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ABSTRACT

This thesis addresses two problems in aligning the

recruiting structure for the Navy Recruiting Command. The

first problem involves two decisions affecting recruiting

stations within a single recruiting district: which stations

shoald remain open and how many recruiters should be assigned

to each open station? The second problem is to decide how

many recruiters and stations each district should have.

The first problem is formulated as a nonlinear -ird

integer programming problem. To obtain a solution with

readily available software, the problem is decomposed into

four subproblems that are solved sequentially. This

decomposition approach is empirically shown to yield near

optimal solutions for problems of varied sizes. The second

problem is formulated as a nonlinear resource allocation

problem in which the objective function is not expressible in

closed form. To efficiently solve this problem, the function

is approximated in a piecewise linear fashion using the

results from the first problem. To illustrate the

applications of these optimization models, solutions were

obtained for Navy Recruiting District Boston and Navy

Recruiting Area 1, which consists of Albany, Boston, Buffalo,

New York, Harrisburg, Philadelphia, Pittsburgh and New Jersey

districts.
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THESIS DISCLAIMER

The reader is cautioned that computer programs developed

in this research may not have been exercised for all cases of

interest. While effort has been made, within the time

available, to ensure that the programs are free of

computational and logic errors, they cannot be considered

validated. Any application of these programs without

additional verification is at the risk of the user.
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I. INTRODUCTION

A. BACKGROUND

Although the U.S. Navy is becoming smaller, the Navy

Recruiting Command must continue to recruit in order to

replace sailors at the lowest grade who are promoted or lost

to attrition. Military downsizing means fewer recruits are

needed, but these recruits are more difficult to obtain. This

is due to several factors. First is the decrease in the

recruiting budget and the rise in operating costs. Second is

the emphasis on obtaining a greater proportion of quality

recruits who are capable of manning ever more sophisticated

weapons, sensory and communications systems. Recruiting these

quality individuals is costly because they are in demand from

other branches of the military, private industry and academia.

Finally, the last factor is the expected competition from the

National Service Corps that President Clinton promoted during

his campaign. Many individuals in the prime target population

for recruiting would likely find this program attractive, for

it would be less restrictive and involve less risk than

military service. In addition, it would keep people closer to

families and friends, and would offer attractive educational

benefits.
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To assist Navy Recruiting Command in accomplishing this

increasingly difficult task, this thesis addresses the problem

of aligning recruiting stations and districts. Proper

alignment of these organizational units would allow the

Command to recruit more effectively.

B. CURRENT ORGANIZATION

The Navy Recruiting Command (NRC), located in Arlington,

Virginia, is the headquarters for a nationwide network of

recruiters. The command is organized into five recruiting

areas with each area subdivided into districts. There is a

total of 41 districts. Each of which is organized into zones

which are composed of stations. The stations serve as the

base from which the recruiters operate. In 1991, there were

1,283 Navy Recruiting Stations in the Continental United

States. Recruiters actively pursue prospective recruits in

the territories of their assigned station. In general, the

territory of a recruiting station consists of a collection of

adjacent zip code areas.

C. PROBLEM STATEMENTS

The problem currently faced by NRC is how to maintain an

effective and efficient recruiting structure with a smaller

budget. In this thesis, two problems are considered. One

concerns the recruiting stations within the territory of a

2



single district and the other concerns the allocation of

recruiting resources to several districts.

The first problem is to determine, for a given district,

which stations from a list of candidates to open and the

number of recruiters to assign to each open station. This

problem is formulated as a nonlinear integer programming

problem and it is called the Location-Allocation Problem. As

is well known in operations research, these problems are

difficult to solve. However, this thesis obtains near optimal

solutions to the problem via a decomposition technique.

The second problem involves the allocation of recruiting

resources to several districts. For exa-nple, if the current

operating budget only supports 500 stations and 1000

recruiters, then how many stations and recruiters should be

assigned to each district? This problem is formulated as a

nonlinear resource allocation problem and it is called the

Multidistrict Allocation Problem. The objective function of

this problem is not expressible in closed form. To solve it,

this thesis provides a methodology to obtain solutions through

approximation using piecewise linear functions.

D. THESIS OUTLINE

The two optimization models mentioned above use results

from forecasting models developed by analysts at NRC. 7cr

completeness, these models are described in Chapter II.

Chapter III describes and formulates the location-allocation

3



problem. Chapter IV discusses the technique to decompose the

problem in Chapter III. Chapter V provides a bounding

technique which validates the claim that the decomposition

technique n-,,vides near optimal solutions. Chapter VI

describe• the multidistrict allocation problem and presents a

sIution approach. Finally, Chapter VII summarizes the thesis

and suggests areas for future research.
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II. FORECASTING ENLISTMENT CONTRACTS

An extremely important input required by optimization

models for locating recruiting stations and allocating

recruiters is the ability to forecast the distribution of the

target market across the continental United States (CONUS).

Despite the increasing role of women in the military, the

prime target market for military service continues to be males

between 17 and 21 years of age with no prior military service.

From this market, the Navy is primarily interested in

enlisting quality recruits. The first section in this chapter

presents NRC's definition of 'quality'. The next section

describes four statistical models developed by NRC to forecast

the distribution of quality contracts across CONUS. Finally,

the last section discusses mathematical implications of these

statistical models when embedded in the optimization models in

the following chapter. These optimization models work equally

well with different statistical models. The NRC models are

selected mainly because of their accessibility and familiarity

to NRC analysts.

