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ABSTRACT

A method for the design of trellis codes for coherent

detection of orthogonal signals in additive white Gaussian

noise (AWGN) channels is presented. This method utilizes the

landmark works of Ungerboeck in trellis coded modulation

(TCM). After examining the channel capacity, it is shown that

a coding method requiring the same bandwidth efficiency for

the orthogonal signal space and maximum likelihood (ML) soft

decoding using the Viterbi algorithm can achieve large

asymptotic coding gains. Several codes are analyzed using

Ungerboeck's technique of set-partitioning and mapping, then

applying the analytic code description method of Calderbank

and Mazo to M-ary frequency shift keying (M-FSK) . The general

finding of this paper is that relative to uncoded modulation,

asymptotic coding gains of 3-4 dB can be achieved.
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I. INTRODUCTION

Forward error correction coding is often employed in

military communications systems to improve their performance

in a hostile environment. Both block coding and convolutional

coding are commonly used. An alternative coding technique is

trellis coded modulation (TCM). In this thesis M-ary

orthogonal signals are considered.

The model of the digital communication system under

consideration is shown in Figure 1.1. The trellis code

encodes a binary data stream as a sequence of signal points

drawn from M-dimensional Euclidean space RM. At a given

instant in time, the input to the convolutional encoder, {ai1,

is a sequence of k independent bits where ai=O,1 and i-1,...,k.

The channel encoding operation is combined with

M-ary frequency shift keyed (M-FSK) modulation, thus trellis

coded modulation. A convolutional encoder is used to generate

• R•.- k M•Jul~m M -FSK Vm

and•Deod Decode,

Figure 1.1 Communication
System Model
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the underlying code. M-FSK orthogonal signaling is used to

achieve an acceptable performance with a minimum power

requirement. (Ref. 1]

The set of orthogonal signals used is denoted as

{s,(t) ), x = 1,2, ... , M. (1.2

These signals are generated by a frequency synthesizer which

is driven by a set of real numbers {x}, x = 1,2,...,M. So,

each x corresponds to one of the M transmitted frequencies.

These real numbers have a specific relationship, denoted by a

generator matrix or polynomials, with the incoming bit stream

{ai} and the memory bits of the encoder. When a trellis code

is used to encode data at the rate k bits/channel symbol, each

channel input {yj}, j=O, .... ,m-1 (m=log2M), depends on the most

recent block of k bits to enter the encoder and the set of v

bits preceding this block. Here v is equal to the number of

memory elements in the encoder, or the number of shift

register stages. These v bits determine the state of the

encoder and the most recent block of k bits generates the

channel symbol conditional on the encoder state. For an

encoder that has 2v states, the constraint length of the

convolutional code is defined as v.
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The M=2 m distinct symbols are represented by M orthogonal

sinusoidal waveforms as

s,(t)= A cos (21r(fc+(x-1)Af)t1, 0 s t s T (1.2)

where x 1,2,....M,

T : symbol duration,

f, :carrier frequency,

Af : the width of the frequency slot.

The orthogonal signal set is characterized by equal signal

energy E given by

T
E T• s,2 (t) dt = A2 T/2. (1.3)

Utilizing (1.3), we may equivalently represent these signal

waveforms as M-dimensional vectors:

= ' [ v', 0, , 0 1 (1.4)

M- 0, 0,..., V]

Euclidean distance, much like the cross-correlation

coefficient, is a measure of the similarity or dissimilarity

between any pair in the set of signal waveforms or

3



corresponding signal vectors. [Ref. 23 The distance between

two vectors f and g is defined as

d(fg)= •- •g(1.5)

where fn and g, are the elements of f and g, respectively.

Using the above notation, it easy to see that the distance

between any two signals s, and S,, i~j, is

d = " V (1.6)

For these signals, the cross-correlation coefficient obeys the

relationship

Pq= T si(t)s (t) dt = 0 f (1.7)

0 E for i=j.

M-FSK is generated by subdividing a frequency interval

into M distinct frequency slots. Each slot has a width Af.

The binary digits output from the convolutional encoder, are

mapped into a set of M symbols corresponding to the frequency

slots. From Reference 2, we see that the minimum frequency

separation between adjacent signals that uphold conditions ýor

orthogonality is

A 4 (1.8)
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This is precisely the separation used in coherent

detection. In some systems, noncoherent detection is used.

It is, however, half as bandwidth efficient as coherent

detection. The frequency separation in this case is

h~ -. (1.9)
ST7'

For coherent detection, the minimum one-sided bandwidth

occupied by these M orthogonal signals is

B- M (1.10)
2T

It is assumed that the transmission medium introduces zero

mean, additive white Gaussian noise (AWGN) n(t) with power

spectral density No/2. The received signal is corrupted by

AWGN given by

r,(t) = s,(t) + n(t). (1.21)

The purpose of coding is to gain immunity over this noise

beyond that provided by standard uncoded transmission at the

same data rate [Ref. 3].

The signal r,(t) is demodulated by a bank of either

matched filters or correlators. When the initial phase can be

estimated by the receiver, the demodulation is coherent,

otherwise it is non-coherent. In this thesis, only coherent

detected TCM/M-FSK schemes are considered.
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The demodulator computes the metrics which are the

Euclidean distances between each possible signal and the

received signal. The outputs {uk}, k = 1,2,...,M of the

demodulator are then sent to the Viterbi decoder which

performs a soft decision decoding of the M-FSK signal. The

decoder is cognizant of the trellis structure and signal

assignment of the encoder. The sequence {A,} at the output of

the Viterbi decoder is the maximum-likelihood estimate of the

input sequence {a,}. Ideally, {fc} should be equivalent to

The remaining chapters in this thesis are organized as

follows. Chapter II contains general background information

about digital communications, trellis coded modulation, and

the Viterbi decoder. In Chapter III the encoder design

procedure is presented. Heuristic code design and

verification by hand is infeasible for codes with large

constraint lengths. Optimum codes must be found using

computers. Specifically, an efficient method to determine

free distance is needed as it relates directly to the code

performance [Ref. 41. Along this line, Chapter IV contains

several example rate 1/2 and rate 2/3 encoder with their

respective computer aided design results. A simulation

program provides verification of the decodability of the rate

1/2 encoders by decoding without added noise. One may then

simulate the code in the presence of noise.

6



II. GENERAL INFORMATION

A. BACKGROUND INFORMATION

Trellis coded modulation was invented as a method "to

improve the noise immunity of digital transmission systems

without bandwidth expansion or reduction of data rate."

(Ref. 4) Shannon enumerated the limitation to transmission

o-ver a noisy channel by a quantity called channel capacity.

Capacity of a noisy channel is the largest rate at which

information can be transmitted reliably. In other words, if

the data source rate is less than the channel capacity, proper

encocing and decoding techaiques enable us to communicate over

a noisy channel with any arbitrary error rate. Otherwise,

reliable communication is not possible.

