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Preface

This conference covered a variety of topics in inverse problems: inverse scattering
problems on the line; inverse problems in higher dimensions; inverse conductivity
problems; and numerical methods. In addition, problems from statistical physics
were covered, including monodromy problems, quantum inverse scattering, and the
Bethe ansatz. One of the aims of the conference was to bring together researchers in
a variety of areas of inverse problems. All of these areas have seen intensive activity
in recent years.

Inverse conductivity problems

This class of problems was discussed by David Isaacson and Margaret Cheney of
Renssalaer Polytechnic Institute and by Gunther Uhlmann of the University of Wash-
ington. Uhlmann discussed his work with John Sylvester on the problem of determin-
ing anisotropic conductivities in a region from measurements made on the boundary.
These measurements may include the Dirichlet-Neumann map or knowledge of the
geodesics. Margaret Cheney discussed various algorithms for reconstructing the con-
ductivities from the data: these included iterative methods, and Calderon’s methods.
David Isaacson discussed experimental work being carried out at Renssalaer Poly-
technic Institute and ended his talk with an intriguing videotape of actual inverse
imaging experiments on a human subject (himself).

Adrian Nachman, of the University of Rochester, gave an overview of inverse
scattering and conductivity problems. Joyce McLaughlin, of Renssalaer Polytech-
nic Institute, presented recent results on inverse spectral problems for second order
differential operators.

Numerical methods

Viadimir Rokhlin of Yale University described a numerical algorithm for inverse
scattering based on a Riccati equation for the impedence function combined with cer-
tain trace formulae for the unknown functions. Numerical experiments performed in
onc dimension have shown themselves to be stable, rigorous, and extremely efficient.
He hopes to be able to extend the methods 1o two and three dimensional problems.

Soliton problems

One dimensional inverse scattering methods are a fundamental tool in the theory
of completely integrable systems. Percy Deift of the Courant Institute opened the

X1
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conference with a beautiful summary of the theory of inverse scattering for nth order
ordinary differential operators. Thanks to recent work by Xin Zhou and Deif1, this
theory is now complete. Thomas Kappeler of Brown University discussed action
angle variables for the periodic KdV equetion. Richard Beals of Yale University
spoke on his recent work with D. Sattinger on action angle variables for integrable
systems based on first order n x n isospectral operators. The construction of action
angle variables for these infinite dimensional completely integrable systems is based
on the scattering transform.

Scattering theory was also used by Bjorn Birnir of University of California. Santa
Barbara and S. Kichenessamy of the Courant Institute in their (independent) work
showing that only the Sine-Gordon equation can support breather solutions.

M. Wickerhauser of the University of Georgia reported on joint work with R. Coif-
man of Yale University on some of the special problems of the scattering transform
for the Benjamin-Ono equation. Their work gives estimates for some previously
formal work associated with the Benjamin-Ono hierarchy.

S. Venakides of Duke University reported on joint work with P. Deift of the
Courant Institute and R. Oba of Tulane University on the Toda Shock problem.
Long time asymptotic analysis of the explicit solution is carried out by the inverse
scattering method. Residual oscillations are derived and analyzed when the iniual
velocity exceeds a critical value. The results are in agreement with earlier numerical
experiments by Straub and Holian, and Flaschka and McLaughlin.

David McLaughlin of Princeton University discussed chaos and heteroclinic orbits
of perturbed integrable systems.

Three dimensional problems

A. Ramm of Kansas State University and T. Aktosun of the University of Texas at
Dallas presented their work on three dimensional problems. Ramm talked about the
C Property and Aktosun talked on the Wiener-Hopf factorization of the scattering
operator in three dimensions, based on ideas of R. Newton,

Statistical physics

A number of problems in statistical physics lead to problems involving inverse
monodromy or inverse scattering, and several of the talks addressed these areas.
V. Korepin, of the University of New York at Stonybrook, discussed correlation
functions for the quantized version of the nonlinear Schrodinger equation. In many
cases, the correlation functions satisfy nonlinear differential equations of Painlevé
type. The Panlevé equations, in turn, are associated in a direct way with certain
monodromy problems; in fact, the monodromy problems play a role analogous to
the isospectral operators in the theory of completely integrable systems. Inverse
monodromy problems thus play an important role. John Palmer of the University
of Arizona talked about the Cauchy Riemann operators associated with such inverse
monodromy problems and their infinite dimensional determinants as tau functions




PREFACE Xiit

for the problem. The tau functions are in fact the partition function of statistical
mechanics. Hank Thacker of the University of Virginia talked about related topics
including spin chains and vertex models. Craig Tracy spoke on monodromy problems
in higher dimensions, specifically some isomonodromy problems for the Laplacian
on the Poincaré disk. The two point correlation function can be expressed in terms
of Painlevé VI,

During the course of the conference, Persi Diaconis, who was attending the other
conference at Amherst, overheard mention of the “Bethe ansatz™ during an informal
discussion at coffee break. It developed that there was a connection between the or-
der/disorder transitions in “card shuffling” problems that Diaconis has been working
on, and the Bethe ansatz method used in connection with the statistical problems
being discussed by Korepin and Thacker. Diaconis agreed to give a special lecture,
at 8:30 a.m. Sunday morning, on his work on order/disorder transitions. Several
discussions resulted, and a round table session took place on Monday evening to
understand the relationships.

D. H. Sattinger
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WIENER-HOPF FACTORIZATION
IN MULTIDIMENSIONAL INVERSE SCHRODINGER SCATTERING!

Tuncay Aktosun? and Cornelis van der Mee®

ABSTRACT. We consider a Riemann-Hilbert problem arising in the study of the in-
verse scattering for the multidimensional Schrodinger equation with a potential having
no spherical symmetry. It is shown that under certain conditions on the potential, the
corresponding scattering operator admits a Wiener-Hopf factorization. The solution of
the Riemann-Hilbert problem can be obtained using a similar factorization for the unitar-
ily dilated scattering operator. We also study the connection between the Wiener-Hopf

factorization and the Newton-Marchenko integral operator.

1. RIEMANN-HILBERT PROBLEM IN QUANTUM SCATTERING. Consider the

n-dimensional Schrodinger equation (n > 2)
(1.1) AY + k¥ = V(z)y

where z € R™. A is the Laplacian. k2 is energy. and V(x) is the potential. In nonrelativistic

quantum mechanics the behavior of a particle in the force field of V(r) is governed by (1.1).

Mathematics Subject Classification (1991). 35Q15. 81U05. 35R30, 47A40.

'This paper is in final form and no version of it will be submitted for publication
elsewhere. o authors are indebted to Roger Newton for his help.

2The author is supported by the National Science Foundation under grant DMS
9001903.

3The anthor is supported by the National Science Foundation under grant DMS

8R23102.
© 1991 American Mathematical Society
(0271-4132/91 $1.00 + $.25 per page
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TUNCAY AKTOSUN AND CORNELIS VAN DER MEE
We assume that V(x) — 0 as |rj — > in some sense which will be made precise in the
next paragraph, but we do not assume any spherical symmetry for V(r). As |z! — x. the

wavefunction ¥ behaves as

9. . _x - g1 inr £ ,obn
Uik, r,8) = e 4 jpmTrin l>f"km§ff_yi«‘1(k» m )y +olir T
T

where § € §77! is a unit vector in R™ and A(k. 8.8} is the scattering amplitude. The

scattering operator S(k) is defined as

S(k.§.6')=60—8)+ i(%—% )T Ak 6.8'),

where § is the Dirac delta distribution. In operator notation the above equation becomes

S(k) =1+i(2—k-)"“,4(k>.

e

All our results presented in this paper hold for real and locally square-integrable
potentials V(z) € L (R™) belonging to the class B, with 0 < a < 2. Here B,. a€0.2).
denotes the class of potentials such that for some s > 2 — L (1 +[7/%)*V(x) is a bounded
linear operator from H*(R") into LZ(R"). where H*(R") denotes the Sobolev space

of order a. For the reader whose interest is restricted to the case n = 3, the following

conditions on the potential will be sufficient:

1. There exist positive constants a and b such that for all y € R? we have

, 2
/ dzr |V ()| (M) <b
R’ lr — yl

2. There exist constants ¢ > 0 and s > 1/2 such that {V(x)] < (1 + [7{?)"* for all

z € R
3. There exist constants ¥ > 0 and 3 € (0. 1] such that fR‘ drir|?V(r)] < .

4. k = (s not an exceptional point, This condition is satisfied if there are neither bound

states nor half-bound states at zero energy.

The inverse gquantum scattering problem consists of recovering the potential V(r) for
all x when S{k) is known for all k. Information about molecular. atomic. and subatomic

particles is usually obtained from scattering experiments. An important problem in physics
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is to understand the forces between these particles. Solving the inverse scattering problem
is equivalent to the determination of the force from the scattering data. For a review of the
methods and open problems for 3-D inverse scattering prior to 1989 we refer the reader to
[Ne89] and [CS89]. None of the methods developed to solve the multidimensional inverse
problem have led to a complete and satisfactory solution vet, but there has been a lot
of progress made in this research area especially during the last ten years. The wmethods
to solve the multidimensional inverse scattering problem include the Newton-Marchenko
method [Ne80, Ne81, Ne82]. the generalized Gel'fand-Levitan method [Ne74, Ne80,
Ne81, Ne82]. the  method [NA84, BC85, BC86, NHB8T]. the generalized Jo~: Kohn
method [Pr69, Pr76, Pr80, Pr82]. a method that uses the Green's function of Faddeev
[Fa65, Fa74, Ne85]. and the generalized Muskhelishvili-Vekua method [AV91b]. The
principal idea behind the methods of Newton-Marchenko, generalized Gel'fand-Levitan,
and generalized Muskhelishvili-Vekua is to formulate the inverse scattering problem as a
Riemann-Hilbert problem and to transform this latter problem into an integral equation
that uses the scattering data in its kernel and its inhomogeneous term. Then, the poten-
tial is recovered from the solution of the integral equation. Here we will solve the same
Riemann-Hilbert problem by using a Wiener-Hopf factorization for operator functions uti-

lizing some results of Gohberg and Leiterer [GL73].

In the Scihrddinger equation k appears as k2. and as a result v((—k.z.8) is also a
solution whenever ¥/(k, z,8) is a solution. These two solutions are related to each other by

the functional equation [Ne80]
Wik 2.0) = /5 46 S(k. -0.6) p(~k.7,6')
or equtivalently
(1.2) folk,1,8) = L 46’ G(k.7.0.9') f_(k.z.6). keR

where

filk,z.0) = eTH 0Ty ( 1k 1. 48)

(1.3) Glhk.7.0.8") = e O~V 25k g ).
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For potentials specified in the beginning of this section, in the absence of bound states.
f+ has an analytic extension in k € C*. If there are bound states, these can be removed
by the reduction technique [Ne89)] before the analysis is carried out. Let us suppress the

r-dependence and write (1.2) in vector form as
fo(R) = Gk (k). k€ R.
or equivalently as
(1.4) Xi(k) = Gk) X_ (k) + [G(k) = T}1. ke€R.

where

Xith)=falk) - 1,

For potentials considered in this paper Xz € L2(5"7!). the Hilbert space of square in-
tegrable functions on S"~!. and the strong limit of f, is 1 as & — > in C*. Note that
in our notation I denotes the identity operator on L?(S"~') aud 1 denotes the vector in
L2(S™1y such that 1{f) = 1 for # € S"~!. Hence. (1.4) constitutes a Riemann-Hilbert
problem: Given G{k). determine X (k). Note also that from (1.3) it is seen that G(k) is

the unitarily dilated scattering operator.

2. SOLUTION OF THE RIEMANN-HILBERT PROBLEM. We have the following
result concerning the Wiener-Hopf factorization of the operator G (k) that appears in the
Riemann-Hilbert problem (1.4). In order to keep the discussion short. we assume that
there are no bound states. If there are bound states. these can be removed by a rednetion
technique [Ne80, Ne89] before the factorization is accomplished. For details we refer the

reader to [AV90].

THEOREM 1. For potentials as specified in Section 1. G{(k) defined in (1.3) has a (left)
Wiener-Hopf factorization; i.e., there erist operators G (k). G_(k). and D{k} such that

G{k) = G (k) D{k)G - (k) where

1. G.(k) is continuous in C* in the operator norm of LIL*(S™ 1)) and 1s boundedly

invertible there. Here L(L2(S"1)) denotes the Banach space of linear operators acting on
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Deoon— N N 3 — " -} s
L3S Y. Simelarly, G _ (k) 15 continuons i C m the operator norm of LLL*(S" V) and

is boundedly muvertible there,
2. G (k) 1s analytic in C and G (k) s analytic in C~

3. Go(xx)=G_(x) =L

. P .
1 Diky = Py + Z;’;l (’i—;:) P,. where P .. .. P, are mutually dispoint, rank-one pro-
jeetions, and Py =1 - Z;’;‘ Pj. The (leftj partial indices py. . ... P are nonzero miegers.

In case there are no partial indices: 1o, when D(k) = 1. the resulting Wiener-Hopf fuc-

tortzation becomes canonical,

Note that. as seeu from (1.3). G(k} is a unitary transform of the scattering operator
S(k). In particular. when r = 0. G(k) reduces to S(k). The proof of Theorem 1 uses some
results of Gohberg and Leiterer regarding factorization of operator functions on contours in
the complex plane {GL73]. When S(k) is boundedly invertible. is a compact perturbation
of the identity. and S(£) = 5(1'%}%) is uniformly Hélder continuous on the unit eircle T
in the complex plane. its unitary transform G(k) also satisfies these three conditions and
admits a Wiener-Hopf factorization. The Holder-continuity of S(£) and G(€) = G(i%%)
can be established using either an additive representation of the scattering amplitude or a
multiplicative representation. We refer the reader to [AV90] for the proof that uses an ad-
ditive representation of the scattering amplitude aund to [AV91a] for the proof that uses a
mutltiplicative representation of the scattering amplitude. The conditions on the potential
in 3-D specified in Section 1 were used in the additive representation. and the conditions
specified in that section in n-D were used in the multiplicative representation. We also
refer the reader to [Ne90] for various results related to the Wiener-Hopf factorization of
the scattering operator: in this reference Professor Newton introduced a related factor-
ization called the Jost function factorization and studied the relationship between these
two factorizations: in this reference Theorem 5.1 gives a characterization of the scattering

aperator {or the existence of a potential.

The solution of the Riemann-Hilbert problem (1.4) is obtained in terms of the Wiener-

Hopf factors of G(k) [AV90] and is given as
¢, (k)

—_——
(k4 i)y
py >0

(2.1) X.o(k) =[G (k) - TI1 +G (k)
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Gilkymy + {(k +0)Pr = (k—t)”]Pi
¥ ‘: X_ (k) = y k
(22)  X_(k)=[G_(k)' - Ti+G_( p}; T
2

provided Pji = 0 whenever p; < 0. Here 7, is a fixed nonzero vector in the range of P;.
and ¢;(k) is an arbitrary polynomial of degree less than p; associated with each p, > 0.

We can state our result as follows.

THEOREM 2. For potentials as specified in Section 1. the Riemann-Hilbert problem (1.4)
has a solution if and only if Pji = 0 it whenever p; < 0. When this happens, the solution
s given by (2.1) and (2.2). The solution, if it erists, is unique when the operator G(k) has

no positive partial indices.

A simple condition that assures the unique solvability of the Riemann-Hilbert prob-
lem (1.4) is given by sup,eg ||S(k) — I||] < 1. where the norm is the operator norm in
L(L3(S™1)). If this holds, neither the scattering operator S(k) nor its unitary transform

G'(k) has any partial indices. As a result, in this case, (1.4) is uniquely solvable.

3. PARTIAL INDICES. In this section we relate the partial indices of the unitar-
ily dilated scattering operator given in (1.3) to the Newton-Marchenko integral operator
[Ne89]. We also discuss the relationship between solutions of the Riemann-Hilbert prob-
lem and the Newton-Marchenko integral equation. The proofs of the results stated in this

section will be published elsewhere.

We let Q be the operator on L?(S"~!) such that (Qf)(0) = f(—6). As in [Ne89] we

define

(3.1) G(n) = —1—/ dk e G (k) - 1)Q
2r J_ o
and we also define the operators G, G*. and H* on L}(R*)

(3.2} {(Gn){a) = ’ d3G(a + 3)n(3). a >0

JO

(3.3) (G n)(a) = /x d3G(~a—-An(B), a>0

0

(H*'m{a) = / di G({~a + 3)n(3). a> 0.

J0O
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The Fourier transform maps L*(R*) onto the Hardy space of analytic operator func-

tions X (k) on C* such that

supf dk (X4 (k + i) 2agn 1) < +c.

>0 —0

We will denote this Hardy space by HJ .

Defining
n(a) = i/ dke=*e X, (k)
2T J e
—- 1 > —~tka —_m
fla) = ) dke [G(k) —T)1.
from (1.4) we obtain
(3.4 ne)= [ dBG(a+B)n(B) +Qni-a) + fla).  ae€R.

Since X € HJ . we have 7(a) = 0 for @ < 0. Hence, we see that (3.4) is equivalent to

nla) = /0 T d8Ga+ B)nB) + fla),  a>0

0=/Omd,BG(—aﬂﬁ')n(B)+Qn(a)+f(—a)- a>0.

We can write (3.5) in the form

{ n=6n+f
(3.6)

(@+H )y =—f,

where f*(a) = f(—~a). Since (1.4) and (3.6) are equivalent, it follows that every solution
X, € H of the Riemann-Hilbert problem (1.4) leads to a solution n € L2(R*) of (3.6).
and conversely. The first equation in (3.6} is the Newton-Marchenko integral equation and

G is the Newton-Marchenko integral operator.

Since G(£) is Holder continuous on T. G(£) — I is a compact operator, and G(£) is
boundedly invertible for all £ € T, it follows that G(k) has a (left) Wiener-Hopf factor-
ization [GL73, AV90, AV91a). In that case. we can solve the Riemann-Hilbert problem
(1.4) in terms of the Wiener-Hopf factors of G(k) and obtain the following [AV90, AV91a].

PROPOSITION 3. There are finitely many, namely me p;. linearly independent solu-

tions of the homogeneous problem (1.4} where F(k) = 0. The inhomogeneous terms F (k)
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for which at least one solution of the Riemann-Hilbert problem (1.4} exists, form a closed

subspace of L*(R) of co-dimension equal to — Y0, <0 Pr-

Due to the fact that (1.4) and (3.6) are equivalent problems. the above results imply

that for all f, f* € L?2(R™"), we have the following.

COROLLARY 4. There are ij>0 p; linearly independent solutions ) of the homogeneous
problem (Q + H* )y = 0. The right-hand sides — f* for which at least one solution 5 of the
equation (Q+H*)np = —f* exists, form a closed subspace of L*(R*) of finite co-dimension
equal to =3, o P;-

The partial indices of the operator G{k) given in {(1.3) is related to the Newton-
Marchenko operator G as in the following theorem. Note that ¢ and G* are defined in

(3.2) and (3.3).

THEOREM 5. The partial indices of G(k) satisfy

> p; = dim Ker (I - G) + dim Ker (I+6).
p; >0

N Z p; = dim Ker (I - G*) + dim Ker (I+G").

Py <0

Hence, G(k) has a canonical factorization if and only if 1 and —1 are not eigenvalues of G

and G*.

Combining the result of Theorem 5 given above and the results in Lemma 4.3 and
Theorem 4.7 in [Ne90)], we have the following result. In the absence of bound states. for
potentials whose scattering operators belong to the admissible class defined in [Ne90].
there are no partial indices. Also using Theorem 5 above and Corollary 4.5 in [Ne90], we
see that not only the sum index of G(k) is independent of x [AV90, AV91a], but also the
sum of the negative partial indices of G(k) is independent of x and the sum of the positive
partial indices of G(k) is independent of z. Since supgeg |G(k) = Ij| = supger ||S(k) - 1J}.
noting that G(k) = S(k) for x = 0, it also follows that G and ¢* do not have eigenvalues
1 if supyeg ||S(k) — IJ| < 1. Thus. the Newton-Marchenko integral equation is uniquely

solvable if supgeg [|S(k) ~ IJ| < 1. Here the norms are the operator norm on L2(S™~1).

4. CONCLUSION. If the potential in (1.1} causes bound states. the analysis given

in Sections 1. 2. and 3 remains valid, provided we replace G(k) by the reduced operator
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G™4(k) obtained after removing the bound states by the reduction technique of Newton
[Ne89, AV90]. Theorem 5 given in Section 3 remains valid for G(k) even in the presence

of bound states.

Combining the result of Theorem 5 given above and the result in Lemma 4.3 in [Ne90],
we have the foilowing result. When there are bound states, for potentials whose scattering
operators belong to the admissible class defined in [Ne90], the number of bound states N
for the Schrodinger equation (1.1) is related to the sum of the negative partial indices of

G(k) as
1
N=—‘2' E P

;<0

For the same class of potentials, there are still no positive partial indices of G (k).

Using Theorem 5 above and Corollary 4.5 in [Ne90], it follows, even if there are

bound states, that both the sum of the negative partial indices of G(k) and that of the

positive partial indices of G(k) are independent of z.
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Complete integrability of “Completely Integrable” systems

Richard Beals
David Sattinger

There is a well-known hierarchy of commuting flows associated with an n xn spectral
problem in one variable. These flows are Hamiltonian with respect to natural symplectic
and Poisson structures on the manifold of potentials. It is common to speak of complete
integrability. in analogy with classical mechanics, although in the infinite dimensional
case there is no question of the number of independent commuting flows being half the
number of degrees of freedom.

The scattering transform linearizes these flows and decouples the spectral modes.
but for n > 2 it does not trivially decouple the symplectic and Poisson structures.
We find action-angle variables which do decouple these structures and thus show that
the system on the scattering side is a direct integral of finite dimensional completely
integrable systems. for general n.

An important tool is the analysis of a natural 2-form and symplectic foliation of
SLin). Reductions of the system require further analysis, e.g. in SU(n). As an appli-
cation we obtain the complete integrability of the three wave interaction equation and
note that even on the scattering side one must adjoin a nonlinear flow at each mode in
order to have a complete system of commuting Hamiltonian fows.

The detailed version of this paper will be published elsewhere.

This is an expository account of results concerning the classical complete inte-
grability of nonlinear evolution equations which are solvable by the inverse scattering
or inverse spectral method. The method allows the question of complete integra-
bility to be posed and (sometimes) answered in a finite-dimensional setting. In the
process one encounters an interesting 2-form and symplectic foliation on classical
Lie groups.

Section 1 gives the classical background and a discussion of the KdV equation.
The n x n spectral problem and the associated Hamiltonian flows are described in
section 2 and the main theorems are stated. The proofs depend on an analysis of
a 2-form and symplectic foliation on the groups SL(n) and SU(n). described in
section 3. Details will appear in [BS1].

§1. Complete integrability in dimensions 2.2, and x.

Classically a Hamiltonian flow with .N degrees of freedom is described in suitable
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coordinates (ry.... .ryx.y1.... .y~ ) by Hamilton'’s equations
(1.1) . OH . aH
. Tj= —. Yj = — .
7157 Yi
C)'yj ().I'J

The structure of these equations is linked to the geometry of the symplectic form
Q=1 d.’L‘j A dyj
and the dual Poisson bracket for functions
{(f.9} = (_é_’_f_ 99 _9f 99
' dxj dy; Oy, Ox;”
In fact, an arbitrary function changes along the trajectories (1.1) according to its
Poissen bracket with the Hamiltonian function H:

j={fH}.

The flow {1.1) is said to be completely integrable if there are N independent integrals
of the motion which are in involution, i.e. functions fj,...,Inx such that

(1.2) (I, HY =0={I,, I},  dlA...AdIx #0.

[t was shown by Liouville that (1.2) is equivalent to the existence of action-angle
variables for (1.1): coordinate functions py,... .px. ¢1.... .gn such that

{pj,H}=0. Q=dej/\dqj.
The last condition can be written in terms of the Poisson bracket as

(1.3) {pj-ax} =6ix:  {pj.pe} = {g;.q} = 0.

In fact. one may take p; = I;. and Liouville’s method finds the ¢; by quadratures
Any Hamiltonian flow with 1 degree of freedom is completely integrable: take
I, = H (if dH # 0). An example is the mathematical pendulum

(1.4) I =-¢sinz, ¢ = constant,

withy =7 and H(z,y) = %yz —c cos z. Actinn-angle variables for (1.4) are Jacobi
elliptic functions. Equation (1.4) appears in a natural but surprising way for the
scattering data for the 3-wave interaction equation: see end of §2.

Somewhat more generally. a system of k cominuting flows with Hamiltonians
H;.....H; in involution is completely integrable if there are N independent func-
tions [; which are invariant under each flow and in involution with each other.

