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Abstract

This report describes some of the problems, achievements, and directions of investigation of three ar-
eas of research. The first is the development of combinatorial optimization techniques to solve the central
problem of multisensor and multitarget tracking, i.e., the data association problem of partitioning obser-
vations into tracks and false alarms. The problem formulation, algorithm design, and real-time solution
techniques involve from probability and information theory, system identification, filtering, control systems,
combinatorial optimization, and advanced computer architectures, including massively parallel computers.
The data association problem for general multitarget/multisensor tracking problems is posed as a class of
multidimensional assignment problems. The algorithms under devlopment are based on a recursive La-
grangian relaxation scheme, construct near-optimal solutions in real-time, and use a variety of techniques
ranging from two dimensional assignment algorithms, a conjugate subgradient method for the nonsmooth
optimization, graph theoretic properties for problem decomposition, and a branch and bound technique for
small solution components. A model problem is presented to demonstrate the efficiency and robustness
of the current algorithms. The second part centers on investigation of various numerical methods for the
solution of nonlinear optimal control problems. The analysis of convergence in infinite dimensional spaces,
discretizations, and numerical implementations are in progress for Newton, penalty, augmented Lagrangian,
and interior/exterior point methods. The final part is the investigation of parametric constrained optimiza-
tion problems using numerical bifurcation and continuation methods with applications to design optimization

and control systems.
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I. Introduction

This report describes some of the problems, achievements, and directions of investigation of three areas

of research as described below. Over the past two years twenty three presentations have been given and
eighteen papers have been published or submitted for publication, 2 MS and 4 PhD) students have graduated,
and A. B. Poore has been appointed associate editor of Computational Optimization and Applications. To
reorient this program to the area of multisensor data fusion, Profe.ssor Poore spent the summer at Rome

Labs as part of the AFOSR Summer Faculty Research Program as described in Scction I1. The technical
information for the last two years is given in Section VII. Thc three areas of research are briefly explained

in the remainder of this introduction.

The first part of this research program centers on the development of combinatorial optimization tech-

niques to solve the central problem of mulitsensor data fusion and multitarget tracking, i.e., the data associ-
ation problem of partitioning observations into tracks and false alarms. The problem formulation, algorithm

design, and real-time solution involve techniques from probability and information theory, system identifica-
tion, filtering, control systems, combinatorial optimization, and advanced computer architectures, including

massively parallel computers. The data association problem for general multitarget tracking problems is
formulated as a class of multidimensional assignment problems. The algorithms under development are

based on a recursive Lagrangian relaxation scheme, construct high quality suboptimal solutions in real-time,
and use a variety of techniques ranging from two dimensional assignment algorithms, a conjugate subgra-
dient method for the nonsmooth optimization, graph theoretic properties for problem decomposition, and
a branch and bound technique for small solution components. This problem of partitioning multiple data
sets at some cost or to some benefit is also the central problem in perceptual grouping in psychology and
stereo correspondence in both biological and computer vision 19]. Thus the applications potentially extend
far beyond the current applications. The .,urrent status and results of this research effort are described in

Section III.

The second part centers on the investigation of various numerical methods for the solution of nonlinear

optimal control problems. The analysis of convergence in infinite dimensional spaces, discretizations, and
numerical implementations are in progress for Newton, penalty, augmented Lagrangian, and interior point
methods. A longer term goal is the investigation of parametric problems in nonlinecr control systems
including but not limited to the nonlinear optimal control problem. Some of the initial results in this
direction are described in Section IV.

The final part of this research program is the investigation of parametric nonlinear programming prob-

lems using numerical bifurcation and continuation methods with applications to design optimization and
parametric control systems, and represents a potential for a real extension of our understanding of basic
phenomena, global sensitivity, robustness, and multiplicity of solutions in much the same way that these
theoretical and numerical techniqus havy, helped the understanding of dynamical systems and nonlinear
equations. Thus the objective in this aspect of the research program i. to develop the analytical and numeri-

cal techniques to map out regions of qualitatively different behavior and to locate the "stability" boundaries
of these regions in parameter space. The latter is important because drastic changes in the optimum occur

in the presence of singularities which, in urn. ,&fi,,,. ;h,,e "rtltility" 1-,i,,,n-hoc (,ll Knowledge allows for
the uncertainty in system and model parameters and yields information about the expected behavior when

control parameters are varied to enhance the performance of the system under consideration. In addition to
providing a global-like sensitivitv analysis, these methods are quite efficient in computing multiple optima.
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Several model problems taken from the very active area of design optimization are being investigated to test

and illustrate the value and applicability of these continuation and bifurcation methods, as well as to provide
motivation and focus for turther development. Preliminary theory and nurmerical implementation have been

completed as described in detail in Section V.

II. AFOSR Summer Faculty Research Program at Rome Labs, Griffiss, AFB

During the past five years we have worked on multitarget tracking and less on multisensor data fusion.
Thus to reorient our research program more in line with the needs of the Department of the Air Force in

multisenor data fusion, I spent the summer at Rome Labs as part of the AFOSR summer faculty research
program. My goals were: (1) to understand the multisensor data fusion and multitarget tracking problem

from the viewpoints of the researchers at Rome Labs, (2) to survey the existing methods and approacheb

to multisensor data fusion and multitarget tracking, (3) to work on modeling multisensor data fusion and

multitarget tracking problems, and (4) to develop a working relation with researchers at Rome Labs with
a long term goal of cooperative research. Working with Martin Liggins and Vincent Vannicola at Rome

Labs, we: (1) achieved a new and broadened view of the needs in multisensor and multitarget tracking, (2)

developed a unifying approach to multisensor data fusion and multitarget tracking based on multidimensional
assignment problems, (3) worked on a paper that is to appear 1381 and will be presented at the 1993 SPIE

meeting in Orlando in April, 1993, (4) arrived at a more unified understanding of the elements needed to
smoothly transition 6.1 research ;nio 6.2 and 6.3A areas, and (5) examined the aspects of involving Rome

Laboratory personnel in developing an in-house 6.1 research base.

III. Optimization Problems in Multitarget/Multisensor Tracking

This section describes some of the optimization problems in multisensor/multitarget tracking. Section
A presents the problem area overview, Section B summarizes the achievements, Section C presents a case

study, and Section D gives an overview of the algorithms.