A. QUALITY CONTRACTS

The Navy groups prospective recruits into major categories

or cells based on two factors: educational attainment and

mental aptitude. For the educational factor, there are only

5



two classifications. The first consists of prospective

recruits who already possess a high school diploma or are

currently high school seniors expecting to graduate. The

second consists of those who are currently without a diploma

and do not expect to obtain one in the future. The mental

aptitude classification is determined by the score from the

Armed Forces Vocational AFtitude Battery (ASVAB) or Armed

Forces Qualification Test (AFQT) . Each prospective recruit

must take the ASVAB prior to induction into the Navy. The

test measures arithmetic reasoning, word knowledge, general

science, mechanical comprehension, and other skills. On the

basis of the ASVAB scores, recruits are divided into eight

mental groups, based on percentiles as indicated in Figure 1.

RECRUIT QUALITY MATRIX

Percentile Mental HIGH SCHOOL NON HIGH SCHOOL
Group Diploma Graduate Diploma Graduate

99
93 -

" A B
65

Armed Foirces IIIU
Qualification so -

Test IIIL Cu D
31 IVa CI ....... _ ___

21 - NOT BEST QUALIFIED
lVe

10 V INELIGIBLE

Figure 1: Recruit Quality Classification Matrix
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Figure 1 displays the complete classification matrix of

prospective recruits. The Navy regards a prospect as a

quality recruit if the individual scores in the upper 50th

percentile on the ASVAB test, categories I to IIIU, and has or

is expected to have a high school diploma. Quality recruits

are also referred to as A-Cell contracts.

B. FORECASTING A-CELL CONTRACTS

In a report by Bohn and Schmitz (Ref. 11, NRC

developed four statistical models to forecast the number of A-

Cell contracts in each zip code area of CONUS. These models

include the following variables as predictors:

1. The target population of 17-21 year old males in the zip
code: NRC estimated the population from the Navy's
Standardized Territory Evaluation and Analysis for
Management (STEAM) database for 1991.

2. The recruiter share assigned to each zip code: NRC
assumes that a fractional number of recruiters or a
recruiter share is assigned to each zip code. This
fraction represents the amount of time recruiters devote
to a particular zip code.

The optimization models in this thesis allocate
recruiter shares to zip codes in order to maximize total
production of A-Cells. In the statistical models below,
NRC simply assumes that recruiter shares are proportional
to the 1991 population of 17-21 year old males since no
record of recruiter shares was maintained for eack zip
code.

3. The distance from the centroid of the zip code to its
affiliated recruiting station: NRC used the longitude
and latitude of the zip code centroids from commercially
available software called MAPINFO [Ref. 2] to
calculate the distances. In addition, NRC also assumes
that the longitude and latitude of a recruiting station

7



are those of the centroid of the zip code in which the
station is located.

4. The 1991 population density of the zip code: These
densities are calculated from the physical zip code areas
available from Litton Computer Services.

The following describes the four forecasting models

developed by NRC. The first three are log-linear and the last

is quadratic.

Log-Linear Regression Models

Model 1:

Acellsz = aPaROTfDz with R 2 = 0.53033

where

S= the population of 17-21 year old males in zip code z

S= the recruiter share assigned to zip code z

, = the distance in miles from zip code z to its
affiliated station

S= the population density in zip code z

a = 0.08727, a = 0.64179, 3 = 0.28405, y = -0.32231,

6 = -0.11923.

Model 2:

Acellsz = aPGROTzD, f eki" with R2 = 0.53229
i-3,5,7.8

where

(I, if station is in Area i i =3, 5, 7, 8

a = 0.08401, o = 0.64506, 1 = 0.27904, y = -0.31380,

6= -0.11306,
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k3= 0.83109, ks= 1.03919, k7= 0.96295, ks= 1.15565.

Model 3:

6

Acellss = aPRaTyDI J ekisj withR 2 = 0.53063
i=2

where

= (i, if #recruiters = is 0 , otherwise i =2, 3, 4, 5

S= (I , if #recruiters Ž 6
S 0, otherwise

a = 0.05637, a = 0.69148, j = 0.23419, y = -0.33103,

6 = -0.12732

k 2=1.05817, k 3= 1.06999, k4= 1.15118, k5= 1.09317,

k6= 1.17982.

Quadratic Reg-ression Model

Model 4:

Acellsz = a + PRZ + yTz + 6Dz + eT2 + tRZTZ with R2 = 0.60598

where

a = 0.51845, a 0.00160, j = 3.51236, y = -0.01095,

6 = -0.00172, E = 4.66E-5, • = -0.01798.

C. CONCAVITY ANALYSIS OF NRC PRODUCTION FUNCTIONS

In economic theory, mathematical functions that relate the

amount of inputs into a process to a specific level of output

are known as econometric production functions. Clearly the

NRC models are such functions, since they relate the expected

9



number of A-Cell contracts produced to given amounts of

inputs, such as recruiter share and target market population.

An important class of production functions is the Cobb-Douglas

function (Ref. 3] which has the form

f(vj, vn) = AVv (2.1)

where the function value f(v,, -,v) represents the output of

the process due to the n inputs denoted by v,, -, v,. By

definition, the v,'s are generally assumed to be nonnegative.

However, when ai is negative, v, must be positive. To easu:e

that nonnegative inputs yield nonnegative outputs, A is

generally a positive constant.

The Cobb-Douglas function is homogeneous of degree

k = O'+U2+--.+t, [Ref. 4] because

f(tV 1 , tV2, ... ,tv) = tkf( V1 , V2 , . v") V tz 0. (2.2)

In classical applications, the Cobb-Douglas functions also

satisfies the conditions that (i) k < 1 and (ii) a i 0 for

all i = 1, ..., n (Ref. 51. This implies that the

function is decreasing return to scale, i.e., doubling all

inputs results in less than doubled output. Furthermore, it

can be shown that a Cobb-Douglas function satisfying the two

conditions is strictly concave over the region where vz 0,

i = 1, ... , n [Ref. 6]. The concavity plays an

important role in optimization problems, for it guarantees

global optimality.

