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Abstract

This report describes some of the problems, achievements, and directions of investigation of three ar-
eas of research. The first is the development of combinatorial optimization techniques to solve the central
problem of multisensor and multitarget tracking, i.e., the data association problem of partitioning obser-
vations into tracks and false alarms. The problem formulation, algorithm design, and real-time solution
techniques involve from probability and information theory, system identification, filtering, control systems,
combinatorial optimization, and advanced computer architectures, including massively parallel computers.
The data association problem for general multitarget/multisensor tracking problems is posed as a class of
multidimensional assignment problems. The aigorithms under development are based on a recursive La-
grangian relaxation scheme, construct near-optimal solutions in real-time, and use a variety of techniques
ranging from two dimensional assignment algorithms, a conjugate subgradient method for the nonsmooth
optimization, graph theoretic propertics for problem decomposition, and a branch and bound technique for
small solution components. A model problem is presented to demonstrate the efficiency and robustness
of the current algorithms. The second part centers on investigation of various numerical methods for the
solution of nonlinear optimal control problems. The analysis of convergence in infinite dimensional spaces,
discretizations, and numerical implementations are in progress for Newton, penalty, augmented Lagrangian,
and interior/exterior point methods. The final part is the investigation of parametric constrained optimiza-
tion problems using numerical bifurcation and continuation methods with applications to design optimization

and contro} systems.
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I. Introduction

This report describes some of the probiems, achievements, and directions of investigation of three areas
of research as described below. Over the past two years twenty three presentations have been given and
eighteen papers have been published or submitted for publication, 2 MS and 4 PhD students have: graduated,
and A. B. Poore has been appointed associate editor of Computational Optimization and Applications. To
revrient this program to the arca of multisensor data fusion, Professor Poore spent the summer at Rome
Labs as part of the AFOSR Summer Faculty Research Program as described in Scetion [1. The technical
information for the last two vears is given in Section VII. The three areas of research are briefly expiained
in the remainder of this introduction.

The first part of this research program centers on the development of combinatorial optimization tech-
niques to solve the central problem of mulitsensor data fusion and multitarget tracking, i.e., the data associ-
ation problem of partitioning observations into tracks and false alarms. The problem formulation, algorithm
design, and real-time solution involve techniques from probability and information theory, system identifica-
tion, filtering, control systems, combinatorial optimization, and udvanced computer architectures, including
massively parallel computers. The data association problem for general multitarget tracking problems is
formulated as a class of multidimensional assighment problems. The algorithms under development are
based on a recursive Lagrangian relaxation scheme, construct high quality suboptimal solutions in real-time,
and use a variety of techniques ranging from two dimensional assignment algorithms, a conjugate subgra-
dient method for the nonsmooth optimization, graph theoretic properties for problem decomposition, and
a branch and bound technique for small solution components. This problem of partitioning multiple data
sets at some cost or to some benelit is also the central problem in perceptual grouping in psychology and
stereo correspondence in both biological and computer vision [9]. Thus the applications potentially extend
far beyond the current applications. The current status and results of this research effort are described in
Section 11

The second part centers on the investigation of various numerical methods for the solution of nonlinear
optimal control problems. The analysis of convergence in infinite dimensional spaces, discretizations, and
numerical implementations are in progress for Newton, penalty, augmented Lagrangian, and interior point
methods. A longer term goal is the investigation of parametric problems in nonlinesr control systems
including but not limited to the nonlinear optimal control problem. Some of the initial results in this
direction are described in Section [V,

The final part of this research program is the investigation of parametric nonlinear programming prob-
lemns using numerical bifurcation and continuation methods with applications to design optimization and
parametric control systems, and represents a potential for a real extension of our understanding of basic
phenomena, global sensitivity, robustness, and multiplicity of solutions in much the same way that these
theoretical and numerical techniques have helped the understanding of dynamical systems and nonlinear
equations. Thus the objective in this aspect of the research program is to develop the analytical and numeri-
cal techniques to map out regions of qualitatively different behavior and to locate the “stability” boundaries
of these regions in parameter space. The latter is important because drastic changes in the optimum occur
in the presence of singularities which. in turn dafin: these “stahility” hanndariee Quely knowledge allows for
the uncertainty in system and model parameters and yiclds information about the expected behavior when
control parameters are varied to enhance the performance of the system under consideration. In addition to

providing a global-like sensitivity analysis, these methods are quite efficient in computing multiple optima.
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Several model problems taken [rom the very active area of design optimization are being investigated o test
and illustrate the value and applicability of these continuation and bilurcation methods, as well as to provide
motivation and focus for turther development. Preliminary theory and numerical implementation have been
completed as described in detail in Section V.

II. AFOSR Summer Faculty Research Program at Rome Labs, Griffiss, AFB

During the past five vears we have worked on multitarget tracking and less on multisensor data fusion.
Thus to reorient our research program more in line with the needs of the Department of the Air Force in
multisenor data fusion, | spent the summer at Rome Labs as part of the AFOSR summer faculty research
program. My goals were: (1) to understand the multisensor data fusion and multitarget tracking problem
from the viewpoints of the researchers at Rome Labs, (2) to survey the existing methods and approaches
to multisensor data fusion and multitarget tracking, (3) to work on modeling multisensor data fusion and
multitarget tracking problems, and (4) to develop a working relation with researchers at Rome Labs with
a long term goal of cooperative research. Working with Martin Liggins and Vincent Vannicola at Rome
Labs, we: (1) achieved a new and broadened view of the needs in multisensor and multitarget tracking, {2)
developed a unifying approach to multisensor data fusion and multitarget tracking based on multidimensional
assignment problems, (3) worked on a paper that is to appear [38] and will be presented at the 1993 SPIE
meeting in Orlando in April, 1993, (4) arrived at a more unified understanding of the elements needed to
smoothly transition 6.1 research inw 6.2 and 6.3A areas, and (5) examined the aspects of involving Rome
Laboratory personnel in developing an in-house 6.1 research basc.

1II. Optimization Problems in Multitarget/Maultisensor Tracking

This section describes some of the optimization problems in multisensor/multitarget tracking. Section
A presents the problem area overview, Section B summarizes the achievements, Section C presents a case
study, and Section D gives an overview of the algorithms.