III. A. Problem Statement. The central problem in any multitarget/multisensor surveillance system
is the data association problem of partitioning the observations into tracks and false alarms. Current meth-

ods [7] for mutitarget tracking generally fall into two categories: sequential and deferred logic. Methods
for the former include nearest neighbor, one-to-one or few-to-one assignments, and all-to-one assignments

as in the joint probabilistic data association (JPDA) 13]. For track maintenance, the nearest neighbor

method is valid in the absence of clutter when there is no track contention, i.e., when there is no chance of

misassociation. Problems involving one-to-one or few-to-one assignments are generally formulated as (two

dimensional) assignment or multi-assignment problems for which there are some excellent optimal algo-
rithms. This methodology is real-time but can result in a large number of partial and incorrect assignments,

particularly in dense or high contention scenarios, and thus incorrect track identification. The difficulty is

that decisions, once made, are irrevocable, so that there is no mechanism to correct misassociations. The

use of all observations in a scan (e.g., JPDA) to update a track moderates the misassociation problem and

has been successful for tracking a few targets in dense clutter.

Deferred logic techniques consider several data sets or scans oi data all at once in making data associ-
ati-i, d' i.ion•. At one extreme is ý.,iLcii processsmg in which all observations (from all time) are processecd
together, but this is computationally too intensive for real-time applications. The other extreme is sequen-

tial processing. Deferred logic mr.thods between these two extremes are of primary interest in this work.

The principal deferred logic method used to track large numbers of targets in low to moderate clutter is
called multiple hypothesis tracking (MHT) in which one builds a tree of possibilities, assigns a likelihood
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score based on Bayesian estimation, develops an intricate pruning logic, and then solves the data association

problem by explicit enumeration schemes.

Another important aspect in surveillance systems is the growing use of multisenor data fusion in which

one associates reports from multiple sensors together. Once matched, this more varied information has the

potential to greatly enhance target identification and state estimation [7]. The central problem is that of

data association and the principal method employed is the deferred logic technique of multiple hypothesis

tracking [1,2,7,8]. This problem of partitioning multiple data sets at some cost or to some benefit is also

the central problem in perceptual grouping in psychology and stereo correspondence in both biological and

computer vision [9].

Thus data association and the more general the problem of partitioning multiple data sets to some

benefit is a fundamentally important combinatorial optimization problem. These problems generally have

the following characteristics: the problems are large scale; the objective function is noisy due to plant

noise, errors in the sensor measurements, and modeling uncertainty; and they NP-hard [141 but must be
"solved" real-time. Consider the methods currently used to solve these data association problems: explicit

enumeration and greedy algorithms. The former is inevitably faulty in dense scenarios since the time required

to solve the problem optimally can grow exponentially in the size of the problem. The latter cannot produce

near-optimal solutions with any robustness.

Hence the challenge is the design of algorithms that solve these problems to the noise level of the problem

in real-time. This is precisely the achievement of this research program. All of these problems have been

formulated as multidimensional assignment problems, and a new class of algorithms based on Lagrangian

relaxation has been developed to construct near-optimal solutions in real-time, The potential implications

are the orders of magnitude improvement in the speed of existing MHT algorithms and the extension of the

problems solvable by MHT.

Finally, it is important to note that the use of combinatorial optimization in multitarget tracking is not

new and dates back to the mid-sixties and the pioneering work of Sittler[46], who used maximum likelihood

estimation to evaluate all possible track updates and employed track splitting (several hypotheses were

maintained for each track) and pruning (when their probabilities fell below certain threshold). Maximum

likelihood estimation was further investigated by Stein and Blackman [6], who developed a comprehensive

probability for track initiation, track length expectancy, missed detections and false alarms. Morefield [25]

pioneered the use of the integer programming to solve a set packing problem arising from a data association

problem. Multiple hypothesis tracking has been popularized by the fundamental work of Reid [451. The

work here now makes these approaches practical.

III.B. Achievements. Our activities and achievements in 1991 and 1992 have been many and varied

and can be briefly summarized as follows:

"* As a participant in the AFOSR Summer Faculty Research Program, Professor Poore spent the summer

of 1992 at Rome Labs at Grifliss AFB. A major accomplishment was the demonstration the existing

deferred logic association techniques such as multiple hypothesis tracking that is the technique used

in multisensor data fusion and multitarget tracking can be replaced by multidimensional assignment

problems. This work is the suuject of two forthcoming papers by Drs. A. B. Poore and N. Rijavec of

CSU and Dr. V. C. Vannicola and M. Liggins [37,38] of Rome Labs.

"* One class of algorithms for the construction of real-time solutions of the mulitsensor/multitarget tracking

problems has been developed. The basic scheme currently [29,40,411 employs preprocessing in the form
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of gating and clustering. Then the sparse decomposed problems are solved by a recursive Lagrangian

relaxation scheme. A K-dimensional assignment problem is relaxed to a (K - 1)-dimensional one by

incorporating one set of constraints into the objective function using a Lagrangian relaxation of this

set. Given a solution of the (K - 1)-dimensional problem, a feasible solution of the K-dimensional

problem is then reconstructed. The (K - 1)-dimensional problem is solved in a similar manner and the

process is repeated until one reaches the two-dimensional problem which is solved exactly. The duality
gap in this process is generally small and one obtains good bounds on 'he optimal solution. The full

technical description can be found in the forth coming paper of Poore and Rijavec [29,40]. Other classes

of algorithms are underdevelopment.

"* Algorithms for an initial tracking system have been developed. This includes problem formulation

for track initiation and track maintenance. Algorithms for system optimization and estimation (least

squares, Kalman filtering, nonlinear estimation techniques), model simulation, solution quality mea-

surements have been developed and implemented. This provides the basis for checking the quality for

different algorithms under development.

"* Extensive simulations have been performed to demonstrate the robustness and speed of the assignment

solvers. These simulations are the subject of previous and forthcoming publications [29-34,39,41].

"* Twenty three presentations have been given and eighteen papers have been submitted or published.

III.C. A Case Study

In this section, a model problem is formulated and solved to demonstrate the overall performance of the

algorithms involved.

