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I. INTRODUCTION

During the early stage of the gun interior ballistic cycle, the crucial process is the propagation of an

ignition front or "flame zone" through the packed bed of unburned propellant grains or sticks. Few

concerns arise as long as the flamcspreading process is rapid and reproducible. However, if the solid

propellant happens to be difficult to ignite (e.g., low vulnerability propellant), or if the strength of the

ignition system is marginal, significant delays can arise in the propagation of flame through the propellant

bed. Delays in flamespreading often lead to combustion chamber conditions which promote large

amplitude pressure waves (e.g., Horst [1983]). Diagnosing and correcting anomalous behavior associated

with ignition and flamespreading would be much easier with a better understanding of the entire process.

In most gun systems, the convective ignition process is dominated by a three-dimensional flow field

as the result of bayonet primers, tapered chamber walls, protruding projectile bases, etc. In this situation,

it is virtually impossible to isolate and study only the flamespreading event. The present investigation is

a deliberate attempt to remove the complicated three-dimcnsional geometry by looking at convective

ignition in a simple laboratory device where the igniter drives an approximately planar wave through the

confined bed of granular propellant. It is lhped that the thermal and pressure environment will replicate

that of a typical gun combustion chamber (e.g.. the 105-mm simulator of Chang and Rochiio ( 1988)).

The pressure environment should also be similar to that created by previous shock tube experiments (see

Section 2. below). but posibly without some of the harshness during the initial transient.

A primary focus of this investigation is directed toward low vulnerability plopellants, which are often

referred to as LOVA propelams. The reduced vulnerability to various hostile thrIats is ofton asSociated

with (a) a higher threshold for thermal ignition. aid (b) lower burning rates at low pressure. However.

these very propertics can also create difficultics in the ignition sequence of the gun system as discussd,

for example. by Horst (1983). Six.e in many ways. the propagatlon of a convective Ignition front through

a bed of grawular energetic material is poorly understood, it is not surprishig Oth theoretical descriptions

in various interior ballistic models are rather elemenmary. It is hoped that a dalabase from the pre-set

expermem may be helpful in validating impmved models,

2. BACKGROUND / CONVEC-IVE IGNITION

A number of previous studies have found several importnt characteristics associated with convective

ignition of energetic solid materials including LOVA propellan The experiments scorn to divide naturally
into two categories. depending on whether the investigation involved a single grain of maerial or an

aggregate (packed bed).



2.1 Single Grain Experiments. Birk and Caveny (1980a, 1980b) conducted an extensive series of

ignition tests on various single cylinders (plus a tandem configuration) mounted transverse to the transient

cross-flow created by diaphragm rupture in a shock tunnel. Depending upon the flow conditions imposed

on the cylinder, the location or site of ignition could vary from the front stagnation region, the flow

separation region, to the rear stagnation region in the cylinder wake. An important result is illustrated by

Figure 55 in Birk and Caveny (1980a) which shows a plot of time to ignition versus freestreamn Reynolds

number for a triple-base propellant (M30) in a flow of 100% nitrogen. It is quite likely that changes in

the site of ignition are the cause of the non-monotonic structure of this curve. Note that when the

freestream Reynolds number exceeds approximately 16,000, no ignition is observed. Even more

important, a single-base propellant (Ml). a double-base propellant (M26 with 25% NG), and a nitramine

composite (85% HMX in a polyurethane binder) would not ignite at any Reynolds number in a flow of

100% nitrogen. However, when the composition of the freestream flow was altered to include 50%

oxygen, all four materials ignited easily at Reynolds numbers less than 10,000. Note that Birk and

Caveny's results for the nitramine composite HMX/PU are actually the fit% ignition data on wi•at could

be termed a prototype LOVA propUant.

If successful ignition merely involved raising Owe tewperaturc of a certain fraction of material above

some threshold value, then increasing dhe magnitude of dhe Reynolds number which incrases the rate of

convective heat transfer (presumably pruportiotW to somce power of Reynolds number) should shorten

ignitiom delay tiin•-.s. Clearly it is mtu that simple for dte materials studid by Birk mad Caveny (198Oa,

19gOb). Their rcsuits illustrate the imlwnan concuix of a Diamkohler number (i.e.. the ratio of a flow

reside•ce time to a characteristic time for reaction). Rapid ignition then implies a Damkoliler number

greater than unity. l1c Burk and Caveny data suggest that a minimum flow residence time is required.

