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The contract has three parts covering aspects of high precision electron beam
lithography. (1) Comprehensive computer modeling of the electron beam tool. (2)
Experimental determination of the properties of sources, columns, and targets, and (3)
The use of silicon single crystals as straightness and orthogonality standards using
orientation dependent etching techniques.

Tasks 1-4. Comprehensive modeling of the electron beam tool.

In the last reporting period progress in the calculation of an empirical elastic
scattering cross section for electron/atom scattering was reported. This work has now
been been extended to greater accuracy using a parallel super computer. The code
originally based on a PC and needing many days of calculation can now be run in a few
minutes. This accurate form of the cross section was sent to Jerry Lowney of NIST, David
Joy of Univ. Tennessee, and Cristie Marion of NRL.

The empirical formula are for the scattering cross sections for electron/atom
scattering in the range 0.1 to 30keV across the periodic table. The empirical forms are
derived from trends in tabulated Mott scattering cross sections (Czyzewski et al.). The
form of the total cross section is similar to the previously published cross section
(Browning) but has an extra term for the lowest energies and high atomic number. The
relativistic correction is now included in the cross section and I have dropped the extra
term containing an exponential in the divisor. The total cross section also scales slightly
differently with atomic number. It is now (atomic number) 1 .5. The cross section fit is an
engineered fit for fast computation. It was intentional to make all terms in energy simple
powers, except one, rather than using what seemed at some times an easier expansion in
partial powers. The one exception to this rule is not critical and can be expanded using a

! Newton-Raphson approach.

The differential cross section is composed of two parts, one part being of the same
mathematical form as the screened Rutherford cross section (UR), and the second part

being an isotropic distribution (or). The screened Rutherford part of the differential cross
.4 •section is fitted to the half angles of the tabulated Mott differential cross section (the half

angle is defined as the angle at which the probability of scattering through an angle intoA unit solid angle is half that at 00). The ratio, cR/a, between the screened Rutherford part

of the scattering cross section and the isotropic part of the distribution, is fitted to give the
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same forward to backscattering ratio, (fib), as the tabulated Mott differential cross
sections. This method is the same as suggested in Browning et al.

With empirical forms for the total cross section and the differential cross section a

third fit is made to the ratio rTotal/(f/b), Why this ratio? It turns out that the Monte Carlo
simulation of backscattering factors is dependent on this ratio. All other things being
equal, an increase in the total cross section has an equal and opposite effect to a similar

increase in the forward to backscattering ratio. For fitting purposes the oaTotai/(f/b) ratio
is useful for another reason. Although the total cross section and the differential cross
sections are anything but monotonic with atomic number the CrTotal/(f/b) ratio is
monotonic except at the very lowest energies. This makes it much easier to fit, see figure
1. What is happening is that as the atom size varies periodically with atomic number the
density of the atom is also varying, the twG effects carncel out as tar as the backscattering
factors are concerned. This is good news as it justifies our use of monotonically fitted
empirical equations in this instance. It is also good news as it means that chemistry, which
will change the size of an atom, will not make a first order effect on the electron
scattering.

Thus the steps in fitting are: first get provisional forms for the total and the
differential cross sections, then adjust the provisional forms to give a better fit to the

UrTotal/(f/b) ratio and then simplify them to remove redundant parameters. Using these
adjusted forms the backscattering coefficients for normal incidence are calculated. The
equations are then fitted to the backscattering coefficients calculated directly from the
Mott cross sections. Straightforward expressions for tme cross sections was found to give
the backscattering results covering all the major trends with energy and atomic number
and within a few percent accuracy for the backscattering coefficient. This has now been
tested from Be to Au for 0.1 to 30keV. The results are shown graphically for Al , Cu and
Au in figure 2. There are 100,000 trajectories per point in the fit.

