
Educational Materials
CMU/SEI-93-EM-8

0= Software Engineering Institute

Ln=

_• •Lecture Notes on

I Software Process Improvement
Laurie Honour Werth

February 1993 DTIC
ELECTESMAY 14199

8

0) 4I 93-10709

Educational Materials
CMU/SEI-93-EM-8

February 1993

Lecture Notes on
Software Process Improvement

Laurie Honour Werth
University of Texas at Austin

Approved for public release.
Distribution unlimited.

Software Engineering Institute
Carnegie Mellon University

Pittsbuiyh, Pennsylvania 15213

This technical report was prepared for the

SEI Joint Program Office
ESC/AVS
Hanscom AFB, MA 01731

The ideas and findings in this report should not be construed as an official
DoD position. it is published in the Interest of scientific and technical
information exchange.

Review and Approval

This report has been reviewed and is approved for publication.

FOR THE COMMANDER

Thomas R. Miller, It Col, USAF
SEI Joint Program Office

The Software Engineering Institute Is sponsored by the U.S. Department of Defense.
This report was funded by the U.S. Department of Defense.
Copyright 0 1993 by Carnegie Mellon University.

This document is available through the Defense Technical Intormadon Center. DTIC provides access o and transfer of
soientific and technical information for DoDpersonnel. DoD contractors and potential contractors, and other U,S. Government
agency personnel and their contractors. To obt•in a copy, please contact DTIG dredy: Defense Technical Information
Center, Attn: FDRA, Cameron Station, Alexandria, VA 22304-6145.
Copies of this document are also available through the National Technical Information Service. For information on ordering,
please contact NTIS directly: National Technical Information Service, U.S. Departmnent of Commerce, Springfield, VA 22161.

Copies of this document ae also available from Research Acess, Inc.. 3400 Forbes Avenue, Suits -102, Piftburgh, PA 15213

Use of any tradem-,"•, i.. ; 14, ,o-: is not intended in any way to infringe on the rights of the trademarit holder.

Table of Contents

Preface

1. Overview of Software Process and Quality Improvement 1
1.1. Fundamental Process and Process Management Concepts 1

1.2. Historical Background 3

2. The Software Engineering Institute Capability Maturity Model 5
2.1. Uses of the CMM 5

3. Capability Maturity Model Practices 8

4. Components of the CMM 9
4.1. Maturity Level 10
4.2. Key Process Areas 11
4.3. Key Practices 12
4.4. Maturity Questionnaire 12

5. Conclusions 13

Bibliography 15

Appendix A. Classroom Experiences with Software Process 19

Appendix B: Software Process Assessment Questionnaire 23

Attachments 31
SAoession For

NTIS GRA&IY•"
DTIC TAB
Unann.o',a.'c ed [f]

By. _ _ _ _

Dist r• 11 tit, I

Avn1 ibjýijty Codes

DistjI _ _

CMU/SEI-93-EM-8

List of Figures

Figure 1. Five levels of software process maturity [Weber9l] 2

Figure 2. Common steps in SPAs and SCEs 6

Figure 3. Capability maturity model (CMM) structure 9

Figure 4. Example of CMM structure 10

Figure 5. Results of GAO survey of software contracts 13

List of Tables

Table 1. Shewart improvement cycle [Deming86I 3

Table 2. Comparison between SPA and SCE 7

Table 3. Key process areas (KPAs) by maturity level [Paulk9l] 11

CMU/SEI-93-EM-8

Preface

Software process improvement is not usually covered in standard software engineering
textbooks. However, because it is a topic of great interest to the software industry, both
faculty and students should be familiar with it. The goal of this package is to provide
the basis for an introductory 30 to 60 minute lecture on the software process and its
improvement.

The material in the main body of the document is intended primarily for instructors. In
conjunction with the student-oriented document described below, it provides technical
information from which an instructor can prepare a lecture. Two appendices provide
additional information for instructors. Appendix A is a brief description of the use of the
software process material in a university software engineering class at the University of
Texas at Austin. This classroom example might be used as an illustration for students
to relate the process concepts to their own software development work. Appendix B
presents the Software Engineering Institute's (SEI) process maturity questionnaire
from which instructors and students can gain some insight into how a software process
is assessed.

A document titled "Introduction to Software Process Improvement" is attached; it is
intended for students. It describes the SEI capability maturity model (CMM), the
maturity questionnaire, and SEI procedures that are based on the questionnaire:
software process assessment and software capability evaluation. Instructors may photo-
copy this document and distribute it to students to augment their textbook. (This doc-
ument is also available electronically in PostScript format via the Internet, from which
students can print their own copies. For details, send a request to Internet address
education@sei.cmu.edu.)

Finally, the package contains overhead transparency masters that instructors may find
useful in delivery of their lectures.

How to Use the Materials

These materials are introductory in nature, and they assume that the student audience
is a beginning software engineering class. However, these materials may also be useful
to prepare a talk for computer professionals and managers, or to prepare a general pro-
fessionalism talk for computer science and engineering students.

Although the main bod, A'this package is intended for instructors, it may be distributed
to students if the instructor desires. Industry audiences, for example, may want to see
the additional CMM material or even the questionnaire from Appendix B. However,

CMU/SEI-93-EM-8 v

many of the maturity questionnaire concepts will not be familiar to college students
unless they have had work experience or they have already had this material in class, so
students may become overloaded by the terminology contained in the questionnaire and
other supplementary material.

In the future we hope to add advice on applying the process improvement concepts to a
software engineering class project, as well as additional materials on software process
r,"trics.

References

The student document does not contain a bibliography or citations because we have
assumed that undergraduate students are unlikely to seek additional reading unless
specifically assigned by the instructor. The bibliography in the instructor's document
does contain all the references. References in the student document to an author's name
can usually be found under that author's name in the instructor's bibliography. The
surveys of software process maturity levels mentioned on page 4 may be found in
[Humphrey89b]. References for the process improvements at Hughes Aircraft,
Raytheon, and NASA are in (Humphrey9l], [Dion92], and [Humphrey92], respectively.

vi CMU/SEI-93-EM-8

Lecture Notes on
Software Process Improvement

1. Overview of Software Process and Quality Improvement

Today, concern for quality has become an international movement. England requires
quality programs to be certified and audited. Europe will soon offer certification for
software development companies that meet the standards described in ISO 9000
(International Standards Organization number 9000) [Arter921. Japan has awarded the
Deming Prize for years [Masaaki86].

In the United States, the Department of Commerce and NASA give major awards, such
as the highly coveted Malcolm Baldridge Quality Award [Garvin9l], for quality
improvement. Many companies have begun to implement quality improvement or total
quality management (TQM) programs throughout the company, not just in software
development.

1.1. Fundamental Process and Process Management Concepts

Process is a term used to describe the people, methods, and tools used to produce soft-
ware products. Improving the quality of the product is believed to be based on improv-
ing the process used to develop the product. Because software is intangible and not
subject to the same physical constraints as hardware and many manufacturing prod-
ucts, defining the software process can be difficult.

Software engineering process is defined as the system of all tasks and the supporting
tools, standards, methods, and practices involved in the production and evolution of a
software product throughout the software life cycle. Process-driven software develop-
ment implies that organizational process is adapted to meet project and product quality
goals. Software development should be guided by an explicit process, with environment
and tools integrated to support this process. Process definition is a prerequisite to pro-
cess improvement. Defined processes promote collaboration and teamwork by making
activities, roles, and dependencies visible. Process management supports improvement
of the defined process through measurement and feedback.

Current implementations of process management combine three steps: definition, con-
trol, and improvement [Card89I. Process definition provides an exact description for the
work to be performed. The current process is used as a baseline against which changes
will be compared. Process control works to keep significant quality parameters within
some predefined limits. Process improvement involves analyzing problems for root

CMU/SEI-93-EM-8 1

causes and working to correct them. Product quality is seen as a result of continuously
improving process quality. A process is said to be under statistical control if its future
performance can be predicted within established statistical limits [Deming86].

Watts Humphrey incorporates these concepts into a software-oriented model in his book
Managing the Software Process [Humphrey87]. Based on work begun at IBM, this
model adapts the ideas to software development, providing five maturity levels, shown
in Figure 1, which define an effective, staged progression toward a statistically con-
trolled software process. Humphrey's work became the foundation of SEI software pro-
cess improvement and the SEI capability maturity model (CMM) [Paulk9l, Paulk93].

Continuously . Optimizing
improving (5)
process

process (1'

Standard, Deinedconsistent (3)

process

Disciplinerd Repeatable
process (2)

Initial
(1)

Figure 1. Five levels of software process maturity [Weber9l]

The basic ideas of statistical process control have been known and practiced in other
areas for at least 60 years. However, these methods represent significant change for
most businesses and institutions. Resources must be provided to allow each organiza-

2 CMU/SEI-93-EM-8

tion to adapt the ideas to their own environment gradually, over time. This is not a
quick fix or a band-aid approach to improving software quality.

The capability maturity model defines the five stages or levels through which a company
must move in order to improve pr(,cess and resulting product quality. Each level of the
model is the foundation for the next, so it is important not to try to move too quickly or
to skip levels. Care must be taken that measures not be misused, either to evaluate
individuals or to compare dissimilar projects. Still, the benefits experienced by organi-
zations that have applied these software improvement methods have outweighed the
costs. The productivity and quality improvements can help us retain our lead in the
global software marketplace.

1.2. Historical Background

Walter Shewart, a physicist, worked at AT&T Bell Labs in statistical process control in
the 1930s. W. Edwards Deming based his work on the Shewart improvement cycle (a
sequence of four steps that are repeated indefinitely; see Table 1), which he successfully
adapted to Japanese industry after World War II. Current Japanese management
strategy continues to focus on quality improvement because the Japanese believe that
the productivity and profit improvements will follow naturally. Many companies are
applying the ideas of quality or process improvement across their organization.
Software process improvement is the application of these concepts to software develop-
ment.

