
AD-A2 6 5 3 3 2

lII.

Signature Matching: A Key to Reuse

Amy Moormann Zaremski and Jea, -ette M. Wing
May 3, 1993

CMU-CS-93-151

DTIC
ELECTEMM

JUNO 1993 J

School of Computer Science SA
Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

Software reuse is only effective if it is easier to locate (and appropriately modify) a reusable component
than to write it from scratch. We present signature matching as a method for achieving this goal by using
signature information easily derived from the component. We consider two kinds of software components,
functions and modules, and hence two kinds of matching, function matching and module matching. The
signature of a function is simply its type; the signature of a module is a multiset of user-defined types and
a multiset of function signatures. For both functions and modules, we consider not just exact match, but
also various flavors of relaxed match. We briefly describe an experimental facility written in Standard ML
for performing signature matching over a library of ML functions.

0~c.,_
This docu-ment has been approved Wo
for public ielease and sale; its N
distribution is unhimited.

This research was sponsored by the Avionics Laboratory, Wright Research and Development ('enter, Aeronautical (
Systems Division (AFSC), U.S. Air Force, Wright-Patterson AFB, Ohio 45433-6543 wnder Contract F33615-90-C-
1465, ARPA Order No. 7597.

The views and conclusions contained in this document are those of the author and should not be interpreted as
representing the official policies, either expressed or.implied, of the U.S. government.93 (

1. What is Signature Matching?

Software reuse sounds like a good idea. It promises advantages like reducing the time and cost spent
"on programming, increasing programmers' productivity, and increasing program reliability [BP89, AM87,
IEE84, Pre87]. But why doesn't it work in practice? One reason is that it is hard to find things. As libraries
of software components get larger, this problem will get worse. Reuse is only worth it if it is easier to locate
(and appropriately modify) a reusable component than to write it from scratch.

Today, if we want to find some desired component, we could use the component's name-if we are lucky
enough to know, remember, or guess it. We could browse through the library itself, or perhaps an index
into the library (for example, as with a Smalltalk browser). Given that the components over which we are
searching are program units (e.g., Pascal procedures, C functions, Ada packages, C++ or Smalltalk classes,
or Modula-3 or ML modules), then we have another means for retrieval: signature matching. This paper
presents the foundations for what signature matching means and briefly describes a signature matching
facility we have built and integrated into our local ML programming environment.

To illustrate our ideas here and for the rest of this paper, consider the small library of components in
Figure 1. It contains three ML signature modules, LIST, QUEUE, and SET, which together define seventeen
functions, e.g., empty and cons.

signature LIST = I Acceon,
sig

val empty: unit-. a list
val cons : (a, a list) -- a list .
vat hd : a list - ar
val th : a list -- a list
vat map: (a -t a list --, c3list
vat intsort : (int, int -. bool) - int list - int list I

end;

signature QUEUE = signature SET =

sig sig
type oaT type aT TA
val create : unit - ot T vat create : unit - T
val enq :(a, a T) - a T val insert: (o T, a) - a T

val deq: a T (a, a T) val delete: (a T, a) - a T
val len :a T -int val member : (a, a T) - bool

end; val union : (a T, a T) - a T
val intersection : (a T, a T) - a T
val difference : (et T, a T) - a T

end

Figure 1: Three ML (Signature) Modules

If we are looking for a specific function, rather than perform a query based on its name, we could
perform a query based on the function's type, which is the list of types of its input, and output parameters

1ML signature modules are akin to Ada definition modules and Modula-3 interjace modules; ML implementations are written

in modules c.'aV-d siructuires. [MTH90]

a I I I I I I II •

(and possibly information about what exceptions may be signaled). For example, a list - a is the type of
the function hil. If we are looking for a module, we could perform a query based on its interface, which is a
multiset of user-defined types and a multiset of function types. For example, SET has one user-defined type,
a T, and seven function types. In practice, a library of software components is usually a set of program
modules; we can construct a function library from a module library by extracting all functions from each
module in the obvious way.

Signature matching is the process of determining when a library component "matches" a query. We can
reasonably assume that signature information is either provided with or derivable from code components,
since this information is typically required by the compiler. As with other information retrieval methods,
requiring a component to match a query exactly will sometimes be too strong. There may be a component
that does not match exactly, but is similar in some way and hence would match a query if the component
(or query) is slightly modified. Thus, in addition to exact match, we also consider cases of relaxed matches
between a query and a library component. The expectation is that relaxed matching returns components
that are "close enough" to be useful to the software developer. For example, relaxed matching on functions
might allow reordering of a library function's input parameters; relaxed matching on modules might require
only a subset of the library module's functions.

We define signature matching in its most general form as follows.

Definition. Signature Match: Query Signature, Match Predicate, Component Library - Set of Components

Signature Malch(q, Al. C) = {c E C : M(c, q)}

In other words, given a query, q, a match predicate, M, and a library of components, C, signature matching
returns a set of components, each of which satisfies the match predicate. This paper explores the design
space of signature matching: we consider two kinds of library components, functions and modu'es, and
hence consider two kinds of signature match, function (type) match and module (interface) match. We are
interested in both levels of signature match because in practice we expect users to retrieve at different levels
of granularity. We also consider different kinds of match predicates: exact match/ and various relazed matches
(for both function and module match).

