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1. INTRODUCTION

During the early stage of the gun interior ballistic cycle, the crucial process is the propagation of an
ignition front or "flame zone" through the packed bed of unbumed propellant grains or sticks. Few
concems arisc as long as the flamespreading process is rapid and reproducible. However, if the solid
propellant happens to be difficult to ignite (¢.g., low vulnerability propellant), or if the strength of the
ignition system is marginal, significant delays can aris¢ in the propagation of flame through the propellant
bed. Delays in flamespreading often lead to combustion chamber conditions which promote large
amplitude pressure waves (e.g., Horst [1983]). Diagnosing and corvecting anomalous behavior associated
with ignition and flamespreading would be much easier with a better understanding of the entire process.

In most gun systems, the convective ignition process is dominated by a three-dimensional flow field
as the result of bayonet primers, tapered chamber walls, protruding projectile bases, eic. In this situation,
it is virtually impossible to isolate and study only the flamespreading cvent. The present investigation is
a deliberate attempt o remove the complicated three-dimensional geometry by looking at convective
ignition in a simple laboratory device where the igniter drives an approximately planar wave through the
confined bed of granular propellant. It is hoped that the therma! and pressure eavironment will replicate
that of a typical gun combustion chamber (e.g.. the 105-mm simulator of Chang and Rocchio [1988)).
The pressure environment should also be similar 0 that created by previous shock tube experiments (see
Sccion 2, below), but possibly without some of the harshness during the initial transicnt.

A primary focus of this investigation is directed toward fow vulnerability propellants, which are often
referred to as LOVA propellants. The reduced vulnerability to vanious hostile theeats is often associated
with (a) o higher threshold for thermal ignition, and (b) lower buming rates at low pressure.  However,
these very propenties can also create difficuliies in the ignition sequence of the gun system as discussed,
for example, by Horst (1983). Since in many ways, the propagation of a convective ignition front tuough
a bed of granular energetic material is poorly understood, it is not surprising that theoretical descriptions
in various intcrior ballistic models are rather clementary. It is hoped that 3 database from the present
experiment may be helpful in validating improved models,

2. BACKGROUND / CONVECTIVE IGNITION

A number of previous studics have found scveral important charactenistics associated with convective
ignition of cnergetic solid matetials including LOVA propellant. The experiments seem to divide naturally
into two catcgorics, depending on whether the investigation involved a single grain of malenial o7 an
aggregate (packed bed).




2.1 Single Grain Experiments. Birk and Caveny (1980a, 1980b) conducted an extensive series of
ignition tests on various single cylinders (plus a tandem configuration) mounted transverse to the transient
cross-flow created by diaphragm rupture in a shock tunnel. Depending upon the flow conditions imposed
on the cylinder, the location or site of ignition could vary from the front stagnation region, the flow
separation region, to the rear stagnation region in the cylinder wake. An important result i3 illustrated by
Figure 55 in Birk and Caveny (1980a) which shows a plot of time to ignition versus freestream Reynolds
number for a triple-base propellant (M30) in a flow of 100% nitrogen. It is quite likely that changes in
the site of ignition arc the cause of the non-monotonic structure of this curve. Note that when the
freestream Reynolds number exceeds approximately 16,000, no ignition is observed. Even more
important, a single-basc propellant (M1), a double-base propellant (M26 with 25% NG), and a nitraming
composite (85% HMX in a polyurcthane binder) would nat ignite at any Reynolds number in a flow of
100% nitrogen. However, when the composition of the freestream flow was altered to include 50%
oxygen, all four materials ignited easily a1 Reynolds numbers less than 10,000. Note that Birk and
Caveny's results for the nitramine composite HMX/PU are actually the first ignition data on wirat could
be termed a prototype LOVA propellant.