The question of complete integrability in a nontrivial nonlinear infinite-dimensional
context first arose in connection with the KdV equation

{1.5) uy — busy + gy = 0.
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Kruskal and co-workers discovered that {1.5) has a countable family of polynomial
conservation laws
o . du Jd
(1.6) I =0, 1 =/Pk(u.7-.... .(7——)1‘(1}(11'.

dr or
It was shown by Gardner |Ga] that (1.5} is a Hamiltonian flow with respect to the
Poisson bracket
6F d (éG)
du dr  bu
moreover the constants of motion I in (1.6) are in involution. Of course one can
no longer simply count degrees of freedom to see whether there are enough Ii's for
complete integrability. However. Gardner. Greene, Kruskal. and Miura [GGKM]|
had shown that (1.5) can be integrated exactly by using the scattering theory of
the linear spectral problem

(1.8) vep (2.t &) + [ — u(r. )|u(z. t.E) = 0.

(1.7) {F.G} = dr:

In fact. ignore the t-dependence for a moment and suppose u vanishes at x in
x. Then for real £. (1.8) has solutions ¢4 ~ erp(xizf) as r — £x. and these
solutions are related by

(1.9) vo(z.6) = al@u_(z. =€) + b()v_(x.6).  af* - > =1.

In the absence of *~int spectrum. the potential u can be recovered from the reflection
coefficient bj/a [F}. 1. the potential u(-.t) evolves according to (1.6). then a.b evolve
according to

(1.10) gza(f.t) =0. ;%b(f‘t) = BiE3b(£. ).

This suggests that the modulus and argument of b might serve as action-angle
variables. Indeed the complete integrability of KdV was established by Zakharov
and Faddeev [ZF] by showing that the functions

log(l + (). q(€) = arg b(E)

3 oo

(1.11) p(&) = L logla(@)]? =
satisfy the continuous version of (1.3):

(1.12) {p(&).q(m)} = 6(& - n). {p(&).p(m} = {9(&).q(m)} = 0.

The equations (1.10) show that the scattering data a.b not only linearize the KdV
flow. but also decouple the modes £. Similarly (1.12) shows that the scattering
data decouple the Hamiltonian structure (1.7) as a direct integral of 2-dimensional
structures. Combining the two. one has decomposed KdV as a direct integral of
Hamiltonian flows with 1 degree of freedom.
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There are now a large number of physically interesting nonlinear evolution
equations which are known to be similar to KdV in the following ways (see. e.g.
(BuC]. [NMPZ}):

(a) they are Hamiltonian with respect to a Poisson structure similar to
(1.7)

(b) there is a countable family of conserved quantities like (1.6) which are
in involution;

{c) thereis an associated linear spectral problem whose scattering theory (if
known) gives a procedure for solving the nonlinear initial value problem
exactly.

Such equations and systems are commonly called “integrable™ or. because of
(a), (b), “completely integrable™. It is (c¢), however. which allows one to pose the
question of complete integrability in a very precise sense: does the scattering data
provide action-angle variables? This is essentially a finite-dimensional question, at
least after the fact, because for each appropriate value of the spectral parameter £.
the scattering data lives in a finite-dimensional space. In most of the cases where the
answer was known, the dimension of this space is two. so in some sense the problem
is reduced to the trivial case of classical complete integrability. Examples are KdV,
the cubic nonlinear Schrodinger equation {ZM2]. the sine-Gordon equation [FT1].
or any equation whose spectral problem is a 2 x 2 system of AKNS-ZS type: see
[FT2]. The complete integrability of the 3-wave interaction equation. linked to a
3 x 3 system, was investigated by Manakov [M].

In the remainder of this paper, we discuss n x n systems and the associated
flows. Proofs will appear elsewhere [BS1]. In a separate paper [BS2] we prove
complete integrability of the Gelfand-Dikii flows [GD]. These flows are associated
to eigenvaiue problems for higher order ordinary differential operators and include
the Boussinesq equation. In this paper. as in the discussion of the KdV flow above,
we consider only the case of purely continuous spectral data. Discrete data poses a
different type of question, which is studied in [BK].

§2. The n x n spectral problem; flows; scattering data

The isospectral problem is

(2.1)  ¥(z.2) = 2JY(z, 2) + g(2)¢(x, 2). z€C, Y(z,z) € GL(n,C).

The potential g is off-diagonal with Schwartz-class entries and J is diagonal with
distinct eigenvalues. General references are [BY], [BC1]. [BC2l. [C]|. (Ge]. [Ne].
[Sa]. [Sh].

The question of complete integrability can be reduced to the case J + J* = 0.
which we now assume. We also reorder rows and columns so that

sziag(z'/\lg--?iAn). )\1 > A > o> A,
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There is a Hamiltonian structure on the manifold of potentials ¢ given by the
symplectic form and Poisson bracket

(2.2) Q= /t-r{&q(;r)/\[adll]"léq(:r)}dr,
‘ [ o tE %,
(2.3) {F.G}_/ tr10.50] 5o o

For each traceless constant diagonal matrix p there is a hierarchy of flows
(24) q = [J, Fk+l.p]

where the Fi , are polynomials in ¢ and its derivatives [Sa] which are defined
recursively by

dFy .

FO.u = H; [J« Fk+1.p] = dr

+ [Qa Fk‘u}s x_lj{{lx Fret1u(z) =0

The flows (2.4) are Hamiltonian and in involution.
For real £ there are normalized solutions ¥4 (x,£) of (2.1) linked by the scatter-
ing matriz s(§) € sl{n,C):

(25 lim_ $s(z.8) espl-a€d] =1, ¥_(2.,6) = v+ (.6)s(€).£ € R.

If [ilg{z)|ldz < 1 then the scattering map ¢ — ¢ is injective. Under the flow (2.4),
the scattering matrix evolves linearly:

(2.6) $(€,t) = [€Fp, s(£.1))].

A complication is that s is subject to nonlocal constraints: the upper (resp. lower)
principal minors of s are boundary values of functions which are holomorphic in the
lower (resp. upper) half plane. This reflects the fact that the potential ¢ maps the
line to a space of dimension n? — n., while the scattering matrix s maps to a space
of dimension n? — 1. Minimal scattering data can be obtained from s by factoring

(2.7) $4+ = SU4+.$4 and v_ are upper triangular,

s and vy are lower triangular, {(v+);; = 1.
The scattering data (v, v..) is a map to a space of dimension n% —~n. The scattering
matrix s can be reconstructed from (v;,v_) by a process which includes solving
n — 1 scalar Riemann-Hilbert factorization problems.
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In terms of scattering data, the symplectic form and Poisson bracket are

(2.8) Q= I:FZ A trfv7t(6ve) AsTt sy ~vZ (v ) A sT! bs)
(2.9)
{85(8) 8em(n)} =7 i8;m(&)sex(n)[sgn{€ — j) — sgn{m — k)]6(€ ~ 7)
+ 550(Osem(Mlese = bin] P T

where sgn(0) = 0 and p.v. denotes the principal value; [BC2], [BS1]. See [M] for
the Poisson bracket in the case n = 3 and [Sk], [KD] for R-matrix formulations.

THEOREM A. There are functions a,.b,,l < v < %(n2 — n) defined on a dense

open subset of SL(n,C) such that the composed functions p, = a, 08.q, = b, 03
are action-angle variables for the flows (2.4): the Hamiltonian for (2.4) is a linear
combination of the functionals [ &*p,(€)d¢ and

(2.10) Q= / d p, A dg,
2y

(2.11)  {pu(€)yqu.(m} = 6,.6(§ = 7n): {pu(€).0o(M} = {qu(€).a(M} = 0.

In the case n = 2, there are just two functions which can be taken to be

(2.12) p(&) = log[s11(§)s22(€)], q(€) = i log[s12(£)/521(E)]:

in the general case the p, and ig, can be taken to be logarithms of products and
ratios of suitable minors of s.

This gives complete integrability of (2.4) in the complex sense. The most im-
portant examples for (2.4) involve reduction. i.e. restriction to a submanifold of
the manifold of potentials ¢, for which the form is real. An important case is the
reduction

(2.13) q(z) +q(z)” =0

which leads to real 2 and to s(£) € SU(n). In this case. one would like real action-
angle variables. The functions given above for n = 2 are real on SU(2), but in
general. real action-angle variables necessarily involve more complicated functions
of the matrix entries.
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THEOREM B. With n = 3, the functions a, and b, in Theorem A can be chosen
50 as to be real on SU(n).

This proves complete integrability for the 3-wave interaction. A different ap-
proach. using nonlocal functions of s{£), was taken by Manakov [M].

One should note the following: the flows (2.4) do not constitute a full set of
commuting Hamiltonian flows in any sense. when n > 3. The minimal scattering
data has pointwise dimension 3(n? —n), while the space of flows (2.6) has pointwise
dimension n — 1 (complex dimensions in the general case, real dimensions in the
case of the reduction (2.13)). The flows associated to the additional constants of
the motion are not linear in the sca‘tering data (as elements of the linear space
M,(C)). Thus for n > 3 the existence of the infinite family of commuting flows
(3.4) is not in itself very convincing evidence of complete integrability.

A final remark: under the natural third flow occuring in Theorem B to sup-
plement the two linear flows (2.6) at a given point £, the modulus |s22(€)! is fixed,
while arg s22(£) obeys the pendulum equation (1.4)!

§3. A 2-form and symplectic foliation on SL(n) and SU(n).

Given s in SL(n) = SL(n.C), or SL(n,R). denote the upper and lower princi-
pal minors by

(3.1) d;(s) = det(sjk)j.k<e: dy (s) = det(sjk)j‘kzg.

If no d;t(s) vanishes, s has two unique factorizations (2.7). In terms of these fac-
torizations, we may define a 2-form on (a dense open subset of) SL(n) by adapting
(2.8):

(3.2) 0, = trivI N (dvy) A s7ldsy — v dv.) AsZids.].

As a form on SL(n}. it is not obvious that {1, is closed; it is certainly not symplectic,
since the rank in a neighborhood of the identity is n? — n.

THEOREM C. There are functions p,,q,, 1 < v < $(n? — n), such that
(3'3) Qn - Z dpu A dQU'

In particular, Q,, is closed.

Although the proof of this theorem is purely algebraic, it is motivated by ob-
servations from scattering theory. First, the result is not difficult when n = 2; p,
and q, can be chosen as in (2.12). Second, the general result should follow from
the result for n = 2. because the matrix J of section 2 can be taken as a limit
of “generic” complex J for which the scattering data are 2 x 2 matrices living on
1(n* — n) lines in the complex plane [BC1]. These ideas lead to a multiplicative
decomposition of v = v7'v, and a corresponding additive decomposition of Q,,.
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The functions (3.1) lead to a natural foliation of SL(n) by the functions
(3.3) pi(8) =dJ(s)/dj,\(s), 1<j<mn.

PROPOSITION. The foliation of SL(n) by the functions (3.3) is sympl.ctic for §},,.
i.e. the pullback of §),, to each leaf is a symplectic form on the leaf.

The symplectic foliation gives a (degenerate) Poisson structure { , } on
SL(n): on each leaf L the symplectic structure determines a bracket ( , ), and
the global bracket ( , ) is characterized by

(£ 9l = (flz, 9lc)-
It follows from (3.2) that

(34) (ppu qy) = 6;11/', (p,uspu) = (qu, q,,) = Q.

As one might begin to expect, the functions denoted p,.q, here are the functions
denoted a,, b, in Theorem A. This is further confirmed by the fact that the Poisson
bracket ( . ) is the local part of the Poisson bracket as computed in (2.9):

THEOREM D. The Poisson bracket of matrix elements is given by

(35) (o3t sem) = 5 symoek lsgn(£ =)~ sgn(m—K)].  sgn(0) =0.

The formula (3.5) was first calculated for n = 2 and n = 3 by Lu [L]. who
conjectured the general formula and pointed out its relation to the classical limit of
a quantum group structure defined in [D]. The proof in the general case proceeds
through a reduction to the cases n < 4.

To complete the proof of Theorem A, one needs to show that the possible
nonlocal terms in (2.11) veanish.

The 2-form 2, makes sense as a complex 2-form on SU(n), but it can be shown
that

(3.6) i), is a real 2-form on SU(n).

Moreover, the foliation functions (3.3) have modulus 1 on SU(n). so the foliation
is determined by their arguments and thus the Poisson bracket —i(f,g) is real on
SU(n) when the functions f and g are real.

THEOREM E. For SU(3) the functions p, and ¢, in Theorem C can be chosen so
that p, and iq, are real.

In fact one can choose p; = log|s;;| and the g; may be found by Liouvilie's
method: they are elliptic functions of the matrix entries; see [BS1].
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On the Determinant Theme for Tau Functions,
Grassmannians, and Inverse Scattering

ROBERT CARROLL

ABSTRACT. One investigates relations between tau functions, dressing ker-
nels, wave functions, and spectral asympiotics for KdV, KP, and AKNS
situations in a determinant context where emphasis is on the continuous
spectrum.

1. Background (cf. [2-5, 8, 13, 14, 19, 22-26)]

Consider first the KdV situation for (x) Ly = (D2 +qly = —kzw and
y, = By = -4y . —6qy, - 3q y with ¢, +6gq +4q, . =0 (g real).
One defines Jost solutions for (x) with f ~ exp(xikx) as x — +oc and
writing T' =s,,, R=5,,, R, =s,,,and rf(k) = f (k) = f(~k). we have
Tf =Rf +f with Tf =Rf_ + f~ . Assume there are no bound states
and say g € S (Schwartz space). The classical picture involves F(z,t) =
(1/2m) f>_R(k, 0)exp(ik z+8ik’t)dk with K the solution of the Martenko
(M) equation

K(x,y, t)+F(x+y,t)+/ K(x,s,)F(s+y.t)ds=0

for y > x. Then g(x, ) = 2D K(x, x, 1) satisfies KdV. Now introduce
hierarchy variables x = (x,, x5, ...), x = x, sometimes, x, ~ t; = 41, and
unless otherwise specified for hierarchy variables x, y we stipulate x,,,, =

Yomey for m > 1. Set &(x, k) =& = 1'28°.r2n+11(2"*I and y,(x.k) =

exp(é(x, k)) with
Flx,y)= /rwo(x, k)wo(y, kYdA = (yylx, k), woly, k)

where I', A can be in general any “suitable” curve and measure (I’ =
(=%, x) and dA = R,dk/2n classically). Let ®, be the n x n
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matrix with entries F(s;,s;) with Q the (n + 1) x (n + 1) matrix
having first row F(x,y), F(x,s)),..., F(x,s,), first column F(x,y),
F(s;,¥),..., F(s,,»),and ¢, for the remainder. Then following [23-26]
one solves the Fredholm integral equation

(1+F¥)K=—-F(Fx~/xoc5/xw)

in the form K (x, y) = K(x, y) = D(x, y)/t(x), where

(x)=1+)Y (i/n! T4 @ I ds, ;
;( /n)/x /x et® IT] ds,
D(x,y)=—F(x,y)—Z(1/n!)/ / detQ,IT} ds, .

i

This leads to g(x) = 2D _K(x, x) = 2D log7(x) (x = (x,, X5, ...), X3 ~
4t , etc.). One defines wave functions now as

v, = wo+/ K, (x,8)yls, k)ds,
X

and similarly there is a K_ based on [*_ with
~ X -~
Ty_=exp(-O+ [ K_(x,s)exp(~E(s. k) ds
-0

(for K&V K_ = (1+K[)™"). One can write (cf. [2-8])

K. (x,y)=—(w (x, k), 9.y, kD)) (¥ >x);

2
@) K (x,9) = (0,06, K), o0 KDy (7<)

and the vertex operator equation (VOE) is f_(k), = exp(&)G_(k)t = v.T,
where - -~ .
X, (k)T = exp(FE)G (k)T = exp(FE)T,
= exp(£&)t(x, + 1/ik, x, £ 1/3ik’, ...).

The relation (1+ K ! )(1+K_,) =1 leads directly (via Fourier transform) to
the classical completeness relation (C)

(1/2n)f_°c Ty_ (v, k)v.(x, k) dk = 8(x - ).

This is based entirely on the structure ¥, = (1 + K +)exp(f) and Ty_ =
(1 + K_)exp(—&) with (1+KT)=(1+K,)™" (for KP a similar argument
applies for completeness using Laplace transforms—see below and cf. [3-6,
22)).

}JVe indicate also some minimal background for KP (cf. [§, 6, 10, 15, 16,
19-25, 27]). Thus writing 8§, = 8/9x,, & = 8/0x; (x = (x|, X;,...)),
one requires a Lax operator L = 0 + u‘(x)a"l + ---, a gauge operator
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P =1+ wl(x)é'_1 + ... such that LP = P3J, and hierarchy equations
8,L = [B,, L], where B, = (L"), . Set now ¢ = Yx k" with w =
Pexp(¢) = (1 + L7 wk /) exp(¢) = wexp(¢) and w” = (P*)'e™". The
dressing picture involves upper and lower Volterra operators K such that,
for n >2,(0,-B )1 +K,)=(1+K,)9, —-98"). Then P~ 1+K_,
(PY '~ (1+ Kf)‘l and formal residue calculations lead (when they make
scnse) to the Hircta bilinear formula (H) [~ w(x, kw(y, k)dk =0, where
C is a circle at “oc.” This is proved first for x, = y, (n > 2) and then
extended to arbitrary x,y. A corresponding completeness relation ((~?)
(1/2nd) [22 w(x, kyw* (v, k)dk =8(x —y) for x, =y, (n>2) is proved
as above for (C) (without extension to x, y arbitrary). Hence heuristically
we record (cf. [3, §, 6, 22])

THEOREM 1.1. The conceptual background for (H) and (C) is equivalent,
namely, w = Pexp(§) and w* = (P')'l exp(—¢), with P~ 1+ K_, etc.

ReMARK 1.2. The problem is, of course, that for half plane analytic wave
functions w, w* (or .» Ty_ in KdV), the residue calculations generally
make no sense. However, the Hirota formula (H) is derived in many geo-
metric and algebraic contexts where residue calculations do make sense (cf.
(3, 10, 15, 16, 19-22, 25]) and its geometrical content must have a version in
the case of no discrete spectrum with tau functions constructed as above, for
example based on continuous spectrum. One wants to preserve the algebra
of the hierarchy framework in the scattering situation and this is discussed
in §2.

2. The Hirota bilinear identity in the Grassmannian picture for KdV

We go to the Grassmann picture of scattering developed in {12, 18] and
refer to [3, 4] for details (cf. also [11, 15, 19, 27)). Let H" = FLZ[O, oc) and
H = FLY-00, 0] (Fourier transform) be the standard Hardy spaces with
p: L} — H* the orthogonal projection. The Grassmannian is GR = {H C
LZ; (1-p): H— H™ is 1-1, onto, with continuous inverse}. One works with
R =s,, € § here (KdV situation with no bound states) and it is shown in [18]
that H € GR corresponds uniquely to s,, = R via H = LG{f; fT+Rfe
H'}. The approach of [12, 18] is part of a program on the geometry of KdV
and one works there from the viewpoint of algebraic curves and divisors.
The addition theory in [12], for example, is equivalent to the hierarchy (or a
substitute for the hierarchy) and involves updating R via R = Rexp(2ikx)
(or eventually R = Rexp(28)) and R = Rw-k)/(w+k) (Imew > 0). We
define the Baker-Akhiezer (BA) function for R as é L=V, exp(—&) and set
é_=y_exp(€) so Té_=é_+Ré_. Let e, = (—i/Vmlk+D))((k—i)/(k+D))"
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be a basis for the Hardy spaces and write

FoGs)= [ F(5,¢,xy,...)p(x)d¢;
(3) e
Ffo(s) = / F(s+x,,0+x,,%;,...)p(c)do.
0

Then TrF, = TrF" so the theta functions constructed in [12, 18] involve
O(R) = det(l + prR|,.) ~ det(1 + F*) = det(l + F) = t(x) for F =
(Wolx, k), wy(y, k), as above (Xppsy = Yinsys ? > 1). Using techniques
of [25], one knows that vertex operator action G _{w)t = 1_ (7t based on
R) gives a tau function based on R*, and one obtains an alternative proof
of a result in [18], namely (R~ = R(w +k)/(w-k))

THEOREM 2.1. We have é,(w) = O(R*)/O(R) ~ v, = ¥_1/t and Té_ =
O(R™)/8(R)~ Ty_= X /1.

In the context of divisor theory, of course the proofs in {12, 18] are to be
preferred, but this version exhibits the equivalent vertex operator geometry
which plays a role in the Hirota formula to follow. What we do is take
the proof of the Hirota bilinear identity in [15], based on loop groups over
s, and transport it to the geometry of the Hardy spaces via 1" — e,
We then introduce a formal residue calculation at “oc ™ which embodxes
this geometry, so the Hirota formula has the same appearance as before.
Thus the residue calculation is artificial but the geometrical facts expressed
through it are genuine. We let Ae, = e, ,, and vertex operator action can
be expressed for KdV via Q,=1-Aw)(l+ A/a))“l (~ G,(w)). Now
H =H'=w = (1+rR)H+ =wH" = (" )H" with w, = 1+ prR and
w_ = {1 ~ p)rR: in this notation W = (1+ rﬁ)H+ leads to an important
map w_ = w_w. = (1-p)rR(1 +prR)™" with @ ~ (1 + prR)~'prR

acting in H"(W:( )H ). Setting w_(e,, )—Z_ w__e. with ~'(e )=

sm-s

Y0 W,,e,, - the recipe in [15, 27] calls for a BA function Vy(?, w) of H
expressed in the form (7 ~ exp(&(x, A)) action, # = *~")

x

4) l,l?H(’;‘, w)= — (I _w:(e—l))ien—»m" =1 _Z:w—l,mwmm—1

0

_ -t fu v
= det(l + u vw_); (0 ﬂ)
Now express the (e,,e,) = 6,, geometry in H* via e, — w" (with a

~1/2ni adjustmem) so that (e, , = (1/27i) [~ """ 1da) with C a
circle at “oc.” Then for ¢, = (1 + w _{eghl e~ WE get by construction

(1/2mi) f V/H(/, )Wy (7, ®)dw = 0. The Hirota formula results by stip-
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ulating v, = v?,,.e"“"‘“’ € W=H" and y, € H for different 7 actions so
we can state

THEOREM 2.2. The Hirota bilinear identity can be written formally as
fewa (v, w)EiH(;i". w)dw = 0, expressing a genuine perpendicularity of
Grassmann objects, and

(5) V(. w)=del(l +u"'vi_) = ¢, (w) = B(R")/B(R)

3. AKNS and KdV: Connections of tau
functions, spectral data, and dressing kernels

Given the importance of tau functions and their ubiquitous appearance,
we note that for KdV

(6) a(k)= lim t_(x,k)/t(x)= lim (1+e “h g

K (x.k)).

In particular, for suitable general F, = (w,(x, k), w,(v, k)),, one con-
structs K, (= Kf), To» 45, €1c. in §1 and (6) serves as one criterion for
“spectrality.” One can construct various potentials g, by the determinant
method from F, , analogous to Newton-Sabatier techniques in inverse scat-
tering, and the study of such situations and their spectral properties (if any)
is of interest (cf. [2, 4, 7]). For AKNS in the form Q = E;C QL =(%5).
Q" = ZOQC"} Q= (3'?) =gy, @, =(0%), 9,0 = [Q", Q1 etc.
(cf. [1, 4, 14, 22]) one writes, e.g., @ = FQ,F F ', o0 F = Q"F, etc. One
can use the tau functions in [22] for example, if suitable regions Im{ > 0 or
Im{ < 0 are isolated (following [13] for NLS) and then asymptotically

X_1 —(i/20)X o
™ Y O el B
where X T—Cxp:i:lZ(:tk T,, 1 a.r(t,\:tz/zk(,' ,o=718, p=1f,
6_21 ej‘s_}vf Z] f:,(j’ EO hjc Js e"‘Qa,fl:ra h‘=
0, hy = —i, etc. Determinant constructions are developed in [17] and a

dressing framework in [13], which we follow here. Thus, for AKNS column
wave functions ¢, ¢, v, ¥ (cf. [8]) we write S, = (py).S_ = (¥ ~ ¢},
S_. =585, 8= (/a)( ), {tNaa+bb=1), a=Wp,p), ec.. E =
exp(~i{xo;), G_ = S_E"l , G, = aESJ:I ,and Fy = exp(~i}_} th,\,a3).
For basic F in Im{ < 0 or Im{ > 0, one takes the functions F_ =
G_F, and F, = G:‘FO (corresponding to diffcrent tau functions) and then,
analogous to (6), one finds

(8) F_: (t_Jty=1/a="(1 /1); F: (t_juy=a="(1,/1),

where *f =1lim_____ f(x). There are many results in [4] about determinant
constructions, spectral forms of kernels, completeness, Marcenko equations,
dressing kernels, and structures of kernels for AKNS, and many formulas in
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[2] about connections of tau functions with spectral data, dressing kernels,
vertex operator equations, and asymptotics in general.
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An Overview of Inversion Algorithms
for Impedance Imaging

MARGARET CHENEY & DAVID ISAACSON

Introduction

Impedance imaging systems {BB, NGI] apply currents 1o the surface of a
body, measure the resulting voltages, and use these data to reconstruct an
approximation to the conductivity in the interior.

A simple mathematical formulation is the following. The potential u# sat-
isfies

1) V.oVu=20

in the interior of a body Q of conductivity ¢. A boundary condition that
corresponds to applying currents is
. §
(2) o g—;' =j,
00
where v is the outward unit normal and ; is the applied current density.
The applied current density must satisfy the conservation of charge condition

(3) j=0.
12423

The resulting voltages are given by
(4} Uy =1.