In a broader context, signature matching can be viewed as another instance of using domain-specific
information to aid in the search process. Knowing that we are searching program modules as opposed
to uninterpreted Unix files or SQL database records lets us exploit the structure and meaning of these
components. Using domain-specific information is an idea applicable to other large information databases,
e.g., the nationwide Library of Congress, law briefs, police records, geological maps. and may prove to be
key in grappling with the problem of scale.

By not requiring users to know the name (or unique identifier) of what they are searching for, we can
also view signature matching as an example of content-addressable search. For example, users formulate
queries in terms of key-value pairs to retrieve records from a relational database. Hence, the intended pun
in our title: signature matching is a "key" to software reuse.

Signature matching is useful not only to retrieve components. Software developers might use a signature
matcher to filter out the bulk of library components from further consideration. They can also use signature
matchers to browse a software library in a structured way, e.g., by exploiting the partial ordering induced by
function types. We view signature matching as complementing standard search and browsing facilities, e.g.,
grep and is, which provide a primitive ;rmcans of accomplishing the same goals. A tool that does signature
matching is just one of many in a software developer's environment. Using a signature matcher should be
just as easy to use as doing a search on a string pattern.

We define module match in terms of function match. So we begin at the lowest level of granularity in
Section 2 by defining exact match and several relaxed matches for functions. Section 3 defines module match

2

and its relaxations. In Section 4 we describe our signature matching facility which we have used in searching

over a collection of Standard ML modules. We compare our work with other approaches in Section 5 and

close with a summary and suggestions for future work in Section 6.

2. Function Matching

Function matching based on just signature information boils down to type matching, in particular matching

function types. The following definition of types is based on Field and Harrison[FHI88]. A tyve is either

a type variable (E T7pe Var, denoted by Greek letters) or a type operator applied to other types. Type

operators (TypeOp) are either built-in operators (BuilflnOp) or user-defined operators (UserOp). Each type

operator has an anLu ndicating the number of type arguments Rl•0.e types are operators of 0-arity. e.g,

int, bool; the "arrow" constructor for function types is binary, e.g., int - bool. We use infix notation for

tuple construction (,) and functions (-), and otherwise use postfix notation for type operators (e.g., inl hsi

stands for the "list of integers" type). The user-defined type, a T, represents a type operator T with arity

1, where the type of the argument to T is a. 2 In general, when we refer to type operators. they can be

either built-in or user-defined (i.e.. BuailtInOp U UserOp). Two types r and r' are equal (r = r') if either

they are the same type variable, or r = typeOp(rl,...,r,), r' = typeOp'(ri,-...,rý), typeOp = typeOp', and

V 1 < i < n,;ri = 7-. Polymorphic types contain at least one type variable; types that do not contain any

type variables are monomorphic.

To allow substitution of other types for type variables, we introduce notation for variable substitution:

[7'/a]r represents the type that results from replacing all occurrences of the type variable a in r with r',

provided no variables in r' occur in r (read as "r' replaces a in r'). For example, ((ant - mit)/OJ(a - 3)

= a -- (int - int). A sequence of substitutions is right associative. For example, [f3/7r][a/l•(,3 - 7) =

In the case where r' is just a variable, [rT/a]T is simply variable renaming. For variable renaming, a, r' E

Type Var or a, ri E UserOp. We think of user-defined type operator names as variables for the purposes of

renaming, since different users may use a different name for the same type operator. Renaming sequences

may include both type variable renaming and user-defined type operator renaming: [13/a][C/TI(a T - a) =

(,3 C -- 0). We will use V for a sequence of variable renamings and U for a sequence of more general

substitutions.

Given the type of a function from a component library, n, and the type of query, r,, we define a generic
form of function match, M(n, rq), as follows:

Definition. (Generic Function Match) M: Library Type, Query Type - Boolean

M(n, rq) = Tj(n) R T.(rq)

where T, and T, are transformations (e.g., reordering) and R is some relationship between types (e.g.,

equality). Most of the matches we define apply transformations to only one of the types. Where possible,

we apply the transformation to the library type, n, in which case Tq is simply the identity function. For

example, in exact match, two types match if they are equal modulo variable renaming. In this case, T, is a

sequence of variable renamings, Tq is the identity function, and R is the type equality (=) relation,

We classify relaxed function matches as either partial matches, which vary R, the relationship between

r, and r, (e.g., define R to be a partial order), or transformation matches, which vary 7) or T,, the trans-

formations on types. In the following subsections, we first define exact match, followed by partial matches,

2 We deviate from ML's convention of using * for tuple construction; the comma in easier on the eyes. Also, in ML, the

common programming practice is to use T for the operator name of the user-defined type of interest.

3

transformation matches, and combined matches. Each of these match predicates can be used to instantiate
the M of Signature Match, the general signature match function defined in Section 1.

2.1. Exact Match

Definition: (Exact Match)

matchE (,n,rl) = 3 a sequence of variable renamings, V, such that

V n = r.

