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OVERVIEW

In this report, we describe the total effort at Ohio State on the Project Relegation
for Decentralized Control, initiated on March 1, 1989, sponsored by the Air Force
Office of Scientific Research (AFSC), under Contract F49620-89-C-0046.

The first part of this report reflects on one of the primary research topics which was
considered in the first year of research. This work performed in the first year con-
centrated on optimal relegation. In the second part of the report, we concentrate on
circuit analogies for large flexible space structures. Many large-scale systems such as
flexible spacecraft appendages are nonlinear in behavior. But their large scale makes
centralized control difficult. Thus, we propose several methods for designing decen-
tralized control laws that take system nonlinearities into account. Equally important
is the task of modeling large-scale systems. This motivated research on applying well-
known circuit theory techniques to the problem of modeling flexible structures. The
third part of this report describes work performed on another primary research topic
which was considered in the first year of research—the use of singular perturbations
for multi-time scale analysis of two-link structures. This work was developed for use
in embedding active materials into the links and relegating the control tasks. (That
is, slewing was relegated to torque actuators at the joints and vibration damping was
relegated to the film type materials along the links.) In the fourth part of the report,
we focus on the problem of decentralized control of nonlinear systems. The next two
parts of the report discusses results of using sliding-mode control on structures with
closed chain kinematics and sampled-data systems, respectively. Finally, preliminary
work was performed in using neural networks in the control of rigid-flexible struc-
tures. We then discuss example configurations being considered for application of the
results in relegation, including new results on a specific configuration of interest which
provides a set of new problems in structures with coupled rigid and flexible dynam-
ics. This is the class of structures with closed chain kinematics. The specific example
we have initiated work on is that of a planar truss. Extensive effort has been spent
on modeling issues, leading to the utilization of decentralized sliding-mode (variable
structure) control techniques.

Contributors to this three-year research effort were:
Students:

Dr. D. Schoenwald

Peter Dix

Mathew Boesch

il




Layne Lenning
Wu-Chung Su

Post-doctoral researchers:
Dr. Ken-Shin Xu
Dr. S. Drakunov

Principal Investigator:

Prof. U. Ozgiiner

Two book chapters and three journal publications have appeared based on research
on this project. Twenty-six presentations were made at conferences and the papers

appeared in the respective proceedings. Five papers are presently under review in var-
ious journals. The publications resulting from this research are listed in Appendix A.

iv
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1. INTRODUCTION

In this report, we describe the total effort at Ohio State on the Project Relegaticn
for Decentralized Control, initiated on March 1, 1989, sponsored by the Air Force
Office of Scientific Research (AFSC), under Contract F49620-89-C-0046.

The main thrust of our effort has been to consider the control of interconnected
rigid and flexible structures. In order to accomplish this, we have utilized different
analysis approaches, ranging from partial differential equations representing simple
substructures, to finite element models representing complex structures. We have
also initiated work in exploiting the analogies between circuits and systems. Much
work remains to be done in this area. We have used different techniques for control.
Apart from the basic linear quadratic regulator, we used series expansion techniques
and singular perturbation in simplifying and decomposing high dimensional control
problems and we have considered feedback linearization and variable structure control,
in handling nonlinearities.

The following chapters will provide details of the results obtained through the tenure
of the project.

In Chapter 2 the work on the concept of relegation is outlined. Here we provide the
basis for assigning control tasks to multiple coupled systems so that some some total
criterion is minimized. .

Chapter 3 is on our initial work on circuit analogies. This approach is even further
developed at this time in a new project.

In Chapter 4 the use of singular perturbations for multi-time scale an: 'ysis of two-
link structures is developed. This technique was develocped for use in imbedding
active materials into the links and relegating the control tasks. (That is, slewing was
relegated to torque actuators at the joints and vibration damping was relegated to
the film type materials along the links.)

In Chapter 5 we focus on the problem of decentralized control of nonlinear systems.
Many large-scale systems such as flexible spacecraft appendages are nonlinear in be-
havior. But their large scale makes centralized control difficult. Thus, we propose
several methods for designing decentralized control laws that take system nonlinear-
ities into account.

Chapter 6 discusses results on a specific configuration of interest which provides
a set of new problems in structures with coupled rigid and flexible dynamics. This
is the class of structures with closed chain kinematics. The specific example we
have initiated work on is that of a planar truss. Extensive effort has been spent
on modeling issues, leading to the utilization of decentralized sliding-mode (variable




structure) control techniques. Recent results (produced jointly witn Dr. D. Young
of LLNL) on frequency shaping for sliding-mode control, have provided a means of
handling the “chattering” phenomena, earlier thought to be a deterrent to the use of
sliding-mode control with flexible structures.

In Chapter 7 we provide initial results on the control of sampled systems with the
sliding-mode control technique. This highly innovative approach is presently being
further developed.

Finally in Chapter 8 the utilization of neural networks for the identification and
control is considered. This research was also partially supported by a NASA Doctoral
Fellow ship.

Chapter 9 provides some applications and examples of how and where our research
results may be utilized. It especially outlines an experimental configuration (LIVE)
which was developed for experiments on coupled rigid and flexible structures.




2. RELEGATION

In the control of large systems, the notion of decentralization plays an important
role. The decentralization constraint enters into large-scale systems because it may
be impractical or even impossible to communicate signals from one controller to an-
other. Moreover, decentralization may be required by the control designer to achieve
reliability and a degree of redundancy. It may also impose a structure to the control
implementation by relegating control authority to separate channels. This chapter
introduces and analyzes the concept of relegation for the design of decentralized con-
trollers for large systems.

Relegation is the assignment of control tasks and information channels in view of
control effectiveness, on-line computational complexity, controller capabilities, and
physical and structural comstraints [1, 2, 3]. In this chapter, one particular form
of relegation will be introduced-namely decentralized set-point relegation. One is
often faced with the task of selecting output set-points for subsystems given some
physical constraints. Relegation is the idea of choosing these set-points in a rigorous,
optimal fashion such that each subsystem’s goals have been chosen to minimize the
performance criterion of the overall system. This implies that the set-points are
chosen to satisfy a constraint equation such that the performance index of the system
is minimized. Redundancy in the choice of feasible set-points is exploited by choosing
them to minimize the cost functional while maintaining a decentralized feedback
structure. This is a unique approach to the decentralized quadratic regulator problem
that will enable the choosing of system set-points optimally instead of using ad hoc
methods.

The decentralized control utilized here consists of proportional state feedback and
integral output error feedback for each input/output channel. The feedback gain ma-
trix is obtained via the solution of two coupled Lyapunov equations. The optimal
cost will then contain a term which is quadratic in the output set-points, and it is the
minimization of this term subject to a linear or nonlinear constraint function which
leads to the solution of the optimal choice of output set-points. In Section 2.1, we
briefly consider the Decentralized Quadratic Regulator problem and introduce the
idea of Decentralized Set-Point Relegation. In Section 2.2, we point out how set-
points are incorporated into the quadratic regulator setting. We then indicate how
these can be assigned to uncoupled subsystems while further minimizing the cost in
Section 2.3. In Section 2.4, we outline the interconnected system configuration and
advocate a series expansion method for calculation of the control. We also introduce
an iterative linearization approach for use when the constraint equations are non-
linear. Section 9.2 contains an example of an optical tracking system on which the
concept of relegation is demonstrated.




2.1 The Decentralized Quadratic Regulator
Consider the basic decentralized quadratic regulator problem:

N
Az + z B;u; , :c([l) = xp (2.1)
=1

Y = C.‘I, i=1,...,N. (2.2)

T

where N is the number of input/output channels, n is the dimension of z, m; is the
dimension of u;, and p; is the dimension of y;. We wish to minimize the cost criterion

o N
J= /o («TQz + Y uTRiuy) dt (2.3)

=1
and the following feedback structure constraint
u.-=K.-y.-, i=1,...,N. (2.4)
It can be shown [4, 5, 6, 7, 8] that the necessary conditions for minimizing J given

by (2.3) with the controller structure (2.4) imply the solution of the following system
of nonlinear algebraic equations:

ATP+PA.+Q =0

AL+ LAT+Xo=0 . (2:5)

and
Vk.J = BTPLCT + R;K.C;LCT =0 (2.6)
where

A.

]

N
A+ E B;K;C;

=1

N
Q@ = Q+) CTKTR.K(C;
=1

T
Xo = zozg.

Now consider the situation when each control channel has a set of variables Yri tO

be regulated and these have been assigned output set-points y¢, i = 1,.., N. Note
that we differentiate here between the local measurements and the local variables to

4




be regulated. If the set-points are pre-determined and fixed, fairly straightforward
extensions to the decentralized regulator problem are possible to find the associ-
ated controllers. However, in many problems of interest, e.g. large space structures,
robotics, and manufacturing, these set-points jointly satisfy a constraint equation.
Their one-to-one assignment to channels is not obvious. We shall call this the de-
centralized set-point relegation problem (see Figure 2.1). Depending on the type of

RELEGATOR

Figure 2.1: Set Point Relegation

constraints the set—points need to satisfy, there are a number of distinct special cases
of interest in decentralized set-point relegation:

1. Linear constraints
2. Nonlinear constraints

3. Time-varying constraints

In this chapter, we chall consider the first two cases above. The third case represents
a trajectory relegation problem which is not specifically addressed here. The three
types of constraints above may arise due to physical considerations of the problem
but may also be due to computationa: aspects of the problem as well. It is assumed

5



that these constraints do not uniquely specify the set-points, but rather allow a choice
of feasible set-points possibly even an infinite number of choices.

2.2 Incorporation of Set—Points

We first outline the incorporation of set-points into the standard centralized quadratic
regulator problem. To motivate this, we consider the multi-input, multi-output sys-
tem

z = Az+ Bu
y» = Cz, (2.7)

under the cost criterion
J= / *(:TQz + 4T Ri)dt, (2.8)
0
where 2(t) is defined as
z
z(t) [ Ay] (2.9)

Ay(t) & w(t) -y, (2.10)

and y?, a constant set point, has been specified.

ne

The state equations for the system with % as input and z as state vector can now be
written. If Q =block-diag{Q:, @2} then the solution of the above problem takes the
form

u=K'z+K* [ ‘(:(7) = y¥)dr (2.11)

where the {K?!, K?} pairs are calculated from the associated Riccati equations.

Let the matrix solution to the Riccati equation be partitioned as

A P
= [ P p,]
and let
S=BR'BT.




Then the Riccati equation decouples into three equations:
—PSP;+Q,=0
PTA+P,C—-PISP =0
ATP, +CTPT + PA+ BC - PSP, +Q, =0.

As can be seen, P; can be calculated from the first equation. Then
P, = PJ(A-SP)CT(CCT)™,

and P, can be calculated from the Riccati equation
ATP,+ PA- PSP +(Q+CTPT + P,C) =0.

The optimal cost is given by

J* = 2T(0)Pz(0).

(2.12)

(2.14)

Since z(0) contains y? , the optimal cost J* is a function of the value of the set-point.
In problems where there is some freedom in choosing these set-points, it is easily seen
that one set of y; can produce a lower J* than another set. Therefore, we look at
ways in which the set-points can be chosen to minimize J* while maintaining the

decentralized nature of the control laws.

2.3 Relegation for Uncoupled Systems

Consider the set of dynamically uncoupled linear subsystems

z; = Ajz; + By
Yei = Cizi i=1127"-7N1

under the cost criterion

N oo
J=3 /o (27 Qizi + uF Ryit;)dt.

i=1

(2.15)

(2.16)




The state z; is defined as

zi(t) { :y] (2.17)
Au(t) £ yalt) -, (2.18)

where y¢ is a constant set point.

>

The solution of the above problem takes the form
¢ d
wi = Klz; + K,?/ (wi(r) —yd)dr , i=1,2,...,N (2.19)

where neither the relative feedback nor the solution for { K}, K?} are coupled. In fact,
the {K}, K?} pairs are calculated from uncoupled Riccati equations which provide
the matrix pairs { P}, Pi} such that the optimal cost is given by

J' = sz? (0)P'z(0). (2.20)

=1

We now assume that one step above on the hierarchy there exists a relegator (see
Figure 2.1) which must specify the {y?} set points, constrained with a set of linear,
static equations of the general form

N
Y Fyi=G. (2.21)
=1

The question now is whether the relegator can pick a specific set {y¢} that satisfies
the constraints (2.21) while further minimizing J*. Thus, we consider the problem

N

minJ* = min 3 (0(0) = )T Pi((0) - ) (222
i s i=1

such that (2.21) holds. This is equivalent to minimizing

'
=1

N
J =Y (v Py - 2yZ(0) Piy? + AT(Fipd) - ATG, (2.23)

where A is a vector of Lagrange multipliers. In such a minimization exercise, we
obtain




'36"52 =2Py{ — 2Pjy,i(0) + FTA =0 (2.24)

fori=1,...,N. In view of this and (2.21),

y! = yri(0) — 0.5(P5) ' F]A, (2.25)
and
N . N
A = 203" Fy(P) ' FI' [} Fiyri(0) — G (2.26)
=1 =1
to give
. N . N
¥ = vri(0) = (F) 'R} Fi(P) ™ FI17 [} Fiyri(0) - Gl (2.27)
i=1 =1

fori =1,...,N. Equation (2.27) represents the decisions taken by the relegator to
satisfy (2.21) while minimizing J*.

2.4 Relegation for Coupled Systems

We now consider the special case of interconnected systems with local state measure-
ments available for feedback. We shall furthermore assume that a local output vector
is to be regulated to a given set point. Consider the set of dynamically coupled linear
subsystems,

N
z; 3" Aijz; + By (2.28)

i=1
y" = Cl'zl') i=1,2,-..,N

where NV is the number of input/output channels, n; is the dimension of z; , m; is
the dimension of u; , and p; is the dimension of y,; . We wish to minimize the cost
criterion

co(Z‘TQ.'z,' + u,TR‘u.) dt (229)

U™

i
N | —
-Mz
S~

where z;(t) is the n; + p; dimension vector defined as




Ay = yri — ¢
50| G-

(2.30)

(2.31)

(2.32)

with Q; positive semi-definite and R; positive definite matrices of appropriate dimen-

sions. A more compact cost criterion is defined as

J= %/o” (:7Qz + 4T Ri) dt

where Q = block-diag (@, --- @n] and R = block-diag[R, --- Rn].

We redefine (2.28) in the state z as

[ A1 0 Ay O . Aty 07 [ B; 0 7
Ci 0 0 0. 0 o 0 0
An 0 Az 0 ... Aav O 0 0
3= 0 0 C; 0 . 0 0241 O 0 4
Avi 0 Ay 0 ... ANN O 0 . Bn
0 0 0 0 ... C~y O | 0 0

or more compactly,
= Az + Bu,
with decentralized feedback

u, = Kz = K,-l:i:.' + K)Ay:, Ki= [K.l K.Z]
@ = Kz, K = Block-diag[Ki,K,...,Kn]

such that each channel input has the form

t
w = K,.‘x.-+1<,?/ (gri(r) —yd)dr, i=1,2,...,N.
0

10

(2.33)

(2.34)

(2.35)

(2.36)

(2.37)




The optimal solution for the decentralized feedback gain matrix K to the minimization
of the quadratic cost criterion J is known to involve the iterative solution of two
coupled Lyapunov equations as mentioned before. It is well known that the cost
associated with any stabilizing feedback is, in fact, 27(0) Pz(0) where P is the solution
of the related Lyapunov equation

ATP+ PA.+Q =0. (2.38)

In the event of weakly coupled subsystems (e-coupling), a series expansion method
[9, 10] is advocated to solve for the feedback gain matrix K. This series expansion will
also give an approximation to the weighting factors { Pj} to be used in the set-point
distribution.

We use the series expansion (e-coupling) method to generate the local feedback solu-
tion for weakly coupled systems where the local states are available at the subsystem
level. We shall embed a coupling parameter ¢ between the subsystems so that the
equations satisfying the necessary condition of optimality are as given below:

A = [ An + B K, €A;z
¢ €A21 Azz + B2K2
3. = [ Q1 + KT R K, 0
Tl 0 Q: + K2R,K,

Partition P and L as

[P, P
P=lpr p
[ L Ls
L= La]

The gradients (2.6) are then

Vind = 2[BI(P,L, + BLY)+ RiK L] =0 (2.39)
ViaJ = 2[BY(PsLs+ PBLY) + RyK,L3) = 0. (2.40)

The coupled Lyapunov equations (2.5) become
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P equations

(A11 + BLK1)T Py + €AL, PT + ¢P3As + Pi(An + B1Ky)
+(Q:1+ KTR1K,) =0

(A23 + B3K2)T Py + AT, PT + €¢PsA13 + P3(Asz + B2K2)
+(@z+ KT R3K3) =0

(A11 + B1K1)T Py + ¢AT, P + ¢P1A12 + P3(Azz + BaK3) =0

L equations

(A1 + B1K1) Ly + €A1aLY + eL3AT, + Li(An + BiK1)T

+Xo1 =0
(A2a + B3K3)Ls + €A LY + eLs AT, + Ly(Aaz + BaK3)T
+Xo3 =0

(Au + B1K1)L3 + €A1zLa + eL1 A, + La(Aaz + BaK3)T = 0.

Consider now the power series expansion in terms of € for P and L
1,1 25
P=P°+¢P + 3¢ P4
0 1,1 272
L=L"+¢L +55L + .-
resulting in the power series for K.

K=K°+eK‘+:,12-e’K’+---

(2.41)

(2.42)
(2.43)

(2.44)

(2.45)
(2.46)

We shall henceforth use the superscript to indicate both the order of the derivative

and the term in the series expansion.
Q’th order terms:
Setting ¢ = 0 Eq. (2.43) becomes

(A + BIK{’)TP;? + Pg(Azz + Bng) =0.

We temporarily assume the following assertion to be true:

(2.47)

Assertion I : K and K7 asymptotically stabilize the subsystems {A;;, Bi} and

{A22a BZ} .

With Assertion I applied to the unique solution of Eq. (2.47) (and similarly from
Eq. (2.46)), we obtain
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PP=0, L3=0.

With ¢ = 0 Eq. (2.44) is a Lyapunov equation and under Assertion I admits a positive
definite solution for L. Thus Eq. (2.39) simplifies to

BTPY + RiK? = 0.

Substituting into Eq. (2.41) at ¢ = 0 we obtain the standard subsystem Riccati
equation:

AT PP + PPAyy — PPBR7*BTP? +Qy = 0.

Similar arguments result in the Riccati equation for the second subsystem. Therefore,
if {A11, B1} and {Aj2, By} are stabilizable pairs, Assertion I is indeed true.

