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Abstract: We calculate the absorption spectrum of a cluster using a

computational method in which classical-like degrees of freedom for the nuclei

are described by Gaussian wave packets while the valence electrons are treated

quantum mechanically. We examine the spectral features in comparison to an

even simpler mixed quantum-classical model in which the nuclear motion is

treated by purely classical mechanics. Anomalous features ( such as negative

absorption ) in the absorption spectrum which can arise from mixed quantum-

classical methods are examined and the Gaussian wave packet nuclear dynamics

is found to substantially reduce these anomalous features. This method is applied

to a two-coordinate model problem in which exact numerical results can be

obtained and we find that the method works fairly well. We also apply the method

to the valence electronic absorption spectrum for a KXe 6 cluster. The method does

not suffer from the dramatic failure seen when Xe motion is treated classically.

The method is used to calculate the vibrational width and the vibrational

structure of the electronic absorption spectrum.
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L Introduction

There is an enormous literature concerning computational methods and

applications in which some degrees of freedom are treated quantum

mechanically and some are treated classically or semiclassicallyt 1 ,2 11. The basic

idea is that light particles, such as electrons, require a quantum description

while nuclei may or may not depending upon the specific application.

There is also a large literature concerning the errors made by treating

some degrees of freedom classically and others quantum meL.anically (13,16,22-28].

There is as yet no precise criterion that can be used to establish in advance when

one is guaranteed to obtain accurate results, but the existing computational

experience allows us to guess the likelihood of success. The outcome depends to a

large extent on the quantity being computed. Calculations of the expectation value

of an observable, given by an expression of the form , ( P(t) I 01 'P(t)) , where 0 is

an operator and I 'P(t ) ) is the time dependent wave function of the system are

often successful. They do however tend to fail if the wave function for the

quantum degrees of freedom consists of "pieces" localized in different regions of

the space.[ 1 1,13 ,16 ,2 6 3 Quantities of the form ( 'P(t) I 0 I W(O) ) which appear in

calculations of various rates ( e.g. photon absorption and Raman scattering,

radiationless transitions, etc.) are more difficult. Model calculations have shown,

for example, that calculations of the absorption cross section lead to unacceptable

results, such as fairly large negative absorption rates. The reavs'n for this failure

was determined[2 1J by numerical analysis using various levels of approximations,

for a model for which exact numerical results were also obtained. In
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conventional mixed quantum-classical (QC) calculations only the evolution of the

quantum degrees of freedom is represented by a wave function. The time

dependent positions of the particles treated classically appear parametrically in

the Hamiltonian for the quantum degrees of freedom. The evolution of these

classical degrees of freedom - obtained by solving an "effective" Newton equation -

provides a time dependent force acting on the quantum degrees of freedom. For

example, the quantum particle could be an electron and the classical particles,

nuclei. If the nuclei oscillate at a certain frequency, the force they exert on the

electron will oscillate at this frequency, and one may expect that this oscillating

force will correctly generate the vibrational structure in the spectrum. The

resultst 2 13 do not bear out this expectation. The reason is simple. In the quantum

theory, the spectral information is contained in the time evolution of the overlap

integrals between the initial nuclear wave function and the same wave function at

time t. The QC theory does not provide a wave function for the nuclear wave

functions and therefore this overlap is set equal to one. This error is compounded

by the fact that the nuclei act on the electron with a time dependent force. If the

nuclei were not allowed to move, setting the nuclear overlap to one will merely kill

the vibrational bands in the spectrum; moving them classically brings about

negative rates.

Metiu and Haug [211 , who pointed out this unpleasant feature, suggested

a model that will remedy the situation without adding much to the computational

burden: to treat the nuclear motion by Heller's Gaussian Wave Packet (GWP)

method.[2 9 a) This is known to give good results in short time calculatio-s and to

fail for long times. Procedures that will give better long time results[29b] tend to
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become computationally expensive, defeating the main reason for the GWP

approximation. This impasse is resolved by an important observation made by

Nitzan (private communication), in the context of the theory ot radiationless

transitions, which is also applicable to absorption rate calculations considered

here. In our case we must calculate the evolution of the system in the "promoted

state" [30] , r I T(O) ), where r is the electron position and I T(0) ) is the ground

state of the system. The nuclei, which started out at their equilibrium positions,

corresponding to the state I T(0) ) , are out of equilibrium with respect to the state r

I Ij(0) ) . As a result, the nuclei will start to move as soon as the electron is

"promoted" and the overlap integral of their current wave function with their

initial wave function will start going down. If the electron interacts with N

nuclear degrees of freedom, we will have a product of N overlap integrals, all

becoming less than one. While each overlap may change little ( i.e. from 1.0 to 0.8

) the product will plummet rapidly. Thus for systems with many degrees of

freedom we only need a short time calculation to determine the vibrational

broadening of the spectrum. During this short time, the nuclei cannot sample

much of the potential energy surface, which can then be represented by a local

harmonic approximation. Because of this a GWP calculation of the nuclear

overlap should be very accurate.

In this article we explore numerically how this works for two cases. In

both cases, there is a single valence electron treated quantum mechanically while

the nuclei are treated by GWP - and we denote this combined method QGWP. The

first case is a two-coordinate test model mimicking an alkali-helium dimer that

we have previously used1 2 11 for the examination of other QC methods. In this
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case, because of the simplicity of the model, we can examine exact quantum

mechanical and also exact quantum Hartree calculations as benchmarks for

comparison with the QGWP method. The second case we examine is an

application to a 3-dimensional cluster with realistic potentials mimicking KXe 6.