And furthermome, the addition of oxidizer to the fre.stream flow substantially deceases the characteristic

time of dte contolling reaction which is apparently in the gas phase. Unfortunately. identifying the

coutrolling reaction (or reaction system) is not so simple. However, the one common feature shand by

all the materials which will not ignite in 100% nitrogen is a prominent two-stage fla.ie structure during

combustion at low pressur.s (Miller 1992). Miller's photographs of the quasi-steady flatnm konc associated

with various prupelant samples in a strand burnr at 2 MPa. for example, show cvidence of an extended

secondary flame zone (some distance above the regressing iaerface) for nitramine composites and single.

and double-base propellants. The triple-bv propellant. M30. by way of conrast, is characnrized by a

more vigoroums flame oe at and near the regressing solid surface.
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Ritchie, Hsieh, and Kuo (1990a, 1990b, 1992) modified the test section of the Birk and Caveny

apparatus and then undertook similar experiments on single cylinders of the LOVA propellant XM-39

(76% RDX, 12% CAB, 7.6% ATEC, 4% NC, and 0.4% EQ. Over the Reynolds number range of 30,000

to 50,000, all tests performed in 100% nitrogen showed no evidence of ignition or luminous flame. Recall

that Birk and Caveny (1980) found a similar result for their nitramine composite (HMX/PU). Ritchie,

Hsieh, and Kuo (1992) also found that as they added oxidizer to the freestream flow, XM39 propellant

did ignite and the delay time decreased as the concentration of oxidizer was increased. They also

observed two different ignition sites, as well as migration of the initially luminous region from the

shoulder of the cylinder to the wake region which acts as a flameholder. Again, these results point to a

requirement that the flow residence time must be greater than the characteristic time for the controlling

gas-phase reaction (or system of reactions).

2.2 Apgregate (Packed Bed) Experiments. Possibly the earliest attempt to employ a controlled

environment for studying convective ignition and flamespreading in a granular propellant bed is the work
of Kuo et. al. during the mid-1970's (Kuo, Koo, Davis and Coates [1976]; Kuo and Koo [1977]). Because

of the authors' interest in small-caliber ammunition (Olin WC-870 ball powder, 0.825-mm average

diameter), the experiments were conducted in a heavy-wall steel tube with an inside diameter of only 7.77
mm (-0.3 in). The tube is divided into two sections by a nozzle plate (7 nozzles, each throat diameter

= 1.59 mm [1/16 in]). The downstream section (length = 15.24 cm [6 in]) confines the ball powder

sample, with a shear disc at the far end. The upstream section (4.76 cm [1.87 in]) contains the gas-phase

ignition system - a hydrogen-oxygen mixture, initially sealed from the downstream section by some
"tape" across the nozzle plate, is ignited by a spark plug. Ignition of the H2/0 2 mixture drives a hot gas

convective flame through the nozzle plate. Successful ignition of the granular propellant quickly

pressurizes the downstream chamber, although the rate of pressurization is influenced by the "reverse"

choked flow back into the igniter chamber. Data fiom the wall-mounted pressure transducers are us-ed

* .primarily to compare with numerical predictions from a two-phase flow model. The time-history from

these transducers gives clear evidence of a steepening pressure front propagating through the chamber,

which is an important result from this work. However, since all the data were generated from a single

granular propellant, it is not possible to draw general conclusions about many aspects of convective

ignition

Vainey, Kczser, and Brandstadt (1979) developed a high-pressure flow-through (vented) chamber (2

-- - in diameter, max length of 12 in) as part of an investigation of the "ignition effectiveness" which might
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be expected from several types of igniter materials. In Varney, Martino, and Henry (1983), this device

was devoted to an ignition study of a Navy LOVA propellant; the data showed that successful ignition

required significantly less igniter energy when the igniter flow contained oxi(:ýzer-rich species (from AP).

