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TERNARY WEAK-SIGNAL DETECTION IN NON-GAUSSIAN NOISE:
A PRELIMINARY ANALYSIS FOR

"Ho: N vs Hi: N + SI vs H2: N + S2" WITH INDEPENDENT SAMPLING

1. INTRODUCTION

An important extension of the usual binary detection theory involving generalized,
or non-Gaussian noise (see reference 1, for example) is the ternary case involving two
signals (M = 2) in noise, as well as noise alone. The basic hypothesis states are H0 : N,
"noise alone," vs H1 : N + S1 , "signal I in noise" vs H2: N + S2, "signal 2 in noise."
This is a special case of the general M-ary detection model, described in section 23.1 and
outlined in (3), (b) of section 23.1 of reference 2 for the cases M = 2,3. (Also see
reference 3 for some recent ternary detection analysis involving purely Gaussian noise,
wher effective erasure of magnetic tapes is considered.)

The present study provides new results: (1) a canonical formulation for these H0 vs
HI vs H2 cases, for arbitrary signals, e.g., broadband as well as narrowband, deterministic
or purely random, with (2) spatial as well as temporal sampling-thus including the

potential for adaptive beam forming or generalized "matched field processing"I here, as
well as the usual purely temporal cases, involving preformed beams; and (3) threshold

reception in generalized noise, which in turn may be fully described by Class A and B

models in most instances. (See references 4 through 6. For a review of these latter in

related telecommunications applications, see references 7 and 8.)

The limitations of the present analysis are twofold: (1) restrictions to independent
noise sampling, and (2) the simple, but reasonable cost assignments that provide the same

costs to "failure," i.e., wrong decision, and identical (but lesser costs, necessarily) to
"success," or correct decisions. The latter is usually not a serious restriction in most cases,
and it greatly simplifies the analytic specification of the decision regions (see equation
(23.20) and figure 23.3 of reference 2 vis-i-vis the case (b) in section 23.1 cited above).

The former simplification, however, can lead to noticeably suboptimum performance vis-A-

vis correlated noise sampling, when the latter can or should be applied. (This limitation
will be removed in a subsequent study, along the lines of references 9 and 10.)

This term is used for the spatial analogue of the earlier concept of "matched filter processing" for the
temporal representations of the signal (output of receiver army or preformed beam). This is a local concept,
and not a global one, in the sense of the more recent "Matched Field Processing" (MFP) or passive signal
locations (PSL) developed elsewhere (see reference 17, for example).
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The generic application of the present analysis is to those situations in signal

detection where one of the signals, i.e., S1, is the "desired" signal, and S2 embodies an
unwanted signal. For the current application to (active or passive) underwater acoustic

systems, S I can represent a target return for an emitting source whose presence must be

determined, while S2 is a possible, confusing or undesired ambient emission, a false target

or decoy. At the same time, the non-Gaussian character of the background noise arises

from a variety of physical mechanisms: (1) isolated, undesired signal sources, e.g.,

shipping, biological emitters, other man-made and natural phenomena, etc.; and (2)

distributed sources, such as reverberation, ice noise, surface effects, e.g., waves, rain, etc.
Reverberation noise, or scattering, is by definition signal dependent, as opposed to
"ambient noise," whose sources are outside the control of the transmitter in question (see

reference 11). Ignore for the present the signal-dependent nature of reverberation,

remembering, nevertheless, that its detailed statistical structure depends on the original,

injected signal, as well as on the particular scattering mechanism, e.g., ocean-air interfaces,

ocean bottoms, etc. In any case, regardless of the mechanism involved, the canonical

models here are applicable not only in the nresent underwater acoustical context, but in the

more usual, analogous telecommunications case, as well (see reference 12).

This paper is organized as follows: section 2 provides (1) a general formulation of

the ternary "two-signal" (M=2) detection cases, for the simple but common cost

assignments Co (> 0): "incorrect", and C = 0: "correct;" and (2) specialization to

threshold signals and independently sampled noise fields. Section 3 gives the evaluations

of the associated performance probabilities in the threshold regime. Various limiting and

special cases are discussed in section 4, which also serve to verify the general results of

section 3. The paper concludes in section 5 with a short summary of the scope and

limitations of the present analytical model, and includes a series of next steps to be pursued

in the mathematical and numerical analyses of the general ternary case. Numerical results,

requiring alternative series development, are reserved for a subsequent report (see reference

13).
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2. TERNARY DETECTION: H0: N vs H1 : N + S, vs 112: N + S2:
GENERAL THEORY WITH EQUAL COST ASSIGNMENTS

"Here the ternary signal detection.problem is considered when HO: N, "noise alone,"

is an alternative state. The analysis is general at this stage, except for a usually noncritical

assignment of decision costs: incorrect decisions are penalized equal costs Co (> 0), while
correct decisions are charged zero costs (see section 23.1(c) of reference 2). However,
there may be unequal a priori probabilities of signal presence (or absence) in the received

data, e.g., P2 = (q,pl,p2) > 0, q+pl+p2 = 1 for the present case of two possible signal

classes (S1) and (S2). (For an account of the general M-ary theory, M _> 2, see chapter 23
of reference 2. See also references 14 and 15, where the M-ary detection formulation is

used for signal classification in Gaussian noise.)

2.1 THE DECISION PROCESS: (M = 2)

With the cost assignments (see pp. 1031 et seq. in reference 2),

C ; I=C; 1= 1,21 )fal° and from I o C ; l= 1,2 (= M here)]

C~k)C 0 ; l=k , equation X)k =C1k)-Co (<0);k=l=1,2 I' (2-1)
C 0k) O; 1= k =1,2; C)0° = oJ (23.7) • k) = - C() 1 lk 1,2) J• . X• mC1-C ;/Ck(l,2

thus,

Xe.) = ')- ')=C. X (1) =C V - () = =C X<,) ,c(2) =C42) - .(2 )
~i)=~;2c)=: =C ) C .-0l 1 (2-2)

with the thresholds

{K ) 1- . {K %(I•) .,, -j@)(jI ,- VI 1 ) 0 c )

-=1 =1. (2-3)
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The associated decision rules (see equations (23.20a) through (23.20c) of reference 2)) are:

decide yo if A1a (V):< 1; (A > 0);

decide yt if A,(V) > A2 (V) and A,(V)Ž 1; (2-4)

decide Y2 if A2 (V) > A,(V) and A 2 (V) M2 1

which are sketched in figure 2-1. (The simple geometry is a consequence of the choice of

simple costs (see equation 2-2).) Figure 2-lb shows the corresponding decision regions

for

xk = log Ak, k = 1,2, (2-5)

viz.,

decide y.: x1 ,x 2 < 0 ; decide yl: x1 > x2 ; x 5 0 (2-6)

decide Y2: X2 > x1; X2 > 0 (see equation (T-4)) (2-6)

'21 1

NJ~s ' [10]: xl, x2!0- [YI]: XI -X2; X > 0

01 1 A,

.00

(a) (b)

Figure 2-1. Decision Regions: )t, ',, y2, and Boundaries
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The equalities in the decision rule relations (see equations 2-4 and 2-6) define the

boundaries of the decision regions ()r), j = 0,1,2 here2 .

