-A264 990

- L J

D-
MUNMHIMHNLY ~MENTATION PAGE

Form Approved
OMB No. 0704-0788

g the time for

on ot Infonnallon Send comments g

gihis

asu W tNe Uice of Management and Budget Paperwork Reduction Project (0704-0188) Washington DC 20503

ng Instructions, seasching exisiing oata sources, gighesing and
{ ©of any ciheraspect of this collection of InformatioMNQClu:
. - lces, Directoratefor informatton Operations and Reports 1215 Jetferson Davis Highway, Sutte 1204, Arlington, VA 22202°3302

2 REPORT DATE
March 1993

1 AGENCY USE ONLY (Leave blank)

3 REPORTY TYPE AND DATES CCVERED

Professional Paper

4 TITLE AND SUBTITLE

HAsP—HETEROGENEOUS ASSOCIATIVE PROCESSING

8 AUTHOR(S)
R. F. Freund and J. L. Potter

5 FUNDING NUMBERS

-,

PR: ZW65
PE: 0601152N
WU: DN302054

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Commead, Control and Ocean Surveillance Center (NCCOSC)
RDT&E Division
San Diego, CA 92152-5001

8 PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONTORING AGENCY NAME(S) AND ADDRESS(ES)
Office of Chief of Naval Research

OCNR-20T

Independent Exploratory Development Program (IED)

10 SPONSORING/MONITORING
AGENCY REPORT NUMBER

Arlington, VA 22217
11. SUPPLEMENTARY NOTES

ELECTE g%
MAY27 1993 § K

, oNcooE W 4
12b msrw N CODE 3»“.

122, DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

13. ABSTRACT (Maximum 200 words)

Heterogeneous processing (HP) is a technique intended for Grand Challenge and other high performance computing
(HPC) problems and for bridging the gap between the theoretical potential of parallel processing and the current reality. In
HP, we aim to match code and algorithms to best-suited architectures, through techniques such as code profiling and ana-
lytic benchmarking. Associative computing (AsC) combines ideas from both associative memories and single instruction
multiple data (SIMD) computers to look at new ways to use fine-grain parallel processors to achieve results beyond what is
normally done by using spinoffs from sequential or multiple instruction multiple data (MIMD) processors. Heterogeneous
associative processing (HAsP) is a generalization of the concepts of both HP and AsC. In HAsP, the AsC assumption of
linking each datum with its own processor is generalized to assuming that each data file has its own dedicated computer.
This paradigm maps onto all levels of granularity and can be easily emulated on most machines. The goal of HAsP is to
allow the user to discuss the heterogeneous system at the highest possible level and with the tightest possible synchronism.
HASP ofters the potential of combining the simplifying programming approaches and algorithmic efficiencies of AsC with
the performance of HP,

93-11
NIIHIll!lllllllNll'ﬂlllll'l!llllllll‘llh

15. NUMBER OF PAGES

v
4
0N
N

D, s idrsnc B0 9
Pubhshed in Compu ng Syste. i:‘i‘Enginee 1. 3¥ps. 1-4, pp 26-31

14. SUBJECT TERMS

high performance computing
heterogeneous processing 16 PRICE CODE
SUpErconcurrency
17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. UMITATION OF ABSTRACT
' OF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED

UNCLASSIFIED SAME AS REPORT

NSN 7540-01-280-6500

Standard form 268 (FRONT)

- Best
Available

UNCLASSIFIED

21; NI:MEFOF RESPONSIBLE INDIMIDUAL 21b. TELEPHONE (Include Aea Code) 21c. OFFICE SYMBOL
. F. Freund (619) 553-4071 Code 423
Brn -
41\.(QU[—-L.L ey Tt
Accesion ror (
NTIS CRA&I o
DTIC Tab i
Una gl ovd £
Justificaaon
BY e s "
Distibution |
Avaiataiity Ccodes
) Avzid a;':c's:'or
Dist Special
NSN 7540-01-280-55¢0
Standard form 298 (BACK)

UNCLASSIFIED

I~

HAsP HETEROGENEOUS ASSOCIATIVE PROCESSING

R. F. Freunnt and J. L. Porrer}
tNaval Command, Control and Ocean Surveillance Center, NRal) 423, 271 Catahing Bhd,
San Diego, CA 92125-5000, U.S.A.

tKent State University, (1.S.A.