L'st order term

Under Assertion I and the solution of the 0’th order equation we will find that

K}, K}, P}, P}, L}, L} are all zero. The terms P} and L} can be calculated from
the linear equations

(Au+ BiK)) Py + P} (A + BaK2) + AL P) + P2 A3 =0

(A + BiK?) L) + LY (A + BoK3)T + AL + L94%, = 0.

2nd order terms
P? is solved from

(Aun + BiK))T P} 4 P} (A2 + BiKY) + AL P}T + P} An = 0.
Then K3 is

K? = R BT P} - 2R PLLYT(L)™.
The following terms can then be sequentially generated. Note that the odd order
terms will give no local feedback, yet one intermediate set of linear matrix equations

will still have to be solved. After the 0’th order term the local feedbacks are calculated
from Lyapunov equations.

At this point we assume there exists a relegator whose function is to specify the y¢
set-points subject to the following set of nonlinear constraints
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Hy*) =0, i=12,...,N (2.48)
where H;(y%) is a scalar function of the output set-points vector y*. Eecause general
nonlinear functions are difficult to solve, we shall expand H;(y®) about a point § that
represents the current estimate of y?. The power series is carried to quadratic terms

in y¢

ooy o OH(Y o, 1 v 2 H () _
Hi(y*) = (@) + Bys )(y —9)+5(v° - g7 2 2@ 9 (r*-9) (2.49)
fori=1,2,..., N, where the gradients are defined as

a{f = %4 B ... 2R (2.50)

and the Hessians are defined as

8’”.'!2! sg[
8(1’1 )?

211.(5 VN”:
%_’{%(%l = : (2.51)
(y ) 32 3’"‘(1—!)
871 Uy a(ﬂﬂ)z
We wish to minimize the following cost criterion with respect to y¢
s 0H;
J = v Pt~ 2O Pt 5 A () 2D g
=1
1 4 _wOH(§), 4 -
=y -9 =——=*(y" - 2.52
+ 50" -9) a(y)? (¥* -9 (2.52)

where A; are a set of Lagrange multipliers. We proceed by setting the gradient of J
equal to zero and solving for y? obtaining

N g T 2
= 2P, +§6;{I4), R A 2Py, (0) - g( 2 (Hf)i) Pal  (2.53)

where A;, i = 1,2,...,N, are solved for by substituting (2.53) into (2.49). This
motivates the following algorithm to solve for y¢ [3]):

1.) Choose i = 0 initially and sonie tolerauce é.
2.) Evaluate H,(3), %@ , a,nd%ggl fori=1,2,...,N.
3.) Solve for A;, i=1,2,...,N by substituting (2.53) into (2.49).
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4.) Using above, solve for y¢ by solving (2.53) for its p components.
5.) If || y — 7 ||< & then stop; otherwise set § = y* and go to step 2.

It should be noted that with some sacrifice in accuracy one can linearize (2.49) instead
of expanding to second order and obtain the following simpler equations for A; and

yd

DBG) i = 2o + 5B 0) - ), (2:54

DY) §- 98 104

i=1
for i=1,2,...,N. Then y? is computed using

v =v.(0) - Z oH; (’ )T Ai. (2.55)

=1

The algorithm above is still followed to find y? except Hessian information is no
longer needed. This algorithm represents the action of the relegator in choosing
the set-points for each subsystem. An example of this algorithm is presented in
Section 9.2.

A number of comments can be made regarding the problem outlined:

1. Noute that y? depends on y,;(0) which may be assumed known. Also, y¢ can be
solved for assuming y,;(0) =0

2. Equation (2.21) may be generalized to (slowly) time varying constraints. In this
case, one could implement the relegation scheme described in this chapter at a
series of operating points.

3. The quadratic regulator problem can be generalized to accommodate frequency
weighting. Note that the interesting and intuitively obvious conclusion that a
band limited actuator will be given a “closer” set point to achieve.

In conclusion, it can be observed that decentralized setpoint relegation provides the
hierarchical framework that couples a version of resource allocation with the dynamics
of the controlled system. This is accomplished in a globally optimal manner, that
is, both the high-level resource allocation (or target allocatic.1) and the lower level
dynamic control problem have a single goal. We believe this to be a very general
framzework that can be utilized ‘n many large scale system problems.
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3. MODELING AND CONTROL OF FLEXIBLE STRUCTURES
USING CIRCUIT ANALOGIES

Large space structures (LSS) may be viewed as an interconnection of several substruc-
tures or networks. Essentially, the vibration control problem of flexible structures can
be approached as a power transfer problem—similar to problems in transmission line
theory or electrical circuits. The propagation of disturbances in LSS with light damp-
ing is mathematically similar to the electrical characteristics of a lossless transmission
line. Thus, each of the substructures may be described in terms of scattering param-
eters similar to those of an electrical network.

The scattering parameters can be derived from either a partial differential equation
(PDE) model of the structure or from the finite element model (FEM) of the struc-
ture. Like transmission lines, LSS are distributed parameter systems; therefore, they
exhibit wave modes similar to those encountered in the PDE approach. FEMs are
merely approximations of PDE models. For lumped parameter models such as FEMs,
lumped parameter circuit analogies of LSS may be obtained directly from the FEM
equations. Therefore, the scattering parameters of the structures may be obtained
using circuit analysis techniques. As an example, 2 FEM of a beam can be broken
into an interconnection of passive four-port networks.

The PDE models have been used in various control approaches such as the travel-
ing wave approach. In the traveling wave approach to flexible structure control, the
disturbances to a structure are viewed as waves traveling through a medium. These
waves can be reflected, partially reflected, or dissipated as they travel across the struc-
ture. At interfaces within the structure, scattering properties may be examined—how
much of an incoming wave is reflected and how much is absorbed. With this per-
spective, the flow of these disturbances through the structure may be more easily
understood.

Since the propagation of disturbances in a mechanical system is mathematically sim-
ilar to that of electrical or microwave circuits, the motivation for this work is to
reconsider circuit analogies of mechanical systems and use existing results from cir-
cuit theory and network theory in the analysis and design of LSS.

The scattering parameters of a flexible structure have been determined both from
the wave formulation from the PDE model and from a circuit analogy of the FEM.
The coupling of structures has been analyzed from an impedance matching (circuit)
and a substructure synthesis (FEM) viewpoint. Component Mode Synthesis (CMS)
techniques for modeling LSS and active vibration damping have also been considered
in the framework of scattering parameters.
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3.1 Circuit Analogies of Mechanical Systems

Circuit analogies of mechanical systems have existed for many years. When the his-
tory of mechanical and electrical systems is considered, the complementary progress
of the two areas is evident. Results of electrical network theory have many appli-
cations to acoustical, mechanical, and electromechanical systems. Included in these
applications is vibration control of large flexible structures.

Typical examples of circuit analogies for mechanical systems are shown in Table 3.1.

Table 3.1: Electrical / Mechanical System Analogies

[ELECTRICAL | MECHANICAL | MECHANICAL
(LINEAR) (ROTATIONAL)
voltage, V velocity, v, £ angular
velocity, w, é
current, I, ¢ force, F torque, 7
charge, ¢ momentum, P angular
momentum, h
flux displacement, = angular
linkage, A displacement, &
capacitance, C mass, M moment of
| inertia, J
inverse of stiffness, K rotational
inductance, 4 stiffness, K
inverse of viscous viscous
resistance, % damping, 8 _ damping, 3

Using these circuit analogies, the the analogous systems of equations for electrical
and mechanical systems are:

leze =

Fczt =

Text —

1

: ]
cv+—v+zfva

R
M: + Bz + Kz

Jo+ 36+ K8

(3.1)

(3.2)
(3.3)

For a general n-port network as shown in Figure 3.1, the port-voltage and port-current
vectors are defined as

u(t) = [vl{t)» vg(t)y -, UN(t)]T
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Figure 3.1: General representation of an N-port network.

i(t) = [a(t),da(t), ., in(t)]7
The open circuit impedance matriz, Z(s), is defined such that
V{(s) = Z(s)I(s)

where
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Z;; = (3.7)
Lilp=o v &z
Similarly, the short circuit admittance matriz, Y(s), is defined such that
I(s) = Y(s)V(s) (3.8)
where
I;
Y= T/-J- VA=0 V k#j ¢9

These impedance and admittance matrices do not always exist because they are de-
fined in terms of zero or infinite loading at the ports. Alternatively, scattering matrices
may be used to characterize the network because they:

o ezist for all “nonpathological” passive LTI networks (lumped or distributed
parameter systems)

¢ are defined in terms of some finite stable loadings at the ports

o have widely known properties (much literature exists)

e are closely related to power transfer properties of a network; thus, several quan-
tities of interest are simply and concisely represented in terms of scattering
parameters

¢ are particularly useful in problems concerning power transfer, lossless networks,
and network matching

e can be derived from either a PDE model or a FEM of the structure

3.2 Scattering Parameters

Again, consider the n-port shown in Figure 3.1. The normalized port-voltage and
port-current vectors, V and I, are defined as

v = R v
I = JRI

where V' and I' are the “ordinary” voltage and current vectors, which would actually
be measured at the ports, and R, is a normalizing matrix. The incident and reflected
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voltage vectors, V; and V,, are defined to satisfy
Vi = %(v +1) (3.10)
Vi, = %(V—I) (3.11)

where V, = 2V, and V, and Z, are the voltage vector at the source and the input
(-ource) impedance matrix, respectively.

The scattering matrix, S, is defined such that

V; =8V (3.12)
where

0< 185 <1 (3.13)
Further, if the normalized impedance matrix, Z, is defined such that

V=2I (3.14)
then

S=2Z+U)(Z-U)=(Z2-U)Z+U)! (3.15)
where U is the identity matrix. This is equivalent to

$=(Z'+R,)"NZ'-R)=(Z'- R)Z'+ R,)™ (3.16)

where Z’ is the “ordinary” open circuit impedance matrix.

As an example, the impedance and scattering parameters at the end of a cantilevered
beam were calculated from a PDE model and an eight-element FEM. Assuming unit
source impedance, the open circuit impedance and the scattering parameter from the
PDE approach were determined numerically, using a FORTRAN program to generate
the Bode plots in Figures 3.2 and 3.3.

Using the circuit analogies, the impedance matriz from the FEM is defined as

Z(s) = (sM + -Iff)-’ ' (3.17)
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where M and K are the mass and stiffness matrices, respectively. The scattering
matriz is then defined as

Z(s)~R
= c\) - ® 3.18
Se) = Zo TR (3.18)
Plots of the Bode responses for Z;;(s) and S);(s), assuming unit input impedances,
are shown in Figures 3.4 and 3.5. These parameters correspond to the impedance
and scattering parameters at the tip of the beam.

Circuit synthesis techniques can be applied to structure synthesis. Connecting sub-
structures is analogous to connecting circuit networks. The impedance or scattering
parameter of the entire structure can be determined from the impedances of the in-
terconnected substructures as one would determine the impedance of a circuit. CMS
methods have been studied in this context.

The circuit equivalent of a linear proof-mass actuator has been developed. This can
now be used for controller design. Controllers may be inserted at a substructure
interface or at some other location on the substructure for decentralized control. The
use of feedback for structural vibration control is analogous to the use of dependent
current sources in the circuit equivalent of the structure. Another interesting approach
is to represent actuators or substructures with their Thevenin or Norton equivalents.

Using overlapping decomposition, the circuit/structure can be separated for decen-
tralized controller design. Controllers may be designed to achieve certain scattering
properties or to achieve certain voltage/velocity properties. H; or Ho design tech-
niques could be used in these dusigns.

In conclusion, circuit analogies of mechanical systems have been used to establish
a framework for analyzing LSS. Using these analogies, the scattering properties of
LSS can be characterized in terms of the scattering parameters. These scattering
parameters may be found from either @ PDE model or a FEM. This method of
modeling provides insight into the scattering properties which can be exploited for
controller design.

Using this approach, work is in progress to explore applications to Controlled Com-
ponent Synthesis and Overlapping Decomposition. Furthermore, controller designs
which “shape” scattering parameters as desired are being considered. Existing broad-
band matching and network synthesis techniques may be used in actuator and con-
troller design—-for both active and passive damping. Established circuit parameter
sensitivity results may also be used to analyze structure parameter sensitivity.
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4. MULTI-LINK FLEXIBLE MANIPULATORS

In many applications that involve slewing of mechanical structures such as in space-
craft and robotics, performance is limited by the mass and rigidity of the moving
appendages. The use of lightweight materials and slender appendages can enhance
speed and mobility while reducing energy consumption but inevitably lead to flexi-
bility. The principal drawback to flexibility in structures is the issue of control. This
is due to the tremendous increase in complexity of the system dynamics as a result
of the elasticity in the links. There is a wealth of literature on rigid link control,
but additional control strategies are needed to deal with the more complex dynam-
ics of flexible links. This chapter addresses the strategy of combining two methods
for handling structural elasticity: perturbation techniques and distributed vibration
damping.

Several works in particular, Spong et al. [11], Khorrami and Ozgiiner [7], and Sicil-
iano and Book [12], apply perturbation techniques to flexible joint and flexible link
manipulators. In [11], the integral manifold approach is emnloyed to decompose the
dynamics into a fast subsystem representing the elastic rorces at the joints and a
slow subsystem representing the rigid body motion. The control strategy is then an
approximate feedback linearization which allows the use of rigid link control ideas.
In [7], a two-time-scale approach is used to design a low order controller for the rigid
system that can also compensate for the flexibility effects. In [12], a singular per-
turbation approach is utilized to achieve an approximate linearization strategy for
manipulators with elastic links.

In these perturbation methods, the system dynamics are a function of a small pa-
rameter € which represents stiffness of the joints or links. As e tends to zero the
slow subsystem (integral manifold) tends to the rigid link manipulator model. The
integral manifold is then expanded as a power series in ¢ about € = 0. The primary
advantage of the integral manifold approach is that it enables one to linearize the
system dynamics to an arbitrary order of e via the torque controllers. Other ap-
proximate linearization strategies have been proposed for flexible-link manipulators
such as pseudo-linearization [13] and input-output inversion {14]. But the integral
manifold approach facilitates the incorporation of approximate linearization (for the
slow subsystem) and distributed actuation (for the fast subsystem) as is done in this
chapter.

The primary goal of distributed vibration damping is to add thin material (e.g. poly-
mer films) to an elastic beam and apply control signals to effect a dampening of
the modes of vibration. No particular distributed actuator is proposed but instead
analysis undertaken here is applicable to a wide variety of thin film actuators whose
characteristics are very similar in how they impact the equations but may differ in
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hardware implementation. The purpose of this analysis is to provide a description
of how film actuators can reduce bending effects in flexible manipulators. The basic
idea behind film actuators is that they produce a strain along the longitudinal axis
of the links when applied with a voltage distributed along the link. It is shown that
feedback of various measured variables to this voltage can produce a strain which
dampens the modes of vibration.

Our controller design is based upon a distributed parameter model of the two-link ma-
nipulator which is derived via the Hamiltonian formulation. The dynamical equations
of this model are omitted due to their length. For details on this model, the reader is
referred to Khorrami [15], Schoenwald et al. [16], and Schoenwald and Ozgiiner [17].
Computer simulations are provided which show the results of the feedback linearizing
torque control and the improvement in vibrational damping obtained with the dis-
tributed actuator. The computer simulation model is obtained from the distributed
parameter model via the assumed modes method.

4.1 Control via the integral manifold approach

It has been shown in Ding et al. [18] and Khorrami and Zheng [19] among others that
the necessary and sufficient conditions for exact feedback linearizability of flexible
link robots are not satisfied. That is, torque control alone cannot exactly linearize
the full-order dynamic system since there are not as many control inputs as output
variables. The purpose of applying integral manifold theory to the above structure
is to be able to reduce the dynamics of the system to the rigid body motion. This
reduced order system will account for the flexibility of the links. In addition, the
effects of the rigid body motion on the flexure are given by a manifold condition.

According to Sobolev [20], a manifold M, is an integral manifold for a dynamic
system if it is invariant under solutions of the system. That is, if the system lies
on the manifold M, at some time ty, then the solution trajectories must remain on
the manifold M, for all ¢ > t,. If the fast dynamics as represented by the flexural
vibration equations are asymptotically stable then the solution of the full system will
rapidly converge to the integral or slow manifold M, and remain there for all time.

Consider the two-link flexible manipulator depicted in Figure 4.1. The joint angles,
6, are measured as the angle between the axes X; and X;_.;. The elastic deformation,
a;(¢,t), is measured as the deflection between the link at length=¢; and the axis
tangent to the link at the hub, X;. The torque inputs, 4;, are applied at the ith hub.
Gravity, shear deformation, torsion, and axial displacement have been neglected in
the model. The mass of the :th hub and mass per unit length of the ith link are M;
and p;, respectively. The mass moment of inertia of hub 1 is Ij.

In order to apply integral manifold theory, the full system model must be in singularly
perturbed form. This model has been shown to be singularly perturbed in Khorrami
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Figure 4.1: Geometry of two-link flexible manipulator.

and Ozgiiner [7] for the one-link case and Khorrami [15] for the two-link case. Thus,
we conce * ate on deriving the slow and fast manifold equations describing the two-
link manipulator’s behavior. These equations have not been developed previously.
To do this, a normalized model of the system is derived.

First, we normalize the link deviations and spatial variables with respect to link
lengths. That is

1
— e, T o e— = e~ 4-1

(4.2)
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and we define

Ih [451 Mg P2
= - 4-
=Rt T LR T LG (43)

The small parameter e is introduced in the following manner: Since € must be related
to the stiffness properties of the links, a natural choice [7, 15, 21, 22] is to let ¢
be inversely proportional to the square of the lowest frequency of oscillation due to
flexure of the links. Because there are two links, there are two such parameters, €,
and e;:

_plt

= ‘et ) = . 4.4
EL’ 1=1,2 (4.4)

€

This choice of € shows that as the bending stiffness E;I; becomes larger ¢; becomes
smaller which implies that the links behave more rigidly. Since the y; terms represent
the flexure effects, it can be shown that {7, 15] y; is of order ¢. Thus, we let

vi=6€z, 1=12 (4.5)

where z; is our new variable for flexure effects. It can also be verified [7, 15] that as
¢; vanishes, the dynamics of the rigid body motion are recovered. Working with two
different small parameters greatly increases the complexity of the integral manifold
equations. Thus, we make the following assumption:

Al) O(e) = O(e3) = O(e).

This allows us to deal with just one small parameter representing the flexibility of
the two links. It is important o note that this does not mear. that ¢; = ¢;. Indeed,
these two parameters can differ significantly provided they are of the same order for
approximation purposes.