2.2 BAYES RISK

As seen in equation (23.37) of reference 2, specialized to M = 2 (k = 0: noise
only), the Bayes Risk, or Minimum Average Cost, of decisions is given by

2 2 2 ()

=ý R, + q + X' p.ok)() +)I'+ Y k)/(TIk (2-7a)
k-I k-li,=O k-0

where

j•w)- (jko)) , .'. = 1-\(.o - h (2-7b)
(2) 1 ((2) -P (_2) J\2 ° 12\- Ik

for the present ternary case. Using the cost assignments of equation (2-1) yields the

ternary Bayes risk here

R= qC0 (x(lo). +azo)*)+ Co~p1 ((O(1). + (W(). )+p(r (2)*)+(2 j. (2-8)

with 9to 2 = (PI + PO)C , q + p, + P2 = I. For a check consider the binary case M = 2,
S1 Vs S2 ; PI + p2 =1 :

2 [ o-Cpi (12-'),)) + P2(l- (I(1)))] (2-9a)

= Co[(P, (PI)'),)+ (P2 ( 2)*))]

2 It different costs are assigned to the various "successful" and "unsuccessful" (or incorrect) decisior, then
the simple decision rules, as in equation 2.4 above, are generalized to sums of likelihood ratios, rather than
ratios, with the resulting great incre•e in the analytic complexity of the decision process and perfonnance
evaluation.
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which is correct. Also, for the binary "on-off' cases p, = q, P2 = P, IoM pCo ,so that

= qC.aXo)* + pCo(P3o) 1 , (2.9b)

which is likewise correct.

Rather than express performance in terms of the error probabilities, it can be more
convenient to use the (unconditional) probabilities, (P) , of correct decisions, when it

comes to their evaluation. With

p()*((2)0 2)

P(O)" q(1 - (x(I°)" - aot°)*) , = qp(O)*

where P•)" are the conditional probabilities of correct decisions, the Bayes risk (see

equation (2-8)) can be written more compactly:

"R =P. (- PW) - .(I =q. (2-11)
j=Oj=

Note that in the limiting cases, SI,S 2 -- o, p"- 1, and therefore Pj)" -4 pj,
2

p2 = 1 ; therefore R 2 =0 , as expected. Conversely, when S ,I S2 -- 0, P" =p(P/ 2 ;

therefore P" --- pf 2 C, and therefore R•__2 -- C0/2 at the other extreme; for these cost

assignments, see equation (2-1).
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2.3 CANONICAL THRESHOLD DETECTION ALGORITHMS, S1 AND S2

From reference 16, for each signal class S1 andS2. the following canonical3

coherent and incoherent threshold detection algorithms exist for independent sampling of
the noise field,4 but with generalized signals and noise.

2.3.1 Coherent Detection, <s> •0: (k = 1,2)

log.), -' g. = A b), + Zk(x)W , (2-12a)

where

A~co - log gk - alok) x

i (2-12b)
ak L(2)X(04)

JJ

Here, as before, k = 1,2 refers to the generalized (and normalized) signals 9(k), while

j = (mn) represents a space-time sample. A/.bo,

/(xj)-dlog w,(ýH =. , lj; L (2 )=(11). =J12w1 (xlHo)dx ; tk = -PL. (2-12c)
q

with

=a'm)s.m) = a(m)(t, *()(t,); aom) = Aim) (t); (m)2) -1 ; '= I + Tr (2-12d)

3 "Canonical" here means that the forms of these algorithms, and their associated performance parameters,
remain invariant of the particular physical application, although, of course, the numerical values will
depend on the specific problem at hand.
4 This latter is equivalent to treating the noise field as spectrally "white" in both time and space. As noted
in section 1, this sampling constraint can lead to serious degradation of performance vis-4-vis algorithms
which propery include at least the dominant first-order corTelations of the noise when this is physically
possible (see references 9 and 10). This situation will be considered in a subsequent study.
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for the normalized signal, witl "ual amplitude, A(') : m = mth-sensor or "spatial

sample" in the received field, while n refers to tu, the nth time sample. Here I = intensity
of the non-Gaussian noise compoaent, with %VG the intensity of the (frequently) much

smaller background Gaussian noise contribution. Local stationarity and homogeneity is
assumed over the bounded sampling region ej = MN, m = 1,...,M ; n = 4-....N. For

coherent detection, signal epoch is known and equals co. so that (S.m))l 0 and hence

2.3.2 Incoherent Detection, (s) = 0: (k = 1, 2)

Similarly, from reference 16,

1log- k - - = A(L) + Zk(x),c (2-13a)

where

A("c) log gI 2- Zk(x) _k) )O

Cyk' [L4 ) L -' 2L(2) 2  2L(2) J(9(k)Oý!)) 2 ;Sj bIn"•c = '[L" L2•)lt4 '•+ 2L'(2)' ]i1'1t) ~j"=t•.,.- (2-3b

ij,= d/I ;L(4) ((1'+ 12)2)H, fW I w1 (xjH 0 ) dx

Also,

ýa-i•o,, pi, with I-,... •-,/],k =1,2 ,
w. ° k (2-13c)

pi, ( S. S, , with (s(m)) = 0 for incoherent detection.