I1.C.1. The Model Problem. One generally assumes that each target is, except in a maneuver,

modeled by a state state-space system of the form

x(k + 1) =Fk(x(k)) + Gk(x(k))w(k)

z(k) =H-(x(k)) + v(k)

where z(k) is a vector of n state variable, w and v are independent white noise sequences of normal random

variables, z(k) represents the measurement at time k associated with this particular target and Hl,(z(k))

relates the state x(k) to the measurement x(k). In this case study the targets are assumed to travel in two

dimensional space according to the constant acceleration model
t2z(t, a) = z 0 +iv. + -. ,

2 (C.1)
t2

y(t, c) = YO + tvv + -a.

where the parameters in a = (x0, v,,a•,y0, v,a,) identify a particular target whose track is defined by

p(t, a) (x(t, a), y(t, a)).

At a discrete set of scan times {tkJ1k 1 ( tl <_ t 2 < ... _ tN), a radar located at the origin in this

Cartesiaa space observes error contaminated ranges and angles of the targets in the observation space which

is a circle with radius R centered at the origin. Some observations are spurious and some observations of

true targets are missed. At time ti, the radar is assumed to return the set of observations {z whr}= where

MAt is the number of observations and zk = (r:, 0 ). To every scan, a dummy observation z4 is added to

represent missed detections. Each observation (r', O) arising from an existing target is related to the true

observable H(p(tk,a)) by
(k - II(p(L,,,a))( (C.2)
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where ek and ek are independent zero-mean Gaussian random variables with standard deviations k =

ar(tk) and ac = ao(tk), respectively. The measurement error covariance matrix is given by 1:,o(t) =

diag(a,(t), a'(t)). (More generality is obtained by allowing a,(t) and ao(t) to vary with the spatial position

of the measurement.) The true observable If(p(t, a)) is related to the track p(t, a) by

(p(t, a ( (t, a) 2 + y(t, )2)

arctan I

(If the definition of arctan is based on the principal angle, then the appropriate shifts in 0' must be made.)

If the observation corresponds to a false alarm or new target, then

"r k J(.) if the observation is spurious,OkL ) k (C.4)
tk = if the observation arises from a new source,

where the random sequences wk and uk have some assumed densities pk and pk, respectively. A commonassumption is that (wk k Uk, Uk

a(w, w.) and (,. are uniformly distributed over the observation space so that

p(Wk) = { ifO<wk < Rand -rr <_r (C.5)

0 () 0 otherwise

A similar expression would hold for pk. The number of false alarms and new targets are assumed to be

generated at each time interval [tk- I. tk] according to a Poisson distributions with expected numbers Ak and

V•, respectively.

A set of observations Z,..,, = {,. .... ,', }, containing one observation from each scan, will be called

a track of observations. Note that some observations in a track of observations might be dummy, representing

a missed detection. Tracks of observations Zo ... oo...o with a single nonzero index (i.e., a single non-dummy

observation) will be taken to represent false reports (clutter).

To determine the most probable partition of the observations into tracks and false reports, each track

of observations Zi,...,N must have a likelihood L~l.... associated with it. First, define LO...0 = 1 and

Lo ... oj,0o =_ 1. Next, if Z,,...,, has at least two nonzero indices, the following likelihood expression can be

derived [371:

N f A,) k { [(I - Pk)Ppk (zk 1ZtI.k.kN) kd'k (1p-zI6I..N '
Li 1 . 1N k P, d t p' A"Z,..,) (Z"IZ,. ) 0 (C.6)

where
w ePX if track Z,,...,N terminates at scan k;

= (1 - P)(1 - Pk), if track Z,,...,, has a missed detection on scan k; (C.Ta)
1, otherwise,

and the indicator functions vk, 6,, and A,, are defined by

S = 1, ifz4 is a new target;
0, otherwise;

1, if z,1 belongs to an existing track,
0, otherwise; 

(C.7b)

Ail 1, i =j;

0,= {, otherwise.
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Also, Pk and Pd denutu the ptobabilities of termination and and detection on scan k. The likelihood
functions p'(z .'(z' ), and p(,' ) are those Jf the error in ,he observations of the

target, false report model, and new source model, respectively.

If the target dynamics (C.1) are known, the likelihod expression in (C.6) can be computed using the

densities
[ k -I F _k.

2 7ru,(tk)ao(tk) 2x z kpta)TZ 0 (k <-I pto1} (S

In the context of formulating the data association problem, however, the track parameters are unknown and

must be estimated from the observations {z,,... z'V}. The parameters a are replaced by the maximum

likelihood estimate

& = Arg Max L,,.,,p(-,a)) = Arg Min c,,..., (p(., a)), (C.9)

which can be equivalently characterized as the solution to the nonlinear least squares problem

& = Arg Min cl..., N(p(.,a))N

N ~(C. 10)
= Arg M in Z(l - Aoi)[z, - Ilk(p(tk,,a))] - [z• - HF(P(t,,))] .

k= 1

III.C.2. The Data Association Problems. This section will address the formulation of the data

association problem for two cases. In track mitzation, no tracks are assumed known. In track maintenance,

some tracks may be known from prior information. These tracks must be extended using the newly arriving

information, while keeping in mind that new tracks might also be initiating. We first address track initiation.

For every track of observations Z4...,,, define a 0-1 variable zi, ..i, via

= {.I observations {z..... } were generated by the same target (C.l la)z,2..iN 0 otherwise

and a score by

c,.. = -In Lil... N, (C.11b)

where Ll...,N was defined in (C.6). The requirement that a single non-dummy observation z,", (1 < k < N,

1 < ik < Mk) be either a false report or assigned to exactly one track can now be expressed as
M1 U_ M.1 AIN

I: .. E E N (C. 12)
it,=0 i - 1-0 .I-0 IN 0

The data association problem of partitioning the observations into tracks and false reports can now be

posed as the following multidimensional assignment problem

Minimize "E c 11.. I'zl -IN

1I ýO IN 0

Md2 .%
4
N

Subject To E E z1.. = 1, = 1 ,...,M,
12 ýO IN 0

EL E E .. Z 11, IN, (C.13)

il-0 IA, I -1 0 tN -O

for zI= M.... and k=2 ,...,N - 1,
M1  MN -I

E .. Z11"-N = 1N iN -0N
11 A: IN-,• 0

z,, N E {0, 1) for alli, ... N

8



Next, track maintenance using a sliding window is developed. Suppose i hat the observations on P'
premous scans (of observations) have been partitioned into tracks and false alarms and that K new scans of

observations are to be added. One approach to sdving the resulting data association problem is formulate

the problem as a track initiation problem with P-r K scans. This is the, previously mentioned batch approach.