Two function types match exactly if they match modulo variable renaming. Recall that variable renaming
may rename either type variables or user-defined type operators. For monomorphic types with no user-
defined types, there are no variables, so matchE(n, rq) == (n = rq) where n and rq are monomorphic. We

only need a sequence of renamings for one of the type expressions, since for any two renamings. V, and Vý
such that Virr = V2 r2 , we could construct a V' such that V'-rl = r2 . (Note we could consider matchE as a
form of transformation match since it allows variable renaming.)

For polymorphic types, actual variable names do not matter, provided there is a way to rename variables
so that the two types are identical. For example, n :z (a, or) -- bool matches rT = (/1, ;3) - bool with the
substitution V = [1/a]. But 71 = a --- 3 and r,, = - -- 7 do not match because -nce we substitute Y
for a to get 7 -- #, we cannot substitute - for)3, since 7 already occurs in the type. This is the "right
thing" because the difference between T? and 7q is more than just variable names; rq takes a value of some
type 7 and returns a value of the same type, whereas n takes a value of some type and returns a value of a
potentially different type.

To see how exact match might be useful in practice, consider two examples where the library is the set
of all functions in Figure 1. Suppose a user wants to locate a function that applies an input function to each
element of a list, forming a new list. The query rq = (a -- 7) -- a list - -t list matches the map function
(with the renaming [7/1]), exactly what the user wants. As a second example, suppose a user wants to
locate a function to add an element to a collection with the query r. = (a, a C) -- a C. This query retrieves
the •nq function on queues (with the renaming [CIT]), which may be what the user wants, but not the
insert function on sets, another likely candidate.

2.2. Partial Relaxations

As we have just seen, exact match is a useful starting point, but may miss useful functions whose types are
close but do not exactly match the query. Exact match requires a querier to be either familiar with a library,
or lucky in choosing the exact syntactic format of a type.

Often a user with a specific query type, e.g., int list - int list, could just as easily use an instantiation
of a more general function, e.g., a list -- a list. Or, the user may have difficulty determining the most
general type of the desired function but can give an example of what is desired. Allowing more general types
to match a query type accommodates these kinds of situations. Conversely, we can also imagine cases where
a querier asks for a general type that does not match anything in the library exactly. There may be a useful
function in the library whose type is more specific, but the code could be easily generalized to be useful to
the querier. We define generalized and specialized match to address both of these cases.

Referring back to our definition of generic function match, for exact match, the relation, R?, between
types is equality. For partial matches we relax this relation to be a partial order on types. We use variable
substitution to define the partial ordering, based on the "generality" of the types. For example, a - a
is a generalization of infinitely many types, including int - int and (int,i3) (int,/5), using the variable
substitutions [int/a•] and [(int, /)/ca], respectively.

4

r is more general than r' (r > r) if the type r' is the result of a (possibly empty) sequence of variable
substitutions applied to type r. Equivalently, we say r' is an instance of r (r' < r). We would typically
expect functions in a library to have as general a type as possible.

Definition: (Generalized Match)

matchgen(n1,r7) = 77 > r7

A library type matches a query type if the library type is more general than zhe query type. Exact match,
with variable renaming, is really just a special case of generalized match where all the substitutions are
variables, so matchE(r, rq) =: matchge,,(, r).

For example, suppose a user needs a function to convert a list of integers to a list of boolean values, where
each boolean corresponds to whether or not the corresponding integer is positive. The user might write a
query like r, = (int - bool) -- int list -. bool list. This query does not match exactly with any function in

our library. But a generalized match would return map for this query, since map's type is more general than
the query type. This kind of match is especially desirable, since the user does not need to make any rhanges
to use the more general function.

Definition: (Specialized Match)

malchpec(r7, 7q) = 7 < 'q

Specialized match is the converse of generalized matcL. In fact, we could alternatively define match,p,, in
terms of match,,, by swapping the order of the types: matchspec(n, rq) = matchqcn(rq, rn) It also follows
that exact match is a special case ofi specialized match: matchE(77, r,) =:. matchp,,m'r7"7,)

As an example of how specialized match can be useful, suppose the querier needs a general function
to sort lists and uses the query r, = ((a, a) -- * bool) --, a list -- a last, Our library does not contain

such a function, but specialized match would return iatsort, an integer sorting function with the type
7r = ((int, int) -- bool) -- int list -- int list. Assuming intsort is written reasonably well, it should

be easy for the querier to modify it to sort arbitrary objects since the comparison function is passed as a
parameter.

Note that although we present generalized and specialized match in terms of changing the relation (R)
between rn and r,, we could also define them as transformation matches, since the definition of the < relation
on types is in terms of variable substitution.

Definition (alternate): (Generalized and Specialized Match)

matche•n(r7, rq) = 3 a sequence of variable substitutions, U, such that

matchE(U f, q)

matchspe,(rn, rq) = 3 a sequence of variable substitutions, U, such that

matchE(r:, U rq)

We can even define match.,.(77, r,) as Ur = rq; the use of matchE is redundant since generalized match
requires a sequence of substitutions that includes any necessary variable renaming. We will appeal to the
above matchE definition when we define the composition of different kinds of relaxed matches (Section 24).

Finally, using these alternate definitions of generalized and specialized match, we can define type unifi-
cation [FH88] by combining these two relaxed matches and allowing the renaming to occur on either type.

