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1. Introduction
The recent success of characteristic based upwind differencing on structured meshes has spurred

significant interest into adopting such methods into unstructured adaptive mesh algo-

rithmslI,[2]j 3[. Both adaptation and upwind differencing strive to increase the accuracy and

efficiency of the numerical simulation, and the combination of the two approaches suggests a

powerful and flexible platform for the simulation of flows with features spanning a wide

spectrum of length scales.

Adaptive mesh methods and upwind techniques were both developed and tested on inviscid flow

problems, a&nd it may be convincingly argued that some aspects of their application to multi-

dimensional viscous flow remain incompletely understood. Most successful upwind techniques,

for example, rely upon the solution of a Riemann problem on a direction-by-direction basis[3].

The spatial operator resulting from this approach cannot be considered truly isotropic and its

interaction with the viscous discretization (often central difference) has not been extensively

researched. Moreover, in viscous dominated regions, the Riemann problem solved by the

convective discretization becomes ill-posed due to the presence of large viscous terms in the

governing equations. Nevertheless, the overwhelming success of upwind methods at providing

high quality solutions to complex flows continues to motivate considerable research into these

and other fundamental topics[4J'[ 5I.

• m i | |1



Unstructured, adaptive, mesh methods have enjoyed a similar degree of success in the last

decade. From their initial application to inviscid 2D flows[61.71.18l1, through complete three

dimensional simulations over complex geometries1 91.1 10111], such techniques have promised

outstanding efficiency by clustering mesh nodes where they are most needed in the evolving

solution. Nevertheless, several outstanding issues still exist. Credible and general techniques

for deciding where to adapt the solution have yet to be definitively determined, and fundamental

questions exist concerning mesh convergence and consistency[121. Current research efforts are

also focusing ever more sharply on issues of mesh quality and the local disruption of mesh

metrics caused by introducing new nodes into the computational domain[ 131.114 1. The issue of

mesh quality is of particular importance in the discretization of the viscous terms in the full

Navier-Stokes equations. The second differences in such terms are computed as the first differ-

ence of first differences, thus compounding mesh stretching or skewing errors and resulting in

much more stringent requirements on mesh or element quality. This problem is further com-

pounded by the highly nonlincar nature of viscous flow which increases the importance of

resolving subtle flow features which may be very readily disturbed by mesh irregularity. As a

result, conclusive demonstration of adaptive unstructured mesh techniques in resolving fine

detail within an adapted flow field remains elusive.

Recently, an upwind based solver for the 3D Navier-Stokes equations was introduced[ 151. The

method uses adaptively refined hexahedral based meshes and permits adaptation through

directional cell division. Such cells provide a natural environment for mapping the multi-

dimensional upwind stencil which relies on ID operators in each spatial direction. Additionally,

the tessellation easily forms the high quality surface mesh required for accurate evaluation of the

stress tensor and heat flux vector.

This report focuses on the viscous aspects of the technique and includes a detailed presentation

of the discretization and implementation of these terms. This includes a discussion of the order

of accuracy and its degeneration on nonuniform meshes. it also includes an examination of
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several basic numerical properties designed into the scheme. A section addressing mesh

smoothness and surface point introduction is also included. Various sub- and transonic example

problems facilitate a discussion of the topics mentioned in the preceding paragraphs. These

examples also provide a basis for examining the interaction of the upwind scheme with the

centrally differenced viscous terms - especially within the boundary layer itself and near regions

where the entropy condition[ 16] may be violated.
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2. Description of Method
2.1 Governing Equations

The Navie,'-Stokes equations describing the unsteady flow of a viscous perfect gas may be

written in integral form:

fff~ ~ at ~d (1)
v av

12)
F- Ff F- Fv

Here V is the state vector of conserved variables, and P is the complete tensor of flux density

which contains both inviscid and viscous components. V refers to an arbitrary control volume

and aVis its closed boundary with the outward facing unit vector h = tnxsy,nzJT. In Eqs.{ 1

and 12):

p pul + pvj + pwk

pu (pu2 + p)i + p uv j + puwk
U- pv ; •= puvi + (pv2+p)j + pvwk ;

pw puwi + pvwJ + (pw2+p)k

pE j(puE+up)I + (pvE+vp)j +(pwE+wp)k
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Oi + Oj + Ok 1x urx+v •y+w xz-qx

,xi + rxyj + rxzk l-y=U'ryx + V ryy + W ryz - qy

Fv= rxi + Zjyj + zk . where = + Vry + w .- qy' t/z= uz•+ vzy+ wx= - q

Tzxi + rzyj + -rzk

L7xi + I-yj + ITzk

In this work, the equation of state for a calorically perfect gas relates the mechanical and

thermodynamic properties of the fluid

P:={(Y- ll pE pV 4

The viscous part of the flux density tensor makes use of the shear stress tensor and heat flux

vector. These are modeled by adopting the Stokes Hypothesis, while assuming an isotropic,

Newtonian fluid yields a symmetric shear stress tensor.

kaT
rxx= 2u Z.ux+ vy+ wz) qx -kaT-
ryy = 2[luvy - ZY (U.x + Vy + Wz) ay T y 5
rzz = 21vwz- 2 3U(ux + vy + wZ) .. k5T

?XY j= rP (Uy+ VX) DT
rz = TzX = '(Uz + Wx)
r.> = z = M(Vz + Wy)

Sutherland's law approximates the fluctuation of molecular viscosity with temperature.

I.[T._+ 110.411 -T_ (61

=ReL T + 110.4 JT0 i n

Finally, the Prandtl number relates the thermal conductivity to viscosity.