The voltages are not uniquely determined by (1) and (2) until we add a
condition specifying a ground. A convenient condition is

(3) / v=0.
a2

The tnverse conductivity problem is, from the knowledge of the map R: j —
1, 10 find the conductivity o.
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This is actually a simplification of the true problem. This model leaves
out the effects of the electrodes [CING]}. In addition, for experiments done
at nonzero frequencies, the model should include the electric permittivity as
well as the conductivity [IC1]. In this case, the conductivity can be replaced
by o + iwe, where w is the frequency and ¢ is the electric permittivity.
The problem of reconstructing the conductivity then becomes the problem
of reconstructing the electrical impedance.

Relation to scattering

The impedance imaging problem should be interesting to those who like
scattering theory, because impedance imaging is closely related to inverse
. . . . . -172 .
scattering. This can be seen by making the substitution « = ¢ ]/'l// in (1).

This transforms (1) into the Schrédinger equation
Ag'’?

b2

a

(-A+q)y =0, where g¢g=

Nachman [N] has shown that knowledge of the Neumann-to-Dirichlet map
for the Schrédinger equation is equivalent to knowledge of boundary mea-
surements of the Green’s function that satisfies

(-A+g)G=94.

This models a wave propagation problem in which one sets off point sources
everywhere on the boundary and listens to the responses on the boundary. By
taking the boundary to infinity, one can then obtain the scattering amplitude
or far-field pattern {DB].

Actually, scattering problems are idealizations of boundary value prob-
lems. No physical measurement can really be made at infinity. There is
therefore no loss in generality in considering only boundary value problems.

Another connection between the impedance imaging problem and scatter-
ing is that the Sylvester-Uhlmann uniqueness proof [SU] (that the boundary
map uniquely determines the conductivity) used scattering theory.

Essentially, the inverse conductivity problem can be thought of as equiv-
alent to an inverse scattering problem at fixed frequency.

Applications

Impedance imaging is also interesting because of its applications. Its use
for medical imaging is being explored at Rensselaer [GIN] and many other
institutions. The reason it may be useful for medical applications is that
different tissues in the body have different electrical properties [SK]. Thus
images of the electrical properties should enable one to visualize the different
organs of the body.

Impedance imaging has also been used to detect flaws, such as cracks, in
metals. This work is being done at General Electric R&D [ESIC].
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Impedance imaging may also be useful in visualizing multiphase fluid flow
[XPB]. A second group at Rensselaer has begun work on this application.

Iterative methods

There are many iterative methods being used, but they all use roughly the
same algorithm. This algorithm is

(a) guess o

(b) solve the forward problem

(¢c) compare the solution 1o the measurements

(d) update o

(e) go to step (b).
The main difference among the various algorithms is the functional used in
step ¢). One commonly used functional, the one used in the images produced
so far at Rensselaer [CINGS], 1s the output least squares functional; another
is the functional [KM], which has the property that Ohm’s law is satisfied at
the minimum. There are many additional constraints that can be added in,
but we will not discuss these here.

Linearized methods

A. The Applied Potential Tomography (APT) system. The APT system of
Barber and Brown [BB] is the only commercial impedance imaging system.
Their system applies currents only on two neighboring electrodes and mea-
sures the voltages on all the other electrodes. It uses a linearized recon-
struction method based on backprojecting along the equipotential lines for
a homogeneous body. The work of Beylkin [B] and Vogelius and Santosa
[SV] shows that this method gives an approximate solution to the linearized
inverse problem.

B. The Calderén method. In [C], Calder6n gave a formula that can be
used to solve the linearized inverse problem exactly. To obtain his formula,
he used (1) and the equation for the homogeneous problem

(6) v =0.

He then applied Green’s theorem to the identity
(7) /va-aVu-uV%):O.
Q

This results in

ou av
(8) '[Q(O'—I)VM'V’IJ.../‘;Q<U05;;_ME_U_>.

The right side of (8) is data. Calderén then used two particular solutions of
(1) and (6) involving the complex vector

e+t
=Sne

4

(9} ¢ EeR", £.& =0.
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It has the property that {-{ = 0. The special solution of (6) is

(10) v=e " -1, xeQ.
The special solution of (1) is obtained by specifying
du _ a —1yx

(11) Ub—uon-—'a—;(e ).
If the conductivity is close to one, then u is close to
(12) u~e T,
If we use this expression for u in (8), then we obtain

"'512 / —ifex 4 du (')’U)
(13) 3 Q(a l)e dx =~ - vaau Ul

Thus the linearized inverse problem can be solved by inverting the Fourier
transform.

C. Exact solutions, Calderon’s method has been used to obtain exact so-
lutions to the linearized inverse problem in special cases.

In the “two-ring” case, when the body is a homogeneous circular disk
containing a concentric disk of constant conductivity, the linearized recon-
struction {II] contains a whole sequence of rings. The outermost ring has
the correct radii and correct conductivity. The inner rings have radii con-
verging exponentially to zero. The conductivities of these inner rings are not
correct. Nevertheless, it is clear that the linearized reconstruction contains
useful information.

The “three-ring” case is similar [CII]. Each discontinuity gives rise to a
sequence of rings whose radii converge exponentially to zero.

These examples show that the solution of the linearized problem contains
more discontinuities than the solution of the nonlinear problem. Neverthe-
less, useful information can be extracted from the linearized solutions.

D. Modified Calderon method. These examples suggest that Calderdn’s
method might be useful in practice. The problem is that it requires bound-
ary data that are highly oscillatory. This is bad for two reasons. First, highly
oscillatory data contain mainly information about the boundary of the body
[1). Any signal due to conductivity changes deep inside the body tends to be
buried in the noise. Second, highly oscillatory data cannot be applied with
ounly a limited number of electrodes. This suggests that we should change
basis from the highly oscillatory exponentials to a basis of smooth functions
such as the trigonometric functions.

We thus expand the boundary data (in the two-dimensional, circular case)
as

(14) D pmivx 0V Y ™, 6e[0,2n].
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We use this expansion in (13), obtaining [IC2]

1oc ¢ 1 ~71~V n —-#-V m
(15) a-lzizzmavﬁhm,( 5 )( 5 )6,

n=0 m=0

where ¢ is the Dirac delta function, u = (1,{), A= (1, —i), and

n,m

(16) SV =[ e (R, - R)e'™ db;
I

here R, is the boundary map in the homogeneous case (6). The quantities
(16} are now the data; they are good from the signal-to-noise point of view.
The formula (15) gives an exact solution to the linearized inverse problem.
The obvious difficulty is that each term on the right side is singular.

These singularities can be understood with the following example. Suppose
one computes the Fourier transform of a Gaussian by expanding the Gaussian
in a Taylor series and Fourier transforming each term. The result is an infinite
sum again containing derivatives of delta functions. In fact, the sum can be
written as the heat operator applied to a delta function. This shows how it
is possible to add up an infinite number of singular terms all supported in a
neighborhood of the origin and obtain a result that is smooth and nonzero
everywhere.

However, (15) presents computational difficulties. Clearly some sort of
regularization is needed to make the formula useful in practice.

E. The moment method. The linearized inverse problem can also be for-
mulated in terms of a moment problem. This formulation has been explored
in [CW] and [BAG].

To obtain a moment problem, we merely use different special solutions in
(8). In particular, we use

(17) e LI gind , v= L imi gime
n m

We also expand the conductivity in its Fourier series as

(18) (@-D(r.0)= 3 n(ne™’.

k=—00

Then (8) reduces to the moment problem

1
(19) /0 M, (1) Py = (data), ,, -

Such a moment problem can be solved by taking linear combinations of
(19) to build up orthogonal polynomials out of the powers of r appearing on
the left side; the orthogonality can then be used to solve for n. For example,
one can build up the Legendre polynomials

I .
(20) P(n=>ar.
1=]
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However, this step is unstable, because the coefficients g, rapidly become
very large.

F. Comparison of linear methods. We can summarize the above methods
in the following table. Here the second column refers to the measurement
precision needed to achieve a given resolution.

method required precision algorithm
Barber-Brown higher stable
Calderon higher stable
modified Calderén lower must be regularized,
moment method lower unstable step

Thus we see that stable algorithms seem to require high-precision data.
If one measures with current patterns for which less precision is required
and changes basis to obtain the data needed for a stable algorithm, then this
change of basis is itself unstable. We expect to see a similar phenomenon in
the full nonlinear case.

Nonlinear methods

A. The Sylvester-Uhlmann-Nachman method. This method is based on the
discovery [SU] that, at least in dimensions higher than two, there are solutions
of (1) that approach /oexp(i{ - x) for large {{|. The boundary values
of these solutions can be obtained from the map R by solving an integral
equation [N]. Using these special solutions in {8) allows the inverse problem
to be solved by an inverse Fourier transform or by a Cauchy-type integral
formula [N].

It is not known whether this method can be made into an algorithm that
will work in practice. However, it is one of the most promising approaches
to the full nonlinear problem. Another approach worth exploring is based on
invariant imbedding.

B. Invariant imbedding. The idea of invariant imbedding is to imbed the
conductivity in a one-parameter family of conductivities. We will consider
the particular family in which the conductivity is truncated outside the disk
of radius a. Outside the disk of radius a, the conductivity g, is defined to
be a constant. One can then obtain an equation for dR/0a . the change in
the data with respect to the parameter a. This equation, which is called the
invariant imbedding equation, involves only knowledge of the conductivity
on the circle of radius a.

This suggests that the inverse problem might be solved by the following
layer-stripping algorithm. Let us first consider an outline of the algorithm,
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and then go into more detail below. We will denote by R(a, b) the boundary
map on the circle of radius b corresponding to g, .

(1) Measure R(r,.r,)-

2) Find o on the boundary r =r,.

(3) Use a finite difference approximation to the invariant imbedding
equation to obtain the boundary map corresponding to the conduc-

tivity g, _,:
0

dR{a. ry)

R(ry - A, r)) =~ R(ry, ry) — A 54

as=r,

(4) Propagate the measurements to the inner surface to obtain R(r, -
A,ry—A4).
(3) Replace r, by r,— A and repeat, starting with step (2).

Thus this algorithm proceeds by first finding the conductivity on the outer
boundary (which is only a mildly ill-posed step), and then using this informa-
tion to synthesize the data we would have measured if we could have made
measurements on a surface inside the body. By repeating this process over
and over, we successively strip away layers of the body, finding the conduc-
tivity as we go in.

This approach has some apparent advantages. First, part of the ill-posed-
ness is made explicit, in step (4). This problem has already been studied
[CF]. Second, a naive version of this algorithm uses only L x L matrices, as
opposed to the L? x L? matrices needed by a naive least-squares algorithm.
(Here L is the number of electrodes.) Third, the layer-stripping algorithm
requires fewer operations than a naive least-squares one. However, because
of the instability of the algorithm some modifications are needed to make it
work [CISI, SCII].

The invariant imbedding equation (step (3))

Thne idea behind the invariant imbedding equation is the following. First,
we note that the operator R is the restriction to the boundary of the Green’s
function G, defined by

(21a) V.0,(x)VG,(x,y)==-6(x~y) inQ,

(21b) g, 96,

0V ha
(21c) /Ga=0.
Y]

= const,
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If we differentiate (21) with respect to @, we obtain

aG do .
(22a) v. aV—d———- daVG in Q,
g oG -00 909G
(220) % 5094, ba 0
oG

If we then multiply (21a) by BG/aa, multiply (22a) by G, subtract the
resulting equations, and use Green'’s theorem, we obtain
(23)

8 86 090G a8G -0G de G do
*/a (Gaa—v‘a-—a'*—ggﬂ-a*;) w———aa + ()QG%%——,/QVGEEVG

We now note that (21b) and (22c) imply that the second term on the left side
vanishes. By (22b), the first term on the left cancels with the second term on
the right. Finally, we use the fact that 9o /3a = (6 — 1)é to obtain

@) Ggtr=-[ (@)~ 1)V6(x, 2)-vGy, 2)ds.,

where 982, denotes the circle of radius a. The gradients can be decomposed
into radial and angular components. The radial derivatives are known from
(21b), and the angular derivatives can be obtained from the data. We note
that the right side of (24) depends entirely on quantities on the circle r = a.

Actually, the above derivation is too simplistic and (24) is not correct.
This is because almost everything in sight is singular. If we follow the above
plan, being careful to interpret everything in the distribution sense, then we
obtain

6u2

2o R =2 [T - 0@, 0020, 0)22(a, 0)d0
oa Jis Rgly T a 0 gia, ’ (a’

~a 2" (1- ;(579—)) j,(8)j,(6) 6,

V.-o,Vu,=0 inQ,
(26) 8u
% 61/

(25)

where u, satisfies

_ji'

Equation (25) is the invariant 1mbedd1ng equation.
The quantity du/08 appearing on the right side of (25) can be calculated
from the Fourier series of u on the boundary. In particular, if
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then -
%: Z invnei"g.

nw—oC
We note that the factor of n appearing on the right side is one way in which
the ill-posedness of the problem manifests itseif.

How to get the conductivity on the boundary (step (2))

It is easy to see how to get the conductivity on the boundary if we write
(21a) as

(27) oV G+Ve VG =-4.
The leading order singularity of G satisfies
(28) oV’G, = -4,
which has solutions of the form
(29) Gy(x,y) = J8IX =M | (cmoother stuff).
o(x)
Thus we can write G as
_clogix —y|
(30) G(x,y)= o + (smoother stuff; .

This enables us to obtain the conductivity as
i Cloglx — y
(31) a{x) = 31__{:)1{ Gy

More detailed, rigorous proofs that ¢ on the boundary can be recovered
from boundary measurements may be found in [KV, SU}.

How to propagate the measurements to the inner surface (step (4))

The measurements can be propagated through an annulus of constant con-
ductivity by noting that the current density and voltage on the inner circle
are linear functions of the current density and voltage on the outer circle.
Explicitly, we write © and j for the voltage and current density on the inner
circle of radius a, and v and j for the corresponding quantities on the
outer circle of radius r,. The linear relation between these quantities can be
written as

(32) ¥ = Av + BJ, j=Cv+Dj.

The operators A, B, C, and D can be found by separation of variables.
In particular, the Fourier coefficients %, of ¥ can be written as

oot () ] 86 6 ]

where v, and j, are the Fourier coefficients of v and j, respectively. The
formula for j, is similar. Note that the terms (a/r,)”" on the right side
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of (33) are very large if a is small or n is large. This is a symptom of the
ill-posedness of this step.
By the definition of the boundary map R = R(r,, r,), we can write

(34) o= (AR + B)J, J=(CR+D)j.

If we denote by R{a, a)‘the boundary map on the circle of radius a, then
the relation © = R(a, a)j implies

(35) R(a,a)= (AR + B)(CR+D)™".

The Riccati equation

Generallv the method of invariant imbedding involves a Riccati equation.
In this case, we can obtain a Riccati equation by combining steps (3) and
(4). However, it is not clear whether it is a good idea to do this, because the
Riccati equation recombines a number of unstable steps that may be easier
to analyze separatcly.

Algorithms based on these invariant imbedding ideas have produced re-
constructions from synthetic data [CISI, SCII]. It remains to be seen whether
such algorithms can be used with experimental data.
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ON THE CONSTRUCTION OF INTEGRABLE
XXZ HEISENBERG MODELS WITH ARBITRARY SPIN

Holger Frahm!

ABSTRACT. The use of finite-dimensional representations of the quantum group
[SU(2)}, to the construction of spin S integrable systems with XXZ anisotropy in
the quantum inverse scattering framework is discussed. To obtain a physical spin
chain operator the representation of the quantum group has to be self-adjoint.
This requirement gives rise to a commensuration condition betwecn the value of
S and the anisotropy of the system.

Recently, surprising connections have been unveiled between certain quantum deforma-
tions of Lie-algebras [1-3] and the theory of integrable quantum systems, especially within the
framework of the quantum inverse scattering method (QISM) [4,5]. While quantum group
symmetries manifest themselves in various ways [6-8] in the context of integrable systems
they seem to be particular useful in the construction of higher spin integrable spin chains
(1,9-11).

In this note this application of quantum groups is studied in some detail. It is well known

that a solution of the Yang-Baxter relation

(1) Ri2(u — v)Riz(u) Raa(v) = Ryz(v) Rus(u) Ryo(u — v)

defines an integrable two-dimensional vertex model with row-to-row transfer matrix
(2) Tn(u) = Ry o(u) @ Roo(u) @ ... @ Ry o(u)

or, equivalently, a {141)-dimensional quantum spin chain with Hamiltonian

N
. 17
(3) H= E Hiivty, Miigr = —l'Pi..'H—‘auRi,i“(u)iu:uo
i=1

where P41 is the permutation operator and ug is the special value of the spectral parameter

u where the transfer matrix reduces to a shift-operator.
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In (1) the so-called R-matrix R;; ® 14 is a linear operator acting on the space V, 2V, ¢ V.
In the folle wing I shall use Vi ~ € for some integer ¢, so that V, can be thought of as the
Hilbert-space of a spin S = {¢; ~ 1}/2.

Clearly, the simplest nontrivial case is ¢; = 2 for ¢ = 1,2,3. Several solutions are kncwn
for this case. Here I shall concentrate on the R-matrix corresponding to the 6-vertex model
(or, equivalently, the spin-3 XXZ Heisenberg chain with anisotropy A = cos 4} which can be
written as

L autivf2Q  _ a—u-iv/2 o -
W ) = ( e /z'ss?n 5+ o %{ewﬁ/;ss:nj (S-—u-wzso) )
with S = exp(£iy87), S* and S are spin-} representations of SU(2).
Before attempting to find a solution of the Yang-Baxter cquation (1) with ¢, > 2 for all

1, let us consider the case g, = ¢, =2, g3= N > 2
(5) R (u = v) B ()R (v) = Ry (0) RIS (w) R (u = v).

(Superscripts are used to indicate the dimension of the spaces in which R acts nontrivially.)
It will turn out that this detour allows for a simple way to generalize the 6-vertex model to
higher-dimensional ones. For R}y in (5) I use the expression (4). R*Y are 2 x 2-matrices
in V]2, respectively, with operator-valued elements acting in V5. To find a solution of the
Yang-Baxter equation 1 need an ansatz for R*¥(u). The casicst ansatz one can think of is
to take the expression (4) and replace the SU(2) spin- operators S by unknown operators
I acting on €V, Inserting this ansatz into the Yang-Baxter equation (5) one finds that they
are indeed satisfied provided that the L-operators satisfy the following relations:

1

22 5in vy

[Lo.Ly] =0, FAN AR (L - L?).
(6)
L¥Lo = e¥7LoL*,  L*L, =L 1%
The Casimir operators of the algebra defined by (6) are easily obtained by taking the quantum

determinant 5] of the R-matrix
(7 d,(u) = (R*N(u - i%)),_l(ﬁ“’(u + i%))m
(N = i D)l RN (i)

(By construction this quantity commutes with all the elements of R%V.) Expanding d,(x)
in linearly independent hyperbalic functions of u one finds the two central elements of the

quantum group [SU{2}], to be £, = LoL, and

1 ) 1 2
(8) Ly = —— (sm""y’(IﬁL‘+L”L+)—;—cos'y(([lu)‘—k(l,,)z)).
2sin” v 2

Above | have constructed a solution of the Yang-Baxter cquation (5) provided that there

exists an N-dimensional representation of the operators Lg . LY satisfying the relations (6).
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To construct such representations let us work in a basis where both Ly and Ly are
diagonal, 1. e. Loallo. &1} = loallo. ;). Using the commutation relations (6) one obtains
Lo, 1) ~ Je¥ iy, e¥1). For any irreducible N-dimensional representation of the quantum
group (6) the set of operators {(Li)".() <k< M} has to be linear independent for M < N
but linear dependent for M > N. This requires L* to be either idempotent or nilpotent.

A necessary condition for LT to be idempotent is that e be an N-th root of unity. A
special case of this representation has been studied recently by Bazhanov and Stroganov [11]:
They have shown that the corresponding solution of the Yang-Baxter equation generates the
integrable N-state chiral Potts model {12,13).

Here T shall concentrate on the only other possible choice for a finite dimensional rep-
resentation of the quantum group operators, namely nilpotent L*. For the representation
to be irreducible this requires (L*}M # 0 for M = 1,...,N — | and (L*)¥ = 0 where
N = 25 + | is the dimension of the representation. In analogy to the construction of a spin-
S representation of SU(2) one introduces an operator L* = diag(S,5 —1,...,~5). Then

the representation of the quantum group is given by

Lo.llm) — Cih[‘z{m) — eii'ym}m), m = —S, 8
(9) L=lm) = dnjm—1), m=-5+1,...,85
L+ = (L—)T.

The commutation relations (6) are satisfied if one chooses the matrix elements of L* to be
(1]

(10) p _siny(S+m)siny(S —m +1)

sin?y

Note that this representation is reducible if v takes one of the values v = (kn/n) with integer

l<k<nandn=2.3,...,25. Furthermore, it is self-adjoint only if

d >0 Vm=-S5+1,...,S
(11) or
di <0 Vm=-S+1,...,5.

(These inequalities are equivalent to the requirement that certain bound states in the spec-
trum of the spin chain Hamiltonian are allowed [10].)
With this representation of the quantum group [SU{2)], I have found a solution to the

Yang-Baxter equation (5):

‘ 22541,y _ [ sinb(u+iv(5 + L?)) (zsiny)L-
(12) By (u) = < (i siny) L+ sinh(u + iv(3 = L))

From this expression a solution of the Yang-Baxter equation with V; ~ C2**! js ecasily
obtained [1,10]. It defines a vertex model with current-conservation on the vertices and

currents —5, ..., +5 on the bonds [14]. In the Hamiltonian limit it is a spin-S generalization
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of the XXZ Heisenberg chain [1.9.10.15]. The commensuration conditions {(11) ensure the

full set of symmetries in the vertex model and the self-adjointuess of the Hamiltonau {10;.

The spectrum of the Hamiltonian for values of 4. 8 satisfying (11) has been obtained using

the algebraic Bethe Ansatz {9]. From this solution it is known that this svstem has nasshess

excitations only. The critical properties depend on the details of the relation between ~

and 5. For given 5, each of the allowed intervals defined by {115 corresponds to a different

universality class. In geoeral, the continuum limit can be deseribed 1n terms of products of

Gaussian and parafermionic helds {10.16].

The author would like to thank M, Fowler and H. B. Thacker for nsefu} discussious ou

this topic.
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A GEOMETRIC CONSTRUCTION OF SOLUTIONS OF
MATRIX HIERARCHIES

G.F. HELMINCK

ABSTRACT. We associate to each maximal commutative algebra in
9im(C) a hierarchy of differential-difference equations and show how we can con-
struct solutions of the hierarchy starting with a Grassmann manifold.

1. The equations.

Let h be a maximal commutative subalgebra of g/,,(C) and let {F,,1 < a < r)
be a basis of h. We consider loops

D hN hi€h,
i€Z
that converge on a neighbourhood of the unit circle. The group

L{exp(h)) consists of all the loops in h that are invertible on some neighbourhood
of | A |= 1. In L(exp(h)) we consider the subgroups

I, = {cxp(z Z tiaEaA') € L{exp(h))} and

i>11<a<r
. = {exp(z hiA' € L(exp(h)), with hy € exp(h)}.
i<0

Then there exists a subgroup A of L{exp(h)), whose clements are all of the form

N
§= 3 hX hi€h,
i=-N

and that satisfies [y NA =T_NA = {Id} and L(exp(h))=T_-A - T',.
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Let R be the ring of meromorphic functions on I' ;. We denote the partial derivative
w.r.t. tia by Jia. Since the identity belongs to h, we have Id = 3~ ¢, E, and we
put 8 = 3 calia- We write Ps(d) for the ring of pseudo differential operators
in d with coefficients from gl,,(R). For each P = 3 p;0' in Ps(d) we denote by
P, the differential operator part 3.5, pi8" of P. Our interest is to find operators
L and V, in Ps(3) of the form B

L=0+) ;07 and Vo = Ea+ ) vja0~ (1.1)
1>0 J>0

that satisfy the following Lax-equations

{L, Vo] = [Va, V] =0 (1.2)
Bia(L) = [(L'Va)y, L] = [Bia, L) (1.3)
a;a(Vp) = [B;G,Vgl. (1.4)

These equations give rise to non-linear differential equations for the coefficients I,
and vj,. If h consists of the diagonal matrices and E, is the diagonal matrix with
1 as (@, a)-entry and elsewhere zeros, then this system of equations was introduced
by the Sato school, see [3], and is called the multicomponent K P-hierarchy. We
will call (1.2), (1.3) and (1.4) the equations of the h-hierarchy. Also this hierarchy
possesses a linearization. For that we introduce a Ps(@)-module M consisting of
all formal products

N N
(Y 5xYexp(D] Y tiEaX) = {3 fi3)g(N),

jz=—o0 i21 1<a<lr j=—0c

where f; € glm(R). An element g € gl(R) acts on such expressions by simply
mulitiplying the left factor on the left with g. The operator d acts on M according
to

81)_ XY = DN + D fi M+ ().
J b]

These operations determine a Ps(d)-module structure on M.