The narrowband signals considered here may be written

so) = F2 cos [(ao. + coXt. -E + A/)-4Jn,]. to = nAt, (2-14a)
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in which

fo = "carrier" or central frequency of the signal spectrum;

cod = (2nrfd) = Doppler, often consisting of a determininistic (fa)

and a random component (fd );
e = signal epoch = e. , known for coherent observation ;

(usually) uniformly distributed over a carrier cycle,

1/fo , for incoherent observation;

ý(Q= (t)= a possible phase modulation: for example,

PSK, where x= =, t. < t < , etc.

where one or more of the signal parameters are different, each k = 1,2. The quantity ArT()
is the net path delay from the mth sensor to some selected reference point associated with
the array, viz.:

ATM =,1,-o j iR)*-M"=(V°k - V )R)'C rM ; (fo•o), =Co; C- - (2-14c)

where ik, and io are respectively the unit vectors in the direction of the (incoming kil)

signal wavefront and the main axis of the beam formed by summing the outputs of the

(receiving) sensors (I) ; rm is the vector distance of the mt element of the array to the
reference point; co and Aok are respectively the speed of (group) propagation and the

(central) wavelength of the (klh) signal in the medium.

With incoherent detection [(e * e.), (s)W = 0, or (0)= 01 , the signal's

autocovariance (0,0e,) , instead of the waveforms, are dealt with (see equation (2-13c)).

The carrier or rapidly varying portion of (0je,,) becomes

n')Aht-2  c on-n)t+ ko0 i - i) Arinin.
(s.=fexp[- [Awd, (n -n) ]c040)0 (n -n')Atk(^ (i. )*A ii,

k - , (2-15)

k c=

where Atod is a measure of the "Doppler spread," if any, assumed to be Gaussian, while

the [OWJ are independent over n here, and Arm.=, = r. - r.. Clearly, directing the beam
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so that ioR-- iok maximizes p, as expected, while uncertainty as to Doppler (Aco, > 0) and

signal direction (ia) degrades p and hence performance (see references 12 and 16).

Since appropriate delays and weightings for each sensor output can be inserted

here, there is an opportunity for adaptive beam-forming. The space-time algorithms in

equations (2-12) and (2-13) provide (threshold) optimal "rules" for so doing, to the extent

permitted by learning during data acquisition (m- "adaptive processing") and/or a priori

knowledge of the signal and noise parameters and statistics, e.g., ao , £o, w1 (xIH0),

etc., required to implement these algorithms. This adaptive beam-forming and the

associated temporal processing (to) is called decision matched-field processing (see

footnote 1), which is optimal from the point of view of the general criterion of decision

theory and Bayes risk. This is more general than the usual criterion of matched-field

processing for estimation, or detection, based on maximizing array output on the basis of

signal-to-noise ratio 5.

In many instances, the receiving beam is preset or preformed with no option of

adaptive beam forming. Then, formally, the spatial index in the above algorithms is

dropped: j -- n, J -4 N, and M = 1, with AT(k) -+ 0 ; only time processing is permitted.

This is the usual situation in most electromagnetic (FM) telecommunication applications,

where array L < wavelength, but not in underwater acoustics, where L >> kX, and thus

the structure of the noise and signal fields permits its exploitation for improved

performance.

2.4 PERFORMANCE PROBABILITIES: TERNARY (M = 2)

At this point there is a transform to the new random variables:

Z= U - A ; A = (Ak), U = (log Al)) ; Z = (Zk), k = 1,2. (2-16)

5 Wben dealing with parameter estimation, the appropriate decision-theoretic extensions must be used (see
reference 2, chapter 21, for example) based on maximum helihood estimation (MLE), or least mean-square
error (LMSE) criteria, which follow, in turn, fitn the Bayes risk theory by appropriate choice of cost
function (see section IX and the appendix of reference 16, for example). (See also reference 17 for an
alternative approach in underwater acoustics for estimating sotuce location.)
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Next, use equations (5) and (6) of problem 23.2 in reference 2, to write the various

conditional error probabilities (M = 2)6:

S Zj +Ai -A% - Z +A• -A,

O-aWo"IZTQZ; a20 * a02"0= JdZ 2 f dZQ('2)(Z)• (2-17a)
-A, -- -A2  --

(•)a) - .JdZIJdZ2 P•')(Z); (0i)) =, JdZ2  JdZ1P(2'(Z); (2-17b)
-- w -- • -A 2  --

-As -A2 - Z,÷A -A,

(2)) dZ dzP(2)(Z); (z ) ) 2 WdZ dZP (z) (2-17c)
-.. ...- A3  --

These relations are also readily established from figure 2. lb from the definitions of the

error probabilities. Here Q2 and p(t) are the PDFs of Z, (see equation (2-16)), to be

determined presently for the canonical threshold detection algorithms in equations (2-12)

and (2-13) and in section 3.

The forms of the probabilities of correct detection follow in similar fashion from

equation (2-10):

0 0

P)"= qJdU, J dU2Q2(U) , U = (UtU 2) (see equation (2- 16)), (2-18a)

-A, -A2

Dqp) = f jdZ1 JdZ2Q 2(Z). (2-18b)

and

P) =PiJdU fdU2 +jdU2 P(21)(U)=p jdU JdU2 P(')(U), (2-19a)
0 0

Z+AAA 

NZ

=PIPT) = PIJdZ, fdZ2 PID)Z. (2-19b)

6 Note the (inadvertent) omissions of-A 1 and -A2 in the limits of <P()*> and <0(2)*> in equation (A.1-14c)

of reference 3 and correspondingly, in p(%* and pD)* (see equations (A.1-16b) and (A.1-17b) of reference 3).
The consequence of this ame noted in appendix B here.
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Similarly,

"P" =p 2 JdU2 f dUI + JdUi P(2)(U) = pJdU2 J.dU1 P(2)(U), (2-20a)
Z2 +A3-Al

P2 = P2 JdZ, JdZ1Pg)(Z)• (2-20b)

As measures of performance, the P()" or p•)" (where j = 0,1,2) can be used directly or in
conjunction with equation (2-11) for the Bayes risk.
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3. EVALUATION OF THE PERFORMANCE PROBABILITIES:
TERNARY (M = 2)

The first task is to obtain the PDFs Q2 and p() , of the (here) threshold detection

algorithms in equations (2-12) and (2-13), and then to determine the various decision

probabilities in equations (2-17) through (2-20) associated with this canonically formulated

ternary detection problem. Two critical features permit comparatively simple analytic
results, expressed at worst by convergent series of known, tabulated functions. These

features are: (1) the asymptotic normality (A-N) of the algorithms g:.b in equations

(2-12) and (2-13) by the Central Limit Theorem; (2) this ternary situation, which involves

only two (M = 2) signal classes in addition to noise alone, which fact is reflected in the
double, rather then triple, integrals representing the desired decision probabilities.