Definition: (Unify Match)

match,,q1 1(ri, r,) = 3 a sequence of variable substitutions, U, such that
matchE(U r?,U rq)

In practice, we do not expect unify match to be of as much use as either generalized or specialized match,
since the relation between types rq and ri is more complicated with unification. However, it is important to
relate type unification and type matching, i.e., the former is definable in terms of the latter.

2.3. Transformation Relaxations

Other kinds of relaxed match on functions transform the order or form of parts of a type expression to
achieve a match. Examples include changing whether a function is curried or uncurried, changing the order
of types in a tuple, and changing the order of arguments to a function (for functions that take more than
one argument). These last two are the same since we can view multiple arguments to a function as a tuple.

For example, the query rq =: a -- a list - a list would miss the cons function because r. is curried
while cons is not, and r, = (a list, a) -- a list would miss cons because the types in the tuple are in a
different order.

2.3.1. Uncurrying Functions

A function that takes multiple arguments may be either curried or uncurried. The uncurried version of a
function has a type (ri,..., r,,-,) -- r,,, while the corresponding curried version has a type r, -....

r,,-, T r,. In many cases, it will not matter to the querier whether or not a function is rurried. We define
uncurry match by applying the uncurry transformation to both query and library types. We choose to
uncurry rather than curry each type so that we can later compose this relaxed match with one that reorders
the types in a tuple.

The uncurry tieasformation, which produces an uncurried version of a given type, is defined as follows:

u n cru r. . . my) -- r , ý i f r = r i r , ,- 1 - -7 n n > 2
uncurr3i(r) {

T otherwise

The uncurry transformation is non-recursive; any nested functions will not be uncurried. We also define a
recursive version, uncurry*:

(uncurrY*(rl),...,uncurry*(rnl)) - uncurry*(rn) if r = r ... I ... - rn >2
uncurry*(r) = typeOp(uncurry/*(ri),..., uncurry*(rn)) if r = typeOp(rI, ., r,1)

r where r is a variable or a base type

For example, if r = int -. int - (int -- int --+ boot) -- booi then uncurry(r) = (int, int, (int - int -

bool)) ---- boot and uncurry*(r) = (int, int, ((int, int) -- bool)) -- bool.

Definition: (Uncurry Match and Recursive Uncurry Match

matchuncur,y(7n, rq) = matchE(uncurry(rj), uncurry(rq))

maichu•,urr..(7, rq) = matchg(uncurry*(,-), uncurryf(7rq))

Uncurry match takes two uncurried function types and determines whether their corresponding argunient
types match. Recursive uncurry match is similar but allows recursive uncurrying of ri's and rq's functional
arguments. By applying the uncurry (or uncurry*) transformation to both ri and rq, we are transforming
the types into a canonical form, and then checking that the resulting types are equal (modulo variable
renaming). For example, suppose a user needs a function to add an element to a collection. The query
,r, = r -, a T -. a T does not match exactly with any functions in our library, but uncurry match would
return the function enq on a queue.

6

Since the uncurry transformation is applied to both the query and library types, it is not necessary to
define an additional curry match. Such a match would be similar in structure, relying on a curry transforn.-
tion to produce a curried version of a given type; that is, matcheutrry(r, ir) = matchE(curry(fl), curry(r,))-
Note that matchr.,ii(T, r.) if and only if matchuncurry (l, rq).

2.3.2. Reordering Tuples

One common use of tuples is to group multiple arguments to a function where the order of the arguments
does not matter. For example, a function to test membership in a list could have type (ao list) - bcol or
type (a list, a) --- boot. Reorder match allows matching on types that differ only in their order of arguments.

We define reorder match in terms of permutations. Given a function type whose first argument is a tuple
(e.g., r = (rr,... - --+ r,,), a permutation a is a one-to-one mapping with domain and range 1... n -1
such that a(r) = (r.(1),.... r, -..1)) -ý rn.

Definition: (Reorder Match)

7aachreorder(fl, rq) = 3 a permutation a such that

matchE(o(.n), rq)

Under this relaxation, a library type, n, matzbes a query type, rq, if the argument types of ri can be reordered
so that the types match exactly. For this match to succeed, both ri and rq must be function types whose first
arguments are tuples. Although we choose to apply the permutation transformation, o, to the library type ri,
we could equivalently apply the inverse, or-', to the query type rq: matchE(a(ri), r.) = MatChE(rl, C-'(Tq)).

Suppose we again are looking for a function that adds an element to a collection. To find it, we might
pose the query, r, = (a,a T) -- a T. With exact match we would find the enq function on queues, but with
reorder match we would additionally find the insert and delete functions on sets. The functions enq and
insert are both potentially useful.

There are two variations on reorder match: we can allow recursive permutations so that a tuple's com-
ponent types may be reordered; and we can allow reordering of arguments to user-defined type operators.
e.g., so that (int, ar) T - int and (a, int) T - int would match.

2.4. Combining Relaxations

Each relaxed match is individually a useful match to apply when searching for a function of a given type.
Combinations of these separately defined relaxed matches widen the set of library types retrieved. For
example, in searching for a function to add to a collection, uncurry match on the query a --• T - a T
retrieves enq but misses insert. To retrieve both functions with this query, we need a way to combine the
different relaxed matches.