Consider operators L and V, of the form 1.1. Let 6 = 3 ;A" be an element of
A. We call ¥ € M a wavefunction of type é for the operators (L, 17,), if it satisfies
the equations

L(d’) = Al/)) Vad’ = U’Eaa aia(d’) = Big¥
and if it has the form
v={d +3_ai x0T 63 )e(d) = Vgl
j=1

By construction the wavefunction ¢ determines the operators L and V, completely
and each set of operators (L, V) that possesses a wavefunction of type & satisfies
the equations (1.2}, (1.3) and (1.4).

“
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2. The Grassmann setting.

Before we give the construction of solutions to the h-hierarchy, we have to adjust
some ingredients from the Grassmann picture in [2] to our situation. Let H be
the Hilbertspace L(S!,C™). Its elements are of the form } ;. a;A*,a; € C™.
The space W decomposes as H = My @ H_, where Hy = {3, a:)' € H}. We
denote the orthogonal projection of H onto M4 by py. Asin [2], we associate to this
decomposition a Grassmann manifold that is a homogeneous space for the restricted
linear group Glres(H). The connected component containing M is denoted by Gr
and the connected component GL3eg(H) of Glres(H) acts transitively on it. Since
L(exp(h)) is commutative we can define an action of L(exp(h)) on H by

O aid)) = O aid)(Ehyi M),

All these automorphisms belong to G Lres(H) and thus one has embedded L(exp(h))
in Glres(H). Let A° be the group A N Gles(H).

Every W € Gr can be obtained as the image of an embedding w of H, into H such
that wy = p4 o w has the form “identity + trace-class” and w_ = (ld—py)ow
is Hilbert-Schmidt. The space of all such embeddings we denote by P. To lift the
action of Glgeg(H) on Gr to one on P we need the extension G of Gifeg(H) defined
by

G = {{9,9) € Glfes(H) x Aut(H), g = (55),ag™" = Id is trace — class)

The group G acts on P by w +— gwg~!. Elements of Gl3s5(H) of the form (8 ;)
or (a 0) can directly be lifted to G by

ecd
b b a0 0
(50) = ((53) wrana (25) = ((22) 0
This will be assumed from now on. For each embedding w as above we define a
function 7, : G — C by

-1
7'w((‘::) ’q—l):det‘(awﬂlbl+bw_q-1)‘
3. The construction of solutions.

Let 6 € A°. With § we associate the open set Gr(é) of Gr consisting of all IV in Gr
for which there exists a v in I'y such that the orthogonal projection of W4-14"!
onto H; is a bijection. For W € Gr(é) we consider

[(6,W)={y €Ty, psy: Wy 16! — H is bijective].

Let {ei,1 < ¢ < m} be the standardbasis of C™. For each W in Gr(é) and
v € I'(6, W) we define Yw ;(7y, A) as the unique element in W&~ 97! that is mapped
by p4 onto e;. Let Yw (v, A) be the element in W given by 76 - (¥ (7, A)). Form

matrices ¥y and ¢l by taking the {¢4, .} resp. {¢f, ;) as rows. These matrices
have the form
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W)= + ) am(MNA"

m=1

and

o0
Vi (1 2) = {Id + 3 am(n)A"")89(A).
m=1
Hence ¢$, has the proper form for a wavefunction of type &.

For( € C,|¢|>1,and | < i < m, we consider the element q(i) of Glgg)s(’}{)
given by

(h1(A), - hm(A)) = (oL R (X)), (1 = %)h;()‘),h;,,l(/\), )
For i # j, we define A;/; in Glfes(H) by

(h1(A), ... hm(A)) = (..., dRi(A), .., A'lhj(/\), )
Now we can formulate our first result.

3.1. Theorem. Let w € P be such that w(H) =
(a) Then we have for all 4,1 < i < m, that the (i, {)-entry of %}, is given by

w(7qc )
“w(7) .
(b) For i # j, there is a lifting [\;/j of Ai;; to G such that

(i (7, )i =

1“6 lw(’y ,/; q?))

Té—lw( )

The formulae in theorem 3.1 are a generalization and a geometric version of formulae
for the multicomponent K P-hierarchy, see [3]). This theorem implies the coefficients

am in the powerseries of ww are meromorphic on I'y. We have come now to the
final result.

3.2. Theorem.

(a) Let 6 € A°. If W € Gr(6), then 3}, is a wavefunction of type 6 for a set of
pseudodifferential operators (L¢, V) of the form 1.1. We write B?, for ((L4)'V!),.

(b) If W € Gr(6,) and W € Gr(6,6,) then there is aUé2 = ((’6’)+ in Ps(3) such
that

' = (U

This relation leads to the following differential-difference equations of Toda-type

Bii2UN = 8,,U8 + U B
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(c) For each p in I'_, the spaces that W and p- W give the same solutions of the
h-hierarchy.

3.3. Remarks

(i) The second part of this theorem gives a geometric interpretation of the
differential-difference equations in [1]

(i) Among the solutions constructed above one can find solutions of well-known
equations like the N-wave equation, the AKNS hierarchy and the Davey-Stewartson
I1.
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Lax Pairs, Recursion Operators
and
the Perturbation of Noulinear Evolution Equations

Russell Herman

Introduction

As is well known the methods of inverse scattering can be applied to study the solutions
of many integrable nonlinear evolution equations {1]. However. many of these equations
are only approximations to the physical systems of interest. For example, iu the study
of ion-acoustic solitons in plasmas[20], one firct assumes that the physical system can be
described by the two fuid model, consisting of four coupled, nonlinear partial differential
equations. As this svstem is difficult to solve, one makes further approximations, which
magically leads to one nonlincar evolution equation. such as the Korteweg-deVries (KdV)
equation.

Experimentalizts then try to observe the special solutions of these nonlinear evolution
equations; however, much of the physies has heen neglected along the way in uncovering
the equations governing the evolution of the dynamical variables. Should we expeet these
special solutions to exist in reality”? One way to investigate the answers to this question
is to try to put back some of the terms. which have been neglected in the analysis. or to
add some physical disturbanees to the original model, and see how they may modify our
integrable systemns.

In this talk a general procedure is given for setting up a direct perturbation method
for studying such perturbations of nonlinear evolution equations, whiclt are solvable by
the Inverse Scattering Transform. The linearized operator can be paired with the so-called
recursion operator to form an additional Lax pair for the nonlinear evolution equation.
The cigenfunctions of this speetral problem, which are typically related to products of the
cigentunctions of the original Lax pair. provide the natural basis in which to expand the

first order correction.
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The General Method
We consider the perturbed evolution equation
ue + Nu) = €Plu]. (1)
The steps of the proposed method ave as follows:

GENERAL METHOD

I Linearize evolution equation
I1. Find the Perturbation Basis
1188 Invert the Linecar Operator
Iv. Ohtain Secularity Conditions

In order to inplement step I, we assume that the solution of the perturbed equation is
close to that of the unperturbed equation. This is accomplished by assuming an expansion

for u,

o

=g + ety + tuy ..., {

and by allowing various parameters. such as the amplitude and the velocity, to vary on a
slow time scale, 7 = €f.
Inserting these expansions into equation (1) and equating tlic coefficients of the powers

of the small parameter e, ve arrive at the hierarchy of equations

uge + Aug) =0 (3)
uye 4+ N'uoluy = Plug] = wor (4)
D Lup=F,, n>1. (5)

The operator M [ug] denotes the Fréchet derivative of A at uy. The first equation confirms
that we are close to a solution of the unperturbed equation. The remaining equations
involve the linearized version of the unperturbed cquation and complicated driving terms.
F,. resulting from the linearization process.

We now seek to invert the linear operator £ 1n order to obtain the corrections w,. In
the present method this is accomplished by expanding each wu, in the natural set of basis
states, cousisting of the eigenfunctions of the linear operator. Namely, we assume that we

can find a complete set of eigenfunctious (r, #; A), such that

LU 2 X)) = w( A b A), (6)
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and that they satisfy orthogonality relations with the adjoint basis of the form:

< QU QN e N ) > = / Qe Qe 6 M Ve

= N{A(A =~ ). (73

Having completed step 11 we now carry out step I by expanding w,, as
uL{r t) = / Ful A Qe 12 X) dAL (8)
Je
where C s an appropriate contonr. Operating on (8) with £. we obtain from equation (5):
F, = /[f,,,(;\.f) + Wl A fl A DQMr £ A dA (9)

Mnltiplying by the adjoint and integrating over « gives

< FJQMr. by >
[fa (A )+ (M fulA ) = N oy (10)

Solving for f,{ A 1. given f,{A.0), we can write out the solution for u,.

It may happen that our soludou is not bounded in time. However, from the introdue-
tion of the slow time scale. we use the unknown thime dependence of our free parameters
to eliminate the secularities in time. In the study of soliton perturbations, these seeularity

comdditions determine the soliton shape and velocity.

The Role of Recursion Operators

The key to carrving out sueh an analysis is the ability to find the perturbation basis
and the adjoint states, as well as to prove that the basis is complete b some suitable space
and satisifes the orthogonality relations in equation (7). These questions can be answered
by turning to the theory of recursion operators, or strong symnetries, which we now sketch
[2.15, 17. 19].

We consider il {auperturbed) evolution equation
ug + Nu] = 0. (11)
The associated linearized equation can be written as
= -—_\"[u]r'. (12)
where previonsly we had defined N'[u} in (4).
Now. 1y = M|u] is a symmetry of equation (11) if

,\'-'[11].\4[11] - .\/!'[n].\“[ll] = () (13)
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for all solutions u of (11). In particalar, ¥, = Du is a trivial symmetry, where D = J,.
Other symmetries of (11) can be generated from the trivial symmetry through the use

of a recursion operator, R[u]. of the form [19]
Riu] = ap[u]D? + ap [u]DP7' + .t aplu) + acy [T+ Lt as WD (14)

Namely, if
R[u], = [R[u].;\"[u”, (15)

for all solutions u of equation (11), then for every n > 0, uy = (R[u])" D is a symmetry
of equation (11).

Note that equation (15) is in the form of a Lax equation. Namely, this equation results

as a comusistency condition for the Lax pair
R[u]o = a(A)o o = —N'[u]o. (16)

In other words. the recursion operator gives the spectral problemn and the tune evolution
1s governed by the linearized operator. Thus, the cigenfunctions of the linearized operator
L are the same as those for the recursion operator.

Furthermore, if we know the ordinary Lax pair for the given nonlinear evolution
equation, we can write the eigenfunctions of the linearized operator in terms of the eigen-
functions of the standard associated spectral problem. Assuming that the standard Lax
pair is given by

Liy=0 Uy = My, {17)

we seek a transformation ¢ = T(4, A) between the time evolution equations for 1 and o.
Now. inserting v+ = T71(¢.)) into the spectral problem in (17) we obtain the recursion
operator 1 (16).
As an exampie, we consider the KdV equation. The well kniown Lax pair for the KdV
equation is given by [1]
D+ (u+ M) =0

e = = D3 — 3(u — A?) Dy, (18)

The linearized equation is found as
by = =D — 6uD ~ Guré. (19)
It can be shown that ¢ = (D7 '¢)!/? will transform the time evolution equation in (18)

to the lincarized equation (19). Transforming the spectral part of the Lax pair and using

{16} yvields the desired recursion operator:

Riu] = D? +4u+2u,D7! a(A) = —4)% (20)
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Therefore, for the perturbation theory for the KdV equation. the perturbation basis
consists of the states

O(r.t:A) = (o ;A) = D(o*(x, ))). (21)

Actually, after sclecting the correct contour in (8), one finds that the residues lead ns to
include several bound state eigenfunctions, {Qi(e,t), Ax(a, 1)}, whose form can be found in
[5]. Sachs has shown that this basis is complete over the space of continuous, LT functions,
providing that uy is bounded in the Sobelev L) norm [18]. The proof relies on the the use of
the recursion operator, though it is not referred to as such. The orthogonality relations can
also be obtained using the recursion operator, though Newell has shown how to compute

these from the spectral problem [16].

Application: KdV Equation

As an example of how this method works, we consider solving the perturbed KdV
problem
Uy + Guuy + Upry = €Flu]

u(x,0) = 2n’sech’n.r. (22)

We assuine an asymptotic expansion of the form

u(x,t) = upla, t)+ euy(x,6) 4+ ...

, 1
up(x,t) = 2nisech®n(r - ~To - Iy, {23)

introduce the time scales T = ¢, 7 = ¢#, and allow the soliton parameters 7, x¢. and ry to
depend on the slow time scale 7.
Inserting the above expansions, we find that the lowest order equation is satisfied if

1o, = 4n°. The first order equation is
Luy = —dyn,v — 21,6v4 + 2072y .06 + Flugl = F, (24)
where £ is the lincarized KAV operator:

L =0r—47%0, + 6pdsup + 7]302,, (

N
ot
~

aud

1
v = sechd, ¢ =nlr — —ry— 1y )
€

Our aim now is to invert Luy = F. We expand u; in the basis found in the last section:

" :/ | DDAz A+ FLIO (2. 8) + g1(DA (o, 1) (26)

o
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Operating on u; with £ and solving for the expansion coefficients, we find

t A
- R L FIY e -
FOH) = F(A0)e +/0 dt S inaln) (27)
3 t 4 B
gi(1) = g1 (0)e™ " — 2"'1/ dt'(Fih e (28)
G

t .
Hiny = f](O)fS’)at — 48in g (0)e M - 211}/ dt (FIA) S0
0

t t' 3 e
—96p° / dt' / At (FiQdyetr e, (29)
0 ¢

Using the explicit forins for the eigenfunctions [5], we can write out the solution of
our perturbed equation to first order in e. However, if we write out the ast two terms ¢

uy. we have for B = f1Qy + ¢ A4,

. 1 . .
B = gi[sech® + S o(sech?)g] + hy(sech’ @), (30)
where '
gy = dt'{ Flsech?¢)
<0
. 1 !
b= -1 / 0t (Fl[é + Sn*(1 — ' )lsech?6 + tanh o). (31)
~Jo

When the inner products are time independent,  Hich is the case for many perturbations.
these coetlicients will grow in time. This leads to an unbounded solution. We can eliminate

such secular behavior by requiring that
(Flsech?o) =0 (Flésech?d + tanh o) = 0. (32)

Inserting the driving terms from equation {24) into (32}, we obtain the time dependence
g i P

of the soliton parameters:

1 [ ,
Nr = 4—’7 o F[ilojse(‘112¢d¢
1 .
e = pue / Flug][psech®o + tanh ¢} do. (33)

The correetion in (26) now becomes

e t 2.1 ' g At o, a ,
uy = / (IA/ dt'/ ([.r'fu JLNERY ’/\)('8“\.“_’ M.t ). (34)
- o -

2rida2(A)

From an asymptotic analysis of this integral, we find that there is a decaying oscillatory tail

plus shelf behind the soliton [3.5,11,16]. The size of this shelf, which is due to a singularity
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at A = 0. can be estimated as [5.11]

1 > ,

wy ~ = Fluy) tanh® o do. {35}
Ayt g N

Shelves generally oceur for dissipative perturbations. in which case one has to obtain

information from the second order in the perturbation theory. Doing this one finds that a

correction to the soliton shift has to be made. Namely, we obtain {3.5.6.11]
LY B 2 2 .
tr = Flupllosech®o + tanh ¢ 4 tanh” o] do. {36)
nJ-~

Conclusion

We have seen a sketeh of the proposed method applied to the perturbed KdV equation.
Results have been found for a variety of specific perturbations. leading to previous results,
as well as producing some new ones [3.11,14]. Examples of snuch studies include the damped
[5] and stochastic KdV [4] equations. We have also used these results to study the offects
of truneation errors in discretizations of the KdV equation {9].

Other equations which have been investigated are the sine-Gordon [3]. the noulinear
Schrodinger (NLS) [3]. the derivative NLS. the coupled NLS, the Toda lattice [8]. and
evolution equations supporting loop solitons. An indication of how this method can be
carried out for the Kadomtsev-Petviashvili equation was given in 7).

The method discussed here is a natural approach to perturbation studies of soliton
dynamics. which is similar to methods seen in other works [10.13.16]. One of the uses of
such an approach is to obtain more details about the first order correction term. This
1s important when the growth of the oscillations can have adverse effects on thie system
under study. such as the study of dynamics under random perturbations, or the effects
of discretization error in pumerical simulations of these equations. There are many other
equations, possessing Lax Pairs and recursion operators, which still need to be studied for

their behavior under perturbations. In such cases this method would be appropriate.
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Time and Temperature Dependent Correlation Function
of Impenetrable Bose Gas Field Correlator

in the Impenetrable Bose Gas

A.R. Its
A.G. Izergin
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Abstract
Asymptotics of the temperature time-dependent two-point field correlator
of two fields for one-dimensional bosons with infinite point-like repulsion is

calculated.

1 Introduction
Asymptotics of temperature time-dependent correlation functions of impen-
etrable Bose gas are given in this paper. The Hamiltonian of this quantum

integrable model [1] is
1= [ de(0.9% 0. + cp*pr i — hpty) (1)

with coupling constant ¢ = +oo. Fields 1, ¥t are canonical Bose fields
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in one space dimension, i.e.

{1[)(21, t)v l;/)+(22,t)] = 6(21 - 22)‘ (2)

Thermodynamics of the model was constructed in [2]. The chemical po-

tential A defines the gas density D. At temperature 7 > 0, D — 0 as
h — —coand D — oo as h — +o00. In the state of the thermodynamic equi-
librium the distribution of gas particles (possessing momenta k& and energies

(k) = k* — k) is given by the Fermi weight p(k)

K2~ h
ok = 5 (1+exp (o))
D = /_Zp(k)dk. (3)

Professor C.N. Yang drew our attention to the problem of the calculation
of time and space dependent correlation functions at finite temperature.

The two point field correlator considered is defined as usual by

tr(exp{—H/T}p(z2, t2)¢* (21, 1))
tr(exp{—H/T}) ‘

<w(22)t2)¢+(2’lst1) >r = (4)

The equal-time (¢, = t;) temperature correlator was completely described
in papers [3-5] where the integrable partial differential equations for it were
derived and asymptotics in various regimes was obtained (for zero-temperature
equal-time correlator it was done earlier in paper [6]). It should be noted
that the starting point for consideration in papers [3-6] was the represen-
tation of the equal-time correlator as the first Fredholm minor of a linear
integral operator (7).

The analogous representation for time-dependent correlator (4) was giv-

en in [8], which was used in [9] to derive integrable differential equations

————————
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that completely describing the time-dependent correlator. These results are

briefly discussed in the next Section.

2 Correlator in terms of Fredholm determi-
nant

Correlator (4) depends essentially only on the rescaled variables

DN | vt

T =

(51 = =Vt = (= t)T; B = BT (5)

which can be easily established using the representation of paper (8}. So

one has
< Yz t)¢H (21, 1) >r=VT g(z,t, B). (6)
For ¢ one has [8,9]

g(z,t, B) = --2% exp{2itB}by det(I + Vi) (7)

where the Fredholm determinant of the linear integral operator Vi acting on

the whole real axis enters the right hand side. The kernel of this operator is

Vr(A, 1) = (3 = p) " er(Me-(p) ~ ex(p)e-(u)], (8)

with

e () = %\/O(A)exp{it/\"?-kix)\},
er(A) = e_(A) E (),

E(\) = ]’W W oxp {=2itv? = 2izv). (9)

—-00 U—/\

The rescaled Fermi weight 0(A) is

0()) = (1 +exp{A? — B})™.. (10)
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Function b44 in (7) is defined as

bye = By =G,
G = ]w dp exp{—2itu® ~ 2izu}. (11)

“Potential” B, is cuc of the potentials By, Ciuli, k= +. —):

Ba = [ elwfelw)dn;

Co = [ nedwfe(u)dp,
B+—~ = B—+’ (12)

where functions fi are the solutions of equations
)+ [ Ve w) fa(w)dn = ex(A) (13)
3 Differential equations for correlator

Let us define a vector function f

o) = ( I3 ) ‘ (14)

Differentiating (13) with respect to z,t and applying operator (2AJs+8,)(this

is done similarly to the equal-time case [3-5]) one obtains a Lax representation

LA f =0, MA)f =0, N(A)f=0 (15)
with
L(}) = 0. +i\os — 2Q,

M()) = —id, + Moz —2\Q -V,

N(N) = 209 + 0y + 2iMtos + izos — 4itQ — 205U, (16)
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with

— 0 b++
Q - ( B__.. 0 ) ’
vV = 2044+ B__ 10; byy
—i0,B_._ —2B__byy |’

_ ~Bi_ b4y
U o= ( o b )
All the operators L(A), M(A), N(}) should commute at arbitrary value of
spectral parameter A, which lead to nonlinear differential equations for po-
tentials Bi. Introducing notations
g- = exp{—2it8} B_.; g4 = exp{2itS}by,,
nEgyg- ; p=g-0:9+ — 94+0:9- (17)

one obtains first of all the separated nonlinear Schrédinger equations

) 1
—idgy = 2Bgs + 509, +40%0-
. 1
+tdg- = +2Bg. + 5339- +4¢%g +

—2i0n = 3:17 (18)

Equations containing the § derivative are

aﬁaz:g*f- - 6001‘9— = QS(Z‘,t,ﬁ) (19)
9+ g-

(new function ¢ is defined here) and

O:¢+8%hn+2 = 0 (20)
This is a complete set of equations for potentials b, (B44) and B__. Initial

data at ¢ = 0 for these equations can be extracted from equal-time correlator

g(z,t = 0,8) = g(z,B) completely described in [4,5]. Other potentials B,C
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(12) are defined in terms of these two. Namely,

BxB+- = un N 5:B+._ = —p;
i ¢
B = -2 (21)

and

C++ = %@BH. + B++B+_ - 2GB+_

C.. = —%B,B__~B+_B__

i

0:(Cye- +C_}) (B4y —2G)0:B-. — B__0.B+, (22)

Correlator (6),(7) is essentially a products of potential g,(17) and exp{c},

o = Indet(] + Vr)

It is easy to get an equation involving only g, expressing from the first of

equations (18)

1 . -
g9- = g( — 2i0ig4 — 409+ + a:g+)9+2 (23)

and substituting this expression in remaining equations (18)-(20). Att =20
function o is known [4,5]. The derivatives of o can be expressed in terms of

potentials B,C as follows

aza = *22-B+_ y
0;0' = *QZGB.._ - 22(0.4.- + C.....‘.)
dso = ~20t9(Cy +C_y) = 212858, _ — 2itB_ 93844 +

+ 2it(Byy —2G)03B_ - +2(0sBy ) (0sB__) — 2(0sB4+_)* (24)

{the calculation of 950 is not very straightforward; it is done analogously to
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the corresponding calculation in the equal-time case [4]). This completely

defines the correlation function.

4 Matrix Riemann Problem

The most interesting from the point of view of physics is the asymptotic
behavior of correlation functions at large time and distance. As in the equal-
time case [3,5], it can be calculated using the matrix Riemann problem of the
inverse scattering method for classical integrable equations (18)-(20) describ-
ing the correlator. Consider the matrix Riemann problem for 2x2 matrix-
valued function x(A)(det x(A) # 0) which is holomorphic for ImX > 0 and
Im) < 0, and equal to the unit matrix [ at A = oo, Xx(o0) = . The boundary

values on the real axis are related as

x~(A) = xT(NG() (25)

The conjugating matrix is

A —er(Ne-(X) eZ (N)
G\ =1 +2m( iei(A)( e+(A+)€—(/\) ) (26)

with funciions ey(A) just the same as given in (9). In complete analogy
with the equal-time case {5] one can show that the standard singular integral
equations for this Riemanjn problemn are equivalent to integral equations (13),

the solutions fi(A) being simply expressed in terms of x()), namely,

N
( )= ew (3;) (27)
)

Potentials B,C (12) are then readily extracted from the (1/))-expansion at

A — oc:

X(A) = T4 (/A + (B2 / A + ..,
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ve(posr ) ow=(Emer) @
The calculation of asymptotics of the potentials at z — o0, — 00 1s
similar to the simpler case z — o0, ¢ = 0 [5]. Nevertheless there are essential
difficulties due to the appearance of stationary phase point in the singular
integral equations. Using then partial differential equations (18)-(24), one
restores the asymptotics of correlator (4)-(7). The derivation and complete
answers will be given in more detailed paper. Below the first results are

formulated. It should be emphasized, however, that our approach gives a

systematic method to calculate the asymptotic expansion (see[5]).

5 Asymptotics

Consider first the case of negative chemical potential (A < 0). In this region
we obtained the following expression for the main term of the asymptotics

of correlator (4)-(7):
< Plaa, )t (21, 8y) >7=

z?