In *.his cluster, the three dimensional motion of the valence electron is treated

quantum mechanically while the nuclear motion is treated by the GWP

approximation. The initial condition is the quantum mechanical ground state for

the electron and the GWP approximation for the ground state of the nuclei. To

calculate the absorption cross section, the electron is promoted and propagated by

a Fast Fourier Transform (FFT) method[ 333 while the nuclear wave function

evolves according to Heller's GWP method.

In Section II, we outline the theory behind these calculations. In Section

III the two-coordinate test model is presented and in Section TV the KXe 6 cluster

is examined.
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IL THEORY

ILA. Introduction

We consider a cluster containing a single valence electron (located at r),

the parent ion core with charge +1 and N "solvent" atoms ( located at R = I Ra,

ca=1,2,3...,N+1 } ). The corresponding momenta are p and P respectively. The

Hamiltonian is

H = Ha(R ,P) + He(r,p;R). (L. 1)

Ha a describing the atomic degrees of freedom (i.e. the motion of the ion

core and the solvent atoms), is given by

N+1
Ha Y Pa 2 / (2Ma) + Va(R), (1I.2)

a=1

where Va(R) is the sum of the ion-solvent and the solvent-solvent interaction

energies.

He , describing the valence electron degrees of freedom, is given by

He= p 2/(2m) + Vea(rR) (11.3)

containing the kinetic energy of the electron plus the interaction energy, Vea

which is a sum of the electron-ion and the electron-solvent interaction energies.
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ILB. Absorption Spectrum

To calculate the absorption cross section o(o) for the cluster configuration

F, we use a slight variation of Heller's formula[3 11

oý(o) - co Refo dt exp(icot) C(t). (11.4)

The overlap integral C(t) is given by

C(t)= exp(iEgt/h) ( TP (0) 1 'p(t), (11.5)

where Eg is the total ground state energy of the system and where the promoted

state at time zero, I 'P (0)), is

I Tp (0) ) = -e Eor IPg (0) (11.6)

In Eq.(II.6) I TPg (0) ) is the electronic and nuclear ground state, -er is the dipole

operator and e is the electric field polarization direction. The promoted state at

time t is

I Tp(t)) = exp(-iHt/h ) I %p (0) . (11.7)

This formulation provides the absorption spectrum to all the excited states

(including the photo-emission spectrum) in one calculation. The computations

needed to evaluate Eq.(II.5) are made possible by using pseudopotentials to
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describe the electron-ion and electron-solvent interactions resulting in an one

electron problem, and by approximating the nuclear dynamics in some manner.

ILC. A summnary of the time dependent Hartree appromimation

In all QC methods the division of the degrees of freedom into classical and

quantum ones is made by using a Hartree product wave function approximation.

For calculating the spectrum, we use a Hartree product for the promoted state

wave function [see Eq.(II.5) ]

(r,RI TpI) r I -ern I) ( R I Xg)exp(iTl/h) =(r p) ( R IXg)exp(in/h). (11. 8)

Since our interest here is in electric dipole spectroscopy, the dipole operator is -er,

and therefore only the ground state electronic wave function, 19g) , is "promoted"

to, I Op, while the ground state nuclear wavefunction, I Xg), is unaffected. In Eq.

(11.8), as is typical in time-dependent Hartree (tdH) approximations, a time

dependent phase term, exp(iil(t)/h) , is separated out to simplify the form of the

tdH equations as[321

ih p = [ p 2/2m + (Xg Vea(r,R) I)Xg) / (Xg I Xg)] I Ip), (11.9)

ih- = [ p 2/2M + Va(R) + (Op1Ve](r,R)I p)!(ppIp) I X.). (II.10)5 t 1Xg +a(R+~Ie~,~p)(p~)

and

g = (0PXg I Vea(rR)I Xggp/ / Xg I Xg)( ýpQp) I. O1)
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The Hartree product wave function for the promoted state applied txn the

correlation function of Eq.(II.5) leads to a "Hartree" correlation function

Ch(t) = exp(iEgt/h) (Op(0) I cP(t)) (Xg(0) I Xg(t)) exp(i[flg(t)-lTg(0)]/h),

(11.12)

with a Hartree ground state energy given by

Eg = (gi p 2/2m I cg)/ (PgI lIg) + (Xgl p22 i2M+Va(R) lXg) / (Xgi Xg) +

(Cg;g I V ea(rR) I Xgbg) / (Xg I Xg) (og' Ig). (ITI. 3)

We note that due to the broken correlation in the Hartree product state,

that the effective potentials (the averages over Vea ) ir Eq.(II.9-11) become time

dependent and can give rise to time varying energy levels in the system. This

variation of the energy levels in time can result in serious problems in the

absorption spectrum: unphysical negative amplitudes can appear as examined in

Ref. 21 . Therefore any method that begins with the Hartree separation, such as

the one we use here, will be susceptible to this problem. A failure to include the

amplitude and phase information arising from Lhe classical-like degrees of

freedom will tend to magnify, possibly to a catastrophic extent ( Ref 21 ), the

spectroscopic anomalies that can arise even at the Hartree level. Our quest is to

minimize these anomalous effects by building an approximate, easy to evaluate

wave function. By using the GWP method we can generate the quantum

amplitude and phase information 8ssociated with the classical-like nuclear

degrees of freedom, which is needed for the absorption cross section calculation.
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ILD The QGWP method