We deliberately gave our definitions in a form so that we can easily compose them, Each of the relaxed
match definitions presented in Sections 2.2 and 2.3 (using the alternate definition of matchg., and matchp'.%.)
can be cast in the general form:

3 a pair of transformations, T = (Ti,Tq), such that matchE(T'(rT), Tq(7q)).

For matchuncurry, the "3" is not necessary, since there is only one possible uncurry transformation. For
matchgen and match/rcorder, T9 is the identity function, and in match,p, T, is the identity function.

7

The match composition of two relaxed matches, denoted as (matchTrio matchT 2), is defined by applying

the inner (T2) transformation first:

Definition: (Match Composition). Let TI and T2 each be a pair of transformations.

(matchTI 0 matchT2)(1n,rq) = 3 TI,T2 such that matchE(TI(T2:(rl)),T1(T21 (r,)))

Thus we can compose any number of relaxed matches in any order. The order in which they are composed
does make a difference; transformations are not generally commutative. For simplicity, we omit the recursive
versions of matchuncurry, and matchreorde.., although the analysis below could be easily extended to include
them. Since matcht&pec and match,,,if can be defined in terms of matchgen ,3 we also exclude them in our
analysis. Thus, there are three "basic" relaxed matches: matchven, matchu.,curr, and match.eo.re. We

now consider some of the interesting combinations of these relaxed matches, those we expect queriers to find
useful. The relations between the various combinations of relaxed matches lead to a natural partial ordering
relation on combined matches, based on the set of function types that a match defines (namely, the set of
types that match a given query type).

"(matchre o Mathcury)(r, rq)

With this composition, two types match if they are equivalent modulo whether or not they are curried
or whether or not the arguments are in the same order. We uncurry the types first, thereby allowing
a reordering on any tuples formed by uncurrying. Using this composition, the query type rq = a

a T -- a T would match enq (n = (a,a T) - a T) on queuts and insert and delete (7, =

(a T, a) - a T) on sets.

" (matchgen o maichuncrr(r1).T

,n and rq match if the uncurried form of ri is more general than the uncurried form of rq.

" (match.,. o matchreo.der)(ri, Tq) :

rT and rq match if some permutation of ri is more general than rq.

" (matchen o matchlree, o ma (fl, r4)

r, and r. match if some permutation of the uncurried form of n is more general than the uncurried form
of r,. Using this combined match with the order of rj and r, reversed (i.e., using matchpec instead of
matchge.), with the query rq (ai list,(a,a -. bool)) -- a list matches the intsort function in our

library (,n = (int , itn -. bool) - int list -* int list).

Matchen does not commute with either matchluncurr, or matchreorder because ia either case, the
variable substitution from generalizing could introduce a type that could then be transfortwd bj r,i

currying or reordering, but would not be transformed if the variable substitution is done last. For
example, suppose rq = (bool, int) - (int, bool) and n = a - r a. (match.,. o0 match....d..)(n, rq) is

false, but (match,,,.d,, 0 matchSn)(rn, rT) is true with the substitution (itn, bool)/a] and a permuta-

tion that swaps the order of a 2-element tuple. In the second case, we can apply the reordering after

we have substituted into type expressions that contain a tuple.

3. Module Matching

Function matching addresses the problem of locating a particular function in a component library. ilowever,
a programmer often needs a collection of functions, e.g,. one that provides a set of operations on an abstract

3 matc&*pe,.(it,,rq) = match g.n(7q, ri), and
mat'Ch g..ij*r(,"rq) = (match ge. o matCh.p~c)(TIrq) = (matchsp. o matchgen)(rt,, rq)

8

data type. Most modern programming language explicitly support the definition of abstract data types
through a separate modules facility, e.g., CLU clusters, Ada packages, or C++ classes. Modules are also
often used just to group a set of related functions, like I/O routines. This section addresses the problem of
locating modules in a component library.

Recall that whereas the signature of a function is simply its type, r, the signature of a module is an
interface, 1. A module's interface is a pair, (ZT,ZIr), where IT is a multiset of user-defined types and
IF is a multiset of function types. 4 For a library interface, ZL = (LTILF.), to match a query interface,
IQ = (ZqT,"qF), there must be correspondences both between ILT and IQT and between ILF and IqF.
These correspondences vary for exact and relaxed module match.

3.1. Exact Match

Definition: (Exact Module Match)

M-matchE(ZIL,IQ) = 3 a mapping UF :IQF - IL"Y such that

UF is one-to-one and onto. and

V rq E IqF, ma1chE(U¼(rq). rq)

Up maps each query function type r, to a corresponding library function type, UF((rq). Since Up- is one-to-
one and onto, the number of functions in the two interfaces must be the same 1i.e., IL rl = 1IqpJ). The
correspondence between each rq and UF(rq) is that they satisfy the exact function match, matchg. defined
in Section 2.1. That is, the types match modulo renaming of type variables and user-defined type operators

We could additionally require a mapping between user-defined types, but for the most part, matching
function type matches suffices, since for r, and UF(r,) to match, any user-defined types must match. So
any user-defined type that appears in the domain or range of a function type in one interface must match
a user-defined type in the other interfac.2. Not having a separate mapping pre-ludes matching where one
user-defined type in X4r matches more than one user-defined type in ILT (or vice versa). This case is not
likely to occur in practice since programmers typically define only one user-defined type per module.