I-Pr
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2.2 Spatial Discretization

The discretization of these equations may be conveniently developed by focusing on the

symbolic form of the governing equations given in expression J 1). Considering a control

volume fixed in time and applying the mean value theorem, this equation may be recast as:

(8)

av

Equation (8) may be further specialized for application to a specific polyhedral control volume,

constructed, with planar faces, around node i (Fig. 1). Equation (8) may then be approximated

by:

Vi r a V, V e av,

where k denotes the eh face of Vi, Sk = [sxk, syk, szk]T is the surface vector of face k. The first

term on the RHS of Eq. (9] performs the inviscid surface integral while the second term balances

the viscous fluxes through the faces of Vi.

The solution method separates the modeling of convective and viscous fluxes. It uses an upwind

representation of the inviscid fluxs, while the viscous fluxes utilize central differencing. The

convective modeling has been extensively documented and Refs. [17], [21, and Ref. [ 19] contain

details of its formulation and validation. Ref. [20] contains structured mesh results

demonstrating the exceptional shock capturing properties of this formulation, while Ref. [21]

demonstrates that this inviscid discretization also accurately represents smooth features with a

low level of background diffusion (as compared to both central and other upwind methods).

Ref. [2] focuses solely on the unstructured implementation of this method and shows that the

properties associated with this scheme on a structured mesh are retained in the unstructured

procedure. Additionally, the inviscid discretization has a central difference option using the

6



Pbysical Cell H

a e Physical Cell C

~KPbysicalCel Cell G

Figure 1. Formation of dual mesh of Auxiliary Cells in two and three dimensions.
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blended 2nd and 4th order artificial dissipation from Ref. [221. This permits a direct comparison

of upwind and central results on identical adapted meshes.

The integration of both inviscid and viscous fluxes proceeds on a dual mesh formed by

connecting the geometric centers of the cells of the physical mesh. Figure 1 illustrates the

formation of this dual, auxiliary mesh, in two and three dimensions. The inviscid and viscous

fluxes are balanced through the faces of the auxiliary cells resulting in a node-based method

which promotes accurate and straightforward treatment of boundaries. Evaluating the summa-

tions of Eq.(9} then forms an update of the state vector at each node through a multi-stage

Runge-Kutta time integration scheme.

2.3 Discretization Strategy

As suggested by the form of Eq.(9), the complete update to any node, AUi, is a summation of

inviscid and viscous contributions.

AA (i=( 1 AU 10)

The choice of central differencing for the viscous fluxes allows the scheme to be written

extremely compactly. Eventually it involves only node-to-cell and cell-to-node communication

while organizing all gather-scatter operations so that they may be easily grouped for rapid

processing. These communication issues remain important because the current implementation

uses a cell based data structure and each physical cell can address only the nodes at its vertices

directly[61,[ 23J. Thus, an implementation based upon cell-to-node operations is especially

convenient.

It is worth noting that this basic discretization is also amenable to edge-based data structures. In

fact, Ref. [241 describes the formulation of Hessian and Laplacian operators using only edge-

based formulas. For the hexahedral based meshes discussed here, however, this strategy holds

little obvious advantage, and the cell-based formulas were used.
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In two dimensions, the viscous discretization degenerates into a form which is conceptually

similar to that first presented by Ref. [23]. The current work contains some important

differences in the handling of surface vectors, time steps, and volumes, however, and the

extension to three dimensions is completely new.

Figure 1 contains a view of the cells surrounding node i in two and three dimensions. The stress

tensor and viscous fluxes are computed on each of the faces (N,S,E. W,F,B) of auxiliary cell i to

form its viscous update AUOVisc.

At
V v k S

Applying the mid-point rule for integration and suppressing the subscript (v) for compactness:

V (ll+ =
~F -F

The superscripts in Eq.( 11 ) refer to the face associated with each quantity, and thus SN is the

surface vector of the North face of the auxiliary cell surrounding node i. The sign convention

used takes the Cartesian components of the surface vectors as positive when oriented in positive

coordinate directions. These surface vectors are also necessary for the inviscid integration and

are computed only once.

Each of the viscous fluxes in Eq. ( I I) is constructed through a linear combination of elements

of the shear stress tensor (see Eqs.{ 3) and f 5)). Filling this tensor requires spatial derivatives

of velocity and temperature. These derivatives may be c;onveniently expressed in tensor notation

by defining the free index 4 = 1,2, or 3 and denoting the xy,z axes as xj, x2, and x3.

a( d;( =d 4 () denotes partial differentiation with respect to the coordinate directions. Taking a

second free index v7 = 1, 2, 3, or4, the vector "0 may be defined as [ = [u,v,w,71T, any

element of which may be referred to as Oq. With these conventions, the complete set of first

derivatives needed to fill the shear stress tensor may be denoted as simply d€71 .

9



au av aw aT
ax ax ax a
au av aw aT • e 12,or3

d4 y T y yj-c y w 7 1,2,3,or4 412}
au av aw aT
az az j

These derivatives must be computed on all the faces of each auxiliary cell, and they are evaluated

by taking surface integrals over the secondary cells which surround the centers of the faces of

auxiliary cells. Figure 2 illustrates the construction of one such secondary cell for the East face

of auxiliary cell i in two and three dimensions.

Each face of the auxiliary cell is uniquely associated with one of the edges incident upon node i.