If successful ignition mercly involved raising the temperatuse of a centain fraction of matenal above
some threshold value, then increasing the magnitude of the Reynolds number which increases the rate of
convective heat transfer (presumably propontional (0 some power of Reynolds number) should shorten
ignition delay umes. Clearly it is not that simple for the materials studied by Birk and Caveny (1980a,
1980b). Their results illustrate the imponamt coneeir of a Damkoller number (i.c., the ratio of a Now
residence tme o 3 charactenstic tme for reacion). Rapid ignition then implies a Damkohler number
fecater than unity. The Bisk and Caveny data suggest that a minimum flow residence time is reguired.
And funthermmore, the addition of oxidizer to the freestream flow substantially decreases the charactenistic
time of the conirolling reaction which is apparenlly in te gas phase.  Unfortunately, identifying the
controlling reaction (or feaction system) is not so simple. However, the one common feature shared by
all the materials which will not ignite in 100% nitrogen is a prominent two-stage flacie struciure during
combustion at low pressures (Miller 1992). Miller's photographs of the quasi-stcady flame zone associaled
with various propcllant samples in a strand bumer at 2 MPa, for example, show evidence of an extended
sccondary flame zone (some dislance above the fegressing isderface) lor nitramine composites and single-
and double-base propellants. The triple-bzse propellant, M30, by way of contrast, is charactenized by a
more vigorous flame 2one al and near the regressing solid surface.




Ritchie, Hsieh, and Kuo (1990a, 1990b, 1992) modified the test section of the Birk and Caveny
apparatus and then undertook similar experiments on single cylinders of the LOVA propellant XM-39
(76% RDX, 12% CAB, 7.6% ATEC, 4% NC, and 0.4% EC). Over the Reynolds number range of 30,000
to 50,000, all tests performed in 100% nitrogen showed no evidence of ignition or luminous flame. Recall
that Birk and Caveny (1980) found a similar result for their nitramine composite (HMX/PU). Ritchie,
Hsieh, and Kuo (1992) also found that as they added oxidizer to the freestream flow, XM39 propellant
did ignite and the delay time decreased as the concentration of oxidizer was increased. They also
observed two different ignition sites, as well as migration of the initially luminous region from the
shoulder of the cylinder to the wake region which acts as a flameholder. Again, these results point to a
requirement that the flow residence time must be greater than the characteristic time for the controlling

gas-phase reaction (or system of reactions).

2.2 Aggregate (Packed Bed) Experiments. Possibly the earliest attempt to employ a controlled

environment for studying convective ignition and flamespreading in a granular propellant bed is the work
of Kuo et. al. during the mid-1970's (Kuo, Koo, Davis and Coates [1976]; Kuo and Koo [1977]). Because
of the authors’ intcrest in small-caliber ammunition (Olin WC-870 ball powder, 0.825-mm average
diameter), the experiments were conducted in a heavy-wall steel tube with an inside diameter of only 7.77
mm (~0.3 in). The tube is divided into two sections by a nozzle plate (7 nozzles, each throat diameter
= 1.59 mm [1/16 in]). The downstream section (length = 15.24 cm [6 in]) confines the ball powder
saraple, with a shear disc at the far end. The upstream section (4.76 ¢cm [1.87 in]) contains the gas-phase
ignition system — a hydrogen-oxygen mixture, initially sealed from the downstrcam scction by some
“tape” across the nozzle plate, is ignited by a spark plug. Ignition of the H,/O, mixturc drives a hot gas
convective flame through the nozzle plate. Successful ignition of the granular propellant quickly
pressurizes the downstream chamber, although the rate of pressurization is influcnced by the "reverse”
'. choked flow back into the igniter chamber. Data from the wall-mounted pressure transducers are used
primarily to compare with numerical predictions from a two-phase flow model. The time-history from

.- these transducers gives clear evidence of a steepening pressure front propagating through the chamber,

~ which is an important result from this work, However, since all the data were gencrated from a single
o gfanu!ar propellant, it is not possible to draw general conclusions about many aspects of convective
ignition