IQT = a C)
Iqr = { unit - C,

(0, or C) - a C.
a C -- (', a C),
a C - mt}

Figure 2: A module query

Figure 2 is an example query that describes a module containing the definition of an abstract container
type and a set of basic functions on the container. This matches the interface for the QUEUE module in
Figure 1 with the the obvious mapping from function types in 2"Q,' to function types in QUEUF. Each of
the exact function matches renames the user-defined type operator T to C.

Exact module match is rather restrictive, We define two forms of relaxed module ,natch by (I) modlifying
the mapping UF in the above definition and (2) replacing the definition of function match, match,-.

4 For useful feedback to the user, we would need to associate names with the function types, but this is not necessary in the
definition.

! P • 9

3.2. Partial Match

Should a querier really have to specify all the functions provided in a module in order to find the module"

A more reasonable alternative is to allow the querier to specify a subset of the functions (namely, only those
that are of interest) ýnd match a module that is more general in the sense that it may contain functions in

addition to those specified in the query

Definition: (Generalized Module Match)

M-match,e,(IL,IQ) is the same as M-maichE(IL,Iq) except UF rneed not he onto

Thus whereas with M-matchE(IL,ZQ), IILFI = IIqFI, with M-matchgen(IL, IQ), IILFI Ž •iQF1, and ILe
Z"QF under the appropriate renamings. A query like that in Figure 2 but without the function type o U -. int
would match QUEUE under the generalized module match definition.

Definition: (Specialized Module Match)

M-match,pec(IL IQ) = M-matchgy,,IQ,.I

With specialized module match, a library need not have all the functions defined in the query. As with

specialized and generalized match for functions, specialized module match is the converse of generalized

module match.

3.3. Relax* Match (Using Relaxed Function Matches)

In the definition of exact module match we used the exact match predicate, matchE, to determine whether

a function in the query interface matches one in the library interface. An obvious relaxation is to use a
relaxed match on functions instead of exact match.

Definition: (Relax* Match)

M-maichreiax.(IL,.Q, MF) = 3 a mapping UF : IQF - ILF such that
[! is one-to-one and onto, and

V r E IQF,.MF(L .(rq). rq)

The only difference between relax* match and exact module match is that relax* match uses, its parameter.

Mr, to match functions, instead of fixing function match to be exact, matchE. Thus, exact module match
is trivially defined in terms of the above definition: M-matchE(IL,IQ) = M-matchryilz.(l,Iq. matchE)

The match parameter (MF) gives us a great deal of flexibility, allowing any of the function matches defined

in Section 2 to be used in matching the individual function types in a module interface.

What this definition makes clear in a concise and precise manner is the orthogonality between function

match and module match.

3.4. Composition of Module Matches

As with function matches, we can compose module matches Since specialized rmodule match can be defined

in terms of generalized module match, we need only consider the composition of generalized module mat dh

10

and relax* match. The order of the composition does not matter, since generalized match affects the mapping

UF while relax* match changes only the function match used.

Definition: (Generalized Relax* Match)

M-maIchAen-,.eax.(IL,-1Q,4MF) is the same as M-matchr,1,M.(ILZQ,.,P) except UF need not
be onto.

We present this as a separate definition because we expect this combined relaxed match to be the riost
common use of module match in practice.

ZQT = ia C}

Q4F = { unit - a C,
(fi, CC) -- a C}

Figure 3: Another module query

Figure 3 shows another example of a module query. This query contains only two function types- Under
generalized module match, this query would match only the QUEUE module (with UF mapping the query
functions to create and eaq). Under generalized relax* match, using function reorder match. the query
matches not only QUEUE but also the SET module (with Up mapping the query functions to create and
insert (or delete), and reordering the input arguments to insert).

4. An Experimental Signature Matching Facility

We have integrated a signature matching facility into our local Standard ML (SML) programming environ-
ment. Our current implementation, itself written in SML, supports a subset of the function matches defined
in this paper. The algorithms for generalized and specialized match are modifications of Robinson's unifica-
tion algorithm, as presented by Milner [Mil78]. The algorithms for the other matche are straightforward.
but in some cases naive.

We used our facility to perform queries over a library of SML code consisting of 41 modules containing 2-15
functions. The majority of queries tested take less than .016 seconds (16 milliseconds) to complete. Figure 4
shows some actual output from an SML command-line-based version of the implementation. Type notation
is from SML: * is the tuple constructor, -> is the function constructor, 'a, 'b denote type variables (' 'a is
notation for equality types, and 'I la notation for reference types; we do not distinguish equality or reference
types in the current implementation). Using exact match, the query, ('a * 'a T) -> 'a T, returns two
matches: adjoin from a Set implementation, and cons from a lazy stream implementation. Using uncurry
match on the same query yields an additional match: the enq function on a sortable queue. The third
query, 'a list -> 'b liqt -> ('a * 'b) list, is drawn from a real use of our system by a coworker. He
needed a function to take two lists and create a list of pairs of elements from those. lists. The zip function
that was found by this query did exactly what he wanted; moreover, he was able to use zip's code in his
program without any modification An example that gave us a surprising result came from performing lthe
query 'a list -> 'a using specialized match. We expected this query to return functions such w; one that
selects an element from a list (hd); instead, we retrieved the implodePath function which takes a list of
strings that represent a file path name (e.g., ["usr", "amy", "tex"]), and returns a string (-f the entire path
name ("usr/amy/tex").