Thus, the bracket in Eq. I1 1 ) contains one term for every edge which terminates at i, and we

actually seek to evaluate dg.n on the midpoint of each zo& in the physical mesh. This point

becomes increasingly important when considering more general polyhedral coniol voiumes (i.e.

at interfaces of adapted regions, or in meshes composed of nonhexahedral cells). This obser-

vation make obvious the fact that exactly one secondary cell surrounds each edge of the physical

mesh. Furthermore, construction of the surface vectors for the secondary cells is now very

convenient, since they may be obtained through simple averaging of those associated with the

auxiliary cells at either end of the edge. This construction requires only one addition, and one

multiplication per face and never more than edge-to-node communication. Figure 3 illustrates the

formation of the East secondary cell around edge j. The proof in the Appendix shows that this

construction will always result in closed polyhedra.

With the secondary cells defined, Gauss' Theorem provides an expression for the first

derivatives, do, along all edges of the physical mesh.

d4Nq axoq =- qnd){ 
(13)

10



Auxifiazy Cell i
Pbysical Cell C

Physical Ccli D

Physical Cells

Figure 2. Construction of Secondary Cell for the calculation of first derivatives on the £ face of
the auxiliary cell surrounding node i.

11



--E E

122



where n4 is a component of the outward facing normal vector of unit length, and the volume is

that of the secondary cell. For the secondary cell surrounding edge - in Figure 2 this becomes:

= + (SJ E J + S (sJfs.
,,I s -, -o e + sj)

+ Of(S + )]
The superscripts on 0, refer to the location at which the scalars are evaluated (from Fig. 2).

Similar expressions may be constructed on the other edges incident on node i which facilitate the

formation of the viscous fluxes at all faces of the auxiliary cell surrounding node i and,

ultimately, the evaluation of Eq. (11 ) for Alvisc at i.

Since it is based on standard second-order central differencing, the discretization formally retains

this order of accuracy on smooth meshes. Furthermore, Ref. [23] shows that, in 2D, the

overlapping secondary cells results in a discretization which is capable of recognizing and

damping saw-tooth oscillations in the solution. Finally, the Appendix demonstrates that the

current choice of auxiliary and secondary control volumes results in an integration which

preserves a zero gradient flow on any arbitrary, nonoverlapping mesh (preserves free stream

flow).

2.4 Unstructured Implementation

An examination of the basic viscous discretization outlined in Eqs.( 11 ) and ( 14} reveals that it

involves only the cells and nodes immediately adjacent to node i. Furthermore, these are simply

central differences and the whole procedure may be divided into a sequence of steps - with no

single step requiring more than nearest neighbor communication. The goal of this section is to

isolate the contribution of a particular physical cell to the viscous stencils of each of its vertices.

This will permit the formation of the viscous updates at all mesh nodes by a single sweep

through the physical mesh cells.

13



Integration of the secondary cell surrounding edge - requires operations in physical cells C, D,

G, and H to provide d4017 on the East face of the auxiliary cell around node i. Figure 4

highlights the portion of the integration (in Eq.{ 141) contributed to by cell C. The other

physical cells surrounding this edge, D, G, and H, contribute to this surface integral in a similar

fashion. Assuming the volumes of the physical cells are all nearly equal permits isolation of the

contribution of physical cell C to the tensor of first derivatives doq along edge ij.

Assume Vc-VD= VG- VH" V

________+ S1(s4 + S4,(d¢oqc =2 •V + S4 +SW - S*4 S

+ 0 o(s + s) (15)
2

+~e s+se.)_

This edge is the front-south (fs) edge of physical cell C and the notation (dn )P reads as "the

contribution to do) on the front-south edge of physical cell C." Figs. 1 and 2 identify the

locations referred to by the superscripts on 0, while Fig. 4 helps to clarify the edge labels of the

physical cells. The zeros left in this equation facilitate direct comparison with Eq. ( 14) and the

approximation preceding Eq. (151 is necessary to separate out the individual contribution from

the cells which border edge '. This approximation becomes exact on uniform meshes, and on

sufficiently fine smooth meshes, so it does not alter the formal second-order accuracy of the

method. On stretched meshes, one may show that the additional truncation error created by this

approximation is O(Ax2) and is smaller than the first order error created by the mesh stretching

itself.

In the same manner that cell C contributes to a portion of the secondary cell integration of node i,

it also contributes to a part of the integration of the viscous fluxes on the auxiliary cell around i

(Eq.{ 11)). After some algebraic manipulation, C's role in the flux balance of auxiliary cell i

may be isolated. Since this expression involves the complete viscous part of the flux density

14



N Physical cell C

arun edge'ij

Figure 4. Contribution of physical cell C to the integration of the secondary cell surrounding
edge T7 - the front-south (fs) edge of cell C.
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tensor (denoted by simply P for compactness), it is most convenient to express it usirng the

symbolic form of the notation used previously:

() At0,1 {+16---}
(UV Vi C I C * Si -FE 16

The surface vectors on the right of this expression refer to the faces of the auxiliary cell around i

since this is the cell being integrated, and the superscripts and subscripts on F retain their use

from the previous equation. FYj represents the contribution from cell C to the viscous part of the

flux density tensor along cell C's front-south edge. The bracket on the right of Eq.{ 161

contains three terms - one for each edge of cell C which is incident upon node i. As these

expressions are applied to nonhexahedral control volumes, this property is retained.

Eq.( 16} is really a Distribution Formula - in the cell-vertex sense. That is, it contains a

contribution from all operations within cell C that apply to the viscous update at node i All these

operations are performed completely and without duplication within cell C, and they are then

distributed to node i. When this node accumulates all the distributions from its surrounding

cells, tne complete viscous discretization stencil forms. Moreover, information requests are re-

stricted to cell-to-node or node-to-cell inquiries.