In Reference ý., Proakis notes that the set of orthogonal

waveforms achieves the channel capacity bound as M - w when

the information rate R < C., where C, is the capacity of the

infinite bandwidth AWGN channel. Transmitting more signals

using M-FSK modulation requires more bandwidth, as noted in

(1.10). It also requires a higher degree of complexity of the

demodulator, that is, more matched filters or correlators are

used. The advantage of increasing M "is a reduction in the

signal to noise ratio (SNR) per bit required to obtain a

specified probability of error." Ungerboeck observes that in

TCM "limited distance growth and increasing numbers of nearest

7



neighbors" prevent coding gains from achieving the limit set

by channel capacity (Ref. 4].

In the classical approach to channel encodinq, the two

functions of coding and modulation are regarded as separate

operations. The modulator, channel, demodulator, and hard

quantizer are cascaded. Here, the code design is "to exploit

redundancy at the bit level to maximize the minimum Hamming

distance between codewords [Ref. 5.]." In other words, the

ability to detect and/or correct errors can only be provided

by the transmission of redundant bits, thus lowering the

effective information rate per transmission bandwidth. In

addition, hard amplitude or frequency decisions made in the

demodulator prior to final decoding cause an "irreversible

loss of information." (Ref. 6]

The idea of combining channel encoding and modulation to

achieve coding gains is the basis of TCM schemes. The

receiver performs a maximum likelihood soft decoding of the

unquantized demodulator output, thus avoiding loss of

information prior to decoding. The objective of the code

design is "the maximization of the minimum Euclidean distance

between encoded sequences" [Ref. 5].

In this thesis, channel encoding and M-FSK modulation are

combined in order to take advantage of soft decision decoding.

The code rate of the convolutional encoder is the ratio of the

number of input bits to the number of output bits. It is

8



written as r=k/m, where k is the number of inputs and m is the

number of outputs of the encoder. Here we restrict our

discussion to codes where m is equal to k+l. For a given

number of memory elements v, the trellis structure depends on

the way this memory is distributed among the incoming k bit

streams. (For this reason, the general program for creating

the trellis for rate 2/3 is not feasible.)

For every k information bits, the rate k/m trellis encoder

produces m coded bits Yo, Y1 ... - These bits are mapped to

a unique member of the 2m signal constellation. In this

thesis, a mapping rule known as the natural mapping rule will

be assumed for its simplicity and illustrative purposes. The

signal label will be equal to the numerical value of the

binary coded digits. For example, if (y2 yj y0 ) = (1 1 0),

then the signal label is 6. This label corresponds to the

signal value x = 7 in (1.2). More details of the mapper will

be provided with the design examples.

Each transmitted signal 9, at multiples of time T is a

nonlinear function of the state of the encoder and the k

information bits at its input.

Consider the convolutional encoder depicted in Figure 2.1.

In this case, the generator polynomials are known. Here,

YO = a, 9 a 3 and yl = a, S a2 9 a 3 , where Q is the modulo 2 sum.

Drawing this encoding procedure sequentially in time results

in a trellis structure. The trellis for this rate 1/2 code

with k=1 and v=2 is shown in Figure 2.2. For example, it the

9



incoming

present state bit

k=1. Y=2 a31

Yl = 'I ' '2 ( n3ye = *I (D "3

Y, Y

y1  y

Figure 2.1 Inputs, state variais., and encode, connections fr ate 1/2 code

01 / yl YO
838 2 input bit /output bits a201

state state
00 00

1 

I 
I

01 0111 01

0110
10 110

0101

11 111

Figure 2.2 Trels for tate 1/2 code
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encoder is in state a 3a 2=00 and the new input bit a,=1, then a

transition from state 00 to state a2a1=01 occurs and the

encoder output is y,yo=ll. If the new input bit is a1 =0, then

a transition from state 00 to state 00 occurs and the encoder

output is yjy 0=00. Other self-evident transitions are

presented in Table 2.1. When a natural mapper is used, the

trellis of Figure 2.2 is equivalent to the trellis of

Figure 2.3. Here all states are numbered and transition

branches are labeled with appropriate input/output signals.

Table 2.1 Trellis constuction table. i
iptbtfchannel signal

- ,state 1 state
From State Input Bit Output Bits To State 1 G

MSB LSB 2/4
a3 a2 a 1 Y1 0  a2 al

- - 1/•

0 0 0 0 0 0 0 2 2/1 2
I _ _ 1 0 1
0 10 1 0 1,3

o 1 1 0 1 1 122

1 0 0 II 00
1 0 0 0 1 1

0___ 0 1 10 2/3 -

- MSB: Most significant bit Figure 2.3 SOW auimd t tal 112 co&

LSB : Leut significant bit

The 4-FSK and 8-FSK signal sets are presented in the top

portions of Figures 2.4 and 2.5. The numbers below the line

are the signal labels associated with the natural mapper. The

values in the rectangles are the associated channel signal

values x from (1.2). Referring to the bottom portion of

Figures 2.4 and 2.5, the signal set is divided until each

1ii



•W 0 1 2 3

(00) (01) (10) (11)

p-

, , ,

Figure 2.4 4-FSK signal set and set partitioninq

I 0 1 2 3 4 5 6 7

(000) (0011 (010) (011) 1100) (101) (1101 (111)
Y2 Vl YO

aTl El F± El El El fl-"

Flgure 2.5 O-tSK signal set and set poatoningE
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group contains only two signals. The method of division is

governed by the principles of set partitioning designed by

Ungerboeck. Due to equidistance between any two signals in

M-FSK, these partitions are not unique. They are accompanied

by rules for signal assignment.

B. SIGNAL ASSIGNMENT PROCEDURE

Coded digits select the signal from the constellation and

every interval of T seconds, the encoder transitions to the

next state. Uncoded digits select signals corresponding to

parallel transitions in the trellis. These parallel

transitions do not lend any performance improvement in

TCM/M-FSK due to equidistance among all signal pairs. For

this reason, they are not considered. The mapper maps the

incoming sequences of coded digits to a sequence of M-ary

signals. The mapping rule is defined by a function which must

be nonlinear in order to achieve a coding gain [Ref. 31.

If k bits are encoded per modulation interval T, there are

2 k possible transitions from each state to a successor state.

After selecting a trellis state-transition diagram, one must

assign channel signals from the set of 2k+1 signals to the

transitions such as to achieve maximum free Euclidean

distance. We begin with a look at Ungerboeck's three rules

for assigning channel signals for amplitude and phase

modulations. These same principles may be applied in

conjunction with Turgeon's rules to frequency modulation

[Ref. 81.

13



Rules:

UV) All signals should occur with equal frequency and with

a fair amount of regularity and symmetry;

U2) Parallel transitions are assigned to signals from the

subset with greatest intrasubset distance;

U3) Adjacent transitions (those branches entering or leaving

a single state that are not parallel) are assigned to

signals from one subset at the final level of set

partitioning. [Ref. 6]

These rules are designed to provide codes with good

performance. If in addition to the above rules, the following

two by Turgeon are applied, the encoder will have minimal

complexity, that is, there will be fewer connections in the

convolutional encoder [Ref. 7,8].