-

Abstract—FHeterogencous processing (HP) is a technique intended for Grand Challenge and other high
performance computing (HPC) problems and for bridging the gap between the theoretucul potential of
paraliel processing and the current reality. In HP, we aim to match code and algorithms to best-suited
architectures, through techniques such as code profiling and analytic benchmarking. Assoctative comput-
ing (AsC) combines ideas from both associative memories and single instruction muluple data (SIMD)
computers to look it new ways 1o use finc-grain parallel processors to achicve results beyond what is
normally done by using spinofls from sequential or multiple instruction multiple data (MIMD) processors.
Heterogeneous associative processing (HAsP) is a generalization of the concepts of both HP and AsC.
In HAsP, the AsC assumption of linking each datum with its own processor is generalized to assuming
that cach data file has its own dedicated computer. This paradigm maps onto all levels of granularity and
can be casily emulated on most machines. The goal of HASsP is 1o allow the user to discuss the
heterogencous system at the highest possible level and with the tightest possible synchronism. HAsP offers
the potential of combining the simplifying programming approaches and algorithmic efficiencies of AsC

with the performance of HP.

1. INTRODUCTION

Distributed heterogeneous high performance com-
puting (DH-HPC) is the “tuned" usc of heterogenous
suites of sequential and parallel HPC processors
to obtain cost-cffective HPC and/or metacomputing
performance.™ The essence of DH-HPC is the ability
to obtain maximal exccution by mapping the compu-
tational tasks onto the best-snited architecture.
The intent is that for problems with diverse compu-
tational subtasks, thc overall performance cost-
cflectiveness will be better than any comparable
single processor. In addition we aim to reducc
the applications programming cffort sincc well-
matched code leads to natural implementations. The
beginning forms of DH-HPC were cascs in which
codes were profiled and run on the best-suited ma-
chine with the data following along. As discussed
below, however, we belicve that the ultimate ex-
pression of this paradigm is reached in a DH-HPC
cnvironment in which the data arc profiled and
remain resident on the best-suited machine and differ-
ent instruction streams are passed to it, In other
words, HAsP is an HPC form of MISD processing.
The long-term objective is to develop a methodology
suitable for a heterogeneous suite of supercomputers.
The mecthodology should be cflective, expressive,
extensible and efficient. By cllicient, we mean easy
to use and applicable to all types of architecture,
By expressive we mean it is usable for all types
of problems, Thus, while DH.HPC problems are
our primary target, our goal is to also evaluate
other compute intensive problems such as dynamic
dutu bases. Extensible means that the methodology
must be flexible enough to accommodate new
machines und architectures as they are added to the

tJ
-

system. To be efficient the methodology must support
the existence and addition of high level operators
such as sum, convolution, matrix multiply, etc. The
short-term objectives for HAsP are the application of
DH-HPC and associative computing principles to
devclop heterogeneous processor suites spanning
wide problem scts and to develop new methods for
benchmarking, code and data profiling, and the
intelligent management of sclected DH-HPC suites.
A major short-term objective is the cxtension of
DH-HPC paradigms and associative computing prins
ciples to heterogeneous suites forming a virtual as-
sociative computer.

2. DISTRIBUTED HETFROGENEOUS HPC

Shared memory and message passing are twa basic
paradigms of computation derived {rom conventional
multi-user concepts that could be used for a hetero-
gencous supercomputer system. Linda® is a shared
memory paradigm based on an associative memory
concept. Data (tuples or records) to be processed
are “put” into a shared memory and idle processors
“get™ tuples from the memory to work on. Linda
assumes cqual power processors which treat data like
resources.

Actors! is a message passing, fine grain, object
oriented approach for concurrent computing. It uses
three primitives: create: send: and become. Where the
got and put primitives of Linda gencrahize the shared
memory model, the create and send primitives of
actors generalize the process creation and message
passing concepts. Actors allows you (o reason about
the system; however, reasoning is done at the “actor™,
i.e. low level message passing level.