The deferred logic approach adopted here is to treat the track extension problem within the framework of a

window sliding ,)ver the observation sets. First assume that the scans of oLservations are partitioned into

three components: D discarded scans of observationsi, R retained s(.ans of ohservations from the P pretvously

processed scans, and K new scans of observations. Thus the number of scans in the sliding window is

N = R + K while the number of discarded scans is D) -= P - R.
Let M0 denote the number of confirmed tracks previously constructed from the discarded and retained

regions that are present at the start of the tracking window. (These M0 tracks may be obtained as the

solution of a previous problem assignment problem, may be union of the best K such solutions, or may

be all of the feasible tracks. However, tracks terminated in the discarded region are generally not included

in Mo.) Suppose the i'h such track is denoted by T,, for io = 1 V.. . 0 . For i0 > 0, the (N -- 1)-tuple

iT, 0 , zZ, . .. ... zt } will denote a track TI0 plus a set of observations or measurements (z,1 ,. z, } , actual

or dummy, that are feasible with the track T,,. The (-V + 1)-tuple {To, zn.... ZN } will denote a track that

initiates in the sliding window.

Analogous to the track initiation case, one can define the zero-one variable

if .T 2 , = i.z;T" } is assigned as a unit, (C.14a){ 0 otherwise.

and the corresponding cost for the assignment of the sequence {TI0 , z,,..., z 1, } to a track by

C-toII..t - = - In Lo L,,...IN. (C. 14b)

Here LT,o is the composite likelihood from the discarded scans just prior to the first scan in the window

for io > 0, LTo = 1, and Ll..N is defined as in (C.6) for the N-scan window. (LT0 = I is used for any

tracks that initiate in the sliding window.) The data association problem for track maintenance can thus be

formulated as
Mo MN

Minimize I.. E (Z10" N. ZO "IN

z%=O = N=O

Subj. To Z10. I N =1, ?o 1l.IO,

1t=0 IN =0

MO M2 MNv

Io=0 12=0 V- -o (C.15)
M4. Vfw I •. MN

Z .Z Ez l,,,~ ,, '
0 0 0 (. 1• -

for •k= 1...M.. M andk=2..... N-,
Alfo

TO=0 %,N- I -0

z,0.., E {0, l} for all i0o .. ,iN.

Note that the association problem involving N scans of observations is an N-dimensional assignment problem

for track initiation and an (N + 1)-dimensional one for track maintenance.



1II.C.3. Numerical Simulations. The performanuce ol the tracking algorithms presented in this
work depends on many factors, including target density (i.e., the number of targets per unit space), the

space size, the measurement error covariances and probabilities of the detection and false report rates. This
section presents results of two studies investigating the impact of changing the sensor error characteristics

and window sizes on the performance of these algorithms. Results of rnorc comprehensive parametric studies
will be presented in a future work.

The tracking problems considered in both studies had the following characteristics: the observation
space is circular with a radius of 20 niles and sensor in the center and 10 targets that were initiated before

the first scan and never terminated (targets were generated so as to t.. er leave the space). The initial target

speeds were between 200 and 900 miles per hour and the target accelerati .i was not more than 0.00:A miles
per second squared (or .14,06,1 rmiles per hour squared). The scan times were every 10 seconds, and fifteen
scans of observations were used. Note that the total gain ,n velocity due to acceleration was thus not more
than 1500 mph. The sensor returned measurements in polar coordinates, as described in Section II1.C.2. All
the observations in each scan were synchronous. The range !•rror was relative, the angle error was absolute,
and nelther varied with time. Both the missed detections and false reports were allowed by the sensor.

The problems were generated randomly To obtain a meaningful sample for the comparisons, a set of
100 problems for each set of paramerters was generated, differing only in the random number generator seed.
All results presented in this section are thus averages over 100 prherms.

The first study investigated the impact of changing the standard deviations of the measurement errors.
All the problems in the first study had the probability of detection of 0.95, and the probabdlity of false
reports (i.e., the probability that an arbitrary observation was false report) of 0.05. A six scan wii.dow was
used for tracking. Thus a six dimensional assignment problem governed the data association problem for
track initiation and a seven dimensional one for track maintenance. The data association problems arising
from the tracking problems in this study had between 350 and 5000 variables and were on the average solved

in less than half a secnnd for the biggest problems, using an IBM RS/6000-550 workstation. Table 1 shows
the quality of tne computed tracking problem solution for each of nine combinations of the range and angle

errors. The solution quality was checked after each scan in the simulations. Each scan thus corresponds to
a column in the table. The column for 6 scans refers to track initiation. All other columns are results for
track maintenance. The angle error standard deviation a0 is expressed in degrees.

Ur C 6' 7 8' isc.. 9 1c i LI s 1'2 .. 13 sc. 14 -c 15 ac.
001 Oso0 99.0 99 7 996 99 99.9 999 999 999 1000 1000

(UI I 994 99.5 9,2 997 999 999 999 1000 99.9 1000

0ýl 1 50 9588 99.7 998 399 998 999 937 1000 1000 1000

02 U50 1983 995 9393 9999. 49 91000 1000 100.0

0 02 1.•0 8 9h 9 g 19 ti 914.7 99Pj9 99 9 999 A9l 10011 1000 100.0

002 1 ,50 T91 !195 997 994 916 999 )!98 W(00 1000 1000

().13 0 .1 .1 !)h 7 995 49 2 99 4 Y9 7 99 7 99 4 19000 99 9

0 03 1. 00 97 4 98S 9M 7 39 7 91 9 ? 99 6 99 8 100.0 100,0 99 8

0.03 1 50 98 2 9 8 992 995 998 998 99H 99 8 999 999

'rTable I : Solution quality for varying rnea iirerment error

Table I shows that the quality of the solution increases as more information becomes available and the
track estimates become better. Six scan window seems adequate for tracking problems of this level of noise,
especially since our studies of individual problems indicate that the quality criteria described in Section 4
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are a littleI too string~ent in the S,'nse thol tracks proclaimied m-iissed" Often lie just tut.si !c of the region

defined by the quality criteria.