With the terms from above, we can now define the integral manifold:

M, = {01,8,,01,03, 21, 23, 21, 53| = £i(0;, 6;, 04, T, €), 25 = ha(6;, 05, ui, 4, €) } (4.6)
for i = 1,2 where A, represents the effects of flexure on the rigid body motion. The &;
variables are obtained by solving a manifold condition which is simply the substitution
of z; = h; into the transverse motion equation for link :. However, these equations

are very difficult to solve so the manifold terms h; and the torque control terms u;
are expanded in the parameter ¢ as follows:

u; = ujp + euyy + O(€?) (4.7)
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h; = hio + €hyy + O(€?) (4.8)

where A;; = h;j(oi,ég,u;,z;). It should be noted that in the equations to follow, we
simplify notation by writing ki; = hij(zi,t) to reflect h;;’s dependence on length (z,)
and time (6;, é;, u;). The h;; terms do not depend on ¢ since this is now assumed in
the power series expansion.

Substituting (4.1), (4.2), (4.4)-(4.8) into the flexural vibration equations and equating
like powers of €, we obtain the following manifold conditions:

Manifold equations for link 1:

o(1): 1‘151 = —hi02151215,

X . (4.9)
O(f) : hio = —hu zyzy2y5, + h109f
Manifold equations for link 2:
0(1) : —' 22(01 + 02) + 01 COs 02 = ——' h2023221‘22‘2 - 'l' é2 sin 02
O(G) M hgo + - lf) h10(1 t)01 sm02 -— h2l,z:x;:gzg + hgo(ol + 92) (410)

—— hm(l t)cosf; + 2 hw(l t)0 cos02 - --hm(l t)H:smO;

where O(€?) terms have been ignored.

Substituting (4.1)-(4.8) into the rigid body motion equations, and again equating like
powers of ¢, we obtain the following corrected slow manifold equations representing
the rigid body motion on the slow manifold. These equations are corrected in the sense
that the flexibility effects from the manifold equations are included to increasingly
higher powers in €.

Corrected slow manifold equations for link 1:
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o(1): [J+ 5'1,‘?17,?0302.] 51 + [5%{ + 2—1,?17, cos 02] (51 + 52)
= Q_L?L-; (201 + 02)02 sin 02 + U0
Ole) - [2-3?5 ho(1,?) sin b — £ sin 63 f3 haodz:] éf+ _
385 ho(1,t)sinb; — gff; siné Is haodzs)(61 + 62)+
(%‘f; + ﬁ;) hio(1,t) + 2—1?17; hio(1,t) cos 8+ (4.11)
%!;fo‘ T1hyodzy + ﬁ?fol [{’; + &bf"] hayodz;
= —-;2‘?:(201 + 02)}110(1, t)og cos 02—
E?L?égilm(l,t) sin 02 -+ 223%;(01 + éz) sin 02 fol ilgod.’tg-{-
zﬁ;éz [291 + éz] cos8; [3 haodzz + un

Corrected slow manifold equations for link 2:

oQ1): (-2% cosf, + 3%) 6, + 5%1- f; = —-2%; éfsinGz + uag
O(e): [~ sinby [y haodzs + £& hao(l,t)sin 3] 1+
f’; fol .‘Egilzodxg + -2‘?4- 7110(1, t) cos 9, (4.12)

= —g' 0? cos 02 fol hzodﬂ:g + 21}24. 0?’1]0(1,” CcOos 02—
a' hlo(l, t)01 sin 01 + U221

where again the O(e?) terms have been ignored. It should be noted that the O(1)
equations of the slow manifold represent the equations of a two-link rigid manipulator
as expected. These equations are the slow subsystem of the flexible manipulator,
and in Section 4.3 we explain the strategy for asymptotically stabilizing the slow
subsystem. This terminology is important since it is the slow subsystem that must
be stabilized to ensure stability of the full system for small enough € provided the
fast dynamics are asymptotically stable.

Also of interest are the fast manifold equations. To derive this, we introduce the fast
or stretched time scale T = t/\/e. We also define the deviation of the flexure variables
from the integral manifold as

7 = z; — h;. (4.13)

Substituting (4.13) and the fast time scale into the flexible dynamics and letting
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T —

e — 0 [23] we get the boundary layer system

d? "

d:; = “Mannn =~ Manns —21(6)° (4.14)
—‘P ] q v

d.:? = =Mzmnn — Pazazazgzs — 332((01)0 + (82)") (4.15)

- %—:-(51)0 cos 63 — i—;(ﬂf)“ sin 83
with initial conditions

B = 5 = b8, (6008, 20,0) (416
ne = z3— hy(83,(62)% ul, z;,0). (4.17)

The above system describes the trajectories (6;,7;), which, for every given initial
condition (6?,67,69), lie on a fast manifold defined by 8; = 62 =const, and rapidly
descend to the slow manifold My (i.e., M, with ¢ = 0).

4.2 Distributed actuator control

Though flexible manipulators have advantages in terms of speed, mobility, and re-
duced energy consumption, their vibrational characteristics make control more dif-
ficult. Passive damping of flexible robot arms is not adequate due to its additional
mass and its inability to adjust to changing flexibility effects. Hence, some kind of
active damping is desirable to control the vibrations. In Spong et al. [11] and Siciliano
et al. {21], only torque control is used to cancel the vibrational motion. But because
of the dynamical complexity of flexible links versus flexible joints, it would appear ad-
ditional control effort is needed. Current design practice in general flexible structures
is to use discrete or point actuators to actively dampen vibrations. However, these
flexible systems have an infinite number of degrees of freedom forcing most designs
to truncate the system model to a finite number of discrete modes. Choosing which
modes to represent the system and where to put the actuators is a difficult problem.
Chassiakos and Bekey [24]propose an optimal scheme for locating ideal point actua-
tors on a vibrating beam and Barbieri [25] incorporates the dynamics of a particular
proof mass actuator into the system model.

But in Bailey and Hubbard [26], Burke and Hubbard {27, 28], and Crawley and de
Luis [29], a distributed actuator which has the possibility of controlling an infinite
number of vibrational modes and adds a minimum of dynamical complexity to the
system model is proposed. The actuator is spatially distributed and makes use of
a polymer film. When a voltage is applied spatially across the faces of the film,
it results in a longitudinal strain over the entire plated area of the film, making it
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a distributed parameter actuator. If this voltage is varied spatially, the strain will
also vary spatially and in Bailey and Hubbard [26] candidate voltage functions are
revealed as able to control all the vibrational modes of flexible beams with many
different boundary conditions.

The dynamics and hardware details of various film actuators are e¢xplained in Bai-
ley and Hubbard [26], Burke and Hubbard {27, 28] and Crawley and de Luis [29]
and will not be repeated here. Instead, the new equations of the two-link structure
with distributed actuator control are derived by adding the polymer actuator to the
manifold equations which are essentially Euler-Bernoulli beam models with slewing
effects [16, 30]. The film type distributed actuator will affect the manifold equations
as well as the boundary conditions. This actuator will also impact the corrected slow
manifold via the solution of the manifold equations (i.e., the k;; terms). But it will
not affect the rigid link motion (i.e., the O(1) corrected slow manifold equations).
The primary difference between the work presented in this chapter and the work of
Bailey and Hubbard [26], Burke and Hubbard [27, 28], and Crawley and de Luis [29]
in implementation of the film is that the flexible links are slewing (rigid body motion)
as well as vibrating. The new manifold equations can be stated as follows:

O(1) manifold equation for link 1:

my -~

zlél hlo.::la:lz;z, + —F L3 ‘/l,xlzl (418)

O(1) manifold equation for link 2:

1 = = 1 1
'Z';Iz(gl +02)+L—201 cosfy = —_L_lhzo’z’”z’:’ I 0 sin 0, + 2L1L3V2n:2(4 19)

where V;(z;,t) is the voltage applied to the film on the ith link which can vary in
both space and time and m; is a physical constant representing stiffness and other
parameters of the film. The boundary conditions with the addition of the film actuator
can be found in Schoenwald and Ozginer [17].

Bailey and Hubbard [26] show that a uniformly spatially varying voltage ¢ ~tribution
fails to control even-numbered modes of many types of vibrating beams. But we have
proposed a uniform distribution for the film since our assumed geometric boundary
conditions are clamped-free which are controllable via this distribution [28]. The
shape of the actuator’s spatial component is obtained by cutting the film into the
desired shape and adhering it to the longitudinal faces of the beams. This implies
that only the temporal component of the film voltage can be varied since the shape
of the film must be determined a priori. Thus, our control strategy focuses on the
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type of control that would be most effective for the temporal component of the film
distribution.

It is proposed here that feedback for this time-varying voltage will enhance the damp-
ing properties of the actuator. There are two primary types of feedback currently be-
ing considered: (a.) feedback of position error obtained from hub angle measurements
and (b.) feedback of the endpoint acceleration of each link. Strategy (a.) showed the
most encouraging results of the two, however, both methods proved feasible. Results
of these simulations appear in Section 4.4.

4.3 Approximate feedback linearization

From (4.11) and (4.12), we choose the control terms u;o to linearize the O(1) corrected
slow manifold equations. This is simply the linearization of the rigid manipulator
dynamics and can be done via the well-known computed torque method as is suggested
by Spong et al. [11] and Siciliano and Book [12]. Because of the reliance on the rigid
link angles and their derivatives in the calculations, the following assumption is made:

A2.) 0;, é,- are assumed to be measurable.

Assumption A2 is quite reasonable since fairly inexpensive hardware is available for
such purposes, e.g., shaft encoders and tachometers. The computed torque method
will not require the measurement or estimation of joint acceleration, 8;, thus negating
the need for differentiation of measured signals. With the rigid linearizing control
law, the O(1) equations for the corrected slow manifold (i.e. the slow subsystem) are
as follows:

O(1) rigid body motion equation for link 1:

(J+3L3)91+ 3L3 6=nv (420)
O(1) rigid body motion equation for link 2:

0 £2 0, = 4.21
3L, +ar, b= (4.21)
where v; are the external inputs needed to implement the desired slewing behavior.

The above equations imply that the O(1) feedback linearization strategy results in
two double integrators which are well known to be controllable through PD feedback
(i.e., joint angle and velocity feedback). We now briefly discuss how the PD control
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gains can be chosen from the linearized model. First, we put the linearized model
into state space form by defining the following states

G=0—0], =01, &=0,-0;, £&=6 (4.22)

where 0] is the desired slewing angle for the ith link. Next, we define two physical
constants

1
3

L

3

1
my =1+ szg + MgL? + ngiLg y Mgy = gngg (423)

which allows us to express the linearized model as

& 01007[6& 0 0
L|_|0000]]|& e miom v
ElTlooo1|]|&al|t] o 0 v | (4.24)
3 =1 my

&a 0000 f“ mi-ma m3(mp—-m3)

This system has four poles at the origin and its controllability matrix has full rank.
Now we define the decentralized feedback laws

v1 = guéi + 91262, v2 = gnéa+ 92264 (4.25)

where the goal is to choose the gains to obtain moderately damped poles without
choosing the gains too high so as to excite vibrational modes through the effect of
the higher order nonlinearities.

Following standard pole placement design techniques, it was decided to place the
poles such that two of them are a complex conjugate pair with approximately 3%
damping with the other two on the negative real axis. With physical constants of
m = 2.02 kg-m? and m; = 0.0046 kg-m?, the gains obtained were gy; = g1z = —10,
gan = —0.5, and g2 = —0.02. Other pole placements were analyzed, however as
damping increases so do the gains which results in the excitation of higher order
nonlinearities. The oscillations in the joint trajectories were particularly sensitive
to the velocity gains gi2. Smaller gains resulted in longer settling times. Thus, to
achieve greater damping without exciting higher order nonlinearities, the corrective
(O(¢€)) control is needed.

The remainder of the feedback linearization strategy is to choose the control terms
u;; to cancel nonlinearities in the O( €’) equations. This can be done to an arbitrary
power of ¢. A detailed description of the O(e) linearizing controller is presented
in [17]. This control law represents a higher order correction to the rigid linearizing
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controller. The decision as to when to incorporate the higher order control law will
depend upon the particular structure involved. Generally, flexible structures with
principal vibratory modes under 10 Hz will benefit from higher order control laws.
But, only very flexible structures (¢’s greater than 0.1) would require anything more
than the O(¢) control law. The addition of the distributed actuator will alleviate much
of the elasticity problem, but the higher order control law may reduce the amount of
energy the distributed actuator is required to add to the system.

4.4 Simulation results

In this section, results of our computer simulations on a two-link flexible manipula-
tor are presented. The computer program which handles the simulations implements
a finite-dimensional model of the system using the assumed modes method. This
method and the derivation of the finite-dimensional model as well as structural di-
mensions of the OSU two-link flexible manipulator are detailed in {17]. Gravity effects
are not incorporated in the model, but viscous damping of the links is included. The
simulated sampling time was 10 milliseconds and a 5th order Runge-Kutta differential
equation solver with adaptive stepsize was utilized for solving the system differential
equations.

The program simulates a one-mode expansion for each link. The first link is modeled
as c'amped at one end with a mass and moment of inertia at the other ead repre-
senting the second joint/link assembly. The second link is modeled as clamped-free.
These assumed mode shapes represent our effort to accurately include the analytical
boundary conditions. The details of these mode shapes are discussed in [17]. The
experimental results of the structure in Yurkovich et al. [31] indicate only one mode
is apparent in each link, thus a one-mode approximation is justified. The modal fre-
quencies obtained from FFT plots of tip position are 1.6 Hz for the first link and 1.5
Hz for the second link. From (4.4), &, = 0.0282 and €, = 0.0315 using structural data
from Schoenwald and Ozginer [17]. Since ¢ o< X, the ratio predicted by the € values

is #2 = 0.946 which is very close to the simulation results of = =0.938.

The torque control consisted of a PD component plus the O(1) linearizing control
described in the last section. The PD controller consists of constant feedback of the
shaft velocities and constant feedback of the position error of the rigid link angles. The
procedure for choosing the gains for the PD coutrol was explained in Section 4.3. The
distributed actuator control consists of a spatially uniform component and a temporal
component consisting of constant position error feedback as described in Section 4.2.
Several other types of feedback were implemented including tip acceleration and tip
deflection, however the position error feedback achieved the most encouraging results
and in a physical system it would be easy to measure. The boundary conditions are
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incorporated in the distributed control law via distribution theory since the uniform
spatial distribution must be differentiated twice at the boundaries (which involves
taking derivatives of delta distributions).

In all plots the first link is initially displaced 45 degrees above a reference line and
the second link is initially displaced yet another 45 degrees from the first link. All
angular velocities and accelerations are initially zero and so is the initial tip deflection,
velocity, and acceleration. The desired final position is for the two links to be on a
straight line with each other at the reference line, i.e., 8; = 6, = 0 and both links at
rest. That is, both links are slewed through an angle of 45 degrees. The film actuator
simulated here is a normalized model of the one described in Bailey and Hubbard [26]
and Burke and Hubbard {27, 28]. This implies that the film physical constants are
simply embedded in the applied voltage. Thus, the results obtained are applicable to
many types of film actuators.

Hub angle profiles (solid-link 1, dashed-link 2)

0.8

angle,radians

_0. 4 A A . i e .
0 1 2 3 4 S 6 7
time,seconds

Figure 4.2: Joint angle plots with PD feedback and O(1) linearizing control.
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Hub velocity profiles (solid-link 1, dashed-link 2)
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Figure 4.3: Joint velocity plots with PD feedback and O(1) linearizing control.
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Figures 4.2 and 4.3 show the joint angles and velocities vs. time for the above de-
scribed torque control and slewing maneuvers but without the film actuator. It can
be seen that the links achieved their desired positions in about 3 seconds. The joint
angle and velocity responses of link 2 oscillate as is seen in Figures 4.2 and 4.3, but
this is not the case for link 1. The first link has a much heavier mass than the second
link (about 10 times as heavy as link 2) making it more difficult to oscillate. Also,
nonlinearities of O(¢) (which are not canceled by the torque law) create a more over-
damped response at the joint of link 1. Figure 4.2 shows the hub angle responses
with PD control and the O(1) linearizing control. Plots not shown here indicate that
PD control by itself has a very similar response to Figure 4.2, but the responses take
approx. 0.5 seconds longer to settle down. Thus, the linearization helps but not
substantially. The addition of the distributed actuator has little effect on the hub
angle profiles.

Endpoint deflection of link 1 (solid-with film, dashed-w/o film)

deflection,cm

Figure 4.4: Endpoint deflections of link 1 with and without distributed actuator.
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Endpoint deflection of link 2 (solid-with film, dashed-w/o film)
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Figure 4.5: Endpoint deflections of link 2 with and without distributed actuator.




Figures 4.4 and 4.5 illustrate the tip deflections with and without the film actuator.
The torque control applied is exactly the same as in Figures 4.2 and 4.3. As can be
seen, the maximum absolute deflection has been reduced in the first link from 3.9 cm
to 2.4 cm, and in the second link from 8.7 ¢m to 3.7 cm. The improvement is most
noticeable in the second link (approx. 60% reduction) which would normally be the
payload-carrying link. The distributed actuator force for link 1 is overdamped, thus
the reason for the reduction of deflection in link 1 on the positive side but not on the
negative side as is apparent in Figure 4.4. The small phase shift evident in the tip
deflections of the second link is due to the position error feedback of the film actuator.
The film feeds back the position error in a decentralized fashion, i.e., the ith link’s
film feeds back the ith link’s joint angle error. Because of the nonlinearities in the
flexure equations (which are of O(¢) and are not linearized by the torque controller
here), there is a small phase shift between the joint angles and tip deflection.

Endpoint velocity of link 1 (solid-with film, dashed-w/o film)
25 : v r r r v

20} 4

velocity,cm/sec

_25 e A A A A i
0 1 2 3 4 5 6 7

time seconds

Figure 4.6: Endpoint velocities of link 1 with and without distributed actuator.
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Endpoint velocity of link 2 (solid-with film, dashed-w/o film)
6 Y v v v v v

velocity,m/sec

Figure 4.7: Endpoint velocities of link 2 with and without distributed actuator.
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Also important in vibrational dampening is the reduction of tip velocity. One can
imagine a payload on the tip of the 2nd link aud the importance of keeping the
endpoint speed at a minimum. The plots in Figures 4.6 and 4.7 indicate that the
tip velocities are reduced, particularly in the second link whose maximum endpoint
velocity has been slowed by a factor of 6. The tip velocities also settle faster wih the
film actuator than without it.
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5. DECENTRALIZED FEEDBACK LINEARIZATION

Many nonlinear control strategies exist (variable structure control, perturbation meth-
ods, sensitivity analysis, and Lyapunov methods) for systems with full state informa-
ticn. In the effort presented in this chapter, we focus on feedback linearization due to
its avility to transform a nonlinear system into a linear one, thus allowing the wealth
of linear control techniques to be utilized. Figure 5.1 shows the basic idea behind feed-
back linearization. The tools needed are a nonlinear change in coordinates, z = ¢(r}.
tc transform the system into its normal form. Then a linearizing control law in the
new coordinates renders the system’s state space as well as its input-output response
linear in these new coordinates. The transfer function of the closed loop system is
H(s) = 1 where r is the relative degree of the nonlinear system.

