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High-frequency bistatic reverberation from a smooth ocean bottom
S. Stanic, E. Kennedy, and R. I. Ray
Naval Ocean and Atmospheric Research Laboratory. Ocean Acoustics Division, Stennis Space Center.
Mississippi 39529-5004

(Received 17 July 1992; accepted for publication 23 December 1992)

High-frequency bistatic reverberation was measured from a smooth, sandy, featureless bottom
located 19 miles south of Panama City, FL. Bistatic scattering variability is presented as a
function of frequency (20-180 kHz), grazing angles (9.5'-30'), and small horizontal and
vertical bistatic scattering angles. Results show that bistatic variabilities tend to decrease with
decreasing grazing angles and decreasing source beamwidths. Possible explanations for these
decreasing variations are also presented.

PACS numbers: 43.30.Gv, 43.30.Ma, 43.30.Hw

INTRODUCTION surements were made as a function of frequency (20-180
kHz), grazing angle (9.5'-30'), and small horizontal and

Active high-frequency shallow-water sonar applica- vertical bistatic scattering angles. Levels at each hydro-
tions require high-resolution characterizations of ocean phone were compared to levels at a reference hydrophone
bottom reverberation, including estimates of both mono- and the difference presented as horizontal and vertical scat-
static and bistatic scattering strengths. Bistatic scattering tering strength variations. Monostatic scattering strength
may be the dominant mechanism that degrades interele- results are given in Ref. 15. These bistatic results are com-
ment and interbeam receiver coherence that sets limits on pared to similar bistatic results reported by Stanic et al...
array processing gain. Possible explanations for the observed results are also pre-

High-frequency bottom scattering as a function of fre- sented.
quency, grazing angle. pulse length. and environmental
conditions have been reported bN numerous authors. It . EXPERIMENTAL MEASUREMENTS
However. these authors have not reported any bistatic re-
sults. Nolle et al. made a series of scattering measure- The experimental area was located using side scan so-
ments in a sand-filled tank using separate transmitting and nar surveys and underwater television scans. Small-scale
receiving systems hut reported only monostatic results, features of the experimental site %ere characterized using
Urick•- conducted a series of bistatic measurements in two data provided by Stereophotography arid sediment core
areas off the coast of Florida. In both areas. Urick found analysis. These techniques are outlined in Ref. 16. 1istatic
that bistatic scattering showed little dependence on bistatic scattering measurements %ere made using a 12 h.dro-
angles. A series of small angle bistatic measurements taken phone tv.o-dimensional spatial receiving array and a pair of'
east of Jacksonville. FL. was reported by Stanic t a!." nonlinear parametric sources The orientation of the re-
These results also showed little dependence of histatic scat- ceiving arraN arid sources %%ere controlled bh a three-axis
tering on bistatic angles. Howeser. variations in histatic positioning sstem. The positioning system was mounted
scattering strength decreased with decreasing grazing an- on top of a 7.6-m-high undersea to%%er Figure 1 shoxs the
gles. A %keak bistatic scattering frequency dependence was configuration of the transmitting and receiving arrays The
also reported. 450-klit source transmitted ditfference frequencies het\.een

Zabul et aL.' and Martin ' conducted a series of the- 180 and 40 k1,'/WB Widebean m). The 251)-k11, sourcc
oretical investigattons into the angular and frequency transmitted diflerence frequencies hbet.een t)() kf,, NI3
spreading of an acoustic field scattered from a rough sur- (narro% heam) and 20) kilti Ieamandths for both sour•es
face. Neither Zabul nor Martin compared their results to ire gien on Table I Source le'.els ranged forn I• O dli r,
experimental data. Recently. Restrepo and McDaniel" de- I IPA at 20 kilt to 214 d13 rr I )I'A ;ii ISO) kilt lh'
veloped two spatial co%artance models and compared their mneasuremernts ,4ere made using 5-ins-long c\%' pulse,,T he
out-of-plane scattering results using flat surfaces and rough roce;\ tiug h\drophones \kere i D1( ) model fthN1 oni(tdlircL-
surfaces with Gaussian roughness spectra Comparison of ttonal unilt %,ith integrated filter,, and preamplhticr,, Data
intensit. %as gxid only if the surface %kas very rough. or from each ,,t the 12 hydrophore•s '•%crc hasc handed to 5
the direction specular The results were presented for large kit/ and simultaneouslwd digitl/td at 20) kil/ Ior each h\-
histatic angles arid made no data comparisons. Ellis and drophonc ý hannel and c\.ertmentctal contiguiraltoni. 0( scat-
Crote"' calculated histatic re•erberation using a three- tered %ignal cinclope% \Acre i•.cagedt, ma nica ci'elope
dimensional scattering function but made comparisons lIcel \,as estimnated irund the oahnda;rtl dciiin tttn lalcd
only to measured low-frequency, deep-water reverberation I igure 2 is ai s•heniail of the hc rn/tonial anrd \,ritial