For the second Study, the rnewsure 1,.ent error standard deviat ions were kept constant at a, 0 (.() and

ae= 0.50, while the probability of detection was either 0.95 or 0.7 and the probability that an arbitrary

report was fal,,e was either 0.05 or 0.3. For eac;h of the four combinations of these two parameters, tracking

problemns were solved using 1, 5, 6, and 7 sean moving w~indol ws. Assignmrent problemn sizes ranged1 from :10

to 2500 variables apii longest solution timres were 0) 5.4 seconds for larg4est windows and highe-st noise levels
'most of the cases hadi the solution timres of less, than (1.3 seconds). Table 2 shows the solution quality for all
16 comrbinations of probabilityv of detection P 11)). probability of false reports (PER-1) and window size (Win.)

Inapplicable entries in Table 2 are denoted by -".As in Table 1, the results are presented on scan by scan

basis, with the first numnber in each rew indicating track initiation, while the remraining numbers refer to

track maintenance.

PD i'rPR %k I '1 6 - 7 ~ c c 10 - I ii 12 %- 13 SC. 14 -c .5 a,

0..1 0.15 4 2 35 401 3 45 44 48 47 48 47 46 46

0 70 (1 j5 5 . 5 i 6 71 73 75 76 76 77 75 75 75

0 7.; :1:5 6 -2 'S3 S-7 89 'J 901 zoo 89 89 88

0 70 0115 7 - S . 7 93 96 '17 14 97 46 95 95

01.70 "'1.0 4 '231 33 3's 44 416 416 47 46 b 46 47 49

1).70 0.30 5 . 49 6 i 68 :ý7 3 74 76 76 17~ 7s

1711 0301 F 70 1 86 89 90) 90) 90 91 190 89

0 70 0.30 7 it 3 90 92 94 96 96 96 96 95

0.95 (0.05 4 h 1 86 91 94 965 96 97 97 97 7 97 97

(1.95 ()(15 )A. 6 99 99g 91) 100 1100 100 100 00 10 100

0.a5 0015 6 99 100 100 100 100 10on 100 1O 100 10

1095 a1(05 7 . - - 1010 1(01 i01) 1110 1.00 100 100 100 100

1195 130 .4 SO1 87 91 94 97 97 98 98 98 97 97 97

'95 if;1 5 . 57 98 9H i 001( 111 1100 100 101) 100 100

0.9 131) 6 . - A6 T9 99 10 1110 G 100 100 100 100 1011,

0.5 0 30 7 A 3 99 ltl 11 0 100 1 00 100 1011

!fatie 2 So1 .t-r qAaOty for differert PD!. PPR and wtndow siz"i

Table 2 shows that the quality of the solution again increases as more information becomes ivailable.

However, in problems with the low probability of detection, even after 15 scans of information, the algorithm

that uses only four sc:ans in the moving window fails to identify over half the tracks. As the window increases,
SSO does the! qulality, since more information is available to the tracking algorithmr. The capability to vary the

window sizes is thus c:rucial if thfe alarnrit hrr is to handle prolbleuls with different noise levels successfully.

I-Even though the model initiatei- all Ow I a.gets hef, n: tie first scan1 is made, the re-sults in Table 2 show that

track initiation muitst be ailowed ont later scans, as wit~li ned in SectioIn 3. Especi ally in problems with low

probability of detection. -il rie target~s will ri1,t h)e 1 mlent ilie~d in the first few windows, simply because they

have not been det~cted eriougfh times, arnd are thus inrit iated later.

Comparing Tables I and 2, it is obvious that var':ing the probaillity of detection has more impact on

the solution quality than varying the false report rate, or the measurement rate. This is not really surprising

since lowe.ring the! probability of (l~eIcetiof actually remnoves iniormation from the problem, while increasing

the falsv report. rat~e arid increwsing the measuremnenit errors just adds noise. I lowever, using the appropriate



window sizes, the algorithrms pretcnted inr this work construct high qualityv -,witio•s e•vn fr i ,kr, iir,, V

tracking problems.

Finally, it should be poiited out that even the limited p;irarriet•trc studir.- pr rsenti-il !,, iili r

involved sAlvirig tracking problerrs with widelIv dilfering arroiurits and types (if rniwsc The ,yniv ,

made to the algorithnis waLs the .sizc of the slidinrg window This irlid;ir ., that ;he lg ,hrits h r ,,l i

tracking problems using riumtiscan sliding w inclows, maxirnurn Iikel ihiol est •tnation, and I.agranigian r-lax.

ation for data as.sociation problems, are quite ribust and thus like:ly tu be effecltivj for a wide r a•g,: of

tracking problems.

III. D. Algorithm Overview. A primatry vbjective of this work has be-en the deve-loprnert of algorithmis

for the fast construction of high quality v rnear-optimal) suboptimal solutions of the following multidimensional

assignment problem 'C. 13). These ;Lis- rignnert problerns, as developed in Section Ill.C, po.s(5s the following

important characteristics: the problem is large svale: the objective function is noisy tue to plant noise., errors

in the sensor measurements, and modeling uncertainty: it is NP-hard' but must be solved real-time. Gating

and clustering techniques are generally used to reduce the size and complexity of the problem, thereby making

the problems sparse. We argue that the problem should be solved to the noise level and not to optimality.

since the objective is to use this assignment problem as a vehicle to identify objects in sensor fusion and

estimate tracks in tracking. The NP-hardnerss and real-time needs rule out conventional techniques such as

branch and bound or explicit enume'ration. The sparsity of the problem raises the issue of whether or not

(IDA) has a feasible solution. To resolve this we assume that all zero-one variables with exactly one nonzero

index are free to be assigned and the corresponding cost coefficients are defined. The zero-one variable

zo. o and the corresponding te:rrn :o z, () in the objective function are present for notational convenience.