T1) For the signal sequence of state 1: Find the maximum

signal value (MSV) at the final level of set

partitioning. Choose the MSV and its partner. Assign

this pair to state 1. Move up a level and choose the

next MSV and its partner. Assign this pair to the next

state. Continue until level zero is reached.

T2) In a given dimension (M=4 or M=8), each input bit is

associated with a unique signal difference. [Ref. 8]

Regarding rule T2, the signal difference is defined as the

difference between signal values attributed to changing one

bit in the encoder output from 1 to -1. These differences

should be minimal and maintained throughout the trellis.

14



(Note: While the natural mapper satisfies the guidelines of

rule T2, another mapper may be chosen) . As minimal complexity

doesn't guarantee optimal performance, this and other signal

assignment options are examined in the examples of Chapter IV.

The optimum decoder uses the Viterbi algorithm to find the

most likely path through the trellis given the observed

sequence. Consider the trellis shown in Figure 2.6. Every T

seconds, the trellis of Figure 2.3 is repeated thus producing

the scheme shown. The object is to find the shortest path

through the weighted graph. A detailed description of the

Viterbi algorithm is found in Reference 9 and Reference 10.

memo made

t 2 3@ 4

14 14 14 14 14

114 114 2 !1 2 114 3
211 21 21 21

131 13 11

9mw~jwawms�1bewrit : 0 1 0 0 0 1
Uncodod equewceIobe.rwirued: 1 1 2 1 1 1 1
Coded -m - m.w mm ed 1 [ 4 3 4 1 1 1 error mceud
Flceivd nCicOded MVIC : 1 3 2 4 1 1
Dcnci dmqnamn - 1 4 3 4 1 I n' rorcorreded
VbkbdAcodnuMM uinO W seqmne : 1 2 1 1 1 1
BO dscdsd Sequerce : 0 1 0 0 0a

Figure 2.6 Example Vfttbi decoder.
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Beginning in the first state, we compute a partial metric

for the single path entering each state. For this example,

the metric is the Euclidean distance between the two signals,

the observed signal and the coded signal on the trellis. This

distance is defined to be one for ease of illustration. We

store the path (also called the survivor path) and its metric

for each state. In the figure, these smallest metrics are

circled at each node. Then we compute the partial metric for

all paths entering a state by adding the branch metric

entering that state to the metric of the connecting survivor

at the preceding time unit. When 2k paths enter a state, the

upper path metric is listed at the node first. Then the other

paths are listed, with the lowest path metric listed last.

Once again, for each state we store the path with the smallest

metric and its corresponding metric.

Referring to the trellis shown, we see that the smaller

metric from the two branches (upper/lower) entering a node is

circled and is the survivor. We decide the rule for a tie is

to choose the upper branch. Over time, we see that the path

in bold type is the survivor with the smallest metric equal to

1. The Viterbi decoder in this case corrected one error and

decided the correct binary sequence was sent.

Although it is not the case of our example, the path

chosen may not coincide with the correct path for all time,

but will occasionally diverge from it and recombine at a later

16



time. This is called an error event. The error event length

is the number of branches or signals in which the two paths

differ.

The error event is caused by the added noise in the

transmission medium. To be precise, an error event is formed

by "two paths that start in the same state, finish in the same

state, and do not simultaneously occupy the same state in

between." [Ref. 31 In TCM/M-FSK the minimum length of a

possible error event, L, is directly related to the free

distance of the code. The free distance is the minimum

Euclidean distance of all error events. Both of these

parameters are directly involved in the code's performance.

The squared Euclidean distance d' between any two paths

forming an error event of length L is

Ld 2= F l j s12. (2.1)

j=l

Here si is the transmitted signal and Aj is the corresponding

signal in the diverging branch. Figure 2.7 depicts an error

event whose squared euclidean distance is: d2 = (a-b) 2 + (c-d)2

+ (e-f) 2  [Ref. 11]. The distance associated with an error

event is of interest because asymptotically for large SNR's,

maximizing df. is synonymous with minimizing the average bit

error probability.

17



We find that the normalized free distance of the code

sequences depends only on the length of the different paths

before recombining due to the equidistance of the orthogonal

signals. Consequently, the best rate k/(k+l) binary

convolutional codes are those whose diverging paths consist of

long error event lengths.

When evaluating the performance of different coding

schemes, comparisons are strictly made on the basis of equal

data rate and bandwidth. The free Euclidean distance is

embedded in a performance measure called coding gain. The

coding gain is defined as the difference between the two

values of SNR in dB necessary to achieve the same bit error

probability in the uncoded and coded systems [Ref. 5].

The asymptotic coding gain (ACG) is the ratio of SNR

required for coded operation relative to that required for

uncoded operation with the same bandwidth efficiency in the

limit of large signal to noise ratios. The ACG for TCM/M-FSK

with respect to uncoded 16-FSK is defined as:

ACGdB = 10 log [(1/4) (dr•]/2E)] for TCM/4-FSK (2.2)

ACGd, = 10 log [(1/2) (df, 2/2E)I for TCM/8-FSK (2.3)

where d2f./2E: normalized squared free Euclidean distance of

the coded scheme. This is the smallest of the Euclidean

distances between any two coded paths constituting an

error event (E: the energy of the coded signal).

18



A general analytic equation is not available for the free

distance, but it may be found by cbserving the trellis

structure and signal assignment. A computer program designed

to find the normalized squared free distance given a TCM/M-FSK

trellis is found in Reference 1. When the signal set is

orthogonal, the distance between any pair of M symbols in the

signal constellation is constant. Thus, this is the minimum

Euclidean distance between any signal pair. In the computer

program this distance is normalized to unity, i.e. dii is set

e-lial to 1, for all i,j. This is equivalent to finding the

minimum error event length, L. Then dfrr2/2E is equal to L.

The figure of merit to compare different coding schemes is

ACG given by (2.2) and (2.3). The reference uncoded scheme is

the one which has the same bandwidth efficiency as the coded

scheme. One notes that for phase shift -.eying (PSK) schemes,

this means the coded signal space is expanded with reference

to the uncoded one. For FSK, however, one reduces the

dimension of the signal space when coding to maintain

consistent throughiput and bandwidth.

Therefore, the bandwidth efficiency R/B is used to find

comparable uncoded and coded systems to evaluate coding gains.

R is the information rate in bits per second. B is the one-

sided bandwidth in Hertz.

For uncoded M-FSK signalling, where MD-2= the information

rate is R=p/T, where T, is the uncoded symbol duration. In

19



this case the transmission bandwidth is B=M0 /2T,. So, the

uncoded scheme's bandwidth efficiency is

R 2p 2p
SM 2 P(2.4

For a M-FSK convolutional code with rate r=k/m and M.=2 m, the

information rate is likewise R=k/T., where T, is the coded

symbol duration. For this code, the bandwidth is B=M4/2T,.