For the total cross section the fit is based on the total cross section previously
published (Browning). This fit is in essence the same form as the screened Rutherford
cross section plus some terms for the low energy high atomic number end. The
exponential part of the divisor has been removed because of the computational overhead.
There are now only three terms in energy, one linear term, a square root term and an
inverse square root term, again this was done for computational speed but it works quite
well. The total cross section does not require a relativistic correction. The two term /
dependence on Z that was previously published has disappeared as it was easier to fit two
parameters in the Monte Carlo simulation than three. U ,'it 'o t a
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Although it might seem surprising it turns out that the half angle for the differential
scattering distribution is nearly constant over the entire periodic table. I think this is
because the low angle forward scattering is dependent on the size of the atom not the size
of the nucleus. Atom sizes are pretty well constant across the periodic table except where
different electron shells are filled or half filled. It is in the half angles however that I have
most misgivings as it is here that the results of Reimer and Lodding and Czyzewski et al
(Hartree Fock) seem to diverge most. For example at I keV for carbon Riemer and
Lodding have a half angle of 100 and Czyzewski of 6.80. This disagreement is worse in
other places. I imagiha ihat this difference is due the differences in the atomic model but I
am disturbed that this should be the case as the forward scattering angle is rather
important for many applications. The half angles also show some of the largest variations
with atomic number for example, the half width for He is 80 and Li 50. My fit ignores all
the variations due to shell sizes, and I've decided to let it ignore all changes with Z, which
are smaller than the variations due to the input assumptions. The average half widths for
low atomic numbers are 70 and is a minimum at higher atomic numbers at around 50. The
average is 60 which implies a Rutherford screening parameter for all Z of

a =7.0x 10- 3 /E

Where E is the electron energy.

The screening parameter is only used to define the distribution of the scattering
from the Rutherford part of the differential cross section and has no meaning with respect
to the total cross section. The scattering angle for the Rutherford part is defined by:

cos(O) = I1 a
1+a-R

Where R is a random number between 0- 1. The scattering angle for the istropic
distribution is:

cos(8) = 1- 2R

After fixing the screening parameter a critical part of the process is then to get the
forward to backscattering ratio correct.

hiie forward to backscatter ratio is defined as:
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The forward to backscatter ratio for the screened Rutherford part of the
differential cross section is proportional to (1+1/a). The (f/b) ratio from the tabulated
Mott data was fitted by adding in the extra backscattering effects using the isotropic
distribution. With no other fitting this gave quite a good result in the Monte Carlo
calculations.

With the two parts of the equation for the parameter oTotal/(f/b) the fits were

adjusted to give a smaller number of terms and round numbers. But care was taken not
to change the individual cross sections too much so as to become unphysical. The fit to
this ratio at energies above 5keV is in Z2 (and monotonic) which is identical to that
expected from the screened Rutherford cross section. With a very simple equation for the
relative areas of the screened Rutherford cross section to the isotropic it was found that
most of the trends in the Monte Carlo results obtained by Czyzewski et al were
reproduced.

The final stage in the fitting process was to use Monte Carlo simulation and 50
data points taken from Czyzewski et al and from Reimer "Scanning electron microscopy"
page 136 to fine tune the fitting parameters. The fitting used a constrained parameter
mean square fit procedure and 10000 trajectories per data point. ( a major computing
effort). After tidying up the least significant figures the ratio of Rutherford to Isotropic
areas is:

U'Ruthaford 3 00E1-z1t°° V

crlotovic Z 3 x 10FE

I used the same modified Bethe energy loss equation as Czyzewski et al This is David
Joy's fix to the Bethe equation:

dE = -785 ,Z In( 1.166(,E + 1J))eV/A

ds AE J



Where t=0.85

As can be seen from figure 2. which shows the comparison of the empirical fit
(solid lines) with Czyzeski's and Reimers's data (symbols) the fit for Al, Cu and Au is
pretty good. Figure 3 shows the fit for C and Ag added, these aren't so good, but the fit
for Be is good (not shown as only two data points) The fit for Ag is poorest in the knee at
low energy, which bucks the trends set by Cu and Au, this could be corrected by changing
the E°-5 terms in the total cross section. The fit for C is high but as the fit at I OkeV and
30keV for Be is very good I did not want to force the fit down. The knee for Au is too
high in the fit and the knee for Al is too low so the fit does have some warts. However, as
these results have similarly sized deviations as the use of different atomic models it seems
hardly worthwhile to increase the number of decimal points in the fit.