This result was confirmed in a more comprehensive investigation by Varne), Ma.tino, and P-cters (1987)

which employed a shortened (3.5 in length) version of the vented chamber device used carlier. Nine

different constant-energy mixtures of igniter material (BP, NC, and blends of BP with AP, KP, AN, and

KN) were evaluated as an ignition source for granular LOVA propellant (74.75% RDX, 12% CAB, "7.6%

ATEC, 4% NC, 1.25% KS, 0.4% EQ. Again, the oxidizer-rich igniter materials were found to

significantly reduce the ignition delay time. Furthermore, LOVA ignition did not occur if the length of

the bed was less than some minimum value (although the propellant grains would lose mass in a pyrolysis

process). The authors also found that ignition delay time would increase if the igniter products "over-

penetrated" the bed (i.e., they were driven into the bed at high velocity). These last two results strongly

suggest a minimum residence time for the igniter gases in the aggregate of granular propellant.

Chang (1984) and Chang and Rocchio (1988) developed a laboratory device which simulates a 105-

mm tank gun, including the bayonet primer along the centerline and intrusion of the projectile tail back

into the chamber. Diagnostics include pressure time-history at several locations in addition to cine-

matography through the clear plastic walls which, of course, are sacriaced in a successful test. Granular

propellants tested included M30 and four early LOVAs (CAB/NCIRDX). Chang (1984) found that the

LOVA propellants were more difficult . gr.. ' than M30 in the 105-mm simulator, and an igniter mixture

6828 (NC/NG/KCLOJEC :: 26/17157/1) whose products included free oxygen would reduce the ignition

delay time for the LOVA propellants by one half compared to a Benite igniter. However, the faster

ignition with the 6828 igniter led to rapid Pamespreading and the formation of pressure waves.

Furthermore, changes to the configuration (hole sizes, etc.) of the bayonet primer had a significant

influence on ignition delay times.

Messina, Ingram, and Tricarico (1988) built a special 25-mm-diameter transparent simulator to

investigate the early-timc events in a particular 25-mam APFSDS cartridge. This chamber incorporated

the actual primer as well as the intrusion of the tail-boom assembly of the projectile. The authors found

that, for XM39 LOVA propellant, the prnsencc of ullage near the primer location led to long ignition delay

tinies; however, the ignition delays nearly vanished when the ullage was placed at the forward end of the

cartridge, and when the LOVA propellant was replaced by a high-energy, double-base propellant. These

results would seem to indicate the presence of an important residence time as well as differenccs in the

4



thermal threshold for convective igritio- . support of the Navy 76-mm/62 program, Messina, Ingram,

and Konig (1989) developed a iUU.scale 76-mm ballistic simulator to investigate the ignition and

flamespreading behavior in a granular Navy LOVA propellant during the evaluation of certain igniter

compositions and geometric configurations. The benite igniter material, whose combustion products

contain no free oxygen, was much less effective in igniting the LOVA propellant than LI-10 igniter

material which produces 10 mole % of free oxygen. The authors also noted that approximately doubling

the vent area in a primer tube with benite material caused a significant increase in ignition delay time.

3. FLAMESPREADING CHAMBER EXPERIMENT

The current experiment is rot intended to simulate a particular primer, or to evaluate the performance

of a class of igniter materials. The objective here is to study ignition and longitudinal flamespreading in

a bed of granular gun propellant. particularly LOVA propellant. Within practical limitations, the desired

experiment should have:

(a) an ignition source which will drive a planar wave through the chamber.

(b) an ignition wave composed of gas-phase products only;

(c) an Ignition source which is reproducible but would permit the gas composition to be changed;

(d) and a chamber with closed volume.

Requirements (a) and (b) are intended to create an enviroament which is easy to model; for example,

condensed-phase igniter products are known to be very effective in promoting ignition, but their behavior

is difficult to represent in a theoretical model. Furthennore, a gas-phase-only ignition wave should

directly influence the reactive gas phase in the granular bed which, based on data from previous

convective ignition experiments, may be a controlling influence. TIe purpose of (d) is to simulate the gun

combustion chamber whizh will trap and retain all pyrolysis products from the solid propellant. Finally,

the ignition wave should have a rise time of 2-4 ins atd maintain a pressure level within the range of

1-4 MPa for the purpose of recreating the marginal ignition environment suggested by the simulator

cxperimcnLs of Lang and Rocchio (1988).