- Va{ney. Kecser, and Brandstadt (1979) developed a high-pressure flow-through (vented) chamber (2

in diameter, max length of 12 in) as part of an investigation of the "ignition effectivencss” which might




be expected from séveral types of igniter materials. In Vamey, Martino, and Henry (1983), this device
was devoted to an ignition study of a Navy LOVA propellant; the data showed that successful ignition
required significantly less igniter energy when the igniter flow contained oxicizer-rich species (from AP).
This result was confirmed in a more comprehensive investigation by Vamey, Martino, and Fcters (1987)
which employed a shortened (3.5 in length) version of the vented chamber device used carlier. Nine
different constant-energy mixtures of igniter material (BP, NC, and blends of BP with AP, KP, AN, and
KN) were evaluated as an ignition source for granular LOVA propeliant (74.75% RDX, 12% CAB, 7.6%
ATEC, 4% NC, 1.25% KS, 04% EC). Again, the oxidizer-rich igniter materials were found to
significantly reduce the ignition delay time. Furthermore, LOVA ignition did not occur if the length of
the bed was less than some minimum value (although the propellant grains would lose mass in a pyrolysis
process). The authors also found that ignition delay time would increase if the igniter products "over-
penetrated” the bed (i.e., they were driven into the bed at high velocity). These last two results strongly
suggest a minimum residence time for the igniter gases in the aggregate of granular propellant.

Chang (1984) and Chang and Rocchio (1988) developed a laboratury device which simulates a 10S-
mm tank gun, including the bayonct primer along the centerline and intrusion of the projecile tail back
into the chamber. Diagnostics include pressure time-history at several locations in addition to cine-
matography through the clear plastic walls which, of course, are sacriliced in a successful test. Granular
propellants tested included M30 and four carly LOVAs (CAB/NC/RDX). Chang (1984) found that the
LOVA propellants were more difficult - -gr- > than M30 in the 105-mm simulatoy, and an igniter mixture
6828 (NC/NG/KCLOJEC :: 26/17/57/1) whose products included free oxygen would reduce the ignition
delay time for the LOVA propeliants by one half compared to a Benite igniter. However, the faster
ignition with the 6828 igniter led to rapid ftamespreading and the formation of pressure waves,
Furthermore, changes to the configuration (hole sizes, ctc.) of the bayonct primer had a significant
influcnce on ignition delay timcs.

Messina, Ingram, and Tricarico (1988) built a special 25-mm-diametcr transparent simulator to
investigate the carly-time events in a particular 25-mm APFSDS canridge. This chamber incorporated
the actual primer as well as the intrusion of the tail-boom assembly of the projectile. The authors found
that, for XM39 LOVA propellant, the presence of ullage near the primer location led to long ignition delay
tinaes; however, the ignition delays nearly vanished when the ullage was placed at the forward end of the
cantridge, and when the LOVA propellant was ieplaced by a high-energy, double-base propellant. These
results would scem to indicate the presence of an imponant residence time as well as diffcrences in the
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thermal thmsho!d for convective ignitio~ .. support of the Navy 76-mm/62 program, Messina, Ingram,
and Konig (1989) developed a ull-scale 76-mm ballistic simulator to investigate the ignition and
flamespreading behavior in a granular Navy LOVA propellant during the evaluation of certain igniter
compositions and geometric configurations. The benite igniter material, whose combustion products
contain no free oxygen, was rauch less effective in igniting the LOVA propellant than LI-10 igniter
material which produces 10 mole % of free oxygen. The authors also noted that approximately doubling

the vent area in a primer tube with benite material caused a significant increase in ignition delay time.
3. FLAMESPREADING CHAMBER EXPERIMENT

The current experiment is rot iniended to simulate a particular primer, or to ¢valuaie the performance
of a class of igniter maierials. The objective here is 10 study ignition and longitudinal flamespreading in
a bed of granular gun propellant, particularly LOVA propellant. Within practical limitations, the desired
experiment should have:

() an ignition source which will drive a planar wave through the chamber;

(b) an ignition wave composed of gas-phase products only;

(c) an ignition source which is reproducible but would permit the gas composition to be changed,
(d) and a chamber with closed volume.

Requirements (a) and (b) are intended to create an environment which is easy to model; for example,
condensed-phase igniter products are known to be very effective in promoting ignition, but their behavior
is difficult to represent in a theoretical model.  Furthemiore, a gas-phase-only ignition wave should
dircctly influence the reactive gas phasc in the granular bed which, based on data from previous
convective ignition experiments, may be a controlling influence. The purpose of (d) is to simulate the gun
combustion chamber which will trap and retain all pyrolysis products from the solid propellant. Finally,
the ignition wave should have a risc time of 2-4 ms and maintain a pressure level within the range of
1-4 MPa for the purpose of recreating the marginal ignition environment suggesied by the simulator
experiments of Lang and Rocchio (1988).