Then the coded scheme's bandwidth efficiency is

R 2k 2k (2.5)
B Mc 2 m

The ACG ratio is calculated for coded versus uncoded schemes

where

R (R (2.6)
BU B

As an example, consider a rate 1/2 TCM/4-FSK code. Note: k=1;

m=2. So, the bandwidth efficiency is (R/B), = 2k/2' = 1/2

bits/sec/Hz. Uncoded 16-FSK has p=4, so i.ts bandwidth

efficiency is (R/B), = 2p/2P = 1/2 bits/sec/Hz. Note that rate

2/3 TCM/8-FSK codes have (R/B), = 1/2 bits/sec/Hz.

20



III. ENCODER DESIGN

As mentioned in the introduction, the binary stream {a,},

a,=O,1 over time is encoded into a sequence of real numbers

{x,}, x'=, . . . M. Reference Ii contains an in depth discussion

on the analytic description of trellis codes. Each channel

input x, depends on the n=k+v most recent bits that enter the

encoder. Since each Y. is real, it may be written as a sum of

products of the aj.

U 0

x(a,,...aa) = co + E c,ai + X c-a ,aý +...+ c, 0a. a 2 . .. a,.
i=li

j~i (3 .1)

We note that x(a,,...,aj) can take on 20 values. This is the

same as the number of transitions in the trellis.

Computationally, it is easier to let the binary data be {b,},

b, = ±1. The relationship between a, and bi is given by the

linear transformation bi=l-2ai, i=1,2,...,n. With these

antipodal values we can represent the channel input as

x(bi,...,b.) = do + b db+ dbib) + dbhbibjbh
i=l ij=l ij = I

j>i h>j>,

+. + d ... bjb 2 . . .b.. (3.2)
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Equation (3.2) may be put in vector notetion. Let x denote a

2" element column vector of channel signals assigned in the

trellis. Let d denote the vector of unknown coefficients.

Finally, let B be a 2a X 2* matrix where each row represents

the 2* values taken by all the products of the bi's in (3.2)

for each n-tuple b,,...,b,. Now (3.2) can be written as

x = Bd (3.3)

where

X(1, 1 ...... 
., i)x = X (-I , ,. ...... i

X(-1, -11'...,1

Bi 1 1 b, b 2 .. .b., blb 2. b2b 3 , ... ,b 1b .b,

and

dT 4 [ d0  d, d 2,j ... ,d, 2...

As B is a Hadamard matrix (which is also an orthogonal

matrix), then d is the Hadamard transform of the vector x. We

solve for d by using B' = 1/2n BT:

d= --- BTx. (3.4)
2 n
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So the coefficients are computed by using the signals

assigned to all transitions in the trellis diagram and the n

bits on which the channel signal depends. Once this

relationship between b, and x is established, the solution is

extended to the logic variables {a,}. These new values

directly describe the connections in the encoder necessary to

generate the desired trellis and signal assignment. The

examples in the next chapter will illustrate these concepts.
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IV. ENCODER / DECODER DESIGN EXAMPLES

A. INTRODUCTION

This chapter contains five encoder design examples chosen

to illustrate different aspects of trellis encoder design.

The first three examples are rate 1/2, 4-FSK codes. The first

two of these use a simple 4 state code to show the effects of

using Ungerboeck's rules and Turgeon's rules respectively. It

is determined that they do not provide any coding gain

relative to uncoded 16-FSK. The third example uses a 64 state

code and Ungerboeck's rules to show that the squared free

Euclidean distance (thus performance) increases with

increasing the number of shift registers v, as compared with

the earlier examples. In this example, the asymptotic coding

gain is 2.43 dB. All rate 1/2 codes are checked for

decodability with a Viterbi decoder simulation program.

The last two examples are rate 2/3, 8-FSK codes. The

first of these uses an 8 state code and Turgeon's rules to

derive the minimal complexity encoder. It is determined that

this code does not provide any coding gain due to a small

error event length. The final example uses a 32 state code

and Turgeon's rules to acieve an asymptotic coding gain of

1.76 dB.
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B. DESIGN EXAMPLE 1: 4-FSK, RATE 1/2, 4 STATE

For this example, all details are explained to ensure

understanding of the methods previously described. While the

program is designed to do all the computations, the logical

steps are provided here in parallel for verification purposes.

This example is provided to illustrate the rules of

Ungerboeck in a simple code. In this scheme, there is one

input data bit (k=l) and two memory elements (v=2). Thus the

channel signals depend on the three most recent bits

(n=k+v=3). Figure 2.1 describes the relationship between the

data and memory bits. However, in this case, the encoder

connections are unknown. The signal set and its partitioning

are shown in Figure 2.4.

To find the underlying convolutional encoder we start with

the trellis in Figure 4.1. The information in the trellis is

equivalently described by the matrix T,12 [Ref. 12]. This

figure also contains the program input and a sample run.

Here, the program input is described. The program is designed

to intake the trellis in the form of a matrix T (T,,2 to

distinguish it from other examples). For simplicity, we will

only look at the first three columns of T,12. Each row number

r corresponds to information going to state number r. For

example, row 1: transition goes from state I to state 1 with

input bit 1 and channel signal assignment 1.
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ffo i chWbk dw so to (TOM State input bitstate s/a flats

2 T, 2 2 1 2 4 3 2 1 > 2

14• J2 1 3 4 1 2 =:> 3

2 2 2 42•

siýnal assig•ment

Siprdauaimiwetb sfadfee 1/2. 4-FSK. 4 tatecode

"Ih coiegsomf T matr

DESIGN EXAMPLE 1: STARTING WITH TRELLIS, rate 1/2, v=2
f tt % Running tt.m puts matrix Ttl2 into the workspace.

Ttl2 - 1 1 1 3 1 4
1 2 4 3 2 1
2 1 3 4 1 2
2 2 2 4 2 3

t tcmmain
Program USER INPUT:

Starting with Trellis? (y/n) y
Choose Code Rate: 1) 1/2, or 2) 2/3; rate: 1
Enter the Trrellis matrix: T Tt12

Program OUTPUT:
The number of input bits Is : k I
The number of memory bits is : v 2

The analytic description b coefficients are : -0.5 -1.0
The b's to connect are • 0 1 3

1 2 3
The logic variables (a's) to connect are : yO 1 3

yl 1 2 3
dfree-2 (normalized) - 3
Your encoder Is decodable.

Figure 4.1 Design Example 1: Trellis, matrix T, and program run
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Row 2: transition goes from state 1 to state 2 with input bit

2 and signal assignment 4. For each of the 2 k transitions

from ai node in the trellis, there is a set of three columns.

This explains why there are six (2 k*3 ) total columns in the

matrix. Also note that there are four (2V) rows (or states)

in the matrix T,,2. The program output is the encoder

connections needed to create the given trellis assuming the

natural mapper is used. The program is restricted to values

of n<10, although the procedure is valid for nalo.

When approaching the problem theoretically, one must first

determine how the output bits relate to the channel signal.