Figure 1 is a schematic of the dual chamber apparatus designed to meet the above objectives. The
operation is straightforward. A small quantily of ball powder is burned in the igniter chamber which is

sealed by a diaphragm and a multiple-noz7le plate from the flow chamber which contains the sample

granular material. When the diaphrtgm bursts, combustion gases initially confined in the igniter chamber

5



are driven through the rzzle plate fc-ming a planar wave of hot gases which propagates through the flow

chamber. The rise time and strengd of the ignition wave should be a function of the amount of ball

powder burned m the igniter chamber, the burst pressure of the diaphragm covering the nozzle plate, the

size of the nozzle holes, etc. Heat losses to the walls of the flow chamber will be minimized with the use

of an acrylL liner (12. -mm thick [0.5 in]) which also allows high-speed cinematography through window

openings in the outur steel chamber. A blowout disc at the far end of the flow chamber should limit the

.naxiauin chamber pressure.

SThe inside iamneter of the igniter chamber is 69.8 mm (2.75 in) and, in the present configuration, the

length or height is 35 mmrn (1.375 in). However, various length internal sleeves can be used to adjust the
height (hence, volume) as an additional control on the pressurization rate. A 12.7-mm (0.5 in) thick steel

nozzle plate with 101 2.38-mm-diameter holes separates the igniter chamber from the flow chamber. The

flow chamber contains a replaceable acrylic liner with an inside diameter of 76 mm (3 in) and a length
of 304.8 mm (12 in). The dashed lines shown in Figure 1 indicate the window areas in the outer steel
chamber which expose the acrylic liner (for photography). In the present configuration, four wall-mounted

Kistler 211 BI pressure transducers provide a description of the chamber events; P. is in the igniter
chamber, P, is 19 mm (0.75 in) into the flow chamber, P2 is located at 120.6 mm (4.75 in), and P3 is at

273 ma. (10.75 in).

Pmr'wre Gauges (PO,PI 'P?, 3P
r , P I) P 3

Nozzle J .Cryui U = Sheu DUs

PLP 3

Figum I. Schcmatic .of flamnespreading ch,•mn'b~rMmratus.
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Figure 2. Schematic of igniter chamber/dianhram svstem,

Design of the diaphragm covering the nozzle plate required some trial and enor. The diaphragm must

retain its integrity while pressure builds in the igniter chamber and combustion of the ball powder is well

under way. It must then burst reliably to start the flow through the nozzle plate. An additional problem

is to prevent the burning ball powder from being entrained into the flow through the nozzle plate and.

hence, entering the flow chamber, this would create the unwanted two-phase ignition environment.

Figure 2 is a schematic of the current system. Typically, 5 g of Olin ball powder (undeterred WC-870,

average particle diameter of 0.775 mm) are placed within a 38-mm (1.5 in) diameter aluminum "cup" and

then ignited near the top with a bridge wire; the cup is thermally insulated to minimize heat loss. The

diaphragm system is multi-layered. Pressure sealing is done by two thicknesses of mylar which cover the

nozzle plate. The other materials serve as a thenmal shield to prevent hot ball powder particles from

prematurely burning through the mylar discs before they reach their burst pressure. Two layers of

aluminum foil in the shape of a donut (inside diameter = 50.8 mm) are placed directly on top of the mylar

discs. Then the aluminum cup is surrounded by another donut (inside diameter = 38 mm) of "furnace

filter" material approximately 18 mm in height; this donut of filter material is covered on the top by a

single layer of aluminum foil. These thwmal layers arc designed to protect the mylar discs from hot

particles which may escape over the side of the cup.

7



Unless otherwise stated, all results below apply to a flow chamber which is empty (contains gas only

[i.e., no granular solids]). Figure 3a shows a pressure time-history from the flamespreading chamber

apparatus when the mylar discs were not thermally protected; the system behavior is a total failure.

Figure 3b shows a similar run using the above thermal protection system for the mylar discs; the dual

chamber system has the desired behavior. Note that as the pressure in the flow chamber rises to that of

the igniter chamber, the nozzle plate system unchokes, leaving a fairly uniform pressure level in the flow

chamber for approximately 100 ms.