Figure 1 is a schematic of the dual chamber apparatus designed to meet the above objectives. The
operation is straightforward. A small quantity of ball powder is bumed in the igniter chamber which is
scaled by a diaphragm and a multiple-nozzle plaie from the flow chamber which containg the sample
granular material. When the diaphragm bursts, combustion gases initially confined in the igniter chamber

S




are driven through the r.ozz.c plate forming a planar wave of hot gases which propagates through the flow
chamber. The rise time and streng.h of the ignition wave should be a function of the amount of ball
powder burned in the igniter chamber, the burst pressure of the diaphragm covering the nozzle plate, the
size of the nozzle holes, etc. Heat losses to the walls of the flow chamber will be minimized with the use
of an acrylic liner (12.;-mm thick [0.5 in]) which also allows high-speed cinematography through window
openings in the outcr steel chamber. A blowout disc at the far end of the flow chamber should limit the

maxitawn chaiaber pressure.

The inside (ameter of the igniter chamber is 69.8 mm (2.75 in) and, in the present configuration, the
length or height is 35 mm (1.375 in). However, various length internal sleeves can be used to adjust the
height (hence, volume) as an additional control on the pressurization rate. A 12.7-mm (0.5 in) thick steel
nozzle plate with 101 2.38-mm-diameter holes separates the igniter chamber from the flow chamber. The
flew chamber contains a replaceable acrylic liner with an inside diameter of 76 mm (3 in) and a length
of 304.8 mm (12 in). The dashed lines shown in Figure 1 indicate the window areas in the outer steel
chamber which expose the acrylic liner (for photography). In the present configuration, four wall-mounted
Kistler 211B1 pressure transducers provide a description of the chamber events; P, is in the igniter
chamber, P, is 19 mm (0.75 in) into the flow chamber, P, is located at 120.6 mm (4.75 in), and P, is at
273 mn. (10.75 in).

Pre~sure Gauges (F).P, Poby)
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Figure 1. Schematic of flamespreading chamber spparatus.
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Figure 2. Schematic of igniter chamber/diaphragm system.

Design of the diaphragm covering the nozzle plate required some trial and ertor. The diaphragm must
retain its integrity while pressure builds in the igniter chamber and combustion of the ball powder is well
under way. It must then burst reliably to start the flow through the nozzle plate. An additional problem
is to prevent the buming ball powder from being entrained into the flow through the nozzle plate and,
hence, cntering the flow chamber, this would create the unwanted two-phase ignition cnvironment.
Figure 2 is a schematic of the current sysiem. Typically, § g of Olin ball powder (undeterred WC-870,
average particle diameter of 0.775 mm) arc placed within a 38-mm (1.5 in) diameter aluminum “cup” and
then ignited near the top with a bridge wire; the cup is thermally insulated to minimize heat loss. The
diaphragm system is mulii-layered. Pressurc scaling is done by two thicknesses of mylar which cover the
nozzle platic. The other materials serve as a thermal shield to prevent hot ball powder particles from
prematurely bumning through the mylar discs before they reach their burst pressure, Two layers of
aluminum foil in the shape of a donut (inside diameter = 50.8 mm) arc placed directly on top of the mylar
discs. Then the aluminum cup is sumounded by another donut (inside diameter = 38 mm) of “fumacc
filter" material approximately 18 mm in height; this donut of filter material is covered on the top by a
single layer of aluminum foil. These thermal layers are designed to protect the mylar discs from hot
panticles which may cscape over the side of the cup.