III. A. Problem Statement. The central problem in any multitarget/multisensor surveillance system
is the data association problem of partitioning the observations into tracks and false alarms. Current meth-
ods [7] for mutitarget tracking generally fall into two categories: sequential and deferred logic. Methods
for the former include nearest neighbor, one-to-one or few-to-one assignments, and all-to-one assignments
as in the joint probabilistic data association (JPDA) [3]. For track maintenance, the nearest neighbor
method is valid in the absence of clutter when there is no track contention, i.e., when there is no chance of
misassociation. Problems involving one-to-one or few-to-one assignments are generally formulated as (two
dimensional) assignment or multi-ussignment problems for which there are some excellent optimal algo-
rithms. This methodology is real-time but can result in a large number of partial and incorrect assignments,
particularly in dense or high contention scenarios, and thus incorrect track identification. The difficulty is
that decisions, once made, are irrevocable, so that there is no mechanism to correct misassociations. The
use of all observations in a scan (e.g., JPDA) to update a track moderates the misassociation problem and
has been successful for tracking a few targets in dense clutter.

Deferred logic techniques consider several data sets or scans of dala all at once in making data associ-
atici, dreisions. At one extreme is balch processing in which all observations (from all time) are processeq
together, but this is computationally too intensive for real-time applications. The other extreme is sequen-
tial processing. Deferred logic mthods between these two extremes are of primary interest in this work.
The principal deferred logic method used to track large numbers of targets in low to moderate clutter is
called multiple hypothesis tracking (MHT) in which one builds a tree of possibilities, assigns a likelihood
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score based on Bayesian estimation, develops an intricate pruning logic, and then solves the data association

problem by explicit enumeration schemes.

Another important aspect in surveillance systems is the growing use of multisenor data fusion in which
one associates reports from multiple sensors together. Once matched, this more varied information has the
potential to greatly enhance target identification and state estimation {7]. The central problem is that of
data association and the principal method employed is the deferred logic technique of muitiple hypothesis
tracking {1,2,7,8]. This problem of partitioning multiple data sets at some cost or to some benefit is also
the centra! problem in perceptual grouping in psychology and stereo correspondence in both biological and
computer vision [9].

Thus data association and the more general the problem of partitioning muitiple data sets to some
benefit is a fundamentally important combinatorial optimization problem. These problems generally have
the following characteristics: the problems are large scale; the objective function is noisy due to piant
noise, errors in the sensor measurements, and modeling uncertainty; and they NP-hard [14} but must be
“solved” real-time. Consider the methods currently used to solve these data association problems: explicit
enumeration and greedy algorithms. The former is inevitably faulty in dense scenarios since the time required
to solve the problem optimally can grow exponentially in the size of the problem. The latter cannot produce
near-optimal solutions with any robustness.

Hence the challenge is the design of algorithms that solve these problems to the noise level of the problem
in real-time. This is precisely the achievement of this research program. Al of these problems have been
formulated as multidimensional assignment problems, and a new class of algorithms based on Lagrangian
relaxation has been developed to construct near-optimal solutions in real-time, The potential implications
are the orders of magnitude improvement in the speed of existing MHT algorithms and the extensicn of the
problems solvable by MHT.

Finally, it is important to note that the use of combinatorial optimization in multitarget tracking is not
new and dates back to the mid-sixties and the pioneering work of Sittler[46), who used maximum likelihood
estimation to evaluate all possible track updates and employed track splitting (several hypotheses were
maintained for each track) and pruning {when their probabilities fell below certain threshold). Maximum
likelihood estimation was further investigated by Stein and Blackman [6], who developed a comprehensive
probability for track initiation, track length expectancy, missed detections and false alarms. Morefield [25]
pioneered the use of the integer programming to solve a set packing problem arising from a data association
problem. Multiple hypothesis tracking has been popularized by the fundamental work of Reid [45]. The
work here now makes these approaches practical.

III.LB. Achievements. Our activities and achievements in 1991 and 1992 have been many and varied
and can be briefly summarized as follows:

e As a participant in the AFOSR Summer Faculty Research Program, Professor Poore spent the summer
of 1992 at Rome Labs at Grifliss AFB. A major accomplishment was the demonstration the existing
deferred logic association techniques such as multiple hypothesis tracking that is the technique used
in multisensor data fusion and multitarget tracking can be replaced by multidimensional assignment
problems. This work is the suvject of two forthcoming papers by Drs. A. B. Poore and N. Rijavec of
CSU and Dr. V. C, Vannicola and M. Liggins {37,38] of Rome Labs.

¢ One class of algorithms for the construction of real-time solutions of the mulitsensor/multitarget tracking
problems has been developed. The basic scheme currently [29,40,41) employs preprocessing in the form
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of gating and clustering. Then the sparse decomposed problems are solved by a recursive Lagrangian
relaxation scheme. A K-dimensional assignment problem is relaxed to a {K — 1)-dimensional one by
incorporating one set of constraints into the objective function using a Lagrangian relaxation of this
set. Given a solution of the (K ~ 1)-dimensional problem, a feasible solution of the K-dimensional
problem is then reconstructed. The (K — 1)-dimensional problem is solved in a similar manner and the
process is repeated until one reaches the two-dimensional problem which is solved exactly. The duality
gap in this process is generally small and one obtains guod bounds on the optimal solution. The {ull
technical description can be found in the forth coming paper of Poore and Rijavec {29,40]. Other classes
of algorithms are underdevelopment.

e Algorithms for an initial tracking syvstem have been developed. This includes problem formulation
for track initiation and track maintenance. Algorithms for system optimization and estimation (least
squares, Kalman filtering, nonlinear estimation techniques), model simulation, solution quality mea-
surements have been developed and impiemented. This provides the basis for checking the quality for
diflerent algorithms under development.

¢ Extensive simulations have been performed to demonstrate the robustness and speed of the assignment
solvers. These simulations are the subject of previous and forthcoming publications [29-34,39,41].

o Twenty three presentations have been given and eighteen papers have been submitted or published.

