are found on average (tee text).
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TABLE V. H, probability peak charactenstics.° peak lies well inside the cluster surface, i.e.. at least 60% of

the integrated He density lies beyond the H2 peak. There-
P./Po P, /PO % He fore, the H2 density profiles show some localization, most

Cluster RH, ) (He] inside noticeable for the larger clusters ( > 12 He atoms), and mdi-

H.He2  2.3 0.86 0.76 92 cate absorption between the cluster center and its exterior.
H.He, 1.3 1.05 0.89 2.1 This perhaps reflects the fact that H, has been found to pene-
HHe, 27 1 .16 0.18 16.9 trate bulk liquid helium.'
H:Heý 2.9 1.28 0.83 16.7 Figures 8 and 9 show the particle separation probability
H:He,, 4.0 1.32 0.67 29.5
H.He,' 4.4 168 0.65 35.9 density functions p(r) for the He-He (dashed lines) and
H:He,g 5.1 1.38 0.61 40.3 H 2-He separations (solid lines). These show the same gen-

eral trends with size which are apparent in Figs. 4 and 5.
R_ is the position ofthe H, maximum. inAk. p./p, is the ratio ofthe peak Differentiation between H2 and He is not large. However,
probability to the central (R = 0) probability, for H. and He, respective- the H2 -He distributions are consistently smaller at smail
ly. The % He inside is measured with respect to R,. separations and consistently more diffuse at large separa-

0.15 0 15

12 H2He 2 H.He

7 o 09 0.09

0,06 - 06 /
0 13" ' 0 ^3 -

0 30.0 00
0 5 10 0,., r(A r,(A

o 5*

0.12 H He 4

- 309

FIG- 8. Particle separation probabdity density function p(r) for ihe Mre,%
clusiers: ta) H2He,, (b) HHe,, (C) HHe,. Solid lines refer to Ht. -Hc.

0 06 - dashed lines to He-He. The normalization and bin sizes are as in F:g 4

3 03

0 00
,0 '0 15
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H K H He,
0. 12 H2 2. 12 2H 9

7 0 09 - 0.09 -

0 06 0. 03 -

0.00 0 00
0 5 10 5 5 50

r(A) )r 'A)

0. 15

- 0 09

FIG. 9. Particle separation probability density function p r) for the mixed
cluster: ( i) H, He, 2 . (b) H, He_. (cI H. He.. Solidlinea reer to H.-He,

0, 06 dashed lines to He-He. The normalization and bin sizes are as in Fig. 4

0 00
0 5 10 15

(b) rr(A)

uons than the He-He distributions. The trend at small r is the maximum probability of finding H, is somewhat re-
easily understood from the interaction potentials, cf. Fig. I, moved from the cluster center.
where the H, -He potential becomes highly repulsive sooner As is the case for the density profiles, the particle separa-
than that of He-He. The behavior at large r is less transpar- tion distributions p stand out for H, He,,. The greater rela-
ent. The H, -He potential has a greater well depth and is tive diffuseness of p for H2 -He vs He-He, clearly visible in
more attractive at larger separations. On the other hand, the Fig. 9. is most pronounced' for H 2 He,, amongst the larger
lighter mass of H2 tends to reduce H, -He binding vs He-He clusters. The implication here. as with the density profiles. is
binding. This factor, as well as the fact that helium atoms can that He,3 possesses a somewhat enhanced degree of stability
get closer to themselves than to H1, may also explain why with respect to H, penetration.
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TABLE V1. Wave-function parameters for He., (in atomic unit}.

N 3 4 713 14 20

al10 -0.10229 -0.10229 -0.18365 -0.10700 - 10595 - 10706 - 060074
b - 1.34028 - 1.34028 - 130676 - 1.41058 -0.97588 - 104666 - I 04664
a 1.18370 1.18378 1.03509 052691 0.603 14 0ý545 00 054503

0.14630 0.14630 0.14630 -0.97190 - 1.45987 - I .23 6i - 308 U1
a, - 20.046 - 23.447 - 23.034 - 23.037 - 29.9599 - 30.193 5 - 33 8646
a. 151.69 159.923 158.499 158.50 200.994 199831 31 0 061
a. - 746.490 - 742.004 -782.170 - 782.170 -851450 - 845.506 - 1 37001

I 709.00 I 710.60 1 842A10 1842.10 I 809.01 I 808.98 2 48445
a, -4404.1 -4403.6 -4344.3 -4344.3 -4352.3 - 4354.1 - 36746

IV. CONCLUSIONS one-particle term is employed, and the two-particle term is

explicitly constructed by fitting to the bound numerical solu-
This first quantum-mechanical study of an impurity tion of H, He. which allows much greater sensitivity to the

species in a rare-gas cluster shows the lower-mass H2 impu- long-range part of the potential than in previous forms. Ac-
rity to be extensively delocalized in finite helium clusters, curate representatton of the diffuse tail of the two-body fac.
Considering the similar mass and interaction potential with tors appears to be extremely important in obtaining accurate
He (cf. Fig. I ), this is consistent with observations of 'He energies. We note here that for He, and He, the energies lie
delocalization in bulk helium ('He) .16 However, much less below the previously computed exact GFMC values. In Ref
is known about H, or any other molecular impurity in bulk 11, we find that this results from the use by GFMC of the
helium. It will be useful to follow this trend for cluster sizes 1979 potential which is slightly shallower than the most re-
larger than those studied here, to ascertain whether the H2  cent one (1987) employed here. The high level of accuracy
species is surface attached, or embedded in the interior, as obtained here at the VMC level with just the two-particle
appears to be the case thus far. v -,e approach bulk systems. term, even for N = 20, also suggests that addition of the
In addition, possible localization -.the H, and of other im. three-particle terms known to be important for the larger
purities at larger cluster sizes is of interest. Finally, incorpor- clusters may well provide a new level of accuracy at the
ating the weak anisotropy of the H,-He potential is worth VMC level for these larger systems as well. It will be '.ery
considering, interesting to see how well the lack of one-particle term does

The wave-function forms employed here for both the at larger N. This term has been required in previous studies
mixed clusters H2 -HeN and the pure HeN reference systems by us and others because of the modified liquid-state asymp-
present a radical departure from previous analytic forms totic form imposed on the two-particle term. Note that the
used in variational Monte Carlo ground-state studies. No new form employed here does have the flexibility to revert to

TABLE VII. Wave-function parameters for H, He, (in atomic units).

He-He parameters for H, He,
N 2 3 4 6 12 13 19

a/10 -0.57743 - 0.083 449 -0.39186 -0.46732 - 1.0595 - 10241 - 0 340 ý4
b - 107843 - 1.335 66 - 1.59036 - 1.372 76 - 1.01635 - 102328 -097641
a 0.970574 1.171530 0.791906 0.645789 0.603 138 0.604093 0553315
a, - 1.308 32 0.11479 0.63834 -0.75300 - 1.50801 - 1405 82 - 138608
a, - 23.932 - 20.046 - 25.642 - 24.427 - 30.753 - 33.700 - 38 875
a. la.288 151.690 157.665 158.838 202.829 226.526 310059
,, - 734.485 - 746.490 - 782.390 - 782.049 - 852.536 - 407,670 - 130701

1 715.65 1 709.00 1842.20 1 842.13 1 813.57 1 792.85 2 48445
a, -4401.3 -- 4404.1 -4050.3 -4040.3 -4348.4 -4350.0 -- 36746

H2 -He parameters for H, He..
N 2 3 4 6 12 13 19

a/100 -0.65703 -0.050860 -0.050865 -0.36243 -0.36243 -0.41131 -0.28601
b -0.62584 - 1.43377 - .411 75 - 1.12054 -0.73013 -0.715 35 -0685 77
a 1.400470 1.147770 1.135880 1.151 390 1.151390 1.153680 1069 130
a,, - 2.13962 -0.65703 -0.16498 -0.879 13 -0.92728 -0.82508 -090315
a, -6.163 - 14.043 - 15.359 - 14.923 - 12.744 - 14.607 - 14612
0, 112.344 121.898 121.843 123.210 122.727 131.758 131.7"51
a, -719.100 - 710.496 - 710.504 - 710.000 - 711.061 - 730.737 - 730 73-
a, I 723.29 1 726.98 1 726.97 1 727.10 1 726.35 1 715.99 I 7159Q
a. - 7455.6 -7454.4 - 7454.2 -7454.4 -7454.7 -7458.0 - 745380
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The H,-'He dimer and small 4He clusters are studied using Monte Carlo sampling techniques. We
consider alternative wave-function forms in order to obtain high accuracy efficiently. For the smaller
systems, both guided and unguided Metropolis walks are used and the effeiencies are studied. Of partic-
ular concern is accurate sampling at small particle separations and the behavior of the local energy in
this regime. As a final step, we compute exact energies by a diffusion Monte Carlo method. We obtais
converged energies significantly below the Green's-function Monte Carlo values, which employed an ear-
lier He-He potential with a slightly shallower well. For He, and Hem, the Green's-function Monte Carlo
energies are reproduced when employing the same potential. However, for the i 12-atom cluster, our
converged energy lies below the Green's-function Monte Carlo value. Second-order estimates of the ex-
act density profiles and particle separation distributions, p. are also determined. For the 14- and 20-atom
clusters, second-order estimates ofp show enhanced structure in comparison to variational Monte Carlo
results. Statistically meaningful oscillations in the second-order estimates of the exact density profils
are not observed.