5 R. F. FREUND and J. L. POTTER

BBN's TCL (tool for large grained concurrency)
ses high level linguistic constructs and has a virtual
vachine concept for organizing parallelism. The
ompiler divides the program into continuations
vhich are parceled out by the scheduler for execution
n the most appropriate machine. Implicitly, this is
. message passing or object oriented approach,
.c. the data and command must be sent. The virtual
nachine primitives range from host language (LISP)
yimitives to high level commands. TCL maintains
t local view. If there are multiple users. each has
heir own TCL scheduler. Thus each works most
sfficiently if it has application specific information
wnd can concurrently interrogate processors from
heir current status.

Both the Linda and Actcrs models were designed
‘or and work well on single MIMD computers, but
~vhen the concepts are moved to a heterogeneous,
Jistributed network environment. considerable over-
head may be incurred. Linda is essentially a data

driven approach controlled by the instances of
data tuples in shared memory. By definition, this
approach requires a considerable amount of data
sharing. When implemented (as intended) on a shared
memory machine, sharing requires only memory
rcads and writes. However, if the paradigm is moved
to a distributed hcterogeneous system, the data
must be physically moved resulting in considerable
overhead. Actors, being a message passing model,
assumes (guarantees) that messages are delivered,
therefore it is possible (probable) that large portions
of system resources (both hardware and software)
are devoted to message passing (i.e. buffering and
forwarding data and commands) not computing.

A general problem of most conventional
approaches to heterogencous computing is that they
arc bottom up. That is, they provide relatively
few low level primitives that support a specific
MIMD paradigm (Linda shared memory, actors
message passing). These primitives are intended to be
imbedded in conventional sequential languages (i.c.
FORTRAN, C, etc.) or form the foundation of a
specifically designed “high level language™ and to be
exccuted on a single computer.

The bottom up approach imposes several restric-
tions on the paradigms. For example, in Linda, tuples
are singular, i.c. they represent a single data object or
record. By putting pointers in a tuple, arrays and
structures can be referenced, but the basic mode of
operation is that the normal case is scalar, the
excepton is parallel and requires more complicated
syntax. A more general, more powerful system is
achieved il the primitives itre composed of entities
which include hoth paraliel and scalar as equivident
CHNCS,

In Actors the recommended approich tay execute o
loop i paradlel on o MEIMD machine w to break
it into individual messages, one for cach tevation of
the loop. This approach should not be extended 1o
heterogencous enviconment, sinee 11 adds consuder-

able overhead to exccution and ignores the communi-
cation cfficiency and natural parallelism of SIMD,
vector and other “tightly coupled” architectures.
There should be a minimum of communication
between computers to determine what to do next. A
high level command which encomps.sses both parallel
(i.e. loops) and scalar operations is neceded.

Efficient system management demands that the OS
communications be at the highest possible level but
computation be at the lowest level of parallelism.
For example, function/operations should take files as
arguments instead of records or tuples, but vector
operations should be done at the machine level not at
the system level.

Most distributed operating systems are extensions
of MIMD paradigms. As a result, there is no natural
way to match the proper computer to the compu-
tation. For example, in Distributed Linda, both a
SIMD and a MIMD could issue a *‘get” command
for the same tupel. The race condition is determined
arbitrarily, not on the basis of which computer is
better suited for the task. The basic job could be
programed so that the “best™ architecture issues the
*“get”; but then the “next best™ architecture may be
sitting idle while the “best™ one is doing all of the
work.

Associative computing’ is a programming para-
digm developed explicitly for massively parallel
SIMD computers. It uses the concepts that each
datum has its own dedicated processor. Thus, in
associated computing, commands are broadcast to
all components. Those components which recognize
that the commands arc applicable to them (using
associated techniques) execute them. The associative
computing paradigm can be combined with DINS to
form an efficient comprehensive DH-HPC system.