The wave function Xg(R,t) , representing the "classical-like" nuclear

degrees of freedom, R , and the integrals involving Xg will be approximated

because of the computational complications arising from the many dimensional

character of Xg. If we examine the Hartree equation (I1.10) for Xg(R,t) we see that

the effective Hamiltonian for these "classical-liKe" degrees of freedom is

Heff = P2/2M + Veff (11.14)

Veff Va(R) + (Opi Vea(r,R) / (OP •P). (11.15)

Moving to the classical limit we take Eq.(II.14) as the effective classical

Lamiltonian for the atoms in the cluster. Classical trajectories for the effective

classical Hamiltonian in terms of the Cartesian coordinates and momenta are

given by

dPa ="AdVefi(R), (P1.16)
dt dRa

d Ra Pal . (11.17)
dt
In the QC dynamic mixture we also make approximations for the

integrals occurring in Eq.(fl.9, 11 and 13) over the R coordinates of the forms:

(ýXg Vea(r,R) I Xg) / (ýXg X•g) - Vea( r, (R)), (II.18a)

(Og•(p 1 Vea(r,R) I gO•p)/(Xgl I g) (Op I p)- (Op 1 Vea( r, (R) ) IOp) / OP I p), (11. 18b)

(9gXg9 Vea(r,R) I Xg~g)/ (Xg I Xg) (Og I 0g) - (Og 1Vea( r, (R)) I 0g) / KogI Og), (II. 18c)

(Xg I P 2/2M+Va(R) I Xg) / (XgI Xg) - (P 2)/2M + Va( (R)), (II. 18d)

where in the classical limit

(R) = (Xgl R I Xg) / (-gl IXg) - R(t). (II. 19a)

,p 2 ) = (Xg I p 2 IXg) / (Xg I Xg) _ P(t)2 . (II. 19b)

are represented by the classical trajectories for R(t) and P(t).
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The initial condition of the cluster, for a specified cluster size, is

determined by finding a configuration of (possibly local) minimum energy. To be

consistent with the classical equations, the minimum energy atomic

configuration for the cluster is determined with respect to the effective classical

potential Veff by following its gradient with respect to a parameter -

R V Veff(R). (11.20)
dr

Fluctuations are introduced in the early phase of the minimization algorithm so

as to avoid the likelihood of falling into a local basin of the effective potential. The

fluctuations are introduced by Monte Carlo (MC) sampling from the distribution

exp{-p3Va(R) ) exp{-P3 (ýg1 Vea(r,R)I 0g) , (11.21)

in which P gradually evolves from a high temperature (typically 1000K for the

applications below) to a low temperature ( typically 100K), as various

configurations are generated by the MC procedure. Each sampling provides the

ion core and the solvent atom positions RI, (Ralal,.N corresponding to a highly

probable configuration. Because the electron excitation gap is much larger than

kBT, the electron is in the ground state and the matrix element appearing in Eq.

(11.21) is equal to the ground state interaction energy of the electron for the given

nuclear configuration. After this "cooling down" period we follow the gradient to

the minimum effective potential configuration. The net effect of choosing the

initial configuration in this way is that if the quantum-classical dynamic scheme

is initiated without promoting the electron then nothing happens: the electron

remains in the ground state and the cluster remains frozen in its configuration,

which is the required behavior.

As a further computational convenience, we make an electronic Born-

Oppenheimer approximation by ignoring the parametric R dependence of 0 (r~t:R)
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when evaluating the gradient in Eq.(II.16 and 20); i.e. we drop the term involving

aR-p(rt;R). We note that this parametric R dependence of pl(rt;R) is included in

the MC sampling of Eq(II.21) and if we established an initial configuration solely

by the use of the MC sampling function (damped gradually to 0 K), a slightly

different configuration would result than that given by the gradient method.

From the local minimum configuration, the initial condition for the GWTP

approximation for Xg(Rt) is determined via a normal mode analysis about this

stable configuration. The function Xg(Rt) is then given by

Xg(Rt) = 171 gn(t) (11.22)
n

where n runs over the 3N-6 vibrational modes of the N-atom cluster. Qn and Wn

are The mass scaled normal mode coordinates, Qn , and normal mode

frequencies , con , satisfying

Qn + -n2 Qn =0, (11.23)

are used to specify the initial normal mode wave functions

gn(q,t=0) = (o~n/nh)" 4 exp( - c q- Qn(0) 1 2/ 2h 1 (11.24)

used as the initial ground state wave function for the n-th mode. Inserting

Eq.(II.24) into Eq.(II.22) gives the initial nuclear wave function.

The time evolution of the gn(q,t) wave functions is performed by Heller's

version of Gaussian Wave Packet (GWP) dynamics[291 resulting in

gn(q,t) = (on/nrh)" 4 exp( (i/h)[ (io/2){ q - Qn(t) } 2 + rin(t) ( q - Qn(t) } _ ",(t) 7 .

(11.25)
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We have used the initial conditions, given by Eq.(1I.24), to set [In(0) = 0 , T(0) = 0,

and also to argue that the frequencies, o. , which serve as time-dependent width

parameters within the general form of the GWP dynamics, should be time

independent for the relatively short times involved in low resolution spectral

calculations (this is the frozen Gaussian version of GWP dynamics[ 291).

