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Performance Measures for Neural Nets
Using Johnson Distributions

William C. Torrez and Jayson T. Durham
Signal and Information Processing Division
NCCOSC RDT&E Division

Richard D. Trueblood
ORINCON Corporation
San Diego, CA

Abstract— A probability distribution for mul-
tilayer perceptron artificial neural net outputs is
derived assuming a sigmoidal activation function.
This distribution is known to be a member of the
Johnson system of distributions. Using this distri-
bution, theoretical receiver operating characteris-
tic curves can be developed to obtain recognition
differential values for corresponding values of the
probability of false alarm. Application of these
techniques for the detection of broadband signals
is presented.

I. INTRODUCTION

In this paper, we consider a feedforward multilayer per-
ceptron trained with back propagation of error. The out-
put nodes in one layer are transmitted to nodes in an-
other layer through links that amplify or attenuate such
outputs through weighting factors. Except for the input
layer nodes, the net input to each node is the sum of the
weighted outputs of the nodes in the prior layer. Each
node is activated in accordance with the input and bias
to the node, and the activation function of the node. The
typical activation function for the nodes in the hidden lay-
ers is the common sigmoid or logistic function,

1
F@) = e, (1)

This function is also known, in neural net termianol-
ogy, as the squashing function. In (1), the parameter 8
serves as a threshold or bias and the parameter 8, mod-
ifies the shape of the sigmoid. It is the objective of this
paper to evaluate the performance of the neural net by
modeling the class conditional probability density func-
tions p.ix,! = 0,1, for noise alone and for signal plus
noise, respectively, using the sigmoidal squashing func-
tion. Although the detection and false alarm statistics
are unchanged, it will be seen that the bias and shape

parameters characterize these distributions. Here x is the
input feature vector to be classified, and the output class
co, represents the noise alone case, while class ¢; repre-
sents the signal plus noise case. The performance metric
presented in this paper is based on the class conditional
pdf’s and is known as the receiver operating characteristic
(ROC) curve, which presents the probability of detection
Ps = [ pejx(7)dr as a function of deteclicn threshold
t, where t is choseu to achieve some prescribed level of
probability of false alarm, Py, = L°° Peopx(T)dr.

In II, it will be shown that under certain conditions the
pre-sigmoided hidden layer input is an approximate nor-
mal random variable. It follows that, in these cases, the
sigmoided output is a logistic transformation of an approx-
imate normal random variable. In I1I, the distribution of
this transformation will be derived and will be identified
as a member of the Johnson system of distributions. Us-
ing this model identification, ROC curves can be ploti=d
as a function of detection threshold ¢ and parameterized
by signal-to-noise ratio (SNR}. Another metric of prac-
tical utility is the recognition differential (RD), which is
the SNR which guarantees probability of detection equal
to 1/2 for a prescribed level of false alarm probability; in
practical applications, this may in fact be the preferred
metric. This point will be made in IV for the detection of
certain broad-band transient signals generated by simula-
tion in our laboratory.

I1. SuMs as GAUSSIAN DISTRIBUTIONS

We constder now a multilayer perceptron with M contin-
uous valued inputs x = (z;,...,xp), zpe{—00,00), and
two layers of hidden nodes. Taking the Bayesian approach
allows us to consider z; as a random variable; we will as-
sume that its mean u and variance o7 are finite. Without
loss of generality, we assume that g = 0. The net input




to hidden node j may be expressed as

M
Xj:’ E Wi Tk,
k=1

for real-valued weights, {w;}.
The requirement that the terms wijz; be uuniformly

small, which is known as the Lindeberg condition {1}, is a
sufficient condition to insure that the sums X;, properly
normalized, converge to the normal distribution. We have
made the empirical observation in the laboratory that, in
certain cases, the independent random variables wy;z; do,
in fact, have a uniformly small effect on the sum X;. Thus,
our contention that, in these cases, the sums X; follow a
normal distribution is borne out by the application of the
central limit theorem as descrited above.