In a similar manner, all the physical cells contribute to each of their vertices. The complete set of

distribution formulae for a hexahedral cell such as C are:
(AUv,3° C,) 4 + •- . + P-f -- =- )

{A~ •) --•-g •C - %g Si -FE. •ji
Ati• • - Mrs p-s -.F, _pef .N(AUvisc )= A -'+ S •a + -F){

Vi"

V1

16



(A~v~3 .C _~( yc L + 7C5* . E + PC' yN)

(AJvi,~ C = ___2 c-Y + Tbe - Y + Tc-Y.
Vn

(ALTilc CL = PC'" -' 37 + Fc* s; - Y". s)Vo"

When these expressions are evaluated in all the physical cells of the domain, the complete

viscous update is formed at all the nodes.

2.5 Eigenvalue Scaling for High Aspect Ratio Cells

Near wall boundaries, high aspect ratio cells are commonly used to efficiently resolve the

boundary layet. Since the artificial dissipation is scaled isotropically with the spectral radii of the

Jacobian matrices, the damping in the wall normal direction may become excessive. Ref. f 251

proposed a 3D extension to the 2D variable scaling of Martinelli [261 which adjusts the levels of

the blended 2nd and 4th order smoothing to be used in conjunction with the central difference

convective fluxes. When the TVD convective discretization is chosen, this non-isotropic scaling

affects only the waves which are subjected to the entropy cutoffl16 1,[21. In such cases, the scaling

takes a form similar to that found in Ref. [27].
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3.1 Adaptation
Adaptation ixreases the accuracy of the discrete solution by locally reducing the local mesh

dimension through directional division of mesh cells (physical cells). This process has evolved

into a two-stage procedure. The detection/division stage begins by scanning a preliminary

discrete solution for regions of interest, it then enhances the mesh in those regions through cell

division to create new computational nodes. The second stage consists of mesh smoothing and

surface reconstruction. This process controls both mesh stretchinp and cell skewing while

maintaining an accurate representation of the surface geometry.

3.1 Detection/Division

The feature detection algorithm presently used is essentially a refinement of the technique used in

the preliminary 2D investigations in Ref. [2). This algorithm was extended to 3D viscous flow

in Ref. [15] and is fully documented in Ref. [19]. The process consists of several steps which

intend to isolate regions of locally high truncation error and then reduce this error through cell

division. After first examining the domain with an undivided second difference of pressure to

find "shock" cells, the routine re-scans only the remaining cells in the computation to locate

"smooth" features. This second scan relies upon an undivided second difference of velocity

magnitude to locate regions of rapidly varying shear stress and an undivided first difference of

density to locate inviscid features in the flow. The cells tagged in the second scan are evaluated

on a statistical basis as outlined in Ref. [23]. The division routine operates recursively in a

18



direction-by-direction manner and retains the ability to divide the cells directionally when features

are nearly mesh aligned.

3.2 Mesh Smoothing

After the division process is complete, the entire mesh is smoothed through the sequential

application of Laplacian and vector cross operators to reduce local stretching and skewing errors

within the mesh. This step is important since the adaptation process will reduce the truncation

error in the solution only if the mesh remains smooth as it refines.

Since they involve only first derivative terms, discrete solutions of purely inviscid flow problems

are more tolerant of poor meshes. In 2D, for example, using trapezoidal integration to evaluate

the inviscid flux integral in Eqs .{81 and {9) one may guarantee at least first-order accurate

nodal updates (consistency) regardless of mesh quality[281 . Viscous simulations, however,

require computing the first derivative of first derivatives - a process which compounds numeri-

cal errors due to mesh stretching or skewing. This fact makes it impossible to guarantee a

consistent representation of the Navier-Stokes equations on an arbitrary mesh (assuming linear

basis functions). These observations lead to the usual requirements of smoothly varying, non-

skewed computational cells for accurate representation of viscous flows.

The elliptic smoothing process is separated into two relaxation operations. First, a Laplacian

operator sweeps through the mesh nodes, relaxing a given node toward the mid-point location

defined by the geometric center of its neighbors. This sweep proceeds on a direction-by-

direction basis. The operator degenerates naturally on boundary faces or edges, so that such

nodes remain free to slide along the face or edge.

After each pass with this smoother, the routine applies a vector cross operator to each physical

cell in the mesh. For each mesh cell, this operator computes a right parallelepiped with the same

median dimensions and uses a relaxation procedure to drive the corners of the physical cell
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toward those of the right parallelepiped. In this manner, cell skewing is reduced throughout the

mesh.

Although nodes are free to slide on and off boundary surfaces, neither smoother alters the mesh

connectivity. After each smoothing pass, the algorithm checks to ensure that all cell volumes are

physically meaningful. The smoother operates in about 10% of the time required for one

solution iteration, and uses typical relaxation factors of approximately 0.1 with 10 steps.

3.3 Geometry Definition

Since the smoother allows mesh nodes to move along boundaries, surface nodes must be

constrained to the body surface. This operation requires interrogation of a surface geometry data

base. Such a data base also ensures that new points introduced on the surface through adaptation

are placed directly upon that boundary.

Figure 5 presents a situation common to all adaptive schemes regardless of control volume

shape. As shown in the figure, when a new point is introduced on a mesh boundary, it may not

fall directly upon the body surface. The high aspect ratio cells typically found in Navier-Stokes

simulations exacerbate this problem, and near a highly convex surface, several new nodes may

be introduced which are actually inside the surface. To rectify this situation, all surface nodes

are moved to the actual surface and a search algorithm then follows each computational

coordinate (for as long as it exists) into the mesh to adjust interior nodes which may have been

wrongly introduced inside the body.

Several approaches exist to relocate the surface points[291 . The present algorithm adopts an

approach which requires only an unconnected surface point distribution on the body. This data

base may be structured or unstructured and processing begins with a triangular tessellation of the

surface data to form triangular patches describing the surface geometry. These patches are

currently planar, although no fundamental difficulty exists in using a higher order description.