Our user interface is simplistic: just gnu-emacs [Sta86] and a mouse. The user pre-loads a spcified

11

>> Query - ('a C 'a T) -> 'a T. matcher - exact
adjoin :((''a ''a T) -> ''aT) (11 test/Set.sel]
cons :(('la 'Ila T) -> 'Ila T) [16 test/lstream.sml]

[CPU Time: 0.015625 secs., Elapsed Tine: 0 socs.] (Objects Found: 2)
>> Query ('a * 'a T) -> 'a T, matcher - uncurry

adjoin :((''a * ''a T) -> 'a T) III test/Set.saml

*nq :('& -> ('a T -> 'a T)) [IS test/SortableQueue.sal]
cons :(('la * 'la T) -> 'Ila T) (16 test/lstreaa.salJ

(CPIU Time: 0.0 sacs., Elapsed Time: 0 seca.] (Objects Found: 3)
) Query a 'a list -> 'b list -> ('a * 'b) list, matcher - exact

zip :('a list -> ('b list -> ('a # 'b) list)) (11 test/ListFns.sal]
[CPU Time: 0.015625 secs., Elapsed Time: 0 secs.] (Objects Found: 1)
>> Query - 'a list -> 'a, matcher - specialize

iaplodePath :(string list -> string) (102 test/Pathname.sal]
[[Substitute string for 'a/-1]]

[CPU Time: 0.015625 sece., Elapsed Time: 0 sec.] (Objects Found: 1)

Figure 4: Sample Output from Function Matching

component library. The emacs command is similar to that for string searches. The result of a query is a
list of functions whose types each matches the query, along with the pathname for the file that contains
the function. Clicking the mouse on a function in the list causes the file in which the function is defined
to appear in another buffer, with the cursor located at the beginning of the function definition. We chose
to use emacs for our interface rather than a flashier ý.aphical user interface in order to give programmers
easy access to signature matching from their normal software development environment. Thus we achieve
the goal of having signature matching as easily available for use as string searching.

5. Related Work

Closely related work on signature matching has been done by Rittri, Runciman and Toyn, and Rollins and
Wing. We review and compare our work with theirs below.

Mikael Rittri defines the equivalent of matchreorde,, o maichuncurry. by identifying types that are iso-
morphic in a Cartesian closed category [Rit89]. He has also developed an algorithm to check for more general
types modulo this isomorphism [Rit92], the equivalent of our matCheorder, o matchuncurry. o match.,. Ile
has implemented both matches.

Runciman and Toyn [1R89] assume that queries are constructed by example or by inference from context
of use. They use queries to generate a set of keys, performing various operations on the set to permit more
efficient search. The match they ultimately perform is similar to our unify match.

Rollins and Wing [RW9l] also implemented a system in Lambda-Prolog that includes the equivalent
of match reorder, matchunurry.. They also extended signature matching to perform a restricted kind of
specification matching (Section 6).

Our work is unique in two ways. First, we have identified a small set of primitive function matches that
can be combined in useful ways. Definitions of signature matching given by others are just special cases of
our more general approach; we can succinctly characterize their definitions (as above) and do so in a common
formal framework. We support orthogonality of concepts, allowing the user to "pick and choose" whichever
match is desired, perhaps through a combination of more primitive matches. Second, all previous work has
focused solely on matching at the function level. We extend signature matching to include matching on
modules as well. Moreover, since we define all our function match definitions to follow a common form, we

12

are able to use function match as a parameter to module match.

Les closely related work, but relevant to our context of software libraty retrieval, divides into two
categories: text-based search and classification schemes. In text-based search, textual information, su-h
as function names and comments, is used to locate desired software components. Attempts to make this
approach more formal involve imposing a particular structure on comments to increase the accuracy of
search. One example of such a system is REUSE [AS86]. Information about a component includes the
component's name, author, and language processor to use.

Finally, some work on classifying software enables control over the search space. A classification scheme
primarily facilitates browsing, as the goal is to provide a structure through which a user can navigate to
locate a desired module. Prieto-Diaz [PD89] describes a method of classifying software using facets (e.g.,
the function the software performs, the objects manipulated by the software, the medium used, the type
of system, the functional area, and the setting of the application). The REUSE system also includes a
classification structure which is used to guide search through a menu system.

As mentioned in the introduction, we view signature matching as a complementary approach to these
more traditional information retrieval techniques. For example, a classification scheme could be used in
conjunction with signature matching for a "pipelined" query: The first stage of the pipeline would use a
classification scheme to prune the search space for the second stage, which would use signature matching.

6. Summary and Future Work

This paper lays the foundation for the use of signature matching as a practical tool for the software engineer
to wad in the retrieval of software for reuse. We present precise definitions for a variety of matches at both the
function and module levels. Areas for further work include evaluating the usefulness of signature matching,
defining additional relaxations, and going beyond signatures to specification matching.