PACS number(s): 36.40. +d, 67.40.Db, 02.70.-c, 03.65.Ge

I. INTRODUCTION Section VI presents conclusions concerning the wave-
function accuracy and sampling efficiency for a!,* tech-

Atomic and molecular clusters have become of interest niques.
to both theorists and experimentalists (1]. Of particular
concern are structure, phase transitions, binding energies, II. MONTE CARLO
and excitation spectra, and the behavior of these proper- INTEGRATION TECHNIQUES
ties as the bulk is approached.

We are interested in studying atomic and molecular Multidimensional integration is performed by Monte

clusters, both pure and with impurities attached, using Carlo in order to obtain wave-function expectation

Monte Carlo techniques. Such approaches thus far pos values. This is achieved by sampling points,

sess the greatest possibility of yielding high accuracy for R = (Fit r2 ,r . , rv), from a probability density function

theoretical methods. To enhance the capabilities of p (R). Expectation values of coordinate operators A (R)

Monte Carlo for these systems, we consider alternative are then computed as

wave-function forms and the efficient optimization of -

wave-function parameters in studying weakly bound Am -M -V A (RI), (1)

quantum clusters. To start with, we study the H1He
complex ffrom here on 'He is assumed). This system is with I R, I sampled from p. As M becomes large, 7,W ap-
quite useful as it provides a very weakly bound, highly proaches the average of A (R) over pf R).
repulsive potential, test case for the initial wave-function We employ two variants of the Metropolis walk (2,31
form we employ. to sample p. The first of these is the widely used and very

As a further development, we employ diffusion Monte simple "unguided" walk. For a point at R, a new point is
Carlo (DMC). We use this approach to compute exact sampled from a transition probability density T(R-R')
ground-state energies fow helium clusters with the most which is simply constant within a cube and zero outside.
up-to-date potential. In addition to increased accuracy in Thus moves are S: en by
the energy and structurad features such as the density
profile, the DMC approach serves to provide benchmarks R'-= R + A(4'-0. 5 1), (2)
for evaluating wave-function quality. This is pertinent
for the helium clusters for which exact energies resulting where g is a vector whose components are uniform ran-
from the most recent pair potential have not yet been dom variates between 0 and 1.
computed. This "unguided" walk attempts to move uniformly

The remainder of the paper is organized as follows. In. through coordinate space without regard to the form of
Sec. 11 we discuss Monte Carlo integration techniques, 10II. Therefore a more efficient scheme of choosing at-
and in Sec. III the exact diffusion Monte Carlo approach. tempted moves is likely. This is the basis of a guided or
The wave-function forms and optimization technique we "smart" Metropolis walk, which is also known as impor-
employ are presented in Sec. IV. In Sec. V we present re- tance s.mpling. We now choose the transition density to
suits for a range of small clusters (N5 <20 and N = 112). be
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T(R•---Rt)u=(4wr)-'exp(-[R'-R-AF(R)1]/441 - probability density function f--*,*, where + is a trial
wave function. Rewriting Eq. (5) in terms off gives

Sampling from this transition density requires that at DVf+DV-fF(Rli+(EL(R)Eatf, (7)

R'=R+A&F(R)+V'2r. (4) where

The components of X are Gaussian random numbers with H -DV 2 + V, DV 2 = _ {(2mn)" Vi,
a mean of zero and a variance of unity, which we obtain
by the Box-Mueller algorithm (4]. The "guiding force," EL-qs-IHP is the local energy, and once again
F=VIPe2, acts to push moves in the direction of most L= Noti the o enrgy t-and once aa
rapidly increasing I*11. F---Vln'7c 2 . Note that terms on the right-hand side of

The major consideration for the approaches discussed Eq. (7) correspond to diffusion, drift, and branching, re-
here is the value of A which yields the most efficient 1am- spectively. The asymptotic form of f follows fiom Eq. (6)
pling. The optimum choice lies between a small value,
which yields a high acceptance rate but a large degree of f(R,t 0= exp[ - t (Eo - ER ) ]11'(R) 0(R). (8.
correlation between moves, and a large value, which gives When f takes this form, expectation values over fare in-
large attempted displacements but a very small accep- dependent of or, i.e.,

lance rate so that correlation is large. The optimum A is

often taken to be that which yields an average acceptance (A f ff (R,0A (R)dR/ff(R, Od R
rate (or ratio) of roughly 0.5. Here we consider a further
quantitative measurement of the efficiency with which 'f 4(R)R4(Ra (R)A(RdR/ f'(R )o(R)dR.
configuration space is sampled, namely, the average dis-
placempnt of moves during the walk, (AR). (A rejected For A (R)LELI(R), it is easily shown that (El )f=E0,
move contributes a value of zero to this average.) so that the ground-state energy is obtained as the average

of EL over f. The time development of f is given by
I11. DIFFUSION MONTE CARLO f(R',t +-r)- ffdRf(R,)G(R--',r), (9)

Although the Metropolis algorithm provides a means where the Green's function G describes a move from R to
for computing expectation values of a given wave func- R' in timer. The Green's function is a solution of Eq. t7)
tion, accuracy is limited by the quality of 'P. However, with the boundary condition GiR- lR',0)lio R-R').
exact Monte Carlo approaches are well known. These For all but a few simple Hamiltonians, the Green's func-
approaches are often generically referred to as quantum tion is unknown. Here, we employ an analytic "short-
Monte Carlo and fall into two categories, Green's- time" approximation to G which takes the form
finction Monte Carlo (GFMC) and diffusion Monte Car-
lo. The former has been applied to a wide range of prob- G.(R-,R,,r)=(41-DrD)-iN,,
lems and derives from consideration of the time-
independent Schr6dinger equation. Initial work was on Xexpl-[R'-R-D-F(R)]2 /4Dr.
the helium atom [5] and liquid helium [6,71, and later ap- Xexp(-r-[EL(R')+EL(R)]/2-E£1 I)
plications include electronic structure calculations (8,91
and e-omputations on helium clusters [10-12]. (10)

DMC starts with the time-dependent Schr~dinger
equation in imaginary time and has been employed most- The approximate nature of Ga is clear from Eq. (10): dur-
ly in electronic structure calculations [13-17]. Recent ing the course of a move from R to R' in time r, the drift
work has also included helium clusters and other van der [determined by F(R)] and branching (dependent on EL)
Waals species [18-20). The DMC approach we employ are assumed to be constant. While error in G, vanishes
is very similar to that of Reynolds et al. [15] and is out- as "--0 (21-231, for the practical case, i.e., -'#0, the
lined below, asymptotic f only approximates +40, and computed re-

Writing the Schr6dinger equation in imaginary time, suits will differ from the corresponding averages over
t-.t/i, and setting A= I we have +4'~o. This difference, referred to as time-step bias, may

either be removed by extrapolation or made insignific.nt
a8lR,:) by using values of r such that the bias is less than the sta-at =(9 -Elt )@(PR,t). 5 tistical error.