Surface reconstruction begins by projecting a ray from each boundary node toward the surface
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surface reconstruction

Figure 5. Reconstruction of surface geometry from surface database.
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mesh. The algorithm then finds the triangle which is pierced by the projection ray and relocates

the surface node to the point of intersection of the patch and the ray. Surface reconstruction is

performed during alternating sweeps of the entire mesh smoother. Figure 6 demonstrates the

process using a hemispherical surface, and an initially cubic arrangement of physical cells. The

example shows results after only one iteration of the complete mesh smoothing algorithm.

Successful experiments have mapped meshes onto a variety of convex and concave bodies

including the examples in the next section and the 3D cropped delta wing in Refs. [15] and [19].
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Original cube of cells Mesh after mapping to surface,
and mesh smoothing

urface M s

Figure 6. Triangulated surface geometry and resulting computational mesh after mapping
physical cells onto surface. Original mesh consisted of 14x14 cube. 1 smoothing pass. and I
surface reconstruction sweep.
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4. Numerical Experiments and
Discussion

The numerical results contained within this section intend to focus the discussion on issues

raised in the introduction and to provide an account of the scheme's behavior. Herein, attention

is restricted to two-dimensional example problems. Refs. [15] and [19] present three

dimensional results with the current method including comparison with experiment.

4.1 AGARD 03 Test Case

Before examining the behavior of the full viscous scheme, it is appropriate to establish the

accuracy of the convective discretization and adaptive methodology. The AGARD 03 test case

has been explored in the literature with a variety of methods[12 ,[30],[31]. It examines symmetric,

inviscid, flow at Mach 0.95 over a NACA 0012 profile and the case presents a particular

challenge to numerical schemes[ 12] since it contains strong coupling between smooth and

discontinuous features which span many length scales. The flow becomes supersonic over the

airfoil and forms an oblique "fish-tail" shock system attached to the trailing edge. A weak

normal shock forms downstream of these shocks, in the wake of the airfoil. The smooth ex-

pansion over the airfoil surface weakens and bends the oblique shocks away from the body.

Finally a shock triple point forms which locates the normal shock in the wake.

The shock polar at the 7.99" trailing edge of the airfoil is extremely steep at these Mach numbers

and small changes in the trailing edge Mach number may radically alter the fish-tail shock
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structure[ 12). This sensitivity is further compounded by the fact that the shock triple point lies

approximately 5 chords away from the airfoil. Stiffness in the crossflow direction makes this

case quite sensitive to far field boundary placement. Successful prior calculations located the

boundary about 100 chords awayl1 2],[31]. Furthermore, fine resolution of the shocks in the

wake does not ensure low overall truncation error since small errors in smooth regions of the

flow may cause gross errors in shock location, regardless of resolution[ 121. For these reasons,

the problem directly addresses the issues of mesh convergence and consistency, raised earlier,

while simultaneously evaluating the inviscid discretization.

The Mach contours in Figure 7 provide an overview of the discrete solution. In this simulation

the entropy cutoff in the TVD scheme was applied to all eigenvalues. The figure shows both

Mach contours and the final adapted half-mesh with 5 levels of mesh cells and approximately

18,000 nodes. The far field boundary in the calculation was located 75 chords away, and used

the characteristic based treatment of Ref. [32]. Figure 8 shows an enlargement of the Mach

contours in the region near the airfoil.

Mesh refinement studies in Ref. [ 12] using CFL2D and the floating shock fitting procedure of

Ref. [31] provide a basis for evaluating the discrete solution. The finest mesh in these studies

consisted of 1,567,485 nodes (2049 x 765) and the results from these studies located the normal

shock (measured to the sonic line) between 3.32c and 3.35c downstream of the trailing edge.

The current results place this structure at 3.34±0.02c. The Mach number of the flow through the

oblique shocks varied from 1.45 near the surface to 1.25 near the shock triple point. These

values also match those from CFL2D.

4.2 Flat Plate Boundary Layer Flow

The viscous test cases begin with a simulation of flow over a flat plate at Mach 0.5 and Reynolds

number of 5,000 per unit length. The case was run on unadapted meshes extending 2.5L above

and in front of the plate. Ref. [191 considers a similar example using the current method.
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Figure 7. Mach contours (inc.--0.05) and adapted upper half mesh for AGARD 03 test case.
Mach 0.95, a = 00, inviscid flow. 18,000 nodes.
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Entropy cutoff applied to all eigenvalues
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Figure 8. Near field Mach contours (inc.--0.05) for AGARD 03 test case.
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However, the present discussions warrant reexamination of this case to provide insight into the

scheme's behavior when the entropy cutoff is applied to all the eigenvalues.

The Upwind TVD convective formulation makes use of an entropy cutoff which precludes

violation of the entropy condition at points where the eigenvalues vanish in the flow[I17,[21.[191.

Since all linear eigenvalues become zero at solid walls, this cutoff may adversely affect the

scheme's accuracy in such regions. Perhaps the most common approach to avoiding this

situation is to apply the cutoff only to the nonlinear eigenvalues. Figure 9 presents u-velocity

profiles plotted versus similarity parameter and compared directly with a Blasius profile. Two

cases are examined, one in which all the eigenvalues were thresholded, and a second one which

applied the cutoff only to the nonlinear waves. Since these effects are most obvious with

relatively sparse boundary layer resolution, this example uses only about six points in the layer.

Despite this apparent lack of resolution, when the cutoff, 6, applied only to the nonlinear waves,

the solution already provides a reasonable approximation of the Blasius profile. These results

are typical of those obtained with high-resolution upwind methods and often lead to the practice

of cutting off only the nonlinear waves in viscous flow simulations[33].[34].