The variable H is the mass scaled normal mode momenta , i.e.

n. = d Qa (11.26)

and the Gaussian phase parameter is determined from

d ta = (112)IIa 2 "Veff (Qa)- hdoa/2 . (11.27)
dt

In Eq.(II.27) we use the local harmonic approximation

Veff (Qa) = (112) oja2 Qa 2 + Vzero (11.28)

"with

Vzero = Va( R ) + (Op 1 Vea( r,R P)p / (p I op)). (11.29)

being evaluated with Op(t=0) and R(t=0). We emphasize that because we need only

the short time behavior of the nuclear overlap integral, the local harmonic

approximation should work very well.

We can interpret the dynamics expressed in the promoted state

correlation function by saying that the promotion of the electron from the ground

to the promoted state provides the energy to set the cluster into motion. So both the

electronic excitations and. the vibrational structure of those excitations are

included in the correlation function.

ILE The trajectory approximation

A first approximntion often used for condensed phase correlation



15

functions involving a system with a localized quantum component surrounded by

more classical-like degrees of freedom is to take a mean field approach with

respect to the classical-like coordinates. This approach builds in the effect of the

average perturbation of the surrounding, classical-like, medium on the local

quantum system of interest.

A simple correction to this mean field correlation function, within the

spirit of QC dynamics, is to run trajectories for the classically treated degrees of

freedom which give rise to a time dependent potential for the quantum degrees of

freedom. That is, He(r,p;R) in Eq. (11.3) becomes time dependent due to the time

dependence of the classical position, R(t), in the potential energy operator

component of He* Only the quantum component of the Hartree correlation

function of Eq.(II.12) is kept, giving

CQCT(t) = exp(iEgt/h) (OP(O) I Op(t)), (11.30)

which we call the quantum-classical trajectory approximation (QCT) for the

spectral correlation function.

How to choose the classical trajectories in the general case of any QC

mixed method is problematic. By comparing to the tdH theory, Eq.(II.9-11), one

finds that averaging over a bundle of classical trajectories maintains the spirit of

integrating over all R in the tdH equations.[241 This scheme is self-consistent and

energy conserving if the classical trajectories respond to a mean force (averaged

over the quantum wave function) as given by Eq.(II.16-19) above. For the set of

initial conditions specified in the paragraphs following Eq.(II.19,,. the bundle of
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trajectories collapses to a single trajectory that is uniquely determined by the set of

forces impinging on the frozen cluster configuration due to the excitation of the

electron. Because of this unique initial condition giving rise to an unambiguous

mean trajectory approximation, it is convenient to compare the results of the QCT

theory to the QGWP theory for the spectroscopy applications examined below.

We note that compared to the tdH correlation function in Eq.(1II.12), the

trajectory approximation correlation function in Eq.(II.30) lacks the factor (

g(0) I Xg(t) ) involving wave functions for the classical-like degrees of freedom

(and it also lacks the Hartree phase term). The underlying assumption in the

trajectory approximation is that the time dependent potential, arising due to R(t),

and appearing in the quantum Hamiltonian will act to remedy this deficiency. In

nearly rigid systems where the static mean field approximation is fairly good, this

seems reasonable. However, in more supple systems where energy transfer

between the quantum and classical degrees of freedom distorts the classical

positions significantly, it is obvious from the form of the tdH correlation function

in Eq. (111.12) that the overlap of ( Xg(O) ( Xg(t) ) is indispensable in obtaining the

correct spectrum. For example, if the system is floppy enough that ( Xg(O) I Xg(t) )

goes to zero at some time t, then the overall correlation function is zero and in

general a time dependence in the quantum Hamiltonian will not be able to

account for this.

ILF Time-energy resolution

Heller has pointed outJ 3 11 the useful connection between the resolution of

the absorption spectrum and the length of time in which the promoted state
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explores the potential energy surface. Engel, Schinke, Henning and Metiu(3 0 1

have discussed in detail the method that we use to obtain dynamic information by

taking the high resolution spectrum and smearing it out to generate a sequence of

low resolution spectra.

To generate this spectral resolution we replace Eq. (II.4) by

oca)) - co Re ft dt exp(iat) f,(t) C(t). (11.31)

The "window" function

fý(t) = exp[-( t / z )2 1. (11.32)

cuts off the time evolution of the overlap integral for times substantially longer

than -. In the frequency domain, this window function smears out the spectrum

and generates a low resolution version having the resolution on the order

Aa)=2r/z. Thus, a spectrum taken with the resolution Ao contains information

about the motion of the promoted state for a time r = 2xr/Ao.

The introduction of this resolution time is, of course, an arbitrary

parameter from a dynamics perspective. One advantage of including a "classical

wave function" is that vibrationally broadened line widths of electronic transitions

can develop more naturally on a time scale determined by the dynamics of the

problem. As the classical wave functions move away from their initial positions,

the overlap of the classical-like term, (Xg(O) I Xg(t)) , in Eq.(II.12) decays with time.

If the configuration of the promoted system is such as to prevent further
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recurrences of (Xg(O) I Xg(t)) in time then a broaden line will remain in the

spectrum that will be independent of r (for -r large). If the configuration of the

promoted system is such as to allow for recurrences of (Xg(O) I Xg(t)) in time, then

vibrational fine structure will appear as c increases and the spectral lines will

continue to narrow with increases in the resolution time T.
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IlL TWO COORDINATE TEST CASE

We examine here the electric dipole absorption spectrum of a colinear

alkali-helium dimer. Since this two-coordinate model problem can be solved

numerically at both the full quantum mechanical level and the full quantum

"Hartree level, we can evaluate the accuracy of the QGWP method. Computational

details for the two-coordinate test case are given in Appendix A.