1. Plan

Define the problem

State improvement objectives

2. Do

Identify possible problem causes

Establish baselines

Test changes

3. Check

Collect data

Evaluate data

4. Act

Implement system change

Determine effectiveness

Table 1. Shewart improvement cycle [Deming86l

CMU/SEI-93-EM-8 3

Shewart's Plan-Act-Check-Do paradigm is the basis for the SEI process improvement
program. Shewart's paradigm, applied to both the software product and process, gener-
ally consists of the following activities:

Plan The SEI capability maturity model is a general framework or plan for devel-
oping five increasingly improved levels (initial, repeatable, defined,
managed, and optimizing) of software process maturity. Because the CMM is
designed to bp generic, each organization must customize its process
improvement plan for its own application(s), environment, and company
organization. The five levels are designed as a logical progression, so each
level must be achieved, in order, from one to five. It is not possible to skip
levels.

Act Because software is not produced by a manufacturing process, software
designers must both strive to meet the users' functional requirements for the
product and design for correct imp) mentation and easy maintainability.

There will usually be many examples of process improvements that are
needed. Efforts should focus on higl.-leverage points, and action plans to
correct the defects must be evaluated for effectiveness. Software tools to
automate and standardize the process may aid in institutionalizing
improvements, but tools are not a cure-all.

Check Software inspections and peer reviews are the major product control mecha-
nism used. Quantifiable inspections results such as change requests provide
the foundation for measurable process control and improvement.

Audits are the most usual process verification process. Auditors need to
examine not only whether the standards, procedures, and tools are adequate,
but they also to see how well the project is following the prescribed process
plans.

Do Software quality control is often specified both by the customer acceptance
criteria in the contract or requirements specification and by whether the
software product meets written standards. Software measures are used to
measure product quality in a quantifiable way. The SEI has already
published a core set of measures [Florac921 which can be used as a basis and
enhanced by the organization as needed, though these measures are still
under active development.

The most ccr mon process quality control approach is tracking actual against
expected performance. Calises for significant deviation from the plan are
found and corrected. In the later stages of the maturity model, the organiza-
tion strives to actively prevent problems and errors rather than to wait to
detect them in the later phases of the software development project.

4 CMU/SEI-93-EM-8

2. The Software Engineering Institute Capability Maturity Model

The basic concept of a maturity framework was inspired by Crosby's quality manage-
ment maturity grid and its five evolutiorary stages in adopting quality practices
[Crosby79l. This maturity framework was adapted for software by Radice and others at
IBM [Radice85, Radice88]. Humphrey brought the maturity framework from IBM to
the SEI in 1986, adding the concept of maturity levels. Various aspects of the maturity
model are described in SEI technical reports [Fowler9O, Weber9l, Florac92] and
Humphrey's book [Humphrey87].

Process management fundamentals are firmly grounded in science and engineering
principles. They have been strongly influenced by the work on statistical process control
developed by leaders such as Deming and Juran [Deming86, Juran88]. The SEI method
incorpcrates a growing body of experience with techniques for cost and size estimation,
configuration management, and other software quality improvement approaches. The
field of technology transfer has evolved to the point that it now provides operative
methods for helping organizations adapt to technological changes. This work has been
combined to provide a foundaticn for learning about and improving the software devel-
opment process.

The software field is young, and more modern tools and methods will evolve over time.
Software organizations and applications are far too diverse to fit easily into a single pro-
cess model. The SEI maturity model provides a framework as well as a method for
evaluating and improving the software engineering process within an organization. The
guidelines do not mandate particular methodologies, tools, or organizational structure.

2.1. Uses of the CMM

The capability maturity model, developed by the Software Engineering Institute, is
designed to help both development organizations and customers (government organiza-
tions or companies who acquire software). Software organizations need to under-tand
the quality of their software process and how to improve it. Organizations contracting
for software need ways to evaluate a potential contractor's capability to carry out the
work.

The CMM has four intended uses [Weber9l] to help organizations improve their soft-
ware process capabilities:

1. Identify improvements

2. Identify risks in selecting contractors

3. Implement a process improvement program

4. Guide definition and development of the software process

Over the last few years, the SEI has expanded and refined the CMM with input from
many professionals from both government and industry. The current version
[Paulk93a, Paulk93b] is based on several years' experience applying the model to soft-

C MU/SEI-93-EM-8 5

Selection Maturity Response
and Questionnaire Analysis

Training

(1) (2) (3)

"•On-Site Visit Findings •'L•'o

(4) (5) (6)

(7)

Figure 2. Common steps in SPAs and SCEs

ware process improvement [Humphrey89b]. The SEI has also developed two specific
methods that apply the CMM: software process assessment (SPA) and software capabil-
ity evaluation (SCE).

A software process assessment is an in-house determination, primarily of the weak-
nesses of the software process in an organization as a whole. It is an internal tool that
an organization can choose as a part of an overall program for improving its ability to
produce high-quality products on time and within budget. The objectives of the SPA
method are to (1) identify strengths, weaknesses, and existing improvement activities
on which to base an organization-wide improvement effort and (2) to get organizational
buy-in to that effort. The method is used to help an organization identify key areas for
improvement, begin to baseline its software process, and initiate improvements.

6 CMU/SEI-93-EM-8

*SCE SPA

Used by acquisition organization Used by organization to improve
for source selection and contract software process
monitoring

Results to the organization and Results to organization only
the acquirer

Substantiates current practice Assesses current practice

Assesses commitment to improve Acts as catalyst for process
improvement

Analyzes contract performance Provides input to improvement
potential action plan

Independent evaluation-no Collaborative--organization
organization members on team members on team, with represen-

tative from licensed SPA
associate or SEI

Applies to performance for a Applies to organization overall,
particular contract not individual projects

Table 2. Comparison between SPA and SCE

A software capability evaluation is an independent evaluation of an organization's soft-
ware process as it relates to a particular acquisition. It is a tool that helps an external
group (an "acquirer") determine the organization's ability to produce a particular prod-
uct having high quality and to produce it on time and within budget. The objective of
the SCE method is to identify strengths, weaknesses, and existing improvement activi-
ties in a supplier's software process that best indicate the risk associated with using
that supplier for a particular software acquisition. The method is used to identify soft-
ware risks, help in mitigating these risks, and motivate initiation of improvement
programs.

The common steps in SPAs and SCEs are summarized in Figure 2. Additional similari-
ties and differences between SPAs and SCEs are shown in Table 2 and are elaborated in
[SE1921.

The SEI maturity questionnaire (see Appendix 2) is used for both SPA and SCE, but
there are differences in how it is used in each method. These differences include the
objectives, the make-up of the site visitation teams, the criteria for determining scope
and for defining findings, and the ownership of the results. In view of these differences,

CMU/SEI-93-EM-8 7

the outcomes of assessments and evaluations are not likely to be interchangeable or
directly comparable. The SCE team may conclude that a particular weakness has low
risk associated with it for the acquisition and therefore discount it (for example, subcon-
tract management in an acquisition that may not involve subcontracts), while a SPA
team might recommend corrective action as a high priority for the same weakness (since
other projects involve subcontractors). Both views would be valid for their respective
purposes.

There is considerable interest in the software community in using assessments and in
the concept of continuous quality improvement that forms the basis of the methodology.
The SEI has licensed independent training and consulting companies (SPA associates)
to provide training and assistance in applying the SPA method to a particular environ-
ment. Software process conferences, software engineering process groups in companies,
local software process improvement network (SPIN) groups, and tool support are begin-
ning to emerge.

3. Capability Maturity Model Practices

The capability maturity model describes the characteristics of a mature software pro-
cess. The model also shows how an immature software process can evolve into a well-
managed mature one. The overall structure of the model is shown in Figure 3. Major
components of the CMM, as shown in the figure, include:

"* Maturity level: five levels or plateaus on the path to a mature software process.

"* Process capability: capability refers to expected results, that is, what can we pre-
dict from this organization's next project based on their current process capability?

"• Key process areas: a cluster of related activities that, when performed collectively,
achieve a set of goals considered important for enhancing process capability. These
each contain common features.

"• Goals: the high-level objectives to be achieved by the key practices for that specific
key process area.

"* Key practices: the policies, procedures, and activities that most significantly
contribute to the institutionalization and implementation of the key process area.

"* Questions: yes/no questions that sample the key practices.

Figure 4 shows an example, or a particular instantiation, of the parts of the CMM struc-
ture to illustrate the relationships among the parts. In this figure, one sees the relation-
ship between the components (maturity levels, key process areas, key practices, and
questions). At the repeatable ,aaturity level, in the key process area of software project
planning, one of the key practices is to estimate project size. Thus, a typical question
from the maturity questionnaire might be "Do you use a documented procedure to esti-
mate software size?"

8 CMU/SEI-93-EM-8

(Maturity Levels

indicate
contain

Process
Capability

Key Proces ra

achieve contain

Common
eatures

address contain

Key
... Practices . .

describe

Figure 3. Capability maturity model (CMM) structure

4. Components of the CMM

Each of the major components of the capability maturity model is described in more
detail below. The SEI technical report, Key Practices of the Capability Maturity Model
[Weber91], elaborates the key practices that correspond to each maturity level; these
practices can be used to guide both software process improvements and capability

evaluations.