Finally, other problems of interest include the situation in which the " = I" in the constraint (D.1) is changed

to " <, = or _ n" for some nonnegative in: her rt' . However, we shall not address these problems.

The algorithm development in this work is based on Lagrangian relaxation, which originally gained

prominence as a method for efficiently obtaining tight bounds for a branch and bound algorithm in Hield

and Karp's highly successful work on the traveling salesman problem. Overviews of this methodology can

be found in the works of Ceoffrion. Fisher, Shapiro, the book by Nemhauser and Wolsey, and the references

therein. The particular algorithm developed in this work is motivated by that of Frieze and Yadegar for

three dimensional assignment problems: however, an overview of the algorithms developed in this work is

perhaps more easily described interms of a prototype algorithm for a general integer programming problem.

Consider the integer programming problem

Minimize c- Z = V(z)

Subject To A.z > b
(D.2)

B z > d

z, is an integer for e I.

where the partitioning of the c(,nstraints is natural in some sense. The Lagrangian relaxation of (D.2) relative

to the constraints lz > d is defined to be

,(u)-- Minimize o(Z,1u)=_ {crz - ur(Bz - ,4)}

Subject To Az > b (D.3)

z, is an integer for i E I

11 > 0
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where u > 0 is interpreted componentwise. If the conmstraint set 13z ' d is replaced by 13z = d. the

nonnegativity constraint on u is removed. C = ("z - u 7 z - dý i the La,,rangiarn reiative to the tor1raints

Bz > d, and hence the name Lagranguzn rultaltori. Next, i z is an optimal wiutiori to D)2;. problems

(D.2) and (D.3) imply

'l'(ui) <_ ) for all u > . I),

Given a specific multiplier u, let z,(u) and z,- u) denote subopt imal aid optimal solutions of the relaxed

problem (D.3), respectively. Generally, is rot feasible for the relaxed constraint liz > d: however, if

z,(u) is feasible, then it is then also optimal for (1),2). Thus one must develop a recovery procedure for

constructing a feasible solution of (D.2), fronm either of z-,(u) or z, u,. There are several reasons why the

resulting feasible solution zf might be a good soflution of (1).2). First, if the multiplier u = u > 0 is chosen

as the maximizer of the problem

Ma~ximize {4(u) u > }} (D.5)

and the duality gap [O(t), V(z)} is small, then the recovered feasible solution zf of (D).2, from the solution

z,(f) of (D.3) may be close to 2. (The experience of many researchers is that this duality gap tends to be

much smaller for equality constrained problems than for corresponding inequality constrained problems"'.)

Secondly, the term -uT(rBz - d) in ().3) acts like a pinalty for violating the constraint Bz - d > 0, thereby

forcing z,(•f) closer to the optimal solution z of (D).2). Finally, the recovery procedure should be designed to

minimize any remaining flexibility in the objective function in ().1). Thus given this rationale, the following

prototype algorithm abstracts some of the ideas of the work on three dimensional assignment problems by

Frieze and Yadegar:

Prototype Algorithm. Construct a sequence of multipliers {(u}k) 0 in the course of maximizing 4(u)

defined in (D.3) and a corresponding sequence of feasible solutions 'zk-}' of (D.2) as follows:

A. Choose an initial approximation 0o.

B. Given uk, determine a new multiplier u..., from a step in the maximization problem (D.5), so that
'1(Uk)! 4)< (Uk ,1).

C Civen u, . -: and a solution Zr(Utk -) of (D.3), recover a feasible solution Zk - of the integer programming

problem (D.2).

In the absence of any a prior knowledge of the initial multiplier u0 , a good neutral choice in Part A is

u0 = 0. Part B of this algorithm is the nonsmooth optimization phase and one of the most widely used

methods for non-smooth optimization is the subgradient algorithm, which is the nonsmooth analog to the

steepest ascent method. Analogous to conjugate gradient methods for smooth optimization is the class called

"bundle methods". This includes the space dilation method of Shor. the "bundle-trust region" method due

to Schramm and Zowe, and the conjugate subgradient method of Wolfe. Wolfe's algorithm is used in this

work. The recovery procedure is part C of this algorithm and can vary considerably with the problem. Note

that 4D(uk) _< 4,(iý) <_ V(z) <_ V(zk), so that we have a bound on the optimal solution. With an estimate of

the noise level in the problem, we can then use these bounds as a stopping criteria. The explicit developed

for the multidimensional assignment problems are presented in 1291 and forthcoming work.
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IV. Infinite Diniensional Optimization Problems and Numerical Control

The classes of optimal c(ontrol problems cnrrntly under investigatiim are ,ubclas-se of the pr,,bh:m

%I inini ize Jix, ul := -,t, t,,,x(to ) -.-t,f t, X.u;lit

Subject To i = f(t, xjt), u(t))

II(to, t1 ,X(to),z(t 1 )) = 0

h(t, x't), u(t)) 0 ac. [t0 , ti,

q (t, x(t), u t) 0 a.e c [to. t I

u,(t) E Q a.e. [to, 'iI

F(to, t, x(to), x(t ), x, u) < 0 for i = 1 k

(X, U) E W w ., ([to, t 1 ,Irtl ) x LOG([to, t 1 ,Ulm')

where x is an n-vector, u is an m-vector, 13 is a boundary operator, Q is a closed convex set, )7, is a

functional and W'P([totj, it) is the usual Sobolev space which can be characterized via the Sobol(v

imbedding theorem as consisting of those absolutely continuous vector functions with the first derivative in
Ly ([to, tI], fi ). The functions B, fo, f, 1, h, .T,, and 9 are assumed to be at least C2 with respect to their

arguments.