111M The model

The model described in Ref. 21 is used here. We consider an electron

(located at r), an ion with charge +1 (of infinite mass at the coordinate origin), and

a helium mass atom (at R ). The model consists of two body interactions among

the three species.

For the alkali ion - electron interaction energy Vei, we use

Vei (r) = -e 2 /rc for r<rc

= -e2 /r for rc <r (II.1)

In Eq.(III. I) e is the electron charge and r. is a cutoff parameter that will

be specified below. The expression in Eq.(III.1) has been used to represent alkali

atoms by Parinello and RahmanE341 , Selloni,Carnevali,Carr and Parinellot1 01 ,

and Haug and Metiu[ 171 in a variety of three-dimensional calculations.

The electron-helium interaction energy is that used by Coker, Berne and

Thirumalai [351 (for electron-xenon) with a large distance cut off,

Veh ( X (a/X4) [ b/(c+X 6)- 1] (111.2)
n
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where

X = min{UIr-R I , Rc } II

a = 26.86 eVA 4 , b = 108.0 A 6 , c = 83.29A6 . The cutoff distance RC = 0.5A is

introduced to make the potential finite (and constant) at short distances. The total

electron interaction energy of Eq.(II.3) is the sum of these two terms

Vea(r,R) = Vei(r) +'Veh(r,R) . (III.4)

The alkali ion - helium interaction energy, constituting Va(R) of Eq.(II.2),

is taken to be harmonic with o = 0.1eV and which roughly approximates the

realistic potassium ion - xenon interaction given by Budenholzer, Gislason and

Jorgensen[3 6 ].

11L2 Absorption spectrum

In Figure 1, we present the fundamental transition of the electronic

absorption spectrum for this model problem calculated with the quantum Hartree

approximation, Fig.la, and the QGWP method, Fig.lb. The quantum Hartree

method is calculated using Eqs.(II.9-12) with quantum dynamics for both degrees

of freedom. This Hartree method produces a spectrum in which the major peaks

are essentially exact when compared to a full quantum calculationE2 11. The

fundamental electronic transition given in Fig. 1 shows the vibrational fine

structure arising from the 0.1eV dimer vibration in the 3 split lines. Ref. 21

presents details regarding the small spurious bumps and dips which appear

surrounding the major peaks which are related to the lack of quantum
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correlations inherent in a Hartree product assumption. Since the QGWP

approximation uses a Hartree product, we cannot expect it to do better than time

dependent Hartree.

As seen in Fig. 1, the QGWP spectrum is a reasonable representation of

the quantum Hartree spectrum. The fundamental electronic transition appears

with vibrational fine structure at nearly the same frequencies and with relative

amplitudes preserved as well. The width of the spectral lines in Fig.1 is

determined by the cutoff time of Eq.(II.32) ; a choice of -C=100fs was used in this

case. This result provides us with a measure of confidence in applying the QGWP

method to more complex and realistic situations where a comparison to a more

precise method is computationally out of hand.
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TV. KXen CLUSTER

We now apply and compare the QCT and the QGWP methods to a more

complex and physically realistic model. We want to examine how the the

absorption spectrum of the K atom is modified by the interaction with the Xe

atoms forming the cluster. This difficult physical problem can be examined

satisfactorily if we work with an atom consisting of one valence electron

interacting with a simple two body pseudopotential centered on the ion. The

potential is spherically symmetric, energy independent, and local. It is further

assumed that electron-solvent and the ion-solvent interactions are two body

interactions. While some of these assumptions can be improved, we see no reason

at this time to increase the complexity of the calculations by treating some of the

interactions at a higher level of accuracy than others. Our purpose here is to

examine the methodology. In Section IV.1 we give a brief summary of the

potentials used. The computational details for this application are given in

Appendix A.

TV.1 Interaction Potentials

For the ion - electron interaction energy, Vei, we use Eq.(III.1) with

rc =2.21A which results in the correct ionization potential for the K atom (4.34eV).

We note that the spectrum will be distorted in the high frequency region

corresponding to transitions to final states whose outer turning points are close to

or exceed rc. In spite of the simplicity of this psuedopotential, the low resolution

absorption spectrum of an isolated K atom, calculated with this potential, is

similar to the measured one (see Table I, to be discussed below).

The xenon - electron interaction energy is that used by Coker, Berne and
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Thirumalai (351, with a large distance cutoff. The total electron interaction with

the N xenon (solvent) atoms is

Ves = I (aIRn 4) [ b/(c+Rn6 ) - 1 1 (IV.2)
n

where

Rn= min{IXn , Rc, (IV.3)

Xn is the distance between the electron and the n-th atom, a = 26.86 eV A4 ,b =

108.0 A6 , and c = 83.29A 6 . The cutoff distance Rc is introduced to make the

potential finite (and constant) at short distances. The magnitude of Rc determines

the "transparency" of the xenon atoms to the electron and we set Rc = 0.5A. The

effect of varying Rc is examined in Ref. 17. This potential has a shallow attractive

well of 0.48eV at 2.4 A, which for a single Xe cannot bind the electron.