Previous results with the present scheme[ 15],[19) follow this approach and apply 3 only to the

nonlinear waves. Figure 10, however, presents u and v-profiles obtained cutting all the waves

in the solution, and using cutoff values of 5 = 0.01, 0.1, and 0.3. By increasing the boundar;

layer resolution to about 13 points, the detrimental affccls of ,•on thc r. inise velocity nearly

vanishes. For comparison, Figure 11 contains the same u and v-velocity profiles computed with

the central difference option and 4th difference artificial dissipation (v2 = 0.0, v4 = 1/128 -

1/32).

With 13 points in the boundary layer, agreement with the Blasius profile is excellent with both

the central and TVD discretization of the inviscid terms. However, close examination reveals

some slight discrepancies. These appear predominantly in the central difference results at v4 =

1/32 and 114". Both of these curves display some evidence of a "viscous overshoot" just outside

28



m go " I'.

° -

qf0

G•0 0.5 0.10 0.71 1 .10 1.2S 10
UAWI

Figure 9. Effects of cutting off all or only the nonlinear eigenvalues on flat plate boundary layer
simulation using the TVD discretization. Comparison with Blasius similarity solution, M. =
0.5, ReL = 5,000.
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the knee of the profile. The excessive dissipation in these simulations does not permit the profile

to bend rapidly enough to follow the Blasius profile around this knee. This error decreases

rapidly with decreasing v4, and almost no evidence of it is present in the simulation at v4 =

1/128. The u-velocity profiles of the TVD discretization show almost no variation with the value

of the cutoff, S. Additionally there is no evidence of the viscous overshoot, simply because the

flux limiter would see such an overshoot as a "local maximum" and clip it off.

Slightly more variation is seen between the solutions in v- velocity profiles in Figs. 10 and 11.

Here the viscous overshoot in the central schemes is much more readily apparent. Although the

effects of the entropy cutoff are somewhat more apparent in these curves, the profiles for the

TVD still remain quite similar to one another.

Figure 12 shows skin friction development along the flat plate. This plot reports results for both

the central and TVD discretizations at two levels of resolution and compares these with the

Blasius relation C, = 0.664(Rex)-1/ 2 . With 13 points in the boundary layer (at a local Rex of

5000), the theoretical skin friction is predicted well by about Rex = 100, or 2% of the plate

length from the leading edge. With 26 points in the layer, the skin friction matches almost

immediately. With all the eigenvalues cutoff, lower resolution yields generally poor agreement

between the TVD and Blasius result.

4.3 Symmnetric Laminar Airfoil Test Case

The final example considers symmetric viscous flow over a NACA 0012 at a Mach number of

0.5 and Reynolds number of 5,000 with adiabatic wall boundary conditions. The recent

literature includes investigations of this flow by a host of structured and unstructured

methods[351 ,1361 and the case is well understood. In addition to these computational results, the

relative simplicity of the flow permits an analytic analysis which provides an independent check

of self-consistency in the discrete solutions.
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As it is given in Ref. [371, the airfoil profile does not quite close at the trailing edge. This

shortcoming was circumvented by continuing the profile until reaching the centerline ard then

rescaling both axes to place the trailing edge again at 1.0. Such detail is important in this flow

since the case is near the upper boundary for stable laminar flow. Additionally, at the conditions

of this simulation, a separation bubble appears at the trailing edge, and the separation location

depends directly on the geometry of the trailing edge.

Figure 13 displays a view of the final adapted mesh in the vicinity of the airfoil. The starting

mesh for this calculation was a 25x15 half C-mesh, and the final adapted mesh contained 5 levels

of cells and 8,100 nodes. Two inset regions on this mesh show the finest two levels of

adaptation near the leading and trailing edges.

One particular challenge presented by this test case lies in properly resolving the extent of the thin

separation bubble at the trailing edge. In resolving this structure, the adaptation routine has

changed the cell aspect ratio from approximately 20:1 to only 5:1 near the separation point. The

final two adaptations divided cells primarily in the streamwise directions. As a result the cell

aspect ratio on the wall varies from about 50 at the midchord to only 5 near the separation

location. It is interesting to note that in the nonadaptive efforts in Refs. [35] and [361 the cells

had approximately the same streamnwise spacing, but used between 1/2 and 1/5 the wall normal

mesh spacing. The current procedure arrived at this streamwise spacing by adaptation without

user intervention.

Figure 14 presents contours of constant Mach number near the airfoil and an enlargement

showing computed streamlines near the trailing edge. Figure 15 displays the variation in surface

pressure and skin friction coefficients over the airfoil. These profiles agree well with established

previously published results[351,[361.
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Figure 13. Adapted half-C mesh near airfoil for viscous NACA 0012 test case. 5 levels of

cells, 8.100 nodes, M. = 0.5, Re, = 5,000.
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Figure 14. Mach contours (inc. = 0.01) in discrete solution using TVD discretization and
applying entropy cutoff to all eigenvalues. Separation point at 8 1.5% chord. M.. = 0.5, Rec

-5,000.
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4.4 Separation Location

Table 1 compares the location of the separation point as computed with several methods. Figure

16 shows streamlines and velocity vectors near the separation region, and has the half saddle of

separation labeled on the surface. As indicated in the table, Ref. [351 showed that this location

was sensitive I the !.--1e of numerical dissipation in the solution.

With the current method, dissipation enters from the entropy L.utoff and from the discretization

error. The adaptation present in the final solution aims to reduce this error by refining the mesh.