CMU/SEI-93-EM-8 9

Level 2, Repeatab~le

indicates contains

Process Key P ess Area:
Capability: K rcs ra
disciplined Software Project Piannin

processsI

achieves contains

A plan is developed tha
appropriately and

realistically covers the

sotwr activitre prdutsar/

dcommitmenntects
specifies

describes

Actiiey Usecica
S estimate fo sohwar size Of

Figure 4. Example of 0MM structure

4.1. Maturity Level

Each maturity level in the CMM indicates a certain software process capability, describ-

ing how the software organization is expected to function: initial or ad hoc, repeatable,defined, managed, or optimizing. Each level represents an improvement in the software

process. An organization's software capability can be improved by advancing through

10 CMU/SE4-93-EM-8

Level 2: Repeatable
Requirements Management
Software Project Planning
Software Project Tracking and Oversight
Software Subcontract Management, if applicable
Software Quality Assurance
Software Configuration Management

Level 3: Defined
Organization Process Focus
Organization Process Definition
Training Program
Integrated Software Management
Software Product Engineering
Intergroup Coordination
Peer Reviews

Level 4: Managed
Process Measurement and Analysis
Quality Management

Level 5: Optimizing
Defect Prevention
Technology Innovation
Process Change Management

Table 3. Key process areas (KPAs) by maturity level [Paulk9l]

these five stages or levels. Each maturity level allows management to gain a better
understanding of the software process. Each level provides the foundation necessary to
meet the goals of the next highest maturity level. Each maturity level has been decom-
posed into parts or key process areas as shown in Figures 3 and 4.

4.2. Key Process Areas

Key process areas (KPAs) identify areas on which an organization should focus in order
to improve its software development processes. Each key process area is made up of key
practices that contribute to achieving the goals of the KPA. Goals can be used to resolve
whether an organization or project has adequately implemented a key process area.
Goals signify the scope, boundaries, and intent of each key process area.

Key process areas are building blocks-fundamental activities for organizations trying
to improve their software process. Other process areas exist, but these were selected as
particularly effective in improving process capability. Each key process area is unique

CMU/SEI-93-EM-8 11

to a single maturity level. Table 3 shows the key process areas required for each matu-
rity level. Note that there are no KPAs for the first or "initial" level.

4.3. Key Practices

Key practices are the lowest level, specific details of the CMM. Key practices define each
key process area in Table 3 by specifying policies, procedures, and activities that con-
tribute to satisfying its goal. They are a working definition of the key process area.

Key practices provide a link between the CMM and the maturity questionnaire. Specific
questions relate to specific key practices. Industry experience and empirical studies
were used to identify the key practices chosen by the SEI. Each key practice describes,
but does not mandate, how that practice should be performed. The SEI technical report
previously cited [Weber9l] provides extensive definitions and guidance on the interpre-
tation of key practices.

4.4. Maturity Questionnaire

The maturity questionnaire consists of questions about the software process that sample
the practices in each key process area. (See the example question in Figure 4). All the
questions used in the maturity questionnaire can be found in Appendix B.

The maturity questionnaire is a springboard for an assessment or evaluation team's
visit. The CMM provides a hierarchical structure that guides the team in investigating
an organization's software process. Answers to the questions identify process strengths
and weaknesses in terms of key process areas. Questions in the maturity questionnaire
are designed to determine the presence or absence of the various key practices.
Questions are not open-ended, but are intended to obtain a quantified result from the
following answers: yes, no, don't know, and not applicable. A more detailed and open-
ended questioning process begins after the responses to the maturity questionnaire have
been analyzed.

The SCE team identifies strengths, weaknesses, and improvement activities that they
consider to be most relevant to performance on the acquisition contract. A group in the
acquisition agency then transforms the findings into acquisition risks and/or technical
ratings, which, along with other criteria, the agency can use to select a source or moni-
tor a contract.

The SPA team also analyzes the questionnaire data to determine the current software
process maturity level, identify key findings (that is, determine what will impede capa-
bility to produce quality software), and note strengths the organization can build upon.
The team presents the results to senior management and, often, to the entire organiza-
tion that was assessed. The team often enlists the aid of others within the organization
to make recommendations for process improvement actions. An action planning group
(often a software engineering process group, under the guidance of a management
steering committee) develops the strategies for accomplishing long-term process
improvement and determines what improvements are achievable within a specific time

12 CMU/SEI-93-EM-8

frame. They work with many others in the organization to create an action plan and
implement it.

5. Conclusions

While great strides have been made in developing software engineering methodologies
and techniques, companies have been unable to consistently produce high-quality soft-
ware. Stories of software problems appear on a regular basis, for example
[Neumann92l. Large amounts of money have been spent on projects that have produced
little usable software, as illustrated graphically in the results of a General Accounting
Office (GAO) survey shown in Figure 5.

Software paid for
Software that could but not delivered
be used after changes 29.7%

-3%

Software used
but later reworked
or abandoned

19%/0
)

'- Software deliveredSoftware that could btnvrue
be used as delivered 47%

-2%

Year 1982: Nine Contracts Totalling $6.8 Million

Figure 5. Results of GAO survey of software contracts

Successful projects have been largely based on individual or dedicated team effort
rather than on software development methods [Humphrey89a]. We have come to
understand that benefits of better methods and tools cannot be realized in undisciplined
projects. In the typical "firefighting" mode in which immature organizations function,
software quality is compromised to meet unrealistic schedules.

Process improvement ideas for software are similar to current business practices based
on total quality management, popularized, beginning ten years ago, by books such as
Quality is Free [Crosby79] and In Search of Excellence [Peters82]. Many of the process
management and quality improvement concepts have been adapted from the work sta-
tistical process control done by W. Edwards Deming and Joseph Juran [Deming86,
Juran88, Juran89]. The SEI developed the capability maturity model, based on this
earlier work by quality experts, as a framework for evaluating and guiding software
process improvement. As an organization increases in maturity, the difference between
targeted and actual results decreases across the project. Development time and cost
decrease, while productivity and quality increase. With an objective basis for measuring

CMU/SEI-93-EM-8 13

quality and setting improvement priorities, time and costs become more predictable as
rework and errors are removed from the system [Humphrey89a].

Companies report that improvements in work environment and motivation have turned
out to be an even greater benefit than the cost saving that resulted from using the CMM
[Henry92, Mays90]. (See also Table 2 in the attached student document Introduction to
Software Process.) In a mature organization, everyone knows the processes and their
own responsibilities. Workers become empowered by their involvement in developing
the process descriptions and by the ability to update processes as needed. Internal pro-
cesses of projects become more visible. Managers know current project status and can
monitor quality and customer satisfaction.

Software process issues become even more important in the classroom, where the
students are inexperienced. Using the CMM role definitions and job descriptions in
classes can ease students' transition to working as a cohesive software engineering team
in a professional environment. They have a better appreciation of why software devel-
opment can be so difficult, and they have a meta-model for reducing this complexity.
Even without applying the ideas on the class project, students can gain a clearer idea of
the complications inherent in developing large software products and how they can be
managed. Knowledge of software process concepts has proved helpful to students in
talking to software company recruiters as well.

Knowledge transferred from the university to industry should begih to include process
material in software engineering classes. The importance of software process is vital
information needed to prepare computer science students for the challenges of modern
software technology.

14 CMU/SEI-93-EM-8

Bibliography

Arter92 Arter, D. "Demystifying the ISO 9000/Q90 Series Standards." Quality
Progress (Nov. 1992).

Brooks87 Brooks, F. P. "No Silver Bullet: Essence and Accidents of Software
Engineering." Computer 20, 4 (Apr. 1987): 10-19.

Crosby79 Crosby, P. B. Quality is Free. New York: McGraw-Hill, 1979.

Curtis88 Curtis, B.; Krasner, H.; & Iscoe, N. "A Field Study of the Software,
Design Process for Large Systems." Comm. ACM 31, 11 (Nov. 1988):
1268-1287.

DeMarco82 DeMarco, T. Controlling Software Projects: Management, Measurement
and Estimation. Yourdon Press, 1982.

Deming86 Deming, W. E. Out of the Crisis. Cambridge, Mass.: MIT Center for
Advanced Engineering Study, 1986.

Dion92 Dion, R. "Elements of a Process-Improvement Program." IEEE
Software (July 1992): 83-85.

Florac92 Florac, W. A. Software Quality Measurement: A Framework for
Counting Problems and Defects (Tech. Rep. CMU/SEI-92-TR-22).
Pittsburgh, Pa.: Software Engineering Institute, Carnegie Mellon
University, 1992.

Fowler9O Fowler, P.; & Rifkin, S. Software Engineering Process Group Guide
(Tech. Rep. CMU/SEI-90-TR-24, ADA235639). Pittsburgh, Pa.:
Software Engineering Institute, Carnegie Mellon University, 1990.

Garvin9l Garvin, D. "How the Baldridge Award Really Works." Harvard
Busines,• Review (Nov.-Dec. 1991).

Henry92 Henry, J.; & Blasewitz, B. "Process Definition: Theory and Reality."
IEEE Software 9, 6 (Nov. 1992): 103-105.

Humphrey87 Humphrey, W.; & Sweet, W. A Method for Assessing the Software
Engineering Capability of Contractors (Tech. Rep. CMU/SEI-87-TR-23,
ADA187320). Pittsburgh, Pa.: Software Engineering Institute,
Carnegie Mellon University, 1987.

Humphrey88 Humphrey, W. "Characterizing the Software Process." IEEE Software
5, 2 (Mar. 1988): 73-79.

Humphrey89a Humphrey, W. S. Managing the Software Process. Reading, Mass.:
Addison-Wesley, 1989.

CMU/SEI-93-EM-8 15

Humphrey89b Humphrey, W.; Kitson, D.; & Kasse, T. State of Software Engineering
Practice (Tech. Rep. CMU/SEI-89-TR-1, ADA206537). Pittsburgh, Pa.:
Software Engineering Institute, Carnegie Mellon University, 1989. Also
in Proc. 13th Intl. Conf Software Eng., Austin, Texas, 1991.