3. HETEROGENEOUS ASSOCIATIVE PROCESSING
(HAsP)

The basic assumption of associative computing
is that cach datum has its own dedicated processor.
In the HAsP cnvironment, this assumption is generals
ized to assuming that cach data file has its own
dedicated (possibly parallel) computer. The distine-
tion between an associative memory and an associ-
ive compulter cannot be over-emphasized. Associative
memories require that the selected data be moved o
a central processor before they can be processed.
An associative computer has a separale progessor
for every datum wherever it is located and is thw
an inherently distributed system, The assoviative
computing puradigm maps well onto all levels of
purallelism from low level massively paradlel SIND
computers to high level heterogencous parableham
and can be easily enulated on most machives, bath
sequentisnd and paradiel,

The goal of TEASE s o develop an caviaonment
that allows the user e diseuss the heterogenenss
svstem it the highest possible level and wath e

.

HASP heterogencous associtine provessing 27
2

tghtest possible synchromsm, That is, the primitives
should encompass parallelism and heterogencous
computation as the norm and treat “sequential von
Neumann computation’ as i special case.

The HAsP paradigh makes several assumptions
for large heterogencous computing networks:

() there s much more data than code;

(2) data sets typically have onc or a few (related)
natural orgamzations that are basic o the various
instructions streams that may be dirccted against
them:

(B the cost of communication is high compared
with the cost of computation (or equivalently, the
speed of transmission is slow compared with the
speed of computation); and

(4) any system can be viewed as a virtual associat-
ive computer with a (small) common set of com-
mands and a multiplicity of data tuples each with
their own processor.

The conclusion is that the data should be sent to
the most appropriate computer initially and the code
sent to the data.

In our opinion HAsP can be viewed as a MISD
paradigm, i.c. one in which various instructions
streams are sent to any given machine (or CPU)
which holds those data sets best suited for it.

A layered operating system, a virtual machine
organization, automated data conversion, code and
data profiling, and a layered metacompiler are all
important concepts for HAsP. At first glance, HAsP
is similar to message passing systems; however, there
are five significant differences. For example:

(1) In HAsP, commands are broadcast to the
entire system, not to specific nodes. Nodes select
commands based on their data content, not address.
A command consists of an: (i) action; and (ii) argu-
ment patterns delineated by keywords.

(2) Data movement is minimized. Commands
rarely contain data. However, commands to move
data may be sent and as a special casc, a command
may cause a node to send a reply.

(3) When a command is received the argument
patterns are used to search the local data basc for
items that match. In a multi-user environment,
part of the pattern may include user id and/or job
numbers. Matched items are flagged. The flags
are attached to the appropriate keywords and control
is passed to the action software. Pattern matching
is performed in a mode appropriate for the local
c¢omputer. On a SIMD machine, the pattern match-
ing is donc in parallel. On a MIMD machine,
it “could” be donc using message passing of the
shared memory paradigm. On a scquential machine
it would bc donc sequentially on sorted tuples or
by hashing.

(4) It is possible for two or morc commands to be
issucd which match the same data items. In these
cascs it “state” item would be included to make tuples

I

unique. At the end of an action cyele the state would
be updated.

(5) ~Load batuncing™ is done dynamically on in-
ial data load. That is, the HAsSP heterogencous
compiler using static code profiling would consult the
concordance to determine the best set of computers
to use. At run time, dynamic data profiling wouid be
used to refine the decision, Then the data would
be input dircctly to the appropriate computer. Unlike
OOP approaches that must (at lcast conceptually)
move data and code from node to node, HAsP
emphasizes the movement of code alone. Once the
data have been input to a computer, they are rarely
moved or copied.

3.1. Virtual heterogeneous associative machine

In HAsP, a layered view of heterogencous pro-
cessing is advocated. Each layer consists of a virtual
heterogencous associative machine (VHAM). Thus
there is a VHAM for large area (nation wide) net-
works. A VHAM for region wide, statewide, building
wide, and local area networks as well as a VHAM for
a single heterogeneous computer. Not all HAsP
systems need have all levels, indeed threc or four
levels of VHAMs would probably be most common.
Where the code/data is known to be mutually exclu-
sive, multiple associative commands can be issued.
At the top most level, the HAsP commands at each
level are of a coarse enough granularity that a single
physical channel or bus could be divided into scveral
time shared concurrent channels.