It is of interest to compare the pressure-time environment created by the present flamespreading

chamber apparatus with that from the earlier experiments on convective ignition in a shock tube. The

pressure records shown in Figure 3b from the three wall-mounted gauges in the flow chamber are redrawn

in Figure 4a during the initial 25-ms time window after diaphragm burst. In this particular run, the flow

chamber pressure rises within approximately 4 ms to a value near 2.75 MPa (400 psi), and then increases

slowly by 10%. The bhock-tube experiment of Birk and Caveny (1980) produces the pressure time-history

shown in Figure 4b on the transverse cylinder, as might be anticipated, the rise time is faster (less than

2 ms), but after a few oscillations the pressure level becomes fairly uniform. A typical result from

Ritchie, Hsieh, and Kuo (1990b) reproduced in Figure 4c also shows a rise time of 2 ms, a slight

oscillation in pressure level, and then a 27% pressure rise over 16 ms, apparently caused by the addition

of the upstream throat system in the shock tunnel. It appears that the present flamespreading chamber

experiment is capable of generating a pressure environment which is similar to the shock tunnel, but with

reduced harshness. The environment is also quite similar to that found by Chang and Rocchio (1988)

during ignition anomalies in the 105-mm simulator. Figure 5 shows an example of the behavior when the

flamespreading chamber is filled with inert granular propellant (diameter of 10 ram, length of 24 mm);

the initial response of the three gauges suggest a wave propagating at approximately 220 m/s which is a

typical value (see Kooker [ 1988]). The overshoot in Figure 5 reported by the farthest gauge (P3, near the

shear-disc) may have been the result of momentary bed motion caused by nonuniform packing. Several

runs were conducted to check repeatability of this behavior, however, the igniter chamber suddenly

developed a gas leak which then compromised these results. Reproducibility will be checked in future

runs, once the gas leak has been repaired. Assuming it will be possible to control some of the smaller

features of the pressure response curves, thi flamespreading chamber should prove to be a useful tool in

developing a database which may help cxplain convective ignitien behavior in packed beds of granular

propellrnt.
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Figure 3a. rititer chamber/flow chamber DresLure time-history: diaphragm failure.

Pressure Gauges P0 & PI & P & 3
20

210 -li

18

lignzeChunber
6

Nozzlo System Unchokes

21
o- Flow Chamber

0
0 2D 40 60 So 1m 12D 140 160

TIME (mS)
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Figure 5. Flow chamber pressure time-history from the three wall-mounted -gauges; flow chamber
contains inert g'anular DroWelant.

4. MODEL OF THL3 FLAMESPREADING CHAMBER

A simple lumped-parameter model of the dual chamber system was constructed to predict the response

to various parammntic changes. The model encompasses both chambers illustrated in Figure 1. The

wnalysis of the igniter chamber adopts the same well-stirred reactor equations derived for the closed-

chamber burning rate reduction program "BRLCB" (Oberle and Kooker 1992). In the present version of

the mdel, all combustion is assumed to take place in the igniter chamber. When the pre-set diaphragm

burst pressuit has been exceeded, the igniter chamber equations provide for a mass loss term which

accounts for the flow through the nozzle plate system. Initially, a choked flow condition describes this

mass flux which then "fills" the flow chamber. As the pressure in the flow chamber rises, the analysis

senses the particular value at which the nozzle system unchokes. This normally provides a dramatic

change in the rate of pressurization or depressurizatdon of the system. The analysis accounts for

convective heat transfer to the inside surface aea o' the multiple nozzles in the nozzle plate, but the flow

chamber is assumed adiabatic because of the acrylic liner at the circwmfcrential walls.