3.1 THE NORMALIZED PDFs OF Z

The A-N nature of g , because of the weak-signal constraint, allows the needed

PDF of the Zs, now in normalized form, to be written as

w(i2(1 - P,)

w-"jH 2• 1CT 7 , (ij =0, L2) (3-la)

q(Z) = 0 =P 2(Z).

See section 7.2 in reference 2, where specifically

k a, .......... (z1),t a (zk (01) N W1-- w , • )dx
ok _.

k =0,1,2)

o:5 var z, = [(zk- (Z") ]
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Note that p2')(z) = p(?)(z) in this normalized form (see equation (3-1a)).

In sections 3.1.1 and 3.1.2, the various moments that are summarized in equation

(3-1b) are evaluated using the results of appendixes A-1 and A-2 of reference 18.

3.1.1 Coherent Detection

(Zk)o = 0 (see equation (A.I - 13b));

k-c°b = L•2)(• k)- ., (see equation (A.2-14)) H, (3-2)
(0 (3-2))

J

( )0O p1 •=2)zz = - = (IH (=a L)p P.

since (Ilj,) = L(2)8 ,.

Similarly, (11 = 1,2):

(Zk)3 . = L(2)j:(e0k) 2 +O(q )(see equation (A.2-3), kCr.;

(11)2 H1.: k = 1, 2 ;(3-3)
'= L(2)"(01*))2 + O(') (see equation (A.2 -3) ,-2

and a1 o, pl= L(2)X/(eP)X(2))+O(") a ,4

3.1.2 Incoherent Detection

(Zk)o =0 (see equation (A.2-25);

a(0)2 = equation (2 -13b) exactly; (3-4)
2 -[(L(4)-2L(2)

' ) s8" +2L(2)21(o0(1)OQ)X0j(j)

= (0 1, 2 )wp,. I. exactly.
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For the alternative hypotheses (k=1,2),
(Zk~a --2 ,.(q)' -- O (sep.26232) ;

2k_, = equation (2.13b) ; a-,--., (e j p. 2

(Zk•(Ij),).)12  " H'2" (3-5)
( "1) (2aO22),.p. (see equation (3- 4))

From equations (2-12d) and (2-13b),

02
A( 1h) w log g,, k- A ; (3-6)Ik2 k- 2 k=, , 36

using equations (3-2) through (3-5) for the detailed structures.

Accordingly, to summarize, equation (3-16) can be compactly expressed as

(Z _•• '0() X0!2))

Ho: zk ==L ;2) =0; p(6 =-
2 dk'" = L"'(2)y

k= ,, = . ; : coherent (3-7a)

Hk : z = ;(oL) ; - ; pm = pIHo

and

H0 : Zk ;k Z=0; 1.[L4 L2 2

( J) ()X (2 ) Hk : Zk=r 2k

(02)W (, Ok i"incoherent; (3-7b)

-kly - 2L() + 2L(2)']

• O0k)01.•))2 ;Pi. =P.IHo.

In the subsequent analysis, the subscripts "coh" and "inc" on z,, Ok , etc. will be dropped

unless this results in ambiguity.
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3.2 THE PERFORMANCE PROBABILITIES: (M = 2)

Using the transformations of equations (3- lb) on the unnormalized (Gaussian)
PDFs for Z1 and Z2 (see equation (7.9) of reference 2), gives the equation (3-1a), as noted

above, and allows Q2(Z) and P(')(Z) in equations (2-7) through (2-20) to be replaced by

q2(z) and p(k)(z) , respectively (see equation 3-1)). The results for equations (2-17).

through (2-20) now take the explicit forms:

- (o,z,+A,-A 2 )/a,2  (02z2+A2-A,)/0,(0°)0 0(-) [o= z 'zq (z); 0(0°) 0 -=•2* dz
= 0 dzi Jdz q2 (z);= dz2  f dzq 2 (z); (3-8a)

- -A 2 /1 2  --

-,-/, (-f dZ2•P2)/ ; (0,)&) f dZ + IP2-A2/0•-•fdz (3-8b)
-. -- -A2/02  --

(-A, -',)/,', (-A2,-',)/o, (o,z, +A, -A, +o,;-,,)/,,,
(•(o)f) - Jdzj fz dP)(z); (212))= fdzi f dzap•2)(z). (3-8c)

-.... (-A,)/o, -..

Note that since p2k)(Z) = p2(z) in equation (3-1), the subscripts I and 2 can be interchanged

in the limits of all the error probability integrals to obtain the ( ))Is in equation (3-8).

The same can be done for equations (2-18) through (2-20) in normalized form

(without the respective a priori probability factors):

-A,/61 l -A 2 /I(12 (alz, +At -A +CY-aYz I/
p f) = dzj J dz2q(2)(z); pg)" f dz, jfdz2 p(')(z); (3-9a)

-.. . (.2A, -ao)/. , --

(, 2Z, +A2 -,A, +a,2-_, )/,,

(2)" = dz dz,(2)(z) ;and p(k)(z)=p2(,) (see equation (3-1)). (3-9b)
PD fd2 f Ir2~, r~ z se ~ 1) (-b

(-A2 -,), --

3.2.1 Probabilities of Correct Detection

Next,

q 2(z), p2 (z) = w2(zIHj) (see equation (3- 1), ! (3-10)
= w 2(xI,x 2) (see equation (A- 1) in reference 19)
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and all have the same analytic form (see equation (A-i)), so the basic result of I = equation
(A-6c), with equation (A-8b) and special cases, is to evaluate all the decision probabilities

in equations (3-8) and (3-9). These results are specifically:

-A2 [-A 2
-A -p a 2  1 -P a 2T2(1-7)'2)/72(,7

pD) -J-• (3-11a)

L+'i I{. (-p) J[H P

Explicitly, the following series may be used (for Il< 1/4)7

1 F(-A -A 2

5aj q(1 _p)0

+-• (A1- (3-1 lb)

c2• ' 2

where I(a;v)- (Vr(v))jyV-1 e--' dy , v >0 incomplete F- function (see reference 22)
0

and 0)'•)(x) =- d'(e-"hf-) dxm is tabulated also (see reference 19). Here O(x)=

(2/N-)f e-t2 dt = erf x is the familiar error function of references 20 and 21.
0

7 For ýpj < /V/2 , another series is needed. This is developed in reference 13, allowing a complete

numerical evaluation for -1 5 p I .
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Further inspection of equation (3-1) in equation (3-9a) shows that if p = 0,

then w2 = w1(zO)w1(z2) ,i.e., w2 ib symmetricaL and so equation (3-1 lb) reduces to the

much simpler relation

1+ •( ) )i + 2(4- ,} (3-12)

whereas, if p •0, then pl) is unsymmetrical (in A1 ,/o and A2/a 2), as expected, since w2

is also unsymmetrical. In the limits p -+ ±1 , w,(z) = w,(z,)S(z 2 T z1)= w,(z 2)S(z, T z,), and

equation (3-9a) must be evaluated directly to get

PD ![1 +e(B.)] ; B =min - (3-13)

(where min(-5,-2)=-5 , etc.). (For the cases cr, 2 -+ 0, see equation (3-17).)