VHAM consists of three parts. First, it is a set of
“instructions” which defines a virtual heterogencous
associative machine. Second, it contains an execution
engine which processes HAsL instruction. Third, it
is a system of protocol where by new user defined
“instructions™ can be added to the system. Thus
VHAM is a paradigm with a predefined minimal
run time expandable instruction set and execution
protocol. In conventional machines, instructions are
delivered to a CPU and they are exccuted without
question. In the VHAM, instructions arc broadcast
to all of the cells, but each cell must determine
whether to execute the instruction. This determi-
nation is performed as follows: upon reccipt of an
instruction, a node “unifies” it with its local instruc-
tion set of library calls and extended instruction and
datafiles. If there is a match, the appropriate routine
is called. The node will perform format conversion if
nccessary. The called “instruction™ may in turn issue
VHAM instructions. Thus control is distributed even
though every level of the HAsC has a designated
control node. That is, a “program™ starts by issuing
a command from the designated control nade. I a
receiving node receives a command that is in effect a
subroutine call, it may become a transporter node.
It may first perform some local computations and
then start issuing (broadcasting) commands of its
own. If the node happens to be a port nade, the
commands are issued to ils subset as well as to ity

28 R. F. FREUND and J. L. POoTTER

own network. Thus it is possible (even probable)
that multiple instructions streams will be broadcast
simultaneously.

3.2. A virtual associative computer

The virtual machine organization should be as
closely coupled as possible. The main question is:
what are the virtual commands? The commands
should be very high level (i.e. convolve, fit, Gauss)
consisting of entire programs or algorithms. The
same algorithm may be in two or three different
forms; one for each type of machine in the system.
A concordance records all of the forms and related
parameters. For example, convolve may have four
different morphs, one for each machine type or
subtype, i.e. hypercube SIMD, grid SIMD or compu-
tation model, messsage passing or shared memory.
Each concordance entry states its parameters, speed,
data format, etc.

Ideally, the layered OS language would be the same
as the virtural machine and concordant application
languages. The commands from different OS levels
may overlap. They would range from basic to com-
plex depending on the level of the OS. Although
the OS and application languages would share the
same vocabulary, the OS language is real time and
interactive. The application language is “‘compiled”
and executed as a background job. There would be a
“macro” mode of operation where the user would
enter his job inter-actively via the OS language.
When he got the correct results, the history of the OS
command could be saved in a file, edited if necessary,
and compiled and executed as a program.

3.3. An associative operating system

The associate operating system would consist
of one per level per virtual associative computer.
In order to develop a layered OS, all aspects of a
conventional operating system needed to be separ-
ated, analyzed and then reorganized. For example,
currently in a heterogeneous system, a conventional
multi-user operating system is at the bottom layer
of the system. All operating systems have a data
move function from one disk file to another. In a
heterogeneous system however, this function needs
to be generalized to including moving files from one
file server to another and should be put at a higher
level in the hierarchy. That is, general file moving is
not a primitive but a high level function. Conven-
tional focalized file moving is of course a primitive
function and is the degencrate case of general file
moving.

3.4, Awomatic data conversion

The most important aspect of this approach is
to minimize the amount of data movement in the
system, However, when data is moved, it will be
automatically converted From one format to another.
For example, il data is moved from a word serial
MIMD or vector machine environment 1o o it serial

computer, the data must be “‘corner turned”. Data
reformatting would be handled automatically by the
OS and application languages just as float to fixed
conversion is handled in conventional languages.

3.5. Metacompilers

The concept of developing a metacompiler for a
heterogeneous group of computers is very enchant-
ing, but very difficult. The efforts from the areca
of vectorizing compilers might be a first step, but
they emphasize transforming code designed for one
class of machines and transforming it to execute on
another closely related class. Furthermore, current
compilers make no effort to attempt to determine the
“best” machine for execution and the conventional
analysis techniques for converting code to flow
graphs is slow and may not be the most effective
approach. That is, with the current technology, it
should be possible to analyze a code and distribute
it among a suite of machines, but a scquential
algorithm cannot be analyzed and replaced by a new
parallel algorithm.