To reduce time-step bias, an acceptance-or-rejection

The reference energy ElR only affects the (imaginary) time step is employed ft5S. That is, moves are accepted %%ith a
dependence of *(R,t). It is easily shown that at large t probability A given by
the ground state dominates, leaving A(RR',1jminllw(R-R'r)1 (1I)

0)= exp[-- t (Eo -E &)]00o. (6) anand
Note that the choice of ER -E0 is useful in removing the IP(PR')'l (R' -R, 7)
time dependence from the asymptotic solution. W(R, - R', r) = 1 G fR

Importance sampling is implemented by choosing a I+(R) 2G.(R--. r)
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Including the factor A plays an important role. As IV ap- ing. As seen from Eq. (10), the branching factor for a
proaches the exact solution 60, the branching becomes move from R to R' is
constant and G. is essentially the transition density given b (R.R')exp( - rl IEL(R' +EL(R)]/2 -Es) (16)
in Eq. (3) with A=Dr. In this instance, DMC reduces to
a guided Metropolis walk and f(=!4012) is sampled Branching may be implemented by obtaining an integer
without time-step bias-for any value of r. Use of A has V =int[b(R, R')+g1, where int(x) is the largest integer
been found to greatly reduce time-step bias [241 because that is < x and where 5 is a uniform random variate uni-
the acceptance-or-rejection step eliminates time-step bias formly distributed between 0 and I so that M =b on
to the extent that %P resembles 00. average, and creating M copies of walkers at R'. Alterna-

We conclude this section with a discussion of several tively, one may assign a weight w(R')=b(R,R')w(R) to
technical details. In the DMC [and Metropolis-walk or the walker at R'. Since M equals b only on average, as-
variational Monte Carlo (VMC)] computations, ten in- signing (or carrying) weights would seem preferable.
dependent ensembles of 100 walkers are propagated in However, carried weights diverge towards 0 or = as the
parallel yielding ten independent estimates, of, for exam- walk proceeds, giving rise to the possibility that an en-
pIe, the energy, from which the average and its statistical semble may he effectively composed of a few walkers with
error are obtained. If greater precision is desired, more very large relative weights. In this event, the sampling is
runs are performed in this manner. This structure is use- inefficient as only a few of the many walkers being pro-
ful in that for each set of runs an estimate of statistical er- pagated contribute to the computed averages. Therefore
ror.unbiased by serial correlation is computed. we employ a combination of carrying weights and copy-

Updating the reference energy ER is useful for minim- ing. Weights are carried unless w < wm,, or w ?! wtv . If
izing the time dependence of the ensemble. For a given either of the bounds are exceeded then .4,,= intlw +g)
number [or population, P(0)] of points sampled from copies are made, and for w > w,,, each copy is assigned a
f(0)= kP4o0 at the beginning of the DMC walk, we have weight of w/M,. For the DMC results reported here,

P(0)----ff(R,Od. (13) w, =0. 1-0.4 and w,,u =2.

From the asymptotic form of f it is easily seen that IV. TRIAL FUNCTION FORM
AND OPTIMIZATION

P(0)=exp[-t(Eo-ER)]P(0) . (14)
A. Trial fuactions

Note that Eq. (14) indicates that an estimate of E0 may

be obtained from the change in the ensemble size over We seek ground-state wave functions for bosonic sys-
time. This estimate, usually referred to as the growth en- tems. Such wave functions are nodeless and therefore
ergy (EG), often possesses a different dependence on the may be taken as everywhere positive. A convenient rep.
time step than does the average of the local energy EL. resentation takes the form
Therefore, to reduce the long-term growth or decay of
ensemble size, at each time step we perform a short run 4'(R)-exp(,Tt(RI], (171
to estimate EG and then set ER equal to this estimate
when computing the reported results, where in the completely general case

Another point concerns the renormalization of the en- Tt(R) (18)
semble population P. Even when ER is equal to the .)r r..8
growth estimate of E0, fluctuations in P arise from fluc- Ui<l<k< .*..

tuations in EG, which are in turn caused by variations in In practice I is taken to be < 3 so that the wave function
the local energy, as the ensemble is propagated. If the is reasonably compact. Since the potential is given by the
statistical error in EG over the ensemble is aEG, then sum of pairwise interactions, we omit T, and instead

from Eq. (14) the relative statistical error in P is seen to start with two-body terms. (One-body terms have been
increase proportionally to time as employed in previous studies of clusters [10,26,27], but

E(15) are not necessary.) We then add on three-body terms for
increased accuracy if desired. This reflects the fact that

iis two-body effects should be most important, especially for
Therefore, in keeping the ensemble size reasonable, it is tobd ficssol ems motnepcal o
Therefultoreinkeepin the ensemlesiron a (backtoP(=100 weakly bound clusters, followed by three-body effects,
useful to renormalize the population [back totPe (= 100) etc.
at intervals during the walk. However, as noted previ- As is common practice, we employ a two-body term
ously [251, renormalization introduces an error which de- which is a function only of particle separations, i.e.,
creases as the frequency of renormalization decreases.
(Generally, this error is not noticeable unless the propa- T2(R)= I t2(rf,rj)= , t 2(r,,) . (19)
gation time between rcnormalizations is very short.) ,.j '.1
Here, we divide each run into blocks, and at the end of (i<i} (i<1i

each block the population is renormalized to 100 walkers. This term is both translationally and rotationally invari-
We vary block propagation times 1l04-106 hartree'1) to ant, i.e.. P,,,,T2=0 and LT2=0, as required for che
verify that "renormalization" bias is negligible. ground-state wave function. Given the importance of

The final point concerns the implementation of branch- two-body effects, it is useful to explore optimal forms for
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t2 . In this vein, H 2He, the first "cluster" in the H2Hey respectively. The short-range form is chosen to be con-
series, provides an excellent test case as a weakly bound stant at large r. Given the form of V at small r, a natural
species with an interaction potential very similar to that choice for *, is
of He-He. Therefore a form of 12 which accurately de- %P,(•)=exp[P(u)], u =P-1
scribes HHe may prove advantageous for the helium
clusters as well.

The initial form of 12 is motivated by our studies of P(u}= k. Xaku
H 2He. For the interaction potential, we use a Lennard-
Jones plus van der Waals fit (28] to the ab initio data of The bound on the powers included in P results from the
V0 computed by Meyer, Hariharan, and Kutzelnigg [29]. desire to limit singularities in the kinetic energy to be no
Since our potential is a function only of the He distance. greater than r- 1 2, given that this is the dominant singu-
from the H2 center of mass, the Schr6dinger equation for larity in our potential [28). A high-quality form of 40t
this system can now be reduced to a one-dimensional was found to be
problem. A numerical solution for the ground state, O'N', ] 22)
is obt3ined wiih the finite difference alg!orithm of Schatz
[30). The next step consists of considering forms for %P Since TI, is very nearly constant at large r, we first fit Pj,
and fitting them to (0,". The accuracy of both the wave- to in["I in this domain to determine a, b, and a. We

function fit and the computed energy expectation value then determine the short-range parameters 10kI by
allow an assessment of the quality of TP. fitting in the highly repulsive and in the well regions.

In determining a useful analytic form for '4, we treat The range of points included in the short- and long-range
the long- and short-range behaviors separately. That is, fits determines the parameters, which are listed in Table
%P takes the form I. We find that the analytic wave function 'P is nearly in-

lqiqr)"qP1 (r)4I,(r) , (20) discernible from the numerical solution , and the en-

ergy is reproduced to high accuracy, -0.02443 versus
where s and I denote the short- and long-range functions, - 0.024 61 K -an error of only 0.7%.

TABLE I. Wave-function parameters.

Cuter
Pa,,trH,Hc He,, He2o HeI,2(T2) He,,,(T, + T,)

a -0.00731522 -0.107061 -0.062 -0.01000 -0.01400
b -1.438143 -1,04666 -1.055 -0.85000 -0.8550
a 1.13839 0.559995 0.545 0.545031 0.545031
ao 0.1536 -1.32361 -1.30801 -1.30801 -1.30801
at -14.04255 -30.1935 -38.8646 -38.8646 -38.8646
a2 121.49628 199.831 310.061 310.061 310.061
a --710.89788 -845.506 -1370.01 -1370.01 -1370.01
04 1726.975 6 1808.98 2484.45 2484.45 2484.45
a --7454.4214 -4354.11 -3674.60 -3674.60 -3674.60
4 0.012 0.012 0.009
0j 1.60 1.60 1.8
ro 5.0 5.0 4.5
4- 0.043 0.043 0.031
Wt 2.025 2.025 2.225

r 3.225 3.225 3.225

'Cluster

Parameter He3 He, He,0

ao -3.2319500 -3.24739 -3.41398
a, -0.0684583 -0.0469850 -0.019 1689
a, 8.55 8.65 9.20
a, 0.8400750 0.914958 0,873 622
1, 0.086 148 1 0.0695676 0.069 1040
to -682.979 -682.409 -675,000
t 588.918 590.085 590.085
t2 -205.068 -203.773 -203.775
tj 34,1321 33.1709 33.163 3
t4 -2.62822 -2.46631 - 2.48577
ts 0.0601202 0.0533509 00588524
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The HHe wave function gives a two-body function, T 3 (R)•Xo [r0(i)- I gol(r,)

t2 (r)=blnr+ara+ - aku A (23) -Xk 2 [l(iW- , ,'(r")r (27)
k -0 j Ij

which we have employed in VMC computations of heli- with
um clusters with and without a H 2 impurity [281. The
form oft 2 is structurally similar to forms used previously r(i)= g ,(r,9 r$, 1=0,1 . (28)