For the present application, M is sufficiently large (on
the order of 1440) and the z; are sufficiently decorrelated
to insure a high degree of statistical independence in the
collected samples, so we may, in fact, invoke the central
Jimit theorem to assert normality when the Lindeberg con-
dition holds. To insure independence, if z; is a portion of
confinuous time series, then we assume that z; has been
sampled at a rate which is higher than the decorrelation
time of the time series. We could also pre-whiten the time
series by Gram-Schmidt orthogonalization techniques to
insure a high degree of independence.

III. SIGMOIDAL SQUASHING FUNCTION AND THE
" JOHNSON DiISTRIBUTIONS

Recall the squashing function, f(a), defined in (1),

1

f(a):m,—-oo<a<oo.

Assuming that X; has an approximate normal distribu-

tion with mean 0 and variance ;2 = Y pr, wij20:? as
asserted in the previous section, the probability density
function, pex(s), of f(X;) can be easily derived. In fact
by the change of variables formula,

s
1-—-

dz
Px(s) = ¢ (Hooln 1;) 0 0<s<l, (@

3 3
%% 00 < 2z < 00 and z

S |
where $(z) = e
6+6,in (1‘T:) After differentiating z with respect to s
in {2), we obtain

1 P IR TELY LT ) M 1,

V2 s(1 - 5)
(3)

where, n; = 6,/7;,7; = 6/7;. The density in (3) is a
member of the Johnson system of distributions and its

pch(s) =

Density
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Figure 1: Fitted Normal Density Plots for Pre-Sigmoided
Values Indexed by Signal Level Offsets (in dB) Including

the Case of Noise Only.

properties are well-known [2]. In fact, maximum likeli-
hood estimates of v; and 5;, are given by

¥ ==Xji/si,% = 1/s;, 4)
_1

where X; = 2377, Xji and s} = 2 0 (X0 - X;)%,
where {Xj; : 1 = 1,...,n} are sampled from the hidden
layer at node ;.

IV. RECEIVER OPERATING CHARACTERISTIC CURVES
FOR BROAD-BAND SIGNALS

The pre-sigmoided values were collected from the data
sets described in the Appendix for the five cases of signal
mixed with noise at various levels offset in 1 dB incre-
ments from a reference signal and for the noise alone case.
Fitted normal density plots for these values are shown in
Fig. 1. In each of these cases, the observed pre-sigmoided
values passed the Kolmogorov-Smirnov (K-S} and the chi-
square goodness of fit tests for normality at the 5 % level
of significance as we had asserted in I1.

Fig. 2 shows the corresponding fitted Johnson density
plots, where the form of the pdf is given by (3). The fits
were based on the parameter estimates, ¥; and 1), given in
(4). Thc signal-to-noise ratio (SNR) in dB offset is noted
on each density curve. The SNK values given have been
calculated for the simulated broad-band transient signals
according to recent work described in [3]. The reader is
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Figure 2: Fitted Johnson Density Plots for Sigmoidal Out-
puts Indexed by Signal Level Offsets (in dB) Including the
Case of Noise Only.

referred to that source for the technical details for the
SNR calculations.

Fig. 3 shows the fitted normal cumulative distribution
functions overplotted with the empirical distribution func-
tion for the pre-sigimoided values. Fig. 4 shows the cor-
responding semi-empirical fits of the Johnson cumulative
distribution functions (smooth curves) to the empirical
distribution functions of the sigmoided outputs (i.e., acti-
vation levels) for the five levels of signal power considered
as well as the noise alone case. These semi-empirical fits
using the Johnson distribution were deemed statistically
close to the empirical observations as measured by the K-S
goodness of fit test performed at the 5 % level of signifi-
cance.

Finally Fig. 5 gives the ROC curves for the various
signal level offsets based on the semi-empirical (i.e., fitted)
Johnson distributions. These plots show Py4 as a function
of Pya. One sees that for a prescribed level of Py, of 10™°
and Py = -12-, the signal level offset is very close to -10 dB.
This value is known as the recognition differential offset
or RD offset (for the prescribed level of Py,).