Unless otherwisé stated, all results below apply to a flow chamber which is empty (contains gas only
[i.e., no granular solids]). Figure 3a shows a pressure time-history from the flamespreading chamber
apparatus when the mylar discs were not thermally protected; the system behavior is a total failure.
Figure 3b shows a similar run using the above thermal protection system for the mylar discs; the dual
chamber system has the desired behavior. Note that as the pressure in the flow chamber rises to that of
the igniter chamber, the nozzle plate system unchokes, lcaving a fairly uniform pressure level in the flow

chamber for approximately 100 ms.

It is of interest to compare the pressure-time environment created by the present flamespreading
chamber apparatus with that from the earlier experiments on convective ignition in a shock tube. The
pressure records shown in Figure 3b from the three wall-mounted gauges in the flow chamber are redrawn
in Figure 4a during the initial 25-ms time window after diaphragm burst. In this particular run, the flow
chamber pressure rises within approximately 4 ms to a value near 2.75 MPa (400 psi), and then increases
slowly by 10%. The shock-tube experiment of Birk and Caveny (1980) produces the pressure time-history
shown in Figure 4b on the transverse cylinder; as might be anticipated, the rise time is faster (less than
2 ms), but after a few oscillations the pressure level becomes fairly uniform. A typical result from
Ritchie, Hsich, and Kuo (1990b) reproduced in Figure 4c also shows a risc time of 2 ms, a slight
oscillation in pressure level, and then a 27% pressure risc over 16 ms, apparcntly caused by the addition
of the upstream throat system in the shock tunnel. It appears that the present flamespreading chamber
experiment is capable of gencrating a pressure environment which is similar to the shock tunnel, but with
reduced harshness. The environment is also quite similar to that found by Chang and Rocchio (1988)
during ignition anomalics in the 105-mm simulator. Figure 5 shows an example of the behavior when the
flamespreading chamber is filled with incnt granular propellant (diameter of 10 mm, length of 24 mm);
the initial response of the three gauges suggest a wave propagating at approximately 220 m/s which is a
typical value (see Kooker [1988]). The overshoot in Figure 5 reported by the farthest gauge (Py, near the
shear-disc) may have been the resuli of momentary bed motion caused by nonuniform packing. Several
runs were conducted 10 check repeatability of this behavior, however, the igniter chamber suddenly
developed a gas leak which then compromised these results.  Reproducibility will be checked in future
runs, once the gas leak has been repaired.  Assuming it will be possible to control some of the smaller
features of the pressure response curves, the flamespreading chamber should prove to be a useful tool in
developing a database which may help explain convective ignition behavior in packed beds of granular
propellant.
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4. MODEL OF THE FLAMESPREADING CHAMBER

A simple lumped-parameter model of the dual chamber system was constructed to predict the response
i vanous parametric changes. The model encompasses both chambers illustrated in Figure 1. The
analysis of the igniter chamber adopts the same well-stirred reactor cquations derived for the closed-
chambes huming rate reduction program “BRLCB" (Oberle and Kooker 1992). In the present version of
the model, all combustion is assumed to take place in the igniter chamber. When the pre-set diaphragm
burst pressuse has been exceeded, the igniter chamber equations provide for a mass loss term which
accounts for the flow through the nozzle plate system. Initially, a choked flow condition describes this
mass flux which then “fills" the flow chamber. As the pressure in the flow chamber rises, the analysis
senses the particular value at which the nozzle system unchokes. This nommally provides a dramatic
change in the rate of pressutization or depressurization of the system. The analysis accounts for
convective heat transfer to the inside surface area ox the multiple nozzlcs in the nozzle plate, but the flow
chamber is assurmed adiabatic because of the acrylic liner at the circumferential walls.

Model predictions of the igniter chamber pressure (c.g., Figure 63) suggest several impornant
characterisucs of the diaphragm and nozzle plate system. Once the diaphragm rupture pressure has been