= aV/T(4t)"7 exp{2ztﬂ+-———- %

-1 +1
- o (Gt
><exp{7T /_ | z + 2ut | In a5
1
(:17 = '2;(21 — Zz)\/T; t = E(tg - tl)T

= (h/T) < 0; £ — +00,t — +00) (29)

Here

L[S =) 4
—In

7 lexp{(5)*— 8} -1

and coefficient ¢ depends on 8 and the ratio (z/t) only. We would like to

v =
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emphasize that G.G. Varzugin took part in derivation of (29). The expression
for the coefficient a in (29) is complicated. To write it down let us introduce

the following notations

z 1, /e P41
A = ~5 u:;ln(-;a—_-b—:—l')
, 3 : 1 e -1
bo = = rarg T+ 1 [T sl = in ko= A1 g (S s
(30)
Now coefficient a in (29) can be represented as
0
a = -211- Vexp{}‘ug" )+1¢‘0+"V “"/ z"”*"’—}ég)dﬁ'*’

o [ [t (G

It 1s interesting to compare (29) with the result for the equal-time corre-

lator obtained earlier [3,5]:

< d)( 2 0)¢+(21, 0) >T=

VTao (B) exp{—2z(2y/| B | + <(B))}

(x'z”%(z1~zz)\/f—-+oo, B=h/T <0) (32)
with
1 foo exp{u? ~ B} + 1
o(B)= [ duln| = (33)
and
__po | B2 g dp exp{u® — B} + 1
wlf) = lﬁ!‘/zexP o —ﬂln<exp{;ﬂ-—ﬁ}—l)}x

(po is a constant).
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For positive chemical potention (h > 0) one obtains

< 1,[)(22, t2)¢+(21, tl) >r=

2_3 !
S+ o(%)}

_—(zl“‘ZQ)\/—t—— tz—t)Tﬂ-—-h {]

=a\/f(4t)li"2exp{~%/ | £+ 2ut|lIn

h
8 = ?>0;x—>+oo;t—*+00> (34)

This is in agreement with the previously obtained answer for the equal-time
correlator(3,5]:

< P(23,0%% (21,0) >1=

= ooifEen (- [ ar (42 penpiset

( E%(;—z;)\/f—*+00,ﬁ§-}ti>0) (35)

Here function ¢(3) is given in (33) and po is a constant of paper {10

(poo = me~1/22-1/34-5 A being the Glaisher constant).
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Breathers and the sine-Gordon Equation.

Satyanad Kichenassamy

1 Introduction.

The purpose of this paper is to report on a receut non-existence result for
breather solutions of nonlinear Klein-Gordon equations [1,2]. and to mention
some technical improvements thereof,

One of the by-products of the method of Inverse Scattering to solve nonlinear
evolution equations is the construction of the “breather™ solutions of the sine-
Gordon equation

Upp — Uy +sinu = 0. (1)

The simplest of them is a periodic solution, with period 27/v1 —¢? (0 <
€ < 1) which tends to zero as |z| — oc; it is given by

e cos{tvl--¢€?)
V1—¢2 cosher

This solution. which can be made arbitrarily small in. say. the L? norm.
by taking the parameter ¢ sufficiently small, has remarkable properties. that
are shared neither by solutions of the (linear} Klein-Gordon equation, nor by
those of other soliton equations which. like the Korteweg-de Vries equation. are
related to a self-adjoint eigenvalue problem. We will not detail these properties
here.

Solutions with behavior analogous to that of (2) have not been found in
other equations of the form:

(2)

ugqg = 4arctan

Upg = Upr + U+ g{un) =0, (3)

“School of Mathematics. 226 Vincent Hali. 206 Church Stret S. E.. Minneapolis. MN 55455;
work partially supported by an Arniny grant
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with g(u) = gou® + g3u® + - -, and this leads to the possibility that breathers
might be specific to completely integrable systems.
The two questions before us are therefore:

1. What should be called a breather solution of a {(non-integrabler wave equ-
tion”

2. Do such solutions exist for £3)7

We here summarize, with a few additions, the answers to these questions
given in {1}, briefly comment on their proofs (in 425, and discuss sotme improve-
ments in §3. (A discussion of the fiterature on this problemn can be found in &7
of {1},

1. A breather is a tune perindic solution of (3) which decavs to zero as -

goes to infinity. {This definition is discussed and extended in {21

2. There are formal breathers:

; ‘ s
w=zuplzr b1 —g2) + s2unlzrd\ /1 = 22) % .. 13
for (3). characterized by periodicity, decay and parity conditions, if and
onlv if
L P 5y
=42 — 743 : £
692717
3. If series {4) defines a solution of (3) analvtic in . 20 and 11 — =2 for
f 1

i < 7 + & for any & > 0 and. sav. r. f close to the real axis. and
v ) ,

—-er ]

. . . . . . ;""""‘
if this function hax an expansion in powers of =, ¢ and cos(ty'] -z
convergent for large . then o + g{u) = o~ 'sinfou). (In this case, the
series does have the asserted analvticity property.)

1. I g 18 odd. and
m | < (1"'—1/7113

for some o > 0. then eq. (3) does have a time periodic solution on <ome
interval {4, +x) given by a power series in e 1
and small 2. This solution is the only one which is odd in cosityv1 — 22,
and tends to zero exponentially as »r tends to +~.

- convergent for large o

Remarks: 1. We have rhus achieved a characterization of the sine-Gordon
eqitation among nonlinear Klein-Gordon equations. This is a criterion for con-
plete integrability of {3} via the Zakharov-Shabat eigenvabie problem.

2. The integrability here corresponds 1o a smoothiess property of special
solitions.

3. The convergenee result in the odd case justifies the perturbative approach
viaken here: There is a navural candidate for a Lreather for every sinall =, bt it
> never analvtic exeept in the integrable case.

b The construction of the first formad solution of conrse gives approximate

sreathers with any desired precision.
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2 Sketch of proofs.

The proofs are based on the existence. for very general functions ¢. of two
formal periodic solutions of {3). We first introduce a parameter = and two
scaled variables € and 7 by

and let u = s, Equativu {3) then becumes:
Vpr + 10— fg(ugg + Uurr) + glev) /e = 0.

and we seek v periodic in 7 with period 27, tending to zero as £ goes to £x.
We also ~vpect u to depend smoothly on <. as in (2). The corresponding u will
then be called a breather solution of {3).

The first formal solution is in increasing powers of <:

u =Zskuk(£.7). (6)
k1

We assume ug has the same properties as u. If the wg are even in € and 7.
they can be uniquely determined by from u;. On the other hand. if u # 0. then

we must have:
2 -1
uy = % :-\»(coshf) COS T

where A = 5g2/6 — 3g3/4 must be positive: otherwise formal breathers do not
exist.
The secone formal solution is in increasing powers of ¢ ~¢;

U= Z re'k‘iz’k(s. T).

k>1

-
-~}
—

We again take v even in 7. This series is determined by its first terni, 1. which
must have the form a(e) cos 7. No condition on g similar to (3) is required here.

The existence of the first formal solution proves statement 2. in the Intro-
duction,

To prove 3.. one shows that if u had the given analvticity property. then it
wonld have an expansion of tvpe (6) which could be rearranged in the form (7)
with coeflicients holomorphic in = for [¢f < \—5 + . One then proves. using the
analvticity again. that a{z}) s always nonzero. so that after a translation i £.
one may assume a{<) = 1. One next proves by induction that the v possess
poles which approach ¢ = 0 as k increases, and that all the poles of modulus
< 1/v2 disappear of and only of ¢00) = o= sinfoe). o~ Usinh(au). or w. only
the first of these giving rise to breathers as one verifies directly.

To prove 1. one uses a majorant method based on comparison with the
solution of the sinh-Gordon equation corresponding to {2). One obtains the

uniqueness statment by a variant of the stable manifold theorem,
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3 Remarks.

1. Because of translation invariance. it is apparent that some condition.
similar to the parity ones used here. is needed in order to fix the solution under
consideration. On the other hand. we next very brieflv outline a technique which
enables one to relate the general formal solutions to the even ones.

The idea is this: we know 1] that series (4) is determined by an induction
whereby at the kth step. the harmonics of «g different from the £r:20 nd the
first harmonic of ug_3 are found. They were uniquely determined because of
the parity assumptions. Now if we drop these assumptions at some given step
k. we find that ug and ug—2 differ from their values in the “even” case by terms
of the form —7, sin7 and £,,-,5, {(with the notation 1y = S(rjcosr: u; can
clearly be taken of this form. with S even. after an initial translation.) The
observation is then that replacing € and 7 by € — £,-2e™"% and 7 — 7,,e™
produces a new formal solution which coincides with the “even™ one upto order
k inclusive. apart possibly from the first harmonic of w;_;. One mav carry on
the process by induction.

2. The presence of poles in the expansion (6) can be interpreted i terms of
“resonances” as follows: Considering (3} with periodic conditions in tite defines
a dynamical system in a space of periodie pairs (ulr. t): u (0. )} with r playving
the role if a~time” voriable. for which orbits homoclinic to the zero solution
correspond to breathers. Now the poles we obtain here are exactly those for
which the eigenvalues 1 and £ of this systemn resonate with one of the others.
(This. incidentally. can happen in the odd case only if ¢ is pure imaginary.) The
extension of our definition of breathers to other "nearly integrable equations.”
and more examples of this resonance phenomenon will be given in a paper in
preparation.

3. One may ask whether our emphasis on rapidly decreasing solutions is
justified. In this direction. one can prove (see [3] for the precise statement
and proof) that solutions which decay faster than 1/r? must have fla+
) ulz h2drdt < x for every 5 > 0. This follows from a general decay
result for linear wave equations. This dichotomy is of course not surprising
when compared to similar results for ordinary differential equations.
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Localized solitons for the Ishimori equation*
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Abstract

The coherent structures for the Ishimori-IT equation are
studied. General form of the exact solutions of the Ishimori-
I equation with nontrivial boundaries is found. It is shown
that there exist the four (essentially the three) different
types (ss. sb. bs. bb) of localized solitons for this equation
with the time-independent boundaries.

One of the main features of nonlinear partial differential equations
solvable by the inverse spectral transform (IST) method is the existence
of the localized soliton solutions (see e.g. {1-3]). In the 2+ I-dimensions
siuch exponentially localized solitons have been constructed recently for
the Davey-Stewartson (DS)-T equation in the paper [4]. Scattering of
these localized solitons. their properties and general initial-boundary

value problem for the DS-1 equation have been studied by different meth-

ads in [4-8].

The present paper is devoted to the study of the localized solitons for
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the Ishimori equation [9]

—

gt(:c.y, t)+ S x (Sgzr+a%Sy,) + ep,gy + 9y S = 0.
g,o“-a2<,oyy+2<x2S(erSy)=0 (1)

where § = (S, 57.53) is the three-dimensional unit vector

—

S22 =1,¢(z.y.t)

is a scalar field and a? = £1. Equation (1) is the 2 + 1-dimensional in-
tegrable generalisation of the Heisenberg ferro-magnet model equation
:S:, + S x §N = 0 (isotropic Landau-Lifshitz equation). The Ishimori
equation (1) is of the great interest since it is the first example of the
integrable nonlinear spin-one field model on the plane. An important
feature of equation (1) is the existence of the classes of the topologi-
cally nontrivial and nonequivalent solutions which are classified by the
topological charge Q = f;??dxdyg(gx X gy)[g].

The applicability of the_IDSCT method to the Ishimori equation (1) is
based on its equivalence to the commutativity condition [L;.Lg] = 0 of
the operators [9]

L= (IOy + Pd,.

Ly = 18y + 2P9? + (P, + aP,P — ia® Py, + iy )0; \2)
where P-'-—'—S(m.y.t);.; = (v1.09.03) are Pauli matrices and J; =
;j—’;.(’)y = a%.ag = % The standard initial value problem for the

Ishimori-I (@ = ¢) and Ishimori-II (o = 1) equations with the vanishing

boundary values (§ ———— (0.0.—=1).¢ ——— 0) has been solved in
T.y—x T.Yy—x

the papers [10-12] with the use of the d-method (o = ¢ [10.11]) and

nonlocal Riemann-Hilbert problem (@ = 1 [12]) method.
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Here we present the results concerning the construction of the expo-
nentially localized solutions of the Ishimori-IT equation with the nontriv-
ial boundaries [13]. In the characteristic coordinates £ = %(y +z)ny=

%( y — x) equation (1) at a = 1 is equivalent to the equation

n

—_ 1»« — — 1 ’—a — — . —t
Set 58 x (Sge+ Su) + 51 /dn S(Se x Sy) + 2Ua(£.1)) S

2
-
1 €
- 3t [ 468 (Ee x 5y + 20015, = 0 3)
-2
due to the equalities

7

ve= [dnS(Sex Sy) +20alect)
3

bn= [ @5(5¢ xS+ 20int) (4)
—oC

where Uj(n.t) and Uz(£.t) are arbitrary scalar functions. So. we are
interesting in the exact solutions of the Ishimori-II equation with the
boundary values

S{r.y.t) ———— (0.0, —1).

IZegz_.x

p(a.y.t) ———— 207 Ux(€' 1) + 201U (0. 1) (5)

2@y —oc
with given functions Uy (7. t) and Ua(£.1).
We will use the method proposed by Fokas and Santini for th~ DS-1
equation {6-8]. Within the framework of this approach one needs: 1)
to derive the equatious which solve the inverse problem for the linear

equation Ly = (). associated with the given integrable equation.  2) to
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solve the inverse problem equations for the degenerated inverse problem
data. 3) to construct the modified second auxiliary equation Lsv = ()
and to find the corresponding time evolution of the inverse problem data,
1) to construct the exact factorized solutions of the linear evolution
equations for the inverse problem data, 3) using these solutions and
reconstruction formulae for the degenerated data. to calculate the exact

solutions of the soliton equation with the nontrivial boundaries.

Following this scheme, one gets for the Ishimori-II equation (3) the

following results {13].

1. The inverse problem equations for the linear auxiliary equation
L1y = 0 where the operator L; is given by (2) are generated by the
corresponding nonlocal Riemann-Hilbert problem [12.13]. Namely tran-

siting to the functions x defined by

-gé
v=xtenn (% ) )

where A is a complex parameter, one can construct the solutions x%
and x~ which are bounded and analytic in the upper (YmA > 0) and
lower {(YmA < 0) half-planes, respectively. and such that x™ — x~ at
the real axis (YmA = 0) is expressed nonlocally via x~. The solution
of this nonlocal Riemann-Hilbert problem is given by the linear integral

equation

//dpdqx (€. p)Zpf(p- X! .

ClEnN =14 g— A+ 10

2mi




r-————_——————-—_—

LOCALIZED SOLITONS FOR THE ISHIMORI EQUATION 81
where
%
er 0
R T, = -
p(f ] ( 0 ()_Fn)
0, T +(p~ q)
D.q) = - 8
fea=\ _r-p.g. - f ~(p. k)T* (k. q) )
and

*(p.q) =-//dsdne -2 (P(E.m) + 03)(0% — B, +q> Xt (€m0

T~ (p.q) = — / [dedne S (P& + 000 = 3y + S (€
(9)
The formulae which allow us to reconstruct § and ¢ via x are of the

form

S(€.n.t) = —tr(ogoag™).

w(&.n,t) = 2ilogdetg + 26{10’2(5',” + 207Uy (' 1), (10)

where g(&.n.t) = x(&.17.t. A = Q).

The formulae (7) and (10) form the complete set of the equations
which solve the inverse problem for the Ishimori-II equation. The func-
tions T*(p.q) and T~ (p.q) are the inverse problem data [12.13].

2. For the degenerated inverse problem data. i.e.
Ny
= ZTg(p)T,f(q) | (11)
k=1 :

where T;f(p).'T ,f(q) are arbitrary functions. the inverse problem equa-

tion {7} is reduced to the system of algebraic equations. As a result. the




82 B. G. KONOPELCHENKO AND V. G. DUBROVSKY

solution x~(A) is found in the closed explicit form [13]:

(29) - () - VF S Bt e

(20) - ()~ F S atonsy

where .
! , FX)
(f)*= — _/dA ToOTW)
and
N_ N.
Fj =Y (1- 450" apmr(9)
k=1 =1
N. N
G. = 1 - Bt 7 (§) )
’ kz,,:—-l( )Jk (Z?:lal‘:e(g) T[(T])
and

ajk(m:x —T-*(A)eiﬂ F(NeFX)*.

(12)

The formulae (10), (12) give the exact solutions of the Ishimori-1I equa-

tion which depend on the 2(/N,. + N.) arbitrary functions of one variable.

3. Nontrivial boundaries (5) demand the modification of the second

onepator Ly — L; + A which is associated with the Ishimori equation.

Since the compatibility condition for the system

Liv=0, (Ly+A)=0
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again should be equivalent to the Ishimori equation, then L; Ay = 0.
So. the functions ¢ and Ay obey the same differential equation. But
the corresponding integral equations are different. Comparing them. one

finds [13]

+e 1
i 1 0 i _xW"/(X =3 0
A—_W(O ~1)+2—X AN <1 1
0 (s - %)
—oC
(13)
where
1 -+ ¢ 1 +o¢
'7(/\) = — /d{eiﬁ)\Ug(é,t),ﬁ()\) = ’_/dTIU1(n,t)e_i”)‘.
r A
Y .

Now, the equation (L + A)yp = 0 where L» is given by (2) and A by

(13) implies that the full Fourier transforms of the inverse problem data

+oc
. ) dp d € 1
FHEmt) = z//;%;f-qmp,q)e S
—_C

+oc

~ . dpd - - _i§

T (an.t)=—z/ ;}-’éq—‘qu (p.q)e s % (14)
—oc

obey the linear equations [13]

=0.  (15)

. i . . . .
TEE. 1) & 5(:1?{ +T5) + Ua(6.OTF = Ui(n. )T,

These linear evolution equations for the inverse spectral data play
a fundamental role in the whole of our construction. Emphasize that
equations (15) coincide with the linearized equation (3) for S4 =81 445;.

In the weak field limit one has T*(€.9.4) = 7S84 (€. 7.t).
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Note also that for the real § one has
aT~(p.q) = —p(T*(q,p))"
or

T (&n.ty = (TH(En. 1) (16)

So, for real § it is sufficient to consider one equation (15). for instance.
the equation for T*. In what follows we will discuss the case of the
real-valued §

4. Equations {15) admit the separation of variables. So. the equation

for T has the solutions of the form
THED ) =27 py Xi(E.)Y;(n.t) (17)
3]
where p;; are arbitrary constants and X; and ¥; obey the equations

: 1 . .
1.X + ‘—X,fg + »zbg(f.t))&,f = (.

PN

S - ,
7}'jt - ‘-2-}]'7,1) - ZDI(T]'t))jn = (. (18)

The inverse problem data T+ of the form (17) are degenerated one

aud the corresponding functions T:(p). -,:'(q) from (11) are

+ 2

1 —
T pt) = o= [ dexitene.

+aC
_ { 1. = .
T, (g.t) = E Zpkj /dr/an (n.t)e"Tyl. (19)
J

-~
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For such a data. using the formula (12). one gets [13]

L= (X (1= pap™0) tpapT X*). (Y. pT(1 — bpap™ )1 X")
gl&n.t)y= _
—(X. (1= pap™h) " pY ). 1+ (Y*. p* (1 = bpap™) 'bpY)
(20)
where (X.Y) =3 X;Y.. (p)ij = pi; and

)

ai(n) = ] Y (o )0y Yl ).

bk (€) = / dE' X (€' 1) X7 (€. 1).

g
Then the formula (10) gives us the solution S and @ of the Ishimori-II
equation. So each set of exact solutions of equations (18) gives rise to
the exact solution of the Ishimori-II equation (3) with given boundaries
Uy(n.t) and Uy(€.t) via the formulae (12) and (20). These formulae play
a central role in the theory of the coherent structures for the Ishimori-1I
equation [13)].

5. The problem now is to solve the linear equations (18). Here we
will consider the case of time-independent boundaries Uy (n) and Us(&).
In this case equations (18) admit the further separation of variables.

namely
Xi(£.1) = eTNX ().
Y;(n.t) = eFNtY;(n) (21)
where X,;(§) and Y;(n) obey the ordinary differential equations
Xiee + 2iU2(€) Xie + A2 X, = 0.

Yign — 2iU1(n)Y; + XY, = 0. (22)
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The solutions X and Y of equations (22) can be expressed via the
solutions of the 2 x 2 matrix spectral problem. Namely, if the functions

Vi{z) and Vi(z) are the solutions of the specialized Zacharov-Shabat

—0,. U\ (Wi _ . (Vi
( . d) (v;,) “’\(1@,) (23)

~i [ dg'(U2(g")
X&) = —(Va(§) +Vil€))e -~
i } dn'Ur{n’)
Yin) = (Vi(n) +iVa(n)e - (24)

spectral problem

then the functions

obey equations (22) [13]. For the calculation of the function X(£) one
must use Us(€) as U in (23) while for calculation Y(7) one must use
Ui(n) as U in (23).

Spectral problem (23) has been studied in detail by Wadati in [14.
15] in connection with the IST integration of the modified Korteweg-
de Vries equation. The discrete spectrum of the problem (23) consisis
from the points located symmetrically with respect to the imaginary axis
ReXl = 0. The points A, = i3,(YmfB, = 0) correspond to the soliton
potential U7 and the pairs of points A+ = fa + i3{a. 3 > 0) correspond
to the breathers. The general N; solitons --N3 breathers potential U is

of the form [14. 15]
. d.. : .
Ulz) = ’ZEWY méndet(1l+ iM) (25)
2

aml the corresponding eigenfunctions are

1\'1 +2 i’Vg

Vin(2)) _ ar2y =1 (O ixmz, (1 ARy (op
(13,,(@)‘ >+ M e > Myge*®) (26)

m=1 k




“
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where (N) + 2N2) x (N + 2Ny) matrix M looks like

("",”(Aji(xn‘i"’\m)l
Mo = (27)
An + Am
where ¢, are arbitrary constants (n.m = 1,.... N; + 2N»).

So. for the boundary functions Uy{n) and Us(€) chosen in the form
(25) we have the exact solutions of equations (22) given by the formulae
(24). (26).

Thus. the formulae (10), (20). (21), (24). (26) give us the class of
exact solutions of the Ishimori-II equation with the boundary functions
Ua(n) and Uq(€) of the form (25). As {ar as the functions Vi, (z). Van(2)
given by (26). the field variables g(f. 1n.1) and ¢(£, 7. t) are exponentially
localized in all directions on the plane (z.y). These solutions are the
localized breather type solutions of the Ishimori-II equation [13].

The solitons (s) and breathers (b) are quite different transparent po-
tentials. As a result. we have four different types of the exact solutions
of the Ishimori-II equation:
g?i’.M)(ﬂ’M)- §?R’.M)(5- 7.t). gl()f’v.fm-f)(iﬂlst)- g?i’\r‘m{)(f-?l-t)
which correspond to the choices of X and Y as the pure soliton or
breather eigenfunctions. The solutions §“’b and §b3 are, obviously. re-
lated by the interchange £ « 1. N — M. So. we have the three essen-
tially different types of exact solutions

afq\m g??\aMr g:l()f‘)\'.]t{) (28)
where the integers N and M correspond to the N-soliton (breather)

boundary U5(€) and M-soliton (breather) boundary U3 (n). Al these




LOCALIZED SOLITONS FOR THE ISHIMORI EQUATION 87
where (N] + 2N5) x (N; + 2N;) matrix M looks like

C"lpl(/\n'r‘\m)z
A[nm = (27)
)\Il + Anl

where ¢, are arbitrary coustants {n.m = 1..... Ny + 2N>).

So. for the boundary functions Uy(n) and Us(€) chosen in the form
(25) we have the exact solutions of equations (22) given by the formulae
(24). (26).

Thus. the formulae (10). (20). (21). (24). (26) give us the class of
exact solutions of the Ishimori-I1 equation with the boundary functions
Us(n) and Uz(€) of the form (23). As far as the functions Vi, {(z). V5, (2)
given by (26). the field variables g(&. 1.t} and ©(&. 1. t) are exponentially
localized in all directions on the plane (x.y). These solutions are the
localized breather type solutions of the Ishimori-II equation [13].

The solitons (s) and breathers (b) are quite different transparent po-
tentials. As a result. we have four different types of the exact solutions

of the Ishimori-II equation:

—

Sk an (& n.t). 5??\'.M)(§-77-t)~ (1\« any(&nt). Sl()?v..m('fﬂl-t)

which correspond to the choices of X and Y as the pure soliton or
breather eigenfunctions. The solutions _.S:‘"b and gbs are. obviously. re-
lated by the interchange £ « 7. N — M. So. we have the three essen-
tially different types of exact solutions

—

S(NM s-;g,.M). S(m, (28)

where the integers N and M correspond to the N-soliton (breather)

boundary U3(€) and M-soliton (breather) boundary U,{n). All these
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solutions are calculated explicitly. Their properties and the simplest
examples are considered in the detailed paper [13]. The case of the
time-dependent boundaries will be discussed elsewhere.

One of the authors (B.G.K.) is very grateful to the Mathematics De

partment of Yale University and especially to Richard Beals for the kind

hospitality.
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Tau Functions!?
John Palmer

Abstract

The 7-functions introduced by M. Sato. T. Miwa and M. Jimbo
in work on Holonomic Quantum Fields and monodromy preserving
deformation theory are discussed. In some cases they can be shown
to be determinants of differential operators in a determinant bundle
formalisimn that has some technical and conceptual advantages.