Linearized System

e —

| ; .
Y L u x=f{x)+g(x)u y
——l—hu—a(z) (—b(z)+v)-—~—> y:h(x) —‘_——

Figure 5.1: Concept of feedback linearization.

Much work has been done on centralized feedback linearization for MIMQO systems.
but decentralized feedback linearization has received little prior attention. In the
centralized MIMO feedback linearization approach, each input is assumed to have the
full system state available for feedback. Restricting each input to use only its local
state generally makes the problem unsolvable because nonlinear interactions between
states or subsystems cannot be canceled. Thus, decentralized feedback linearization
must focus on the observer problem as well as looking at specific classes of systems for
which the problem may be solvable. In the last year, we have developed four methods
for use in various aspects of the decentralized feedback linearization problem which we
describe in this report. We also propose two structures for applying these methods.
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We begin by looking at the observer problem. If just one input-output pair is suc-
cessfully able to observe the full state then this pair could be used to linearize the
system. The idea then is to close all but one of the input-output ports with output
feedback and choose these output feedback functions such that the conditions for
solving the observer problem at the one remaining open input-output port are met.
This procedure is illustrated in Figure 5.2 which shows a block diagram of a MIMO
nonlinear system with m input/output ports. All but one of these ports is closed
with local output feedback. If these feedback laws are chosen appropriately then the
last port will be able to construct an observer for the full state.

MIMO
NONLINEAR
SYSTEM

OBSERVER

Figure 5.2: Decentralized strategy to observer design.

As an example, consider the following system consisting of two nonlinear coupled
subsystems with linear interconnections

zy = fulz) + Az +alz)u, yp=0Cn (5.1)
Ty = Anzy + fa(z2) + g2(z2)u2, y2 = Coz,.

An observer can be constructed at port 2 (we could have just as easily chosen port
1), if the following two conditions hold:
1.) C; #0, CaAy #0.

45




ii.)The feedback function u; = Kj(y;) must be a solution to the partial differential
equation

azfu 32.‘71
-3—:;:?— + -a-:r?Kl(w) + 2

891 0K, 321{1 _ -
3.1:1 5;1— = 0 . (02)

Specifically, if fi1(z1) = z? and g,(z,) = z; then (5.2) becomes

?*K, _0K, \
Il az% +2axl -—"’2 (5-3/

which gives us the linear output feedback u; = X;(y) = —C; 'y1.

The next issue to address is the decentralized controllability of the linearized system
obtained upon successful feedback linearization. We show that the linearized system
(which is in Brunovsky canonical form) can be asymptotically stabilized via decen-
tralized dynamic output feedback. That is, this particular canonical form contains no
decentralized fixed modes (modes that are invariant under static decentralized feed-
back). This result shows that if the decentralized feedback linearization can be solved
by one controller then the task of controlling the linearized system can be relegated
to another controller.

This approach is illustrated in Figure 5.3. A linearizing controller utilizes state feed-
back (which may be provided by an observer) to linearize the MIMO system. Then,
local control laws employing dynamic output feedback can stabilize the linearized
system. This is possible because we have shown that the caronical form one obtains
upon linearizing a system contains no decentralized fixed modes. This means that all
eigenvalues of the closed loop linear system can be moved via static output feedback,
thus dynamic output feedback can stabilize these modes. This result allows us to
relegate the linearization of the system to one controller and the stabilization to the
remaining controllers. The importance c/ this result is that we can design stabilizing
decentralized control laws for a linear system.

The next issue we address is that of linearizing and stabilizing coupled subsystems,
each of which is nonlinear as well as the coupling terms. We assume each subsystem
has its own state available for feedback. We show that if the nonlinear subsystem can
be linearized except for the coupling terms then a suitably chosen linear state feed-
back can exponentially stabilize not only the linearized subsystem but the nonlinear
interconnections as well.

The system we consider consists of two nonlinear weakly coupled subsystems with
nonlinear interconnections as depicted in Figure 5.4. The system equations can be
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MIMO LINEARIZED SYSTEM

i ————

NONLINEAR
SYSTEM

DECENTRALIZED STABILIZERS

Figure 5.3: Multi-level approach to linearization and stabilization.

written as

&1 = fu(z) + efra(z2) + ai(z)ur, v = hi(z) (5.4)
I, = falz)+efn(zr) + g2(z2)us, y2 = ha(z2)

where ¢ is a small parameter representing the strength of coupling. Each subsystem
has its own input and output with the outputs depending on the local state only.

Our result is that if the interaction terms satisfy a Lipschitz condition (the norm of the
interconpections is bounded by the norm of the states) then the overall system can be
exponentially stabilized to a prescribed degree v (i.e., z(t) exp(—7t) — 0 as t — oo).
The control required to achieve this result consists of local feedback linearization
which linearizes everything but the coupling terms. Then a local state feedback with
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Figure 5.4: Weakly coupled nonlinear system.

gain obtained from an algebraic Riccati equation is designed to exponentially stabilize
the system to some prescribed degree. The significance of this result is that using
decentralized feedback only, partial linearization of all but the coupling terms and
local state feedback are all that is needed to exponentially stabilize these weakly
coupled nonlinear systems.

The final result we analyze is that of improving the solvability of the MIMO feedback
linearization problem via feedback. That is, we ask the question, can state feedback
at all but one of the input/output ports allow one to solve the feedback linearization
problem at the remaining input/output port? This is useful for systems that are not
feedback linearizable using centralized feedback. Thus, we are interested in feedback
laws that can transform a MIMO system that is not feedback linearizable into a
single-input single-output (SISO) system that is feedback linearizable. The solvability
of the feedback linearization problem depends upon the relative degree, r, of the
nonlinear system (the number of times the output can be differentiated before at
least one component of the input appears). The relative degree requirement (r must
equal the system order, n) is difficult to satisfy. But, if the feedback functions,
u; = Ki(z),:=1,...,m, are chosen to satisfy the partial differential equations that
govern the relative degree requirement then the feedback linearization problem is
solvable. Essentially, one chooses these feedback functions to satisfy certain partial
differential equations so as to enhance the relative degree of the nonlinear system.
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Then the feedback linearization problem is solvable from the mth input/output port.
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6. VARIABLE STRUCTURE CONTROL OF RIGID-FLEXIBLE
CLOSED-CHAIN SYSTEMS

This chapter details modeling, control, and regulation characteristics of rigid-flexible
closed chain systems in general, and a Rapid Deployment Truss (RDT) in particular.
The modeling element unique to this work is extension of holonomic structural con-
straint modeling to the context of flexible bodies. The control element unique to this
work is that the truss deployment be high speed, while not excessively exciting flexible
modes. Applications in the large space structures context for such a device include
rapid deployment of parabolic dish antenna back-up structures, instrument support
platforms, or other space-based devices requiring precise orientation or position.

The obvious motivation for lightweight and rigid large structures in space is reduction
in total mass lifted into orbit. However, such structures generally require assembly
in orbit, either manually or by teleoperation, both of which can be slow processes.
Addition or removal of various segments and modules at a later time would also be
as inconvenient. This consideration generates a need for adaptable space structures,
those which can vary their configurations.

Previous work on deployable structures emphasizes kinematics of such structures. A
flat-folding octahedral truss is experimentally verified in [32], but the system dynamics
are dominated by dynamics of lead-screw type actuators. Kinematics of a planar
variable geometry truss are formulated in [33], but not dynamics. In these cases,
structural vibrations during the deployment phase are not addressed, and in fact
the deployment is deliberately slow in an attempt to not excite structural modes
excessively.

Motion of flexible structures undergoing large angle, fast slewing maneuvers has been
investigated in the context of flexible manipulators. Research on flexible planar ma-
nipulators, while fairly mature, has been limited to devices with one or two flexible
links, with each link usually modeled as a single flexible beam. Detailed flexible ma-
nipulator models have been developed, some based upon Timshenko beam theory,
which include higher order effects such as coriolis terms and centrifugal stiffening.

The planar Rapid Deployment Truss considered in this work is shown deployed and
during deployment in Figure 6.1 and Figure 6.2. This ladder-like planar frame acts
as a static truss when fully deployed, having the desirable truss qualities of low mass
and rigidity if joints are locked. In contrast to a manipulator, it has many links or
members, and multiple holonomic constraints on allowable configurations, constraints
which must be obeyed to maintain structure connectivity. Actuators and sensors are
distributed throughout the structure, as are torsion springs which augment rapid
deployment. In these ways it is neither a manipulator nor a static truss.
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Figure 6.1: Deployed RDT

Figure 6.2: RDT During Deployment

As will be shown, the RDT has complicated nonlinear dynamics, its rigid body and
flexure motion terms are coupled, and it may be subjected to modeling uncertainties
such as tip load variation. A control approach that has met with success for such
complicated problems is variable-structure controllers (“VSC”) [34, 35, 36, 37]. The
VSC philosophy is ¢~ unee a high gain feedhack, which changes structure according
to the location of the state vector with respect to a defined surface in the state
space. Under conditions that guarantee stability, the state will “slide” to the origin
along this surface. A known drawback of this approach is the “chattering” phenomena
around the switching surface. In [38] is developed the theory to selectively curtail this
chattering, by inserting a filter designed according to the rules of frequency shaped
quadratic regulators into the system. The method is summarized and applied to the
control design for a simplified RDT in the sequel.

51




6.1 Modeling of Flexible Rapid Deployment Truss Structure

6.1.1 Modeling Assumptions

The basic truss structure studied in this work is that of a planer n bay box type truss,
spring loaded in stowage, and actively dampened in deployment by multiple actuators
as in Figure 6.3. Note in this figure that torque springs are chosen to act between

Figure 6.3: RDT with Coil Springs in Place

serially connected longitudinal members, while lateral members (“rungs”) are end
connected as pinned, and thus no moments can be transferred from the longitudinal
to lateral members.

For a static frame-truss, members can be considered much stiffer in the axial direction
than in the lateral. In this work, the assumption of zero axial displacements of
members in simple static truss bay configurations is assumed extendable to dynamic
multi-bay structures such as the RDT.

Since the truss considered is chosen to be deployed by torque actuators augmented
with torsional springs, both of which are chosen to act between longitudinal mem-
bers only, and rungs are connected freely at pin joints, the deflection of longitudinal
members, those vertical in Figure 6.1, will occur. If longitudinal members undergo
small flexures, little foreskortening of these links from the nominal length should
occur. The resulting assumed structure becomes that of two n degree-of-freedom
flexible manipulators operating in parallel, with deployment springs and holonomic
constraints imposed by lateral members at joints.

The dynamics of the two unconstrained n link flexible open kinematic chains can
be found using Timshenko beam theory or Euler-Lagrange formulation. In [39], sin-
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gle holonomic constraints between parallel rigid manipulators is considered but con-
straints between flexible manipulators has not yet been approached. Inclusion and
control of rigid body constraint forces in a linearized state space model for dynamics
is developed by Hemami in [40].

In modeling flexible links as slender beams, it is both couvenient and a valid approx-
imation to restrict the model to finite order by truncating the full set of modes and
including only those modes which are considered most important based upon some
criterion. For simple slewing structures undergoing small vibrations, the continuous
solution to a partial differential equation (PDE) representative of its motion can be
found as in [15] for both one- and two-link flexible open kinematic chains {(manipula-
tors). However, even when the exact PDE solution is available, it generally must be
spatially discretized in some manner for purpose of simulation. In many cases it can
be shown by limiting criteria such as controller bandwidth that it is not feasible to
attempt to model or control a very large number of modes. Thus some “error indices”
might be defined which provide a criterion for exclusion of higher order modes.

6.1.2 General Solution of Holonomic Constraint Forces

In this section, a method proposed by Hemami in {41] is derived which keeps holo-
nomic (configuration dependent) constraint forces in evidence for modeling and con-
trol of open- and closed-chain linkages. The derived method is applicable to rigid
or flexible linkages, if the flexure variables have been expressed as a finite dimen-
sional summation of modal terms, perhaps based uoon the assumed modes modeling
method. If vector z is taken as the position state vector of the complete unconstrained
system, then the corresponding linkage dynamics can always be expressed as

T
M: +g(z,2) = (Z—f) T+u (6.1)

where I is the vector of constraint forces, and the holonomic constraints are expressed
as C(z) = 0. To solve (6.1) explicitly for constraint forces I, first twice differentiate
C with respect to time, giving

< d (aC\ . 0C.
C(z) = % (—5;) z+ 3.5 0. (6.2)

Solve for acceleration Z in (6.1) to find
| T
3 = M [—g(z,é) + (aa—f) | u] . (6.3)
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Multiply through (6.3) by (4%) then substitute from (6.2) for (%¢)z which gives

d f0C oc ocC aC . _,
-5 (5) +=-Fomtate e Fon (52) e s (&4

Solving for T yields

oo [ ()] {394 Sowwen-a). o

as the expression of constraint forces.

6.1.3 Dynamical Consideration of a Simplified RDT Structure

Consider modeling of a simplified RDT structure, dynamically equivalent to par-
allel rigid-flex manipulators constrained in position by a rigid pinned-pinned beam
(“rung”) at the endpoints of the first links only. A detailed structural schematic
appears in Figure 6.4. Parameters appearing in the figure are defined in Table 6.2.

Figure 6.4: Simplified RDT Structural Schematic

For each rigid-flex manipulator individually, equations of motion using the assumed
modes constrained expansion will result in
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6y 63 b 0 A 1 0 u

M| 6, |+F | 63 +F,,[ 142 ]+ 0 |+K| 8 |=] 0o 1 { ! ],(6.6)
— 9‘0 93(13 m : 0 0 Uz
92 102 292 q2 N, UN,

where g2 = [g21, 922, -+, §24, -+, q2nvi]T modal states, j = mode number (1,..., N;), and
M, F,, F4, and K are mass, centrifugal, coriolis, and stiffness matrices. A small
damping term involving coefficients y3 is included for modal states. Control torques
u; have no direct effect on modal state variables, but affect the rigid body angles 6,,
and through coupling off-diagonal terms in the mass matrix affect modal states.

The rung equations of motion can be written using balance of inertia and constraint
forces in the free body diagram of Figure 6.5. Summing horizontal (X, cirection) and

Figure 6.5: Simplified RDT, Rung Free-body Diagram
vertical ( Yy direction) forces gives
fi=mi% - fi,
o =mij — gy, | (6.7)

where z7 and y; are the horizontal and vertical acceleration components of the center
of mass of rung. Likewise summing moments about the center of mass (8} direction)
gives

L)




;s = fi(d = d3)s} + g1(d — d})e} — qudic; = 116}, (6.8)

where 3] and c] represent sin 8] and cos 8] respectively, and d; is the distance from
left hand pinned joint of rung to its center of mass.

Angular state variable 47 will be maintained explicitly in final equations of motion, as
the degree of freedom which allows calculation of explicit constraint forces {f;,9,}-
However, accelerations Z; and y; can be expressed in terms of the left hand side
manipulator’s state variables and 8], by writing equations for the center of mass
position of the rung, then twice differentiating these with respert to time, giving
accelerations

] = —Lléfcl — d{é;zci - L15x81 - d;é;.s;,
5 = —Lifisi —d16y’s] + Librer + dyfcy. (6.9)

Substitute the preceding accelerations into force balance equations (6.7) to yield

fi = mi(=Lible, - di67%¢ — Libs, — d36;s7) - f1
g1 = mi(—Li83s, — d;03%s} + L1610, + d{ﬂlcl) ;- (6.10)
To write the equations of motion of the rung in terms of left manipulator variables

and the explicit constraint forces {f;, g, }, substitute the right ha'f sides of (6.10) into
(6.8) to have

B3 + di*m3) = midi[8y(~Lac(6: — 87)) + 63 Ls(8: — #7)] - dsify + defg;. (6.11)
The implicit {fi,91} and explicit {f,,9;} constraint forces will affect the individual

manipulator dynamirs thirough a term added to each manipulator’s equation of motion
(6.6) to give an equation for the left side manipulator of the form

M[]+F[]+Frf[]+Damp+K[]-[]u—JT[g:] (6.12)

where the Jacobian matrix J expressed in terms of inertial coordinates { Xj, Y5 } has
the form

—81L1 61L1
JT = 0 0 |. (6.13)
ONz ONz

In the equation of dynamics for the left side manipulator (6.12) the expr sions of
forces f; and ¢y from (6.10) can be utilized so that these forces are included implicitly
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in the left manipulator model. Here the term —JI [ g: ] will have only first row

nonzero elements of the following form.
silifi—aligi (6.14)
Expanding this and simplifying the result gives

(6.15)

mi (43612 Lys(0; — 0y) — 6, L% — 81d} Lyc(6] — 6,)) — s, Ly fy + e1Lagy.  (6.16)

The equation (6.16) is easily included in the left side manipulator equations (6.12)
by suitably modifying elements of the mass, centrifugal, and coriolis matrices therein.
The equation of (6.12) with only explicit constraint forces {f,,g,} takes ou the form

M1+ Fl] + Fysl] + Damp + K[] = [Ju+ JT [ y ] . (6.17)

For inclusion of the rung into the system model, equation (6.11) is appended as a row
to the dynamics of the left manipulator (6.12).

Similar to the left side, the equation of motion for the right side manipulator has the
form

M|+ F[1+ F,,[1+ Damp + K'[] = []u' = J;T [ £1 ] , (6.18)

1

and the Jacobian

- an
JT=| v 0 |. (6.19)
In this simplified RDT structure since the constraint loop is made up of only rigid
members, the Jacobian is not dependent upon modal terms as would be the case for

a flexible link loop. The method is however extendable to flexible members in the
constraint leop. as shown in [42)].

Prior to solving (6.5) for constraint forces, the method discussed in Section 6.1.2 re-
quires writing constraint equations of the form C(z) = 0 where z = [8,, 62, ¢, 6}, 6,, 05, 4,7
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is the position state vector of the complete unconstrained system. If endpoints of left
and right side manipulators’ first links are expressed as #, and z, where

i = [ Llcl ], ill - [d+L1cl ]’ (620)

! !

then the constraint equation can be written as
) =2 -zn-d|d]|=0. (6.21)

The solution of constraint forces in (6.5) also requires solving for %. By definition

oc 9 [ .

Ezb—;[il—il—d(gt)], (6.22)
but from (6.20) the partials of z, and Z, with respect to vectors [8;,8;.¢.] and
(6,85, ¢,]T respectively are zero matrices. Thus % can be expressed as

aC . - . gt

where the Jacobians in inertial coordinates have the usual definitions as in Section
6.1.3. Simulations of such a constrained dynamical system can take advantage of
available Jacobian values when calculating the term J.