)




exceeded, the dashed line in Figure 6a shows the expected depressurization of the igniter chamber for
isentr pic flow through the full geometric area of the nozzle plate. The chain-dash line is the expected
depressurization curve if the effective nozzle area (A,) were only 40% of the geometric area (as a result
of all flow losses). The solid line, in addition, assumes that the diaphragm rupture process occurs in a
finite time interval; it is assumed here that the nozzle area opens linearly in a 1-ms time interval. This
last curve more nearly approximates the actual behavior of the apparatus. Figure 6b shows typical
behavior for both chambers—the solid line is the igniter chamber and the chain-dash line is the flow
chamber. Unchoking of the converging/diverging nozzle system occurs as the pressures are nearly equal
(just after 10 ms, here). The dashed curve represents grams of igniter propellant remaining to be
consumed (although the label on the scale says MPa). (Note that at unchoking, approximately 1.5 g of
the original 5 g remains to hum.) This plays a role in controlling the increase or decrease of the flow
chamber pressure as a function of time. The model suggests two other ways to modify the pressure time
curvein the flow chamber. Figure 7a shows the predicted effect of raising the diaphragm burst pressure
from 10 to 20 MPa, while buming 5 g of ball powder in the igniter chamber. Figure Tb shows that a
possible mechanism to compensate for heat losses is a slight increase in the mass of ball powder bumed
in the igniter chamber while keeping the diaphragm burst pressure constant (15 MPa, here).

Figurc 8 shows a plot of pressure time-histories (Run #14) from the four gauges along with model
predictions which assume a burst pressure of 14 MPa, 1.5-ms diaphragm opening time, and 40% effective
flow area of the 4.5-cm® nozzle plate. Before the time of diaphragm busst, the comparison with igniter
chamber pressure in Figure 8a is not panticularly good; note, however, the model assumes that all the batl
powder grains are ignited at time zcro, while the experiment ignites the ball powder from the top with a
bridge wire. After diaphragm burst, however, the comparison is fairly good, including the prediction of
the pressure level at which the nozzle system unchokes.  Figure 8b compares the flow chamber pressure
time-history (at gauge P,) with two theoretical predictions; the chain-dash curve assumes maximum heat
loss to the steel nozzle walls (isothermal walls) and the dashed curve assumes no heat loss (adiabatic wall).
The comparison shows that the isothermal curve characterizes the nise time and plateau level up o
approximately 16 ms, but then the curve tums up in the direction of the adiabatic prediction. This is
typical of the compirisons; after the plateau value, the rising level of flow chamber pressure secems to
indicate a saturation of the heat transfer to the nozale walls (i.c., the surface temperature of the nozzle
walls may momentarily approach that of the gas flow). However, not all comparisons show this degree
of agrcement  Figure 9 displays the results from Run #31. The prediction of the unchoking value of
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pressure is not quite as accurate, as seen in Figure 9a. The measured flow chamber pressure (again, gauge
P,) shown in Figure 9b suggests that the initial pressure rise follows the adiabatic approximation rather
than the isothermal, which is contrey to intuition. There still may be some subteties which the model
has neglected.

Finally, Figurc 10 shows a comparison of the flow chamber pressure (gauge P,) for a case when the
chamber was filied with inert granular propellant. To account for the presence of the solid phase, the flow
chamber volume available for the gas phase was appropriately reduced in this model prediction. However,
the model ignores heat loss from the hot gas to the solid grains, which judging {rom the comparison with
the experimental data, i< substantial. The model will be upgraded in the near future to account for both
phases in the flow chamber.
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5. CONCLUDING REMARKS

‘The current {lamespreading chamber design appears to create a planar gas-phase ignition wave which
will propagate from one end of a flow chamber through the confined sample granular material. With the
proper thermal protection for the diaphragm material which seals the nozzle plate, the apparatus generates
a pressure wave with a rise time of approximately 3 s to a range of pressures between 1-4 MPa for a
time interval of ai icast 50 ms. This should provide enough flexibility to create an environment for
studying the marginal <onvective ignition behavior of many compositions of granular solid propellant,
especially LOVA propellants. The current lumped-parameter model of the dual chamber apparatus has
been helpful in interpieting several features of the pressure respouse curves.

Future work will include an attempt to use shielded therraocauples to measure gas-phase temperature
within the compacted aggregaic of granular propellant. Simultaneous data for static pressure aud
temperature in the gas phase should help define the convective environment imposed on the granular
propellant bed. It is hoped that data from this flamespreading chamber will prove particularly valuable
in validating predictions of gun propellant ignition within intcrior ballistic models.
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