I tried very hard not to have fractional powers but one was was unavoidable, I've
attached a description of a method to treat the power term EI-ZJI°°°. This uses a
modification of the Newton-Raphson algorithm to follow the power with small changes in
energy and is much faster than a call to a full precision routine.
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Anticipated Work in the next reporting period.

Feedback from Jerry Lowney of NIST shows some differences between his results
and Stanford's these differences need to be resolved.

Further exposures of the Si metrology pattern will be made and the standards
mounted on a carrier.
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An Iterative Method for Generating Fractional Powers.

R.Browning

The Center for Integrated Systems,
Stanford University, Stanford, Ca 94305.

Abstract

A simple and accurate iterative method is presented to follow fractional powers
during slowly varying parametric changes. The method is based on the Newton-Raphson
method for calculating roots but does not require a calculation of the inverse power term.
Thus the method can be used for irrational powers.

A common requirement in finite element computer simulations of physical
processes is to calculate fractional powers at each temporal or spatial step. The
computation overhead to calculate these fractional powers is heavy and under some
circumstances can dominate the calculation time. This is particularly true when using
empirical equations which have fitted parameters and powers. However, in many cases
fractional powers do nut need to be calculated to the full precision available and an
approximation could be made. It is also the case that in physical simulations that the
parameters need to be slowly varying, so as to be considered continuous. One method for
calculating roots is the Newton-Raphson method. This method is simple and accurate and
reaches high precision after a few iterations, the speed of convergence depending on the
initial guess. Only one iteration can make a significant increase in precision if the initial
guess is close. These observations suggest that the Newton-Raphson method could be
adapted to follow fractional powers of a slowly varying parameter.

The Newton-Raphson method for calculating fractional roots uses a succesive
approximation from an intial estimate. The method derives the root, z, for:

z ==xY (1)

wherey is a fractional power and:

y = I/p (2)

where p is an integer. An initial estimate zo is made. Then the first iteration uses the
formula:

zl = I/p [ z0 (p-1) + x/z 0 (p-1 )] (3)

to provide a new estimate z1 . The method works forp an integer or a rational number but
not for irrational numbers because the last term would contain an irrational power and this



is the same problem as finding an irrational root. We need to modify the method to avoid
this problem.

Our method starts by knowing accurately the value of zo given an intial parameter
value x0 . With our first result known to high precision we can write by definition:

zo (P-1) = xo / zO (4)

If we change x0 to xo + Ax = x, and then substitute x1 for x in equation 2 then we
have:

z 1, - 1/p [zo(p-1) + (x,+Ax) z 0 /x 0 ] (5)

where z, is the I/p th root of x1 . Thus our estimate is the previously calculated
fractional power and we are no longer required to calculate the fractional power in the last
term of Newton's method. Therefore the power can be integer, rational or irrational.

Expanding equation (5) for fractional powers betweeny = 0 to 1 shows us that the
error in the limit of small step size is maximum at y = 0.5 and proportional to the square
of the step size. This observation means that we can correct for the first order error. If we
choose a step size Ax/2 then for one step we have a quarter of the error and for two
steps we have half the error of a step size of Ax. Then we have:

z, (one step Ax) = T + e (6)

and
zii (two steps Ax/2) = T +e/2 (7)

where T is the true value and e is the error for one step Ax.

The first order error can thus be removed as

T= 2zI - z11  (8)

The results of using equation 5 without error correction for following x0. 5 as the
parameter x decays from 100 to 0.1 in 66 steps of-0. lx are an error per step of 1.5 parts
in 103 and an accumulated error of 1 part i; 10. If first order error correction is used the
error per step is 1.5 parts in 106 and an accumulated error of I part in 104 , The
accumulated error is linear in step size and the error per step decreases as the square of
the step size. For x°-95 the accumulated error for the uncorrected algorithm is 2 parts in
100, this is sufficent accuracy for the E('z 1 oo) term in the Monte-Carlo equation.
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