10



The first regression model considered by NRC, Model 1, is

similar in form to the Cobb-Douglas function. By redefining

some variables, the function in Model 1 can be transformed

into a Cobb-Douiglas function in terms of the variables R

(recruiter share) and T (distance from each zip code to its

affiliated station). In particular, the function is rewritten

as

f(R, T) = cRPTY (2.3)

where c is the positive constant aPD1D. As stated, f(R,T) is

not concave in R and T because 7 is negative. However, by

defining w as I1T, f(R,T) can be written as

f(R, w) = cRP (2.4)

where X = -7" Since 0+ X < 1 for Model 1, f(R,w) is strictly

concave. Similar analysis can be performed for Models 2 and

3 as well.

In the above transformation, f(R,w) is undefined when

T = 0. To avoid the problem of zero division, NRC assumes

that the minimum distance between a zip code and its

affiliated station is 0.5 miles, i.e., T a 0.5.

Model 4 is based on a quadratic function whose Hessian

with respect to R and T is given by

H(x) = (0 t (2.5)
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The eigenvalues of H(x) are

01 = 2+ +e and 02 = - 2 + 6 (2.6)

Since E = 4.66E-5 and Z = -0.01798, 01 > 0 and 02 < 0, i.e.,

H(x) is an indefinite matrix. Therefore, Model 4 does not

yield a concave production function. [Ref. 7]
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III. OPTIMAL STATION ALIGN~MENT FOR ONE RECRUITING DISTRICT

The problem of aligning Navy recruiting stations within a

single district involves selecting (or locatingq) recruiting

stations to remain open and allocatin~g recruiters to each of

the open stations. The objective is to maximize the A-Cell

contract production. A preliminary discussion of this problem

was provided in an interim report to NRC by Lawphongpanich,

Rosenthal and Schwartz [Ref. 81.

A. RELATED RESEARCH

Doll [Ref. 91 recently solved the problem of

locating Marine Corps recruiting stations. His objective is

to maximize potential Marine Corps accessions as measured by

a factor called the Propensity Weighted Qualified Military

Available. In addition, Doll addressed the problem at the

county level; i.e., he assumed that CONtJS is a collection of

counties, and the decision is whether or not to locate a

recruiting station in a given county. In a somewhat different

problem, Ceiski [Ref. 101 used an uncapacitated

facility location model to determine the optimal location of

Army recruiting company headquarters. Celski's objective was

to centrally locate a specified number of headquarters with

respect to distance and population density of the target

13



market while simultaneously maximizing equity of recruiting

responsibility.

B. LOCATION-ALLOCATION PROBLEM FORMULATION

To solve the station alignment problem in a given

district, there are four sets of decisions to be made. The

first set of decisions is to choose a subset of recruiting

stations to open from a list of candidate stations. These

candidates include existing and proposed stations. The second

is to select the territory of each open station by assigning

zip codes to stations. The third is to determine the number

of recruiters to assign to each of the open stations.

Finally, the fourth is to decide how to distribute the

recruiter effort at a given station to zip codes in its

territory. The main constraints are the number of stations to

remain open and the number of available recruiters. The

objective in aligning the stations is to maximize total A-Cell

contract production in the, district which can be predicted by

the first log-linear regression model in Chapter II. (The

formulations involving the second and third log-linear models

are similar.) The mathematical formulation of the station

alignment problem is called the location-allocation (LOCAL)

problem and it is stated below.

14



C. MATHEMATICAL FORMULATION AND DISCUSSION

INDICES:

i = candidate station

z = zip code under consideration

DATA:

T = distance from zip code z to station i

PZ = population of 17-21 year old males in zip code z

D = population density of zip code z

NR - number of recruiters in the district

NS = number of stations to remain open in the district

VARIABLES:

Y. binary variable (=I if station i is open and 0
otherwise)

Y, binary variable (=1 if zip code z is assigned to

station i and 0 otherwise)

R = number of recruiters to be assigned to station i

SH = proportion of recruiters (or recruiter share)
assigned to zip code z

15



TEE LOCATION-ALLOCATION (LOCAL) PROBLEM

OBJECTIVE:

MAXIMIZE a~ P *HZ D fL
SH, R, X, Y, z E

CONSTRAINTS:

EX2 = NS (31)
i

Yzi Xi' V z, i (3.2)

SV, V i (3.3)

F (Zzi *SHz) Ri, V/ i (3.4)

E Ri NR (3.5)
i

In the above formulation, parameters a, a, b, 6 and X are

as defined in Chapter II. The objective is to maximize the

total A-Cell contract production. Constraint (3.1) insures

that the number of open stations equals the desired number,

represented by NS. Constraint (3.2) requires zip codes to be

assigned to open stations. Constraint (3.3) allows a zip code

to belong to at most one station. However, the inequality

allows unproductive zip codes to be left unassigned.

Constraint (3.4) requires the recruiter shares distributed

among the zip codes in the territory of station i to not

exceed the number of recruiters allocated to that station.

Finally, constraint (3.5) guarantees that the number of

16



recruiters assigned to open stations does not surpass the

number of recruiters, NR, available for the district.

Since the objective function and constraint (3.4) are

nonlinear, LOCAL is a nonlinear mixed integer programming

problem which is not a well-solved problem in operations

research [Ref. ill. To solve LOCAL optimally would

require a special algorithm to handle both the conditions of

nonlinearity and integrality. However, the next chapter

describes an alternative solution procedure which produces

near optimal solutions efficiently and utilizes currently

available software.

17



IV. A DECOMPOSITION APPROACH FOR THE LOCATION-ALLOCATION

PROBLEM

To avoid addressing the integrality and nonlinearity

simultaneously in LOCAL, the approach taken in this chapter

decomposes the problem into four subproblems, which are solved

in sequence. The solution to one subproblem is used as input

to the subsequent subproblem. The following are brief

descriptions of the subproblems. The sections below describes

each of them in detail.