Humphrey9la Humphrey, W.; Snyder, T.; & Willis, R. "Software Process Improvement
at Hughes Aircraft." IEEE Software 8, 4 (July 1991): 11-23.

Humphrey9lb Humphrey, W. S. Executive Leadership for Software. Videotape,
Software Engineering Institute, Carnegie Mellon University,
Pittsburgh, Pa., 1991.

Humphrey92 Humphrey, W. S. Introduction to Software Process Improvement (Tech.
Rep. CMU/SEI-92-TR-7, ADA253326). Pittsburgh, Pa.: Software
Engineering Institute, Carnegie Mellon University, 1992.

IS087 ISO. Quality Management and Quality Assurance Standards-
Guidelines for Selection and Use. 1987. Available from Global
Engineering Document, Irvine, Calif.

Juran88 Juran's Quality Control Handbook, Fourth Ed. Juran, J. M.; & Gryna,
F. M., eds. New York: McGraw-Hill, 1988.

Juran89 Juran, J. M. Juran on Leadership for Quality. New York: The Free
Press, 1989.

Masaaki86 Masaaki, I. Kaizen: The Key to Japan's Competitive Success. New
York: McGraw-Hill, 1986.

Mays88 Mays, R.; Jones, E.; Holloway, G.; & Studinski, D. "Experiences With
Defect Prevention." IBM Systems Journal 29, 1 (1988): 4-32.

Metzger83 Metzger, P. W. Managing a Programming Project, Second Ed.
Englewood Cliffs, N. J.: Prentice-Hall, 1983.

Neumann92 Neumann, P. G. "Risks to the Public." Software Engineering Notes
(1992). Column in each issue.

Paulk9l Paulk, M. C.; Curtis, B.; Chrissis, M. B.; Averill, E. L.; Bamberger, J.;
Kasse, T. C.; Konrad, M.; Perdue, J. R.; Weber, C. V.; & Withey, J. V.
Capability Maturity Model for Software (Tech. Rep. CMU/SEI-91-TR-24,
ADA240603). Pittsburgh, Pa.: Software Engineering Institute,
Carnegie Mellon University, 1991.

Paulk92 Paulk, M.; Curtis, B.; Chrissis, M. B.; Averill, E.; Bamberger, J.; Kasse,
T.; Konrad, M.; Perdue, J.; Weber, C.; & Withey, J. "The Capability
Maturity Model for Software," 1-24. Software Engineering Institute
Technical Review '92. Pittsburgh, Pa.: Software Engineering Institute,
1992.

Paulk93a Paulk, M.; Curtis, B.; & Chrissis, M. B. Capability Maturity Model for
Software, Version 1.1 (Tech. Rep. CMU/SEI-93-TR-24). Pittsburgh, Pa.:
Software Engineering Institute, Carnegie Mellon University, 1993.

16 CMU/SEI-93-EM-8

Paulk93b Paulk, M.; Weber, C.; et al. Key Practices of the Capability Maturity
Model, Version 1.1 (Tech. Rep. CMU/SEI-93-TR-25). Pittsburgh, Pa.:
Software Engineering Institute, Carnegie Mellon University, 1993.

Peters82 Peters, T. J.; & Waterman, R. H. In Search of Excellence. New York:
Harper and Row, 1982.

Pressman89 Pressman, R. Getting Started in Software Engineering: A Guide to
Implementing the Technology. New York: McGraw-Hill, 1989.

Pressman9l Pressman, R. Software Engineering: A Practitioner's Approach. New
York: McGraw-Hill, 1991.

Radice85a Radice, R. A.; Harding, J. T.; Munnis, P. E.; & Phillips, R. W. "A
Programming Process Study." IBM Systems Journal 24, 2 (1985).

Radice85b Radice, R. A.; Roth, N. K; O'Hara, A. C., Jr.; & Ciarfella, W. A. "A
Programming Process Architecture." IBM Systems Journal 24, 2 (1985).

Scholtes88 Scholtes, P. The Team Handbook: How to Use Teams to Improve
Quality. Madison, Wis.: Joiner Associates, 1988.

SE192 Software Engineering Institute. "SCE, SPA--Sorting It Out." Bridge
(Dec. 1992): 1-6.

Weber9l Weber, C. V.; Paulk, M. C.; Wise, C. J.; & Withey, J. V. Key Practices of
the Capability Maturity Model (Tech. Rep. CMU/SEI-91-TR-25,
ADA240604). Pittsburgh, Pa.: Software Engineering Institute,
Carnegie Mellon University, 1991.

C MU/SEI-93-EM-8 17

Appendix A.- Classroom Experiences with
Software Process

Introduction

Various earlier efforts by the author to incorporate software engineering techniques into
a course at the University of Texas at Austin have been previously described lWVerth88,
Werth89, Werth90, Werth9l]. Over the years, using higher level software such as
MacApp, HvperCard, and Oracle in a Macintosh II laboratory, we developed tools for the
software engineering class itself to provide support for testing, costing version control,
analysis and design, software process assessment, and others. A successful collabora-
tion with a local company provided valuable experience for students using industry-
strength CASE tools. In 1992 we explored the area of software process improvement,
both by teaching the foundations and by applying it directly to the class project.

Our reasoning was that if software process improves the commercial software develop-
ment environment, then the application of software process techniques should also
strengthen the classroom environment. Two positive effects could be expected. First,
successful experience with the techniques on the class project would result in stildents
even better prepared to meet the challenges of modem software technology. Second, the
use of quality improvement techniques, applied to the software engineering project as
currently taught, would be a step in the direction of imi,-ovihg academic education as
suggested, for example, by Peter Denning II-enning92I.

Course Description

Starting with Tomayko's model [Twmayko87} in the spring 1992 semestt.-, we began to
develop process plans and tools ifr the class project. This project provided an early
design and prototype for a metrics tool to collect and analyze defect reports, as described
by the Software Engineering Institute (SEI) [Florac9l]. In the fall semester, students
employed these plans and tools to complete the design and implementation of Dante's
Defect Tracker.

The spring effort was based on disjoint subteams for design, implementation, testing
and evaluation, documentation, configuration management, and quality assurance. In
the fall, we integrated the process teams within the technical teams, providing a matrix
management scheme. Each of the four technical teams (design, implementation, test-
ing, and documentation) elected one person to each of the following process teams: pro-
ject administration, system administration, configuration management, quality assur-
ance, and documentation specialists. This new organization seemed to match more
closely the roles that evolved during the spring semester's effort, as well as incorporate

CMU/SEI-93-EM-8 19

natural liaison and communication of process procedures within the technical teams.
Because of lack of experience, undergraduates find it easier to monitor and impose con-
trol when they are members of both the technical and the process teams.

Technical teams met and developed documents appropriate to their role: functional and
design specifications by the design team; software product with programmer's manual
by the implementation team; test plans, test cases, results, and reports by test and eval-
uation; and the user's manual(s) by the documentation team. Process teams developed
or enhanced existing plans to describe their process function and wrote process legacies
to pass along their increased understanding of their process role(s) for future teams.

Each Friday, at the status meeting held during class, one technical team presented their
work, while process teams made announcements and reported progress. Everyone in
the class acted as either the status meeting moderator or recorder at some point during
the course. Agendas and minutes were sent by e-mail to class members. Status meet-
ings worked very well, greatly improving communication and student proces's learning,
as well as reducing the instructor workload. Our industry "user," Herb Krasner,
attended these meetings as his schedule permitted.

Walkthroughs or reviews were held during the week, often after class on Monday or
Wednesday, in preparation for the Friday presentation. Attendees included the pre-
senting team and appropriate representatives from related technical and process teams.

The configuration control board (CCB) consisted of each team's configuration manage-
ment representative, along with the head of quality assurance, the external auditor (a
teaching assistant), and CEO (the instructor). Overall project management and coordi-
nation gravitated to the CCB meetings, held in the lab before class. Since other teams'
members were often working in the lab during this time and all teams were repre-
sented, many questions and issues were resolved quickly and easily. Results were
announced or further discussion took place immediately after the CCB meeting, during
class.

Lessons Learned

Student learning included the usual lessons such as the discovery of the complexity of
software development, the need for communication and teamwork, and the importance
of configuration management. Understanding of these issues was considerably deeper
with the new course organization, however.

While this semester's class was relatively low in work experience and leadership skill,
and relatively high in weak egos, significant learning took place due to the improved
process structure. In fact, process improvement worked well enough to be instrumental
in allowing us to bypass some of the battles between certain members of the design and
implementation teams. More centralized project management may help here also.

Reducing the process learning startup time is of major importance, and several
improvements are under development. We used an excellent book, The Team Handbook

20 CMU/SEJ-93-EM-8

[Scholtes89], as a supplementary process text, but additional class time needs to be used
to practice the techniques. Students' skills are weak enough that teamwork cannot be
learned solely from outside homework assignments. The students themselves suggested
assignments, quizzes, or other means to ensure that everyone learn roles and processes
early. Informal liaisons between the technical teams may need to be made explicit and
enforced. Further work on developing written job descriptions and process plans will
remedy some remaining deficiencies.

Technical writing and presentation skills are critical to process improvement and need
to be strengthened. Some science college and departmental efforts in this direction may
help. Our department's Contemporary Issues in Computer Science elective would be an
ideal prerequisite, as it is designed to incorporate writing and presentation skills within
a discussion of social, ethical, and professional issues. Relegating advanced methodol-
ogy and CASE tool training to additional, probably separate, courses will allow the
course to concentrate more on the project and ensure that all have the necessary techni-
cal skills, as well as making the course workload more equitable.