III.C. A Case Study

In this section, a model problem is formulated and solved to demonstrate the overall performance of the
algorithms involved.
II1.C.1. The Model Problem. One generally assumes that each target is, except in a maneuver,
modeled by a state state-space system of the form

z(k + 1) =Fi(z(k)) + Ge(z(k))w(k)
2(k) =Hg{z(k)) + v(k)
where z(k) is a vector of n state variable, w and v are independent white noise sequences of normal random
variables, z(k) represents the measurement at time k associated with this particular target and H(z(k))

relates the state r(k) to the measurement z(k). In this case study the targets are assumed to travel in two

dimensional space according to the constant acceleration model
(2
z(t,a) = zg + tvg + 50

2 (.1

y(t, a) = yo + tuy, + -t-2—ay
where the parameters in a = (7o, vz, az, J0, vy, ay) identify a particular target whose track is defined by
pt,a) = (z(t, a), y(t, a)).

At a discrete set of scan times {tx}R., (L1 <tz < ... < tn), a radar located at the origin in this
Cartesian space observes error contaminated ranges and angles of the targets in the observation space which
is a circle with radius R centered at the origin. Some observations are spurious and some observations of
true targets are missed. At time t,, the radar is assumed to return the set of observations {z"‘k};:‘;x, where
M, is the number of observations and sz = (rfh,t?fk). To every scan, a dummy observation z§ is added to
represent missed detections. Each observation (v 6% ) arising [rom an existing target is related to the true
observable H{(p(ty,a)) by
(m>=u(u(»+(¢) (€2)

0:: Pllg, x 6; 94

3
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where e* and ef are independent zero-mean Gaussian random variables with standard deviations of =
o.(tx) and ok = o4(ts), respectively. The measurement error covariance matrix is given by Y,4(t) =
diag(a?(t),a3(t)). (More generality is obtained by allowing o,(t) and a4(t) to vary with the spatial position
of the measurement.) The true observable H(p(t, a)}) is related to the track p(¢, a) by

V()2 + y(t, u)2)

H{p(t,a)) = < arctan {%]

(C.3)

(If the definition of arctan is based on the principal angle, then the appropriate shifts in 9:, must be made.)

If the observation corresponds to a false alarm or new target, then

Y
0.,

where the random sequences w* and u* have some assumed densities p§ and pf, respectively. A common

assumption is that (w¥, w}) and (u¥, uf) are uniformly distributed over the observation space so that

Uk
pij(wk)z{ . if0<wf*<Rand —m<uf < {C.5)
O otherwise

K
w . L .
( 2) if the observation is spurious,
W

K (C4)
uy . . .

(u") il the observation arises from a new source,

g

==l

A similar expression would hold for p%. The number of false alarms and new targets are assumed to be
generated at each time interval [tx_,.tc] according to a Poisson distributions with expected numbers A'; and
Ak, respectively.

A set of observations Zi,..., = {2),...,2 }, containing one observation from each scan, will be called
a track of observations. Note that some observations in a track of observations might be dummy, representing
a missed detection. Tracks of observations Zy...0;,0..0 With a single nonzero index (i.e., a single non-dummy
observation) will be taken to represent false reports (clutter).

To determine the most probable partition of the observations into tracks and false reports, each track
of observations Z;,..;, must have a likelihood L, ..., associated with it. First, define Lo.o = 1 and
Lo..0i0..0 = 1. Next, if Z;,..,, has at least two nonzero indices, the following likelihood expression can be
derived [37]:

N Qo _.pk ek k Zyyan k Ziyon -1 (1~Ao4,)
Liviyin = [| {Pg} {[(1 )Fip I(Z ! )] [ 4G ] } (C.6)
k=1 YitEN

fpf( pj(zu,lz
where
Py, if track Z,,..., terminates at scan k;
Pi=<(1- PEY(1 = P§), il track Z,,..., has a missed detection on scan k; (C.7a)
1, otherwise,

and the indicator functions vf, 6F, and 4,; are defined by

. k . .
if z° is a new target,

x
'
Il
N,
o

otherwise;
. k v . ,
5 _J b oifz bglongs to an existing track; (C.7b)
0, otherwise;

1, i=j
B4y - {0, otherwise.




Also, P" and P§ denole the poobabilities of termination and and detection on scan k. The likelihood
functlons PE(2E 120 in ) P5(2E | Z,, 1), and pE(25 1 Zs,..1y ) are those of the error in the observations of the
target, false report model, and new source model, respectively.

If the target dynamics (C.1) arc known, the likelihod expression in (C.6) can be computed using the

densities
exp { - [~ﬁ~Hk<p<zk,a>>]7 £ (te) (25 — Helplte,a))] } (C8)

In the context of formulating the data association problem, however, the track parameters are unknown and

k¢ _k
25 |, ... = —
p:{ :,,l " tN)) Im0, (te)oa(te)

must be estimated from the observations {z,‘l - .,z;\:}. The parameters o are replaced by the maximum
likelihood estimate
¥ = Arg Max L,,.... ‘p(-, o)) = Arg Min ¢, ... (p(-, a}), (C.9)
which can be equivalently characterized as the solution to the nonlinear least squares problem
&= Arg Min ¢, ...y (p(-, a))

o C.10
= Arg Mz'nZ(l — Aoi,) [2F = He(p(te, @) ] 7o (te) 25 — He(p(te,a))] . ( )
k=1

111.C.2. The Data Association Problems. This section will address the formulation of the data
association problem for two cases. In track wnitiation, no tracks are assumed known. In track maintenance,
some tracks may be known from prior information. These tracks must be extended using the newly arriving
information, while keeping in mind that new tracks might also be initiating. We first address track initiation.