1. The station location subproblem: This subproblem
determines the stations to remain open.

2. The recruiter ghare allocation subproblem: This
subproblem assigns (possibly non-integer) numbers of
recruiters to the open stations as determined by the
first subproblem.

3. The inteqerization subproblem: When the second
subproblem produces non- integer allocations of recruiters
to stations, this subproblem optimally rounds those
allocations to integer values.

4. The recruiter share reallocation subproblem: Using the
allocated recruiters provided by the third subproblem,
this subproblem optimally proportions recruiter effort
(or recruiter share) to zip codes in the territory of
each open station.

A. THE STATION-LOCATION SUBPROBLEM

This subproblem assumes that recruiter shares have already

been allocated to each zip code, i.e., the variable SIL in

18



LOCAL is fixed to some value, say SHz Thus, the remaining

decision variables are X, and Y_, which represent the decision

to open or close station i and the assignment of zip code z to

station i, respectively. This reduces LOCAL to the following

station- location subproblem.

STATION- LOCATION SUBPROBLEM

OBJECTIVE:

MAXIMIZE a 4 * •HA D a

CONSTRAINTS:

X., NS (4.1)

Y 1i •X2 , V z, i (4.2)

Y~ :g 1, Vz
SYz; , Vz(4.3)

As before, constraint (4.1) insures that the correct number of

stations are opened, constraint (4.2) permits a zip code to be

assigned only to open stations, and constraint (4.3)

guarantees that a zip code is assigned to at most one station.

B. THE RECRUITER SHARE ALLOCATION SUBPROBLEM

An optimal solution to the station location subproblem,

(X, iY'), specifies the stations to remain open and the

assignment of zip codes to stations. This provides a new

alignment of recruiting stations within the district based

19



upon previously fixed levels of recruiter shares, SHz

However, this allocation of recruiter share may not be optimal

or feasible under the new alignment. For example, it would

be infeasible for a zip code that was not assigned to any

station to be allocated a recruiter share. The following

nonlinear program optimally allocates recruiter shares to zip

codes in the territory of an open station using the station

alignment given by Y and r,

RECRUITER SBUX ALLOCATION SUBPROBLE(

OBJECTIVE:

MAXIMIZE Ea * P * SHP * w * Da

SH z

CONSTRAINTS:

SY,*,SH, .NR- (4.4)
i z

In the objective function, w, Y /71, where T. is defined to

be distance from zip code z to station i. Constraint (4.4)

prevents the recruiter shares distributed among zip codes from

exceeding the available recruiters. The subproblem is an easy

nonlinear programming problem since the recruiter share

variable, S4, is allowed to vary continuously for all z and

there is only one constraint. The objective function is

strictly concave because 1 < 1. This guarantees solutions to

the subproblem to be globally optimal.

20



C. TEE INTEGERIZATION SUBPROBLEK

Let SH1" denote an optimal solution to the recruiter share

allocation subpr'oblem in the previous section. Then, the

number of recruiters to be assigned to station i is:

These A values may not be integer. Simple rules for rounding

are insufficient for they may not be feasible. One feasible

method of rounding R, is due to Rosenthal [Ref. 121.

He first assigns R1 recruiters to station i, where

Ri = FLOOR(Ri). (4.6)

This means that Rr,, defined below, is the number

Rres = NR-Ri (4.7)

of recruiters left unassigned. Then, Rosenthal's method

allocates these residual recruiters to stations so as to

maximize their marginal contract production. Note that R,. is

integer since both NR and Ri are integer. Since, R, is

expected to be much smaller than NR for practical problems,

the degradation of the objective function from the continuous

solution is very small.
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The marginal productivity from adding u, recruiters to

station i is the difference between the expected A-Cell

contract production with ( Ri + uj) recruiters and the

production with only Ri recruiters. The form of the NRC

regression function (see Model 1 on page 8) does not permit a

direct calculation of the marginal productivity, so the

following approximation is used instead.

Define *' to be the set of all zip codes assigned to

station i. Then, using the same notation as before, the

productivity of station i is:

i= • CzSH4
z fe (4.8)

where cz = a P.4 w D .

Now suppose the recruiter share, S14, allocated to zip code z

is proportional to the ratio of the target population in each

zip code over the entire population in its affiliated

station's territory. Then, the recruiter share for zip code

z is defined to be:
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SHz = R1  PZ for all z E (9)Sv., (4 -9)
Z/ i

Using equation (4.9), the productivity for station i can be

rewritten as

Q1 = E (21 (4.10)

or equivalently

Qe = RP E Kz where K, = Cz ( PZJ.(.1
ZjZ Z (4.11i)

As defined, Y. is constant for each zip code z. Thus, the

marginal productivity for u1 additional recruiters assigned to

station i is:

MQ1 = (R1  u.) 0- R} K, . (4.12)

Using this marginal productivity, the integerization

subproblem can be formulated as follows:

ADDITIONAL INDICES:

j= possible number of residual recruiters assigned to a
station
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ADDITIONAL VARIABLES:

b = binary variable (=1 if j residual recruiters are
assigned to station i and 0 otherwise)

INTEGERIZATION SUBPROBLEM

OBJECTIVE:

MAXIMIZE bij NR+ -

b ' j[ z6*1

CONSTRAINTS:

S bij) (j Rre (4.13)
i 3

bij , V i (4.14)

In constraint (4.13), the inner summation represents the

number of additional recruiters to be assigned to station i

and the constraint (4.13) itself insures that the additional

recruiters assigned to all stations does not exceed the number

of residual recruiters, Rr. Constraint, (4.14), guarantees

that each station receives a unique number of additional

recruiters, which can possibly be zero. Given an optimal

solution, by*,

: * (4.15)

is the additional recruiters for station i,

i.e., R= R + u.