These techniques lead naturally to an analysis of the educational environment itself.
When processes work smoothly, the underlying environment and infrastructure weak-
nesses become more apparent. Process improvement applied to the students' working
environment identifies bottlenecks. In a time of limited resources, this is especially
helpful for guiding instructors in directing their course organization efforts.

* Conclusions

As usual, the instructor learned more than the students during the semester. Having
explicit process roles and duties greatly improved students' learning on the software
engineering project. While it is difficult to quantify, individual process skills and expe-
riences seem to affect the quality of the end-products in a substantive way. The techni-
cal analysis, design, and testing techniques employed are important; but the empower-
ment, shared learning, and more stable environment provided by quality improvement
efforts seem instrumental in increasing the learning benefits of the software engineer-
ing project course. As the students observed, the whole is indeed greater the sum of the
parts. Learning and applying software process can improve software engineering edu-
cation by giving students a meta-model to understand and help them manage the com-
plexities of a large software development project. Teaching and applying software
process is a vital part of increasing the amount of technology transferred as students
move from the classroom to industry.

References

Denning92 Denni ag, P. J. "Educating a New Engineer." Comm. ACM 35, 12 (Dec.
1992): 83-97.

Fiorac92 Florac, W. A. Software Quality Measurement: A Framework for
Counting Problems and Defects (Tech. Rep. CMU/SEI-92-TR-22).
Pittsburgh, Pa.: Software Engineering Institute, Carnegie Mellon
University, 1992.

CMU/SEI-93-EM-8 21

Scholtes88 Scholtes, P. The Team Handbook: How to Use Teams to Improve
Quality. Madison, Wis.: Joiner Associates, 1988.

Tomayko87 Tomayko, J. E. Teaching a Project-Intensive Introduction to Software
Engineering (Tech. Rep. CMU/SEI-87-TR-20, ADA200603). Pittsburgh,
Pa.: Software Engineering Institute, Carnegie Mellon University, 1987.

Werth88 Werth, L. H. "Software Tools at the University: Why, What and How,"
169-186. Software Engineering Education, Ford, G., ed. New York:
Springer-Verlag, Apr. 1988.

Werth89 Werth, L. H. "Preparing Students for Programming-in-the-Large," 37-
41. Proc. 20th SIGCSE Tech. Symp. Computer Science Education,
Barrett, R. A., Mansfield, M. J., eds. New York. ACM, Feb. 1989.

Werth90 Werth, L. H. "Object Oriented Programming and Design Class
Projects." J. Object Oriented Programming (NovJDec. 1990).

Werth9l Werth, L. H. "Industrial-Strength CASE Tools for Software
Engineering Classes," 245-256. Software Engineering Education,
Tomayko, J. E., ed. New York: Springer-Verlag, Oct. 1991.

22 CMU/SEI-93-EM-8

Appendix B: Software Process Assessment
Questionnaire

Five levels of process maturity have been defined for the assessment of software engi-
neering organizations:

Level 1 Initial
Level 2 Repeatable
Level 3 Defined
Level 4 Managed
Level 5 Optimized

Level 1 - Initial Process - The initial environment has ill-defined procedures and
controls. While positive responses to some of the organizational questions are likely, the
organization does not consistently apply software engineering management to the
process, nor does it use modern tools and technology.

Level 2 - Repeatable Process - At Maturity Level 2, the organization uses standard
methods and practices for managing software development activities such as cost esti-
mating, scheduling, requirements changes, code changes, and status reviews. The
organization will provide positive responses to most of the following questions (* indi-
cates a question of greater importance in determining the CMM level).

1.1.1 For each project involving software development, is there a designated
software manager?

1.1.2 Does the project software manager report directly to the project (or project
development) manager?

"*1.1.3 Does the Software Quality Assurance (SQA) function have a management
reporting channel separate from the software development project
management?

"*1.1.6 Is there a software configuration control function for each project that
involves software development?

1.2.2 Is there a required training program for all newly appointed development
managers designed to familiarize them with software project management?

1.3.1 Is a mechanism used for maintaining awareness of the state-of-the-art in
software engineering technology?

CMU/SEI-93-EM-8 23

"*2.1.3 Is a formal procedure used in the management review of each software

development prior to making contractual commitments?

2.1.4 Is a formal procedure used to assure periodic management review of the
status of each software development project?

2.1.5 Is there a mechanism for assuring that software subcontractors, if any, follow
a disciplined software development process?

2.1.7 For each project, are independent audits conducted for each step of the

software development process?

2.1.9 Are coding standards applied to each software development project?

"*2.1.14 Is a formal procedure used to make estimates of software size?

"*2.1.15 Is a formal procedure used to produce software development schedules?

"*2.1.16 Are formal procedures applied to estimating software development cost?

2.1.17 Is a mechanism used for ensuring that the software design teams understand
each software requirement?

2.2.1 Are software staffing profiles maintained of actual staffing versus planned
staffing?

*2.2.2 Are profiles of software size maintained for each software configuration item,

over time?

*2.2.4 Are statistics on software code and test errors gathered?

2.2.7 Are profiles maintained of actual versus planned soft ware units designed,

over time?

2.2.8 Are profiles maintained of actual versus planned software units completing
unit testing, over time?

2.2.9 Are profiles maintained of actual versus planned software units integrated,
over time?

2.2.10 Are target computer memory utilization estimates and actuals tracked?

2.2.11 Are target computer throughput utilization estimates and actuals tracked?

2.2.12 Is target computer I/O channel utilization tracked?

2.2.16 Are software trouble reports resulting from testing tracked to closure?

24 CMU/SEI-93-EM-8

2.2.18 Is test progress tracked by deliverable software component and compared to
the plan?

2.2.19 Are profiles maintained of software build/release content versus time?

"*2.4.1 Does senior management have a mechanism for the regular review of the

status of software development projects?

2.4.5 Is a mechanism used for regular technical interchanges with the customer?

*2.4.7 Do software development first-line managers sign off on their schedules and

cost estimates?

*2.4.9 Is a mechanism used for controlling changes to the software requirements?

"*2.4.17 Is a mechanism used for controlling changes to the code? (Who can make

changes and under which circumstances?)

2.4.20 Is there a mechanism for assuring that regression testing is routinely
performed?

Level 3 - Defined Process - At Maturity Level 3, the organization not only defines its
process in terms of software engineering standards and methods, it also has made a
series of organizational and methodological improvements. These specifically include
design and code review, training programs for programmers and review leaders, and
increased organizational focus on software engineering. A major improvement in this
phase is the establishment and staffing of a software engineering process group that
focuses on the software engineering process and the adequacy with which it is imple-
mented. In addition to the questions for Level 2, organizations at Level 3 will respond
"yes" to most of the following questions.

1.1.4 Is there a designated individual or team responsible for the control of
software interfaces?

1.1.5 Is software system engineering represented on the system design team?

1.1.7 Is there a software engineering process group function?

1.2.1 Does each software developer have a private computer-supported work
station/terminal?

"*1.2.3 Is there a required software engineering training program for software

developers?

1.2.4 Is there a required software engineering training program for first-line
supervisors of software development?

*1.2.5 Is a formal training program required for design and code review leaders?

CMU/SEI-93-EM-8 25

1.3.2 Is a mechanism used for evaluating technologies used by the organization
versus those externally available?

"*2.1.1 Does the software organization use a standardized and documented software

development process on each project?

2.1.2 Does the standard software development process documentation describe the
use of tools and techniques?

2.1.6 Are standards used for the content of software development files/folders?

2.1.8 Is a mechanism used for assessing existing designs and code for reuse in new
applications?

2.1.10 Are standards applied to the preparation of unit test cases?

2.1.11 Are code maintainability standards applied?

2.1.18 Are man-machine interface standards applied to each appropriate software
development project?

*2.2.3 Are statistics on software design errors gathered?

"*2.2.15 Are the action items resulting from design reviews tracked to closure?

*2.2.17 Are the action items resulting from code reviews tracked to closure?

2.4.3 Is a mechanism used for identifying and resolving system engineering issues
that affect software?

2.4.4 Is a mechanism used for independently calling integration and test issues to
the attention of the project manager?

*2.4.6 Is a mechanism used for ensuring compliance with the software engineering

standards?

2.4.8 Is a mechanism used for ensuring traceability between the software
requirements and top-level design?

2.4.11 Is a mechanism used for ensuring traceability between the software top-level
and detailed designs?

"*2.4.12 Are internal software design reviews conducted?

"*2.4.13 Is a mechanism used for controlling changes to the software design?

2.4.14 Is a mechanism used for ensuring traceability between the software detailed
design and the code?

26 CMU/SEI-93-EM-8

2.4.15 Are formal records maintained of unit (module) development progress?

*2.4.16 Are software code reviews conducted?

2.4.18 Is a mechanism used for configuration management of the software tools used
in the development process?

"*2.4.19 Is a mechanism used for verifying that the samples examined by Software

Quality Assurance are truly representative of the work performed?

"*2.4.21 Is there a mechanism for assuring the adequacy of regression testing?

2.4.22 Are formal test case reviews conducted?

Level 4 - Managed Process - At Maturity Level 4, the organization typically bases its
operating decisions on quantitative process data, and conducts extensive analyses of the
data gathered during software engineering reviews and tests. Tools are used increas-
ingly to control and manage the design process as well as to support data gathering and
analysis. The organization is learning to project expected errors with reasonable accu-
racy. In addition to questions for Levels 2 and 3, organizations at Level 4 will respond
"yes" to most of the following questions.

1.3.3 Is a mechanism used for deciding when to insert new technology into the
development process?

*1.3.4 Is a mechanism used for managing and supporting the introduction of new
technologies?

2.1.12 Are internal design review standards applied?

"*2.1.13 Are code review standards applied?

*2.2.5 Are design errors projected and compared to actuals?