Since the separation location is sensitive to the level of numerical dissipation, it is useful to

examine its behavior as the mesh refines. Figure 17 traces the separation location on the last four

meshes used in the solution process. As the background dissipation is reduced by mesh re-

finement, the separation point moves to a location consistent with a solution of the governing

equations (since the modified PDE's approach the true governing equations). It is interesting to

see the extent to which the last two adaptations affected the location of the separation point, since

the cells were divided only in the streamwise directions and the wall normal mesh spacing

remained constant.

Although the curve in Fig. 17 appears to flatten, it does not actually asymptote convincingly to

the value of 81.5% reported earlier. Equation 118) provides a means to further investigate the

magnitude of the discretization error in the immediate vicinity of the separation point.

tan(e)=3  I - p

r/ x {(18)

Table 1. Separation locations predicted by several methods.
Method Dissipation Sep. Loc. Wal spacing

Present Method 8=0.1 81.5 0.001
Triangular scheme of [351 v41/256 81.4 0.0002
Triangular scheme of [351 v4=1164 83.4 0.0002
Central Difl Method of 126] N/A 81.9 N/A
Central Diff Method of [361 N/A 81.1 0.0006
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This expression for the classical two-dimensional, laminar separation angle, 0, was derived in

Ref. [38]. In Ref. [391 the authors arrive at the same expression from critical point theory where

they show that the slope of the isocline emanating from a half-saddle of separation may be

derived from a direct balance between the normal and tangential momentum equations. This

facilitates a direct comparison between the measured angle in Fig. 16 and the angle predicted by a

local solution of the (incompressible) Navier-Stokes equations. The measured separation angle

in Figure 16 is 6.07±0.20, while evaluating Eq. 118) numerically results in 0 = 6.09±0.140.

This analysis does not verify the location of the separation point, but it does indicate that the

discretization error in the region of the separation is very small. Thus, the extent of the

separation bubble is not "held back" by locally high, nonphysical, dissipation or other dis-

cretization error. For comparison, performing the same analysis on the coarsest mesh in Fig. 17

(sep. location, at 96%) yields a 9.5' discrepancy between the measured and computed isocline

angles, indicating large discretization errors.

4.5 Entropy Cutoff and Non-Physical Solutions

The preliminary computation of this viscous NACA 0012 test case adopted the usual approach of

applying the entropy cutoff to only the nonlinear waves in viscous simulatiL. s. While

converging after the second adaptation (3rd mesh), the method resulted in solutions similar to

that shown at the right of Figure 18. Such nonphysical solutions persisted for CFL numbers

from 0.1 to 4.3 and for 3 and 5 stage Runge-Kutta schemes, using local or global time steps.

The problems were considered anomalous since the same code has performed well in a variety of

two- and three-dimensional test cases[15],[19]. The problem was solved by applying the entropy

cutoff to all wave speeds, and it is this experience which motivated the inclusion of the flat plate

investigation with all the eigenvalues cut.

The appearance of such behavior in an otherwise well behaved and well-documented solver

warrants some discussion. Similar anomalous results have been documented by several authors

[33],[34,1401,141]. Ruling out bugs in the code (based upon previous success with a wide variety
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F~igure 18. Stagnation region at leading edge of NACA 0012 after second adaptation. Frame a:
entropy cutoff of 8 = 0. 1 applied to all eigenvalues. Frame b: entropy cutoff of 8 =0. 1
applied to nonlinear eigenvalues only.
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of test cases), the two most likely explanations are: 1) problems in the TVD scheme itself, 2)

problems resulting from the interaction of the TVD-inviscid and central-viscous discretizations.

Close examination of Fig. l8b shows that the boundary layer near the stagnation point remains

well behaved. It is only in the inviscid stagnation region outside this viscous layer that problems

arise. In that region, the viscous terms are smaller by 2-3 orders of magnitude than near the

"knee" of the boundary layer profile. This statement favors explanation #1, and shifts focus to

the TVD scheme itself. The only difference in the inviscid discretization used in Fig. 18b and a

standard inviscid flow (like the AGARD 03 test case) is the fact that, in 18b, the linear

eigenvalues in the viscous flow were not thresholded near zero.

The cutoff, 8, is introduced into the method to prevent violation of the entropy condition[ 161 .

When the cutoff is invoked, it introduces (2nd difference like) explicitly added dissipation. The

added dissipation term increases the entropy, and only physically consistent results should

remain in the space of possible discrete solutions. In the stagnation region, all the linear eigen-

values go to zero. In the inviscid part of this stagnation region, if no dissipation is introduced,

the preference for selecting a solution consistent with the entropy condition is lost. On a coarse

enough mesh, the dissipation introduced through the discretization error may be sufficient to rule

out such inconsistent discrete solutions. However, when the mesh is refined (as by adaptation),

such dissipation will diminish at a rate determined by the order of accuracy of the scheme.

Therefore, on a fine enough mesh, nonphysical solutions may appear. Such a hypothesis

explains the converged and physically consistent results obtained on the first two meshes in the

adaptation sequence. Notice that inside the boundary layer, u also tends to zero. Here,

however, the viscous terms in the Navier-Stokes equations generate entropy with the apparent

result of "selecting" physical solutions. This statement is supported by the seemingly well

behaved velocity vectors seen just inside the boundary layer in Fig. 18b.

Further supporting evidence for this hypothesis came from examining the region near the saddle

point of separation. Near the point of inflection in the velocity profile, the virtual lack of
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curvature gives rise to generally small viscous stresses. When this point is near the wall, the

velocities are also small and so the eigenvalues will tend to vanish and discretization may violate

the entropy condition. Investigation of the flow topology in this area revealed physically

inconsistent streamline patterns in the vicinity of the separation point just away from the wall.