The conditional probabilities p(k)" (in equation (3.9b)) are found in the same way.

Equation (A-6c) becomes

[ F P +C2 _y2]

pM). 1 _j--A 2  Al -- + a

PD 2 2(lp2 a,42( p2) (3-14a)
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which reduces (for M < 1/4-) (see footnote 7) to

[ + A ,2t ( a2+oIa4V-
1+3 1 1  1+ (n2+2

,! 2 (r n( A, - A. + a 2 - 2)

PD 2-• ._p2 (3-14b)

4 n! A,+22•

Note that for•a., (2 < (A, I -1) / 2 - etc., 1,--* I, and p 1--, as

required: S1 is surely detected (conditionally on being present). In this limit (oF -- 00),

equation (3-9b) becomes also p•)" - p' P~t(z) dz = 1, as a further check. Since p(k)" is

symmetrical, e.g., 1 -+ 2, 2 -+ I in equation (3-9b), it can be written explicitly (Ipi < 1/l-) (see

footnote 7):

S 2I+AT•2(4 "A2 i+4'&-&+A -A,

+ 2-2 + 2 YL ~ ~ i2 )

1 +•a ....2 1- 2 p)" -A2 +l (3-15)
P) 2 (-" (1) A 1+( A 0 1

Again, as expected, p•) --* 1 as o2--)

3.2.1.1 Special Cases. When p3=O0, then p•), k =1,2, does not reduce to the
symmetrical form of equation (3-12) for p•), because of the asymmetries in signal level:
a, •ao2 . Furthermore, note that for a 1 , a2 --*0, •ince •(m)(+ao) =0, m_>0 :
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urn 1 _____log(E

__W rIi j k 1 2 j k (3-16a)PD - [I 1(ogi 1k+0 E) , 1PD -+0 4 12 1T JJ]
Several cases can be distinguished:

P1.2 >1: p =1;
gi.2 >I ~ P2.1> P

P1_-2<: -0;
P2,1

91,2 < 1P, <=>1" =0;
P2,1 I k =J,2 (3-16b)

•t=•t 2 "p1 =p2 ; p 1. 2>q" -- ;
2

Pl,2 <q : 0 ;

1 1
pI =p2 =q=-; JL1= 2 =1: --

3 24

For the noise-alone case in equation (3-11 b), since ý(m)(±+o) = 0 m k 0

p(0= lim _r+l.,,,I, 10992P411 (3-17a)
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and therefore

9172 > 1: pD =0;

Pt1.2 <I : =1 ;

912.2 > 1 , 92=.1 < I 0 ;

1 -,=2 >1 I : =0 ;(3-17b)

91 = 2l. <0 "3-I,

3 4

91,2 < 1 ; 1.2 =21 2

3.2.2 Probabilities of Error

The error probabilities of equation (3-8) can be calculated in similar fashion with the
help of equation (A-6c). The general results for equation (3-8a) are

o_ _-- Al -A 2  _

4~2~2(l - p) ') J
1- -A j2 02 2 (3-18a)

2,r2, 2( l _ p 2), 702 ,2( ,-p3)
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The series form (for I < V/42) of equation (3-18a) is

•12 -P AA -A

__ 2

..o0 4= W I.T2 (3-18b)

(A, , +n+'l]]

IpI < V (see footnote 7).

Note that

1] =0, while a.2- 2 • (3-18c)

For a°o)'(=- fP2o).), the subscripts 1 -- 2 and 2 -+ 1 are exchanged in equations (3-18a)

and (3-18b).

Next, for equation (3-8b),

2(1-P2) A2 (1-p2 )

3T10 (I C-2T',• P 2)

(•°,'=2-- A2 -0(~ ,) o 2_o) - (3-19a)

[7mi" (Y2 F.2(lI,•2l~,
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and

2 -1 FZ n• .. + I .. _-A a 2
0 il -A (3-19b)

2a, 2

I< 0/42 (see footnote 7)

Since p2J) = p)= Pz) (see equation (3-1)), here (0 2)) =00(pS") also (from equations

(3-8b) and (3-8c))'.

Similarly, for and A2A'a

CF2

00 a, A2-A,+a

= 24)')• 4 2(l-p 2 ) pi;i(l-p2) , (3-20a>

+•J p 0 j ..] ,f l -p 00
['42(l1-p2) C Fo I.20-T2

Ps,)* (2r (k)
In fact, the equality ( = 0 heme(seeequation (3-8b),wih p p 2(z) each k,

allows the interesting equivalence:

1 -1 _a ,. r( n + , , , X _ , , F x2 pD! 2T "t a ,°2 2
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and

[ ( { + A2- Al + 02- II- Y + .4.•,2(i - p')

-I z +2 I (Y.-1) A2 - A, +0 2-aY

n! , h u r s -- P 2 ra-n 2 q4 (3-20b)

-'(21, 2)

k,< 11/F2 (see footnote 7).

For (fi2)0) the subscripts 1 -4 2 and 2 -+*1 in equation (3-20b) cana be interchanged

(compare equations (3-8b) vs (3-8c). Observe that as a, or 02 --* 00, these (conditional) error

probabilities (if signal I or 2 is actually present) all vanish as expected from physical

considerations (see section 4).

3.2.2.1 Special Cases. In addition, as 01 or a2 -+ 0 , (see equations (3-16) and (3-17)),

there are a variety of special results, depending on the a priori probabilities q, p., and P2 .

These are determined from equations (3-18) through (3-20), which become, when
( 0a, a)--40

(ot)'=o i0 I'[+ log g,= )o-+0 (3-21a)

l g 9 2C I , 02 a O - + -0 .