In a series of five long papers titled “Holonomic Quantum Fields I -V.” published
in the years 1978-1980. the mathematicians M. Sato, T. Miwa, and M. Jimbo (SMJ]
henceforth) revealed an unexpected connection between certain two dimensional
quantum field theory models and the theory of monodromy preserving deformations
of linear differential equations [27]. Very briefly the connection is this. The central
objects of the field theory. called correlation functions or vacuum expectations could
be expressed in terms of the solutions to certain nonlinear deformation equations
associated with monodromy preserving deformations of linear differential equations.
This work grew out of a penetrating analysis of an earlier result (1976) of Wu.
McCoy. Tracy. and Barouch [33] on the scaling behavior of the correlation functions
for the two dimensional Ising model on a lattice. The WMTB result is that a
certain scaling limit of the two point correlation of the Ising model (a model of
ferromagnetism in two dimensions) can be expressed in terms of Painlevé functions.
The Painlevé functions satisfy nonlinear differential equations in the plane with a
characteristic property first analysed in detail by Painlevé around the turn of the
century [13]. Roughly speaking the property that singles out the class of Painlevé
equations from the general class of equations with rational nonlinearities is that
the solutions are to have at worst pole type singularities away from the manifest
singularities of the equation itself.
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The notion of monodromy preserving deformations for linear differential equa-
tions in the complex plane was first considered in papers of R. Fuchs [9] and
L. Schlesinger [29] and R. Garnier {10]. Painlevé functions arise in the integration
of the deformation equations formulated by Fuchs (in particular Painlevé functions
of the 6** kind) and in {10].[11] many special cases of the deformation equations
were integrated in terms of Painlevé functions. Part of the genius of the SMJ
analysis of the WMTRB result is their realization that monodromy preserving defor-
mations play a central role in accounting for the appearance of Painlevé functions
in the scaling behavior of the Ising model. To see this required generalizing the
notion of monodromy preserving deformations for linear differential equations in
the complex plane to a theory of monodromy preserving deformations for the (el-
liptic) Dirac equation in the plane. The correlation function for the Ising model
generalizes in their theory to the (Euclidean} correlation function of a Holonomic
Quantum Field, a function they refer to as a T-function. It is impossible to do
justice to the wide spectrum of ideas in the original five papers of SMJ much less
the subsequent development of a theory in the irregular singular case (which was
started by H. Flaschka and A. Newell in [8] and further developed by M. Jimbo.
T. Miwa, and K. Ueno in {14]}) in a short article such as this. Instead I will con-
centrate on a problem that has intrigued me for some years now in the case where
the resolution is simplest to explain.

Consider a linear differential equation on P! with rational coefficients:

dY ]
(1) - = A(2)Y

where A(z) is an n x n matrix valued function with rational entries. In the case

that A(z) has only simple poles in the finite plane one can do a partial fraction

p
A2) = Z . f"au

where each A, is an n x n matrix. Infinity will be a regular point for the differential

expansion to obtain:

equation provided that ) A, = 0. For simplicity we will suppose this is the case.
The local existence theory in the complex plane tells one that in a neighborhood of
any regular point for the differential equation (1) one can find a fundamental set of
solutions {y:1(2).... .yn(2)}. If one analytically continues such a solution y; around
a singular point a, it does not in general return to the solution y; but to a linear
combination 3, MY yx. The matrices M are called monodromy matrices. We can
normalize the choice of such matrices by considering a matrix valued fundamental
solution:
Y(z):=[y1(2). ... cyn(2)]

normalized so that Y(>c) = identity. Under a simple eirenit of the singnlar point
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a,, such a matrix fundamental solution will transform:
Y — YA
In 1912 Schlesinger posed the question: How must the coefficient matrices A,
depend on the poles {aj.....a,} so that the monodromy matrices M* do not
depend on the location of the poles a1, ... .a,. He discovered that these coefficients
must satisfy a nonlinear system of equations:
(2) daAy ==Y [A,. A“}fifi"-‘—‘?—“—“

a, - a
pFv v K

where [A.B] = AB — BA is the usual commutator. These equations are known
as the Schlesinger equations or sometimes the deformation equations. As [ men-
tioned earlier special cases of these equations were integrated in terms of Painlevé
transcendents by Garnier [10}.[11].

It will be useful to recall that work on monodromy preserving deformations
evolved from the consideration of a problem first posed by Riemann and later in-
cluded in Hilbert's famous list of problems at the 1900 International Congress (it
is number 21). The “classical Riemann-Hilbert problem” is the problem of find-
ing a linear differential equation with simple poles that has arbitrarily prescribed
monodromy matrices. Riemann was lead to consider this problem after he achieved
considerable success in analyzing the global structure of the space of solutions to
the hypergeometric equation by concentrating on the monodromy properties of so-
lutions. Actually what 1 have referred to (for later convenience) as the “classical
Riemann-Hilbert problem™ does not always have a solution and indeed it is not the
form of the problem posed by Hilbert. An isolated singularity for a linear differen-
tial equation in the complex plane with otherwise locally holomorphic coefficients
is said to be a regular singular point if there is a matrix fundamental solution whose
entries are polynomially bounded near the singular point. The problem of finding
a linear differential equation with regular singularities and prescribed monodromy
does always have a solution. Solutions to this problem were offered by Hilbert,
Plemelj, and Birkhoff [2] at the beginning of this century. In the 1950's Rohrl [23]
solved a generalization of this problem for Riemann surfaces and more recently mul-
tidimensional generalizations have been considered by Deligne [7]. These modern
developments are the subject of the theory of “D-modules” [15].

Returning to the one dimensional situation a simple pole is always a regular
singular point (the method of Frobenius produces solutions) but the converse is not
true. The distinction I've introduced will be useful in describing one version of the
significance of the 7-function introduced by SMJ.

We turn now to the consideration of the r-function introduced by SMJ. They

show that for solutions A, (a} to the Schlesinger equations (2) above the right hand
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side of the following equation is exact:

1 da, — da
(3) dg log(r(a)) = 5 ) Tr{A,A,)——*
2 a, — ay
v#Ep
I would like to make some observations concerning this formula. The first is that
this equation gives the fundamental connection between the quantum field theory
whose correlation function is 7(a) and the deformation theory for the matrices

Ap(a). The second is that the right hand side has manifest singularities on the sets
Ay ={aeCPla, =a,}

for 4 # v. The third observation is that the solutions to the Schlesinger equa-
tions A,(a) may have pole type singularities themselves. The final observation
is that equation (3) is the closest thing to a definition of the r-function that ap-
pears in the paper “Holonomic Quantum Fields II” {the paper concerned with the
Riemann-Hilbert version of their theory). The reason for this is that there are
some serious difficulties in making rigorous mathematical sense of massless holo-
nomic quantum fields. Massless holonomic fields have been constructed in a special
case by A. Carey, S.N.M. Ruijsenaars and J. Wright [4] but their results do not,
so far as I am aware, allow one to come to grips with (3). One reason for this is
that the 7(a) which appears in (3) is not quite the “physical” correlation function
but the analytic continuation to “imaginary times.” This analytic continuation is
the source of the multivaluedness in the “function” defined by (3), and it is hard
to deal with mathematicallv.

These difficulties make the following results of B. Malgrange [16] especially inter-
esting. First Malgrange proves the Painlevé property for solutions to the Schlesinger
equations {not everyone was happy with Schlesinger’s original proof). Secondly he
shows that the r-function defined by (3) (or more precisely a close relative of (3)) is
a well defined holomorphic function on the simply connected covering of CP —~UA,,,..
Finally he shows that 7(a) = 0 precisely at those values of a where the solutions
to the Schlesinger equations have a pole and this set in turn is the same as the set
of points where the “classical Riemann-Hilbert problem” fails to have a solution (it
is precisely to describe this result that we have singled out the “classical Riemann-
Hilbert problem” even though neither Riemann nor Hilbert may ever have posed
the problem in exactly this fashion). These results of Malgrange are the only re-
sults I am aware of that establish a conceptual significance for the 7-function in the
associated deformation theory.

In the rest of this article I would like to describe yet another way to think

about what a r-function “really” is. Before I do this I will explain what motivated
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this work. Monodromy preserving deformations of linear differential equations in
the complex plane is not the only setting in which SMJ introduced r-functions.
Indeed, as has already been mentioned. the original example of scaled correlations
for the Ising model was tied to a deformation theory for the Dirac equation. One
would like to generalize the results of Malgrange to this setting, but for a number
of reasons this is not straightforward. In particular Malgrange makes heavy use
of the relationship between the solution to the Riemann-Hilbert problem and the
problem of trivializing holomorphic vector bundles (a connection first exploited
by Roéhrl [23]). There is no strict analogue of this connection in the Dirac case.
In Determinants of Cauchy-Riemann operators as 7- functions [19] 1 propose to
reinterpret the Malgrange analysis in the following manner. I introduce a differential
operator 9, r whose domain incorporates functions with prescribed branching and

monodromy. MY = exp(2niL,) at the point a,. The r-function is then:

(4) 7(a) = det(0,,1)

The operator 8, 1, is a close relative of the familiar Cauchy-Riemann operator 8, :=
%(81 + i8,) on P!. To get a feeling for the significance of the operator Og.1 it is
useful to recall a standard reformulation of the classical Riemann-Hilbert problem.
One seeks a multivalued holomorphic invertible matrix valued function Y (z) with
branch type singularities at each of the points a, such that in a neighborhood of

each of these points we have:
Y(z) = ®,.{2)(z — a )

for some invertible matrix valued function ®,(z) which is holomorphic in some
neighborhood of the branch point a,. If one has such a function Y (z), then it is
easy to see that the function Y'(2)Y(z)™! = A(z) is single valued on P! with at
worst simple poles at the points a,. Thus A(z) must be rational and one obtains
the differential equation (1) as an automatic consequence of solving the problem .n
this form.

The columns of ¥ (2)~! have the right local behavior to be in the domain of 9,
but they are not global sections of the appropriate bundle and so are not globally
in the domain of 8, 1 (if they were our operator d, j, would have at least an n di-
mensional null space instead of being generically invertible). This will be explained
later. For the present it is useful to think of Y (2) as a gauge transformation (when

it exists) transforming 9, into d, 1. That is:

Darfl2) =Y (2)7'0,Y(2)f(2)
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It is important to understand that while this equation is correct when Y (z) exists
it is possible to dcfine Os.1 even when the classical Riemann-Hilbert problem does
not have a solution. One observes then that the classical Riemann-Hilbert problem
has a solution precisely when the operator Ja.1 is gauge equivalent (by a singular
gauge transformation to be sure) to the standard Cauchy-Riemann operator d,.
Note that in the case that the classical Riemann-Hilbert problem has a solution.
the r-function is the determinant of a similarity transform of a fixed differential
operator. The usual finite dimensional determinant is a similarity invariant and
the fact that the 7-function depends on a in this case happens to be related to

what is called a “gauge anomaly” in the physics literature [1]. [24]. [3].

Something which doubtless requires further comment in understanding (1) is
the notion of a determinant for a differential operator. The sense which we give to
(4) requires the notion of determinant bundles over families of Fredholm maps a
notion that was introduced by D. Quillen in [24]. Before turning in more detail to
the consideration of (4) let me stop to summarize the different point of view that is
implicit in (4). First. the operator 0,  is the fundamental object of the theory. This
operator is simple to define 1t is not necessary. for example, to solve the Riemann-
Hilbert problem to define 8, 1. Tle significance of the vanishing of the 7-function
is easy to understand. The 7-function vanishes precisely where the operator J, |
fails to be invertible. How does the deformation theory arise in this picture? It
turns out that to make sense of the determinant in a natural way requires certain
asymptotics for the Green function of d, 1 in a neighborhood of the branch points
{a;.....a,}. The Schlesinger deformation theory may be reinterpreted to give an
independent characterization of the relevant asymptotics, leading in particular to
(3). Most importantly this view of the 7-function does generalize to the Dirac
case. One can introduce a Dirac operator with a domain that contains functions
with appropriate branching and monodromy. The SMJ deformation theory {27 I1]]
independently characterizes the asymptotics of the Green function for this eperator
and the 7-function may be understood in a natural fashion as the determinant of

this differential operator.

Since this article is to appear in the proceedings of a conference on inverse scat-
tering. it is appropriate for me to mention a connection with spectrum preserving
deformation theory that is possibly illuminating. Following work of M. Sato [25]
and M. Sato and Y. Sato [26] which interpreted certain KdV flows as induced linear
flows on infinite dimensional Grassmannians and introduced 7-funections as generat-
ing functions for Pliicker coordinates, Daté. Jimbo. Kashiwara, and Miwa [5] found

/ : .
a group representational significance for the r-functions for KdV in the context
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of their results connecting certain features of KdV theory with the representation
theory of Kac-Moody algebras. A geometric synthesis of these results can be found
in the paper Loop groups and equations of KdV type by G. Segal and G. Wilson
where a rigorous account of the theory of r-functions for KdV is also presented {28].
In this theory the 7-function has many guises-- it is the object of Hirota's bilinear
operator analysis. it is the parametrization of the orbit of a family of solutions to
the KAV hierarchy. it is the determinant of the projection onto the reference sub-
space in the Grassmannian, it is a generating function for Plicker coordinates. and
etc. One guise not mentioned there but which can be inferred from the Krichever
construction and a determinant bundle map which I will explain shortly is that
the r-function is also the determinant of a Cauchyv-Riemann operator acting on the
sections of a line bundle over a Riemann surface. More precisely there is a family of
line bundles parametrized by the flow variables in the KdV hierarchy. This version
of the r-function is mentioned by E. Witten {32] in a paper which also contains
the suggestion that the Baker function might be regarded as the asvmptotics of
the Green function for the associated Cauchy-Riemann operator. Witten's discus-
sion is not mathematically precise. but I believe the constructions in [19] can be
used to give a mathematically rigorous account of his ideas. There are a number
of other models in spectrum preserving deformation theory where r-functions ap-
pear. including the Toda lattice and the Landau-Lifschitz equations [6]. 1 believe
that the introduction of the right differential operator (the putative operator whose
Green function has asymptotics governed by the Baker functions of the spectrum
preserving deformation theory) would go a long way towards making manifest the
similarities in the theory of monodromy and spectrum preserving deformation the-
ory. Both theories might be realized as auxilliary results in the analysis of Green's
functions for certain families of differential operators. A related project is to find
an appropriate determinant bundle trivialization to define the r-functions for the
analogue of the operator 8, ¢ from [19] in the irregular singular generalizations of
(14]. This has been done and it might have implications for quantum 2D gravity
where Painlevé functions associaced with monodromy preserving deformations of

irregular singular points arise [18].

Let me return now to the ideas which are involved in making sense of (4). Sup-
pose that H; and H, are two Hilbert spaces. Let Fred(H;. Hy) denote the space of
Fredholm maps from H; to H;. These are the linear maps with finite dimensional
kernel in H; whose range has finite codimension in H,. The space Fred(Hy, H) is

not connected. The index distinguishes the components of Fred(H;, Hy). ¥ T is a
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Fredholmm map then the index of T is defined by:
Ind(T) .= dim(kerT) — dim{cokerT)

D. Quillen has defined a holomorphic line bundle over Fred(H,. Hy). It is some-
what simpler and it will suffice for our purposes to restrict our attention to the
determinant bundle over the Fredholm maps with index 0. Fredog(H;. Hy) (this is
roughly like restricting oneself to square matrices in the finite dimensional case). If
T is a Fredholm map with index 0 then there exist invertible maps ¢ ©« Hy — H»p
with ¢7!T a trace class perturbation of the identity on H;. We will refer to such a
q as an admassable parametrir for T. We take the fiber in the determinant bundle
over T to be equivalence classes of pairs (¢. ) where ¢ is an admissable parametrix
for T and « is a complex number. Two such paiss (g;. ax) for k = 1.2 are equivalent
if:

) = agde*-f(qf] 2)

See Malgrange [17]. The multiplicative property of determinants makes it possible
to check that this is indeed an equivalence relation. The map which sends T into
the -relative determinant™ {g.det(q™!T)) (where ¢ is any admissable parametrix
for T} is not a function on the set Fredg. but it is not hard to check that it is a
section of the determinant bundle. This section is called the canonical section &. If
F is a familv of operators in Fred, then making a choice of a relative determinant
for each element of the familv F is morally equivalent to finding a trivialization

{that is a nonvanishing section #) of the line bundle:
det — F

The determinant for the family F determined by the trivialization é is:

T
det{T) = g(LT_)) :

Why is the notion of a determinant bundle superior to the notion of regularizing
determinants using adinissable parametrices? If one has a family F of Fredholm
operators depending on parameters it may be difficult to construet admissable para-
metrices for this family that depend smoothly on the parameters. Indeed. it can
happen that there is a global obstruetion to the construction of such families of
parametrices. The information needed to patch together local families of paramet-
rices s0 that a global determinant is well defined is cruder than this and is codified
in the determinant bundie. It can. of course. happen that the line bundie det — F

is non-trivial  indeed one of the real advantages of the determinant bundle idea is
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that nebulous idea of defining a relative determinant for a family of maps becomes
the geometric problem of trivializing a line bundle. The topological {(and holomor-
phic} obstructions in this problem are understood in the theory of Chern classes
{12]. The study of gauge anomalies in quantum field theory. for example, is much
huninated by the calculation of Chern classes for a determinant bundle over the
space of gauge potentials modulo gauge equivalence [1].

There are also advantages even in the “favorable case” that the bundie det — F
does have a trivialization. For example. if F is a manifold the bundle det — F may
have a flat connection. A\ local trivialization is then obtained by integrating such a
flat connection {and if F 1s simply connectcu one obtains u global trivialization in
this manner). Such a trivialization may be geometrically natural but quite awkward
to frame in the setting of local parametrices. This 1s precisely the situation that
arises for the cperator d, p: the 7-function arises from the integration of a flat
counection on the determinant bundle but no attempt is made to construct a smooth
system of local parametrices giving this result.

I will conclude this discussion of (4) by saying a few words about Cauchy-
Riemann operators and the main technical result used in [19] to localize the cal-
culation of the r-function and obtain (3). Suppose that E — X is a C°° vector
bundle over a Riemanu surface X. A Cauchy-Riemann operator on E is a first
order linear differential operator which takes a section f of E to a section Df of
E 2 Q%1 the bundle F tensored with the bundle of (0,1} forms, and which has the

following form rela.ive to a local parameter z on X and a local frame for E:
Df(z) = dz(9, + A(2))f(2)

where A(z) is a rank( E) xrank(E) C> matrix valued function. The different possi-
ble Canchy-Riemann operators on ¥ parametrize the different possible holomorphic
strictures for the bundles E. A local section s of E will be holomorphic with respect
to the complex structure defined by the Cauchy-Riemann operator D if and only
if Ds = 0. If X is compact then it is well known that one can introduce a Sobolev
space H'(E) so that D becomes a Fredholm map from HY(E) to L*(E & Q%)
(note that for X = C and D = dz8, the map D is not Fredholm from H' to L? so
the restriction to eompact X is important here). The index of a Cauchy-Riemann
operator DD on a bundle E over a compact Riemann surface X turns out to be given
by topological data for the bundle E &nd the space X. The formula is the index

theory version of the Riemann-Roch theorem:

Ind(D}= (1 —-g)r+d




100 JOHN PALMER

where ¢ = genus(X).r = rank(E) and d = degree( E') which is also the first Chrn
class of E. Working on X = P! we have ¢ = 0 and so to get Ind(D) = 0 it is
necessary to have r +d = 0. We achieve this in [19] by working on r copies of the
bundle over P! with ¢ = —1 (this bundle is a "square root” of the tangent bundle
and is sometimes referred to as the spin bundle}. By working in this setting we

succeed in defining a family of Fredholm maps 0, ;1 with index 0.

Finally T will describe the main technical result used to localize the description
of the determinant bundle over the family of operators &, . Away from branch
cuts emanating from the points {a;.... .an} the differential operator J, ; acts just
like the “standard”™ Cauchy-Riemann operator on the spin bundle (the action does
not depend on a). This makes it natural to localize 8, 1 in the following manner.
Let ~ be a smooth simple closed curve which surrounds the branch cuts for 8, 1.
Let W(a) denote the subspace of H*{~) which consists of boundary values on ~ of
functions f in the domain of 9, p with 8, 1 f(z) = 0 for z in the interior of 5. We
now localize d, ; in the erterior of the curve v by letting it act on sections defined
in the exterior of v which have boundary values in W (a). This is natural from the
Fredholm point of view since the kernel and cokernel of the localized operator can
be identified with the kernel and cokernel of the full operator 8, 1. As remarked
above the “differential operator” part of the localization is independent of a. the
subspace W{a) now contains all the information about the variation of the family
of operators with a. Now let F denote a family ~f Cauchy-Riemann operators on
the spin bundle which are fixed in the exterior of 4. For D € F let W, (D) denote
the subspace of H?(~) obtained as boundary value. of sections mapped to (¢ by D
in the interior of ~. Then the image of W, is contained in a certain Grassmannian
Gr of subspaces of H¥(~) closely related to the Grassmannians discussed in (22
G. Segal and G. Wilson have defined a det line bundle over this Grassmannian (the
line over a subspace 1" is the analogue in infinite dimensions of the highest exterior
power of 11"}, The main technical result of [19] is then that the map W, : F — Gr
lifts to a map W, from the determinant bundle over F to the det* bundle over
Gr (det® is the dual of the determinant bundle). Roughly speaking. what makes
this lift natural is that there is a way to construct an admissable parametrix for
D € F given an admissable frame for the subspace W, (D). An admissable frame
for a subspace W, (D) in the Grassmannian is a map that inverts the projection of
this subspace onto the reference subspace of the Grassmannian up to a trace class
perturbation. I refer the reader to [28] or [22] for a construction of the det bundle
over (zr which uses the data of admissable frames to define the fiber in much the

same way that we defined the fiber of the determinant bundle over Fred, using
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admissable parametrices.

The problem we consider then is the trivialization of the det” bundle over the
family of subspaces W(a). We reinterpret the results of Malgrange to get a flat con-
nection on this bundle and the 7-function is obtained by integrating this connection
to get a trivialization which is then compared with the canonical section.

The map W,, is a mathematically precise version of an idea that can be found
in Witten [32]. It has interesting connections with loop groups and conformal field
theory (see [3] for one simple example) and it is also useful in making precise the
ideas in the first part of Witten [32]. It would be interesting in this regard to see
Witten’s version of Baker functions and the counnection with Ward identities in
conformal field theory worked out in the mathematically well defined setting of det
and det* bundles.

As I mentioned earlier one may interpret the r-function for the Dirac case in
the plane in much the same manner [20]. I am currently working with C. Tracy
and R. Narayanan to define a 7-function for the Dirac operator in the hyperbolic
plane. C. Tracy [30] and [21] has already worked out the deformation theory that
should be relevant for this problem and he will describe this work elsewhere in these
proceedings. The survey article [31] is another good place to read in more detail
abcut some of the historical developments and more recent efforts to generalize the

SMJ deformation theory.
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Inverse problems in anisotropic media
John Sylvester® Gunther Uhlmann®*

$0. Introduction

In this paper we consider two inverse problems for anisotropic conductivities. In
Section 1 we consider the problem of determining the anisotropic conductivity of a body
1 from electrical measurements at 9. In Section 2 we consider the kinematic problem
in seismology; i.e. can one recover a metric on {2 from the lengths of geodesics joining
points at the boundary (the so called travel times)? Both problems have the common
feature that there is an obstruction to uniqueness. A diffeomorphism of Q2 that fixes the
boundary gives rise to a new metric (conductivity) with the same measurements. We show
in both problems that the harmonic map equation is useful in breaking the diffeomorphism
invariance for the linearized problem at the euclidean conductivity (euclidean metric for

the second problem).

§1. The inverse conductivity problem

Let Q be a bounded domain in R” with smooth boundary. The conductivity of 2
is represented by a symmetric positive definite matrix ¥ = (v7); ;=1....» in £ which we
assume to be smooth.

If we put a potential f on 8Q (assume f € H¥{AM). the induced potential u in
satisfies the Dirichlet problem

(1.1) Lyu= Z o (w 2)y=0in Q.

t.j=1 IJ
ulan = f.
The Dirichlet to Neumann map is the map
(1.2) fAA N = Z vy —|andS
.j=1

where v' denotes the ith component of the unit euclidean conormal and dS denotes eu-
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clidean surface measure on J2. One reason for interpreting the Neumann data as an (n—1)
form is that physically it is not the value of the current at one point but rather the current
flux across a portion of the boundary that can be measured. The map A is also called the
voltage to current map.

The amount of energy necessary to maintain a potential f on the boundary is given

by the quadratic form

(1.3) Q=Y [t ot
{

] ()J‘, ().I?]

1,5=1

with u« solution of (1.1}.
If we denote by @,(-,-) the bilinear form associated to (1.3). then A, is the unique

self adjoint map associated to @, i.e.

(1.4) Qy(f9)= [ fA(9)-

241

We are going to study the injectivity of A. or equivalently, injectivity of Q. where Q is
defined by

(1.5) F2Q,(6).