[10,26,27]. The differences are that in the short-range s t,
form all powers of r - I up to five are included here, and In Eqs. (27) and (28), we have
there is an added flexibility in the long-range form, intro-
duced by the exponent a. As discussed above, the short- -rr 1
range component of t2 is based on our H2-He potential "o(r)=(r -roexp -
which takes a Lennard-Jones form at small separations w0

[28]. While the shape of this potential is similar to that r-r P1 (29)

of He-lie [31], the analytic forms are quite different. gi(r)=exp -
Therefore it is of interest to consider entirely new forms [W J "

for t, based on the short-range behavior of the He-He po-
tential. We employ here the most recent HFD-B(HE) po Derivatives of T3 are evaluated analytically. This is actu-
tential of Aziz, McCourt, and Wong [31] for all calcula- Derivater o f it e e ne because Thivais by
tions unless it is explicitly stated that the earlier ally faster than finte difference because derivatives byHFDH2 [3] ptental s usd.,finite difference require three evaluations of the exponen-
HFDHE2 [32] potential is used.. ilinEs 2)%ieaayccoptinrquesny

We give special emphasis to regions of small separation one. in Eqs. a29 ig Thtle analytic computation requires only
because thelocal energy generally possesses its greatest one. Overall, adding T3 to T2 only increased computa-
fluctuations as r becomes small. Therefore a two-body tion time by about 85% for the 14-., 20-, and 112-atom

form which is more physically correct in this domain will clusters.

reduce fluctuations in EL, yielding greater precision, and
hopefully greater accuracy, in computed energies. Our B. Optimizatiom
new t2 takes the form Wave-function parameters are optimized by hand and

t'2(r)=T(r)v(r)+ao+air+rylnr, (24) by conjugate-gradient line minimization. Although
crude, varying parameters by hand is quite useful in corn-

where plementing more sophisticated techniques. Since initial
wave-function parameters are often quite poor, hand op-

v(r)=a, exp( -ar-f6,r 2 ) (25) timization can quickly yield large improvements. The re-

mimics the short-range form of the He-He potential [31], suiting wave function can then be used as input for the

and more sophisticated optimization techniques.
The conjugate-gradient technique [39J seeks a local

minimum by moving in directions in parameter space
Tr)= tr , (26) which are conjugate to each other, leading to efficient

S=O convergence. Essentially, the algorithm consists of suc-

with nk = 5. We have chosen y = 0 leaving only a singu- cessive line minimizations in parameter space. This pro-
larity of r-1 in EL, arising from the kinetic energy. Oth- cedure requires the computation of the quantity being

er permissible values are y < L which give an r -2 singu- minintized and of its first derivatives with respect to the

larity but a finite statistical error in EL. With y =0, toa, wave-function parameters. Here, we consider

negative and large gives a wave function which is very
small but remains nonzero at r =0. This reflects the fact = (4'l[E, _Eg ]2[')
that the potential converges to a very large but finite s= (30)
value at r =0.

Overall, in comparison to Eq. (23), t'2 gives added em-
phasis to domains containing small particle separations This quantity is useful in that one may seek either a
and somewhat less emphasis to large r. It is hoped that, minimum in the energy by choosing E, << (ELt) or in the
by directly including a "potential-like" function in kP, the variance by choosing Ex = (EL ) In the first case.
highly repulsive potential term will be better canceled by minimizing the energy yields global accuracy, and, in the
the kinetic contribution, producing smaller fluctuations second, minimizing fluctuations in the local energy em-
in EL at small values of r. phasizes local accuracy in T4. Since computed energies

The use of a three-body term in ground-state wave are most often compared in discussions of accuracy, ve
functions has yielded significant improvements in focus on minimizing the energy.
d(ýlcriptions of' hoth thc liquid [33-371 and cluscrs [10]. The integrations in Eq. (30) are performed by averiig-
licre, we employ the dcecription of three-hody corrcla- ing over a fixed %et of points sampled from a distribution
tions used previously in microscopic studies cf quantum .qk'2 corresponding to an initial set of parameters [40].
clustcrs 10,26,27,381, namely, Tlhrcictore we minimize the estimate ofs" given by
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M 1trivial. The energy is reproduced reasonably well, the
. [EL(R })-EJ 'Jq'(R, )/I1 0(Ri ,f2 computed value is generally within one or two standard

7) s2 = . (31) deviations of the analytic, and the average error is 0. 1%.
M R/ RHowever, we find sizable errors in (r) and

i (. R)/k 0(Ri)I2  rrmiI(r2 ))1 /2 . The smallest value of A produces errors

of 6% and 7% in (r ) and rrn, respectively. Apparently,

8) The major consideratn for the stability and accuracy poor efficiency in sampling 14'1 2 occurs in this case.
of the optimization is that s. accurately approximate s Upon increasing A to 27 A, giving an acceptance ratio
For this reason the ratio j'f/q'0o

2 is included, reflecting close to the often assumed optimum of 0.5, errors in (r )
the fact that '4 changes as parameters are varied, al- and rrm$ are reduced to 1% and 2%, respectively. In.
though this requires computing parameter derivatives of terestingly, we find that only at a large value of A, 40 A,
IV. To enhance numerical precision, we adjust the nor- and a relatively small acceptance ratio of 0.35, is accura-
malization of TJ so that Yj,',qV/qIo12=M. This is useful cy in (r) and rrms comparable to that of the enea'gy, i.e.,

9) for clusters with more than five atoms where changes in =0. 1%.
wave-function parameters have a large effect on the nor- The average displacement of the moves, (AR ), sheds
malization of TI, because of its product form, and could light on this behavior. We find that (AR ) monotonical-
make itpiqID2 uniformly exceedingly large or small. The ly increases from 2.4 A at A = II A to 4.7 A at A=40 A,
remaining determinant of the accuracy of s4 is the num- correlating with the monotonic increase in the quality of
ber of points in the fixed sample. While a large number (r) and rr $. The fact that the local energy is relatively

y cf points is desired fer high accuracy, M is limited by constant at large r, so that the computed energies are
considerations of computational cost and memory re- only weakly dependent on the accuracy of the sampling

y quirements. Vf is chosen .so that the statistical error in in this domain, readily explains the difference in behavior
the average of EL over the points is significantly less than of the energy versus the coordinate expectation values.
the desired improvement in the energy. We have em- As a precursor to DMC, we also performed guided-
ployed 1000-2000 points for the smaller clusters, He3_5., walk calculations with A=Di- and F=Vlnq''1 2. Note
and 5000 points for He14 and He 2,. that T in Eq. (3) is now equivalent to G., Eq. (10), if the

The final step in obtaining reliable optimizations in- branching is omitted. We now encountered difficulty in
volves updating the fixed sanmple. As the wave function sampling this distribution because of the sharp cutoff at
changes, the points sampled from 1'012 become a poorer small r. In computing at r=5X 104, 10X 104, and

choice for computing expectation values with respect to 20X 104 hartree- 1 , we found large errors in the energy,
SPI'. This is most noticeable when klo is of poor quality 1% for the first two time steps and 5% for the last,

and IP changes significantly during optimization. One despite the large number of points sampled,
manifestation of this degradation of the fixed sample is MV (3 -6) X 107. The behavior of the computed values of
divergence of the energy to unrealistically low values. (r) and rn,, is, however, much different. Good accuracy
Therefore we have found it useful to update the sample and precision are obtained for these quantities at
by using a Metropolis walk to generate a new set of 10X 104 and 20- 10' hartree-.

points sampled from the current wave function (which The reason for the poor estimates of the energy is that
then plays the role of kP0.) Updating is implemented after walkers are either -- ped at smaller separations or else
the energy has converged or when it begins to diverge, they do not sample these domains. This trapping is

While the conjugate-gradient technique has been suc- caused by the guiding force F being excessively large at

cessful for the 3-20-atom clusters, it appears to be much small r, where it is proportional to r 6 , giving acceptance

less practical for larger clusters. (For He,12 we started probabilities practically equal to zero. This in turn yields

with the optimized He 20 parameters and only reoptimized a poor representation of the density at small r which does

the long-range parameters by hand.) As the number of affect the computed energy because of the large magni-

atoms in the cluster increases, the dimensionality of tude of EL there. This is much less significant for r and

configuration space which must be represented by the rZ which are relatively small near the origin. Since the

fixed sample of points increases. Therefore larger sam- effect of F on the acceptance probability is removcd ex-

pies are generally required for the larger clusters. ponentially fast as r-0, the small-r domain is more ac-
curately sampled as r is reduced. However, efficiency is

V. RESULTS AND DISCUSSION reduced at small r because the small average step size
gives a larger degree of correlation between moves.