The total electron-atom potential used in Eq.(1.3) is the sum of thebe

terms

Vea(r,R) = Vei + Ves. (IV.4)

For the xenon-xenon interaction, we use a pairwise Lennard-Jones

potential[ 3 5 ],

Vss = (1/2) 1: 4E (O/Rnm) 6 + (O/Rnm) 12 , (IV.5)
n,m

with the parameters E = 1.9733 x 10 2 eV and a - 4.0551k. Rnm is the distance

between the n-th and m-th xenon atoms.

The potassium ion -xenon interaction energy ist36 1
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Vis= C9 /1 Rin9  C6 I Rin in (IV.6)
n

where Rin is the distance between the n-th xenon atom and the potassium ion,

C9= 9.70 x 10+3 eV A9 ,C6 = 1.4104 x 10+2 eV A6 and C4= 2.908 x 10+1 eV A4 . This

potential has a weak attractive well of 0.15eV at a distance of 3.4A.

The total inter-atomic interaction used in Eq.(II.2) is then

Va(R) =Vis + VSS (IV.7)
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IV.2 The spectrum of the isolated potassium atom

The absorption spectrum of the isolated K atom is obtainpd by including in

the Hamiltonian only the ion - electron interaction in Eq.(IV.4). The absorption

spectrum is given in Fig. 2a. We have examined it to provide a reference for

determining the spectral changes caused by the presence of the Xe atoms. The

calculated energies, oscillator strengths and peak frequencies for the K atom

using the computational parameters discussed in Section III are compared to

measured values[3 7 ] in Table I. The frequency of the fundamental peak and the

oscillator strength of the first three peaks in the calculated spectrum are close to

the experimental values (see rows 1-2 of Table I for the oscillator strengths and

the peak frequency in our model of K versus real K).

The first two peaks in the spectrum are rather similar to those measured

for the K atom and our results concerning these peaks are relevant to

experiments performed on the KXen system. The calculated electronic

transitions are found at about 1.64, 3.08 and 3.49eV while experimentally[ 371 the

transitions occur at 1.61, 2.67 and 3.80 eV. Errors in the higher energy peaks are

expected since the absorption energies of these peaks are in the energy range

where the computational grid is cut off.

IV.3 KXe, cluster

The KXe 6 cluster, for the potentials specified in Section III, has a ground

state minimum energy configuration of octahedral symmetry with K at the center

and the Xe atoms located 3.45A from the K center. The electronic absorption

spectrum of this cluster is calculated using three alternative dynamics
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approximations. In the first case, the cluster is frozen in its ground state

equilibrium configuration and the spectrum is calculated by letting the promoted

wave function interact with the Xe atoms. In the second and third cases we allow

the atoms to move in response to the excitation of the electron. where this motion

is calculated by the QCT method and also by the QGWP method.

We place the six Xe atoms symmetrically along the x,y and z axis with the

K atom at the origin. The spectra shown in Fig. 2 were calculated with an electric

field polarization direction in the ( 0,0,1 ) direction (along one of the K-Xe axes)

and the spectrum in Fig. 3 uses an electric field polarization direction in the K

1,1,1 ) direction (between the K-Xe axes).

In Fig. 2b we present the spectrum using the frozen KXe 6 cluster. The

spectral lines are shifted due to the interaction of the electron with the

surrounding Xe atoms. A resolution time of t=!5Ofs is used for the spectrl

window function, in Eq.(II.32). This frozen cluster spectrum has a blue shift of

about 0.33eV compared to the lone K atom spectrum. The electronic transitions

are at about 1.97, 3.36 and 4.13eV. The relative intensities of the first few lines are

changed only slightly by the presence of the Xe (see Table I, row 2 versus row 3).

In Fig. 2c we present the spectrum of the KXe 6 cluster using the more

traditional quantum-classical trajectory method (QCT of Section II.E) in which

the nuclear overlap is left out. A resolution time of z=150fs is used for the spectral

window function, Eq.(II.32) , for this case. The spectrum for the QCT method

shows a dramatic anomaly on the red side of the fundamental transition which

arises as the cluster relaxes, in response to the promotion of the electron. This

anomaly begins to appear at a resolution time of about = 60fs and becomes more

pronounced with increas.ag values of - . For values of T > 200fs. the anomaly
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dominates the spectrum. We point out that this ringing anomaly is not an artifact

caused by aliasing in the Fourier transforms, but is a real effect due to the

incorrect feedback between the quantum and classical degrees of freedom.J21l The

relative peak positions ( at about 1.96, 3.36 and 4.13eV ) and intensities of the lines

in the QCT spectrum in Fig. 2c are both in agreement with the frozen ciuster

spectrum of Fig. 2b (see also Table I, rows 3 and 4).

In Fig. 2d, the spectrum of the KXe 6 cluster using the QGWP method is

presented. In this cluster the motion of the classical wave function, in the QGWP

approximation, provides an intrinsic decay for the correlation function and we do

not nepd to use a window function. The line widths are "natural" in the sense

that they represent the decay of the vibrational overlap, which takes place in about

15Ofs.

The GWP wave function ,in Eq.(II.25), separates various physical effects

entering in the nuclear wave function. It contains an amplitude ( which for

simplicity we keep constant in width) ,and a phase given by the classical action

along the trajectory traced by the center of the packet along with a factor exp(

ipto(r - rt)/ h I associated with the momentum distribution of the packet. The

spectrum is practically unchanged if we remove the phase of the GWP wave

function. The main contribution to the spectrum comes from the amplitude term,

which causes a decay of the nuclear overlap entering in the cross section formula.