For every track of observations Z;,. ,,, define a 0-1 variable 2, ., via

N} were generated by the same target (C.11a)

o T

o { 1 observations {z!
i =
v 0 otherwise

and a score by
Chyan = = InLiiy, (C.11b)

where L;, ..., was defined in (C.6). The requirement that a single non-durnmy observation z,‘i (1<k<N,
1 € ix < M) be either a false report or assigned to exactly one track can now be expressed as
M1 Mo

Z Z Z Z Zune ety = 1 (C.12)

11 =0 te o170k, 1=0 ity =0
The data association problem of partitioning the observations into tracks and false reports can now be

posed as the foliowing multidimensional assignmcnt problem

M,
Minimize E E Coy iy 2

1 =0 iy -0

‘Mq .WN
Subject To : 2 Z Zyoaw =1, u=1,..., M,

13 =0 iy -0

M, 'wk t AVk.l N’N

U S SIS SPNY 1
1 =0 -t 20ty <0 ty -0

for te=1,....Meandk=2,... N -1,

My Myt
Z Z Zyoan =1, in=1..., My
ty-y -0

2y in € {0, 1} for all iy,...,1n,
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Next, track mawmtenance using a sliding window is developed. Suppose that the observations on f2
previous scans (of observations) have been partitioned into tracks and false alarms and that K new scans of
observations are to be added. One approach to solving the resulting data association problem is formulate
the problem as a track initiation problem with £+ K scans. This is the previously mentioned batch approach.
The deferred logic approach adopted here is to treat the track extension problem within the framework of a
window sliding »over the observation sets. Pirst assume that the scans of otservations are partitioned into
three components: ) discarded scans of observations, R retained scans of observations from the P prevously
processed scans, and K new scans of observations. Thus the number of scans in the sliding window is
N = R+ K while the number of discarded scans is [ := P — It.

Let My denote the number of confirmed tracks previously constructed from the discarded and retained
regions that are present at the start of the tracking window. (These My tracks may be obtained as the
solution of a previous problem assignment problem, may be union of the best K such solutions, or may
be all of the feasible tracks. However, tracks terminated in the discarded region are generally not included

’ such track is denoted by T, for ip = 1,..., Mg. For ig > 0, the (\V + 1)-tuple

2

in M. ) Suppose the i§
{Th. 2} 2 } will denote a track T,, plus a set of observations or measurements {z}....,2,} , acal

or dummy, that are feasible with the track T;,. The (N + 1)-tuple {7y, 2! AR 2.} will denote a track that

11

initiates in the sliding window.

Analogous to the track initiation case, one can define the zero-one variabie

. 1 N s, . A e s .
s, = 1 if {Tm,’z“,....zw} is assigned as a unit, (C.14a)
0 otherwise.

and the corresponding cost for the assignment of the sequence {T;,, 2,,,..., 2.5 } to a track by
Cionrein = =10 Lg Ly . (C.140)

Here L7, is the composite likelihood from the discarded scans just prior to the first scan in the window
for ioc > 0, L1, = 1, and L,,...., is defined as in (C.6) for the N-scan window. (L, = 1 is used for any
tracks that initiate in the sliding window.) The data association problem for track maintenance can thus be
formulated as

Mo My
Minimize Z Z Cro 1w Fio- N
19=0 I.N=0
M,
Subj. To Z Zz‘o =1, ig=1,..., Mo,
1, =0 iy =0

M,y Mn

zﬂ Z Z Zpuw =L =1, My,

1g=017=0 iny =0

(C.15)

Me v Moy My
IR S SIS DN
1p=0 e 1 =0 ny =0 1y =0

for ie=1,.... Myand k=2 ... N -1,

Mo Mn
Z Z Z,o...,~=1, 2-N=1,...,.‘MN,
19 =0 v -0

Zigoan € {0,1} lorall dg,...,ix.
Note that the association problem involving N scans of observations is an N-dimensional assignment problem

for track initiation and an (N + 1)-dimensional one for track maintenance.
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1I1.C.3. Numerical Simulations.  The performance of the tracking algorithms presented in this
work depends on many factors, including target density {i.e., the number of targets per unit space), the
space size, the measurement error covariances and probabilities of the detection and false report rates. This
section presents results of two studies investigating the impact of changing the sensor error characteristics
and window sizes on the performance of these algorithms. Results of more comprehensive parametric studies
will be presented in a future work.

The tracking problems considered in both studies had the following characteristics: the observation
space is circular with a radius of 20 miles and sensor in the center and 10 targets that were initiated before
the first scan and never terminated {targets were generated so as to . .cr leave the space). The initial target
speeds were between 200 and 900 miles per hour and the target accelerati »1 was not more than 0.0034 miles
per second squared {or 44,064 miles per hour squared). The scan times were every 10 seconds, and fifteen
scans of observations were used. Note that the total gain .n velocity due to acceleration was thus not morc
than 1500 mph. The sensor returned measurements in polar coordinates, as described in Section [11.C.2. All
the observations 1n cach scan were synchronous. The range ~rror was relative, the angle error was absolute,
and neither varied with time. Both the missed detections and {alse reports were allowed by the sensor.

The problems were generated randomly To obtain a meaningful sample for the comparisons, a set of
100 problems for each set of paramecters was generated, differing only in the random number generator seed.
All results presented in this section are thus averages over 100 prot'ems.

The first study investigated the impact of changing the standard deviations of the measurement errors.
All the problems in the first study had the probability of detection of 0.95, and the probaklity of false
reports (i.e., the probability that un arbitrary observation was false report) of 0.05. A six scan wir.dow was
used for tracking. Thus a six dimensionar assignment problem governed the data association problem for
track initiation and a seven dimensional one for track maintenance. The data association problems arising
from the tracking problems in this study had between 350 and 5000 variables and were on the average solved
in less than half a second for the biggest problems, using an IBM RS/6000-530 workstation. Table 1 shows
the quality of tne computed tracking problem solution for each of nine combinations of the range and angle
errors. The solution quality was checked after each scan in the simulations. Each scan thus corresponds to
a column in the table. The column for 6 scans refers to track initiation. All other columns are results for
track maintenance. The angle error standard deviation oy is expressed in degrees.