We now consider the pure helium clusters. These ,s.tems possess a highly repulsive potential as does ll.le

As discussed in Sec. II, wave-function expectation but are more tightly bound. (For example, the binding
values may be computed by the Metropolis approach. energy of He 3 is five times greater than that of 1l1lie I
We first consider H2He. Since the wave function depends This causes the computation of expectation %ahicý 1s in

only on the distance of He from the midpoint of H2, r, unguided walk to be less difficult than for H,Hc. pt,:"iM-

the walk takes place in only three dimensions, r. ably because sampling a slowly decaying distribut'iii at

We start with the unguided walk employing several large r is no longer required. Despite sampling !.,,er

values of A in the range 11-40 A and M-5X 101. We points it calculations on He,,_.., [M =(2-61X 10 t, ý,us

find that sampling 111,12 for such a diffuse system is not 5.X 10' for 1tHc], for each cluster we observe c\,;h, III
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agreement between computed expectation values over a TABLE II. Guided-walk results for He)_s. Time steps are
range of A. For example, with 2.6 < A < 13.2 A for He4 , given in hartree- 1. lengths are In A. and energies are in K.
the maximum difference in ( r ) (the average particle sep. 10-1. (AR) E/N a (E/N)
aration) is only 0.15% and that in the energy is only
0.07%. He)

While computed averages do not vary significantly as 25.00 2.14 -0.0369033) 7.4

A is changed, statistical error in coordinate expectation 12.50 1.60 -0.0367(27) 6.0

values, (r) and R,, [R,.,=,(R 2)/N)"', where 5.00 1.09 -0.0381(14) 3.1

R 2= ir,_Rem )2], decreases as A (and (AR)) in- 2.50 0.80 -0.039 7(16) 5.1• , 1.25 0.58 -0.041 9(7) 4.4
creases. In going from the smallest to the largest values 0.75 0.45 -0.04141(12) 1.1
of A, statistical error in Rr,,,, and (r) is continuously re- Unguided 2.78 -0.041 47M7) 0.14
duced down to a factor of 2 or more, resulting in a four-
fold or greater increase in computational efficiency for He,
these quantities. For the energy, small values of A result 25.00 186 -0.1269(261 7.4
in low efficiency. However, once A, and thereby (AR ), 15.00 1.55 -0 128816) 2.1
is cf reasonable size, statistical error in the energy is no 10.00 1.34 -0.128 1(3) 1.1
longer decreased as A is increased. 500 1.04 -0.132 9(23) 9.2

Overall, we find the average displacement (AR) to be 2.50 0.78 -0.1363(19) 10.7
a useful measurement of the sampling efficiency in that 1.25 0.57 -0.136 1(7) 4.4
larger values tend to give smaller statistical errors, most Unguiaed 2.21 -0.13564 l) 0.2
noticeably for R• and (r). We point out here that the
sampling required to obtain (AR ) to high precision is He,
quite small. Therefore finding the value of A which yields 10.00 1.17 -0.34(10) 200
the greatest average displacement may be accomplished 5.00 0.96 -0.34(10) 200
with very little computation. Finally, as was the case 2.00 0.69 -0.2487(12) 3.4
with HzHe, the acceptance ratios corresponding to the 1.00 0.51 -0.25017(63) 2.2

largest (AR ) were less than 0.5, i.e., 0.38 for He4 and 0.50 0,37 -0.25048(51) 2.5

0.40 for He,. Unguided 1.65 -0.25023(13) 0.3

We now turn to the guided walk, which encounters
difficulty when sampling at small r for HHe and does
not, therefore, appear useful for helium clusters, Howev-
er, since the DMC walk we employ consists of the guided
walk described above with branching, evaluating the
practicality of this guided walk is important in ascertain-
ing the feasibility of our DMC approach for obtaining ex-
act results.

As discussed in Sec. IV, acceptance probabilities in the
guided walk globally increase as the time step is reduced.
If a time step can be found which is small enough to re- 7 ',

move trapping at small r, so that convergence in sam- -<
pling )I'Iz can be obtained, without excessively degrading 0_
sampling efficiency, DMC may be practical for helium •O6
(and other) quantum clusters. Therefore we now deter-
mine values of 7 which yield high accuracy in the guided
walk for He3 -5 .

Table II presents guided-walk energies and statistical .

errors (per point sampled) for He 3_5 at several values of r.
The effect of trapping is immediately evident from the
data in Table II. At the larger time steps the energies are . 2 2.1 2.2 2.31.9 2 2, 22 z
of poor quality. In these walks we have observed that (A)
atoms which are too close together do not move during r
the entirc course of a run. (Trapping is found by record-
ing the number of accepted moves for each particle.) As FIG. 1. Convergence ofp(r) at small r in the guided walk for
the time step is reduced, particles are no longer trapped lIle. The solid line I-- ) is the unguided walk. the chain-
throughout the run. The result is a noticeable (and for dashed line (----(is the guided walk at r=50000 hartree-',
Hei a dramatic) improvement in the energy. Finally, we the long-dashed line (- - -) is at -=25000 hartree- t , the
see that at sufficiently small time steps, guided-walk ener- ,tihi,-dashted line t- - -) is at r= 12 500 hartree - and the dotted
gies are in tAcellent agreement with those computed by line (..is at r 75DO hartree-1. Note the improving agree-
the unguided approach. ment )'cix•,..i unguided and guided as the time step for the

The small-r behavior of the sampling, and its depen- tittcr is reduced. The guided-walk energies follow the same
dence on r, is illustrated in Fig. i. This figure compares trend. t ce Table 1t.
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the probability density functions p (r) at small particle values of ( AR ) are obtained which are a factor of 2
separations (r) corresponding to several values of -r, with greater than the maximum obtainable in the unguided
that of the unguided walk for He. Fluctuations in p indi- walk. However, the statistical error in the energy shows
cate trapping in certain regions and lack of penetration little variation among the unguided, weighted, and
into others. These fluctuations decrease as r is reduced, damped approaches. On the other hand, guided-walk
resulting in convergence to the unguided probability den- statistical errors in both (r) and r,, are about 25%
sity function and agreement in the computed energies. lower than those of the unguided walk.

It is important to point out that the error in the energy For the second test case, He, 12, only the damped force
at the larger time steps is not systematic. The trapping of approach was compared against the unguided walk.
points, or conversely the inability to sample certain While exhibiting no trapping, the damped force walk
domains at small particle separation (for a practical yielded no increase in efficiency over the unguided walk.

;.x .ount of sampling), will result in energies either too Therefore we conclude that the simple unguided walk is
high or too low, depending on the sign of the local energy zompetitive with the guided-walk approaches studied
at small r and whether p is too high or too low. For the here.
same reasons. statistical error may be artificially high or
low when obtaining an accurate representation of p (r) at B. DMC Computations on helium clusters
small r is problematic.

For purposes of comparing efficiency with the unguid- For the DMC walks, inaccurate sampling at small P
ed walk, the statistical error in the energy per point sam- can have an effect significantly greater than that observed
pled, a, is presented in the last column of Table 1I. For for the guided walk. If points are temporarily trapped in
-f points, or is equal to the statistical error in the average a region where the local energy is very low, as we have
times v A. This statistic depends on the sampling seen can easily occur at small r. the branching factor will
inefficiency of the algorithm, i.e., the degree to which suc- be very large, resulting in a quickly increasing number of
cessively samnpled points are correlated, as well as the walkers at small r. Although the particles trapped at a
nonconstancy of EL, which is determined by the wave small separation may move to larger r after a short period
function. Since q, is the same for the computations on a of time, the continuous generation of new walkers at this
given cluster, algorithm efficiency may be directly com- point will yield a high degree of oversampling and there-
pared. Table II shows that while agreement with unguid- by a highly biased (too low) energy. Therefore, at a given
ed energies is obtained by the guided walk at sufficiently time step, trapping may not be problematic for the guid-
small 7, the unguided walk is consistently more efficient, ed walk but nevertheless gives instability in the DMC ap-
with a an order of magnitude smaller, yielding a decrease proach. So we expect that smaller time steps will be re-
in computational efficiency of two orders of magnitude. quired to obtain convergence in the DMC walk than in
Correspondingly, for the guided walk at the smallest time the guided walk. This is investigated below.
step, the average step size ((,%R )) is four to five times Given the instabilities possible in DMC, we take two
smaller than that for the unguided walk. Nevertheless steps to monitor the behavior of the walk. First, we al-
the guided walk still gives good precision for reasonable low the ensemble to only reach twice (or four times for
computational effort. If this is also the case with the the larger clusters) its original size. If the maximum en-
DMC approach, the increase in accuracy will be well semble size is attained, this event is recorded and all
worth the computational effort, weights are carried so that the copying of walkers is no