"These arguments are not intended as proof, but do offer avenues for further investigation.

This problem in inviscid stagnation regions reemphasizes the need for thresholding of the wave

speeds in schemes which may violate the entropy condition. In complex flows, errors such as

the inconsistent flow topology cited here could easily go unnoticed and give rise to unpredictable

flow physics. This statement goes against the common practice of thresholding only some of the

waves, or different waves in different directions in the domain[ 3 31,[4 01,[191 . While such

techniques may produce excellent results for skin friction and heat transfer they still do not, in

general, ensure convergence to only physically consistent solutions.
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5. Summary and Conclusions

This work presented further details of a newly developed unstructured discretization for

modeling the viscous terms in the Navier-Stokes equations. A detailed description of this

discretization and its implementation was presented ,n a form requiring only cell-to-node and

node-to-cell communication. The method yields second-order accuracy on smooth meshes, and

is free stream preserving on any arbitrary mesh. Various aspects of the technique were evaluated

through test problems, analysis and mathematical proof. The method was incorporated into a

previously documented adaptive TVD scheme using hexahedral based unstructured meshes

which adapt to the evolving solution through directional cell division. The discussion also

outlined the techniques developed for controlling mesh quality and reconstructing the correct

surface geometry after adaptation and mesh smoothing.

The issue of mesh convergence was investigated through examination of the AGARD 03 test

case which is known to be particularly challenging to adaptive schemes. The new scheme

matched results from previously reported mesh convergence studies conducted with two

structured schemes. These discrete solutions also agreed with the results of two adaptive

upwind schemes which used a feature detection algorithm specifically designed in response to

the subtlety of the AGARD 03 test case.

A detailed examination of viscous flow over a NACA 0012 at M,---0.5 and Rec = 5,000 resulted

in Cp and Cfdistributions which agreed well with previously published solutions on unadapted
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meshes. In addition, the separation location was predicted in agreement with previous findings

and further supported by an analysis of the theoretical laminar separation angle.

During the course of the investigations, it became evident that the common practice of

thresholding only the nonlinear eigenvalues when using upwind methods whose formulation

permits violations of the entropy condition can admit nonphysical discrete solutions. Such

violations are likely in stagnation regions and near points of inflection in the boundary layer

velocity profile. Such solutions were examined and related to similar anomalous solutions

reported by a variety of other researchers also using Roe type schemes. Since many of these

nonphysical solutions may go undetected in complex flow, this research advocates the

(admittedly conservative) position of always tnresholding both the linear and nonlinear

eigenvalues in all directions. While this approach does slightly increase the resolution

requirements for accurate representation of the boundary layer, it appears to be the only sure way

to avoid admitting nonphysical solutions into the solution space. A detailed evaluation of

discrete solutions to a flat plate boundary layer was included showing good skin friction

prediction with approximately 13 points despite thresholding all of the eigenvalues.
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Appendix:

Preservation of Uniform Flow on an
Arbitrary Mesh

Claim: AUvisc remains identically zero on any arbitrary, nonoverlapping hexahedral

mesh when no spatial gradients arm present in the state vector.

Proof. Let G be a 3D spatial graph with a hexahedral based tessellation containing node

i. Taking the surface vectors of the polyhedra as described in the text, the viscous update to

node i becomes (Eq.( 11)):

+i { O.•- PV.YB] JA.lJ

For the Navier-Stokes equations under the assumptions stated in the text, (Fv)M.S.EF. WB are

linear combinations of the first derivative quantities d4-,7 (Eq.1 12)). Thus, when all d$A, = 0

then the viscous fluxes (FV)NS•.,WF.B = 0 (see Eqs.{3}-(7)) and AUVisc will vanish by

Eq.{(A. 1.
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Referring to Figs. 2, 3, and 4, we begin by examining the members of the tensor d•oP along

edge U which passes through the E face of the auxiliary cell surrounding node i.

( 4.=I If+ ý(SE+ Sýj) - (Sj+ S4,1
+ OS;,s + S ')- Oe(s4 S + sJ) (A.3}

+ 4'(s + se)- be(sB + sB)]

In a zero gradient field, however, Oq are constant at their reference (00) values.

2 V 4i'.,.+ (sJ + s,'- (s4 ýJ+S.

+(sj+ s• q+-(sd + sB)

Thus, for the elements of d•4O to be zero, the bracketed term in { A.4 ) must sum to zero. This

expression is exactly the sum of the surface vectors of the secondary cells. Rearranging the

bracket in this expression, we seek to evaluate:

[+SE+ SW'- sJs + Cw N +S

S_-S S + Sj + SFS•_S,,q

Collecting terms yields:

[+ SJ'-SJ'+ S4i'- S S + Sj- SB
+SES N SS+SF_ :#•- IAG.5

but SJ =S because it is the common face between auxiliary cells i andj and the expression

in {A.51 may be re-written as:

[+ w S +S4 -S4!i + e - S •q+s~ S~q (A.6)

+sJ,_-sJg + scN- s S + S - S B

We note that when the auxiliary cells are constructed as described in the text, they form a dual

mesh consisting of closed volumes which fill the interior space of the graph without overlapping
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or interior voids. Since the auxiliary cells are all closed volumes, their surface vectors sum to

zero, and we have:

S~~f-S ~i' 4 •[ •i 4i S 41 Sr ={A.7)SE s
s j-s 1s4i- s sV s -o

Expression ( A.6 ) then becomes identically zero, which ensures that the sum of surface vectors

in Eq. I A.4) will always be zero. Thus, in accordance with the statements following Eq. (A. 1,

AUvisc will always be identically zero in the presence of an unperturbed free stream flow.
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