Ty (o] 63c. |79c |8sc |9sc |10sc {Llsc j12ac |13 3c. |14 8c. }15 sc.
001 050 99.0 1997 (996 | 999 | 999 99 9 999 99.9 | 1000 | 1000 |
a0l 1.00 994 1995 {992 1997 999 999 999 1000 99.9 100.0
0.01 130 9R 8 [99.7 {998 |03%9 9 8 99 9 9937 100.0 {1000 | 1000
0.02 0.50 8.9 1993 {993 [995 999 99.9 99 9— 100.0 1000 | 100.0
0.02 1.00 989 [996 1397 |99 9 39 9 999 a9 8 100" 11000 100.0
002 130 91 14995 1997 | 994 49 6 99 49 99 8 1000 | 100.¢ | 100G
sz 0.50 L G987 1995 | W92 i 99 4 49 7 497 9 4 100.0 499.9
u63 160 978 14989 g4 7 997 49 Y PN 99 8 100.0 100.0 99 8
0.03 150 98 2 1488 {992 | 995 EER:] 49 8 998 938 999 999

Table 1 © Solution qualty for varying measurement error

Table 1 shows that the quality of the solution increases as more information becomes available and the
track estimates become better. Six scan window seems adequate for tracking problems of this level of noise,

especially since our studies of individual problems indicate that the quality criteria described in Section 4
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are a little too stringent in the sense that tracks proclaimed “missed” often lie just outside of the region
defined by the quality criteria.

For the second study, the measuren.ent error standard deviations were kept constant at g, = 0.01 and
ag = 0.5°, while the probability of detection was either 0.95 or 0.7 and the probability that an arbitrary
report was fal.e was either 0.05 or 0.3. For each of the four combinations of these two parameters, tracking
probluins were solved using 4, 5, 8, and 7 sean moving windows. Assignment problem sizes ranged from 30
to 2500 variables and longest solwtion times were 0 54 seconds for largest windows and highest noise levels
imost of the cases hud the solution times of less than 0.3 seconds}. Table 2 shows the solution quality for all
16 combinations of probability of detection (PD), probability of false reports (PFR) and window size (Win.)
Inapplicable entries in Table 2 are denoted by *-". As in Table 1, the results are presented on scan by sean
basis. with the first number in each rew indicating track initiation, while the remaining numbers refer to

track maintenance.

I PD PER Win "1 s {3 ac [Bse [79c 18 wc 19 9c |10 ac. fitac §12sc. {1332 |14 sc {15 ac.

i 0.70 0.05 4 25 35 40 33 45 44 48 47 48 47 a6 46
070 (s 3 5 63 0 73 Th 5 TE 77 75 75 75
0.7 N5 6 . - T2 43 87 89 59 30 90 89 89 588
8.70 005 T . . - 87 33 a6 37 97 97 96 95 95
Q.70 .30 4 [ 13 18 14 A6 16 a7 46 46 47 A 49
3.70 0.30 3 - 48 [H 68 73 74 76 76 77 75 T8 75
0.70 030 6 - - TO 81 56 BY 90 S0 90 g1 90 89
0.70 0.30 7 - - - 31 8¢ 92 94 96 96 96 96 95
0.95 0.05 4 51 86 9l 94 96 96 97 97 97 37 97 97
0.9% 0.045 Y - 2.3 9% 99 99 100 100 180 100 100 100 100
0.35 0.05 6 - - 99 100 100 100 100 100 100 100 100 100
1) 95 3.05 T - - - 100 1683 100 100 100 100 100 100 100
0.95 030 4 193 87 91 34 97 97 98 98 98 97 97 97
.95 [$IK) 3 - a7 8 uH 29 06 100 100 100 100 100 100
0.95 030 6 - - 96 49 99 100 100 100 100 100 100 100
0.95 030 ke . - - 39 99 109 100 100 100 100 100 100

Table 2 Solutwn quality for different PD, PFR and window sizes

Table 2 shows that the quality of the solution again increases as more information becomes available.
However, in problems with the low probability of detection, even after 15 scans of information, the algorithm
that uses only four scans in the moving window fails to identify over half the tracks. As the window increases,
so does the quality, since more information is available to the tracking algorithm. The capability to vary the
window sizes is thus crucial if the algorithm is to handle protlems with different noise levels successfully.
Even though the model initiates all the targets before the first scan is made, the results in Table 2 show that
track initiation must be ailowed on later scans, as outined in Section 3. Fspecially in problems with low
probability of detection. some targets will not he indentitied in the first few windows. simply because they
have not been detected enough times, and are thus initiated later.

Comparing Tables 1 and 2, it is obvious that varving the probaoility of detection has more impact on
the solution quality than varying the false report rate or the measurement rate. This is not really surprising
since lowering the probability of detection actually removes intormation from the problem, while increasing

the false report rate and increasing the measurement errors just adds noise. ilowever, using the appropriate
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window sizes, the algorithms presented in this work construct high quality sclutions even for very noisy
tracking problems.

Finally, it should be pointed out that even the limited parametric studies presented ai this section
involved solving tracking problems with widely ditfering amounts and wvpes of nose. The only adpestment
made to the algorithms was the size of the sliding window. Thas indicates that the algonthms for solbving
tracking problems using multiscan sliding windows, maximum likelihood estimation, and Lagrangian relax.
ation for data association problems, are quite robust and thus likely to be effective for a wide runge of

tracking problems.

III. D. Algorithin Overview. A primary objective of this work has been the development of algonthms
for the fast construction of high quality i near-optimal) suboptimal solutions of the following multidimensional
assignment problem {C.13). These assignment problems, as developed in Section TH.C, possess the following
important characteristics: the problem is Jarge scale; the objective function is noisy ue to plant naise, errors
in the sensor measurements, and modeling uncertainty: it is NP-hard!? but must be solved real-time. Gating
and clustering techniques are generally used to reduce the size and complexity of the problem, thereby making
the problems sparse. We argue that the problem should be solved to the noise level and not to optimality.
since the objective is to use this assignment problem as a vehicle to identify objects in sensor fusion and
estimate tracks in tracking. The NP-hardness and real-time needs rule out conventional techmques such as
branch and bound or explicit enumeration. The sparsity of the problem raises the issue of whether or not
(D.1) has a feasible solution. To resolve this we assume that all zero-one variables with exactly one nonzero
index are free to be assigned and the corresponding cost coeflicients are defined. The zero-one variable
2p. o and the corresponding term o 20 o in the objective function are present for notational convenience.
Finally, other problems of interest include the situation in which the “ = 17 in the constraint {D.1) is changed

“

to “ <, =, or 2 nf " for some nonnegative int et ny . However, we shall not address these problems.