In fact if we suppress the phase information of the classical wave function for this

system and calculate a spectrum for comparison with the spectrum of Fig. 2d , we

find marginally perceptible differences on the scale give in Fig. 2d.

From the comparison of Fig. 2c and 2d, it is clear that the QCT
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approximation has greater trouble with negative cross section values than

QGWP. Never-the-less small negative cross sections do occur in the QGWP

spectrum. Since such small anomalies also occur in the exact Hartree

calculations ( see Fig. 1 above and Ref. 16 and 21), it is quite possible that the

anomalies seen in Fig. 2d are due to the Hartree product assumption made in

Eq.(II.8) and that no method using a Hartree product wave function would

improve on this.

Two other points need to be made when the QCT and the QGWP methods

are compared. The relative oscillator strength of the spectral lines given by the

two methods are considerably different ( see Table I). The relative strength of the

2p,3p,4p,... transitions in the series, is principally governed by the electronic

time-correlation matrix element, (bp(O) I pW(t)) in Eq.(II.12), which does not vary

between the two methods. However the Hartree phase term, involving rl(t) in

Eq.(II.12), which is left out in the QCT method causes most of the intensity

difference between the two methods. This can be seen from Table I by comparing

line 5 (the QCT method) , with line 6 ( QCT with the Hartree phase term added ),

and line 7 (the QGWP method).

A second difference between the QCT and the QGWP methods is the

energy shift in the spectrum. The QGWP electronic transitions are at about 1.39,

2.79 and 3.55eV which is a red shift of about 0.57eV ( for the fundamental) with

respect to the QCT method. This shift is readily traced to the phase information in

the classical wave function and the Hartree phase terms. The QGWP spectrum is

also red shifted by about 0.25eV compared to the spectrum of the isolated K atom.

While we are not aware of spectral data for small K/Xe clusters, experimental
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data for K defects in Xe matrices at 1.54 0K 38c1 suggests three different sites for K

in Xe, each of which show triplet patterns. Two sites have centers (of the triplet)

showing blue shifts of the fundamental K absorption line of about 0.05eV and

0.02eV while the third shows a red shift of about 0.01eV. Assuming that our

simplified potentials are accurate, the shift difference that we find could be

explained by noting that the Xe matrices do not have the flexibility of the KXe 6

cluster where the Xe atoms have considerable room to relax. Over the course of

the 150fs decay time of the nuclear overlap of the Xe atoms,the Xe aligned with the

electric field polarization ( which are most strongly affected by the promoted

electron) relax by about 0.085 Angstroms, while the Xe atoms perpendicular to the

electric field direction relax by about 0.039 Angstroms. Such a large relaxation is

less likely in a matrix and this difference may explain the difference in the

spectral shift. The Xe atoms in this small cluster tend to accomlnodate Uiit

"needs" of the electron and are therefore displaced in a way that lowers the energy

of the excited state.

As noted above, in the K/Xe matrix experiments(38b,ci the fundamental K

line splits into a triplet separated by about (0.01-0.02)eV. The first excited state of

the valence electron in the octahedral KXe 6 cluster is also three-fold degenerate.

Due to the symmetry of the cluster and the polarization directions chosen, this

triplet does not appear in Figs. 2 and 3. For example, in the case of the ( 0,0.1 )

polarization direction, although the octahedral symmetry is broken by a

tetragonal elongation ( Oh -> D4h )E391 as the Xe atoms along the polarization

direction back away from the K center when the electron is promoted, the 2-fold

states of the doublet are still orthogonal to the polarization direction. In the case
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of the ( 1,1,1 ) polarization direction, the degeneracy is not lifted. For arbitrary,

polarization directions the splitting may appear depending on the magnitude and

time scale of the configurational changes occurring in the cluster upon excitation

(see Section I.F above).

The normal mode frequencies of the excited cluster range from 1.4 x 10-3

to 2.5 x 10-2 fs"1 , giving recurrence times in the range of 250 - 4500fs. While our

main interest has been in short time calculations, we have also carried out a

calculation meant to observe the appearance of vibrational structure in the

electronic spectrum. In Fig. 3a , the spectrum of the KXe 6 cluster using the

QGWP method is presented for a polarization direction chosen in the ( 1,1,1 )

direction which perturbs all six Xe atoms equally. For this polarization direction

the anomalous features that appeared in the QCT spectrum in Fig. 2c are again

minimal. Also appearing in this spectrum is the beginning of a vibrztiona1

structure, which is more apparent when attention is focused upon Fig. 3b in

which the fundamental peak of Fig. 3a is blown-up. The vibrational structure is

characterized by an energy spacing of about 0.00166eV ( 13.4 cm"1 ) which implies

a corresponding time periodicity of about 2500fs. All six Xe atoms are

dynamically equivalent for this polarization direction and a representative Xe-K

distance is displayed in Fig. 4a for 4000fs. The motion of the Xe atoms is driven by

the energy flow from the quantum mechanical degrees of freedom (the excited

electron) into the classical-like degrees of freedom. This energy flow is indicated

in Fig.4b for 4000fs. The classical energy , denoted "C" in Fig. 4b, is
N

EC =1 Pn2/2Mn + Va(R) (IV.8)
n-1

and is measured along the left axis while the quantum energy, denoted "Q" in
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Fig. 4b, is
EQ = (Op I p2/2m + Vea(r,(R)) I OP) / (Op I 0p) (IV.9)

and is measured along the right axis of the figure. From both Fig. 4a and 4b a

vibrational time cycle of about 2500fs is apparent. Note also that the vibrational

mode is not just excited in this case, but rather that energy flows into the classical

coordinates over the first 700fs and then drains out of these coordinates in the

1700-2400fs time span, after which it cycles back in again. This emphasizes the

significant coupling of the electronic and vibrational degrees of freedom in this

system.