*2 2.6 Are code and test errors projected and compared to actuals?

*2.2.13 Are design and code review coverages measured and recorded?

"*2.2.14 Is test coverage measured and recorded for each phase of functional testing?

"*2.3.1 Has a managed and controlled process database been established for process

metrics data across all projects?

*2.3.2 Are the review data gathered during design reviews analyzed?

*2.3.3 Is the effort data from code reviews and tests analyzed to determine the likely
distribution and characteristics of the errors remaining in the product?

CMU/SEI-93-EM-8 27

*2.3.4 Are analyses of errors conducted to determine their process related causes?

*2.3.8 Is review efficiency analyzed for each project?

2.3.9 Is software productivity analyzed for major process steps?

*2.4.2 Is a mechanism used for periodically assessing the software engineering
process and implementing indicated improvements?

2.4.10 Is there a formal management process for determining if the prototyping of
software functions is an appropriate part of the design process?

Level 5 - Optimized Process - At Maturity Level 5, organizations have not only
achieved a high degree of control over their process, they have a major focus on improv-
ing and optimizing its operation. This includes more sophisticated analyses of the error
and cost data gathered during the process as well as the introducing of comprehensive
error cause analysis and prevention studies.

"*1.3.5 Is a mechanism used for identifying and replacing obsolete technologies?

*2.3.5 Is a mechanism used for error cause analysis?

*2.3.6 Are the error causes reviewed to determine the process changes required to
prevent them?

*2.3.7 Is a mechanism used for initiating error prevention actions?

Technology Addendum

"*3.1 Is automated configuration control used to control and track change activity
throughout the software development process?

3.2 Are computer tools used to assist in tracing software requirements to
software design?

3.3 Are formal design notations such as PDL used in program design?

3.4 Are computer tools used to assist in tracing the software design to the code?

*3.5 Is the majority of product development implemented in a high-order
language?

3.6 Are automated test input data generators used for testing?

3.7 Are computer tools used to measure test coverage?

3.8 Are computer tools used to track every required function and assure that it is
tested/verified?

28 CMU/SEI-93-EM-8

3.9 Are automated tools used to analyze the size and change activity in software
components?

3.10 Are automated tools used to analyze software complexity?

3.11 Are automated tools used to analyze cross references between modules?

"*3.12 Are interactive source-level debuggers used?

"*3.13 Are the software development and maintenance personnel provided with

interactive documentation facilities?

*3.14 Are computer tools used for tracking and reporting the status of the software

in the software development library?

3.15 Are prototyping methods used in designing the critical performance elements
of the software?

3.16 Are prototyping methods used in designing the critical elements of the man-
machine interface?

CMU/SEI-93-EM-8 29

Attachments

Two attachments follow. The first, titled "Introduction to Software Process Improve-
ment," is intended as supplementary reading for students. Its pages are numbered
separately from the body of this educational materials package.

The second attachment consists of nine overhead transparency masters, the contents of
which are taken from the body of this document and from the student document. They
include:

"* Software Process Maturity Levels (Figure 1; student document Figure 1)

"* Shewart Improvement Cycle (Table 1)

"* Common Steps in SPAs and SCEs (Figure 2; student document Figure 2)

"* Comparison Between SCE and SPA (Table 2; student document Table 3)

"* Capability Maturity Model Structure (Figure 3)

O Example of CMM Structure (Figure 4)

"* Key Process Areas by Maturity Level (Table 4; student document Table 1)

"* Software Systems Development is Prone to Waste (Figure 5)

"* On-Board Shuttle Software Improvement (student document Table 2)

CMU/SEI-93-EM-8 31

Introduction to Software Process Improvement

Introduction

The crisis in software has been well documented. In order to compete successfully in the
international market, we, as software professionals, need to improve both the quality of
our software products and our ability to work within time and budget constraints.
These improvements depend strongly on process as well as technology.

Modern technology can help us combat the software crisis, yet as Fred Brooks warns us,
there is no technological "silver bullet" to rescue us. Talented people are important in
any software organization. Nevertheless, people need to be supported by a good working
environment. Software development is hampered by changing requirements, unpre-
dictable schedules, lack of standards, and insufficient training more than by a lack of
effort on the part of professionals. Curtis, Krasner, and Iscoe documented these issues
effectively in their report describing their interviews with software professionals. In
short, problems with the process, rather than the technology, cause a substantial num-
ber of the problems in software development and maintenance.

This brief document begins with a history of the Software Engineering Institute (SEI)
and its software process work. Terminology is introduced and the five levels of the SEI
capability maturity model (CMM) are defined. Possible uses and future directions of the
model are provided.

Background and Definitions

The Software Engineering Institute was established at Carnegie Mellon University in
Pittsburgh, Pennsylvania in 1984, under a Department of Defense contract. Its mission
is to provide leadership in advancing the state of the practice of software engineering to
improve the quality of systems that depend on software. The software process work
began two years later. One of the results was a software process maturity model. In
1987, the SEI and MITRE Corporation produced the first maturity questionnaire, a set
of yes-no questions that address organization and management issues, as well as the
technical software development process. Over the next few years, the SEI developed
two methods for using the questionnaire to appraise an organization's software process.

This document is taken from the SEI educational materials package "Lecture Notes on Software Process
Improvement" by Laurie Honour Werth, document number CMU/SEI-93-EM-8, copyright 1993 by Carnegie
Mellon University. Permission is granted to make and distribute copies for noncommercial purposes.

Introduction to Software Process Improvement 1

After an extensive review process, the capability maturity model (CMM) for software
replaced the software process maturity model in 1991. The CMM summarizes general
software process practices for each of five maturity levels. Once the current level of
operation is established using the maturity questionnaire, improving a company's soft-
ware process involves implementing the software engineering practices needed to reach
each of the five levels, in order, from lowest to highest.

What is Software Process and How Can It be Improved?

It is important to understand the vocabulary used in describing the software process
and the maturity model. These terms are used in a particular way, and it is important
to know their meaning in order to comprehend the model. It is also necessary to under-
stand that a software process model is not a mathematical formula. In this context, it is
a description of how to conduct the process of software development.

Software process is defined as a set of activities that begin with the identification of a
need and concludes with the retirement of a product that satisfies the need; or more
completely, as a set of activities, methods, practices, and transformations that people
use to develop and maintain software and its associated products (e.g., project plans,
design documents, code, test cases, user manuals).

Software process capability describes the range of expected results achieved from a
software process. But capability is not the same as performance. Software process per-
formance is the actual results achieved from following a software process. That is,
results achieved (performance) differ from results expected (capability).

Many software process techniques, such as quality assurance, configuration manage-
ment, inspections, and reviews, are described in most software engineering textbooks
and will not be covered here. From a general problem-solving point of view, project
management may be described simply as:

"* identifying what is to be done

"* deciding how to do it

"* monitoring what is being done

"* evaluating the outcome

Most managers try to do the first and second steps above, describing the what and how
using plans and schedules. However, even though managers know that requirements
will change, schedules will slip, and all the other typical problems will likely occur on
the project, few attempt to build these dynamic events into their plans. In addition,
managers need to monitor project activities and to adjust the plans as modifications
occur. To improve the software development process, it is necessary to evaluate the suc-
cess of the project and avoid repeating problems in the future. The CMM addresses
these latter, less well-understood, issues in an effort to improve the software develop-
ment process.

2 Introduction to Software Process Improvement

The scientific, closed-loop model of management can be explained most simply as fol-
lows. Project plans are used as hypotheses, and project results are evaluated to verify
or validate these hypotheses. Statistical, or closed-loop, process management is based
on measurement. First a baseline is determined. After improvements are instituted,
measurements are repeated. Results are compared against the hypotheses or predic-
tions to measure progress. This process comparison is repeated with the goal of reduc-
ing the differences between the predicted results and the actual results. Thus, the
project is managed, but the management process is meta-managed.

W. E. Deming, one of the pioneers of applying statistical process control in industry,

describes process improvement as a continuous, cycle which follows these steps:

1. Understand the status of the development process.

2. Develop a vision of the desired process.

3. List improvement actions in priority order.

4. Generate a plan to accomplish the required actions.

5. Commit the resources to execute the plan.

6. Start over at step 1.

SEI Capability Maturity Model

The SEI capability maturity model is derived from the ideas of quality improvement
applied to software development. The five-level improvement model is shown in Figure
1. The five stages are called maturity levels. Each represents an improvement in the
software process. An organization's software capability can be improved by advancing
through these five stages or levels. The CMM helps organizations to select improve-
ment strategies based on current process maturity status and to identify critical issues
in quality and process improvement.

The following descriptions outline the primary characteristics of the software process for
each level of the CMM.

1. Initial

The initial software process is characterized as ad hoc. Typically, the organization
operates without formal procedures, cost estimates or project plans. There are few
mechanisms to ensure that procedures are followed. Tools, if they exist, are not well
integrated. Change control is lax or nonexistent. Senior management neither hears
about nor understands software problems and issues. Success generally depends on
the efforts of individuals, not the organization. Not too surprisingly, most software
organizations-86% in an early survey - were at the initial level.

2. Repeatable

At the repeatable level, project controls have been established over quality assur-
ance, change control, cost, and schedule. This discipline enables earlier successes to

Introduction to Software Process Improvement 3

Continuously Optimizing
improving (
process (

Predictable Managed]

process (74

Standard, Defined
consistent (
process (

Disciplined Repeatable
process (2)

Figure 1. The five levels of software process maturity

be repeated, though the organization may have problems applying these techniques
to new applications. An SEI survey found 16% of the companies at the repeatable
level.