Utilizing the natural mapper and signal difference information

depicted in Table 4.1, the relationship between the channel

signal and the output bits is

x = 2.5 - z, - 0.5z0 . (4.1)

Table 4.1

Signal Mapping and Signal Differences for 4-FSK Signal Set

MS; LSD MSO LSB Signal Value: Signal
Y YO z1 Z0 Signal label Channel Signal Differences

0 0 1 1 0 1 z 1 : (1-3) =61

0 1 1 -1 1 2 z0 : (1-2) :60

1 0 -1 1 2 34: =(12)61

1 1 -1 -1 3 4 dzo: =(iiZ 0oO
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Solving for d in (3.4), the coefficients are

do -2.5

d13 - 0.5

d - -1.0.

So, following (3.2) the analytic description of the trellis

code is

x = 2.5 -0.5bjb 3 - b1b2b3  (4.2)

Comparing (4.1) and (4.2), it is clear that

z, - bjb2b3

z. - blb 3.

The analytic description transmitter may be implemented as in

Figure 4.2.

k=l, v=2
Z =b bI b3
z0 =bI b)

z1 13

T 2 T b3

0.5

Figure 4.2 TCM encoder anoayic description for rute 1/2. 4-FSK 4 state code.
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Due to the relationship ai = (1-bi)/2, i=l, ... n, the

corresponding relations for the logic variables, aj (0,1) are

Yo - a, @ a3

Y- - a, @ a 2 (D a3, where 0 is the modulo 2 sum.

Using these connections, the convolutional encoder is given in

Figure 4.3.

kulo vaZ Yl" - 1 0• 2 *• 3

#SSS~Mapper

Figure 4.3 TCM encoder for moo lit 4-FSK. 4 ste code.

From Figure 2.6 the minimum error event length is 3. The

normalized squared free Euclidean distance attributed to this

error event is d,,]/2E - 3. The actual d,2 is

(/r2 + V5 + V2) . 3 (2E). The asymptotic coding gain of

this scheme using (2.2) relative to uncoded 16-FSK modulation

which has the same bandwidth efficiency is -1.25 dB. This

example implies that a greater minimum error event length must

be achieved by a code in order to get a coding gain.

The program tests the encoder in a 100 bit noiseless

simulation to ensure the signal assignment does not contribute
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to a catastrophic code. A catastrophic trellis code is one

where "more and more paths appear which have a squared

distance equal to or slightly larger than the squared free

distance [Ref. 13]." When this happens, the free distance

alone is not a good indicator of the coding gain, as the

probability of selecting one of these close incorrect paths

increases.

Since most codes are described by their generator

polynomials, one may also start the program given the rate 1/2

encoder connections. This option in the program outputs the

trellis T, df. 2/2E, and checks for decodability. Figure 4.4

contains a sample run for input y0 = a, E a 3 and

Yl = a, E a 2 $ a 3 . The trellis produced is T = T,2-

DESIGN EXAMPLE 1: STARTING WITH ENCODER CONNECTIONS, rate 1/2,
f tcmmain v=2
Program USER INPUT:

Starting with Trellis? (y/n) : n
Starting with Encoder connections? (y/n) : y

Enter the number of input bits : k 1 I
Enter the number of memory bits: v = 2
Enter LSO encoder connections : yO0 11 3]
Enter NSB encoder connections : yl= 11 2 3]

Program OUTPUT:
The trellis signal matrix is: T - 1 1 1 3 1 4

1 2 4 3 2 1
2 1 3 4 1 2
2 2 2 4 2 3

dfree'2 (normalized) a 3
Your encoder is decodable.

Figure 4.4 Design Example 1: Starting with encoder connections

30



In the simulation program, the Viterbi decoder decision

delay or path history is defined to be 6v, or 12 in this case

(Ref. 61. As the encoder is decodable (there were no errors

in the decision), one can run the simulation programs with an

input noise level.

A sample run for 17 bits is found in Figure 4.5. As the

decision delay is 12 bits, the decoder will decode the first

5 bits. The user inputs the symbol energy. Here it is chosen

equal to 1. The standard deviation of the noise is chosen to

be 0.3.

The simulation program output for the transmitter portion

consists of a random message to be transmitted, the encoder

output, the signals depicted by the natural mapper, and the

sequence of frequencies to be transmitted. Each row of the

matrix 3 is a four dimensional vector as in (1.3) that

represents the signal to be transmitted. Noise is added to

this matrix element by element.

In the receiver, the decoder needs information about the

trellis and the current decision statistics vector for each

signal in the received sequence. U is a matrix of metrics.

Each row of matrix U is a Euclidean distance measurement

between the received signal (in the same row of W) and each of

the four possible signals in 4-ary modulation. The distance

between the signal in the first row of M and s, in (1.4) is

placed in the first column of U (row 1).

31



DESIGN ZXAM4PLZ 1: SIMULATION FOR Ttl2 TRELLIS, rate 1/2, v-2

The trellis signal matrix is: Tt12 - 1 1 1 3 1 4
1 2 4 3 2 1
2 1 3 4 1 2
2 2 2 4 2 3

Program USER INPUT:
Run simulation? (y/n) y

THIS IS THE VITERBI DECODER FOR RATE 1/2 TCM-FSK
There is a 12 bit delay in the decoder.
The message length must be longer than this.

How many bits are in the message? nb = 17
Enter the symbol energy, eq. Es=I. Es - 1

Es/No=I/2*sigmaA2 where sigma Is the AWGN standard deviation.
Enter the value of sigma, eg. sigma-0.1 : sigma = 0.3

Program OUTPUT:
The random message to be transmitted is:

rnd o - 1 0 1 1 1 0 0 0 1 0 1 1 1 1 1 1 1

The random message with shift register memories set 0.
rnd o - 0 0 1 0 1 1 1 0 0 0 1 0 1 1 1 1 1 1 1

The output of the encoder is LSB,MSBj
encout - 1 0 0 1 0 1 1 0 1 0 0 1 0 0 0 0 0

11001010110011111

The symbol sequence equivalent Is:
m- 32012130320122222

The sequence of frequencies is:
f-4 3123241431233333

Symbol matrix, M, before noise is added:
N 0 0 0 1

0 0 1 0
1 0 0 0
0 1 0 0
0 0 1 0
0 1 0 0
0 0 0 1
1 0 0 0
0 0 0 1
0 0 1 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 1 0
0 0 1 0
0 0 1 0
0 0 1 0

Figure 4.3a Design Example It Simulation
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Symbol matrix, M, with &WGN:
M-W

-0.1184+0.45521 -0.0199-0.55141 0.1556-0.45511 0.6980-0.20171
-0.2345-0.77471 0.6004-0.57351 0.8901-0.03811 0.0340-0.45481

0.6961-0.29101 -0.3430-0.09011 0.3336-0.06111 -0.7341+0.15051
0.0751+0.08441 1.2597+0.64661 0.1481-U.04571 0.4314-0.25761
0.1399+0.23301 -0.4667-0.18201 0.9724-0.78031 -0.0074-0.38301

-0.0659-0.07201 0.8214+0.16021 -0.0248-0.21001 -0.1311-0.00371
0.6524+0.14411 -0.2856+0.08271 0.0627+0.15631 1.1764-0.56691
0.4891-0.16501 0.1004-0.09941 0.1345-0.13471 -0.0899+0.40271