The automatic detection of parallelism is basically
limited to nested loops in the initial code. For
example in Linpack, vectorization can be used to
optimize the inner most loops, but searching for
idioms such as finding the maximum value of a
vector and replacing it with a (SIMD) parallel maxval
function is much more complex because of the variety
of ways in which the function can be expressed.
Current technology calls for the use of “‘patterns™.
A different pattern must be used for cach possible
realization of the function. This is an ad hoc approach
and is not a suitable solution. The traditional analysis
techniques may not be applicable. For example,
traditional data flow analysis provides rcaching
definitions, available expressions and loop optimiz-
ation information. This information may be very
useful for planning the top level virtual machine
organization; however, in a data parallel language
this information is not normally useful. That is,
in a conventional sequential language, flow of
control is based on the relationship between scalar
variables. However, in a (data) paralicl language
control is determined locally by datum specific logic.
Indced, this kind of control is equivalent to using
arrays of variables in a sequential computer. As
always, pointers and arrays create situations which
are very difticult to handle using traditional analysis
technigues.

4. CODE EXECUTION MODRELLING

In & heterogencous supcrecompuier environment, it
is imperative to dynamically assign jobs to computers
in such o way as to optimize cither throughput ot
execition speed (or both, ideally), Thiv imeludes
dividing jabs mto subtasks wheeh execute vptionally
o VEEAMS aadl Teveds, T is not suflicient to asaghn
sk on i fiest come Biest seeved basis o some sanple

PEASE - heterogencons associttive provessing 2

prionty scheme. Opumal results can only be achieved
by code execution modeling. Code exeeution model-
ing includes the ability o accurately predict how g
code data set combimation will execute on o VHAM
It incorporates components of benchmarking. code
profiling and data profiling. This section provides
background on these topics and describes a pratotype
system.

4.1. Benchmarking

Benchmarks are commonly used to test and cvalu-
ate codes, algorithms and machines, and have long
been used, especially for HPC. Nevertheless there are
fundamental differences in the underlying uses of
benchmarks that often lead to semantic misinterpre-
tation and confusion. For example, scientific users
of HPC often want results from benchmarks as an
indicator of how their existing code will run on new
machines. Designers of new algorithms or machines
often want to know the future potential, including
particularly the result of radical redesign of code
and algorithm. The term “peak performance” has
often been reserved for this last concept, even though
sustained code performance seldom comes close
(although intelligent assembiey language coding can
sometimes lead to sustained performances several
times faster than *“peak’). One of the more interesting
recent approaches was that of Gustafson et al.’
in which they proposed a scalable methodology
(SLALOM) in which the amount of work done in
a fixed time is the key measure of performance,
rather than the amount of time to do fixed work.
Furthermore the SLALOM approach emphasizes
the need to solve the problem, not run a particular
code (which has been written in a style inhcrently
favoring one type of architecture). We propose some
refinement of terminology in order to expand on the
differing levels of benchmarking by examining scveral
situations:

(a) Consider the case of large physical simulation
code, e.g. climate modeling. It may be impractical to
make radical changes in the code or algorithms in the
near or intermediate futurz, benchmarks necded.

(b) Let “Benchmark S.t" be reserved for codes
with little or no “tuning”, e.g. the LINPACK test set.

(c) Let “Predictor Set” be reserved for codes in
which significant rewriting of code, including assem-
bly language, is permitted, e.g. the PERFECT Club
suite. In the case of new vendor products, this would
offer the vendors the challenge (and opportunity) to
do the best they can, on real problems,

(d) Let “Subproblem Set” be reserved {or cases in
which we change the algorithm, ¢.g. moving from one
kind of sort to another, as might happen in optimally
moving from one type of architecture to another,

(¢) Let “Problem Set” be reserved for cases in
which the whole approach might be changed, e.g.
Potter’ has clearly demonstrated that in moving
from von Neumann machincs to SIMD machines,

searching, in an associtine computing environment,
can be more effective than raditional sorting. The
specification for a Problem Set might merely consist
ol work problems that need 1o be computed in any
nuanner,