The guided-walk approach we have employed is longer employed. To some extent this step controls insta-
inefficient because of the rapid increase in the guiding bilities arising from trapping in that the continuous repli-
force as atoms coalesce. This suggests that a guided-walk cation of trapped walkers is not permitted. Additionally,
approach with a better behaved force will not encounter if the weight of any walker exceeds a given value (10), the
the difficulties found here. We have investigated two weight is recorded in the output file.
such choices in a few selected applications. The first, Results for the energy and its growth estimate EG are
";ieighted unit force," approach simply employs cF, in presented in Table III and plotted in Figs. 2(al-2(c) for
place of F, =V, ln4 2 when moving particle i. Thus the He 3 -5 . Block length, on the order of 10&_ 106 hartree- ,
direction of the original F is preserved while its magni- was varied by factors of 2-4 resulting in no significant
tude c is held constant. In the second, a "damped force" change in the computed energies. Also, maximum en-
approach, X,F, replaces F,, where semble sizes (200) and excessive weights (10), while found

exp : at the larger time steps, were not observed at the smaller
=t I), (32) :last two or three) values of r. Given this, and the statist-

icl agreement of the energies at the smaller time steps,
and ao in 1z becomes an adjustable parameter. Once the DMC energies we have computed are deemed to be
again, the direction of the force is left unchanged but now well converged. However, we do see that much smaller
its magnitude is most greatly affected only in the trapping values of r are indeed required than was the case for the
regions, i.e., I",F,! -- 0 when 'V--.0. 'uidcd walk; approximate comparisons are [000 \et,us

For the H 2He test case the parameters governing the 12 500 ha-tree 1 for HeI, 1500 versus 25000 hartzee
force, c and a 0 , arc varied together %ith - to obtain max- fo•r tle4 , and 1500 versus 10000 hartree-' for He. c,-,,rn-
imum (,IR ), which is roUghly the same for the two guid- pare Tables It and 1I1).
ed walks. Trapping is not observed in either case and ULmrigar, Runge, and Nightingale have recently de-
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TABLE II1. DMC energy vs time step for He.5. The average of the local energy is E and the
growth estimate is Ec. Time steps are given in hartree-, lengths are in A, and energies are in K. AR
denotes the acceptance ratio.

10-17 AR R) E/N E, /N

He 3

4.0 0.9963 0.62 - 0.048 6(14) 0.044 7M7)
3.0 0,9975 0.54 -0.0462(7) -0.044 2(35)
2.0 0.9986 0.44 -0.044 33(16) -0.04406(17)
1.0 0.9995 0.31 -0.04409(18) -0.043 98(17)
0.5 0.9998 0.22 -0.04428(20) -0.043 93(23)

He4
5.0 0.9908 0.69 -0.1750(90) -0.1455(7)
2.5 0.9965 0.49 -0.151 4(38) -0.1454(6)
2.0 0.9975 0.44 -0.149 F16) -0.1457(7)
1.5 0.9983 0.38 -0.1445(3) -0.1448(4)
1.0 0.9991 0.31 -0.1445(3) - 0.14." 44 3)

He,
2.0 0.9963 0.45 -0.282(13) -0.268 2(g)
1.5 0.9975 0.38 -0.2683(5) -0.2675(4)
1.0 0.9986 0.31 -0.267 3(11) -0.2674(10)

scribed a DMC approach which controls the magnitude hartree'), stability in the DMC energies, weights, and
of F near its singularities and yields a better approxima- ensemble sizes is obtained. Therefore, while the required
tion to the Green's function in this domain [41]. It will time step for unbiased energies is greatly reduced for
be of interest to see if this method %ill reduce time-step DMC versus the guided walk, this is not the case for
bias, and thereby increase efficiency by allowing greater larger clusters versus smaller clusters. Unbiased energies
values of r, in DMC computations on helium clusters. are obtained at -= 1000-1500 hartree-1 for 3-5 atoms

Neglecting the different time-step scales, the behavior and =' 500-1500 hartree-t for 7, 14, 20, and 112 atoms.
of the DMC energies is very similar to those of the guid- (Here, absence of bias, i.e., it being masked by statistical
ed walk. In essence, both walks are affected by trapping, error, is relative rather than absolute. For example, a
which is magnified by the branching in the DMC walk. bias of 0.005 K is very large for He3, 11% of E/N, but on
As was also the case for the guided walk, the coordinate the order of the statistical error for H11,, 0.1% of E/N.)
expectation values, (r) and Rm,, were not visibly This is explained by the fact that convergence in DMC is
affected by r. This is not surprising as these quantities most affected by trapping combined with large fluctua-
are only weakly influenced by sampling accuracy at small tions in the local energy at small r-effects which are
particle separations. This lack of time-step bias is also governed mostly by the wave-function form rather than
seen for the particle separation density functions p(r) (ex- by cluster size. Total computational cost was roughly 2,
cept of course at small r), as well as for the density 4, 5, and 17 Cray X-MP14 CPU hours for N=7, 14, 20,
profiles. and 112, respectively.

Computational cost in obtaining converged DMC ener- The DMC results are summarized and compared to
gies was large but not excessive. While He 3 presented an GFMC [10,11] and other recent DMC results (18] (He, 0
especially difficult case requiring five Cray X-MPI4 CPU and He,,,) in Table IV. The results we compare against
hours for all (not each) of the time steps, He4 and He5  were obtained with the HFDHE2 potential [32] which
took only one and two hours, respectively. As for HzHe predates the most recent, HFD-B(HE), potential [31]
at the VMC level of theory, the smallest and most diffuse used here. The two potentials possess practically identi-
cluster gave the greatest difficulty in obtaining the acet- cal functional forms but with different sets of parameters.
racy and precision desired. Perhaps most significant is the 1.3% increase in well

Having successfully obtained converged energies for depth. For the unit radius, r0 =v'5/-/3R,.,/Nt/3, we eam-
the smaller clusters, it was of interest to see if this could ploy a "second-order" approximation of exact expecta-
also be achieved for the larger clusters. We found for tion values (7] defined as
He.v,, N= 7, 14, 20, and 112, DMC energies converged at
about r=500-1500 hartree-t. Even at the largest time (A ) 2(%PjAAo .4 I /(q,16o)-("l'AI4') - A3)
step of 2000 hartree-e, the energies were very close to
those computed at the smallest values of r. Overall, the %itht -I =R'. Writing 1=6' +6 shows that ( A ), differs
dependence nf E/N and E,./,N versus the time step mim- from the exact value, (6,I .. i,3o), by integrals invol ing
ics that of the smallcr clusters. At "larger" 7 ( =2000 62. ýThis approximation is uscful when A does not corn-
liartree 1), bias is noticeable and large weights and flue- mute with the llamilttoian. Methods for comptoling
tuations in ensemble size occur. At "smaller" r ( 1000 ({bo ..1 6 .I ) have been described elsewhere [42,431.)
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The DMC energies we compute with the HFD-B(HE) tial in their study of liquid 4 He, obtained a 6% decrease
potential are significantly below the GFMC energies re- in the energy for a 1.9% increase in the well depth [44].
suiting from the previous, HFDHE2, potential. The rela- Upon considering He,12 and comparing with the DMC
tive discrepancies tend to decrease with increasing cluster energies computed by Chin and Krotscheck [18] (CK),
size. For He 3 our energy is 13% lower than the GFMC employing a DMC algorithm different than our own [45],
value while for He,4 and He, 0 the differences are only discrepancies not attributable to the potential arise. For
3.3% and 3,7%, respectively. However, as seen in Table He20, we see in Table IV that CK's energy is 2% below
IV, for He 3 and He 20 our DMC energies are in excellent both our DMC vnd the (;FMC values, when all three cal-
agreement with GFMC when the same potential culations employ the same (HFDHE2) potential. For
HFDHE2) is employed. In contrast, our HFDHE2 ener- He,, 2, further disagreement occurs with the same poten-

gy does not agree with GFMC for He11 Z. The new poten- tial as our and CK's energy lie roughly 2% and 3%, re-
tial lowers our He,, 2 DMC energy by 3.2%. Such sensi- spectively, below GFMC. This is not readily explained
tivity to small changes in the potential has been observed by statistical error which, for both GFMC and DMC, is
previously. Kalos et aL., employing the HFDHE2 poten- an order of magnitude smaller than these differences. It
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tion has equilibrated. This was done for Hel, reducing same potential. The difference between our VMC and
the discrepancy between the two energy estimates from DMC values is only 0.6%, implying an error of much less
0.9% to 0.5%, thereby giving near statistical agreement. than 0.6% in the second-order estimate. Statistical error