24



D. THE RECRUITER SHARE REALLOCATION SUBPROBLEM

Solution to the integerization problem, F<, results in new

recruiter allocations to each station i when the previous

allocations were noninteger. Thus, the distribution of

recruiter shares from the recruiter share allocation

subproblem may not match the number of recruiters at each

station after the integerization. So, the recruiter share

reallocation subproblem is to optimally reallocate recruiter

shares to each covered zip code, given an integer assignment

of recruiters to stations. Mathematically, this problem is

formulated with the same variables and objective function as

the recruiter share allocation subproblem, but constraint

(4.4) is replaced by the following:

S( Y 1 *SH1 ) •R Vi. (4.16)
Z

This prevents the recruiter shares distributed to zip codes in

the territory of station i from exceeding the number of

recruiters allocated to that station as specified by the

integerization subproblem.
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V. RESULTS FROM THE DECOMPOSITION APPROACH

The principal focus of this chapter is to present the

results for the Boston Recruiting District using the

decomposition approach. However, first it is necessary to

develop a bounding technique which can verify that the

approach produces solutions with acceptable quality.

A. BOUNDING THE DECOMPOSITION APPROACH

Solutions obtained from the decomposition process are

guaranteed to be both integer and feasible. To demonstrate

the quality of the decomposition approach, its solutions are

compared against a known upper bound to the LOCAL problem.

Such a bound is determined by optimally solving a nonlinear

programming relaxation (NLPR) of the LOCAL problem.

The NLPR is obtained by omitting all binary requirements,

i.e., the binary variables are allowed to range continuously

in the interval [0,1]. Mathematically, the problem is

formulated in the same manner as the LOCAL problem with the

exceptions that constraints (3.4) and (3.5) are replaced by

the following linear constraints:

SSHz -- NR (5.1i)

SH2  Y V z. (5.2)
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Constraint (5.1) insures the recruiter shares distributed to

zip codes do not exceed the available number of recruiters.

Constraint (5.2) guarantees recruiter shares are distributed

only to those zip codes assigned to stations; the parameter r

is chosen to be large enough so that sufficient recruiter

share can be assigned to a given zip code. With no binary

restrictions, all of the decision variables are continuous

and, as shown in Chapter II, the objective function is

strictly concave. Consequently, the solution to the NLPR is

unique and globally optimal [Ref. 13].

Table 1, on the following page, compares the results from

the decomposition process against the corresponding upper

bound for twenty-four problems using the 1991 recruiting data.

Each row of the table specifies the district, number of

stations and recruiters for the problem. Additionally, the

values of recruiters and stations as a percentage of the 1991

alignment is given within the parentheses. The percentage by

which solutions from the decomposition approach differ from

the upper bound is displayed in the last column.

Table 1 shows that the decomposition nrocess

underestimates the true optimal solutions by at most 5.19

percent and on average 2.5 percent. This difference is

acceptable since the A-Cell production is predicted by a

regression model with R2= 0.5303. Using the Amdahl 5990-500

Computer at Naval Postgraduate School, the average solution
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TABLE 1: QUALITY OF SOLUTIONS FROM THE DECOMPOSITION
APPROACH

__-Total A-Cells

District Stations Recruiters NLPR Decomp. % Difference

161 6 (23.1%) 13 (24.1%) 253.61 242.85 4.24

161 13 (50.0%) 27 (50.0%) 355.77 348.85 1.95

161 19 (73.1%) 40 (74.1%) 422.22 418.70 0.84

161 26 (100%) 54 (100%) 478.75 477.60 0.24

101 6 (22.2%) 18 (24.7%) 275.51 261.55 5.07

101 13 (48.1%) 36 (49.3%) 388.65 378.10 2.71

101 20 (74.1%) 54 (74.0%) 470.34 464.59 1.22

101 27 (100%) 73 (100%) 535.54 534.76 0.15

104 9 (23.7%) 29 (25.0%) 420.60 412.17 2.00

104 19 (50.0%) 58 (50.0%) 570.78 564.04 1.18

104 28 (73.7%) 87 (75.0%) 674.94 672.09 0.42

104 38 (100%) 116 (100%) 758.53 757.64 0.12

103 7 (25.0%) 26 (25.0%) 297.52 282.09 5.19

103 14 (50.0%) 52 (50.0%) 414.23 403.67 2,55

103 21 (75.0%) 78 (75.0%) 498.84 495.57 0.65

103 28 (100%) 104 (100%) 564.62 564.34 0.05

106 6 (23.1%) 20 (25.0%) 248.26 233.85 5.81

106 13 (50.0%) 40 (50.0%) 355.33 344.32 3.10

106 19 (73.1%) 60 (75.0%) 427.43 421.55 1.38

106 26 (100%) 80 (100%) 486.65 486.63 0.00

119 6 (22.2%) 19 (24.1%) 280.86 273.31 2.69

119 13 (48.1%) 39 (49.4%) 389.89 382.42 1.92

119 20 (74.1%) 59 (74.7%) 467.60 464.71 0.62

119 27 (100%) 79 (100%) 527.78 527.07 0.13
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time for the twenty-four problems using the decomposition

process is approximately 286 CPU seconds, while for the NLPR

the time is approximately 19,275 CPU seconds. Thus, not only

does the decomposition process produce near optimal integer

solutions, but the solutions are obtained reasonably fast.

Further analysis of Table 1 reveals that the numbers of

recruiters and stations for which the decomposition process

produces acceptable solutions ranges from approximately 25 to

100 percent of the 1991 alignment. Moreover, the solution

quality of the decomposition approach improves as the numbers

of recruiters and stations are near 100 percent of the 1991

alignment. To demonstrate, when the number of recruiters and

stations are approximately 25 percent of the 1991 level, the

average difference is 3.45 percent. When they are

approximately 50, 75 and 100 percent of the 1991 level, the

average differences are 1.92 percent, 0.73 percent and 0.12

percent, respectively. This is due in part to the fact that

the relaxed model, NLPR, yields more variables with integer

values for problems with larger numbers of recruiters and

stations.