Also Fig. 6 below shows a plot of the means and stan-
dard deviations of the five signal levels considered as a
function of the level offset. Beyond allowing a straightfor-
ward interpolation, the iivted least squares line also allows
us to extrapolate the mean and standard deviation nf non-
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Figure 3: Empirical Distribution Functions for Pre-
Sigmoided Values Overplotted with Semi-empirical Nor-
mal Cumulative Distribution Functions.
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Figure 4: Empirical Distribution Functions for the Sig-
moidal Qutputs Overplotted with Semi-empirical Johnson
Cumulative Distribution Functions.
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Figure 5: Semi-empirical Receiver Operating Characteris-
tic Curves Using Johnson Distributions for the Sigmoided
Outputs Indexed by Signal Level Offsets (in dB).

simulated signal levels. The equations for the mean and
standard deviation fits are respectively,

-

y = 1.3722 + 0.17381z, (5)

y = 0.22241 — 0.004246z. (6)

Now i;o obtain the RD given any prescribed level of Py,,
we observe that the detection threshold, t4(), is given by

ti(a) = 5,87 1(1 - a) + m,, M

where m, = ~1.21474 and s, = 0.196038 are the mean
and standard deviation,respectively, of the noise, and !
is the inverse of the unit normal cumulative distribution
function. Using (5), it is easy to see that the RD at level
o must satisfy

rp=@)—m

my

where 1ny = 1.3722 and my = 0.17381. Together with (7),
we have finally,

5,87 11— a)+m, -m
ms

RD = (8)

Finally, Fig. 7 plots RD as function of Py, given by (8).
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Figure 6: (a) Means and (b) Standard Deviations of Five
Cases with Linear Fits.
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YV  (CONCLUSIONS

For a prescribed level of Py, of 1073, the RD may be
extrapolated by noting a functional relationship of the
means and variances of the normal distributions of the
pre-sigmoided values as a function of the signal level off-
set (cf. Fig. 1). Extrapolating this value gives an RD
of approximately -11.4 dB (cf. Fig. 7) offset from the
reference signal.

As mentioned in I, the invocation of the central limit
theorem for establishing the normality of the weighted
sums of sigmoided neuron outputs is only applicable when
the Lind.berg condition holds. Our most recent work {4]
demonstrates that we can, in fact, fit the Johnson sys-
iem of distributions to empirical distributions of various
shapes and that, like the results described in this paper,
these generalized fits can also describe the location and
shape of the distributions in terms of the input SNR lev-
els.
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APPENDIN EXPLRIMENTAL METHoboLoOY

A strong SNR broadband transient event was digitized
from a recorded data tape. A 30 sccond interval, which
contained the sigual with a trailer of nose, was then re.
peatedly played Lo a tape recorder for two hours. There
were no gaps between the beginning and ending noise sam-
ples of the captured interval. Edge effects were an initial
concern but none have been observed. The recorded tape
of repeated events was designated as the signal master
tape. Using an analog signal attenuator, bandpass filtered
output from the signal master was then recorded to a se-
ries of tapes with the analog attenuator offset one dB from
the reference signal, per record~d tape. The initial tape,
which was consequently recorded at the strongest signal
level, was designated as the reference signal level. Each
two hour tape stored 240 repetitions of the same event.

Finally, all the signal tapes were analog mixed with a
two hour period of ambient ocean noise. For a given time
on the noise tape, the time of occurrence of the events
varied up to within a few seconds. None of the events
were mixed with the noise to within the same sampling
interval. By not playing a signal tape, a noise only tape
was recorded. For all the test recordings, the two-hour
noise interval was simply repeated for each signal tape
with all other system parameters fixed.

Each tape was played into a realtime classification sys-
tem which utilizes in- house developed artificial neural net-
works. For noise only, the output activation levels were
blocked into contiguous signal length durations and the
maximum activation level was recorded for each block.
Those values were used to calculate the empirical dis-
tribution of noise only. For each signal tape, the max-
imum activation plus or minus the signal duration was
then recorded. Those values were used to calculate the
signal present distributions.