We plan to do more extensive evaluation using our signature matching facility by conducting experiments
with real users from our local SML research community (which includes over 20 graduate students, staff,
and faculty). This evaluation will serve two purposes: to identify places for performance improvements, and
more importantly, to provide feedback on the utility of signature matching for software reuse.

The existing set of relaxed function matches may still miss some potentially useful functions. To capture
some of these additional matches, we will need to expand our type system to model additional characteristics
of functions. Two examples of such characteristics are mutability and exceptional behavior. Even in "mostly"
functional languages like ML, there may be functions that mutate objects. Thus if there are two functions
that perform the same operation but one does so by creating a new object ((a, a T) - a T) and the other
by mutating an input object ((a, a T) -- unit) we would like to be able to say these are "the same" under
some relaxation. Similarly, we would like to be able to match functions that are the same except in their
behavior under exceptional conditions.

In the introduction we argued that signature matching is an instance of using domain-specific information
to do search. In an ideal software library, domain-specific information would include not just signature
information, but formal specifications of the behavior of each component. Given such specifications, e.g.,
pre-/post- conditions for functions, we could then add to our arsenal of search tools a specification maicher,
using specifications, not just signatures, as search keys. Consider the query (a T, a T) - a T which
matches the union, intersection and difference functions on sets. Specification matching would let
us distinguish among these three since their behaviors differ even though their types are the same. We.
are pursuing specification matching in the contex, of Larch [Gl193] and Larch/ML [WRZ93] at Carnegie
Mellon; Stringer-Calvert has proposed to do specification matching for Ada at the University of York [SC93].
Unfortunately we cannot as yet expect programmers to document their program components with formal

13

specifications.5 Signature matching backs off from this more ambitious approach.

Hence, signature matching offers the greatest amount of information about program modules for the
least overhead. We can exploit information that programmers already must generate, i.e., function types
and module interfaces, for the compiler. (Thus we get the search keys for free.) Implementing signature
matching requires nothing more sophisticated than unification, a standard algorithm already used in some
compilers to do type inference. In return we get a useful tool for retrieving software modules.

Acknowledgments

We thank Gene Rollins for his help in modifying the SML compiler so we could painlessly build and integrate
the signature matcher.

5Though, if we provided them with efficient specification matchers, maybe there would be additional incentive to write
formal specifications-a chicken-and-egg problem!

14

References

[AM871 William W. Agresti and Frank E. McGarry. The Minnowbrook workshop on software reuse: A
summary report. In Will Tracz, editor, Tutorial: Software Reuse: Emerging Technology, pages
33-40. Computer Society Press, 1987.

[AS86] Susan P. Arnold and Stephen L. Stepoway. The REUSE system: Cataloging and retrieval of
reusable software. Technical Report 86-CSE-22, Southern Methodist University, October 1986.

[BP891 Ted J. Biggerstaff and Alan J. Peris, editors. Software Reusability Vol. 1: Concepts and Models.
ACM Press, N.Y., 1989.

[FH88] Anthony J. Field and Peter G. Harrison. Functional Programming. Addison-Wesley, 1988.

[GH93] John Guttag and James Horning. Larch: Languages and Tools for Formal Specification. Springer
Verlag, 1993.

[IEE841 IEEE Transactions on Software Engineering, September 1984. SE-10(5).

[Mil78] Robin Milner. A theory of type polymorphism in programming. Journal of Computer and System
Sciences, 17(3):348-375, December 1978.

(MTH90] Robin Milner, Mads Tofte, and Robert Harper. The Definition of Standard ML. MIT Press, 1990.

[PD89] Rub:n Prieto-Diaz. Classification of reusable modules. In Ted J. Biggerstaff and Alan J. Perlis.
editors, Software Reusability Vol. 1: Concepts and Models, pages 99-123. ACM Press, N.Y., 1989.

[Pre87] Roger S. Pressman. Software Engineering: A Practioner's Approach. McGraw-Hill, 2 d edition,
1987.

[Rit89I Mikael Rittri. Using types as search keys in function libraries. Conference on Functional Pro-
gramming Languages and Computer Architectures, pages 174-183, September 1989.

[Rit92] Mikael Rittri. Retrieving library identifiers via equational matching of types. Technical Report
65, Programming Methodology Group, Department of Computer Sciences, Chalmers University
of Technology and University of G6teborg, January 1990 (reprinted with corrections May 1992).

[R189] Colin Runciman and Ian Toyn. Retrieving re-usable software components by polymorphic type.
Conference on Functional Programming Languages and Computer Archtiectures, pages 166-173,
September 1989.

[RW91] Eugene J. Rollins and Jeannette M. Wing. Specifications as search keys for software libraries. In
Proceedings of the Eighth International Conference on Logic Programming, June 1991.

[SC931 David WJ. Stringer-Calvert. Reuse in Ada-finding components by specification. Proposal sub-

mitted for the degree of Master of Engineering, 1993.

(Sta861 Richard Stallman. GNU Emacs Manual, 1986.

[WRZ93] J.M. Wing, E. Rollins, and A. Moormann Zaremski. Thoughts on a Larch/ML and a new appli-
cation for LP. In Ursula Martin and Jeannette M. Wing, editors, First International Workshop
on Larch. Springer Verlag, 1993.

15