Our interest in this problem is two fold. First, working with former PhD student B. Yang, Proftssor
W. W. Hager of the University of Florida and Professor Asen Dontchev of Bulgiarian Academy of Sciences
and Math Reviews, we have investigated the convergence of various numerical methods (Newton's, penalty,

augmented Lagrangian, interior point methods) in the appropriate infinite dimensional spaces. This work
has evolved as follows: Poore, Yang, and llager 142] have investigated convergence of penalty, multiplier, and
Newton methods for a subclass of the above problems without set constraints and inequality constraints on
the controllers. A more theoretical analysis of the above problem, again without set constraints o- inequality

pointwise constraints on the state variables and controller was developed in the PhD thesis of B. Yang
[501. This latter work has been considerably generalized to include these pointwise equality and inequality

constraints in the recent work of Dontchev, Hager, Poore, and Yang [111. The approach was to first derive
sufficient optimality conditions for an infinite dimensional optimization problem in a setting that is applicable
to optimal control problems with endpoint constraints and with equality and inequality constraints on the
controls. Under the hypotheses of the sufficient optimality theorem we show that the solution to an optimal
control problem possesses a Lipschitz stability property relative to problem perturbations. As an application
of this stability result, we establish convergence results for the successive quadratic programming algorithm

and for penalty and multiplier approximations applied to optimal control problems.
The second area of research interest is the parametric problem associated with the above optimal control

problem. The interaction of multiple and bifurcating states in the absence of controls, periodic phenomena,
chaotic behavior, and bifurcating controls arising from the dynamical systems and holonomic constraints is
open to investigation. Given a certain phenomena arising from a dynamical system, the problem may be to
control this phenomena, to determine multiple solutions, or to investigate the dependence of a solution on
the system parameters over a wide range, i.e., global sensitivity. (The latter is also important in adaptive
control.) The development and use of theoretical and numerical bifurcation and continuation methods in

dynamical systems and nonlinear equations has been spectacularly successful in analyzing and understanding
the phenomena represented by these systems, but we know of no systematic treatment or works on the
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constrained nonlinear parametric control problem paralleling that found in dynamical systems- Thus a long

term goal of this research program will be the investigation of parametric problems in nonlincar control

systems including but not limited to the nonlinear optimal control problehrm.

V. Parametric Nonlinear Programming and Control

This section describes the parametric optimization problhm, Some of the accomplishments over the last

two years and an application in design optimization.

V.A Problem Statement. The use of bifurcation and singularity theory in the investigation of para-

metric problems in optimization and control represents a potential for a real extension of our understanding

of basic phenomena, global sensitivity, robustness, and multiplicity of solutions in both finite and infinite

dimensional optimization problems, in much the same way that these theoretical and numerical techniques

have helped our understanding of dynamical systems and nonlinear equations. Thus the objective in this

program has been the development of the analytical and numerical techniques to map out regions of qual-

itatively different behavior and to locate the "stability" boundaries of these regions in parameter space.

The latter is important because drastic changes in the optimum occur at singularities, which define these
"stability" boundaries. Our initial work [28,35,47,48] has been the classification and analysis of singular

points in the nonlinear parametric programming problem. Numerical techniques for predictor-corrector con-

tinuation techniques have been developed using a nonstandard variable order Adams-Bashforth predictors

with an adaptive error-step size control [19]. This software, which is available through Netlib, is particularly

efficient and robust for parametric problems. Numerical continuation and bifurcation techniques are being

developed and tailored to the finite dimensional constrained optimization problem in support of future work

on large scale control systems design optimization (20,23,24]. In the remainder of this section, the paramet-

ric nonlinear programming problem is defined and some of the accomplishments during 1991 and 1992 are

presented.

Mathematically, the parametric nonlinear programming problem is that of determining the behavior of

solution(s) as a parameter or vector of parameters a E IRr varies over a region of interest for the problem

Minimize {f(x, a) I c,(x, a) = 0 for iE E

c,(x,a) <50 for iEI}

where E = {1 ... ,p} and I = {p + 1 .. p + q} represent the index sets for the equality and inequality

constraints, respectively, and where f : R• -- , cE : IR"' - R9 and ct : iR" -- P are assumed to

be at least twice continuously differentiable. Using first-order necessary conditions as motivation, one can

convert the characterization of a solution to this problem as a solution of a system of nonlinear equations.

At a regular point of this latter system, the implicit function theorem rigorously justifies the computation of

the derivatives of the primal and dual variables with respect to the parameter a. These derivatives provide

the basis for local sensitivity analysis as presented in the work of Fiacco [12,131 and references therein. Thus

all the "action" is at the singular points of this system (A.1) where catastrophic failure, extreme sensitivity,

and jumps to undesirable operating states can occur. We have investigated these singularities in several

papers [28,35,47,48] via bifurcation and singularity theory. (These singular points are characterized by a loss

of strict complementarity, a violation of the linear independence constraint qualification, or the singularity

of the Hessian of the Lagrangian on the tangent space to the active constraints.)

The work in the last two years has turned to the development of numerical continuation and bifurcation

techniques for the systematic exploitation of these methods in applied problems. We now give a synopsis of

the algorithms and methods that can be found in a series of papers by Poore and Lundberg [19-24].
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A solution of the parametric programming problem (A. 1) is a solution of the following system of nonlinear
equations

]., (x,=0 (A2)

where L = C(x, A, i/) = v 7 (x A,\c 1(x) is the Lagrangian and A is a diagonal matrix with A,, = I
for i E E and A,, = A, for i E 1. Let A = Eu {i E I : c1(x, a) = 0} denote the active set. Note that any

solution of this system at which v > 0, c1(x) < 0, and Ai ý> 0 for all i E I satisfies the Fritz John first-order

necessary conditions. This system also employs a nonstandard normalization v2 + A"'A - 3rý2 = 0, where

, is a fixed positive real number. The standard normalization v = I is not employed since it requires a

constraint qualification for ius validity and the violation of the linear independence constraint qualification

is a singularity in the above system (A.2).

Since a multiplier corresponding to an inactive constraint is zero, the system (A.2) can be reduced in

complexity by using an acthe set straegy. The inactive constraints, i.e., those c, for which i E I - A, are

thus removed, yielding the active set system

V ýC (Z, a) 
xI E I -F(z, a)= c(x, a) 0, where z = eI\m , (A .3)B B(A, L) [ =1

m = n+ +AI + 1, A = (A,,. Ap, AEA-1), and i = (cl,...,CP, cEA-1), £(z,a) = Vf(x,a) + E, I A A'c(x,a)

and B(A, LI) = v2 + ATA - 302. Continuation for the system (A.3) along with locating the zeros in one or

more of the active, inequality multipliers A,, i E An I or an inactive constraint ci for i E I - A and changing

the active set appropriately is then equivalent to continuation for the full system (A.2).