For the unit radii ro, we first compare our DMC and in the second-order values, 0.003 A or less, cannot be the
the GFMC values for Hej and He2o computed using the cause of the 2% discrepancy between second-order DMC
same potential (Table IV). While agreement is observed and GFMC.
for He,0, a large difference of 8% is seen for He 3. This The unit radii computed by CK differ slightly from our
difference is well beyond our statistical error of 1%. (Ex- own, 1.5% below fc: He 2o and 0.8% above for Hej1 2.
cept for Pe 3, statistical error in DMC values of ro is well These differences are most likely caused by the differences
under 1%, i.e., 0.01-0.02 A.) Furthermore, this in the DMC solutions obtained, as reflected by the ener-
disagreement with GFMC does not appear to be caused gies, rather than by the second-order approximation.
by error in our second-order estimate of r0 . The error in This is supported by the fact that CK also obtain very
the second-order estimate of ro, (bIR 215), should be guod agreement between their VMC and second-order
less than the difference between the VMC and DMC unit radii.

. ('R 2"1'), which is only 2%. For the largest Finally, in comparing results using the HFD-B(HE)
cluster, N =112, disagreement resurfaces when compar- potential for Her 2, -e note that the difference between
ing our value of ro against GFMC obtained with the VMC and DMC is only 0.6%. Therefore, in this case, we

':) (b)
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FIG. 3. VMC and %ccond-order dctnsity protiles ror (a) He,, r=.500 hirtree 1, {b( 1))le,, 7=- 00 hartree-t() ( le.0 . r -7- har-

tre'e '_.n.d 1d; ie, r ]W)0oh:irtree '. 'The doticd line is the V MC and the ohdhlin is the second-ordcra3pproxmfinition to the• e
act ý1-. 133)1. The straight lilne in kd) represctnts the expcrinlcunal liquid-hlichu n density ot-0.021 85 A ~.
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also expect our computed value of ro to be accurate to Therefore we expect an accuracy of at least 3% in our Cs-

the number of figures shown. The'change in ro on corn- timates of ro. However, the accuracy is probably much
paring the old- versus the new-potential values (2.396 better; for He3 0.5% agreement is obtained from wave
versus 2.390 A) is only 0.3%, significantly less than the functions with noticeably different VMC values of r0,
1% difference we find for He 2o. In all cases where corn- 5.50 and 5.74 k, i.e., above and below the estimated exact
parison is made, ro is reduced when employing the poten- value.
tial with the deeper well, as expected. This effect de- Figures 3(a)-3(c) resent VMC and second-order
creases by an order of magnitude, 3.8% to 0.3%, in pass- (r=500-1000 hartree-1) (see Eq. (3))] density profiles
ing from three to 112 atoms and contrasts with the for He2 , HeW4, and He,0 . The bin sizes are very small,
change in the energy, 13.2% to 3.2%.. 0.026 A for He 3 and 0.019 A for Hei, and He2&. This a]-

Of greater interest is the reliability of our reported esti- lows for very fine detail in p, and although there is
mates of ro obtained with the most up-to-date potential. enhanced statistical error near the origin, it remains
We have found that the differences between VMC and below 10% down to about 0.2-I A*. We see for these
DMC reach a maximum of only 3% (He4 and Hce). clusters, as well as for the other clusters not shown, that
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es- the qualitative behavior is unchanged between the VMC 6
Ich and second-order profiles. The sharp increase in p near
Ave the cluster center for He3, which we first observed at the 5-
ro, VMC level of accuracy and which arises from a
act significant contribution of near-collinear configurations

to the density [28], remains in DMC. For 14- and 20- * ., 4,ler atom clusters, very little structure is evident. The He1 4  &I /
Jes density rises slightly near the origin while that of He2o 0 [

tll, reaches a constant value at about 2.5 1 and then fluctu- (-'/al- ates about 0.019 A -3. This is in good agreement with
is GFMC [10] and the oscillations seen by CK are not ob- 2
as served here.
se VMC and second-order (r=500 hartree-t) densityat profiles for He, 1 are computed with a bin size of 0.13 A ..

and are presented in Fig. 3(d). The experimental liquid- .,-/
helium density of 0.02185 A 3 is shoin for comparison !.a i.. 2
as a solid line. Statistical error is 10% for the points
nearest the origin, then decreases rapidly at greater dis- r'(A)
tances, and finally begins to rise near the cluster edge,
reaching about 10% at 1! A. Unlike any of the smaller FIG. 5. VMC -- and DMC plots 5fp0r 0 at short range
clusters, structure in the density profile now appears to be He, at r- 2000 ( .... •. 1000 ( - - - I, and 500 - - har-
present. However, further analysis indicates that the tree
fluctuations at R <5 A are statistical. Only in a very
small region, 2.10-2.35 A, is statistical error (4.5%) a sharp increase in p at about 2 , [281 which is not evi-significantly below the deviation from the liquid density dent in GFMC [10].
(6%- 10%). Thus, out to 4.8 A. the density is very nearly In order to gain further insight into cluster structureconstant to within reasonable statistical error (under 5% and its changes as accuracy is improved from VMC tofor R > 1.5 A). However, a shoulder is present at 6.2 A the second-order approximation, we compute particlewhere statistical error is very small, 1.5%. Further out, separation probability density functions p(r). Figuresanother shoulder at 9.6 A is barely discernible. This is in 4(a)-4(c) present VMC and second-order plots ofp (r) forgood agreement with CK (bin size is 0.24 A), who also He,, He14 , and He,,. For He,-,, qualitative distinctionsobserve shoulders in these regions. We have also com- are not discernible between the VMC and second-order
puted a second-order density profile for He1 2 employing density functions, just as for He,. For those clustersthe HFDHE2 potential. The results are very similar to which show structure in p with VMC, He14 and He,0,those we obtained above. qualitative differences between VMC and second-order

In summary, our second-order densities for N = 14, 20, densities are now apparent. We see that the impliedand 112 rise up to their central values at some distance shoulder in p found by VMC becomes much more pro-from the origin. The value of this central density and the nounced as we progress to the second-order level of accu-
distance to which it extends increases with cluster size.The e14cental ensty i clarlybelw tat o Iiuid racy. It would be interesting to see if this onset of "shell"
The He,, central density is clearly below that of liquid structure is progressive or abrupt as cluster size is in-helium and p begins to drop off at about I A. That of creased from 7 to 14 atoms. We point out once more thatHe 12 is in good agreement with the liquid.He density both p and p are essentially independent of the time stepand extends out to about 4.5 A while the He,0 case is in- employed (for the range of r we have considered). Thetermediate between He14 and Hel 2. These conclusions exception of course is forp at small r. An example of thisdiffer from those of CK, who obtain oscillations in their is given in Fig. 5 which presents the VMC and sc, eraldewsity profiles as the origin is approached for both He, 0  second-order estimates in the region p~r)/p,• < 5X 10and He,12. We see no such oscillations for He, 0 while for He14 . Note that by r= 1000 hartree convereence is
those of He,1 2 are mostly removed upon considering the quite good, as is the case for the energy. (See Table IVsmall (2%-5%) statistical error. However, we do see and associated discussion.)
shoulders in the He, 2 density at larger R.