B. RESULTS AND ANALYSIS

The four optimization problems were implemented in the

General Algebraic Modeling System [Ref. 141 (GAMS)

and the resulting integer and nonlinear programming problems

were solved by the XS [Ref. 15] and MINOS

29



(Ref. 161 solvers, respectively. The 1991 recruiting

data for the Boston district is used to demonstrate

applications of the model. For this example, the list of

candidate stations consist of only those that were operational

in 1991.

In 1991, the Boston district had 42 recruiting stations

and 111 recruiters. Figure 2 depicts results from the

decomposition process with the number of stations varied from

10 to 42 and the number of recruiters from 27 to 111. The

graphs in this figure show how the number of A-Cells increase

as a function of the number of stations and recruiters.

Predicted umber of A-I CoU acts fo
Boston Rcrung Distdct

SOOT
701

7001- 10 Swaoim

S 25 Staflon

6W+ 33 Sualons

5W: 42 staflons

460$

27 37 47 57 61 77 67 97 107 117

Figure 2: Predicted Number of A-Cell Contracts for Various
Numbers of Recruiters and Stations for Boston District

However, the expected gain due to the increase in the number

of stations is decreasing. For example, the gain in the

number of A-Cells by increasing the number of stations from 16

to 25 is greater than that from either 25 to 33 or 33 to 42.
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Information in Figure 2 can be used to construct isoquant

curves representing combinations of stations and recruiters

that yield the same number of A-Cell contracts. For example,

the points where the horizontal line in Figure 2 intersects

the five graphs represent combinations ot recruiters and

stations that produce an expected 600 A-Cell contracts for the

Boston district. When several isoquants are constructed, they

can be graphically displayed as in Figure 3.

loqunits for Boston Dsct as a Percentaige of O. 1991
Predicted Number of A-Cell Contracts

OD 081.31 (W%)

20+ 46421 (80%) • -. _ _

10 15 20 25 30 3W 40 45

Number of Sf.

Figure 3: Isoquants of Predicted Number of A-Cell
Contracts for Boston District and Isocost Line

To illustrate the use of the isoquants, suppose that the

annual operating budget for Boston district, the average cost

per recruiter and the average ccat pezr station are $1,000K,

$7.93K and 21.47K, respectively. Then the isocost line

specified by the equation,

7.93 x (no. of recruiters) + 21.47 x (no. of stations) = 1000,

represents all possible combinations of stations and
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recruiters that satisfy the $1,OOOK budget exactly. This

isocost line corresponds to the straight line shcwn in Figure

3. Since this line is tangential to the isoquant for

approximately 605.61 A-Cells, this is the maximum expected

number of A-Cells obtainable with $1,000K. To obtain this

number of A-Cells, Figure 3 shows that 20 stations and 72

recruiters are necessary. On the following page, Table 2

displays the stations that should remain open with 72

recruiters. Each row contains the station identification

number and the number of recruiters that should be assigned to

that station. Note the total A-Cells in Table 2 is 609.03

instead of 605.61. This difference is due to the

interpolation used in constructing the isoquants in Figure 3.

By varying the annual operating budget, different isocost

lines can be drawn. Each would be tangent to different

isoquants thereby yielding different combinations of

recruiters and stations for the different budget limits. In

this manner, one can easily obtain the optimal numbers of

recruiters and stations for any operating budget.
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TABLE 2: RECOMMENDED ALLOCATION OF 72 RECRUITERS IN BOSTON
DISTRICT WITH 20 STATIONS REMAINING OPEN

Station I.D. No. Recruiters Expected

A-Cells

10 4 33.35

30 4 31.00

50 5 41.71

60 4 34.11

65 3 24.22

90 3 24.17

100 3 25.63

130 4 36.05

145 5 41.95

160 4 33.39

180 4 34,64

220 3 22.67

230 3 26.20

240 1 9.12

250 6 50.90

270 3 28.40

310 3 27.55

340 3 23.65

344 3 28.02

346 4 32.30

Totals 72 609.03
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VI. ALLOCATING RECRUITERS AND STATIONS AMONG DISTRICTS

The problem addressed in this chapter assumes that the

current operating budget can support given numbers of stations

and recruiters. These stations and recruiters are to be

distributed among a collection of districts, such as a

recruiting area. Intuitively, districts that produce more A-

Cell contracts should receive more stations and recruiters.

The overall objective is to maximize the total A-Cell contract

production for the collection of districts. This problem is

referred to as the multidistrict allocation (MDA) problem and

can be approached in two ways. One possibility is to consider

the collection of two or more districts as one 'super'

district and use the method described in previous chapters to

solve it. The other is to formulate the problem as a

nonlinear resource allocation problem.

The first approach has the disadvantage that the number of

variables would be too large for solution in a reasonable

time. For example, Recruiting Area 1, consisting of the

following districts: Albany, Boston, Buffalo, New York,

Harrisburg, Philadelphia, Pittsburgh and New Jersey, contained

248 stations and 5,458 zip codes in 1991. Countirg the binary

decision variables alone, the problem of allocating recruiters

and stations to districts in Area 1 can contain up to 248 +

(248 x 5,458) or 1,353,832 variables. Thus, the resource
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allocation formulation, which haq a much smaller nuimber of

variables, is chosen instead. The difficulty with this

formulation is that the objective function is not expressible

in closed form. In one of the sections below, the objective

function is approximated using piecewise linear functions.

Oth. sections formally state the formulation, describe an

implementation and present an example.