The model of this simplified RDT structural dynamics is thus shown to include ex-
plicitly holonomic constraint forces as a means for coupling its sides.

6.1.4 State Space Formulation

The general equations of motion for both manipulators and RDT type structures,
both rigid and flexible, can be written in the form

M(z)z + g(z,z) = JTT(z,u) + Bu (6.24)

where z is the n/2 by 1 vector of rigid-body and flexure coordinates, M(r) is the
positive definite mass matrix, ¢(z, z) is all nonlinear terms due to centrifugal, coriolis,
and gravity effects, the holonomic constraint expression C(z) = 0 represents all closed
structural loops, I'(z, u) is a vector of constraint forces or Lagrange multipliers, and B
is the control distribution matrix for input vector u. Using the expression derived for
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constraint forces I'(z, u) in (6.5), and grouping terms in input u, the system dynamical
equation (6.24) can be rewritten as

M(z)z + g(z,z) + JT [JM“JT] - {iT-a-a;(Ji) - JIMg(z, i)}

= [-JT(JIM Y IT) ' IM™! + Bu. (6.25)

the state space form of (6.25) can be written in more brief form

z= f(z,z2) + D(z)u (6.26)
where

f(z, i) =

MY (z) {—g(z,i) - JT(JM"JT)“[:ET%? - Jo(z, i)]} , (6.27)

D(z) = M~(2) {B- JT(IMJTy UM} (6.28)

Since matrix M is a function of z, both f and D are nonlinear. The vector f is a
nonlinear function of both z and # due to expressions a(z, ) and iT%(J z).

8.2 Frequency Shaped Variable Structure Control for RDT

In this research, a frequency shaped sliding mode approach [38] is being considered.
The method is applied in two steps. First, a controller with variable structure (VSC)
is established according to some switching logic. At this primary design stage the link
flexure is treated as a system uncertainty or disturbance to the rigid body metion.
The aim of VSC is to guarantee tracking error convergence of each rigid body joint. In
the next stage of the control design, the switching surface is selected to act like a set
of linear operators with high frequency control penalty. As a result, high frequency
modeling uncertainties are less excited.

For the RDT, since no direct actuation of flexure variables is available, there is no
design degree-of-freedom to control their deformation directly. However, since the
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switching surface of VSC can be chosen arbitrarily, the switching surface can be se-
lected to act like an operator which controls the vibration indirectly. When a nonlinear
system enters the sliding mode, its dynamics become those dictated by the switching
surface. If the surface dynamics are linear, the linear operator can be devised by ap-
plying optimization methods. Moreover, there is a degree-of-freedom for the designer
to choose weighting matrices in the performance index, weighting matrices which can
be made frequency-dependent based upon RDT structure bandwidth.

6.2.1 The “Switching Surface ” as a Linear Operator

In this section we will consider the “switching surface” not to be a hypersurface, but
a linear operator representable as linear, time-invariant dynamic system itself, acting
on the states. The model is assumed to be the system

i:l 4411 A]g Iy O
. = 6.29
sl alz)-a] 6
where z; € R", z, € r™, u € R™, the matrices are real, of compatible dimension and
B, is of full rank. The switching surface is

o =C(z1)+ 22 (6.30)

where C(-) is a linear operator which has a realization as a »ystem, i.e.,

z = 1‘1z+ G.'Bl

y = Hz+Cxy
Here we have assumed that C(-) has an equal number of poles and zeros (or less
zeros). Extensions to more zeros can also be made, introducing derivatives of z,.

The total system is

_ F G : 0 : 0
z _ 0
2 |=]0 An : An |y “
znz cee arw [ oo s LA
. B
| 0 An @ A | 2 2.

o=[H CI[:1]+::2
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The equivalent control on the switching surface can be found from using the conditions
oc=0

[H C] [ :1 ] +2;=0 (6.31)

andd =0

Hz + C:E] + ig = HF:z + HG.‘I?] + CAu:L'l + CAlgzg
+Anz: + Azza + Baue, =0

to give
Ueq = —B;IIHFZ + (HG + CAu + An)I] (632)
+(CA12 + Azg):ﬂz] (633)
and
zo=—Hz-Cuz,

Thus, u., can also be expressed as

Ueg = —Bz_l[(HF - CAle - Ang)Z (634\
+(HG + CAn + A — CAaC — AC)zy)

On the switching surface, the reduced order system is
z=Fz + GII
z) = Anz) + Az = Anty + An(—-Hz - Cz,)

Thus, this is a pair of systems in feedback configuration.

Note that if o is non-dynamic, it is realizable as y = Cz; which is the standard
switching surface representation.

What we have thus accomplished is insertion of a “filter” (dynamics to be defined as
required) into the standard switching control.
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6.2.2 Frequency-shaped Optimal Sliding Mode

In an earlier work Utkin and Young have shown [43] how a quadratic regulator can
be defined to specify behavior of a system in the sliding region. Ozgiiner and Oz
have shown [44] the clear relationship between the choice of weights in the quadratic
regulator and the inclination of the hypersurface, in mechanical systems. Thus the
formulations above can thus be merged for a frequency weighted variable structure
controller which will filter the vibrational modes.

As developed by Utkin and Young, this method called for the minimization of the
quadratic cost,

J, = '/‘ (=T Qz)dt (6.35)

where ¢, is the time at which sliding mode begins. This problem was interpreted as
an LQ optimal regulator problem for the transformed system,

£ An An || = 0
2l = 6.36
for which the quadratic cost,

J, = /‘ (T Quz1 + 227 Quazz + 21 Qy525)dt (6.37)

is minimized with respect to z;. The optimal switching surface s(z,,z;) = 0 is derived
from the optimal control solution of this problem to be:

22 = —Q7 [ALP + QL= (6.38)

where P is the appropriate Riccati equation solution. The above expression also
defines the swi.ching line. While sliding mode exists, in the upper row of (6.36)
z, can be regarded as a vector of operating variables. Consequently, the frequency-
shaped optimal sliding mode is realized through replacing (6.37) by

I=3 [ #60)Quaio) + #5(w)Quljw)ea(iv)] d (6.39)

where @y, is positive semi-definite, @43(jw) is a positive definite Hermitian matrices
for all frequencies. The state weighting matrix Q,(jw) is selected to have a high
pass filtering property to penalize high frequency control efforts which may excite
vibration of higher order flexible modes.
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6.2.3 Variable Structure Control Design for the Simplified RDT
According to the state space formulation, it is easy to give a primary VSC design

to stabilize the RDT rigid body dynamics if bounds on uncertainties are known.
Assuming that the model displacement and velocity are reasonably bounded by

—a<g¢g<la (6.40)
—<i<e (6.41)

where ¢; and ¢; are constant vectors with each element being positive. Using Lya-
punov design method the VSC design gives global stability conditions for MIMO
systems such as the simplified RDT.

Since the simplified RDT dynamics is

z = f(z,z) + D(z)u (6.42)
multiply BT to both sides of (42), the rigid part can be obtained

Zo = folz,Z) + Do(z)u (6.43)

where zo, fo € R, Dy € R4, zo = [0,0,,6;,05]".

Because the first two links of the simplified RDT are rigid, and have the same lengths
as the constrained link, the first equation of (43) is exactly the same as the third
equation of (43) whatever u would be, i.e.

6,

6,
hence the first column (row) of Dy equals the third column (row), and rank (Do) = 3.

Therefore in the VSC design, the rigid dynamics can be further reduced to a 3 x 3
dynamics as

z, = f.(z,z) + D, (z)u, (6.44)

where z, = [0;,0},05]7, u, = [Us, 2u}, u4]T, and D, € R**3 is obtained by eliminating
the first column and first row of D,. In this case

Yz D,(z)= DT(z)>0.
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The VSC can be devised by first using Lyapunov direct method to give u,, then
simply letting u; = uj.

i) Switching surface

Select switching surface
0 = 0(Ze, Ty, Tdry Tdry 2) o€ R. (6.45)

where z4, is given control goal and z represents frequency shaping manipulation.

Let ¢;, = —I, then

o = 0:;,+ d,,.‘i, + 0.2
= —%, + Op 2y + 0,3 (6.46)

As will be related later on, 2 is a function vector of z and z,.
i1) Formulation of uncertainties

The nonlinear vector f, can be expressed as

f(2,2) = ¢(z, §2)¢(2-) (6.47)

where
€= [6: 6, 6.2 6,0, 6,2 6; 8, 67 6.6, 67",

¢ is a known matrix with each element be.

¢i; = $i(<, 42) (6.48)
Consequently
o = -¢£ - Drur + o'z,:i:'p + 0',2.
= D.[-D;'¢¢ —u, + D 0,2, + Dio.3|
D-(6n —u,) (6.49)

where 7 = [£7,27|T, © = B(z,4;) is a coefficient matrix corresponding to the vector
7. With the assumption (6.40), (6.41), it is easy to calculate the bounds of © off-line,
therefore

_emaz S e S Gmx (650)
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which implies

V z,,q2 € [—€1, €], ¢z € [~€3,¢3]
10:5(z, G2)| < 0;jmax (6.51)
i=1,23  j=1,---,3+N;

ili) Lyapunov Function

Now choosing Lyapunov function to be
v= %aTD;’a (6.52)

Substituting (6.49) into the time differential of (6.52) one obtains

1 7d 4 T

59 3 (D7 )o +0° 09 —u, (6.53)
The first terma of the right side of (6.53) can be calculated with symbolic computing
method. However, note that when a system in sliding mode, o & 0, therefore it can
be neglected in VSC design. The switching control is thus of the form

u, = SOpmacinh . (6.54)

where

S = diag(sgn(o1), sgn(o2), sgn(os))
I"!l = [ !771!, R |7’3+Nz| ]T- (655)

The conventional VSC design can also be done by following above design procedures
except letting z = 0.

6.3 Simulations and Discussion

Since all the parameters of right part of the RDT is same as the left part, system
responses of the right part must be exact the same as the left part if same control are
applied. Therefore only the simulation results of the left part will be given. Besides,
for simplicity only the first flexible mode is considered in the RDT model.

The equations simulated are those of identical two link open-kinematic chains but spa-
tially discretized using the assumed modes method, and suitably modified to include
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rungs as given in Section 6.1.3. For augmentation of rapid deployment, torsional
springs act between the reference frame and link one, and between links one and
two. The simulated system parameters are defined in Table 6.1, and numerical values
appear in Table 6.2.

_Table 6.1: Simulation Parameter Definitions

Iy hub inertia

L0 length of link il

M mass of link il

d; distance between first links of RDT, length of rigid pinned-pinned member
m* mass of rung

d; distance from rung left joint to center of mass
i1 spatial variable for link il

aE'](I,',t) angle of flexure of link il7 at location I

OE'] rigid link angle of link sl

pE-'] mass density of link il

E,“I,m stiffness term for link il

125-'] input torque at joint it

N,m number of modes of link il

M,[,:]‘,, hub mass

k[,? torsional spring constant at joint il

,;E'.’ damping of mode j of link i’

7[}) proportional gain at joint i’

7?? derivative gain at joint i’

All simulations are of a stowed RDT type apparatus as in Figure 6.6 suddenly de-

Figure 6.6: Stowed Initial Condit‘ion of Simulation

ploying and attempting to reach its final deployed position as in Figure 6.7. The
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Table 6.2: Simulation Parameters

¢ 1,1 2,2
Ini [kg - m7] 1.0 | 00
My [kg) 2.0 [ 0.0
L; [m] 1.0 1.0
E.I; [N -m? oo |8.8778
M,‘ [kg] 1.0 1.0
N; 0 1
Ypi [N - m/rad] 0.0 0.0
vi [N -m/(rad/s)] [ 0.0 0.0
k.; [N/rad] 10.0 0.1
pi [N - 83 /m] 0.973 | 0.973
d[m] 1.0 0
d* [m] | 0.5 0
m* [kg] 1.0 0

2

Figure 6.7: Deployed Final Condition of Simulation

numerical values of initial and final conditions of the motion are listed in Table 6.3,
page 68. These chosen conditions are somewhat contrived, so as to not generate
Jacobian majrices of less than full rank. This loss of rank would cause the matrix
%M" (%) in (6.5) to become singular, making a solution for T', the constraint
forces, impossible. Simulations were carried out maintaining the smallest nonzero
number possible on the order of 10~!® as a measure of numerical accuracy.

In the conventional variable structure control design, the switching surface is

0; = ci(0ia — 6;) + 6;
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Table 6.3: Initial and Final Conditions

01 0; 02 0; ay | Qg

deg | deg | deg | deg | m

ic. || 50 | 5.0 [175.01175.0| O
fc.}90.0({9.0] 0O 0 0

m
0
0

where 6; and ;4 ¢ = 1,2 are angles and the desired angles of the two rigid links. ¢;
is the inclination of the switching line (switching surface). For both the rigid and
flexible links, the variable structure control has the form

U = (i k,'_,"]j + p,') sgn(a.') i= 1,2 (6.57)

Jj=1

where the control gain matrix K is previously calculated according to (6.53),

K = [11 11 0.7 1.5 0.8]

4 4 03 05 03 (6.58)

and n = [él, 05, 0?, 6,65, 0§]T p; is a dither term to reject small disturbances while the
system is in sliding mode. A saturation function

1, if s> 6,‘;
sat(s;) = s;/8;, if |si| < 6&; (6.59)
-1, if s < —é;.

is also introduced with §; = 0.01 and é; = 0.1.

Figure 6.8 and Figure 6.9 show the rigid body motion, indicating that set point
regulation is achieved in spite of the existence of unknown deformation. Figure 6.10
shows time responses for position and velocity of flexure coordinate a; of the end
of RDT links. Figure 6.11 and Figure 6.12 show the phaseplane of the first and the
second links, respectively. In the simulation the inclination of switching surfaces are
set to be ¢; =4, ¢; = 1.5, the dither terms are p;, = 3, p; = 0.3 respectively.
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Figure 6.8: Rigid Body Motion of the 1st Link with VSC
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Figure 6.9: Rigid Body Motion of the 2nd Link with VSC
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Figure 6.10: End Link Tip Flexure with VSC
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Figure 6.11: Phaseplane of the 1st Link with VSC

In this case, the VSC design for the first two rigid links are the same as those given
earlier. As for the flexible link, the variable structure control has the form

u;, = (i kijn; + P.‘) sgn(o;) 1=1,2 (6.60)

i=1

where the control gain matrix K is

11 11 0.7 1.5 0.8 0.0 0.0

K =144 4 03 05 03 80 12 (6.61)
and n = [éx,éz,éf,élég,ég,zl,ZZ]T. The switching surface is
82 = hyz1 + haza + ha(Byq — 6;) + 63 (6.62)
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Figure 6.12: Phaseplane of the 2nd Link with VSC

where the states z; and z; are defined by a state space realization of Q2(jw) as
follows.

2..’1 _ 0 1 21 0 n
[2]-[w w][2] 2] 6
and h; = —80.18, h; = —11.74, h; = 0.34. The high pass filter is selected as

10 (ju + VI0) (6.64)

Results of closed loop system response with frequency-shaped variable structure con-
trol follow. The effectiveness of introducing frequency shaping can be found from
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Figure 6.13, which shows both position and velocity at the endpoint of the flexitle
RDT link. It can be observed that he maximum deformation is reduced to about
1/4 of the case without frequency shaping. Figure 6.14 and Figure 6.15 give the
phaseplane of the first and the second links respectively.

In order to see how the high pass filter works in sliding mode, once again the conven-
tional VSC is applied to the simplified RDT where inclination ¢; = 0.5. Figure 6.16,
Figure 6.17 and Figure 6.18, in which the plot data is filtered through a FIR filter,
give the phaseplanes for the conventional VSC with ¢; = 1.5, ¢; = 0.5 and frequency
shaped VSC. The one with frequency shaping shows lower switching inclination at
beginning and higher switching inclination when position error becomes smaller. In
other words, frequency shaped switching surface behaves like a varying surface in
terms of tracking error. Therefore it achieves the trade off between faster conver-
gence nearby equilibrium and lower control action off the equilibrium.

From Figure 6.19 and Figure 6.20 one can observe that, by selecting smaller c; the
deformation of the flexible link can be reduced as lower as the case with frequency
shaping, however, then the rigid body response is in some degree delayed.

Finally, Fast Fourier Transforms are applied to control efforts of both the VSC (¢; =
1.5) and frequency shaped VSC. Comparing Figure 6.21 and Figure 6.22, it is clear
that frequency shaping suppressed the control effort which may excite vibrational
modes.

Analysis and control issues related to closed chain rigid-flexible mechanical systems
are introduced in this chapter. For slewing flexible structures where the vibrational
modes are not to be excited, the modeling approach provides a method for simulating
constrained flexible structures. The approach of inserting a frequency shaped filter
into the design of Variable Structure controllers was pursued for control. A linear
operator interpretation of the sliding surface is used together with frequency weighted
quadratic regulators in the control design. Through the control design application
and simulation of the hybrid rigid-flex RDT example, the validity of the modeling
method and effectiveness of proposed control methodology is shown.
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Figure 6.21: FFT of u; with VSC (c; = 1.5)
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7. SLIDING MODE CONTROL IN SAMPLED DATA SYSTEMS

The switching problem in continuous time sliding mode control design has two aspects:
switching frequency and magnitude. Although high frequency switching in control is
theoretically desirable from the robustness point of view, it is usually hard to achieve
in practice due to physical constraints on the system. Even if it is possible, the
unmodeled high frequency modes wil! likely be excited, which in turn deteriorates
the performance. As to the chattering magnitude reduction problem, researchers
have provided quite a few contributions in this area, however in most, robustness is
usually compromised [45, 46].

Sliding mode control for discrete time has been considered for years [47, 48, 49, 50, 51].
To maintain the states on the sliding manifold is never an easy task. Sarpturk et al.
propose to use the upper and lower bounds of the control to guarantee the convergence
of the sliding motion [48]. The difficuity is that the solution is complicated and hard
tc cornpute in s2al time. In some cases, it may not even exist. Furuta implemented
the controller by using an equivalent control gain and a switching gain to cope with
system parameter variations [47]. The limitations are that the upper bound of the
variation magnitude has to be small enough for the method to be applicable and that
it does not guarantee exogenous disturbance rejection. Chan solved a servo-system
problem successfully by using a similar technique which suffers the same limitations
[50].

We study the sliding mode control for discrete-time linear systems resulting from
sampling. The switching frequency of discrete time controllers is limited by the
value T~!, where T is the sampling period. The use of a discontinuous control law
(typically sign functions) ieads to chattering in the houndary layer of the <liding
manifold § = {z : s(z) = 0}. Even without disturbances the size of this boundary
layer is of order O(T'). In order to alleviate chattcring, it was proposed to use discre‘e
time equivalent control in the prescribed boundary layer, whose -ize is defined by the
restriction applied to the control variables [49]. This approach results in the motion in
O(T?) vicinity of the sliding manifold. The main difficulty arising in implemectation
of the proposed control law is that one needs to know the disturbances for calculating
the equivalent control. Lack of such information leads to O(T') boundary layer, the
same as with discontinuous control.