(O) lim l[I+ log g 18 t { 3=io), (3 -(21b)

3 2 0-0 "411+ 2o '2o
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As before (see equation (3-16b), several cases can be distinguished:

•tl2 >l ;P1,2 > : a0)*

P 2.1
P2 <1 =0;
P2.1

41.2 < 1 P1.2 <-> I:-0;
P2,1 I --y 0. (3-21c)

l -- 2  ,"P -P 2 ; pj > q : -2

p. 2 <q:=1
PP P2 q : -- 1=;

3 4

(Note that, in fact, equations (3-21a) and (3-21b) are the same as equations (3-16a) and

(3-16b).)

In a similar way, when ay , 12 -+ 0, then equation (3-19b) reduces to

a[°))•--+0 1+ r + • ]•(•'* (3-22a)

The various cases here are therefore

-1: > 0 0;

91,2 < I: =1;

P, >I, ji<l :0;

1 > 2 =1 I; 0o . (3-22b)

A, =4 2 >1 
=0

Pt1 = 2 <1:
1

Pl =P2 =q, '"1t =itL2 = -
4

9. -1 ;2 - *, =q "

3-13



Finally, for ()and (2) , from equation (3-20b), (01.2 - 0):

"il "=a 10, (3-23a)

and

) lim 1 l+! _+

S->0 4' -[ •y + (3-23b)

Again, note that since equations (3-23a) and (3-23b) are the same as equations (3-21b) and
(3-21a), respectively, the various limiting cases of equation (3-21c) apply directly here as

well.
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4. ADDITIONAL SPECIAL CASES

Further special cases of interest arise when one of the (processed) signals is

indefinitely large, e.g., when oY -+ oo and 02 < *o, or 02 < - . See equations (3-1 lb),
(3-14b), and (3-15) for the po)s and equations (3-18b), (3-19b) and (3-20b) for the

following results.

4.1 (o1,2-.2 o ; 2,1 <o)

For the probabilities of correct detection,

(0~L -A [i)._ (7 J1. (4 -la)
p(O)*lA

PD(°ll,. + Cr OtO) - oa,- 0 CF < •"(4 - lb)21 [1-A1Io)

=D 1 ,U2 <c; p0)* = -0 a1 <@o; (4- 2a)

p=0 0 ,2 <00 . ,*, = 1 ct < loo (4- 2b)

Because of the signal level asymmetries a, *2, 01/02 -• 00, and p 1 ±1, p) may be

expected to be nonvanishing, even when one of the signals is effectively infinite: there is

always a nonzero, non-unity probability of falsely deciding signal #1 or #2, as is evident

from equations (4-1a) and (4-1b). On the other hand, as in equations (4-2a) and (4-2b),

pD =1 pkL =OjDk,andOk < ,as expected; very (-) strong signals

are corrctly decided, probability 1, with the alternative p 0 =0, by exclusion.
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In a similar way, for the error probabilities:

a2a 0OI 0-4- (4 -3a)
.•o.12 _o<-,1_ ON- 2 1 75o-, .,. -)

+ a20. * 1', 21J (4 -3b)

and, from equation (3-19b),
(W)- W .." =0(4-4)

and, from equation (3-20b),
= 0 ; )" = 0; (4-5a)

and

=0; =0. (4-5b)

Equations (4-4) and (4-5) combined in equation (2-10) yield equations (4-2a) and (4-2b),
as required. Thus, whenever the true state is "noise alone" Ho: N, as in equations (4-3a)
and (4-3b), and the non-infrmite signal is decided, the associated decision error probability
is nonvanishing. Whenever the true state is H,: S1 + N or H2: S2 + N, and either signal
is infinite, the error probabilities vanish. Both effects are expected: in the former case,
there is always a nonzero probability of incorrect decisions because one of the signals is
finite; in the latter case, the infinite signal ensures a correct decision or "signal," and hence
zero probability of the alternative decisions.

4.2 THE CASES p = ±1

Here, as in equation (3-12), w2(z) = wI(z 1)8(z2 I; zI) = w1(z2)8(zi T z2), so that
evaluating equation (3-9) directly gives (the earlier result of equation (3-13)):
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(0) 4 -A, -A -46a)
PD '[ 2 L (u) Bmn j . &-mi (4o=±i~C3O1 (N247) 7ia

along with

JA -A +(T ,2 2 1 o' A,-o A-A 2 +0 2-oY 2
2 

2

"=0, -A, - 02) > Al-A2 -+ AY1 (4- 6b)

CY, (2 - O'I

and
p(2, AA +o2 -2 ] -A-O ;A 2 A2-Aj +0 U2-2

[D *142 1- o 2 ) J2 < 61 02 (4-6d)

=0, -A -2 2 >A2-A, +02 I
.02 0'l - a2

In a similar fashion, from equation (3-8):

____*( 0__1 _Al-A2  -7A, At -A 2  -A
r2t'(,2 -'.). r2", 02 - o 0I O, (4-7a)

=0, A 1-A 2 < -A,
02 - 0Y (1

O(o)* = A2 -A -A 2 1 A2 -A >-A 2 12 '-T=U,(o-(al )- CY2 r,,2 'a •- -• ( ,-72
(4-7b)

-=0, A2 -A 1 < -A 2

C'I - 0 2 0"2

()(= ()o *1 + ("-, -A2 - .2 ,(4-70
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=~ ef _2 i00.A2J A-A +a02a -A2

=0 Al A 2 -A,+ 2 -a > A 2  j42 (TI (7 V2T2 (TI 'U202 ;(4-7d)
= ,A2 -Al + 2 a2 -A2

(01-02) 02 J

and

'1 2 ~f(a, - ay,) J'Jt. Cy, 2 ~ a,JA - 2 a 2- 1 ' 1 A+~o A
( ) . (4-7e)+- 2_U -A,

=0, At -A 2 +a•-• -
(02 -a,) C,

4.3 THE CASE p = 0

When p = 0, the situation of orthogonal signals exists in the coherent cases:
0€ý5= -/-ao cos to.(t. - eo; 0• P= vr2-ao. sin C~o.(t. - e.) ; c.o = (x/2(o, , 3U12o)j

or (O,i/co,) for (maximum) amplitudes for proper choice of epoch e. at the receiver, e.g.,

0., 0 ,2 = Op =0. With incoherent detection 5= 0) , ( ) = an',, etc., for

p = 0. In any case, when p = 0, the general results in equations (3-1 ib), (3-14b), and
(3-15) are directly modified on setting p - 0 therein, as in equation (3-12). Equations
(3-14) and (3-15) do not reduce further, unless 0, = 02 , in which case

Pg)l•I = ¼[=+-+ 1+ 11' IL- (4-8a)1002C 4 L [jc r2 Va j

and

(log~lk2

p•,.jp7%,. = ![1 + 0( 2 +A2 l•1,.]](48bt. 1)0 1+ (4-8b)

with p7)" here given by equation (3-12).