A. THE MULTIDISTRICT RESOURCE ALLOCATION FORMULATION

In this allocation problem, a number of recruiters and

stations are to be distributed to two or more districts so as

to maximize the total A-Cell production. Given that there are

costs associated with employing a recruiter and maintaining a

station, there is also a constraint to limit the cost not to

exceed a certain budget. Below is a formulation of this

problem.

MULTIDISTRICT ALLOCATION (MDA) PROBLE(

INDICES:

d = district

DATA:

B = total annual budget for the districts considered

NR = number of recruiters to be allocated

NS = number of stations to be allocated

cRd = average annual cost for a retruiter ir district d
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CS d = average annual cost of a station in district d

DECISION VARIABLES:

Rd = number of recruiters assigned to district d

Sd = number of stations assigned to district d

OBJECTIVE:

MAXIMIZE F, (R,, sd)
R,S d

CONSTRAINTS:

• Rd •AR (6.1)
d

E Sd NS (6.2)
d

SC R, + CCS,>) : B (6.3)
d

In the objective, Fd(r,s) represents the maximum A-Cell

production using r recruiters and s stations in district d.

Since Fd(r,s) is generally nonlinear, the above problem is a

nonlinear integer programming problem. Its first two

constraints, (6.1) and (6.2), insure that the number of

assigned recruiters and stations do not exceed the available

number and the last, constraint (6.3), ensures that the cost

does not exceed the budget.
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The function Fd(r,s) is not expressible in closed form.

To evaluate Fd(r,s) at a particular value of r and s, the

LOCAL problem corresponding to district d must be solved. As

seen in Chapter V, when all the variables in LOCAL are allowed

to vary continuously, the resulting problem is a strictly

concave programming problem. The function Fd(r, s) is known as

an optimal value function and can be shown to be concave [Ref.

131. When some of the variables in LOCAL are restricted to

integers, the concavity for Fd(r,s) is not guaranteed.

However, our experiments empirically support the assumption

that Fd(r,s) is concave when s is integer and r is allowed to

range continuously.

Based on the magnitudes of R. and Sd, the integer

restriction of Rd may be relaxed, but not Sd. Using this form

of relaxation, Fd(r,s) can be approximated with piecewise

linear functions and the MDA problem can be reformulated as a

linear integer programming problem. The next section

describes the approximation scheme and the linear formulation.

B. APPROXIMATING THE MULTIDISTRICT ALLOCATION PROBLEM

Let f. (r) denote the value of Fd(r,s) at a fixed value of

s. Since it is assumed that noninteger recruiters are

allowed, fa,(r) is a continuous function of r and can be

approximated with a piecewise linear function gr&(r).

By virtue of the assumption that -, (r) is piecewise linear

and concave, its value can be maximized by linear programming
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[Ref. 171. As an illustration, suppose g, (r) is

specified by the points {ui, gd(u,)} for i = i,...,4 (see Figure

4) where gq,(u,) represents an actual solution to the LOCAL

problem with ui recruiters allocated to s stations in district

d.

25
cn

1.5

M~o.

05

0 Ul U2 U3 U4
Recruiters

Figure 4: A Piecewise Linear Concave Function

Let pA be the proportion of the recruiters r represented in the

interval between u•,, and u where u, > u•4. Then, any

0 s r s u4 can be written as

4

r = pi, Vpi u - ui_1 (6.4)

where pA is nonnegative and PA1 > 0 only when p, = u,. For

example, let (uI, u2, U3 , U4 = (10, 20, 30, 40), then for

r = 25, {P,, P2, P3, P 4} = (10, 10, 5, 0}. Thus, by defining r

in this manner, gd,(r) can be written as
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4

gd,. (r) =j mipi (6.5)
i-i

where nA represents the slope of the piecewise linear segment

between u,., and q.

In the formulation below, the approximating function gd, (r)

is not computed for every possible value of s. Instead, g, (r)

is computed for only a small collection of s values. The

remaining gra(r) are obtained by linear interpolation. For

example, assume that gd. 0 (r) and gd,15(r) have been computed,

then gd.12 (r) is approximated as follows:

gd, 12 (r) =•g9, + + g, 1 5 (r) . (6.6)

Mathematically, the approximation to the MDA problem is

formulated below.

APPROXIMATE MULTIDISTRICT ALLOCATION PROBLEM

INDICES:

d = district

s = number of stations to remain open

k = linear segment for the piecewise linear functions
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GIVEN AMDW DERIVED DATA:

Cs = average annual cost of a station in district d

CRd = average annual cost for a recruiter in district d

B = total annual budget

Mdk = the slope of segment k for the piecewise linear
function approximating fdS(r)

Ud= upper bound for the interval of segment k for
district d

SUd = upper limit on the number of stations which may
remain open within district d

SLd = lower limit on the number of stations which may
remain open within district d

NS = number of stations available

NR = number of recruiters available

VARIABLES:

pdk = number of recruiters in the interval for segment k
with s stations open in district d

= binary variable(=1 if s stations are to remain open
in district d and 0 otherwise)

vd = slack variable

OBJECTIVE:

MAXIMIZE M,,* Pdsk
p,q d a k
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CONSTRAINTIS:

Pdak : Udk * qds, V d,s,k (6.6)

S qd.=i, V d (6.7)

S(s *qd5 ) •- NS (6.8)
d s

d s k

V+• (S * qds) = SUd, V d (6.10)

S* qd5 •, j Pdsk' V d,s (6.11)
k

E EPk * Cd) + E F,( qd * CdS B (6.12)
d s k d (612

In the above formulation, constraint (6.6) ensures that the

correct segments of the piecewise linear functions are used

for each district. Constraint (6.7) ensures a unique number

of stations remain open within each district. Constraint

(6.8) allows at most NS stations to remain open. Constraint

(6.9) insures the number of recruiters to be allocated, NR, do

not exceed the number available.