V.B Status of the Algorithms. Numerical algorithms for numerical linear algebra in the continua-

tion procedure, critical point type, singularity detection and classification, and branch switching have been

developed in three papers of Poore and Lundberg [20,23,24] with additional work in progress. We now give

a brief overview of these results.

The linear systems that arise in the continuation steps can be reduced via block elimination algorithms

[6) to the solution of several linear systems of the form

~ A~] where W =,(B.1)wAA b AT 0'(B)

the matrix H is the Hessian of the Lagrangian or some approximation to it, and AT - De(z, a). During the

continuation steps the matrix H need not be positive definite on the tangent space to the active constraints;

however, both null and range space methods are easily modified to form the basis for the linear algebra

steps[20].

The classification of critical point type is based on [201

(B.2a) sign v,

(B.2b) signs of c(x, a) lbr i E I - A and A, for i E I n A,

(B.2c) signs of the eigenvalues of X2Cr,

where V2,fZ-r denotes the restriction of the Hessian of the Lagrangian to the tangent space of the active

constraints N((AT). It is only the latter class of signs (13.2c) that require computation, and this can be
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accomplished by computing the inertia of the reduced Hessian, which can be accomplished by either nu!l or

range space methods r201.

Methods for detect:ng srngutanttes due to the loss of strict complementarity, loss of the linear indepen-
dence constraint qualification, and singularity of the Hessian of the Lagrangian on the tangent space to the

active constraints have been extensively developed in the work of Lundberg and Poore 120]. The philosophy

behind singularity detection is to skip over them during the continuation procedure, detect their presence,
and then take the appropriate action, e.g., switch branches, change orientation, or continue along the current
branch. The detection and classification for simple bifurcations and folds have been show to be inexpensive

'by-products' of the continuation procedure [20[; however, due to the technically detailed classification we
omit a further discussion of this problem.

V.C. A Model Problem from Design Optimization. The numerical continuation techniques de-
scribed in the previous sections will now be used to obtain a "global" analysis of the sensitivity, stability,
and multiplicity of minima for a parametric nonlinear programming problem arising from design optimiza-

tion. The problem, which is simple yet still exhibits the basic phenomena, involves the design of a two bar

planar truss with semi-span I, unloaded height h, and load p as indicated in Figure 1.

P• h = Unloaded Height

Sd P"Load
d a Deflection

h

Figure 1: Loaded Two Bar Truss

Given a specific unloaded height h and load p, the deflection d is a minimizer of the potential energy/ ., 2

E(d, h pi = -pd ( 1 +-t - I + (h _ d)2 ) /vF +h2. Rheinboldt [441 used this model problem to
illustrate continuation methods in structural analysis and has given a rather complete solution to both the
static and parametric problems. Rao and Papalambros [43] posed a corresponding optimal design problem

as that of choosing the height h to minimize the deflection subject to 0 < h < 1.5. This problem is posed

mathematically as

Minimize d

(C. 1) Subject To VdE(d, h; p) = 0

0 <h < L.5

In addition to selecting the minimizer, the state (d, h) must also be selected so that the potential energy
E(d, h; p) is minimized with respect to d. The corresponding pai ametric problem is to determine the solution

and its properties as the load p varies over all physically important ranges. The numerical methods discussed
in the work of Lundberg and Poore and briefly discussed in the previous subsection were used to obtain a
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global solution of this problem as shown in Figure 2

* Singular Points D

Minimizers ..... Maximizers ". "

Singular Path d / h

.......... Infeasible Solutions -.

N ... *.A b

I
10

0.37 p

H - ''

":M

Figure 2: Solutions of (A.2) for Problem (C.1)

Here, the displacement d and unloaded height h as p varies and represents a projection of the solutions

of (C.1) into (h,d,p) space. Solid and dashed lines indicate paths of local minimizers and maximizers,

respectively. The dashed and dotted line represents a feasible singular path, and lines of small dots represent

infeasible solutions. The solutions to the optimization problem need not be points of minimum potential

energy E(d, h;p), which is not minimized on the segments from (b) to (c) and from (d) to (c) to (e). However,

all other feasible path segments do correspond to physical states of the truss where the potential energy is

minimized.

We now describe these singularities and the connecting path segments, beginning with those which occur

along the solution branch where the constraint h < 1.5 is active. Loss of strict complementarity gives rise to

the bifurcation points (g), (a), and (c), whose presence was indicated by a change in sign of the multiplier

A,. At these points the inequality constraint becomes weakly active and solution paths bifurcate into the

region 0 < h < 1.5. The fold points (b) and (d) (p = ±.37), which resulted from violation of the linear

indepe;ndence constraint qualification, were detected by a change in the sign of v. The type of the solution

along this solution branch is determined by the sign of A)/v, which changes at each of these five singular

points. This results in the alternating segments of minimizers and maximizers shown in Figure 2.

The solution to the parametric design problem can now be described for p > 0. Given a small but

positive load p, the global minimum occurs on the branch of minimizers between singular points (f) and (a).

As the load p is increased from zero, the height h increases from v\ to h = 1.5 where the constraints h <_ 1.5
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becomes active. As the load p is increased further, the deflection d continues to increase along the path from

(a) to (b) until p reaches 0.37 where the truss 'snaps through' and there is no minimum beyond p = 0.37
corresponding to a height h near 1.5. (The only way to maintain an optimum locally beyond p = 0.37 is to

increase the parameter 3 = 1.5 in the upper bound on the height h.) The local minimizer corresponding

to h = 0 becomes the global minimizer for p beyond p = 0.37. Local sensitivity is surely present at points
(a) and (b). Note that the path of minimizers is continuous but not differentiable at (a). (Near such points
many optimization codes exhibit cycling.) At the fold point (b), the path of minimizers ceases to exist.
Optimization codes would have difficulty here since the unnormalized multipliers will be large and go to
infinity as p approaches 0.37. The conclusion with regard to the design of the truss is that for stability the
loads must be less than p = 0.37 and that sensitivity occurs near the singular points (a) and (b) for the

reasons stated. Clearly, the ability of the continuation procedure to locate such singular points and obtain
such a global analysis is a major strength of the methodology.
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