3. Defined

The defined software process, for both management and engineering activities, is
documented, standardized, and integrated across the organization. The process is
visible; that is, it can be examined and improvements suggested. Typically, the
organization has established a software engineering process group (SEPG) to lead the
improvement effort, keep management informed on progress, and facilitate introduc-
ing other software engineering methods.

An early SEI study found only one percent of organizations surveyed at the defined
level, though more recently several large companies have achieved this stage for

4 Introduction to Software Process Improvement

some of their development groups. Organizations need to achieve the defined matu-
rity level to consistently produce quality software on time and within budget.

4. Managed

Achieving the fourth, or managed, level requires that measures of software process
and product quality be collected so that process effectiveness can be determined
quantitatively. A process database and adequate resources are needed to continu-
ally plan, implement, and track process improvements.

5. Optimizing

At the optimizing level, quantitative feedback data from the process allows continu-
ous process improvement. Data gathering has been partially automated.
Management has changed its emphasis from product maintenance to process analy-
sis and improvement. Defect cause analysis and defect prevention are the most
important activities added at this level.

As maturity increases, differences between targeted and actual results decrease; costs
decrease and development time shortens; and productivity and quality increase. The
process becomes more predictable as rework is prevented and the risk level is reduced.
See Table 1 for the specific process areas added at each maturity level. It is important
to note that maturity levels cannot be skipped as each level is the foundation for the
next.

Progress through the maturity levels requires high-level management backing and long-
term commitment. It requires fundamental modifications in the way managers and
software practitioners do their jobs, and this takes time to accomplish. Software process
improvement should not even be started without considerable levels of corporate-wide
encouragement and support.

One SEI report summarizes the capability maturity model in this way.

"The CMM provides a conceptual structure for improving the manage-
ment and development of software products in a disciplined and consis-
tent way. It does not guarantee that software products will be success-
fully built or that all problems in software engineering will be resolved.
The CMM identifies practices for a mature software process, but it is not
meant to be either exhaustive or dictatorial. While the maturity ques-
tionnaire samples key indicators of an effect, software process and the
CMM identifies the characteristics of an effective software process, the
mature organization addresses all issues essential to a successful
project-including people and technology-as well as process."

Introduction to Software Process Improvement 5

Level 2: Repeatable
Requirements Management
Software Project Planning
Software Project Tracking and Oversight
Software Subcontract Management, if applicable
Software Quality Assurance
Software Configuration Management

Level 3: Defined
Organization Process Focus
Organization Process Definition
Training Program
Integrated Software Management
Software Product Engineering
Intergroup Coordination
Peer Reviews

Level 4: Managed
Process Measurement and Analysis
Quality Management

Level 5: Optimizing
Defect Prevention
Technology Innovation
Process Change Management

Table 1. Key process areas (KPA) by maturity level

How Is the Maturity Model Used?

Several companies have already reported benefits from applying the capability maturity
model. A process improvement investment of $400,000 produced an annual savings of
$2,000,000 at Hughes Aircraft. Raytheon saved about $9.2 million by eliminating
rework on a base of about $115 million in software development costs. At IBM Houston,
the NASA space shuttle on-board software development group showed the results
depicted in Table 2.

There are two major ways the maturity model can be applied: for software process
assessment (SPA) and for software capability evaluation (SCE). Both methods are
based on the capability maturity model and maturity questionnaire. Together, the
model and questionnaire provide a way to identify and compare organizations' strengths

6 Introduction to Software Process Improvement

NASA 1982 1985

Early error detection (% errors found) 48 80

Reconfiguration time (weeks) 11 5

Reconfiguration effort (person-years) 10.5 4.5

Product error rate (errors per 1000 lines of code) 2.0 0.11

Table 2. On-board shuttle software improvements

and weaknesses. Figure 2 shows, at a high level, the common steps in the SPA and SCE
methods.

There are differences between the two methods, SPA and SCE, as summarized in Table
3. These differences include the objectives, the make-up of the site visitation teams, the
criteria for determining scope and for defining findings, and the ownership of the
results. In view of these differences, the outcomes of assessments and evaluations are
not likely to be interchangeable or directly comparable. The SCE team may conclude
that a particular weakness has low risk associated with it for the acquisition and there-
fore discount it (for example, subcontract management in an acquisition that may not
involve subcontracts), while a SPA team might recommend corrective action as a high
priority for the same weakness (since other projects involve subcontractors). Both views
would be valid for their respective purposes.

Software Process Assessment

A software process assessment is a means for organizations to identify their strengths,
weaknesses, existing improvement activities, and key areas for improvement. It
enables them to determine the current state of their software process and to develop
action plans for improvement.

Assessments are performed by a team of 6-10 experienced software professionals. The
majority are from the organization being assessed. In the past, individual teams have
been trained by the SEI. More recently, the SEI has trained and licensed SPA associ-
ates to provide these services commercially. A SPA associate often works collaboratively
with team members. In selected cases, the SEI does so.

An organization spends two to six months (elapsed time) preparing for an assessment,
beginning with management commitment to the process improvement effort. Other
preparations include selecting the assessment team, and selecting the representatives of
software projects and functional areas (such as testing and quality assurance) who will

* participate in the on-site assessment activities.

Introduction to Software Process Improvement 7

Team
Selection Maturity Response

and Questionnaire Analysis
Training

(1) (2) (3)

Proile

On-Site Visit Findings - •

(4) 15) (6)

(7)

Figure 2. Common steps in SPAs and SCEs

The assessment team helps to prepare the rest of the organization for the assessment
and for the ensuing process iiriorovement activities. In addition to making detailed
plans and a schedule, they tell everyone what to expect and concentrate on buildL.g
support for process improvement and the assessment. The team spends five days on
site.

They analyze the information they get from the maturity questionnaire, individual
interviews with project leaders, and group discussions with practitioners (functional
area representatives). To encourage interviewees to be open, the SPA team treats the
information as confidential; they report only composite findings and give no attribution
to individuals or projects. Occasionally, the team looks at documents to clarify informa-
tion from the discussions.

8 Introduction to Software Process Improvement

SCE SPA

Used by acquisition organization Used by organization to improve
for source selection and contract software process
monitoring

Results to the organization and Results to organization only
the acquirer

Substantiates current practice Assesses current practice

Assesses commitment to improve Acts as catalyst for process
improvement

Analyzes contract performance Provides input to improvement
potential action plan

Independent evaluation-no Collaborative-organization
organization members on team members on team, with represen-

tative from licensed SPA
associate or SEI

Applies to performance for a Applies to organization overall,
particular contract not individual projects

Table 3. Comparison between SCE and SPA

The team uses the maturity model to help them categorize data. They determine the
current software process maturity, identify key findings (that is, they determine what
will impede capability to produce quality software), and note strengths the organization
can build upon. Decisions are made by consensus, which helps to counter possible bias
in any individual's conclusions about the data. In addition, project leaders and practi-
tioners who were interviewed review the team's findings and give feedback.

The team presents the results of the assessment to senior management and, often, to
the entire organization that was assessed. They recommend what can be done to
address their findings. Many teams brainstorm a preliminary list of recommendations
and enlist others in the organization to help flesh it out. Later, the team writes a final
report that presents findings and recommendations in detail. The SEI recommends that
the report be widely available in the organization.

After the assessment, an action planning group (often a software engineering process
group, under the guidance of a management steering committee) develops the strategies
for accomplishing long-term process improvement and determines what improvements
are achievable within a specific time frame. They work with many others in the organi-

Introduction to Software Process Improvement 9

zation to create an action plan and implement it. To be effective, they must combine
improvement plans with other organizational plans such as the business plan.
Members of the SPA team often become involved in these activities; their involvement is
one of the significant differences between a process assessment and a capability evalua-
tion.

As an organization's software process matures, periodic reassessments allow them to
identify new priorities and strategies for further improvement. The SEI recommends
reassessments approximately every two years.

Software Capability Evaluation

A software capability evaluation is an independent evaluation of an organization's soft-
ware process as it relates to a particular acquisition. It is a tool that helps an external
group (an "acquirer") determine the organization's ability to produce a particular prod-
uct having high quality and to produce it on time and within budget.

Evaluations are performed by a trained and experienced team of 4-6 members. The
members are not part of the organization being evaluated. Rather, they come from
acquisition organizations, such as certain government agencies.

An SCE team looks at projects that perform work similar to that required by the new
contract. Thus, the selected projects are usually similar to the acquisition in application
domain, size, and life-cycle phases. They may not be representative of the organization
as a whole.

During a planning period of several weeks, the organization being evaluated submits a
choice of projects for selection, along with information about the projects and about the
organization in general. The SCE team selects projects, reviews high-level documents
from the organization, and makes detailed plans and a schedule for the site visit.

The SCE team spends three days on site interviewing project and organization person-
nel, one at a time. Team members may talk to as few as 10 or as many as 30 people.
They also review documents from one to four projects, depending on the particular
application of the SCE method (contract monitoring or source selection). As in the SPA
method, the SCE team does not attribute information to individuals but holds their
responses in confidence.

While still on site, the team identifies strengths, weaknesses, and improvement activi-
ties that they consider to be most relevant to performance on the acquisition contract.
Consensus among the team plays a major role in countering possible bias in the way any
individual might form conclusions about the data. The team does not assign a maturity
level, but rather builds a profile of strengths and weaknesses relevant to the specific
acquisition.

10 Introduction to Software Process Improvement

The SCE team presents their findings to the organization that was evaluated. To foster
process improvement, the SEI strongly recommends that the presentation include all
the detailed SCE findings that are delivered to the acquisition agency.

Ownership of the SCE findings is with the acquirer. A group in the acquisition agency
transforms the findings of the SCE team into acquisition risks and/or technical ratings.
To ensure objectivity and integrity, the SCE team deliberately avoids interpreting its
own findings. The acquisition agency uses the SCE findings and other criteria to select
a source or monitor a contract.