In this chapter, we introduce a new control based on that concept with robustness.
Our approach allows to keep the state in the O(T?) vicinity of the sliding manifold
even in the presence of disturbances. Both internal and external uncertainties are
considered. Only the continuous time matching conditions and sufficient smoothness
properties are required, which are reasonable constraints in most applications.
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Since the system is discretized in time by the sample/hold processes, the control
signal space is shrunk from (L[’o'n)"‘ to R™ with m being the number of control
inputs. Therefore, the controller will inherently be less capable then the continuous
one. Sliding mode is originally a continuous time concept, and at first glance, it
may not be clear that it will retain its properties in discrete time. Nevertheless, the
advantage is that we are able to overcome the chattering problem with considerable
robustness against system uncertainties.

7.1 Invariance Condition

Consider a continuous time linear, time-invariant system
t=Az+Bu+Ef (7.1)

where z is an n x 1 state vector, u is an m x 1 control vector, and f is an ! x
1 deterministic disturbance vector. A, B, E are constant matrices of appropriate
dimensions.

Assume u is applied through a zero-order-hold. The discretized version of (7.1) can
be formulated as

Zi41 = Oz + Tup + di (7.2)

where ® = eAT, ' = [T eAMAB, dy = [T e Ef((k + 1)T — A)dA.
The sliding surface is

sk=Czr=0 (7.3)

where C is an m x n matrix and is chosen to meet some stability or performance
criterion [52]. To maintain the state on the hyperplane (7.3) at the (k4 1)** sampling
instant, the equivalent control law is given by

4l = =(CT)™'C(Bzy + di) (7.4)

assumning CT is invertible.

Here d, represents the lumped effect of the disturbance f(t) to the system in the time
interval kT <t < (k + 1)T. If the closed loop system behavior does not depend on
f(t), we say the controlled system has the property of disturbance invariance and the
disturbance is said to be rejectable.

Given that f(t) is bounded, the integration of f((k + 1)T — A) multiplied by another
bounded function e#* in the sampling interval results in the magnitude of O(T) in
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each component of di. If no further information is provided and we simply implement
the controller u with state feedback alone, the next state zx4; will not be able to reach
the sliding surface exactly but will result in

Sk41 = O(T)1 (7.5)
We will show later that if di is known, it is still not rejectable by the control in general
unless the discrete time matching condition holds. Unlike continuous time VSC, the
matching condition

rank(B, E] = rank[B] (7.6)
and the boundedness of disturbances is not sufficient for the controller to maintain
sliding mode. Rather, it requires some more knowledge about f(t) so that the current
disturbance, di, can be predicted with accuracy to some extent. It is advantageous
to consider the problem in discrete time because through the measurement of the
states, the past values of the disturbances can be determined and this will provide

the knowledge about the future ones. However, the sampling process will also result
in a requirement or a condition stronger than matching.

Lemma 1 For disturbance invariance in the sampled linear system (7.2), it is neces-
sary that the continuous time matching condition (7.6) holds.

Proof. Substituting (7.4) into (7.2) yields the sliding mode equation
T
zipr = (I = T(CT)1C)(Dz + /o e Ef((k+1)T — A)d\) (7.7)
The condition for disturbance invariance is
T T
/o e Ef((k +1)T - \dA = I(CT)"'C /o AMEf((k+1)T - NdA  (7.8)

for all possible disturbance functions f(t). The necessary and sufficient condition for
(7.8) is the existence of a constant m x 1 vector gi such that

/0 T eA*Ef((k+ 1)T — \) — Bg)d\ = 0 (7.9)

In particular, if f(t) = fi = const., for kT <t < (k+1)T then Ef; = Bg:. Therefore
equation (7.6) is a necessary condition for disturbance rejection.
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To show that the above is not sufficient, assume (7.6) holds; i.e. there exists an m x !
matrix A such that

E = BA (1.10)

Equation (7.9) becomes
/ T eMBAS((k + 1)T — A) = gu)dA = 0 (7.11)

Thus, it yields n equations with m unknowns. Since m < n in general, there exists
no solution for g;. This completes the proof. 0

It is important to note why the sampled system does not preserve the disturbance
rejection property. This is due to the zero-order-hold which is imposed between con-
secutive sampling instants to the control channels during the sampling process. A
similar hold does not exist in the disturbance channel and as a result, the perfect
sliding property is destroyed. The same argument is true for system parameter varia-
tions. Although perfect sliding mode is not possible, one can still maintain the states
in the vicinity of the sliding surface and retain the satisfying disturbance rejection
character.

Lemma 2 If the continuous time matching condition (7.6) holds and f(t) is bounded,
there exists a control law u, such that the sliding surface (7.3) can be reached with
O(T?) accuracy.

Proof. Choose gx = Af(kT), then the left hand side of equation (7.11) becomes

T kT .
A — 2
[) e”*BA )T f(o)ded) = O(T?) (7.12)

Since f is bounded, equation (7.12) is confirmed. We then apply the control
Ug = —(CI‘)"‘C‘D:,, - gk (713)

to achieve O(T?) invariance in the sliding equation (7.7) and si4; = O(T?). a

If f(t) is measurable or we have its model, then f(kT') can be observed and g ob-
tained. Nevertheless, since in general f(kT) will not be known exactly, it is necessary
to design gi in some other way. As a matter of fact, we will show in the next section
that the choice gr = Af(kT) is satisfying but not optimal. There exists a better
solution for gi that compensates for most of the disturbances without the need for
observing f(t).

88




7.2 Deterministic Systems

7.2.1 Exogenous Disturbances

The major difficulty in maintaining sliding mode for a discrete time system is that
the exogenous disturbance d; is essentially independent of the state zy; i.e., even if we
achieve s; = 0 at the present moment, it is still not guaranteed that sx4; = 0 since the
unknown d; will force the state out of the sliding manifold. Therefore, perfect sliding
mode is impossible in spite of the knowledge about the disturbances. However, within
a certain tolerance, we are able to achieve satisfying system performance by steering
the states as close to the sliding manifold as possible. This includes a predictor for
di and proper choice of the feedback compensator. The rudiments of a one-step
disturbance predictor were given by Ozginer and Morgan [35] in the context of a
robotics application. Here we ijgorously analyze this issue.

The Disturbance predictor

The past values of the disturbances d;, i = k — 1,k — 2,--- can be computed exactly
from the state and control history by considering the discrete time system (7.2). If
f(t) possesses some continuity attributes, there will exist a strong correlation between
the past and future disturbances.

If f(t) is bounded, then dy = O(T).
If furthermore f(t) is bounded, then the difference

d—dir= [ T eME[f((k+ 1T = ) — F(KT - N)]dA

is of order O(T?). In the same manner, for bounded f(t), f(t), - -+, f*~1(t), we have
the prediction for d;

~ q-l .

de = 3 (=11 ("7 o (7.14)

1=1

with O(T?) error. If one desires to perform p-step ahead prediction, define

;_Jdi if i<k-1
""{Jj if 12k (7.15)

then
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q=-1

diyp-1 = Y (=17 (T Mduminp-1 + O(TY). (7.16)
=1
Therefore we are able to predict d;, j > k with accuracy up to O(T7) if f(t) € Cl+-V).

Equation (7.16) is actually an incomplete model for disturbances with accuracy de-
pending on the degree of smoothness of f(t). The past values are to accurnulate the
knowledge base of the unknowns. If f(t) can be measured exactly, such as a reference
input signal to the system, no prediction for d is necessary.

Sliding Mode with O(T?) Accuracy
It is understood that the discrete time sliding surface (7.3) can not be reached exactly

due to the effect of unknown disturbances. Nevertheless, it is possible to reach a higher
accuracy if appropriate disturbance prediction process is employed.

Theorem 1 If f(t) € C1~1), ¢ > 2, and (7.6) holds, then the control law
up = —(CT)"1Cdz; ~ (CT)1Cd, (7.17)

will lead to sliding motion such that sy4; = O(T?) for k > ¢ and z; in the O(T)
boundary layer of the sliding surface (7.3).

The proof is straight forward by direct substitution. As to the intersample system
behavior, an O(T?) error is inevitable. This is an inherent limitation of the discrete
time controller since the control signal space does not cover the disturbance range
space. To further increase the accuracy in between samples, more degrees of freedom
should be added to the control.

Additional Switchings

To improve accuracy in between consecutive samples, we insert r additional switchings
by letting

u(t) = uj, (k+i)T.<_t<(k+'—":-l)T, i=0,.r—1

The equations for the expanded system becomes

\



r—1

Zepr = Oz + 3 0T T, ul + 4y (1.18)
=0

where I, = ff eA*d\B. The intersample disturbance d} can be estimated by

r-1 .
&= (Y 9%)"dx
j=0

with O((T)?) error. Each intermediate state valne z} will be estimated by
B =0rs + Tl +d, i=0,--,r-2

with 2} = z,. To reach sliding mode with O((£)?) in the intersample period and
O(T9) at each sampling instant, choose

u{ = —(CT,)"'C®* 3} — (CT,)"'Cdi, i=0,..r—2
wjl = —(CT,)'C[®zi + T2 05+ "Toul ! + di]

We have
Sk+1 = O(T ), 8 = O((;—) ), 1= 1,...,1‘ -1 (7.19)

The main characteristic feature of systems with sliding modes is the motion on the
manifold which can be reached in finite time [53]. During that motion, the contiauous-
time finite-dimensional systems with discontinuous control variables possess the prop-
erty of disturbance rejection. However, implementation proves to be more difficult
than expected. We can mention three crucial facts that disappoint one trying to
implement real systems with sliding modes: first, the chattering of the control vari-
able which excites the neglected high frequency modes and in many cases can not be
allowed by the physical nature of the actuator; second, the lack of full information
on the system state which is needed to design the appropriate switching function
(the use of linear observers for estimating state variables unfortunately eliminate the
disturbance rejection); third, direct discrete time implementation of the switching
control law leads to additional chattering caused by the sampling delay. [54, 38] pro-
posed a possible solution to the first problem, both the first and second problems are
addressed in [45].

The third problem can be released by using the approach proposed in [53]. The
concept of discrete time sliding mode provides the motion on the manifold at the
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sampling instants with O(T?) error, while at other moments, it leads to the motion
only in O(T)-vicinity of the desired manifold, which is not sufficient in many cases.
Even if the disturbance can be measured in discrete time with continuous time match-
ing condition, it generally can not be rejected because there is no matching in the
corresponding discrete time system. The solution of all these issues is obtained by
using the disturbance prediction algorithms proposed here.

It is shown that for sufficiently smooth disturbances even without matching condition
in discrete time, the desired accuracy O(T9) of disturbance rejection in the sliding
manifold can be achieved not at every sampling moment but every rT sampling inter-
vals. We can say that there is rth order discrete time sliding mode. To obtain O(T7)
disturbance rejection at every T-instant we should have additional r — 1 switchings
of control during that interval. If the system has internal uncertainties, only one step
ahead prediction is allowed due to discontinuity in the control law; nevertheless, exact
sliding mode can be achieved asymptotically.
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8. NEURAL CONTROL OF FLEXIBLE SYSTEMS WITH
PARTIALLY KNOWN DYNAMICS

In this chapter, the use of neural nets for simultaneous modeling and control in an
optimal control setting is investigated for systems with partially known dynamics.
Specifically, we consider the case where the unknown portion is related to flexibility.
Systems with a high degree of flexibility fall into the general class of distributed pa-
rameter systems whose motion is described by hybrid systems of integrodifferential
equations. For the class of plants considered in this chapter, the known part of the
dynamics is represented by a simple analytical model and a neural net-based model is
used to estimate the unknown part of the dynamics. A novel approach is given where
neural nets are used in concert with conventional control methodologies to achieve
high performance for both trajectory tracking and vibration damping. The control
strategy is a two-part control scheme: one part is model-based, using the known dy-
namics and conventional optimal control techniques, the second component of the
control scheme is neural net-based. These strategies are applied to a one-link flexible
manipulator. Flexible link manipulators are of extreme interest to researchers inter-
ested in space-based robot applications and other robotic applications with weight
and power constraints. However, flexibility leads to highly complex system models,
resulting in more complication for controller design. In this chapter, we show that
for a one-link flexible manipulator, a control design can be achieved that provides
accurate slewing while minimizing vibration of the manipulator. It is further shown
that the control design can adapt to variations of the manipulator payload, resulting
in accurate slewing and small tip vibrations for a wide range of payload variations.

Neural networks possess many of the necessary qualifications for implementation of
the identification and control strategies. For the identification stage, neural nets
can be implemented with supervised learning rules to learn the nonlinear dynamics
of the unknown plant. The neural net performs a nonlinear mapping from input
space to output space while also giving the necessary nonlinear interpolation that is
desired, such that the nonlinear dynamics of the process are stored in weight space
of the neural net. For the control neural net, the control signal needed to produce
the desired result is not known a priori and therefore must be generated using an
unsupervised learning control strategy. Unsupervised learning rules exploit some key
features of the backpropagation algorithm since backpropagation calculates partial
derivatives during the training process. These derivatives are used to minimize a cost
function based on output error and control expenditure.

There have been several examples of the use of neural nets for control. General control
ideas were discussed in [55] for completely unknown nonlinear systems, and adaptive
neural controllers were demonstrated in [56] for a simple linear plant. There have also
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been many examples of neural nets applied to robot control. In fact, in [57], there
is an example of a neural net-based controller implemented on a real rigid-link robot
system, where a neural net is used for payload estimation and the payload estimate
is used as a parameter in the feedforward controller. This scheme results in payload-
invariant trajectory tracking. While there is a multitude of literature concerning rigid
link robotic control using neural nets, there is relatively little concerning the control
of flexible link manipulators.

Almost all real plants can be characterized as a system with partially known dynam-
ics since one can never fully realize a real plant with a mathematical model. There
exist a number of techniques available for control of linear systems with either un-
known or partially known dynamics. Adaptive controllers [58] can be designed using
a standard model structure with unknown parameters, but these systems are fraught
with limitations. These types of systems assume a structured uncertainty, where the
uncertainty is reduced using stability theory and parameter estimation techniques.
However, systems of this type could become unstable due to excitation of unmodeled
dynamics. Moreover, a plant is seldom completely linear, and there are few model
structures that can accommodate a reasonably large class of nonlinear systems. For
this application, we assume that the rigid dynamics are well known, but the nonlinear
flexible dynamics are not known, and therefore must be learned from input/output
data.

The control strategy proceeds as follows for slewing control of the one-link flexible
robot. A model-based control is implemented based on the rigid dynamics of the
system. The unmodeled flexible dynamics are learned using a neural network as a
predictor, and a corrective control signal is synthesized using a second neural net for
control. This method was used by Iiguni, et al. [59] in which the authors presented
a strategy for control of linear systems with a low degree of uncertainty and small
additive nonlinearity using what was referred to as a nonlinear regulator. We extend
this method to plants with a high degree of nonlinearity and apply it to the flexible
robot problem.

The chapter is organized as follows. We begin with a discussion of flexible manip-
ulator modeling issues to better understand the control strategies implemented. In
Section 8.2, neural net modeling for the described class of systems is discussed simul-
taneously with the problem of controller design. Simulations are given in Section 8.3
for the flexible manipulator with fixed dynamics and a constant pavload, then the
problem is complicated by varying the payload, resulting in a system with variable
dynamics. The ability of the controller to adapt to this disturbance is investigated
via simulation.
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8.1 General Aspects of Flexible Manipulator Models

Flexible robots possess the attractive properties of (1) light weight, resulting in sys-
tems with smaller actuators for lower energy consumption, and (2) mobility for fast
response as compared to heavier rigid counterparts. Modeling of flexible robots is
difficult due to the infinite dimensional nature of the distributed parameter systems
and the difficulty in modeling the structural flexibility of the link. The dynamical
equations of motion can be described mathematically using integro-partial differential
equations (PDEs) with the appropriate boundary conditions. The methods known
for modeling flexible robots are many and are addressed in a variety of works, us-
ing methods such as the Euler-Newton method with finite element models [60], the
Euler-Lagrange method [61], or Hamilton’s principle [62]. The model used for the
simulations of this work is obtained from a distributed parameter model via the as-
sumed modes method. The parameters are derived from the Ohio State University
single-link flexible manipulator [63]. Experimental identification results obtained for
this structure [64] demonstrate that only one mode is dominant in the identifi»2 model
for transverse motion of the manipulator. Therefore, a one-mode expansion is used
in the simulations.

In flexible robots, if the payload is allowed to be variable, then both the rigid dynamics
and the flexible dynamics change as a function of payload. In addition, the boundary
conditions assumed initially may not bz valid as the payload varies. This presents
a difficult chore for the control designer as we shall see in the section that follows.
Alternately, one can assume little or no knowledge of the plant and use robust control
techniques and model the unknown dynamics as a disturbance. While this is a viable
alternative, we have chosen to use model-based control methods that are between the
two extremes, where we assume partial knowledge of system dynamics.

There has been much recent interest in the problem of slewing control for flexible ma-
nipulators. The resulting control strategies can be complex and difficult to implement.
To ease the computational burden and implementation difficulties, we introduce the
neural net-based composite control strategy described herein. Using a one-step-ahead
prediction of the system outputs, we can form a control signal for predictive control.
In addition, the estimation error in the identification neural net is used for training
of the neural net for corrective control which is trained based on an unsupervised
learning strategy.

Conventional system identification techniques have also been used t¢ doicrmine the
model of a flexible link manipulator (see [65] for example). A potential problem with
this approach, however is that a model structure must be assumed a priori, and
thus, modeling errors are built in for the infinite dimensional system being consid-
ered. Furthermore, most identification techniques are based on linear system models,

95




introducing further difficulties for the highly nonlinear systems being considered. Fur-
ther uncertainties exist due to the difficulties associated with modeling drive system
mechanics estimating physical parameters, in addition to the difficulty of accurately
modeline he flexible dynamics. Our alternative approach offers several advantages
ove. -unventional methods in this paradigm, since neural nets can be used to learn
aonlinear system dynamics. The neural net learns the nonlinear flexible dynamics
from input/output data, which allows for a more exact representation than one using
a linearized model or approximations of the nonlinear system dynamics.