The algorithm development in this work is based on Lagrangian relaxation, which originally gained
prominence as a method for efliciently obtaining tight bounds for a branch and bound algorithm in Held
and Karp’s highly successful work on the traveling salesman problem. Overviews of this methodology can
be found in the works of Geoflrion. Fisher, Shapiro, the book by Nemhauser and Wolsey, and the references
therein. The particular algorithm developed in this work is motivated by that of Frieze and Yadegar for
three dimensional assignment problems; however, an overview of the algorithms developed in this work is
perhaps more easily described interms of a prototype algorithm for a general integer programming problem.

Consider the integer programming problem
Minimize ¢’z = V(z)
Subject To Az 2 b
Bz>d

(D2)

2, is an integer for 1 € [.
where the partitioning of the constraints is natural in some sense. The Lagrangian relaxation of (D.2) relative
to the constraints 3z > d is defined to be
O(u) = Minimize  o(z,u) = {2z = u" (B2 — 4)}
Subject To Az 2 b
(D.3)

z, is an integer for i € [

u>0
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where u > 0 is interpreted componentwise.  If the constraint st Bz 2 d is replaced by B2z = d the
nonnegativity constraint on u is removed. £ = ¢l z —u? (B2 = d)1s the Lagrangian relative to the constramts
Bz > d, and hence the name Lagrangran relazation, Next, if z is an optimal solution to 113 2 problems
(D.2) and (D.3) imply

Pluy < Viz) foraliu >0 A4y

Given a specific multiplier u, let z.(u) and z.(u} denote suboptimal and opumal solutions of the relaxed
problem (D.3), respectively. Generally, z.{u; is not feasible for the relaxed constraint Bz 2> d: however af
Z.(u) is feasible, then it is then also optimnal for (132}, Thus one must develop a recovery procedure for
constructing a feasible solution of {DD.2} from either of z,(u) or z.{u}. There are several reasons why the
resulting feasible solution zy might be a good solution of (D.2}. First, if the multiplier u = u > 0 is chosen
as the maximizer of the problem

Maximize {$(u) : u > 0} {D.5)

and the duality gap [®(@), V'(2)] is small, then the recovered feasible solution z, of (.2} from the solution
2-(%) of (D.3) may be close to z. (The experience of many researchers is that this duality gap tends to be
much smaller for equality constrained problems than for corresponding inequality constrained problems'’.)
Secondly, the term —u” (Bz —d) in (D.3) acts lihe a punalty for violating the constraint Bz — d > 0, thereby
forcing z,() closer to the optimal solution z of (I3.2). Finally, the recovery procedure should be designed to
minimize any remaining flexibility in the objective function in {D.1). Thus given this rationale, the following
prototype algorithm abstracts some of the ideas of the work on three dimensional assignment problems by

Frieze and Yadegar:

Prototype Algorithm. Construct a sequence of multipliers {ux}3, in the course of maximizing $(u)
defined in (D.3) and a corresponding sequence of feasible solutions {2 }35 o of (D.2) as follows:
A. Choose an initial approximation ug.
B. Given ug, determine a new multiplier ux ., from a step in the maximization problem (D.5), so that
S(uk) < Pluk.1).
7 Civenu. .- and a solution z,(ug.y) of {D.3), recover a feasible solution z« ., of the integer programming
problem (D.2).

In the absence of any a prior knowledge of the initial multiplier 1o, a good neutral choice in Part A is
ug = 0. Part B of this algorithm is the nonsmooth optimization phase and one of the most widely used
methods for non-smooth optimization is the subgradient algorithm, which is the nonsmooth analog to the
steepest ascent method. Analogous to conjugate gradient methods for smooth optimization is the class called
“bundle methods”. This includes the space dilation method of Shor. the “bundle-trust region” method due
to Schramm and Zowe, and the conjugate subgradient method of Wolfe. Wolle's algorithm is used in this
work. The recovery procedure is part C of this algorithm and can vary considerably with the problem. Note
that $(ux) < P(&2) < V(2) < V{z), so that we have a bound on the optimal solution. With an estimate of
the noise level in the problem, we can then use these bounds as a stopping criteria. The explicit developed

for the multidimensional assignment problems are presented in [29] and forthcoming work.




IV. Iunfinite Dimensional Optimization Problems and Numerical Control

The classes of optimal control problems currently under investigation are subclasses of the problem

£y
Minimize Jiz,u] = Sty ty, zted oty ) r/ Solt, x uwidt
Ly

Subject To £ = f(¢t, zit), ulL))
Blto,ty, z{to), 2(t,)) = 0
h{t, z(t), u(t)) = 0a.e. ly,t]
glt, z(t), ult)) < 0 ae ltg,t;)
u(t) € Qae. [ty, ]
Folto, by, xlte). z(ty ), z,u) <0fori=1,.. k
(z,u) € WE=([to, t1], R™) x L=(|tg, ], R™)

where x is an n-vector, u is an m-vector, £3 is a boundary operator,  is a closed convex set, F, is a
functional and W"”([to,tl], RR™) is the usual Sobolev space which can be characterized via the Soboley
imbedding theorem as consisting of those absolutely continuous vector functions with the first derivative in
LP({to, t1],R™). The functions , fo, f, B, h, F,, and g are assumed to be at least C? with respect to their
arguments.

Our interest in this problem is two fold. First, working with former PhD student B. Yang, Professor
W. W. Hager of the University of Florida and Professor Asen Dontchev of Bulgiarian Academy of Sciences
and Math Reviews, we have investigated the convergence of various numerical methods (Newton’s, penalty,
augmented Lagrangian, interior point methods) in the appropriate infinite dimensional spaces. This work
has evolved as follows: Poore, Yang, and Hager [42] have investigated convergence of penalty, multiplier, and
Newton methods for a subclass of the above problems without set constraints and inequality constraints on
the controllers. A more theoretical analysis of the above problem, again without set constraints or inequality
pointwise constraints on the state variables and controller was developed in the PhD thesis of B. Yang
[50]. This latter work has been considerably generalized to include these pointwise equality and inequality
constraints in the recent work of Dontchev, Hager, Poore, and Yang [11]. The approach was to first derive
sufficient optimality conditions for an infinite dimensional optimization problem in a setting that is applicable
to optimal control problems with endpoint constraints and with equality and inequality constraints on the
controls. Under the hypotheses of the sufficient optimality theorem we show that the solution to an optimal
control problem possesses a Lipschitz stability property relative to problem perturbations. As an application
of this stability result, we establish convergence results for the successive quadratic programming algorithm
and for penalty and multiplier approximations applied to optimal control problems.