This paper presents high-frequency small angle bistati. scattering geornetiry I htiange ilo liongthe niah\irnurn Ic

scattering results from an experiment conducted in a flat spouns a\. s MR.\ r , I thie ,souc iý gi%.cni h% R Ihcre, R
sand, area I4 miles south of Panama (itv. FI These rhca- and R,, ire the nAinges het '•nec the hyItrophocti, anid the
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estimated center of the insonified area (A). The horizontal C7RN,)LE

and vertical bistatic scattering angles are given by 0 ±;E, andA
0 ±.The sign designates which side of the source MRA a
hydrophone is located. The grazing angle is given by 0&,.
The average bistatic scattering strength is given by

BS=RL-SL-TL, -TL-l10 log A,

where RL is the a~erage received level. SL is the source
level at I m along the MRA, TLI is the transmission loss FUIi 2 HowrIunal and 'ertical histajI 'cattcring~ geoflCctrý

along R, TL, the transmission loss along Rh or R, and A

is the insonified area.
For data taken in the horizontal plane, the levei at of bottom roughness spectra (S) from the analysis of the

hydrophone 4 was used as the reference level. This hydro- sterophotographs. These spectra represent the extremes in
phone was located closest to the vertical axis of both bottom roughness that were present in the experiment
sources. For data taken in the vertical plane at frequencies area. These spectra have J" and f I'frequencN

between 180 kHz and 90 kHz/WB (450-kHz source) and dependencies. This 0.42 range of dependencies is about half
at a grazing angle of 30Y, the reference hydrophone was the range measured during the Jacksonville experiments.
number 11. For all other vertical measurements, the refer-
ence hydrophone was number 10.

11. EXPERIMENTAL RESULTS

The experimental area was a large homogeneous, fea-
tureless, hard-packed sandy bottom. Figure 3 is a photo-
graph of the experimental area. The average sediment
properties are gisen in Table 11. Figure 4 %hows two results

I A. HI I- I Source hearnwidth, d, a1 function if ofrequerlk

Frequeri.
SkFlii Wa.rro~udth I I fll

7PC~'112C 2~
- re44) 2 1)

NoC IN
40C NH 2

450 k~h, CC H 2 '

"..n mr ur CC -n
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TABLE If. Average values of sediment parameters inl the upper 20 cm. 10GRAZING ANGLE 3(r

Velocity ratio [1313 S

Porosity 3407
Mean grain size (mm) 0.166 tR

& 0
Compressional wave 234.0 dlB/m
attenuation at 400 kHz z

A. Horizontal bistatic scattering-SkZ-

Figure 5 shows the measured high-frequency horizon- .110 ktz 9 jIft/ziw
tal bistatic scattering variations as a function of frequency -20 ------ '----'----

(180, 150, 110. and 90 kHz/WB), grazing angle (300, 200, BISTATIC SCATTERING ANGLE (deg)
and 9.50), and small horizontal bistatic scattering angles -GRZIN ___ ____r_

(- 10.2' to 1.140). These measurements were made using 101RZIGAGL 0
the 450-kHz source. The data points are at the positions of
the receiving hydrophones measured as a function of bi-5
static angles. The data at each bistatic angle are the differ-
ences between the average level at that hydrophone and the I. -

average level at the reference hydrophone located closest to r, -5 --- ~%-
the maximum response axis of the source. This reference cc-~4o
hydrophone was labeled as 00, For clarity. the horizontal ýý -t0 8H

scale for po,-sitiv.e bistatic angles has been expanded. At a 1850 IL
grazing angle of 300 the bistatic variations are between 8.2 T-110 kHz J90 kz/Wg

and - 12.5 dB. The variations are between 3.5 and -13.3 -20 - -------------

dB at a grazing angle of 200 and between 8.8 and - 8.8 d13- BISTATI SCATTERING ANGLE (deg)
at a grazing angle of 9.5*. --

Figure 6 shows the low-frequency (90 kl-z/NB. 60. 10 .,GRAZING ANGLE 9.50

40,. and 20 kHz) horizontal bistatic scattering %ariations as
a function of grazing angles (30', 200. and 9.5') and bistatic Z

(a)
'C10*

180 kHz 150 kHz

3 2 * 110 kHz~ 90 8Hz/WB

40 310 20 10 0 0

BTISTATIC SCAT TIRING AGI. I ide~ji

1-10 i Iligh-lrcqiunc% honrintaiI hwat~ici ,,-imcringrlt.iri.l4on.