We note that ior the calculations in Fig. 4 the total energy of the system,

quantum plus classical, is conserved to better than 0.7 percent over the 4000fs run

time. Further computational details are given in Appendix A.
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V. Summary

We have examined a computational method in which a set of classical-

like degrees of freedom are described by Gaussian wave packets while the others

are treated quantum mechanically. This method was applied to a two-coordinate

model problem in which exact numerical results could be obtained and we found

that the method works fairly well. We have also calculated the electronic

absorption spectrum for a KXe 6 cluster in a frequency range where the valence

electron of the K atom is excited. The method does not suffer from the dramatic

failure ( negative absorption cross section) seen when Xe motion is treated

classically. Moreover, it generates a reasonable spectrum. The use of Gaussian

wave packets (GWP) is justified by the observation that the overlap of the nuclear

wave function is likely to decay very rapidly, requiring only a short time

calculation, for which the GWP method is accurate. The decay time is shorter for

systems with many degrees of freedom and the accuracy of the method increases

as the system becomes more complete.

The most interesting applications that we foresee are for several quantum

systems imbedded in a condensed medium or a large cluster. In such systems

the width of the spectrum is due to the vibrations of the medium as well as

inhomogeneous broadening. This method can calculate the vibrational width and

the vibrational structure.
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Appendix A: Computational details

The initial ground state wave functions for both the quantum and Hartree

cases are calculated by acting with exp(-axH) on an arbitrary trial wave function

with the appropriate symmetry. As the real number a becomes larger, the wave

function converges towards the ground state of the Hamiltonian H. For

propagation, we use a method proposed by Fleck, Morris and Feit[331. The

numerical procedure has been described by Hellsing, Nitzan and Metiu[401 and

has been used by others in similar contextst411 .

The quantum time propagation is performed with the algorithm of Fleck,

Morris and Feit[33], as discussed in Ref. 17. In the QC calculations, we propagate

the electron wave function for one time step, calculate the mean potential, update

the classical positions , update the classical coordinates in the quantum electron

Hamiltonian, propagate the quantum wave function for another time step, etc. ---

In the two-coordinate model for the quantum calculations , a time step of

0.01fs is used and a spatial grid having 64 points and a spacing of 0.6 A in the r-

coordinate and a spatial grid having 96 points with a spacing of 0.067.k in the R-

coordinate. The results were checked for convergence with respect to grid

spacing and grid size. The classical trajectories are generated by using the Verlet

algorithm[421 with a time step of 0.01 fs.

In the KXe 6 model- for the quantum coordinates, a time step of 0.01fs is

used and a 3-D spatial grid having 36 points and a spacing of 0.7 A in each

direction. The classical trajectories are generated by using the Verlet algorithm

with a time step of 0.05 fs. The results were checked for convergence with respect

to grid spacing, grid size, and time step.
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TABLEI:

The oscillator strength (Fn) for the first three peaks in the spectr'um is given in

columns 2-4. The ionization potential (IP in eV) is given in column 5. The

fundamental peak frequency (c, in eV) in the spectrum is listed in column 6.

Fn in series

System n=1 n=2 n=3 IP peak

(ev) co (eV)

K atom (expt.) a 0.968 0.009 0.001 4.34 1.61

K atom (calculated) 0.988 0.009 0.001 4.34 1.64

KXe 6 (calculated):

Frozen Xe 0.962 0.027 0.008 4.77 1.97

QCT method 0.953 0.027 0.008 4.77 1.96

QCT method + 11(t) 0.730 0.159 0.031 4.77 b

QGWP method 0.755 0.141 0.027 4.77 1.39

(a) Best fit to a variety of experimental and theoretical data.,3 7a]

(b) The peak frequency value for this case (7.94eV) is meaningless since energy

shifts are being included via the Hartree phase term which are not being

corrected for from the phase of the classical wave function.
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FIGURE CAP'IIONS

Fig. 1 The absorption spectrum (in arbitrary units) versus frequency (in eV) for
the two-coordinate model problem using: (a) the time-dependent Hartree method;
(b) the QGWP approximation.

Fig. 2 The absorption spectzrum (in arbitrary units) versus frequency (in eV) with
the ( 0,0,1 ) polarization direction ( along the K-Xe axis ) for:
(a) the lone K atom ; (b) the frozen KXe 6 cluster ; (c) the KXe 6 cluster using the
QCT approximation; (d) the KXe 6 cluster using the QGWP approximation.

Fig. 3 The absorption spectrum (in arbitrary units) versus freqaency (in eV) with
the ( 1,1,1 ) polarization direction (between the K-Xe axes) for the KXe 6 cluster
using the QGWP approximation. (a) The full spectrum on the 0-4 eV energy
scale ; (b) the fundamental transition from part (a) showing the vibrational fine
structure.

Fig. 4 For the KXe6 cluster described in Fig. 3: (a) a representative coordinate
R(t), in Angstroms, giving the Xe-K distance for 4000fs ; (b) curve C is the energy
of the classical degrees of freedom (n eV , on the left axis) and curve Q is the
energy of the quantum degrees of freedom (in eV, on the right axis)
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