The second area of research interest is the parametric problem associated with the above optimal control
problem. The interaction of multiple and bifurcating states in the absence of controls, periodic phenomena,
chaatic behavior, and bifurcating controls arising from the dynamical systems and holonomic constraints is
open to investigation. Given a certain phenomena arising from a dynamical system, the problem may be to
control this phenomena, to determine multiple solutions, or to investigate the dependence of a solution on
the system parameters over a wide range, i.c., global sensitivity. (The latter is also important in adaptive
control.) The development and use of theoretical and numerical bifurcation and continuation methods in
dynamical systems and nonlinear equations has been spectacularly successful in analyzing and understanding
the phenomena represented by these systems, but we know of no systematic treatment or works on the
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constrained nonlinear parametric control problem paralleling that found in dynamical systemns. Thus a long
term goal of this research program will be the investigation of parametric problems in nonlineur control
systems including but not limited to the nonlinear optimal control problem.

V. Parametric Nonlincar Programming and Control

This section describes the parametric optimization problem, some of the accomphshments over the last

two years and an application in design optimization.

V.A Problem Statement. The use of bifurcation and singularity theory in the investigation of para-
metric problems in optimization and control represents a potential for a real extension of our understanding
of basic phenomena, global sensitivity, robustness, and multiplicity of solutions in both finite and infinite
dimensional optimization problems, in much the same way that these theoretical and numerical techniques
have helped our understanding of dynamical systems and nonlinear equations. Thus the objective in this
program has been the development of the analytical and numerical techniques to map out regions of qual-
itatively different behavior and to locate the “stability” boundaries of these regions in parameter space.
The latter is important because drastic changes in the optimum occur at singularities, which define these
“stability” boundaries. Our initial work [28,35,47,18] has been the classification and analysis of singular
points in the nonlinear parametric programming problem. Numerical techniques for predictor-corrector con-
tinuation techniques have been developed using a nonstandard variable order Adams-Bashforth predictors
with an adaptive error-step size control [19]. This software, which is available through Netlib, is particularly
efficient and robust for parametric problems. Numerical continuation and bifurcation techniques are being
developed and tailored to the finite dimensional constrained optimization problem in support of future work
on large scale control systermns design optimization {20,23,24]. In the remainder of this section, the paramet-
ric nonlinear programming problem is defined and some of the accomplishments during 1991 and 1992 are

presented.

Mathematically, the parametric nonlinear programming problem is that of determining the behavior of
solution(s) as a parameter or vector of parameters a € R™ varies over a region of interest for the problem

Minimize {f(z,a) | ¢(z,a) =0 for i€ E (A1)
clz,@) <0 for i€} '

where £ = {1,...,p} and [ = {p + 1,...,p + q} represent the index sets for the equality and inequality
constraints, respectively, and where f : R"™™ — R, cg : R*"™ = R? and ¢; : R""" — RP are assumed to
be at least twice continuously differentiable. Using first-order necessary conditions as motivation, one can
convert the characterization of a solution to this problem as a solution of a system of nonlinear equations.
At a regular point of this latter system, the implicit function theorem rigorously justifies the computation of
the derivatives of the primal and dual variables with respect to the parameter a. These derivatives provide
the basis for local sensitivity analysis as presented in the work of Fiacco [12,13] and references therein. Thus
all the “action” is at the singular points of this system (A.1) where catastrophic failure, extreme sensitivity,
and jumps to undesirable operating states can occur. We have investigated these singularities in several
papers [28,35,47,48] via bifurcation and singularity theory. (These singular points are characterized by a loss
of strict complementarity, a violation of the linear independence constraint qualification, or the singularity
of the Hessian of the Lagrangian on the tangent space to the active constraints.)

The work in the last two years has turned to the development of numerical continuation and bifurcation
techniques for the systematic exploitation of these methods in applied problems. We now give a synopsis of
the algorithms and methods that can be found in a scries of papers by Poore and Lundberg [19-24].
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A solution of the parametric programming problem {A.1)} is a solution of the following svstem of nonlinear
equations
Ve L(z, A v;a)
Fle, A, via)= Ac(z; a) =0 A2) ‘
v+ ATA - 32 |
where £ = L(z,A,v) = vf(z) + SV ] Ne(z) is the Lagrangian and A is a diagonal matrix with A, = 1
foriec Fand A, = A forie /. Let A= EFu{iel:c¢(z a)=0}denute the active set. Note that any
solution of this system at which v > 0, a.{(z) < 0, and A; > 0 for all 1 € [ satisfies the Fritz John first-order
necessary conditions. This system also employs a nonstandard normalization v2 + ATA —~ 32 = 0, where
Bo is a fixed positive real number. The standard normalization v = 1 is not employed since it requires a i
constraint qualification for ivs validity and the violation of the linear independence constraint qualification
is a singularity in the above system {\.2).
Since a multiplier corresponding to an inactive constraint is zero, the system (A.2) can be reduced in
complexity by using an aclive set strutegy. The inactive constraints, i.e., those ¢, for which i € [ — A, are
thus removed, yielding the active set system

) ViL(z,a) z
F(z,a) = iz, a) =0, where z=|X| e R™, (A.3)
B{\,v) v

m=n+|Al+1, A= (AL..., A hea~r), and é= (e, ..., Gp, Gicant), L{z,a) = vf(z,a) + 3 4 Mal(z, @)
and B(),v) = v?2 + ATA — 32, Continuation for the system (A.3) along with locating the zeros in one or
more of the active, inequality multipliers A,, : € AN [ or an inactive constraint ¢ for i € I — A and changing
the active set appropriately is then equivalent to continuation for the full system {A.2).