Significant progress has been made on this question for isotropic conductivities. that is. in
the case in which the relationship between voltage and current is independent of direction.
In euclidean coordinates, an isotropic conductivity, ¥ has the form v (r) = a(x)é; ; where
8;; denotes the Kronecker delta and a is a smooth positive function in £2. In this case
injectivity of A is known for piecewise real analytic conductivities in dimension n > 2
([K-V 1}) and C?-conductivities in dimension n > 3 ([S-U 1]), locally near constants in 2
dimensions ([S-U 11I}) and globally for “most conductivities” in two dimensions ([Su-U]).
However, injectivity of A is not valid in general. If 4 : § — Q is a diffeomorphism

which is the identity on boundary of 2 and

- Dy)t D
(1.6) 5= Tie:;;' ¥) oyt
then (see [K-V I1])
(1.7) A = A,

This can be understood invariantly by computing the action of a diffeomorphism of the
boundary on A, (see [S]). It is natural to conjecture that (1.6) is the only obstruction to

uniqueness. More precisely

Conjecture 1. Let 7. 7 be (anisotropic) conductivities such that A, = As. then there
exists a diffeomorphism ¢ : 8 — §2, such that Ylaq = Identity and (1.6) holds.

The conjecture has been proved in some cases. Sylvester ([S]) proved it in two dimen-

stons in the case that v and ¥ are C? close to a constant conductivity. Lee and Uhlmann
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([L-U]) proved it in the real analytic category in dimensions n > 3 under some additional
assumptions on 2. It is worth noting that in dimensions n > 3, the inverse conductivity
problem is equivalent to the geometric problem of determining the Riemannian metric of
a domain from the Dirichlet to Neumann map. More precisely if g = (g,;(z)) denotes a
Riemannian metric in € and Ag denotes the Laplace-Beltrami operator associated to g,
which is given in local coordinates by

(1.8) Agu= Z

1,)=1

det iu)
\/aet 69: (" g(?xj
where g/ = (g;;)”! and det g(z) = det(gi;(z)). If u solves the Dirichlet problem

(1.9) Agu=0in
ulan = f

then the Neumann data is given by

(1.10) Ag(f) =

Bug

l."“

where both dS and v are associated to the euclidean metric. The Dirichlet to Neumann
map is given by

(1.11) F—=Aq(f)
In dimension n > 3, Ay = Ay if
= (det Y¥) 71 (1)~} or 47 = (det gge) ¥ (g:;)
In terms of Ay conjecture 1 is equivalent to

Conjecture 2. Let n > 3 and g,k be C* Riemannian metrics in Q so that Ay = Ay.
Then there exists a diffeomorphism ¢ : (@, g) — (@, &), ¥|en = Identity such that ¢*h =g
where ¥"h denotes the pull back of the metric k under the diffeomorphism .

These two conjectures remain open in general . There are two main ditficulties. The
first one is the construction of special solutions analogous to the exponential growing so-
lutions constructed by the authors in the isotropic case ([S-U I, II}). This was done by
Sylvester in [S] in two dimensions; the use of isothermal coordinates allowed the construc-
tion in this case.

The second difficulty is how to break the diffeomorphism invariance . Jack Lee pro-
posed the use of harmonic maps for this purpose. We show that this is successful in proving
the linearization of conjectures 1 or 2 at the constant conductivity (see Section 1) as well as
for the linearization at the euclidean metric of the inverse kinematic problem (see Section
2). In a paper in preparation, the authors, G. Mendoza and J. Lee are considering the

non-linear case for the last problem ([L-M-S-U]).
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We digress now to discuss the harmonic map equation. For a general reference see
[H]. We shall only consider the case where the domain and range of the map is (2, with Q
a smooth bounded domain in R,

Let f:(Q,g) — (¥, h) be a smooth map where g and h are Riemannian metrics in {1.
The energy associated to the map f is given in local coordinates by

(1.12) Z / i(@)hag(f(z "f af 5 Vo

a@,fB,i,j=1

The Euler-Lagrange equation associated to the quadratic form (1.12) is given by the non-
linear elliptic system

2 &9 S afe I Ohay O Bf7
v ij i 2 —
L13)  —m= 3 G- ((Vaetgevhap )+ 3 e G G as; ~0

at,j=1 K ay,t,y=1

Definition 1.14 A C* map f: (Q,g) — (Q, h) is called harmonic if it is a critical point
of (1.12) (i.e. it is a solution of (1.13)).

Note that if h is the Euclidean metric, then (1.13) simply states that the components
f are harmonic functions with respect to the metric g.

We are going to reduce conjecture 2 to the proof of a uniqueness theorem by means
of the following Proposition, which follows readily from the definition of a harmonic map.

(1.15) Proposition. Let (12, g) and (§7,h) be two smooth bounded domains with Rie-
mannian metrics g and h. Suppose there is a harmonic map

(1.16) ¥ :(R,9) - (Q,h) such that ¥|sn = Identity and ¢ a diffeomorphism .
Then
Identity : (2, g) — (2, ¢"h)
is harmonic.
We shall show that conjecture 2 is reduced to prove
Conjecture 3. Suppose g and h are Riemannian metrics on Q and that Identity :
(R2.9) — (9, h) is harmonic and Ag = Ay. Then g = h.

(1.17) Proposition. Conjecture 3 = Conjecture 2 if there exists a harmonic map ¥
satisfying (1.16).
Proof. Assume Ay = A, and the existence of a harmonic map ¥ satisfying (1.16). Then

we have Ay = Ay = Ay-n. Now using Proposition 1.15 and Conjecture 3 we conclude that

= y*h.

The solvability of the harmonic Dirichlet problem (1.16) is known if A has nonpositive
sectional curvature ([H]) or if g and h are sufficiently close in the C? topology to the
euclidean metric ([L-M-S-U}).
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Thus. we have reduced the proof of Cornjecture 1 or 2 to the uniqueness statement in
Conjecture 3, under the additional assumption of the existence of an harmonic map which
is the identity on the boundary.

In the rest of this section we prove that the linearization at the identity of conjecture
3 holds. In analogy with (1.3) the quadratic form associated to Ay is given by

(1.18) Q,f9) = Z/ a“ 8 5o Vet dz

i,)=1

with u, v solution of Agu = Agv = 0 in §; ulsa = f.vlge = g We consider the
linearization of Q at the euclidean metric in the direction of the quadratic form m € C§°(£2)

Qe+cm(fsg> - Qe(f' g)‘

(1.19) dQm(f.9) = lim .
A computation yields:

1 Bu dv
(1.20) Qnifg) = 3 / My = gtrm) 5o 5 da

i,5=1

where An = Av = 0 in ©; ulag = f, vlaa = g and trm = (3, mi;)d;;. We will also
denote trm the function trm = Y"1 mi;.
As Calderdn ({C]) did for the isotropic case, we take

(1.21) u=e"¢ v=e"%

where £ € C",£ = 1(n + ik) with n,k € R™ and (n,k) = 0, |9| = |k|. Substituting (1.21)
in (1.20) we ottain

(1.22) z / mi; — —trm)e‘(z k)(n,n, + kik;) = 0.

t,j=1

We rewrite (1.22) in the form
ty.2 1 . t.~ 1. .
(1.23) k*(h — Etrm) k+n(m—§trm) n=0

where t denotes transpose and ~ the Fourier transform.

Now the fact that the identity is a harmonic map implies the following system of n
first order linear partial differential equations for m = g — h (g is the euclidean metric in
this computation):

(1.24). ‘226 (mJg)-i- trm 0inQ, g=1,
Taking the Fourier transform of (1.24) we obtain

(1.25) =2 kjtinsg(k) + kgtrrin(k) =0. B=1,-,n.
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Let us take k = (1,0,....,0), n € k* with |g] = |k| = 1.
Using (1.25) we get

(1.26) miglk) =0, 8=2,---.n

'ﬁtn(k) = %t?"lil(k).
Using (1.23) we obtain
. 1, . 1, .
{1.27) Mgy — §trm(k) = —(rh; - §trm)(k). 3=2,....n, v=2,....n

Combining (1.26) and (1.27) we conclude trm(k) = 0.
Using (1.26) and (1.27) again we see that (k) =045 =1,....n
Rotating coordinates shows that 7r(k) = O V k and therefore m = 0.

§2. The inverse kinematic problem in seismology

In this section we show that knowledge of the Dirichlet to Neumann map for the wave
equation associated to the Laplace Beltrami operator to a metric g on a domain. deter-
mines the length of the geodesics joining points of the boundary. The inverse kinematic
problem is to recover the metric knowing these lengths, which are sometimes called travel
times. Finally we show, using again the harmonic map equation. that the linearized inverse
kinematic problem is injective at the euclidean metric.

Let £ be a smooth bounded domain in R™ and g a smooth Riemannian metric on Q.
We consider the initial boundary value problem

02

(2.1) (5t—2

- DJu=0in QA x(0,T), T>0

ou .
ulemp = -67|t=0 =0in Q2

uloxo.1) = f-

We define the (hyperbolic) Dirichlet to Neumann map by

= . .. Ou
‘ h _ i1
(2.2) A = 3 076" g lands

where u is a solution of (2.1),
As in the elliptic case, it is easy to see that the map

(2.3) PR,

m =
Identity (it is injective in the isotropic case [R-S]). We first show that knowledge of A}

is not injective since AL, = AP for any diffeomorphism v : @ — @ such that v

determines the Taylor series of g at #Q in boundary normal coordinates.

For each ¢ € JQ. let ~y, be the unit-speed geodesic starting at g and normal to
o If{x'. ... a1} are local coordinates for 90 near q we can extend them smoothly to
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functions on a neighborhood of ¢ € d€Q in Q vy letting them be constant along each normal
geodesic v4. If we denote by ™ the length parameter along each v,. it follows easily that
{r!,....2"} form coordinates in {2 in a neighborhood of ¢, which we call boundary normal
coordinates. In these coordinates £ > 0 in 2 and 99 is locally defined by #* = 0. In

boundary normal coordinates the metric g takes the form

n—-1
(2.4) g= Y gaplz)dz®dz” + (dz")?
a.3=1

(2.5) Proposition. Let gg, g1 be smooth Riemannian metrics on Q. Assume ;\go = AZz'
Then there oxists a diffeomorphism v : @ — §. ¥|an = Identity such that ¢"gy = go to

infinite order on 9%).

Proof. Let Ny denote boundary norinal coordinates for the metric gi. We will make a
change of variables which is the identity on the boundary so that both metrics look simul-
taneously like (2.4) near Q. If we let hy = (N; ' Ny)*g1. then we have that both k; and gy
look in the new coordinates as in (2.4) with a fixed coordinate system (ry..... Ip-1.Tn).
Notice that (N{'INO). maps the boundary normal corresponding to the metric gp into
the one corresponding to the metric g,. fixing coordinates on the boundary. Notice that
Ap
where both go and g, have the form (2.4).

Let us take a point (xg.1p) € 02 x (0.T) and let £ € R*™!, r € R be fixed vectors

. = Ag, = Ag,. Hence. by replacing g with h; if necessary. we may work in coordinates

such that 72 — }::’J_:ll g (xo.t0)E:€; > 0.Then there are solutions of
, 0?
(26) (&5 - Ag* )U.k =0

o .
ukIt:O = %It:ﬁ n k=01
which near {xg,tp) has the asymptotic form
(2.7) up ~ MY AN k=001
7=0

wiere both ¢ and A are functions of (x,t. €. 7) satisfying equations (2.8) and (2.9) below.

The meaning of ~ is the standard one. namely

A'
020 (we — e 3 ARATT) = oAV E D

j=0

uniformly near (rg.tg) for (£.7) in a compact set. Solutions of (2.6) as in (2.7) can be
constructed by propagating the houndary data near (rqy.t9) backwards in tite and they

solving the forward wave equation (g;; ~ Ag, Yug = 0 with the initial data obtained at

t = 0 (see Chazarain({Ch]) for more details).
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By comparing powers of A we obtain the transport equations. For k = 0,1 and for
(x.t) near (xg.tg), the following hold

y AN SN Ly L
(28) (FF) -2 W Vo or, =0

tj=1

¢kiaszx(o.:r> =r E+tr k=01

where 1’ = (r;..... Tn-1). and g;’d(r) = (g*,(r))~". In addition,
{(2.9) LkAk =

&
Aflsaxpm =1

V-ILRAY, | = (87 - A )4k vj>o0

ko K
Alloaxeer =0 ¥j >0
where

a 3 I T — 4 0 d 92k
10 Lk =2%¥ A S ad Yk vy _
(2 dt ot Jdr, 0xr, 2 z g (

To show that we can solve (2.8) we notice that in our coordinates both g (ro.te) = L.

Therefure we can rewrite (2.8) as

AN L AR SN ok
2.11 = — e DAL
(210 (zm) ( ot ) 2 ) 5

@ d=1

om0 =1 E+ 17,

This is a non-characteristic first order non-linear PDE which can be solved (locally) by
Hamilton-Jacobi theory.

The transport equation (2.9) is noncharacteristic since the coefficient of 55:: in L* is
—2:;f— which is non-zero in a neighborhood of (rg. tg).

Now the fact that A, = A, implies that

J 1]
{2.12) rjm'ltnf(')szxm.r) = 5
( lfg” gy

"x!aszx(n,rr

Computing the powers of A in the asyvmptotic expansion of both sides of (2.12) we get

, O Dol
(2.13) mm, to. £.7) = X (1o to. E.7).
vy, v

91




INVERSE PROBLEMS IN ANISOTROPIC MEDIA 13

and
J Jd o %)
2.14 V=1 %4Y —AY= /-1 oA — Al vj>0.
( ) dVgQV 3+1 + dugu 27 aug1 ¥ 7+1 + aug) A] JZ U
o d

-——AO=5*-"A1

Ovg, 0 Ovy, 0
at (IQ,tOQE.T).

A computation yields
Op* 1 5]
v Kook =0,1.

51/; - vdet gk (79;:90
Thus, (2.13) implies that

1 8 4 _ 1 2
Vdet go 8z, ¥ Vdet gy 0z, ¥

The eikonal equation (2.11) allows us to conclude that at the point (zg.%0.£.7)

at (1‘0, to,f.?’).

n—1 n—1
1 2 aB 2 af
T — To.lg)€a = T — g 80)€aba)-
Jerar! GEﬁ:jlgo (0. to)éas)) = g o= 3,;191 (2o.t0)€ats)

Taking = > 0. £ = 0. we find that det go = det g;. Next, we obtain

n—1
z gz (zo.10 Elf] = Z 91 (zo. to)4:€

t.3=1 1. J=1

proving that the metrics coincide at the boundary. To prove that the normal derivatives
coincide, we use (2.14). We have that

0 J
= —— t o, €. 7)
Jzn — A2 6% Ap at (zo.t0,§,7)

Now from the transport equation (2.9) we see that

: 2
0 g2 o* + E¥(z) s 9

FAO == 61"2 a [72) +Rk at (1'0 t() { T)

where R* involves only time and tangential derivatives of ©*. We have that R = R! at
(rg.to.€.7) and we also have that E® = E' at (xg.19.£. 7). Therefore we conclude that

a? 9?
dz2¢0 dz‘P at (zo.to.£.7).

Differentiating {2.11) we obtain,

n—1 n-1

Ie a [
Z ‘I”i (xo.to)abn = . !Jlm(fn~fn)fa€.f1~

()
T a=1 af=1
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Continuing this argument inductively we conclude that

o
= ——ghat (rg by .7 Y,

F o
; Y o=
Jr 'y,; dr {‘

R
Thus the Taylor series of ¢* and ¢! coincide av (rg. ty) in these coordinates.

We mayv therefore extend g, = g1 to 1 such that both are smooth and both are

euclidean outside a ball.

(2.15) Proposition. Let gy. gy the smooth Riemannian metrics on Q. Assune .\;’( = .'\:1.
Lot (uy.uy) € E{R"yx E{R" ). suppur C© Q7 k = 0. 1. The solution vy of the initial value
problem

o2 .
gﬁ-—;\m v =0 in R x (0.7

satisfies vg = vy in Q¢ x (0.7).
Proof. Since solutions of the initial value problem depend continuously on the initial data.

it is enough to prove the proposition for ux € CF(R") with suppux C 27 k = 0. 1.

Let z be a solution of the initial boundary value problem

82
{2.16) (W—A%)z 9in 2 x (0.7)

Jz L
t= = ‘é‘{f::o =01in 2

- gy |
zlgax(0.7) = ilaaxi0.1)-
We have

0z oy
= Ag (zlanx0.1)) = Ag, (1laax.r)) = .

dug, Vg,

where 1, denotes the outer unit normal with respect to the metric gx. k = 0.1.

Let
in Q° x (0.7)

L Uy
"= {z in ) x (0.7).
Ther by (2.17) w satisfies
(2.1%) o2 P
AR ;,)75“.390 w=0in R" x (0.T).

Moreaver

wlp—p = Uilt=o = g in 27
=0 \tle=p = 0in Q

drg _ -

gy { Silt=0 = up in Q°

at it=0 = g2 o
m!fzn =0 1in .




INVERSE PROBLEMS IN ANISOTROPIC MEDIA 113

Formulas (2.18) and (2.19) show that » solves the same inttial value problem as vy .

Therefore w = vy,which concludes the proof.

One can use the proposition above and the geomsetrical optics construction (2.7} to
solve the wave equation with data supported outside Q° (say uy = b,y € ¥, u; = 0)
to conclude that the geodesic distance function for points y.r € Q¥ is the same. We are
going to use an alternative method which is the Hadamard parametrix construction {see
Hoérmander [Ho), section 12.4).

Let Fi(t.x.y) be the solution of

8’2
(523—&9,)& =0, A=0.1
Fe(0.z.y)=8(x ~y)y € N
oF;
"(,)T-(O‘l‘.y) = ().

Then, assuming that the exponential map for each of the metrics gi is a global diffeomor-

phism near {2 (i.e. no caustics in a neighborhood of ). we may write

N
(2.20) Felt.zy) = 3 A5z ) - (si(z.y) 2 0 4 FE
7=0

where F§ € CN+1-n-DIR, x R} x R’;) and .4;’ € C*(R™ x R*). £k = 0,1. Here
sk{x.y) denotes the geodesic distance between r and y in the metric g,. & = 0.}. The

distributions

(2 — (s = 4 RS o 2> (alry))
R 2 2
0 2 < (s(z.9))

are defined for Re A « 0 and have an analytic continuation to A € C.
Now from proposition (2.15) we know that if A;‘O = A;l, then Fy{t.z.y) = Fi(t.z.y)
in Q¢, tor ¢ > (). Therefore, comparing the most singular terms in (2.20) we conclude that

so(z.y) = si(z.y) VvzeN.ye Q.

Thus we have proved

Theorem 2.11. Let g and g, be Riemannian metrics with A;‘o = AZ;- Then if the
exponential map is a global diffeomorphism in §Q for gi. k = 0,1 and sx(z.y) denotes the

geodesic distance from x to y in the metric gy, we have

solz.y) = s1{r.y) Vor.ye o

The imverse kinematic problem in seismology is to recover g from so(r.y). r.y € 9.
Again this is not possible since if ¢ : {1 — Q0 is a diffeomorphism such that vy = Identity.

then 8,0+, = 8,. As in conjecture 1, the question is whether this is the only obstruction to
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uniqueness. Iu the rest of the section we prove that the linearized version at the euclidean
metric of this conjecture is valid using again the harmonic map equation.
Let g. be a family of Riemannian metrics in §2 g, = e + ¢h, where ¢ is the euclidean

metric. We also assume that g, = e in Q°.
(2.22) S (x.y) = se(x.y) Ve

An easy computation shows that

(2.23) / h(v.v)dt = 0
~{z.t.v}

where y(z.t.v) denotes a straight line through z with direction v at time ¢. Formula (2.23)
means that the X-ray transform of the quadratic form h vanishes in the direction 1 .

We recall from (1.21) that the linearization at the identity of the harmonic map
equation (in the direction h) is

L, 8
(2.24) ~23  o—(hig) + z—trh=0, B=1....n

Integrating (2.24) along the lines with direction v yields
n

1
3y / vi(hy ~ Strh)wz = 0
J~B=I "((I,t,\)) 2

Yw € R™ with {(w.v) = 0.

Arguments similar to those at the end of section 1 show that

n

/ hiwsw; =0 Yw € R”
y(z.t,v)

ij=1

proving that the X-ray transform of h is zero for all w. The X-ray transform is known to
be invertible (see [He] for instance): hence we conclude that h = 0.
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The Toda Shock Problem

STEPHANOR VENAKIDER!

1. Introduction
The Toda lattice is a linear chain of particles with nearest neighbor interactions governed
by a force which depends exponentially on the difference of the displacements of neighboring
particles. The equations of motion are given by

(1) Fp =017 —eTnTEnn n=10%1.1£2,...

where z,(t) is the displaceinent of the n'* particle at time ¢ and a dot on r, denotes differ-
entiation with respect to time. We examine a lattice with uniform asymptotic properties at
infinity:

(2) T — 0, I, — —2asgnn as |n| — x.

These are shock conditions when a > 0 and rarefaction conditions when a < . We only
address the shock problem here. We use initial data

(3) 2,{0) =0, 7,(0) = —2a sgn n. a>0

The problem is antisvmmetric: x,{t) + _,{¢t) = 0. Thus. it can be thought of as an initial-
boundary value problem for the particlesn = 0, 1.2, ... with the boundary condition ry(t) = 0.
By translating the system at velocity 2a., we can transform it to the piston problem for the
semi-infinite lattice initially at rest, forced by the zero!® particle moving with contstant speed
2a.

We use the complete integrability of the Toda lattice to derive explicit formulae for the
long-time behavior of the lattice.We assume that convergence in (2) is rapid [O]. We present
results obtained by Venakides. Deift and Oba [VDO]. Our results are in exact agreement with
the results of numerical experiments on the shock problem performed by Holian and Straub
[HS] and by Holian. Flaschka and McLaughlin [HFM]. Particles settle into a purely periodic
motion if the forcing velocity is large enough (a > 1). We restrict our study to this case which
we call supercritical. The shock at the origin sets up a wave-front traveling away from the
origin at speed Ny, (first calculated in [HFM]). There are three asymptotic regions in space-
time as t — oc. (Space is parametrized by the particle index.) (a) % > Nmar:  Particles
have only felt the shock at exponentially small levels of displacement. (b) Npyn < 3 < Npas
(the speed Ny, is calculated explicitly). Particles travel with an N-dependent drift velocity
while performing a modulated time-periodic. space-quasiperiodic motion in the lattice scales.
() 0 € § < Npin: Particles have settled to a purely time-periodic. space-periodic motion
of space-period 2 when n >> 1. When »n is small the proximity to the boundary point o
breaks the space-periodicity.

'Research supported by NSF Grant DMS-870-2526
1991 Muarhematics Subgect Classthcarion. Primary 82C22, 15p25.
The main results of this review article are derived in *The Toda Shock Problem™ by the auther in collaboration with
Percy Deift and Roger Oba due to appear in Communications on Pure and Applied Mathemanes.
© 1991 American Mathematical Society
0271-4132/91 $1.00 + 8.25 per page
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Plot of x,(t),n = 1.2,.... 20 for the Toda shock with a = 2.
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In the case of the figurc (@ = 2) an approximate evaluation gives:

Npaz = 2.1 (formula 43)
Npin &= .51 (formulas 64.65 and following remark)

For large f. the motion of the nt® particle is:
{(a) linear when t < N

(b) modulated periodic with a drift when 77 <t< <5
(¢} periodic when £ <.

~
~ 21

We observe that the motion of the nt® particle changes sharply from linear to oscillatory. but
I g ) y

very smoothly from modulated to periodic.

The local oscillatory motion in regions (b) and (¢) is described in detail in terms of well-
known formulae for periodic and quasiperiodic Toda waves discovered by Date and Tanaka
[DT] (see figure). Recently the problem has bheen addressed from the point of view of modu-

lation theory by Bloch and Kodama [BK}.
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2. Inverse Scattering and Lax Pairs
The Flaschka transformation

1, 1 B
) Gn = _'2'-731:, by, = ~2-e(x'\ Tnes}/2
allows equations (1) to be written in Lax-pair [L] form:
(5) %{ = BM - MB = —[M. B|.

The tridiagonal matrices M and B are defined by:
© MO=("br e b ) BO=(=Th 0 T )

M is self-adjoint and B is antisymmetric in £2(Z). M(t) represents the state of the lattice at
time ¢. Our initial data (2) are given in terms of the Flaschka variables by

i
) an(0) = a sgn n, bn=§, n=0,%1,+2,....
To solve the initial value problem for (5) and (7) we employ the inverse scattering transfor-
mation (IST) which recovers the matrix M from its scattering data, (SD). The latter consist

of the spectrum and the asymptotic behavior of the eigenvectors of M as n — +oc.
M(0) M(t)

[sr [1sr
volution sD
SD(0) Xm0 s pe)

The scattering data are calculated in the next section by the spectral analysis of the matrix
M(0). The evolution of the scattering data is easily obtained. One verifies by direct differen-
tiation of (9) with respect to time that the one-parameter family of unitary operators defined
by [L]

(8) U=BU, U0)=I,
satisfies
(9) U™H M U(t) = M(0)

when M and B satisfy (5). Thus. M(¢) is unitarily equivalent to M(0) and the spectrum of
M(t) is independent of ¢. If (¢} is an eigenvector of M (¢)

(10) v() =Uw(0), == U(t)y$(0) = B(YU (£)9(0) = B(t)u(¢t).