A Final Comment

Software process maturity requires a long-term commitment to continuous process
improvement. The CMM does not address all issues important for successful projects.
The CMM does not imply or limit the choice to a particular life-cycle model. Specific
software technologies such as reuse or prototyping are neither required nor excluded.
The use of DoD-STD-2167A is not dictated. Projects' documents and products do not
have to match the CMM exactly. Particular organizational or project structures are not
mandated. Suggested software practices are generic, intended to provide flexibility.
Each project or organization must clarify these practices for its specific situation.

Introduction to Software Process Improvement 11

* Software Process Maturity Levels

Ie Optimizing (5)

Process change management
Technology innovation

Or Defect prevention

Managed (4)fc

of t rou ality
m an ag em e nt

Process measurement and analysis

Training prora

Ontrganizoodiationprcsfou

Software project tracking and oversightSoftware project planning

Requirements management

Orga n i o f

Shewart Improvement Cycle

1. Plan

Define the problem

State improvement objectives
2. Do

Identify possible problem causes

Establish baselines
Test changes

3. Check

Collect data

Evaluate data

4. Act

Implement system change

Determine effectiveness

Common Steps in SPAs and SCEs

Selection Maturity Response
Questionnaire Analysi

(1) (2) (3)

KPA
*Profile

On-Site Visit Findings

(4) (5) (6)

(7)

Capability Maturity Model Structure

;Maturity ee

indicate contain

Capability Key Process Areas

achieves organized by

Goale tCommon
Features

address contain

ImleenatonorKey1I s ituto.nalization ac

Activitie Practi~ces
describe

0

Example of CMM Structure

S;!::: :Maturlty Level:

Level 2, Repeatable

indicates contains
Process "

Ca ablr y
Ke Process Area:

disciplined Software Project Planning
processI

achieves contains

...Goal:
A plan is developed tha•

appropriately and :

realistically covers the
software activities and

commitments
QOA specifies

Key Practice:
Estimates for the size of
software products are
derived according to a
documented procedure

dsrbes

Activity: Use a A
/ documented procedure toS estimate software size)
S(e.g., lines of code,,.

fucin ons

Key Process Areas by Maturity Level

Level 2: Repeatable
Requirements Management
Software Project Planning
Software Project Tracking and Oversight
Software Subcontract Management, if applicable
Software Quality Assurance
Software Configuration Management

Le,.el 3: Defined
Organization Process Focus
Organization Process Definition
Training Program
Integrated Software Management
Software Product Engineering
Intergroup Coordination
Peer Reviews

Level 4: Managed
Process Measurement and Analysis
Quality Management

Level 5: Optimizing
Defect Prevention
Technology Innovation
Process Change Management

C15 > a)-
h4iU

MU 0 s000

a) 3-0c *6

(I)6

CL

0
a)

0H

C')

0
aCD

C:E z
0) > CDj

a)) co 0
a) O..c V'

0. 2Cj.o C1

~ýc c C~n
ýo 8CI :3O0 co

On-Board Shuttle Software
Improvements

NASA 1982 1985

Early error detection 48 80
(% errors found)

Reconfiguration time 11 5
(weeks)

Reconfiguration effort 10.5 4.5
(person-years)

Product error rate 2.0 0.14
(errors/1000 lines of code)

* Comparison Between SCE and SPA

SCE SPA
Used by acquisition Used by organization to
organization for source improve software process
selection and contract
monitoring

Results to the organization Results to organization only
and the acquirer

Substantiates current Assesses current practice
practice

Assesses commitment to Acts as catalyst for process
*i mprove improvement

Analyzes contract Provides input to
performance potential improvement action plan

Independent evaluation-no Collaborative-organization
organization members on members on team, with
team representative of licensed

SPA associate or SEI

Applies to performance for a Applies to organization
particular contract overall, not individual

projects

UNLIMITED, UNCLASSIFIED
SEJRrrY LAss.W•lIoN oF 7m e Pai

REPORT DOCUMENTATION PAGE
Ii. REPORT SECURIY CLASSFICATION lb. RESTRICTVE MARKNGS

Unclassified None

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRBUTIONtAVAILAB-ILITY OF REPORT

N/A Approved for Public Release
2b. DECLASSIFICATION/DOWNGRADING SCHEDULE Distribution Unlimited
N/A
4. PERFORMING ORGANIATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

CMU/SEI-93-EM-8

6a. NAME OF PERFORM••G ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

Software Engineering Institute (ifaPplicablc) SEI Joint Program Office
SEI

6c. ADDRESS (city, state, and zip code) 7b. ADDRESS (city. watc, and tip code)

Carnegie Mellon University ESC/AVS
Pittsburgh PA 15213 Hanscom Air Force Base, MA 01731

84. NAME OFFUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDNTIFICATION NUMBER
ORGANZATION (if pplicable) F1962890C0003

SEI Joint Program Office ESC/AVS

8c. ADDRESS (city, sta, and zip code)) 10. SOURCE OF FUNDING NOS.Carnegie Mellon University PROGRAM PROJECTr TASK WORK LITT
Pittsburgh PA 15213 ELEMENT NO NO. NO NO.63756E N/A N/A N/A

II. TITE (Ianclude Securty Cl=aificatim)

Lecture Notes on Software Process Improvement
12. PERSONAL AUTHOR(S)

Laurie Honour Werth
13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (year, month, day) 15. PAGE COUNT
Final FROM TO February 1993 59 pp.
16. SUPPLEMENTARY NOTATION

17. COSATI CODES IS. SUBJECT TERMS (contue mon team o" neceaay and idntify by block numb•r)

FIELD GROUP SUB. GR. software engineering education

software process
software process improvement

19. ABSTRACr (contiaue on evuve if neciazry and idor tify by block number)

Software process improvement is not us, ally covered in standard software engineering textbooks. However, bec .jse
it is a topic of great interest to the software industry, both faculty and students should be familiar with it. The goal of this
package is to provide the basis for an introductory 30 to 60 minute lecture on the software process and its improvement.

(pleae tunm over)

20. DISTRIB•UTION/AVALAbIliTY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

UNCIASSIFEDAUNUMrrED I SAME AS P.PTf DIc USERS I Unclassified, Unlimited Distribution

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE NUMBER (include am& code) 22c. OFFICE SYMBOL

Thomas R. Miller, Lt Col, USAF (412) 268-7631 ESC/AVS (SEI)

Dr) FORM I1A3, 83 APR EDMON of I JAN 731 S OBSOI.RTE UNI.IMItTED. UW'I .ASSIFIED
SLCURITY LIASSIFICA1 ioN O: 11 l1S

sixAcr - continued inn page mic, block 19

The Software Engineering Institute (SEI) is a federally funded research and development center, operated by CarnegieO Mellon Univesity under contract with the United States Department of Defense.

The SEI Graduate Curriculum Project is developing a wide range of materials to support software engineering education.
A curriculum module (CM) Identifies and outlines the content of a specific topic area. and is intended to be used by an
instructor in designing a course. A support materials package (SM) contains materials related to a module that may be
helpful in teaching a course. An educaional materials package (EM) contains other materials not necessarily related to a
curriculum module. Other publications include software engineering curriculum recommendations and course designs.

SEI educational materials are being made available to educators throughout the academic, industrial, end government
communities. The use of these materials in a course does not in any way constitute an endorsement of the course by the
SEI, by Carnegie Mellon University, or by the United States government.

Permission to make copies or derivative works of SEI curriculum modules, support materials, and educational materials
listed below is granted, without fee, provided that the copies and derivative works are not made or distributed for direct
commercial advantage. and that all copies and derivative works cite the original document by title, author's name, and
document number and give notice that the copying is by permission of Carnegie Mellon University.

Comments on SEI educational materials and requests for additional information should be addressed to SEI Products,
Software Engineering Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213. Electronic mail can be sent
to education~fsoi.cmu.edu on the Internet.

Curriculum Modules (* Support Materials availdeo) Educational Materials

CM-i [superseded by CM-1 9] EM-I Software Maintenance Exercises for a Software
CM-2 Introduction to Software Design Engileefig Pfotect Course
CM-3 The Software Technical Review Process* EM-2 APSE Interactive Monitor. An Artifact for Software
CM-4 Softwmo Coinliguration Managemnent EnineeinWVg Educagon
CM-5 Inforniai~on Prtcto EM-3 Reiading Computer Programs: Instructor's Guide &Wd
CM-6 Softwme Saet"yxrie

CM7 o ~ ~EM-41 A So=wae Engmieeiquig Project Course with a Real.CM-8 Formial Specificaton of Softwere EM-S Scenes; of Software Inspections: Video DrariatizAtion
CM.-9 Unit h~isysia and Testing for the Classroom
CM-10 Models of Software Evolution: Uifa Cycle and Process EM-6 Materials to Support Teadhin a Project-kItensive
CM-1l Software Specifications: A Framework Introductioni b Software Engineering
CM-i12 Software Movies EM-7 Materials for Teaching Software Inspections
CM-13 Introduction bo Software Verification and Validation EM-8 Lecture Notes on Software Process Improvement
CM-14 Intelectual Property Protection for Software
CM-15 (no longer avlaiklej
CM-16 Softwaie Development Using VOM
CM-17 User Interface Devlom an
CM-iS (superseded by CM-231
CM-19 Softwme Requirements
CM-20 Formail Verification of Prograims
CM-21 Softwaie Project Menagement
CM-22 Software Design Methods for Read-Time Systems
CM-23 Technical Writing for Software Engineers
CM-24 Concepts of Concurrent Programlming
CM-25 Language and System Support for Concurrent

Programming
CM-26 Understwding Program Dependencies
CM-27 Formal Specification and Verificationi of Concurrent

Programs