For all clusters, the quantitative differences between C. New two.body form and T3the VMC and second-order density profiles are not large.
The small changes we observe in passing from VMC to We have employed our new two-body form, t'r, 'qe Eq.second order lead us to believe our estimate of exact den- (24)), in unguided-walk computations on He., .N = ]3, 7,sity profiles by second-order profiles is well justified (see and 20. For each cluster the same value of A is emplo.ed
discussion concerning the unit radii). Comparison for t2 and ti. We find that t, yields the best energy foragainst density proliles computed by VMC [26] or He1 , 5% below that of tr. However, for the larger clus-
GFMC [101 shows little variation in the central density, ters, small hut significant (i.e.. well beyond statistical er-
dr,,pite the different putcntials and wave futctiotis ci- rtir) reductions are obtaiiied with t, i.e., 2% for 1Ie. .1ndployed. A major difference does arise for He, which has I% for He-,. For He 3 , the most diffuse cluster. '!;c re-
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duced flexibility of t, in describing long-range behavior is In the last two columns of Table V, percent differences
significant. In addition to yielding a poorer energy, t1 between VMC and second-order unit radii r. are listed
also gives an unrealistically low unit radius. For the for the T, and T 2 + T3 wave functions of He14, He,0 , and
more tightly bound clusters, for which short-range in- Heil.. We expect these differences to be good estimates
teractions are more important, an improvement with £i is of the deviation ¢rom exact values, given our confidence
obtained. Also, 1, yields a 30% reduction in statistical in the accuracy of our second-order estimates of ro, see
error in the energy, even for HeA, presumably by better Sec. V B. In each case agreement with second-order esti-
describing the short-range behavior where the local ener- mates of r0 is noticeably enhanced upon addition of the
gy possesses its gre!atest fluctuations, Consequently, we three-body correlation functions. The result is that very
expect that further accuracy may be obtainable by in- good agreement 117%) with estimated exact unit radii is
creasing the long-range flexibility oft'. obtained at the VMC level of theory with the three-body

In addition to seeking better two-body wave functions, wave functions. The exception is again He. 0 with a VMC
accuracy can also be increased by including three-body value of ro differing by 3% from the second-order esti-
fand higher) effects, as discussed in Sec. IV A. We treat mate.
here the larger clusters, whose wave functions should
poswse, the greatest need for three-bod% correlations. For Vl. CONCLUSIONS
He,4 and He,0 , the initial parameters in T, 0t, here) are
obtained from a conjugate-gradient optimization. For We have studied wave-function forms and Monte Car-

Helt2 initial parameters are those for He,0 and are then lo integration techniques for HHe and Hev,

•aried by hand. As seen in Table I. optimization resulted N =3-20,112. As a very diffuse system with a highly
from changing only the long-range parameters. Upon ad- repulsive potential, HHe presented special difficulties for

dition of T.,, parameters are varied by hand in a set of the VMC computations. While the VMC approaches
short Monte Carlo runs. At this stage, only variation of used here are wvithout bias, errors in computed quantities
the T. p•rameters and of the long-range parameters in can arise for a finite ivet large) amount of sampling if

Twas found to be fruitful. Despite the approximate lev- efficiency is sufficiently poor. Therefore only for veryT o a, aas found gnibefruictl Despition the approxtenergy is large attempted displacement sizes A is good accuracyel of optimization, a significant reduction in the obtained in the unguided walk. Furthermore, these
observed in all cases. The optimized T3 term yielded values of A correspond to acceptance ratios of 0.35-0.40,
about a 6% improvement in the energy for He,, and well below the often assumed optimum of 0.5.
He, 0. As expected, the He,,, energy is reduced by a Despite the increased dimensionality in comparison to
greater amount (9%) than for the smaller clusters. The H,He (3.V versus 3). the less diffuse helium clusters are
final result is that the VMC energies of the N = 14, 20,
and 112 clusters are quite good; 96.1% of the computed much more amenable to Monte Carlo integration. For
eact112alusters oarequined for ; 96e17r, a this decra tes o the unguided walk, consistency in computed expectation
exact value is obtained for Her, and this decreases only values is obtained over a wide range of A. However, we
by 1.5% upon going to He,, 2. do find that statistical error in both (r) and in R*,, is

Wave-function quality is also improved in other
respects. The data listed in the middle of Table V show noticeably lower at large A. Once again, these values of

tha th reatie satiticl erorin he nery dcresesI n A corresponded to the largest aserilge displacement of anthat the re.oThe statistical error in the energy decreases in attempted move. ( AR ), rather than to an acceptance ra-
every case. The increased computation when T) is in t the tio of 0.5.
wave function ranges from 82% for Hel4 to 88% for Directiv including importance sampling by using a
Hell.. Allowing for this, the efficiency (the inverse prod- walk guided by F=V 41!* yielded inaccurate H1 He ener-
uct of the variance and the computation time) in comput- gies. Although most of configuration space was well sam-
ing the energy is increased by a factor of 2 for Het and pled, as indicated by accurate values of (r) and rr,,,
He,,2 . Interestingly, however, efficiency is decreased by large values of the force F caused trapping at small r.
19% for He10. This contrast with the He, 4 and He,,2  The resulting inaccuracy in the density gave rise to
cases may arise from incomplete (hand) parameter optim- significant errors in the computed energy because, a!-
izýýtion or from use of the energy, rather than variance, though the wave function is small, the large magnitude of
minimization criterion. It could also be magnified by the the local energy at small separations requires accurate
generally large uncertainties in computed statistical er- sampling in this region. Howevcr. trapping is readily cir-
ror. cumvented by employing a better behaved force. T\-o

such approaches, which still direct mo' es toard a local
TABLE V. Accuracies and precisions for twvo- and three- maximum in tF02, were applied to HI-He aiid He,, 2.

body wave Functions. Compared to a|n unguided walk, efficiency was increased
Jlightly for H.He but not for He,, 2 .

Accuracy in E/N a(E/.V)/(E/N) Accuracy in r,) As seen for H.He, errors in the energy arise in a Nalk
_ _%1_gu _ _ gidcd by F = V In lWI due to poor convergence at small

N TT ,:±T1  r 7 J":-T, T1 T2 +T r w hich is practically inuinittcl long unless r is ýcry
14 9.5_6.1_._ 0__52_ _ 3 1__.2mll In light of the desire to compitte exact energcis by

14 90.5 96.1 1.00 052 32 1.2 l)\IC. hoeveer, it ss of interest to determine lic
20 85.7 95.3 0.93 076 47 2.8 2,m:in of a at which hioh accuracy could be obtained by

14 t l __ .9 1.2__ _vz~ . hI,,S 41 'iticd walk. We find ihat, though unitiallv qinte
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s poor at large r, accurate energies are obtained at smaller 3.8% for He 3 to 0.3% for He1 12. Finally, as do CK, we
6i alues. "Convergence" in the guided-walk energies is see fluctuations in the He, 12 density profile which have
directly correlated, as expected, with improving accuracy not previously been observed at either the VMC or

s in p(r) at small r as the time step is reduced. This was GFMC level of theory. However, our fluctuations at
e also the case in the DMC calculations, demonstrating small R are beneath statistical error as differences from

that accuracy in the (DMC or VMC) energy is critically the liquid-helium density are generally less than one stan-
dependent on the sampling at small r. In light of this dis- dard deviation in this region, R <5 A.

e cussion, we point out that a DMC approach similar to In an effort to improve accuracy at the two-body level,
y that employed here but which bounds the magnitude of F we have studied an entirely new form describing these
s . near %V=0 has been described recently [41] and may be of effects. This form gives added emphasis at small r and
y use for the systems studied here. contains a factor which mimics the potential in this
C Although small time steps are required, well-converged domain. Optimized wave functions for He 7 and He.,0
i- DMC energies have been obtained for Hey, gave slightly improved energies, despite the reduced flexi-

N =3-5,7,14,20,112. The steps taken to ascertain con- bility at large r. For the more diffuse He3, the older form
vergence, variation of the time step and block size, com- gave a lower energy. In addition, statistical error in the
parison of the local and growth energ) estimates, and energy was reduced by about a third. It is expected that
convergence of p at small r, all support the reliability of a better description of the long-range behavior will yield
the computed energies. As we have already found with further improvements.
VMC for He 3 and He4 [28], energies well below those of In order to investigate the accuracy obtainable by

v GFMC [10,11] are obtained. For He 3 and Heo, these current VMC approaches, a three-body factor was added
)r. discrepancies are clearly caused by the use of different to the 14-, 20-, and 112-atom two-body wave functions.
.S potentials. It is reasonable to conclude that this is also Substantial improvement in the energy is obtained, and
's the case for all the 3-20 atom clusters studied here. The for He,4 and He1 12 an increased efficiency in computing
if agreement we obtain with GFMC for an identical poten- this quantity also results, despite the greater complexity
V tial leads us to believe in the reliability of our DMC ap- of the wave function. More sophisticated optimization
Y proach and the exactness of our computed energies with algorithms for the parameters in T3 may yield a further
;e the most up-to-date potential. However, energies below lowering of the VMC energy. It also remains to be seen

GFMC (but with the same potential) have been obtained whether t', combined with T 3, will yield better agree-
by CK using a modified DMC approach for He., N =20, ment with exact energies, and whether the use of such

o 40, 70, and 112 [18], and by us for N = 112. While the complex wave functions will be advantageous for DMC.
-e discrepancy between DMC and GFMC is smaller in our
)r calculation than in CK's, our energy is still significantly
n lower than the GFMC result. Further disagreement ACKNOWLEDGMENTS
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