Constraint (6.10) is a two-sided constraint represented by

a single constraint [Ref. 181. It guarantees that

the number of stations open in each district is between a
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lower and an upper bound. A lower bound is established to

avoid potential political problems by not recruiting within

specific districts or conversely recruiting exclusively in

others. The upper bound prevents the number of stations

within any district from exceeding the 1991 level, since NRC

is downsizing.

Constraint (6.11) guarantees that the number of recruiters

assigned to any district is at least as large as the number of

stations. Finally, constraint (6.12) insures the costs

associated with the number of recruiters and stations

allocated do not exceed the available annual budget.

C. EXAMPLE

To illustrate, the above formulation was implemented in

GAMS and solved by OSL [Ref. 19]. The data inputs

are from Recruiting Area 1 which, as mentioned previously,

consists of eight districts. In 1991, Area 1 had 248 station

to which 702 recruiters were assigned. NRC estimated that the

average annual costs for recruiters and stations for all

districts in Area 1 are approximately $50K and $9.472K,

respectively. Using these estimates, the 1991 operating

budget for Area 1 is calculated as

(248 x $9.472K) + (702 x $50K) - $37,449K.

On the following page, Figure 5 depicts solutions to the IA

problem for budget limits ranging from 50-90 percent of the

1991 budget. To obtain the graph in this figure, a total of
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five multidistrict problems must be solved which takes on the

average 3.655 CPU seconds using the Amdahl Computer. The

graph in this figure shows how the number of A-Cell contracts

increase as a function of the operating budget.

Estimated A-Cell Contracts

4550
4450
4350
4250
4150
4050
3950
3850
3750

180 200 220 240 260 280 300 320 340

Budget Limit (Thousands of dollars)

Figure 5: Solutions to the MDA problem for Area 1

Based upon the graph in Figure 5, the increase in A-Cells

appears to be fairly constant with respect to budget

increases. This is because it is more cost effective to

increase the number of recruiters instead of opening stations

as the budget increases.

In particular, consider a ten percent reduction in the

budget, i.e., solve the multidistrict allocation problem for

Area 1 with $33,699K instead of $37,449K. This yields a new

alignment displayed in Table 4. When compared to the A-Cell

contracts produced under the 1991 alignment (i.e., 4,432
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contracts), the new one yields more contracts by approximately

two percent.

TABLE 4: A SOLUTION TO THE MDA PROBLEM FOR AREA 1
Districts Number of Number of Estimated Cost Predicted

Recruiters Stations (in thousands of $) A-Cell
Contracts

101 73 27 3905.77 535.54

102 ill 42 5947.86 796.10

103 62 28 3365.24 487.60

104 116 38 6159.97 758.53

106 64 26 3446.29 457.49

119 79 27 4205.77 527.78

120 68 34 3722.08 480.41

161 54 26 2946.29 478.74

Totals 627 248 33699.27 4522.19
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VII. SUMMARY AND CONCLUSIONS

This thesis addresses two problems in aligning the

recruiting structure for Navy Recruiting Command. The first

problem involves two decisions affecting recruiting stations

within a single recruiting district: which stations should

remain open and how many recruiters to assign to each open

station? The second problem is to decide how many recruiters

and stations each district should have.

The first problem is modeled as a nonlinear mixed integer

programming problem. To obtain a solution with readily

available software, the problem is decomposed into four

subproblems solved sequentially. They are (i) the station

location, (ii) the recruiter share allocation, (iii) the

integerization and (iv) the recruiter share reallocation

problems. This decomposition approach produces good integer

solutionls relatively fast. These solutions are within 2.5

percent of optimality on the average and within 5.19 percent

in the worst case. Results from the decomposition approach

were used to construct isoquants for A-Cell production in the

Boston district. When superimposed with an isocost line,

these isoquants identify the most economical number of

recruiters and stations for the Boston district.

To keep the number of variables at a manageable size, the

second problem is modeled as a nonlinear resource allocation
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problem in which the objective function is not available in

closed form. Tc efficiently solve this problem, the function

is approximated in a piecewise linear fashion using the

results from the first problem. The approximation yields a

linear integer programming problem which can be solved by

readily available software. For a given operating budget,

this integer programming problem was used to produce optimal

numbers of recruiters and stations to be allocated to each

district in Recruiting Area 1. Using these results, it is

shown that the 1991 A-Cell production level in Area 1 can be

maintained using only 90 percent of the 1991 operating budget.

In conclusion, this thesis provides NRC with a tool to aid

in their current downsizing efforts. The effectiveness of

this tool largely depends on two unique methodologies

developed in earlier chapters. One utilizes decomposition to

obtain solutions to nonlinear mixed integer programming

problems for which no readily available algorithm exists.

Unlike other heuristic approaches, the decomposition produces

answers that can be considered optimal for all practical

purposes. The other methodology uses an alternate formulation

and an approximation scheme to solve problems that are

otherwise too large for currently available solvers.

A. AREAS FOR FURTHER RESEARCH

The results of this thesis also point out the following

areas for further research.
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1. Robustness of the Model Against Different Forecasting

Models for Contract Production

This thesis uses the log-linear form of the

forecasting model as recommended by NRC. However, there are

other competing forecasting models which are of different

forms and include other demographic and socio-economic

factors. If different forecasting models generate drastically

different station locations and recruiter allocations, then

the choice of forecasting models will play an important role

in the realignment decisions. However, if different

forecasting models generate similar locations and allocations,

then the forecasting model which expedites the solution

process should be chosen. In any case, this discussion

highlights the need for further investigation to determine

model robustness.

2. Realignment System Development

It is inevitable that the need to realign the

recruiting organization will re-occur in the future. This may

be due to a change in policy or a shift in the location of the

target market. To keep recruiting efficient, the recruiting

organization should be responsive to these changes. This will

require that the optimization models developed in this thesis

be integrated in a user-friendly system.
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