4-4



4.4 REDUCTION TO THE BINARY CASES: H1 vs H2 AND HI vs H0

The more general results (in section 3.2) readily reduce to the binary cases upon
dropping the inappropriate error probabilities and regarding q as q -4 0, e.g., log (gi1 , Ig2)

with p, + P2 = 1 , etc., now. Thus, for binary signals:

H,: SI+NvsH2: S2 +N:

1 -2 +log L 2p•)' 1+0 7 -•21_p log 91t 2 10o P2 (4-9a)

and

(2)-r 1 + 2 +lo 21-p 1 1 lg, og(R2

P•2)f N1+e • +lop2 10; og 1 Pi (4-9b)

Equations (4-9a) and (4-9b) are alternate forms to the more familiar results (see section
20.4-5, problem 20.12 of reference 2), which latter are given in terms of log(A 2 /Aj)

log A1 2 rather than log A2 vs logA, , as is done here.

Also in the "on-off" cases H0: N vs H,: S, + N, now p =0, 2 -- 0, so that

equations (3-18b) and (3-14a) reduce to

a~e 1 1 8( a, log g, I =a
1 21 2 -F 2• fir,(K=1here) (4-1Oa)

and

PD= I 21 ( 1 2T • •71 g 21 I-{I + (1• 0' I - 2a , (4- lOb)

which are well-known results (K=1 here) (see equations (6.6) and (6.7a) in reference 12,

for example).
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5. CONCLUSIONS

The principal new features of this preliminary investigation are the explicit
development of threshold Ternary Detection Theory for the two-signal cases: 1 0 : N vs

HI: S1 + N vs H 2: S2 + N ,when the noise is (additive) non-Gaussian and when the

signals are themselves unrestricted. In short, this is a canonical theory, invariant in the
form of the analytic results. Both threshold algorithms and detection performance are

derived. Special cases of interest are then readily obtained by specializing these general
results, as sections 3 and 4 attest.

However, the treatment is not completely general in that

1. Threshold signals, not signals at all levels of intensity, are considered;

2. A restricted, though important, class of cost assignments, which determines

the decision regions, is employed (see section 2.1);

3. Independent noise samples are assumed, in both space and time;

4. The analysis is confined to the two-signal cases (M = 2), with "noise alone" as

the third alternative (see section 2);

5. The noise is ambient and thus signal-independent; and

6. For numerical results, series valid only for 0 < l/4-2 are obtained here.
Reference 13 contains the complete range for -1Ž> p < 1.

Under these constraints only three parameters (other than the a priori probabilities, q, Pl,
and p2) are required for a complete analysis: the signal detection parameters a' , a2, from

equations (3-2) and (3-3), and the correlation coefficient p, 2(= p) relating to the two

detection algorithms, Z, and Z2 , from equation (2-16), as shown by the results of

section 3.
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Restriction 3 can be removed, as a result of recent work (references 9 and 10). The

extension to the full ternary case H,: S, + N vs H2: S2 + N vs H3: S3 + N, item 4 under
restriction 2 above, appears analytically possible though tedious. Restriction 5 can also be
lifted, as noted in reference 11 and references therein. On the other hand, analytical results for

general signal levels, and/or general cost assignments are not achievable, and computational

procedures must then be invoked for specific cases. Accordingly, next steps in the

development of the ternary detection theory here are:

1. Extension of (M = 2) threshold cases to include noise correlation (see

references 9 and 10);

2. Numerical evaluation of the general results for (M = 2) obtained in section 3,

for both the "correct" detection and error probabilities, for a usefully broad
2 2

spectrum of values for the three parameters involved, viz., a, , 02 , and p

(see section 3.1). This is done in reference 13;

3. Extension of the present results to signal-dependent noise, which is

particularly important in active regimes, where reverberation is dominant; and

4. Formal extension to the full threshold signal case (M = 3), at least to the point

of identifying ways of analytic evaluation of the triple integrals (with 3rd-order

Gaussian integrands) specifying the performance probabilities.

Finally, there remains the application of these general results to specific problems in

sonar and related "active" as well as "passive" situations.
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APPENDIX A

EVALUATION OF TERNARY PROBABILITY INTEGRALS

In the analysis developed in the preceding text for the important ternary case Ho: N

vs H,: S1 + Nvs H2: S2 + N ,the general probability integral is encountered:

b, cx, +bz
1(2) f dxf dX2w2 (x1,x2 ). (A-1)

at a2

where, specifically (as in section 7.2 of reference 19),

2xlx 2P1 2
W2(XIx2)- 2(1,p 2 ) , {, 25 1, (A-2a)

w2(x 1,x2) - 21 -p 2

in which x,,x 2 are the normalized (i.e., "standardized") random variables

xi X,- 122 =1 x 2 = covariance of x
a: , ( 2 x.'(A-2b)

I~ IvarX ( X, -X ,etc.

An analytic reduction of equation (A-i) is sought from which numerical results can

be obtained, using tabulated functions, as well as various analytic limits. It appears that in

the present general form of equation (A-i), the best, i.e., formally simplest, results that can

be obtained involve at most a single series of tabulated functions. Begin with

Cel +b2

f w2(xl,X 2)dx2
&2

exp CZ, +b 22(i._p, )=•,{2 xxp,2
2 l• p2) , exp +(1_p 2)I, (1-X)

~XXi
=..-exp 2(1 _p )cl+2V2,-B,)

ep2 ) exp~ X,2( 2) ex2 -, }- -2'
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A= l-P•2);B= (lp1 2 )

e 1 P1dz2
e- I j es dz;

where

E(x) a fe-tzdt (A-3b)

is the familiar error integral in section 7.1 of reference 19; for associated tables, see

references 20 and 21.