8.2 Modeling and Control Strategy

8.2.1 Simulation Model for a Flexible One-Link Manipulator

Distributed parameter systems are characterized as having an infinite number of
modes. For cortrol applications, we describe the system using approximations that
are finite-dimensional state-space representations. Starting with a Hamiltonian for-
mulation, we use an assumed modes representation of the flexure variable a for in-
sertion into the system equations to obtain a finite-dimensional representation of the
dynamics. The resulting equations are programmed on a computer to model the one-
link flexible manipulator shown in Figure 8.1. In this case, the link is modeled as
clamped at the hub and as a mass with an inertia is at the free end. The resulting
mode shapes are referred to as CLTI mode shapes (cantilever with tip inertia). A de-
tailed derivation of the equations can be found in [15] or in [66] for a two-link flexible
manipulator. The terms used to obtain the dynamical equations of the manipulator
are defined in Table 8.1. In addition, the subscript notation of Equation (8.1) is used
to denote a partial derivative. For example, the second partial of a with respect to ¢
is given as a, = 0%a/0t3.

The equations for the flexible link manipulator can be written as
Elaw+pag.+plé=paé3, fefo, L], t>0 (8.1)
1 L . L
I+ 3L + p/o a?df]d + p/o lagdf = u (8.2)

The assumed modes method requires that the flexure be expanded as

N
a(t,t) =3 6;(6)g;() (8.3)

=1

where j is the mode number, ¢ is the mode shape, and ¢ is the modal displacement.
The CLTI mode shapes have been used previously by [67] to model a link with a
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Table 8.1: Parameters of the One-Link Manipulator

Iy Hub inertia
I, | Payload inertia
L Length of link
EI | Stiffness term
p Mass density of link
M | Mass of hub
M, | Mass of payload
£ Spatial variable for link
af€,t) | Flexure of link at location ¢
6 rigid link angle of link
u__ | Input torque at hub

Payload

Flexible Link

Hub

Figure 8.1: The Flexible One-Link Manipulator

payload, and have also been used in [66] to model the first link of a two-link system

as a link with an attached link as the payload. The boundary conditions are

a(0,t) = 0, ae0,t)=0
Elay(L,t) = —(M,0;+ L)a/(L,t) — M,0,a(L,t)
Eloaw(L,t) = Mpa(L,t)+ My0pé,(L,t)

(8.4)
(8.5)
(8.6)

where M, is the mass of the payload, I, is the mass moment of inertia of the payload,
and O, is the distance from the endpoint of the link to the center of mass of the
payload. The first boundary condition represents the clamped boundary condition
at the hub. The next two boundary conditions correspond to the mass plus inertia
at the end of the link. In this chapter, the above equations are simplified since the
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payload is modeled as a point mass at the tip, so that I, and O, are equal to zero.
The CLTI mode shape equations can be found in [66].

The resulting model is of the form
MX)X + KX+ F(X,X)=U (8.7)

where X =[@ ¢ ¢2 --- gn]T, and N is the number of modes retained in the model
from flexural effects of the link. The following expressions can be defined in terms of
the variables of the above approximation:

A & [ oty (8.5)
B; = /‘)Lp«ﬁ?(l)dl (8.9)
C; & (1) (8.10)
¢ o 4

S & i (8.11)

This allows for the calculation of the terms
L L L
2
/o adt, [) tadt, and /0 o?de . (8.12)

Substitution of (8.3) into (8.1) and (8.2) results in an ordinary differential equation
for the rigid body motion motion and a partial differential equation for the flexure
equation. To convert the flexure equation into an ordinary differential equation, we
multiply through by ¢x and integrate from 0 to L. Since the ¢,’s are orthogonal (the
integral from 0 to L is an inner product, i.e., the ¢:’s belong to the space £3[0, L]), all
the terms drop out except the ¢x¢i integral, so that NV differential equations remain.

The resulting rigid body motion () and flexure (a) equations are respectively:

1 N - N .

I+ zpL® + Z Bjt]}]o + Z Ajgi=u (8.13)
3 i=1 =1

Al + Bige + EI-/}p-k-quk - B),q;‘éz =0, £k=1,2,...,N (8.14)

For the simulations, we let N = 1 and use the parameters of Table 8.2.

8.2.2 Modeling and Identification

To predict the flexible manipulator outputs, we use our knowledge of the rigid dy-
namics to form a model of the known part of the plant and use a neural net to learn

98




Table 8.2: Physical Parameters of the One-Link Manipulator

[E [6.8944 x 10 N/m’
I |3.3339 x 107" m*
A | 1.5875 x 107* m?
In | 1.6640 x 10~% kg-m?
L]10m
p | 0.4847 kg/m

| M ] 0.4847 kg

the unmodeled flexible dynamics. Let z? be the output of the plant which we wish
to estimate, z" the output of the known system, and 2/ be the output of the neural
net, which when added to z” yields a prediction of the plant output. Thus for the
one-step-ahead predictor, we have

B =zint il (8.15)
where Z},, is the prediction of the plant output and # +1 is the predicted state of

the unknown dynamics at time k + 1. The known dynamics are a nonlinear function
of prior states and inputs described by the function f,

zh = f(27,u”) (8.16)

and the unknown dynamics are a nonlinear function of the prior plant outputs, rigid
dynamic model outputs, and prior inputs, described by the function g,

:?'.{,H = g(z?,z",uP) (8.17)

where u} is the input to the plant at time k. Thus, we assume that the unknown
dynamics can be driven by the states of the known dynamics, but not vice-versa. We
impose the following system constraints in the form of assumptions on the structure
of the plant and the models.

Assumption 8.2.1 The plant to be controlled is completely stabilizable and de-
tectable.

Assumption 8.2.2 The dynamics given by f(-) is stabilizable and describes the
plant to a sufficient degree such that the controller designed to stabilize the known
dynamics also stabilizes the plant.

99




Assumption 8.2.3 The unknown dynamics given by g(-) is stable.

Assumption 8.2.1 gives us a starting point for the plants to be considered. See [68] for
details on stability of nonlinear systems. Although Assumption 8.2.2 is not a necessary
condition for identification, it is provided since identification proceeds much better
with a stable plant. (In [69], an unstable inverted pendulum was identified using a
“human-in-the-loop” to provide stability when necessary.) Assumption 8.2.3 is given
since if the unmodeled dynamics are unstable, then plant states may blow up before
an appropriate model can be found and the subsequent controller designed.

The identification stage is a neural net training process using a supervised training
rule as shown in Figure 8.2. In this stage, the neural identifier produces the signal z/
representing the unmodeled flexible dynamics and uncertainties to produce a signal
which “corrects” the output from the known dynamics to subsequently provide an
accurate estimate of the plant outputs.

?
Kot
Uy—y——n1  Plant -

P A
Rigid Xt 4~ Xiot ;<V>+

o +
b4 A
Neural | %wr

L

Figure 8.2: Identification Stage Using Neural Nets

The predicted signal (8.15) is compared with the plant output to form the error signal
used to train the neural net identifier. The neural net identifier receives as input both
the reference signal for control and a regression of the output of the plant. It uses
these signals to produce an output i{“, which is trained based on minimization of
the error from the supervised training algorithm. The error function is

By = |l2hy, — £2l° (8.18)
where || - || is the standard L; norm. The backpropagation algorithm [70] adjusts the

weights at each time k by the update rule
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m m aEk 1
wij(k +1) = wij(k) + ”‘3-;,;3— (8.19)

where n is the learning rate and w; is the weight connecting node : in layer m with
node j of layer m + 1. Differentiation of (8.18) yields

OE, . 0z}
Bw_,-:‘; = —(zin—zin)T-é-jz{j
P .r P
= _(zgﬂ-i,,H)TM%w’f;f-’"—*) (8.20)
)

To calculate dg(z},z},u})/0w?; the backpropagation algorithm is used since this
quantity is calculated during training. It is equal to the quantity é;z;, where

5 = { z(1 — z)(z§ — %) (output nodes) (8.21)

2;(1 — 2;} Ti 6pwi; (hidden nodes)

where 2; is the output of a hidden node.

8.2.3 Controller Design

With the plant identified, we proceed to controller design. In Figure 8.3, the overall

* system architecture is given in terms of a control block and an identification block.

It is seen that the control signal is composed of two parts: one part is based on
conventional model-based control, so that any conventional controller design can be
chosen for this part. The output of the conventional controller is given by u". The
second component comprising the control signal is the contribution due to the neural
network for control, indicated by u/. Both u/ and u" are formed using the error signal
as input, calculated as the difference between the desired trajectory at time k+1 and
the projected next state at time k 4 1. This is a predictive control scheme where it
is desired to know at time k& what the output is likely to be at time k + 1 in order
to take appropriate control action at time k. The two components of the control are
combined for the composite plaat input,

u? = uf +ul. (8.22)

Since the signal u{ is not known a priori, it is generated using an unsupervised
training rule for the neural net. Unsupervised learning rules exploit some key features
of the backpropagation algorithm since backpropagation calculates partial derivatives
during the training process. The output of the neural net under unsupervised training
is found by adjusting the weights to minimize a performance function.
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Figure 8.3: Identification and Control Using Neural Nets

In the proposed configuration, the control strategy is derived by a model-based pre-
dictive controller where the model used for controller design is the rigid dynamics of
the manipulator. The estimated next state is subtracted from the desired state to
produce a prediction error which drives the system to the next state. A close look at
the rigid dynamics equations reveals that in the absence of a gravity term, the system
is linear. Therefore, without loss of generality, we will assume that the gravity term
is zero (which is the case for space-based robots). This is a valid assumption since we
can always add a feedforward controller to perform gravity compensation separately.
Now since the known dynamics is a linear system, we can use any conventional linear
control technique to achieve the desired controller design. We will choose the linear
quadratic regulator (LQR) and proceed with a brief discussion of the LQR.

Consider a linear time-invariant system described by
Ti41 = AZi + Bug (8.23)

where z € IR" is the state, u € IR™ is the control and A, B are known matrices. A
linear control law of the form

u=-Kz (8.24)

is sought. Instead of choosing K to achieve some prespecified closed loop poles, we
choose K to minimize a cost function J, which is quadratic in both state and input:
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J = Z z{ng + ufRu;. (8.25)
k=0

with @, R symmetric. If we wish to follow a prespecified state trajectory z4, then (8.25)
becomes

J =Y (zr — z3)TQ(zs — 7}) + ui Rus. (8.26)
=0

Without z4, the control objective is to bring the state to the origin.

The optimal control is given by minimizing (8.25) to obtain

uy = —Kz;
—(R+ BTPB)'BTPAz, (8.27)

where P is the steady state solution of the algebraic Riccati equation:
P=ATPA- ATPB(R+ BTPB)"'BTPA+Q (8.28)

The unique solution to (8.28) exists and leads to a stable closed loop system if and only
if (A, B) is stabilizable (provided by Assumption 8.2.2) and (Q'/?, A) is detectable
(see [71] for LQR details).

Although the LQR has well known robustness properties, one cannot expect it to work
well when there is unmodeled dynamics not included in the mathematical description
of the plant. Thus a corrective control, provided by the neural network is needed
to improve the tracking of the system. A similar methodology was pursued in [59],
in which the authors presented a strategy for control of linear systems with a low
degree of uncertainty and small additive nonlinearity using what was referred to as a
nonlinear regulator. '

The problem here is to synthesize the corrective control signal that is used to com-
pensate for system flexibility and other unmodeled dynamics. Since there is not a
training signal u(desired) from which we can generate an error signal as in supervised
learning schemes, we instead use a neural net with an unsupervised training algo-
rithm as in [72, 69]. Referring to Figure 8.3, it is obvious that when the linear system
perfectly describes the plant, the control signal u" is the optimal control. Thus, we
desire an error function for training that when minimized forces the neural net output
to be zero when the linear model is an exact representation of the plant. A candidate
error function is given by

E.= ("’:ﬁ - "‘:-H)TP (Th4r — -"":4-1) + uiTRuZ (8.29)
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since it is easily shown [59] that the control produced by (8.27) minimizes this function
at each time k. This is done by taking the partial of (8.29) with respect to u} to yield
the control strategy given in Equation (8.27). However, at time k, the plant state
z%,, is not available, so we must use z}_, which results in the following error function
for training the neural net:

E, = (84, - “:+1)TP(5’:+1 - I:-H) + “’;TR“i- (8.30)

This function is used to adjust the weights of the neural net in the following way.
The weights of the neural net for control are indicated by ¢ to distinguish from the
weights w in the neural identifier and use the following update rule:

m ™ 9E,
a;(k+1) = qr(k) + N 3am (8.31)
9
To compute 8E./8q["; use Equations (8.15) and (8.22) to get
OE o7 0%} v _ Ou}
Ogry — M oqn T o
T dg(z}, z%,ul) Oh(zh)
= [ZZ_HP (B+ ——ﬁf—"k— + UzR —Eﬁ“ (832)

where g(-) is the mapping performed by (8.17) in the neural identification stage,
and h(-) represents the mapping performed by the control neural net. The quantity
Oh(z})/0q7; is calculated from the backpropagation algorithm similar to the calcu-
lation for dg(z}, z},u})/Ow( since all of the necessary quantities are involved in the
backpropagation training process. The quantity dg(z}, z}, u})/8ul is calculated from
the neural network used for identification and from the weights w7} in that network.
All of these quantities are easily extracted from the backpropagation training rule.

8.3 Neural Control Examples on a One-Link Flexible Robot

In this section, several examples are given to demonstrate the effectiveness of the
proposed strategy. We first present both identification and control results for a system
that operates in a constant environment using a nominal value for a payload added
to the tip equal to 0.20 kg, which is about 41% of the link weight. Secondly, we
present results for which we vary the payload over the range 0 to 70% of the link
mass. Payload invariant slewing control is demonstrated and some of the difficulties
encountered in implementation are discussed in detail.
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8.3.1 Constant Environment

We begin with the identification stage for the system of Figure 8.2. The first step
in the identification process is to collect data that can be used to train the neural
network. The simulation model previously described is used in parallel with a model
of the rigid dynamics, and the signals z? and z" are stored using several different
inputs at u®?. The signals indicated by z are vectors with elements of hub angle and
hub angular velocity, so that z = [0 0]7' In order to limit the amount of data for
the neural network, the motion of the manipulator is limited to slews in the first
quadrant, so 0 < @ < 90 degrees. Initially, a white noise input was used as an input
to the system and data was collected and applied to the neural network for training.
Then, the loop was closed using state feedback and data was collect for a variety
of slews in the allowable range of inputs. This data was applied to the neural net
which was previously trained using white noise inputs. Thus, the first stage of the
identification process can be thought of as a “coarse” training process, and the second
stage can be thought of as a “fine” tuning process, where the neural net weights were
adapted to learn the dynamics for slewing maneuvers.

For this application, using a model structure for the neural net of order two, we
chose a neural net with five inputs and two outputs. Two hidden layers with 15 and
10 nodes respectively are used, and the notation As ;5102 is used for a shorthand
means of stating the neural net topology. The backpropagation algorithm used for
training in the identification stage is a version of the Neural Shell, V2.01 [73] which
is a program that was written first for use on Sun Computers and later optimized by
Ahalt and his students for use on the Ohio Supercomputer Cray Y-MP8/864. The
results of the identification process are shown in Figure 8.4 for the neural net outputs
of position and velocity. This plot is validation process where a 45 degree slew is
commanded and the outputs of the plant and the prediction of the plant outputs are
recorded. Also shown is the position without the neural net contribution. The benefit
is obvious, as the variance of the estimation error is very small for both position and
velocity (o2 = [0.00196 0.00854] ).

The control objective is to slew the arm along a desired trajectory as indicated by
z%, while minimizing arm vibrations. The model based controller in the block of
Figure 8.3 is LQR control using hub angle state feedback. The weighting functions
were chosen to put more emphasis on the output error term and less on control
expenditure. However, we must limit the size of the feedback gains since large gains
cause more flexure of the manipulator resulting in more vibrations of the tip. The
results for a slew from 0 degrees to 45 degrees are shown in the plots of Figure 8.5.
The dashed line represents the manipulator ¢ip position and the solid line is the hub
angle position, both measured in degrees. The top plot is the output of the system
with LQR state feedback control only, and the middle plot is the output of the system
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Figure 8.4: Identification Results for System with Nominal Payload

with the addition of neural control. The control signal follows in the bottom plot.
The neural net achieves the desired effect, since an increase in damping reduces tip
vibrations significantly. Note that the fundamental modal frequency changes to reflect
the increase in damping of the flexible modes.

8.3.2 Payload Variation

We now turn our attention to the problem where a payload at the tip of the manip-
ulator is permitted to vary. The effect of adding a mass at the tip is that both the
rigid and fiexible dynamics change as a function of payload. Since the controller is
designed with a fixed gain for the rigid dynamics, the control is no longer valid if the
dynamics change. Again, to compensate for this effect, a neural net is added to the
control loop, but now it is asked to perform more of the control effort. In addition,
since the dynamics of the rigid body system has changed, the neural identifier must
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also be able to compensate for this variability.
Consider again the identification neural network, which performs the mapping g(:) to
compensate for the unmodeled flexible dynamics as

:i:{+l = g(zP,z",uP) (8.33)

where the output of the neural net, #/ is a function of the plant output z?, the
rigid dynamics z" and the plant input, u”. It can be observed both analytically from
the dynamical equations of motion and experimentally that by varying the tip mass,
one varies the fundamental frequency of the flexible dynamics. Simulations were
performed to determine the modal frequencies for various payloads. The results are
displayed in Table 8.3.

Table 8.3: Modal Frequency as a Function of Payload

Payload Mass (kg) | Okg | 0.05kg | 0.10kg | 0.15kg | 0.20kg | 0.25 kg | 0.30 kg | 0.35 kg
% of Link Mass 0% 10.3% 21.6% | 31.0% 41.3% | 51.6% 61.9% 72.2%
Frequency {Hz) 1.3481 | 1.1323 | 0.9908 | 0.8966 | 0.8188 | 0.7592 | 0.7140 | 0.6705

The table shows that as the tip mass increases, the modal frequency of the manipula-
tor decreases. The neural identifier in the constant payload case was trained to learn
the dynamics for a single frequency. The variable payload case is much more chal-
lenging since the identifier must learn a continuously variable modal frequency over
the range defined in Table 8.3 which results in an identifier that effectively performs
a “modal selection process”. A critical condition on the mapping process is that the
mapping must be well conditioned. A well conditioned mapping is one where the
mapping from input to output defines a unique one-to-one mapping. For example,
if the manipulator output and the rigid dynamics output error exhibits a similar re-
sponse to both a 0.10 kg payload and a 0.30 kg payload, then the neural net will not
be able to discern the difference for the corrective response action since there will
be ambiguities in the mapping. Fortunately this is not the case, since not only the
modal frequency changes as a function of payload but also the error between the rigid
dynamics output and the actual plant output varies in direct proportion to payload
variation.