A distinction between benchmarking and code
profiling also needs to be made. Benchmarking is the
process of establishing a stite of codes to model a
“typical”™ workload so that different architectures
and machines can be compared. However, most
benchmarks have been developed for a traditional
sequential machine environment. Vector machincs
have been developed to optimize code written for this
type of environment. On the other hand SIMDs
were developed as an independent architecture.
In a heterogencous HPC system, a more rigorous
general purpose approach for comparing computers
is needed so that computing resources can be
assigned dynamically. Freund and Peterson’ have
proposed a formulation for determining the best task
assignments in a DH-HPC environment. Dynamic
assignment requires that the performance of the
currently available computers on waiting jobs can
be predicted in such a way that they can be meaning-
fully compared so that an optimal assignment can
be achieved.

Code profiling is the technique of analyzing pro-
grams to determine how they may be optimized for
execution on any given VHAM. In a heterogeneous
supercomputer environment, code profiling can be
combined with benchmarking to accomplish code
execution modeling.

This section on code execution modeling, defined
below, is divided into two subsections: throughput
prediction and data profiling. The first proposes an
approach for code profiling including a set of atomic
commonly used parallel operations which can be
easily benchmarked and then combined into more
complex formulations to not only predict the time of
execution for a piece of code, but to also provide an
overall estimate of throughput for an entire DH-HPC
system. An important aspect of this work is the
ability to predict future performance; and while the
approached described below can be laborious, it
is intended that the modeling be automated using
techniques developed for conventional vectorizing
compilers.

4.1.1. Throughput prediction. This paper hypoth-
esizes that an important class of codes can be
modeled as alternating sequences of scalar and
basic paralicl operations and that these codes can
be meaningfully compared on vector and SIMD
machines. These basic sequences can be combined
in uscful ways to model the operation of the code.
The basic sequences in turn are made of component
operations which cun be combined to produce un
estimate of the throughput of a maching for the
sequence. Scalar sequences are assumed to consist of
unit operations, so that the throughput for a scalar

30 R. F. FReuNp and J. L. POTTER

sequence is just the reciprocal of the number of scalar
operations times the scalar execution speed.

Vector sequences are assumed to be composed
of VECOPS.® The VECOPS benchmarks are a set
of vector operations which are frequently used by
physical scientists in their work. VECOPS can be
combined using the equations developed below to
produce an estimate of the throughput for the vector
sequence. Accordingly, two equations have been
generated to predict the throughput of SIMD and
vector machines. For SIMD machines, let v be the
vector length, n the number of processors, r the
quoted (maximum) rate for the arithmetic operation
and ¢ the resultant throughput; then

M

If a compound VECOP operation is being performed
(i.e. a vector add and multiply or, SAXPY), the
combined rate, r can be calculated by the sum of
resistances formula. For example, for two operations
r, and r,, the combined throughput, r,, is:

1 rnr
S=—t— or =2 @
rooror rn+r
For n operations, this generalizes to:
n
r;
s Il
—=) - orn=g— (3)

r ist
ri
J=liv)

The r, calculated above can be used in the formula for
SIMD processors to determine the throughput for
the combined VECOP operation.

The peak throughput for vector machines often
quoted is calculated by multiplying the basic cycle
time by the number of arithmetic units in a processor.
However, it is not always possible to make full use of
all the units. For example, if a processor has two
units, a vector multiplying can only be executed at
half the quoted rate because only one of the unils is
cffectively used. On the other hand, a vector multiply
and add will execute at the full rate. Another factor
is pipeline sctup time, This factor must be applied
on cvery reload of the vector registers. For vector
machines, Iet v be the veetor fength, r the quoted
(maximum) rate, v the number o units per progessor,
u, the number of units used by the operation, p the
pipcline setup timesd the resultant throughput rate,
and / the length of the vector registers: then

v VR,
! = . . { W

RN
[y 1] i)
, ! ! Ve b prl /

On a vector machine the throughput raises asymp-
totically to the maximum rate very quickly. On a
SIMD machine, the throughput rises linearly until
the size of the machine (i.e. the number of PEs)
is exceeded then falls to the average rate reflecting
the average of the full vector and the nearly empty
one. It rises linearly again until the array size
is exceeded again and then falls 10 2/3, etc. (as
SIMD machines have a relatively slow cycle time, the
throughput is low when the machine is partially
loaded).