Model predictions of the igniter chamber pressure (e.g., Figure 6a) suggest several important

characterisucs of the diaphragm and nozzle plate system. Once the diaphragm rupture pressure has been
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exceeded, the dashed line in Figure 6a shows the expected depressurization of the igniter chamber for

isentr pic flow through the fuM geometric area of the nozzle plate. The chain-dash line is the expected

depressurization curve if the effective nozzle area (A,) were only 40% of the geometric area (as a result

of all flow losses). The solid line, in addition, assumes that the diaphragm rupture process occurs in a

finite time interval; it is assumed here that the nozzle area opens linearly in a 1-ms time interval. This

last curve more nearly approximates the actual behavior of the apparatus. Figure 6b shows typical

behavior for both chambers--the solid line is the igniter chamber and the chain-dash line is the flow

chamber. Unchoking of the converging/diverging nozzle system occurs as the pressures are nearly equal

(just after 10 ms, here). The dashed curve represents grams of igniter propellant remaining to be

consumed (although the label on the scale says MPa). (Note that at unchoking, approximately 1.5 g of

the original 5 g remains to bum.) This plays a role in controlling the increase or decrease of the flow

chamber pressure as a function of time. The model suggests two other ways to modify the pressure time

curve in the flow chamber. Figure 7a shows the predicted effect of raising the diaphragm burst pressure

from 10 to 20 M.Pa, while burning 5 g of ball powder in the igniter chamber. Figure 7b shows that a

possible mechanism to compensate for heat losses is a slight increase in the mass of ball powder burned

in the igniter chamber while keeping the diaphragm burst pressure constant (15 MPa, here).

Figure 8 shows a plot of pressure time-histories (Run #14) from the four gauges along with model

predictions which assume a burst pressure of 14 MPa, 1.5-ms diaphragm opening time, and 40% effective

flow area of the 4.5-cm2 nozzle plate. Before the time of diaphragm burst, the comparison with igniter

chamber pressure in Figure Ba is not particularly good; note, however, tie model assumes that all the ball

powder grains are ignited at time zero, while the experiment ignites the ball powder from the top with a

bridge wire. After diaphragm burst, however, the comparison is fairly good, including the prediction of

the pressure level at which the nozzle system unchokes. Figure 8b compares the flow chamber pressure

time-history (at gauge P,) with two theoretical predictions; the chain-dash curve assumes maximum heat

loss to the steel nozzle walls (isothermal walls) and the dashed curve assumes no heat loss (adiabatic wall).

The comparison shows that the isothermal curve characterizes the rise time and plateau level up to

approximately 16 ms, but then the curve turns up in the direction of the adiabatic prediction. This is

typical of the comparisons; after the plateau value, the rising level of flow chamber pressure seems to

indicate a saturation of the heat transfer to the nozzle walls (i.e., the surface temperature of the nozzle

walls may momentarily approach that of the gas flow). However, not all comparisons show this degree

of agreement Figure 9 displays the results from Run #31. The prediction of the unchoking value of

12
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pressure is not quite as accurate, as seen in Figure 9a. The measured flow chamber pressure (again, gauge

P1) shown in Figure 9b suggests that the initial pressure rise follows the adiabatic approximation rather

than the isothermal, which is contriy to intuition. There still may be some subtleties which the model

has neglected.

Finally, Figure 10 shows a comparison of the flow chamber pressure (gauge P2) for a case when the

chamber was tfiled with inert granular propellant. To account for the presence of the solid phase, the flow

chamber volume available for the gas phase was appropriately reduced in this model prediction. However,

the model ignores heat loss from the hot gas to the solid grains, which fudging from the comparison with

the experimental data, Is substantial. The model will be upgraded In the near future to account for both

phases in the flow chamber.
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5. CONCLUDING REMARKS

The current flamespreading chamber design appears to create a planar gas-phase ignition wave which

w'lU propagate from one end of a flow chamber through the confined sample granular material. With the

proper thermal protection for the diaphragm material which seals the nozzlc plate, the apparatus generates

a pressure wave with a rise time of approximately 3 ms to a range of pressures between 1-4 MPa for a

time interval of at least 50 ms. This should provide enough flexibility to create an environment for

studying the marginal mrnvective ignition behavior of many compositions of granular solid propellant,

especially LOVA propellants. The current lumped-parameter model of the dual chamber apparatus has

been helpful in interpieting several features of the pressure responise curves.

Future work will include an attempt to use shielded thermaoouples to measure gas-phase temperature

within the compacted aggregate of granular propellant. Simultaneous data for static pressure awl

temperature in the gas phase should help define the convective environment imposed on the granular

propellant bed. It is hoped that data from this flamespreading chamber will prove particularly valuable

in validating predictions of gun propellant ignition within interior ballistic models.
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