To achieve accurate identification, the neural net training data is selected using data
from a variety of payload cases, then the neural net can interpolate the results to
output the desired response. A new configuration is implemented for the identification
stage to give the neural net more information, specifically with respect to the modal
frequency. An accelerometeris included as an additional measurement at the tip of the
manipulator and used as input to the neural net. For first bending mode vibrations,
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placement at the tip of the manipulator gives maximal output response [64]. Thus,
the neural identifier is changed to accept another input as shown in Figure 8.6, where
the accelerometer input at time & is denoted by g;.
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Figure 8.6: Identification Block with Accelerometer Input

Using experimental data from each of the payload cases of Table 8.3, the identification
neural net was trained to learn the new flexible dynamics as a function of payload. The
neural topology was changed to reflect the new information required for identification.
There are four variables used for input to the identifier and assuming a model structure
of order two, a delayed version of each input is also used to give the neural net a total
of eight inputs. Since the neural net has more information to learn, a larger topology
is used, with two hidden layers of size 30 and 20, respectively. The number of outputs
remains at two, so that the neural net topology is NV 30,20,2. The result of identification
for a payload that is 23% of the link mass is identical to the results shown in Figure 8.4
where the estimation error variances in this case are o2 = [0.00375 0.00986] for
position and velocity respectively. Similar results were verified for several payload
variations.

The neural net provides an excellent means of identification for both position and
velocity. Note that the 23% value use for the payload is not part of the training
data set, so the neural net performs the required interpolation with a high degree
of accuracy. Thus, since the neural net can perform the required identification, the
neural net controller is designed in the same manner as previously discussed. However,
since the LQR feedback is designed for a plant with nominal payload, the neural net is
asked to perform more of the task for control which results in slightly longer training
time to achieve the desired tracking. This can be illustrated by way of example.

Consider the following experiment. The flexible link moves from a rest position to
a desired position with the nominal value of 0.20 kg payload, and the neural net for
control adjusts the weights in the control loop to achieve the desired tracking as in the
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previous example. In the new position, a mass is added to the link tip, and the link
is then slewed to a new position during which time the neural net collects the data
over the latest motion to adjust the weights to compensate for the new load. The
manipulator does not perform well over the second slew, but it adjusts the weights
using the unsupervised learning control scheme such that during subsequent motion
with the same payload, performance continues to improve until a desired performance
specification is met.

This procedure is depicted in Figure 8.7. The manipulator starts at rest where it is
assumed that training has been completed for the nominal case. The manipulator
moves through a 45 degree slew and the tip mass is changed to 0.30 kg (61.9% of
link mass). The manipulator moves in the same direction by 25 degrees to a rest
position of 70 degrees. Although the manipulator did not dampen vibrations well,
subsequent maneuvers show that the control neural net is adjusting to compensate
for the disturbance. The manipulator is moved back to 45 degrees and back again
to 70 degrees to show how performance continues to improve. The control neural
net trains itself on-line and improves its vibration damping characteristics with each
slew. This can be seen when the manipulator moves through a slew of —45 degrees
to the final position of 25 degrees. It was also found that if the mass is later changed
back to the nominal value, the training time for the procedure is reduced slightly, but
not enough to say that the neural net “remembers” the control for the original case,
since the neural net adjusts itself to compensate for the most recent payload.

This plot shows that the neural net can achieve payload-invariant tracking with on-
line training and a minimal amount of information known about the system dynamics
or the payload. Real-time implementations of such an approach are dependent upon
how much the payload changes from the nominal value. If there is a small change in
the payload, then the neural net can easily adjust itself in one slew. If the payload
size doubles, then several slews may be necessary to achieve the desired tracking spec-
ifications. To determine the ability of this control scheme to adjust to real situations,
we investigated several different payload variations for a slew of 0 to 45 degrees (Trial
1), then back to 0 degrees (Trial 2). The maneuver was held constant at 45 degree
slews and the payload was varied in order to make valid comparisons of training time.
The results are shown in Table 8.4, where a +20% variation of the payload means
that the payload changed from 0.20 kg to 0.24 kg. The first column is the percent
variation of the payload, with the payload varied over the entire range of Table 8.3.
The figure of merit used for comparison is the sum-squared value of the tip deflection,
since we are trying to minimize vibration at the tip. Let a(L, k) be the tip deflection
at time k, so that the sum-squared value is given by J as

N
J=3 a(Lk)*. (8.34)
de=1
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Figure 8.7: Slewing Maneuvers with Variable Payload

In Table 8.4 the value of J is given for a slew from 0 to 45 degrees(Trial 1), then for a
slew back to 0 degrees (Trial 2) in columns 2 and 3, respectively. Note that for large
deviations of the payload in the positive direction, more than two slewing maneuvers
might be necessary to contro] vibrations at the tip.

The simulations clearly illustrate how we can take advantage of partial knowledge of
plant dynamics to control a system using a combination of conventional controllers
and neural-based control. The strategy outlined for the new control scheme was
demonstrated on a flexible one-link manipulator in which the rigid body dynamics
were assumed known and the flexible dynamics were learned by a neural identifier. A
control scheme using conventional control was used for control of the rigid dynamics
and a neural controller was used to provide a corrective control to compensate for
the unmodeled dynamics. The overall effect is to minimize tip vibration of the ma-
nipulator. This is demonstrated first for the case of a constant payload chosen with
a nominal value, then for the case where the payload was varied. On-line training of
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Table 8.4: Effect of Payload Variation on Training Time

Payload Trial | Trial
(% change) 1 2

0% [ 0.0299 | 0.0285
+10% | 0.0388 | 0.0351
-10% | 0.0342 | 0.0325
+20% | 0.0513 | 0.0378
-20% | 0.0421 | 0.0352
+30% | 0.1100 | 0.0391
—30% | 0.0805 | 0.0380
+50% | 0.4733 | 0.0823
-50% | 0.1317 | 0.0420
+100% | 1.2564 | 0.1100
-100% | 0.1678 | 0.0422

the control neural net showed that control could be achieved in a minimum number
of arm movements for reasonable changes of the payload.

112



9. APPLICATIONS

The structures we consider for application of the previously discussed techniques
are space structures that contain flexible components for which we wish to minimize
vibrations. These structures also exhibit rotational and translating capabilities which
result in nonlinear behavior.

9.1 Spacecraft

One of these structures is a rigid hub that can translate in two dimensions as well as
rotate in one dimension. Attached to this hub is a flexible beam that exhibits planar
vibrations. This structure represents a coupling of linear vibration characteristics
with nonlinear slewing behavior and is illustrated in Figure 9.1.

Figure 9.1: Spacecraft with rigid hub and attached flexible appendage.

Equations of motion can be derived for this spacecraft by modeling the beam as
clamped at the hub and free at the other end. Then using the assumed modes method
we retain one mode in the model (more modes can be handled quite easily). We also
ignore gravity in this model. Let u;, u3, uz be the velocity of A* (center of mass of
hub A) in ay, a3, a3 direction, respectively. Let u, and ¢, be the modal velocity and
modal displacement, respectively, of the flexible beam B. The control variables are
T and F which are the torque produced by the hub motor and the force produced
by the jet at the beam’s endpoint, respectively. All other parameters appearing in
the model are constants representing masses, moments of inertia, stiffness constants,
and various other physical quantities that will not be discussed further for the sake
of brevity.
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The equations of motion can then be written as

[ ms+mp 0 ~Eqy 0 0 ¥
0 ma+mp dbmp +ep E; 1] Uz
Ein ~(bmp+ep) ~(Pmp+Uep+Ip+h)) -(REL+FR) 0 gy | =
)] Ey bE, + Py G 0 Uy
| 0 0 0 ) 1jla
[ (ma + ma)uaus + 2E1usuq + (bmp + ep)ul 0 0
—(ma + ma)uus + Eyuin ] 1 T
Eyugusqy + (bmp + eg)uius +] -1 ~(b+L) [ F (9.1)
-Eyuius + Guiudqs - Hua 0 (L) ‘
L %e 0 0

which is a fifth order nonlinear time-varying ordinary differential equation. The out-
puts can be chosen to be any of the five states, thus they will ordinarily be linear
functions. By choosing two outputs (say, hub rotation, u3, and tip displacement, ¢},
we obtain a two-input, two-output nonlinear system. The first input/output port
could be restricted to hub information only (u;, uz, u3), and the second input/output
port could be restricted to beam endpoint information only (u4 and ¢;). This decen-
tralization constraint would be desirable for a real spacecraft of the type in Figure 9.1
because of the difficulty in exchanging information between the two ports. Thus, the
results of the previous section could be applied to this structure. This represents one
of our priorities for future work.

9.2 Optical Tracking System

In this section, the algorithm of Section2.4 is applied to an optical tracking system([74,
1, 2]. The system, shown in Figure 9.2, consists of two motors with mirrors mounted

Incident
Ray

Mirror/Motor 2

Figure 9.2: Optical tracking system example.

on them. It is desired to slew a ray of light by an angle 6. The geometry of the
system indicates that the desired individual angles of rotation for each motor y¢ = 6¢
are related to the desired angle of slew by
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2(6y — 63) = 6° (9.2)

which becomes our constraint equation (2.48). Since our constraint is linear, the
equations (2.49) and (2.53) become much simpler. The dynamics of the optical system
consist of two linear coupled subsystems. Thus, there are two input/output channels
with each subsystem being first order. For simplicity the @ and R matrices in the
servocompensator cost criterion (2.33) are chosen to be the identity matrices of order
4 and 2 respectively.

The output of each subsystem is the angle produced by the motor for that mirror,
and the input to each subsystem is the torque generated by the motor (i.e., the motor
dynamics are ignored here for simpliicity). Then the dynamical equations of the mirror

system are
0 1 2 10 U
[0 -314.16][;-,]*[0 1][u,] (9:3)

H
[:;] - [HH:;] (94)

where the data are taken from [74]. The desired slewing angle ¢ was chosen to be 30
degrees (7 /6 radians) which implies from (9.2) that the difference between the two
individual mirror angles should be 15 degrees.

The algorithm in the last section was implemented on CTRL-C using the negative
gradient of J as the search direction with a stepsize of ¢ = 1. The algorithm converged
quite rapidly. Indeed, after one iteration the norm of the gradient was 0.0033 and
after two iterations it was 0.0032. The optimal choice of setpoints was 87 = 14.95°
and 6% = —0.05°. The optimal decentralized PI control laws turned out to be

t
up = 1.002z, + 0.998 /o (ya(r) — 6%) dr (9.5)

t
w3 = 1.0z3+ 1.0 /o (ya(r) - 02) dr (9.6)

with the setpoints from above, and the optimal cost was J* = 0.0093. This example,
though quite simple, illustrates the method and its fast convergence. The above algo-
rithm could be implemented on-line for this particular example which would eliminate
the need to compute the setpoints a priori. The primary point of the example is that
using this algorithm allows one to compute the setpoints in an optimal manner in-
stezd of ad hoc. That is, the output objectives of each mirror are chosen to minimize
the given performance criterion while taking into account the dynamics of the system.
Among the infinite set of feasible mirror settings, the one solved for above is optimal
with respect to the quadratic performance criterion.
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9.3 LIVE

One structure which we have considered in our research is an experiment that has been
built at Ohio State. It is a flexible truss cantilevered at the top, with two large panels
attached to the bottom. The panels can rotate and can induce vibrations in the truss.
This configuration is depicted in Figure 9.3 which shows the Large Interconnected
Vibration Experiment from The Ohio State University (LIVE from OSU). Figure 9.4
illustrates the hardware dedicated to the experiment. Again, decentralized control
techniques will be utilized here with the panels representing one subsystem and the
truss representing the other subsystem. The coupling of the panel rotation with the
truss vibrations will result in coupled nonlinear subsystems. In the immediate future,
the structure will be modeled using the finite-element method and controlled using
the approaches presented above and in the sequel.

9.4 Sampled Variable Structure Control for Flexible Structures

A general slewing structure with flexibility can be described as:

M(6,9) ( ’ ) +G(6,6,4,8) = Bu (9.7

where 0 is a vector of rigid modes, q is a vector of flexible modes, and u is the control
with the same dimension as 4.

Our goal is to steer the controlled variables # from the initial state (00,90) to the
desired steady state (83, 0) with as small deformation of the structure ¢ as possible.
A discrete time variable structure control, or sampled sliding mode, approach is con-
ducted in the controller design for §. We shall formulate the problem in a linearized
model around the steady state value. The higher order terms as well as the unmea-
sured flexible modes ¢ will be treated as disturbances. Thus, a linear system with
exogenous disturbances together with parameter variations in both the system and
control matrices results.

This is a quite general VSC problem. In addition to solving for a robust controller
against those uncertainties mentioned above, several practical considerations, such as
chattering reduction, sampling frequency, disturbance prediction, and control vari-
able saturation, etc. are also included in this report. It is found that the proposed
technique is well suited for digital implementation of sliding mode control. On the
other hand, the frequency shaping technique, which we have developed during the
last three years, has not been added to the approach here yet.
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Cantilevered To Wall

Figure 9.3: Ohio State flexible truss with attached panel assembly.
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LIVE

Flexible Truss Controller Setup

HP
Basic

?;ml- o~ Accelorometars
HP
3852 Lo || corent | proct e
DAC L7~ |l e e
= Distartaios )
Comres Ampifie f—e- 1325 S
Panel Position
{Potentiopeters)
HP 3852 DAC Features

High Speed 68020 Processor with Numerical Coprocessor

256 K bytes On Board Memory

100 Kbz A/D Converter with 24 Channe] Multiplexer
4 Channel D/A Converter (Current and Voltage Output)

HPIB Communications Interface

Programmable in High Level Language
Prioritized Multitasking and Interrupt Capability

Figure 9.4: Block diagram of hardware configuration for LIVE.
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9.4.1 Linearized System Model

The desired steady state solution can be obtained by solving

G(64,0, 4,4,0) = Bu,, (9.8)
Rewrite (9.7)
( g ) = k(0,6,q,4) + I(6,q)Bu (9.9)

where h(6,0,q,) = —M~1(8,9)G(9,6,q,4) and I(8,q) = M~*(8,q)B assuming M is
always invertible. Note tbat if g,, and u,, satisfy (9.8), then

h(od, 07 Gass 0) + I(Od, Qu)Buu =0 (910)
Define
e = 0-04
€ = G—qu
U = U— U,

The linearized system is obtained as:
€= al(oda 01 Qe 0)8 + a:(”d. 0) Gsey O)é + b(gda qﬂ)ﬁ + g(c’ é? € é’ ﬁ') (9'11)

where a; = % + -gf; and a; = -g-% evaluated at the desired steady state point with
9(0,0,0,0,0) = 0.

In the standard state space formulation,
z = Az + Biu + H(z,¢,€) (9.12)
H(z, ¢, €) is the lumped representation of the parameter changes AA(z, ¢, €), AB(z, €, €),

and unknown disturbances f(t) dve to ¢, ¢ and the neglected higher order terms in
the linearization process.

An important property of H is that

H—0 as e—=0,6—20,e—20,é-0 (9.13)
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9.4.2 Numerical Example

We adopt an identical example of a single flexible robotic link as [38] and implement
sliding mode control by using both continuous time design and sampled VSC design.
The dynamic model is of the form:

Jh+mig by 6, + 2myqy 0 éxfh
b m || & 0 -—-mg 6?

0.5m,1; cos §; — a;1q; 8in 6, ] = [ % ]

0 (9.14)
F’lél + k1q1 ] + [ gy COS 01 0

in which 6, is the angular displacement of the rigid mode, the end deflection is
p(t) = (b1} + hali(1 = W) a(2).

We shall approximate the tip position by measuring the arc length of the rigid link
together with the deflection length, i.e.,

L=70,+p (9.15)

The following link parameter values are used.

ll =1m Jl = 04847Kg - m’ ap = 0377Kg

pr =0.373N —sec/m  m; =0.4847Kg b1 =0.242Kg—-m
ky =28.TN/m hy =2.02 h2 = 0.6237

g =9.8m/sec?

The desired angular displacement set point is 8¢ = . Steady state deflection and
control input are obtained by solving

(0.5m,1; cos 8% — ay14{* sin 0%)g = ul*
k1g}* + aj1gcosfd =0

They are
g’ = —0.0910 ui* =1.9172

The linearized system has system matrices as in (9.12)

(2] o[
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where

_ (0.5my; cos 65 — anng}* sin 8f)g m1

ay = and b=

The numerical values are

A= [0.3331 (1) ]; B= [2.7282]
Choose the sliding surface to be
s(t)=Ce—s(0)e™* =[1 1]e—s(0)e~*
with initial condition
0:(0)=0 6,(0)=0.1 ¢(0)=-0.1787 ¢ (0) = —0.1
The continuous time sliding mode design yield the following controller
i = —(CB)™'Ae — Ksgn(s)

where K is selected to bound over all uncertainties.

The sampled sliding mode control law is

U = —(CF)-IC¢21, — (CI‘)“Cd,,-l + (CI‘)-Is(O)e—sz
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Figure 9.5: Comparison between Sampled VSC and the Discrete Implementation of
Continuous Time VSC
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10. CONCLUSION

The main thrust of this project has been to consider the control of interconnected rigid
and flexible structures. Due to the fact that we distributed our attention to different
modelling, analysis and design techniques, we have obtained many new results in
different areas.

Conclusions obtained from individual aspects of our report are lisied below, as they
correspond to the chapters in this report:

In Chapter 2 the work on the concept of relegation was outlined. We have provided
the basis for assigning control tasks to multiple coupled systems so that some some
total criterion is minimized. This approach will provide a systematic way of optimal
regulation of coupled substructures, some flexible, some not, for vibration damping
and slewing purposes.

Chapter 3 was on our initial work on circuit analogies. We believe this to be one of
the most innovative ideas emerging from this project with many implications related
to the design and implementation of “smart structures”.

Chapter 4-6 all develop techniques that are useful in analyzing and controlling
coupled nonlinear systems. Singular perturbation and sliding mode techniques are
specifically applied to slewing, coupled flexible structures. Although these techniques
are not new, they each had to be extended and various theoretical problems had to
be resolved before they could be advocated for use in this area.

Chapter 6 furthermore develops modeling and control of closed—chain structures,
where participants in a kinematic loop are all flexible. This is a very hard problem
in its own right which, to our knowledge, had not been addresssed before.

In Chapter 7 we provided initial results on the control of sampled systems with
the sliding-mode control technique. The research has been very favorably reviewed
by experts in the field. (In fact, the graduate student developing these ideas was
rewarded with an Ohio State University Presidential Fellowship based on the letters
of recommendation of external reviewers of his research work. This highly innovative
approach is presently being further developed.

Finally in Chapter 8 the utilization of neural networks for the identification and
control was considered. This also was quite innovative, and was one of the first
examples of the utilization of neural networks in the flexible structures/vibration
damping domain.

The structure LIVE is a highly versatile hardware configuration that is still being
developed, and will be a good test bed for future control verification studies.
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