-0.1398+0.10191 -0.3223+0.17791 0.4548-0.10451 1.6042+0.09801
0.3267-0.19361 -0.2230-0.48331 0.8274-0.53601 -0.2870-0.03131
0.7524+0.63281 0.1125+C.37951 -0.1160+0.29021 -0.2392+0.02941
0.1213-0.00521 1.5880+0.02901 -0.0997-0.13191 0.3642+0.36871

-0.2824+0.05161 -0.5079+0.07491 0.7809-0.16741 -0.0023+0.24761
0.2775+0.05271 -0.5075-0.55851 0.7902-0.07491 0.4605+0.07741

-0.1406+0.54481 -0.0533+0.34271 0.8832+0.28561 -0.0348-0.07531
-0.1788-0.03971 0.1811-0.14081 1.4757+0.19841 0.1417+0.00071
-0.2578+0.0781i 0.2426+0.10401 1.4840+0.09051 -0.1372+0.07971

The Decision statistics vectors sent to the Viterbi decoder is
U - 1.5880 1.5247 1.4049 0.9429

1.9533 1.4647 1.2515 1.8106
0.9896 1.7486 1.3055 1.9595
1.7731 0.8802 1.7314 1.5593
1.6571 1.9898 1.0398 1.7438
1.3829 0.3712 1.3528 1.4293
1.4013 1.9595 1.7729 0.9569
0.7329 1.0745 1.1164 1.3020
2.0606 2.1473 1.7483 0.8706
1.3525 1.7114 0.9099 1.7484
0.8798 1.4331 1.5846 1.6605
1.8949 0.8106 2.0081 1.7620
1.6155 1.7495 0.6952 1.4316
1.3937 1.8741 0.9575 1.2555
1.6082 1.5530 0.7341 1.5410
1.9186 1.7208 0.6099 1.7435
1.9732 1.7008 0.6402 1.9111

DECODED BIT MSG SEQUENCE (Note: -1 represents delay.)
a-hat a -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 0 1 1 1

INPUT BIT MSG SEQUENCE DELAYED BY 6*v BITS:
a-delay a -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 0 1 1 1

NUMBER of BIT ERRORS in a 17 bit message Is: n = 0

Figure 4.5b Design Example 1: Simulation (continued)
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Similarly, the first row of M is compared to s2 and placed in

column 2 of U (row 1). When complete, U is a M X nb (4 X 17)

matrix, where nb is the number of bits in the message.

The simulation program computes the decoded message

sequence and compares it to a delayed version of the irput

sequence. The number of errors in the sample run is zero.
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C. DESIGN EXAMPLE 2: 4-FSK, RATE 1/2, 4 STATE

This example is provided to illustrate the application of

Turgeon's rules. If correctly applied, the resulting encoder

design should be of minimal complexity. Since the basic

scheme is the same as was described in Design 4.1, one can

compare the implement Ltion complexity of the two designs.

Here, only the program input and output are described. In

this scheme, there is one input data bit (k=l) and two memory

elements (v=2). Thus the channel signals depend on the three

most recent bits (n=k+v=3). Once again Figure 2.1 describes

the relationship between the data and memory bits. To find

tl-e underlying convolutional encoder we start with the trellis

and its matrix Tjj2 in Figure 4.6. The signal set and its

partitioning are also shown. Figure 4.7 contains the program

run.

input bit / channel signal w w w
state 111 state sigaw

1 1la 1 2 3
2/'3 /(00)} (01) (1 01 (1 1)

1/3
2 132/1 2 F

1/22.
3 2/4

1,/14/ /4

2/24 [E_ _E E

Figure 4.6 4-FSK trellis, signal set end set pei'toning.
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DESIGN EXAMPLE 2: STARTING WITH TRELLIS, rate 1/2, v-2

i tt
% Running tt.m puts matrix TJ12 into the workspace.
TJ12 -

1 1 1 3 1 3
1 2 3 3 2 1
2 1 2 4 1 4
2 2 4 4 2 2

f tcmmain
Program USER INPUT:

Starting with Trellis? (y/n) :y
Choose Code Rate: 1) 1/2, or 2) 2/3; rate: 1
Enter the Trellis matrix: T - TJ12

Program OUTPUT:
The number of input bits is : k - 1
The number of memory bits is: v - 2

The analytic description b coefficients are: -0.5 -1.0
The bs to connect are: 0 0 2

0 1 3

The logic variables (a's) to connect are: yO - 2
yI - 1 3

dfree.2 (normalized) - 3
Your encoder is decodable.

DESIGN EXAMPLE 2: STARTING WITH ENCODER CONNECTIONS, rate 1/2,
v=2

I tcmain

Program USER INPUT:
Starting with Trellis? (y/n) : n
Starting with Encoder connections? (yin) : y

Enter the number of input bits: k 1 I
Enter the number of memory bits: v - 2
Enter LSB encoder connections yO - [2)
Enter MSB encoder connections yl - [1 3]

Program OUTPUT:
The trellis signal matrix is: T - 1 1 1 3 1 3

1 2 3 3 2 1
2 1 2 4 1 4
2 2 4 4 2 2

dfreeA2 (normalized) - 3
Your encoder is decodable.

Figure 4.7 Design Example 2: Trellis, matrix T, and program run
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The program run shows the program input, matrix T-TJ,2, and the

encoder connections needed to create the given trellis

assuming the natural mapper in Table 4.1 is used. The

analytic code description is

x = 2.5 - 0.5b12 - b 1b 3

Following the procedure of Design Example 1,

z, - b1b 3

z. - b 2 .

The corresponding relations for the logic variables, a, {0,I}

are

yo = a 2

y- - a, 9 a 3, where (D is the modulo 2 sum.

Using these connections, the convolutional encoder is given in

Figure 4.8. The complexity is minimal as each shift register

is only contained once in the encoder output equations.

kol. v=2

Mopper

Figur. 4.1 Mird• W lm1 T0 t4uds I= t rb 1/2, 4MFSK. 4 de codL.
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Once again Figure 2.6 depicts the minimum error event

length to be 3. The normalized squared free Euclidean

distance attributed to this error event is df, /2E = 3. The

asymptotic coding gain of this scheme using (2.2) relative to

uncoded 16-FSK modulation which has the same bandwidth

efficiency is -1.25 dB.

The encoder is determined decodable by the 100 bit

noiseless simulation program.
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D. DESIGN EXAMPLE 3: 4-FSK, RATE 1/2, 64 STATE

In this scheme, there is one input data bit (k=l) and six

memory elements (v=6). Thus the channel signals depend on the

seven most recent bits (n=k+v=7). Here Figure 2.1 describes

the relationship between the data and memory bits. The signal

set and its partitioning are shown in Figure 2.4. The natural

mapper in Table 4.1 is assumed. To find the underlying

convolutional encoder we start with the trellis described by

matrix T,,6 in Figure 4.9. The program output in Figure 4.10

contains the encoder connections needed to create the given

trellis. The analytic code description is

x = -0.5bjb 3b 4b5 b 6b 7 - bjb 2b4b5b7 .