In the limit n — £, B(t) ~ ( L —1/2' 0 1/2_ ) The evolution equation
for the asymptotic eigenvector, as n — toc becomes: '
(11) %‘f:("' ~1/2 o 12 )¢.

The solution to the inverse scattering problem was discovered by Fadeev [F] who recovered
the potential of the Schriodinger operator directly from its scattering data. Previously, in
landmark work, Gelfand and Levitan [GL) had used the associated spectral function to recover
the potential in a class satisfying much more general asymptotic conditions at infinity. Since
then, the ideas of inverse scattering have been applied to many problems.
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The theory of the scattering and inverse scattering transform for doubly infinite self-adjoint
matrices satisfying the asymptotic relations

I

(12) @y, — @ SEN 7. by, — 5 as n - +x.

with rapid convergence was derived by Oba [0O]. As in the Fadeev study, the inverse problem is
reduced to solving a linear integral equation. the Marcenko equation. whose distribution kernel
is computed in terms of the scattering data. In the context of the Schradinger operator. Dyson
{D] has derived an explicit formula for the potential in termns of a Fredholm determinant. We
derive a similar formula in the case of the Toda lattice. Our derivation. following Dyson's
reasoning, is more direct than the one employed in [VDO).

3. The Scattering Data (supercritical case a > 1)

The eigenvalue equation M(0)y = Ay is equivalent to the set of scalar equations

1 1 ,
(13) 51/1,1'1 + Qnn + Ed)n“ = Ay, n=0%1,%£2,.... a4y = asgn n.
Inserting ¥, = 2" into all equations except those indexed by n = —1,0,1. we find that M(0)

has formal eigenvectors:

A28 + B z7" when n>0
(14) wn={ TR

A2 + B.2"" when n<0,

in which z4 are related to the spectral variable A through the equation

(15) (2a+ )= Fa). jal<l
Zx

1
2

Of the five unknown constants A, By and yy, three are determined from the equations (13)
indexed by n = —1.0.1. One more constant is determined by the requirement that the
eigenvector be bounded. We easily find that this can occur exactly when

(16) Aea(M)=[-a-1,-a+1JU{0}Ula~1l.a+1]

The eigenvectors are real. They have multiplicity one and they satisfy the symmetry relation:
(17) Un(A) = (=1)"¢_n(=A).
Explicitly for n > O
S(z)z™" + S(2)z"whenA €fla—l.a+ 1
(18) da(n) = § TS ; |
c(2)z" when A € [-a - 1,—a + 1] U {0}.

where z = 2,(A).
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The map between the spectral variables z = 2z, and A is shown below.

A plane
E
A B () C D
C’
A=-a~1 C=ua-1|
B=-a+] D=a+1

The upper spectral band CD = [a — l.a + 1] is mapped onto the unit circle |z| = 1: by (18)
the eigenvectors oscillate when n > 0. The lower spectral band AB = [-a - 1.—a + 1] is
mapped onto the interval B'A’ and the eigenvalue A = 0 is mapped onto point 0'; in this
case |z| < 1, so the eigenvectors decay as n — +oc. By (17), the eigenvector ¥,{A) decays
as n — —oc whenever ¥,(—A) decays as n — +oc. P, (A) oscillates as n — —o>c whenever
Yn(—A) oscillates as n — +oc.

The normalizing constant ¢ is arbitrary and determines S uniquely. We fix ¢ by requiring
that |S(z)| = 1 on the continuous spectrum and letting the proper eigenvector at A = 0 have
unit #£2 norm. If our lattice were not starting with a pure shock but the initial condition (2)
were satisfied only asymptotically as [n| — oc then (18) would hold only asymptotically as
n — +2oc. This asymptotic behavior clearly persists when ¢ > 0 with § and ¢ dependent on t¢.
The evolution of S and ¢ is determined from (11):

{19&20) c{z,t) = c(z.O)e%(’“%)t. S(z,t) = S(z,O)eé("f”.

We observe that ¢ grows exponentially in¢ {~1 < z < 0) while S has unit modulus (|z] = 1)
for all t. The derivation and the evolution of the scattering data is done rigorously in [O].

4. The Solution to the Inverse Problem
The solution to the inverse problem is based on the beautiful observation of Gelfand and
Levitan [GL] that the asymptotic eigenvectors ¢(A) defined in our case by
S(z)z™" + S(2)z" when Aela—-1l.a+1
1) i) = { 5 (2)s" [a-La+1]
c(2)z" when A€ {0}U[-a-1,—-a+1]

are related to the normalized eigenvectors y{)) by a Volterra transformation which is inde-
pendent of A:

(22) ¢; = Z Qi ¥, Q;i independent of A.
j=i

To convince ourselves of this we first note (nonrigorously) that relation (22) hoius asymptot-
ically as j — +2c in which case ¢; ~ ¢;. We complete the argument by showing that if (22)
is true for all i > p then it is also true for i = p — 1. Indeed, solving the basic relation

1 1
(23) §¢p—-1 + ag, + §¢p = Ad,
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for ¢,—1 we obtain:

(t’p—-l = 2’\¢p —~2a¢, - Dpr1 =

O
(24) D 12Qp; (M) = 20Qp) %5 — Qo1 U]
i=p
We now insert the relation:
(25) Ay = b;1¥jo1 + a;¥; + b,
to obtain
o0
(26) Pp1 = ‘ZZ Qpjbj-1%j-1 + linear comb. of ;s with j > p.

i=p
This proves the statement and also yields
(27) Qp—l.p—l = 2bp—lQpp‘

There follows

bad 0
(28) Qun = [[(20)) = exp 3 Ze=T0 = p T2 0.
p=n p=n

The latter statement is true provided that 2b, tends to 1 sufficiently fast as p — +oc.
In accordance with the spectral theorem, the normalized eigenvectors satisfy the relation

(29) [ YA m(Ndp(A) = b

The measure dp(A) is absolutely continuous with respect to Lebesgue measure on the contin-
uous spectrum and is atomic at the eigenvalue A = . It can be determined exactly by Stone’s
forinula. This will not be needed for our calculation. We code the scattering data into the
matrix

(30) For = [ 85086(0)do().
Relation (29} combined with ¢; ~ ¢; as i — +oc imply
{31) Fog ~ b, when p.f — .

We insert {22) into (30) and use (29). For equations (32) only, we use the convention that
repeated indices are summed over. The matrix @, is upper triangular. We have

(32} P‘pf = /d’;}()\)(pf(A)d/’(A) =
(summation convention) = /QmeJur,-(A)z;r](A)(i/)(A) =

= 0, / PO (A )dp(A) =
= Qlej&tj = Qm(\.)f]-
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Let F,, denote the matrix F,p truncated to have entries p,¢ > n + 1. The upper triangular
matrix Q, is defined in a similar way.
We have

(33) Fn, = Qn QZ‘ det Fn = {det Qn}z.
For the rapid convergence of initial data which we assume as n — ¢, the matrix Q can be

shown to equal the identity plus a trace class matrix, thus the determinants are well-defined.
Recalling that Q,, is triangular we obtain

(34) detFo={ [] Qu}’

p=n+1
Combining (34) and (28) we obtain

detF
(35) In = T -+ é‘ﬂ-—ag'tTnn;.
This solves the inverse scattering problem.
We calculate the matrix F,,.
a+1 _ _ 0+
(36) Fpe = / (277 + 82°)(Sz7¢ + §28)dp(A) + / 2Pt dp(A)
a—1 —-g—1
Recalling that |S|2 = 1 we obtain
e+l a+1 B
(37) Fot = / (27~ + 270)dp(N) +/ (8227070 + 5227+ dp(N)
a-1 a—1

0+
+ / c22PTdp(N).
—a-—1

where the upper limit 0+ means that the atom at zero is included. The first integral equals
¢ (Kronecker delta). Indeed, for fixed difference p — £ take p and € to tend to +oc. The last
two integrals tend to zero. The statement follows directly from (31).

Ansatz I. We can neglect the second integral in (37).

The integral in question is oscillatory and decays as ¢ — +oc while the third integral grows
exponentially (cf. relation (19)). This does not constitute a rigorous argument since it is still
conceivable that small changes in the entries of the matrix F,, can produce a large change in
the determinant of F,,. Nevertheless. this step of our calculation is supported by the fact that
our solution is in full agreement with the results of numerical experiments.

It is important to note that the region of validity of our Ansatz ranges from a negative
value of 2 to +oc. For more negative values of %. the solution obtained through the Ansatz
is not spatially antisymmetric and thus obviously wrong. It is not surprising that the region
of validity of the Ansatz is not antisymmetric. The use of inverse scattering which favors one
of the two spatial directions breaks the antisymmietry of the original problem.

Since our initial data are antisymmetric we only need to calculate for 3 > 0. thus the region
of validity of the Ansatz suffices for our purpose. In the case of nonantisymmetric initial data
we would have to obtain the solution by doing inverse scattering from the right for positive
n's and from the left for negative n's. Using the Ansatz we write:

0+
(38) Foo = b4 +/ (2. 1)2° dp(N).

—a-1
Denoting the integral in (38) by f",,f we have
(39) det F,, = det(] + F,,) = det(d,s + Fl,l)ﬂ_[2n+1

By our statement following (33) the matrix F, belongs to the trace class.
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5. Calculation of the Determinant

We expand the determinant of (I + sF,,) in powers of s and then set s = 1. We obtain

(39a) det(Fn) =1+ Zd(n k).
where
1 x e
d{n, k)= p Z S Z d(’t(pr)p b=miy....my -
"my=n+1 my =n+l

Inserting the value of F . using the multilinear dependence of the determinant on its columns
and interchanging summation and integration we obtain

(40) d(n.k) =

z;n;-#-m; 2;71;4-"21 )
1 0+ 0+ x X ma+m; my+mn,
2 F4 z dpl 1ol A
i c; 2 2 npdp(Ag) o dp(Ay)
rJ—a-1 —-a—1 me=n+1 mi=n+1{’ . ‘.'g

=1

where ¢; = ¢(z;. ).

By factoring 2™ from the i** row and multiplying it into the i** column we write the
determinant in the integrand as det(z;z;)™ where 1.7 = 1..... k. Using the multilinear
dependence of the determinant on its columns we can perform the summations.

Multiple Sum = det (Z—’Zit H 227+2 ) det ;) i.j=1 k
] > U ) 122 g=1.... .

i=1

By exploiting the facts that (i) the determinant in (40) vanishes when 2z, = z; and (ii) the
denominator of the expanded determinant has known form we obtain

2

o 2% - 2

(41) det( 1 ): Hz(]—-l‘,,.,k( i) .
1-2z =1 a1 - 225)

Finally absorbing {é;c‘z(z.())} into the measure dp(A) which becomes dp{X) and utilizing
the symmetry of the integrand we have

k
(42) din. k) = // exp{Z[nfnz? + (z; — %)t]
j

—a—1<A <. <A <0+ 1=1

.._z]

n

B

3

j=1

}d/}(’/\l) A,

1 - 22

o
LY
[Syran

6. Long-Time Behavior

We consider the limit ¢ — > while ¥ ~ N > 0 where N is held fixed. The double sum in

(42) has negative terms and has order O(k?). The 2z;’s can be chosen so that the single sum

is positive and has order O(kt) provided Nfmz? + 2z — % is positive for some subinterval of the
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lower spectral vand. This happens exactly when N is in the interval [0. N, ) where

aln +1)

= In(Va++va+1)

In this cegion of V. the maximum of the integrand will arise when the single and double suins
in {42) ha. » the same order of magunitude. in other words when k& = O(t). The exponent then
will have order O(t?).

‘The main contribution to the integral for d{n. k) will arise at the points which maximize the
exponent. For a given k£ let there be a local maximum of the exponent at point (Ay..... Ak ).
We recall that A; is related to the 2; of expression (42) by relation (15) with 2z, = 2. . A, = A
The domain of the A;’s is the union {~a~1. —a+1JU{0}. All the A;’s are distinct since A, = A,
for : # j makes a term of the double sum in (42) equal to —x. Thus. we recognize two types of
maximizing points, one in which all of the A;'s are in [-a — 1. —~a + 1] and one in which k — 1 of
the A;s lie in the band {—~a—1. —a+1] and the £** one equals zero. We postulate one maximizer
of each type. The postulate is confirmed by the subsequent analysis (section 7). We label the
two maximizers (A].. ... AL)and (M. .. .. k-1-0) where the As and A"s are in [~a~ 1. —a+
1!, We denote their contributions to d(n. k) by Ax exp maxy el—a~1.-a+1] Ex{Ar.. ... Ax) and
Brexpmaxy, g~a—1.—a+1} Ex(A1..... Ak=1.0)  respectively. Here Ej is the expression for the
exponent in {(42) and A4z and By are coefficients which have the physical units of the product
measure. Thus

( 4:;) ‘\lel.'l'

(49 detF, ~ Z{Ak exp  max Ex(M.. ... Ag)

s (El—a—~1l.—a+1]

+Bk+1cxp’\ { max fE;c)fl(/\l....‘/\k.O)}.

€[—a—1.,~a-+1

Following Lax and Levermore [LL] we represent the points (A;..... Ax) by atomic measures
-k
(45) (Ale.nn Ag) o= ?;6(/\—-/\,'):(“1!,‘.

Defining the functions:

. n, o 1

4 =~ -
(16) N tinz (A) + 2(A) oy

_ 1) 2 — 2(u)

LA p) = 7—rin T 2002(0) when p# A

(47) =) when = A
we write the exponent in (42} as

t2
(48) E,= ;{/fd\l/k + //L((i\lfk x (i‘I’k)}

We describe our proeedure for the maximization of the first term in (44). The maximization
of the second term is done as a perturbation of the first term.
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First we approximate the atomic measure dWy by an absolutely continons measure (A dA
satisfying a

{1) positivity condition ¢ > 0

(2) mass conservation (quantum) coudition

{
(49) -~ / V(AN =k = integer.

T

We obtain the quadratic functional
t2 —a+1 —a-+1 —n+1

(50) Fly) = ,;{ fuedX +/ / LA e (A (uodhdpd
! —a—1 —a=1 —-a=-1

which approximates Ei. Using the standard notation for the inner product in L¥]-n=1. —a+1]
and denoting by L the integrai operator with distribution kernel L{A. it} we write

2

t .
(50a) E{v)y= :[(f. vy + (Lyaw)).
It can be estimated that
{51} max E{A.. ... M) = max E(v) + kink + O(k) when bk =0}t —= x.
MEl—a~1.—a+1] VEA;

Ay is the set of measurable functions on [—a — 1. —a + 1] satisfyving the positivity condition
aud the guantum condition. The “measure coeficient™ Ay in (44) can also be estimated

(32) Ay = e~ kEnk+OUR)

We observe that the terms Alr.a in {51) and (52) cancel in (53).

{53) Ag exp max Eu(Ay. ... Ap) =
A €l~a—1.—a+1]

= exp{ max E(y) + ()(k)} =
YE AL
= exp{E(yy) + O(k)].

where ¢ solves the maximization problem in the right hand side of (51).
We now turn to the second term in the series (44). To the measure (15) we adjoin an
additional ator at A = (0. A perturbation calculation gives

(34 H,\.”oxp)\  max ,Ek«»\()\l ..... Ae.0) =

Ei-n-l.~a+l]

15

= A (’xp{ max FOM D YT Ak) + L f0) + 2L (0)] + rk}

A€El-a-1,—a+1]
where  re = (1),
The quantity f{0; + 2Lu(0) is the first variation of the functional (f. ¢*) + {(Ly. ) evaluated
at zera. e at the position of the extra atom.

Tiserting (53) and (51) into {41) we obtain

(53] det F,, ~ | + Z{Pxp[h‘(uk) + O PH + exp[Hf(0) + 2L (0)) + i ]}
k
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where ¢, constrained by the positivity and quantuiu conditions, thaximizes the functional
{H0a). Formmla (55) is rigorous as long as Ansatz 1 of section 4 s valid. We outline the
procedure of maximization,

7. The Maximization Problem

We insert
(H6) R R T R R R
into (H0a) to obtain

_

t
E(v) = —{(foem)+ (Let o))+ ;(f + 2Lyt )

+={(f+2Le" )+ (Lecv)f+ o

1""':4

1. We determine ¢ by max® . ‘zing the leading order O(#2) term subject to the positivity
coudition. The variational condition for the leading order problem is

5%) FlA)+ 2L {Ay =0 if Ay >0
(32 . -

<) if ¢t (A) =0
When ¢t x) = 0 the inequality 15 not a priori striet, It is shown to be striet once the problem
is solved. The solution is unique: L can be shown to be strictly negative definite.
2. We maximize the O{) order term (f + }ZLU'. ¢:) (for the ¢* obtained from the leading
order problem) subject to (a) positiviry: ©{A) 2> 0 i (A} = 0 (b) quantum condition
%f:ﬂ‘:l LAY + ;l; _—""jll C{A)dA = &, Using {58) we easily see that the Ot} term in (37)
ts maximized when

(5%a) A =0 if etiA) =0

3. We maximize the (1) term with respect to ¢ and . The argument of rthe previous

—

paragraph gives {A) = 0if ©*(A) = O which implies (f + 2L¢".¢) = 0. By looking at higher

orders we can show ¢ = ¢ = ... = 0. Continuing on the O{1) tenin, we maximize (L o)
subject to to the quantum condition on the support of ©*(A}). The variational conditions are

!

- ¢ . Ly
Le(A)y=— wien A€suppy”  (f: Lagrange multiplier)
r
{59) Ay =0 when X€suppu®
-l—(l.'. 1)+ af — k=0 quantum condition
w
et I when A€ suppi®
{60} where = — / T (A)dA. 1A = .
O DY 0 when A €suppu’.

The solutions are parametrized by k€ 7 .
The variational equations (58) and (D9) are reduced to Riemann-Hilbert problems through
the observation:

I dz(MN\ " d - 1
: -z Y Lo = T -1 .
(1) (,\)( 0 ) {MI( i) (pt —a) x Y

kerned of Hithere transform
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The solutions to (58) and (59) are obtained in terms of elliptic integrals.
We list the results and we refer to [VDO)] for the proofs. When 0 <N < Ny Vv € Noar
is defined in the paragraph following (65)).

X . —iPy(A)
‘ AUA) = et -a— 1. - ]
{62) T (A) STEN) A€[~a—l~a+1]
where
(63)
R M) =[A+a+DA+a-DA-a+ 1A -a-1"Y25 Ry(A) >0 as A — +x
(64)

Py(A) = A2 + N X + ¢,

and ¢p < 0 is uniquely determined. independently of N, by the relation

a—1
] Po(A)
6 —f A = ).
(65) /_M Ro(A)

This solution is valid only when N ranges from zero (we only consider ¥ > () to the value
Npin at which Py(—a + 1) = 0. As N increases from the value N,,.. one of the roots of
Py enters the interval [~a — 1, —a + 1} and the positivity of v* is violated. The support of
y* for N > N, recedes to [~a — 1.y(N)]. where -2 — 1 < 4 < —a+ 1. We have for
Ame <N fVma;tc

() = —;ZI();;\) when A€ f-n—-1.9]

(66) =9 otherwise

where

67) RA)={A+a+ DA ~-y)A-a+DA-a-D]"2 RA) >0 when A— +x

—+1-
(68) P(A) = A% + (N+ ~£-j_—2-—~3)/\+c.

The real constants v and ¢ are determined from:

. _ TP

As N increases further, v decreases. At the value NV equal

ala + 1)

70 Norar = .
(70) fm(\/a+ Va+1)

v attains the value —a — 1. in which case ¢"(X) = 0. When N > N, we have in {39)

det Fr, ~ 1. The value 3 = Ny, is the speed of the progressing front.
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The first variation of the leading order functional is

a=-1 p
(7D J(/\):f()\)+2L(;‘J'(/\)=2/ P ———dA’  when —a—-1< A<y
, R

")

)

a1 '

= 2/ PEI\ ;dz\l when y<A<a-1.
A

frxel-a-1L4]{(v=—-a+1 when 0 <N < Ny )

- —iEj - a=l g
72 A N) = . Ly = E), e = constant.
(72) P (A) ROV Uk k/; i) constan
The constants Ei. where k is an integer, are determined from the quintum condition
ik [ dA )
{73 —_— / —— =gt -k, (o defined by {60)).
) =N ( y (60))

8. The Local Structure of the Waveform

The appearance of the elliptic curve R(A) in the previous section is significant. Explicit
periodic and quasiperiodic solutions of the Toda lattice have been derived in terins of the
theta function corresponding to an elliptic curve by Date and Tanaka [DT].

For fixed N, we can identify the solution described by (55) with the solutions obtained
by Date and Tanaka. Thus. (55) is a modulated (varying with N) quasiperiodic solution of
the Toda lattice. The equations (69) which give the dependence of 4 on N can be properly
thought of as modulation equations. When 0 < N < Np;, there is no modulation: 7 =
~a+1. We carry out the identification in the latter region of N and we omit the identification
in the modulating region Nppin < N < Nppar. We deseribe the behavior at the boundary n = 0.

We use the results stated in the previous section to calculate explicitly when 0 < N < Ny
Wr obtain:

1
(71) —(f.0") = NZ%n(4a) - 4aN + constant.
i
1 -7 [T )2 + Co
(75 og=—-N+uw. W= — d)\ = pure real.
) 2 7 S Roy) TP
- 1 n f g
(76} Ly (0) = =mit(= — wt + k). r= - R(:) = pure imaginary.
22 Jlaoi 70
(77) F(0) + 2LE°(0) = ~j7t—1. j = fna.
{78) (L. ¢) = i773(at — k)2 < 0.

We insert these in (55). We use the following Ansatz which is natural but which we have
not succeeded in proving.

Ansatz II: the O(k) term in (55) has an asymptotic expansion in k which is valid at least
up to constants (k to the zero power}. Similarly ri ~ v where r 1s a constant.
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Given the Ansatz, the O(k) term in (35) would only affect our calculation up to a phase
shift and up to a constant term added to x,. We neglect the O(k) term and obtain

2
(79) det Fp(t) ~ {exp[i;— In(4a) — 2ant}}

X
X Z{l +exp(-jn+ 7+ (k+ z_ wt)mir]} explinr(k + E ~ wt)?.
= 2 2

We can replace the lower summation limit & = 1 with £k = —oc. since the main coutribuiion

to the series comes from k's which satisfy k ~ wt — % = (v ~ %’-)t = ot. where ¢ > 0 (see

(60)). We define the function

x

(80) pln) = 3 emirtken’,

k=-—nc

This is reduced readily to the standard theta function,

x5
81 8(z) = e2m’kz+1ri*rk2
(81) (2) kgx
through the relation
p(m) = €™ §(rn).
In terms of the p-function we write after a straightforward calculation

(82) det Fo(t) ~ {exp[%—2 In(4a) — 2ant} }

x {p(g- - wt) + e'j"“%"“p(g - wt+ -;—)]

How can we derive the boundary condition z¢(¢) = 0 from this formula? We have
det F_(¢)
det Fo(t)

We insert the expression (82) for det F,(f) using the notation p = p(—wt) and p;;2 =
ol —wt — %) and recalling that p(n + 1) = p(n). After a very short calculation we obtain

(83) 26(t) = —2at + In

1 + ped T
(84) zo(t) = = Inda + In 22 TP .
2 p+e” T pp

Taking the remark following (78) into account we write

prj2 + pel AT

—-r

(84a) Zo{t) = const. + In e
P2t ped

The condition x4(t) = independent of £. is satisfied if and only if
. mT .

(85) I +2r=20, (recall j=Ina)
which determines r. It would be very satisfying to verify this by direct calculation, without
relying on the symmetry of the problem. At present, this delicate calculation is unfortunately
beyond our reach.

To arrive at a final formula for 1, () we insert the value of r which satisfies (85) into (82).
We insert the latter into (35). We determine the unknown constant in the local mean value
of z,(t) so that z4(t) = 0. We obtain after a short calculation

A(n—1.t)

, 1
(86) T,(t) = —nlnda + 3 Ina+In AL D
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where

1
(87) A{n't) = p(;_z - “Jt) +a—(n+§)p(g - wt+ '2_) izt"‘i < I’\',mm-

By the antisymmetry of our problem the formula is valid not only in the region 0 € 3 < Ny,
but also in the region —Ny;n < § < 0. When [n] >> 1. either the first (n > 0) or the second
term (n < 0) dominate in (87). The solution in this case is identified with a space-periodic.
time-periodic Toda wave. As expected by the antisymmetry of the problem the p functions
in the two terms are out of phase by a half-period. When |n| is small (i.e. near the boundary
particle n = 0) both terms in {87) must be taken intu account.

The formula for r,,(t) can then be identified with the formula obtained by Date and Tanaka
if we take the latter with spectrum

[~a—1l.—a+1]U[-ce]Ula-1.a+ 1]
and let ¢ =~ 0. in which case we obtain our degenerate structure
[~Fa=1l.~a+1u{0}Ula—1,a+1]

Alternatively we can obtain our solution from a periodic solution with spectrum [—a—1. —a +
1]U{a - l.a + 1] which is Darboux transformed and an eigenvalue is inserted at the origin.
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