The next step is to consider the evaluation of integrals of the form
b , 

b , 
t

dx1 e- .e~1 AE 1 + 1 =d ,'/2
r- f d(XAI + BI)= fdxj e1-"'e( 1 ,A, + B1)- f ' d 8•e(X1 A1 + BI), (A-4)
at 0 0

which reduces to the consideration of the generic relation

IJ S j e"20i( &z + B^) dz] (A-5a)

or its equivalent

-= e --IN- +i y ) (A-5b)
A " 2A AJ '

on change of variable Az + B = y. Thus, using J (from equation (A-5a)) in equation (A-4)

(from (A-3)) for I(2) in equation (A-1):

,[b2 I(Atx + B3) e"-'dx -j'(A~x + B) e-"/2dx

1(2) = 1( 0 1 (A-6a)

S+-|t-A B) )ez-/dx-JO(A'x + B8)e 2dxl
A-20

A-2



with

A.= - Bl= b,- I ;A,=7  2 , =B l- -a 2  , (A-6b)

72(l -ýI ý2)V22( -fp: 2

or, using equation (A-5a), the equivalent is obtained:

( 2 ) - F c 2 ' i{JbI ,B ) -JaIA,,B,) +J(bIA~,B ) -J(a,IA ',f ) .
Accordingly, the task here is to evaluate the integral J (from equation A-5a). Start

with the expansion of 9(Xz + fi) about BE, viz.:

z + B) (B . (A-7a)

Here, with dB = dx/Th and A = xr/4- ,

2 ( d" -i 2  2'W2 do-' e--'h
On ( •A = 2le- 2 e 2'÷W2(-(x B-r2)- n (A-7b)

in which ý"(x) = (1/217)(d"/dx")e-'2h is tabulated (see reference 22), as a form of error
function and its mrth-order derivatives, here expressed as a normalized Gauss PDF w, (x) =

e- 113/22 , m =0. Applying equation (A-7) to equation (A-5a) results in

J(o AA, B) +2 z() dz, (A-8a)

0 .1- n! 2Y

which becomes fmally 9

9 It is sliown in reference 13 that the acr based on equation (A-7a), etc., converges only for N~ <V42
A complete treatment of (M.-t 1/42) is provided in reference 13, along with nueical results.
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Here

-(; F.l- eyV Y dy, v= 0; incomplete r-fi-nction, (A-9a)
1"V) 0

This latter is tabulated also (see reference 20). Her use

Je -X' dz=
0

(A-9b)

= 2

,,-.2 ) dz = Jy[((')/2)J'e_ dy =( n+l-

00

Some limiting values of J JB) are readily found:

and

J(+a, B- = *Je1?Pdz = ,,, a = (A-l0b)

from equation (A-5a) directly, since e(oo) = I:

J(++ ,B, or A,--, or-o,--)=4 5-. (A-lOc)

As a check, let b1,b 2 = o0 and a1,a 2 = -- *. 1=1, as required, since w2 is indeed

normalized, so that iJfw 2dxdy2 =1. Also,

0( •)=o;AB (A-Ila)

2(:72))= E( (A-I lb)

J(aO,O)=O ; (A-llc)
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and

4 2 (i)n( 2" ) (aI'2 n +( I (A- i d)
X(2n +1) CJ

where .(2")(0) = ((-l)`(2n)!/2n!)Vfx (see equation (A.1.23) in reference 19),

J (A,0) = "" tan"( "2)=je-z2e(kz) dz. (A-I le)
0

In addition, a further check on the accuracy of the general result (equation (A-6c) is

obtained by considering the following special case:

I~2)��2 J w2 (x,,x2)dxdx2 = 2

+J 00 P ,0 -J 0 ,0j (A-12a)

IT-_7 1_ 1 -1

where J(01, ) = 0, and where equations (A-10c) and (A-1 le) have been used. Limiting

cases of equation (A-12) here are
I 1

p=1: w2 (x1,x2) = WI(XI)8(X2 -XI) .l 1  2 (A-12b)

and

p=0: w2 (x1,x2 )= w1(x1)w,(x 2) :.It = -02=1 (A-12c)

as expected. When 0 < 1ý < 1, then I obeys 1/4<I1 < 1/2

There remains the case where A is large (5 3) but not such that zA >> 3, z - 0.
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Then the integeral for J is split into two parts, viz.:

[zo a(,o

1 f + I-2P E(A~z+ B^)dz ,A~zo,5-3 E:Az,) I -o(1 0-6

0 ZO , (A-13)
ze

f Je-'t2 e(z + B)dz + f e'zidz
0 to

(1. 4(3 ,-+ [l a _ 3

a > zo (see equation (A-9b); (A-14)

A(- , , since < 10-6 , etc.

Accordingly, with equation (A-8b) applied to equation (A-6b), (comparatively)

simple analytic expressions have been obtained for the general probability integral I (see

equation (A-i)), in terms of the extensively tabulated functions O(x) in equation (A-3a),

0(')(x) in equation (A-7b), et seq., and Ic in equation (A-9a), namely, the error functions,

related derivatives, and the incomplete F-function. Computer evaluation of J and I is then

straightforward.
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APPENDIX B
CORRECTIONS FOR SOME RESULTS IN REFERENCE 3

In a recent work (reference 3), which among other things considered the special

ternary case (M =-2) with purely (correlated) Gaussian noise and completely known signals

S1, S2 (*S1), i.e., coherent detection, at all signal levels, the limits on the integral

expressions for the various decision probabilities were inadvertently incompletely

specified. The qualitative nature of the results were not affected, but the quantitative

expressions were. The correct analytic forms are given here.

Begin with equations (A.l-14a) and (A.l-14c), respectively, of reference 3:

Add in the limits - A2 to y, + A; - A, to y2 + A 2  (B-)
Addin thelimits -A, toy 2 +A 2 ; -A 2 toy, +Af

Also, for equation (A. I- 16b),

PM*D Pi f d y f-d 2P()(Y) (B-2a)
-A,(--

and, for equation (A.l-17b),

S yz+AZA,

P= P2 f dyY 2 1f2A2)() (B-2b)
-A2 --

The results of these limit modifications are that equation (A.1-33b) becomes (with lb W iks):

2 lo( s2(-3 )
BZIn Emax[ a. Fi5 log4t a io4')- 9

while equation (A.1-33c) is replaced by equation (A.l-14a) (see equations B-i, etc.).
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Similarly, for equation (A. 1-34b):

'4) L[1+eO(B..)] , with

B [ao-i + log 1 2)

2v24 7 Ja.74b '-2 ;2a0  1

In the same way, for equation (A.1-35):
f "/ ~min '

r mm(2
= j -q --- k " jPiOB=)P 2 0(B(-] r-ao,"" (B-5)

so that, for equation (A. 1-36),

R-•2Iv3 = C.[ i--e f )-] (B-6)

which gives, for equation (A.1-27),

ARL.2 = '9- r •+2 r(B7

Finally, equation (A. 1-38) becomes, for q = p1 = P2 =1/3:

:- = 2'1 3  T - 10(i)]. (B-8)
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