Following the procedure of Design Example 1,

z, = blb2b 4b5b7

z0 = bb 3b4b5b6b7 .

The corresponding relations for the logic variables, a, {0,1}

are

yo = a, ( a 3 9 a 4 ( a 5 $ a6 @ a,

y, = a, ( a 2 ( a 4 E a5 ( ay.

Using these connections, the convolutional encoder is

given in Figure 4.11.

The minimum error event length is 7. The normalized

squared free Euclidean distance attributed to this error event

is d,=2/2E = 7. The actual df2 is 7(2E).
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DESIGQ¶ EXAMPLE 3: STARTING WITH TRELLIS, rate 1/2, v=6
f tt t Running tt.u puts matrix Ttl6 into the workspace.
Ttl6ul 1 1 33 1 4

1 2 4 33 2 1
2 1 3 34 1 2
2 2 2 34 2 3
3 1 2 35 1 3
3 2 3 35 2 2
4 1 4 36 1 1
4 2 1 36 2 4
5 1 4 37 1 1
5 2 1 37 2 4
6 1 2 38 1 3
6 2 3 38 2 2
7 1 3 39 1 2
7 2 2 39 2 3
8 1 1 40 1 4
8 2 4 40 2 1
9 1 4 41 1 1
9 2 1 41 2 4

10 1 2 42 1 3
10 2 3 42 2 2
11 1 3 43 1 2
11 2 2 43 2 3
12 1 1 44 1 4
12 2 4 44 2 1
13 1 1 45 1 4
13 2 4 45 2 1
14 1 3 46 1 2
14 2 2 46 2 3
15 1 2 47 1 3
15 2 3 47 2 2
16 1 4 48 1 1
16 2 1 48 2 4
17 1 2 49 1 3
17 2 3 49 2 2
18 1 4 50 1 1
18 2 1 50 2 4
19 1 1 51 1 4
19 2 4 51 2 1
20 1 3 52 1 2
20 2 2 52 2 3
21 1 3 53 1 2
21 2 2 53 2 3
22 1 1 54 1 4
22 2 4 54 2 1
23 1 4 55 1 1
23 2 1 55 2 4 continued:
24 1 2 56 1 3 28 2 3 60 2 2
24 2 3 56 2 2 29 1 2 61 1 3
25 1 3 57 1 2 29 2 3 61 2 2
25 2 2 57 2 3 30 1 4 62 1 1
26 1 1 58 1 4 30 2 1 62 2 4
26 2 4 58 2 1 31 1 1 63 1 4
27 1 4 59 1 1 31 2 4 63 2 1
27 2 1 59 2 4 32 1 3 64 1 2
28 1 2 60 1 3 32 2 2 64 2 3

Figure 4.9 Design Example 3: Trellis matrix, T
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DESIGN EXAMPLE 3: STARTING WITH TRELLIS, rate 1/2, v-6

f tcmmain
Program USER INPUT:
Starting with Trellis? (yin) : y
Choose Code Rate: 1) 1/2, or 2) 2/3; rate: 1
Enter the Trellis matrix: T - Ttl6

Program OUTPUT:
The number of input bits is : k - I
The number of memory bits is: v - 6

The analytic description b coefficients are: -1.0 -0.5
The b'a to connect are: 0 0 1 2 4 5 7

0 1 3 4 5 6 7

The logic variables to connect are: yO - 1 3 4 5 6 7
yl - 1 2 4 5 7

dfree (normalized) - 7
Your encoder is decodable.

DESIGN EXAMPLE 3: SIMULATION FOR Ttl6 TRELLIS, rate 1/2,
v-6

Program USER INPUT:
Run simulation? (y/n) : y

THIS IS THE VITERBI DECODER FOR RATE 1/2 TCM-FSK
There is a 36 bit delay in the decoder.
The message length must be longer than this.

How many bits are in the message? nb - 1000
Enter the symbol energy, eg. Es-l. : Es = 1

Es/No=1/2*sigmaA2 where sigma Is the AWGN standard deviation.
Enter the value of sigma, eg. sigma-0.1 : sigma - 0.3

NUMBER of BIT ERRORS in a 1000 bit message is: n = 0

Figure 4.10 Design Example 3t Program run and simulation
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The asymptotic coding gain of this scheme using (2.2) relative

to uncoded 16-FSK modulation which has the same bandwidth

efficiency is

2.43 dB.

The program tests the encoder in a 100 bit noiseless

simulation and asserts that the encoder is decodable. The

second portion of Figure 4.10 shows that the 1000 bit

simulation results in no errors.
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E. DESIGN EXAMPLE 4: 8-FSK, RATE 2/3, 8 STATE

In this scheme, there are two input data bits (k-2) and

three memory elements (v-3). Thus the channel signals depend

on the five most recent bits (n=k+v=5). Let Figure 4.12

depict the relationship between the input and state variables.

b2 b4

Figure 4.12 IrnPs and stae vaiabes for ite 2/3 cox&.

The signal set is shown in Figure 2.5. The natural mapper in

Table 4.2 is assumed.

Table 4.2

Signal Mapping and Signal Differences for 6-FSK Signal Set

WS LSO MSB LSB Signal Value: Signal

Y2 Yl Y0 z 2 z1 z0 Signal label Channal Signai Differences

0 00 1 1 1 0 1

0 0 1 1 1 -1 1 2 Z2: (1 :62

0 1 0 1 -1 1 2 3 z1 : (1-3) :61

0 1 1 1 -1 -1 3 za:(1-2) 6

1 0 0 -1 1 14 5 dz2: =(1/2)62

1 0 1 -1 1 -1 5 6 dz!: =(/2) 61

"1 1 0 -1 -1 1 6 7 "1.O
dzo: = (I/2) 6 0

1 1 1 -1 - 1 7 =45
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To find the underlying convolutional encoder we start with the

trellis in Figure 4.13 described by matrix Tj23 in Figure 4.14.

stats state

I I

2 2

3 3

4 4

Figur 4.13 Trlb lortate 2/3. .FSK. 8 date cod.

From the program output, the analytic code description is:

x - 4.5 - 0.5b3 - b 2b 5 - 2bjb 4

Following the procedure of Design Example 1,

z, - b3

z = b2bb

Z2 - b1b4.
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DESIGN EXAMPLE 4: STARTING WITH TRELLIS, rate 2/3, v=3

E tt % Running tt.m puts matrix TJ23 Into the workspace.