0' 01 1 o scattering angles ( 10.2' to 1 14). These measurements
SPATIAL 14(EOUENC' (YCF cy~LMI were taken using thc 250-ktil source. Thc horizontal scale

X, has again been expanded for positi~e histatic angle,, At 30'.
(b) the histatit sariations 'Acere hetsseen 8,4 and 14 0 dB,. At

0 grazing angles of 20' and 1) ̀ 5 the histatic %ariations vicre
betwkeen 7.1 atid 1) 0 dli and hictween 3 6 arid 6 `! d H.
respectti elN 1,0%% source le~ els at 201 kii/ did not allovi, for

' 0 consistetit hist~atic measurements ai a grazing angle tfit")

1- 0 .Figure 7 shows the ratige of horizontal histaltic scat-
teritlg sariatioiis as a function of' trcquCtic% and grazing

40 ~angle (tihe 40-kH/,' Wl daia %itas used)I rhe frequenc%

dependetnce of these %ariatiot~i is 0(01. O(I(4 and 0I Ol
dli/kH. ltotr grazing angle% of 1(0', 20'. and 0 ' respec.-

tisely
';IPATA1 CRIF01J( . he error hairs sho'A tiii Figs 5. ti. and] all others aire

the sitantda rd de i ationti o f the nmeasuired dat a Since ,it ia-
I (6 4 Sn rfa~ rmiulihnes,, me ?it T~o r I*,, differeriw. Arris bie plat i irm %sas used, the Pt ig- to- ping flutc tu a:tios in t he
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15 GRAZING ANGLE W GRAZING ANGLE
-~~12 - 950 01 1

---- 20.

To 120 95o 01dB/kHz

•-15~~~ 
8- w.. I1,

X -,7- 7

-5. o 41 '

-05 TAT0 05TEIGANL dg FIG. 10. Range of vertical bistatic sc.attering surlatwn>.

m• 15-1  GRAZING ANGLE 20" grazing angles of 300. 200, and 9.50 are 0.01,0O.0l, and 0.003
c dB/kHz, respectively.

C. Beamwidth dependence

S - <1-, "1 "-W Figure I1 shows the beamwidth dependence of the

Si -;-- _ __--..... horizontal bistauic scattering variations for a source fre-
FEquency of90 kHz. At 90 kHz/NB, the 250-kHz source had

1a beamwidth of 1.20 and at 90 kHz/WB the 450-kHz

-10-' -__ 9O kWINS •-•J source had a beamwidth of 2.7'5°. The horizontal scale was

- -40 kHz j20 ktz

S-___________________..________again expanded for positive bistatic angles. in general. the
0 05 0 bistatic scattering variations measured using the narrow-

BISTATIC SCATTERING ANGLE (deg) beam source were less than those measured using the wide-

.•5 GRAtZWG ANGLE 9.5 Thbea sourtc. bistatic variations at 90 kHz as a function

St . of beamwidth and grazing angle are shown in Fig. 12. At a
•- grazing angle of 300, the variations using the narrow-beam

•- 5- - source were significantly less than those measured usingGRAZIGthe widebeam source. At grazing angles f 3200 and 9.5a0 the

differences were very small.

r75,

FIll DISCUSSION
S'0 ' IJ• HZINB So , kHt

*; -40kmz In this paper, we have addressed small-angle. high-
0-- - - hfrequency, bistatic bottom scattering. Our results have•
o I a 3 shown that unlike the horizontal results measured at Jack-

BIoTALIC '60TERN( k NGI ~sonvillehd 1 the range of horizontal bistatic scattering waria-

0. 0.5 1 b.i,-frequtuc) terrial hv,,iaiio meaasuerlng unarhiaronw

20 90 1H5 GRAZING ANGLE 30'

horizontal variations. The vertical variations at a grazing 1s0 90 funti

a ef 95 are between 5.9 and - 5.? dB. This range is s n in.. . ..

6.5 dBgsmaller than the horizontal variation at v.5o. u -109 8 7 6 4 3 2 1 0

The low-frequency (90 kHz/NB. s0. 40. and 20 kHz) l 20 GRAZING ANGLE 20u

vertical hittatic variations as a function of grazing angles f10

10 00kzN8 6

530, 2(. 9 5°). and bistatic angles are shown in Fig. 9. At %z 10

a graz1ng angle of 30". the hertical ,ariations are between a J0 .

ltO.h and 5 7 dB. This is 1.8 dB les~s than the corresjx•'nd- • t0 F, 8 f• '• 4 •;
ng low-frequency horizontal variations. The variations ath r 20 GRAZING ANGLE 950

grazing angles (If200*and 9.50 are between 7 7and -2.1 dB ,• ¶0 .-
' 0 "" -

and 5 4 and 2.8 dB. respectively. These variations are 7 2
and 2 I dBf less than the horizontal ,ariations at 200 and 20 -

90 90 40 (I 10I ' GZ ANGLE
the range of vertical hisvtatic variations as a function Ef 0ISIAII ',LAIII 'NIt, AN,,.I

tfrequency and grazing angle is ,.hown in Fig I0) (the 90i- I*ICi I I Itcam i,hth de!vjwndIluiC ,I hI /•ii , ' l'-i.i h, . ...~ s ildlili,'. .tit.,1
kHztWB data were used) The frequency dependence at knz cc 2U GiAN
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0 90 kM'NB MRZN NL 0 atid at grazing angles less than 200 were the variations 10
20 9 kH N6 RAZNG AGLE30* dB or less. The results presented in this paper, and in Ref.

0 10, clearly demonstrated that the bistatic mechanisms are
E-1 complex and have not been clearly identified.
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