V.B Status of the Algorithms. Numerical algorithms for numerical linear algebra in the continua-
tion procedure, critical point type, singularity detection and classification, and branch switching have been
developed in three papers of Poore and Lundberg [20,23,24] with additional work in progress. We now give
a brief overview of these results.

The linear systems that arise in the continuation steps can be reduced via block elimination algorithms
[6] to the solution of several linear systems of the form

(3] ) e ()

A b AT o

the matrix H is the Hessian of the Lagrangian or some approximation to it, and AT = D,&(z, @). During the
continuation steps the matrix H need not be positive definite on the tangent space to the active constraints;
however, both null and range spacc methods are easily modified to form the basis for the linear algebra
steps(20].

The classification of critical point type is based on [20]

(B.2a) sign v,
(B.2b) signs of ¢,(z,a) forie [ — Aand A, fori € IN A,
(B.2c) signs of the eigenvalues of V2Lr,

where V2Lr denotes the restriction of the Hessian of the Lagrangian to the tangent space of the active
constraints A(AT). It is only the latter class of signs (B.2¢) that require computation, and this can be
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accomplished by computing the inertia of the reduced Hessian, which can be accomplished by either null or

range space methods {20].

Methods for detecting singularities due to the loss of strict complementarity, loss of the linear indepen-
dence constraint qualification, and singularity of the Hessian of the Lagrangian on the tangent space to the
active constraints have been extensively developed in the work of Lundberg and Poore {20]. The philosophy
behind singularity detection is to skip over them during the continuation procedure, detect their presence,
and then take the appropriate action, e.g., switch branches, change orientation, or continue along the current
branch. The detection and classification for simple bilurcations and folds have been show to be inexpensive
‘by-products’ of the continuation procedure [20]; however, due to the technically detailed classification we
omit a further discussion of this problem.

V.C. A Model Problem from Design Optimization. The numerical continuation techniques de-
scribed in the previous sections will now be used to obtain a “global” analysis of the sensitivity, stability,
and multiplicity of minima for a parametric nonlinear programming problem arising from design optimiza-
tion. The problem, which is simple yet still exhibits the basic phenomena, involves the design of a two bar
planar truss with semi-span 1, unloaded height &, and load p as indicated in Figure 1.

h = Unloaded Height

Id p = Load
d s Deflection

Figure 1: Loaded Two Bar Truss

Given a specific unloaded height h and load P, the deflection d is a minimizer of the potential energy
E(d,h;p) = —pd + (\/1 +h?— 1+ (h- d)z) /v + h?. Rheinboldt [44] used this model problem to
illustrate continuation methods in structural analysis and has given a rather complete solution to both the

static and parametric problems. Rao and Papalambros [43] posed a corresponding optimal design problem
as that of choosing the height A to minimize the deflection subject to 0 < h < 1.5. This problem is posed
mathematically as

Minimize d
(C1) Subject To VeE(d hip) =20

0<h<15

In addition to selecting the minimizer, the state (d, h) must also be selected so that the potential energy
E(d, h; p) is minimized with respect to d. The corresponding parametric problem is to determine the solution
and its properties as the load p varies over all physically important ranges. The numerical methods discussed
in the work of Lundberg and Poore and briefly discussed in the previous subsection were used to obtain a
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global solution of this problem as shown in Figure 2

®  Singular Points ---D
Minimizers c am==T

- =as== Maximizers

- =.«.= Singuigr Path
seseveeeee infeasible Solutions

Figure 2: Solutions of (A.2) for Problem (C.1)

Here, the displacement d and unloaded height h as p varies and represents a projection of the solutions
of {(C.1) into (h,d,p) space. Solid and dashed lines indicate paths of local minimizers and maximizers,
respectively. The dashed and dotted line represents a feasible singular path, and lines of small dots represent
infeasible solutions. The solutions to the optimization problem need not be points of minimum potential
energy E(d, h;p), which is not minimized on the segments from {b) to (¢} and from (d} to (c) to {e). However,
all other feasible path segments do correspond to physical states of the truss where the potential energy is
minimized.

We now describe these singularities and the connecting path segments, beginning with those which occur
along the solution branch where the constraint h < 1.5 is active. Loss of strict complementarity gives rise to
the bifurcation points (g), (a), and (¢}, whose presence was indicated by a change in sign of the multiplier
A.. At these points the inequality constraint becomes weakly active and solution paths bifurcate into the
region 0 < h < 1.5. The fold points (b) and (d) (p = £.37), which resulted from viclation of the linear
independence constraint qualification, were detected by a change in the sign of v. The type of the solution
along this solution branch is determined by the sign of A,/v, which changes at each of these five singular
points. This results in the alternating segments of minimizers and maximizers shown in Figure 2.

The solution to the parametric design problem can now be described for p > 0. Given a small but
positive load p, the global minimum occurs on the branch of minimizers between singular points (f) and (a).
As the load p is increased from zero, the height k increases from V2 to h = 1.5 where the constraints h < 1.5
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becomes active. As the load p is increased further, the deflection d continues to increase along the path from

{a) to (b) until p reaches 0.37 where the truss ‘snaps through’ and there is no minimum beyond p = 037
corresponding to a height h near 1.5. (The only way to maintain an optimum locally beyond p = 0.37 is 1o
increase the parameter 4 = 1.5 in the upper bound on the height h.) The local minimizer corresponding
to h = 0 becomes the global minimizer for p beyond p = 0.37. Local sensitivity is surely present at points
(a) and (b). Note that the path of minimizers is continuous but not differentiable at {a). (Near such points
many optimization codes exhibit cycling.) At the fold point (b), the path of minimizers ceases to exist.
Optimization codes would have difficulty here since the unnormalized multipliers will be large and go to
infinity as p approaches 0.37. The conclusion with regard to the design of the truss is that for stability the
loads must be less than p = 0.37 and that sensitivity occurs near the singular points (a) and (b) for the
reasons stated. Clearly, the ability of the continuation procedure to locate such singular points and obtain
such a global analysis is a major strength of the methodology.
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