TJ23 -
1 1 1 3 1 5 5 1 3 7 1 7
1 2 5 3 2 1 5 2 7 7 2 3
1 3 3 3 3 7 5 3 1 7 3 5
1 4 7 3 4 3 5 4 5 7 4 1
2 1 2 4 1 6 6 1 4 8 1 8
2 2 6 4 2 2 6 2 a 8 2 4
2 3 4 4 3 8 6 3 2 8 3 6
2 4 8 4 4 4 6 4 6 8 4 2

f tcmmain

Program USER INPUT:
Starting with Trellis? (y/n) : y
Choose Code Rate: 1) 1/2, or 2) 2/3; rate: 2
Enter the Trellis matrix: T = TJ23

Program OUTPUT:
The number of input bits is % k - 2
The number of memory bits is: v - 3

The analytic description b coefficients are: -0.5 -2.0 -1.0
The be to connect are: 0 0 0 0 3

0 0 0 1 4
0 0 0 2 5

The logic variables to connect are: yO - 3
yl - 2 5
y2 - 1 4

dfreeA2 (normalized) - 2

Figure 4.14 Design Example 4: Starting with trellis
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The corresponding relations for the logic variables, a, (0,1}

are

Yo - a 3

Yj = a 2 @ a,

y2 = a, $a 4 .

Using these connections, the convolutional encoder is given in

Figure 4.15. Note the minimal complexity of the encoder.

k=2. v=3 Y2 -a 1 Q 34
y1=-"@ a5

YO =- 3

--- • : 4-FSK
~Mapper

Yk

Figure 4.15 Mifrn pCOmPuu TCT e€coder foi rae 2/3. 9-FSK. 8 sate code.

The minimum error event length is 2. The normalized

squared free Euclidean distance attributed to this errcr event

is df.m2/2E - 2. The actual dr,, 2 is 2(2E). The asymptotic

coding gain of this scheme using (2.3) relative to uncoded 16-

FSK modulation which has the same bandwidth efficiency is

0 dB.

47



F. DESIGN EXAMPLE 5: 8-FSK, RATE 2/3, 32 STATE

In this scheme, there are two input data bits (k=2) and

five memory elements (v=5). Thus the channel signals depend

on the seven most recent bits (n=k+v=7). The signal set is

shown in Figure 2.5. The natural mapper in Table 4.2 is

assumed. To find the underlying convolutional encoder we

start with the trellis described by matrix T,25 in

Figure 4.16. From the program output, the analytic code

description is:

x = 4.5 - 0.5b 3b 6 - b 2b5 - 2bjb 4b7

Following the procedure of Design Fxample 1,

z0 = b 3b 6

zi = b 2b5

Z2 = btb4b7.

The corresponding relations for the logic variables, ai {0,l}

are

yo = a 3 9 a 6

yj = a 2 9 a5

Y2 = a, 9 a4 E a7 .

Using these connections, the convolutional encoder is

given in Figure 4.17. Note the minimal complexity of the

encoder.

The minimum error event length is 3. The normalized

squared free Euclidean distance attributed to this error event
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DESIGN EXAMPLE 5: STARTING WITH TRELLIS, rate 2/3, v-5

i tt % Running tt.m puts matrix Tt25 into the workspace.

Tt25 -
1 1 1 9 1 2 17 1 5 25 1 6
1 2 5 9 2 6 17 2 1 25 2 2
1 3 3 9 3 4 17 3 7 25 3 8
1 4 7 9 4 8 17 4 3 25 4 4
2 1 2 10 1 1 18 1 6 26 1 5
2 2 6 10 2 5 18 2 2 26 2 1
2 3 4 10 3 3 18 3 8 26 3 7
2 4 8 10 4 7 18 4 4 26 4 3
3 1 5 11 1 6 19 1 1 27 1 2
3 2 1 11 2 2 19 2 5 27 2 6
3 3 7 11 3 8 19 3 3 27 3 4
3 4 3 11 4 4 19 4 7 27 4 8
4 1 6 12 1 5 20 1 2 28 1 1
4 2 2 12 2 1 20 2 6 28 2 5
4 3 8 12 3 7 20 3 4 28 3 3
4 4 4 12 4 3 20 4 8 28 4 7
5 1 3 13 1 4 21 1 7 29 1 8
5 2 7 13 2 a 21 2 3 29 2 4
5 3 1 13 3 2 21 3 5 29 3 6
5 4 5 13 4 6 21 4 1 29 4 2
6 1 4 14 1 3 22 1 a 30 1 7
6 2 8 14 2 7 22 2 4 30 2 3
6 3 2 14 3 1 22 3 6 30 3 5
6 4 6 14 4 5 22 4 2 30 4 1
7 1 7 15 1 8 23 1 3 31 1 4
7 2 3 15 2 4 23 2 7 31 2 8
7 3 5 15 3 6 23 3 1 31 3 2
7 4 1 15 4 2 23 4 5 31 4 6
8 1 8 16 1 7 24 1 4 32 1 3
8 2 4 16 2 3 24 2 8 32 2 7
8 3 6 16 3 5 24 3 2 32 3 1
8 4 2 16 4 1 24 4 6 32 4 5

f tcnmain
Program USER INPUT:
Starting with Trellis? (y/n) : y
Choose Code Rate: 1) 1/2, or 2) 2/3; rate: 2
Enter the Trellis matrix: T - Tt25

Program OUTPUT:
The number of input bits Is : k - 2
The number of memory bits is: v - 5

The analytic description b coefficients are: -1.0 -0.5 -2.0
The b's to connect are: 0 0 0 0 0 2 5

0 0 0 0 0 3 6
0 0 0 0 1 4 7

The logic variables to connect are: yO - 3 6
yl - 2 5
y2 - 1 4 7

dfreeA2 (normalized) - 3

Figure 4.16 Design Example 5: Starting with trellis
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Y2  (D s4 (D

k=2, v=5 Yl$=2 (D5
YO "3 (D as

.•I*I as r 7
4-TIT '0 9-SK

Figuire 4.17 TCMI wncodar for rate 2/3, B+-SK 32 state code.
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is dfQ2/2E = 3. The actual d4.2 is 3 (2E) The asymptotic

coding gain of this scheme using (2.3) relative to uncoded 16-

FSK modulation which has the same bandwidth efficiency is 1.76

dB.
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V. DISCUSSION AND CONCLUSIONS

The objective of this thesis was to investigate trellis

coding of M-ary orthogonal signals. While the modulation used

here was frequency shift keying, other orthogonal modulation

schemes could have been used. The encoder design was

presented and resulting encoders were verified for their

decodability in the Viterbi algorithm. Several rate 1/2 and

rate 2/3 codes were examined, and the following observations

surface from those examples. First, it is clear that the

asymptotic coding gain, our metric for comparing different

codes, strongly depends on the free Euclidean distance of the

minimum error event length. In fact, the minimum length, L,

is equal to the normalized squared free distance of the code.

As we increase the constraint length, v, the number of

states increases exponentially. The corresponding trellis has

an increased minimum error event length. In the case of a

rate 1/2 code with v=9, we find L=10 and the asymptotic coding

gain (ACG) is 3.98 dB. For a rate 2/3 code with v=8, we find

L=5 and the ACG is also 3.98 dB.

The general finding of this paper is that compared with

uncoded modulation, the same amount of information can be

transmitted in the same bandwidth with asymptotic coding gains

of 3-4 dB. The areas for further investigation are analysis

and simulation in fading channels and using other code rates.
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