These above equations answer the questions: given
a data set with vectors of a specific size, which is
the better machine for execution? Given that a code,
%, can be modeled by an alternating sequence of
strings of scalar instructions followed by strings
of parallel instructions, then % can be represented by
the following sequence:

Eo W, 5 Wy Py W, S3W, Pr e s (5)

where w; is a weight representing the number of
operations in each list, s, is the quoted throughput
for scalar operations and p; is the calculated through-
put for the parallel sequence. Then the throughput
for the entire sequence can be calculated from the
formula:

| = ——————, (6)
Z (ws,si + “’p.P.‘)

If no MIMD parallclism is present, this reduces
to:

1

! = o, 7
ws + Z W, P 0

The basic tenants of this model were tested using
the CONVEX and DAP computers in the NOSC
Superconcurrancy Laboratory. The CONVEX
C-210 has a quoted peak rate of 50 mflops and
the DAP 510C has a peak rate of 140 mflops for
1024 PEs.

4.1.2. Data profiling. An important componemt
of code execution modeling is data profiling. In
i gencral purpose hetecrogencous environment,
where many machines can perform the same
task, such as FFTs, convolution or Gaussian ¢limins
ation, the question is which machine can do the
best job (e execute the fustest) on the speeitic dia
set

As an example of dia profiling ina HASP envivon.
ment, consider the matrix muhiply. Let A bean é x J
mateix, (), and B oo xR (b,) The produet ¢
woan Lo A e o

t

LN ._‘ “:-"('\\\\
t

HEASP

In order to compute the 7 = KA terms, (¢). we would
need i triple toop of the form (assuming appropriate
imitialization):

for{, =110 [,
for =110 1,
for =110 L,
Co = Cp +a,hy

end

end.

The Ls are, of course, the ranges. /, J and K,
with the /s being their corresponding indices, i, j
and k. Mathematically, it does not matier which
of the six possible ways thesc are computed. How-
ever, Dongarra et al.? have clearly demonstrated that
these arrangements can be significantly different com-
pute times when computed on a global memory,
vector machine. Since therc zrc several factors that
enter into these performance differences, it is very
much the concern of the programmer to render
the order of the loops optimal depending on the
specific circumstances. In the HAsP language, this
is not necessary, since the data profiling does this
automatically.

To understand how this is done, let us look again
at the schematic code above. In the two (of the six
cases) in which J (and its associate index, j) form the

_inner loop, the ¢, is a scalar (constant) for the
purposes of the inner loop and this is called an SDOT
type of operation; the two vectors (the g, and the b,)
are multiplied component-wise and then each com-
ponent multiplicand is added to the constant ¢,.
In the other cases, i.c. where J is not the innermost
rangc, we have the SAXPY family of operations, in
which either the a; or the b, arc a scalar for the
purposes of inner loop. In these cases, we have a
scalar (either a; or 6,) multiplicd to cach component
of the other clement, a vector in the inner loop, and
then each component multiplicand is added, com-
ponent-wise, to the vector, c,. As mentioned above,
a number of (occasionally conflicting) factors deter-
minc the right order to perform the loops. For
example, it is generally better (in FORTRAN) to
have the innermost loop on the leftmost index so as
to avoid non-unit stride through memory and the
increased likelihood of bank conflict this brings. It is
also usually more cfficicnt to have the innermost loop
on the longest range. SAXPY is generally better for
short and medium length vectors whereas SDOT s
better for longer veetors (at lcast one reason for this
is that SDOT requires summing up the multiplicand
terms which usually requires a scalar loop; however,

NETErogencous associinve provessing 4]

for long vectors this s dwarfed by the reduced
operitbon count by SDOT). It should be noted
that for 4 SIMD machine. these factors are Lirgely
irrelevant. In cach o the six ciuses we would store the
compaonents of the vectors (as dictated by inner loop)
at cach node and broadeast the scitlur value. From
the point of view of 4 SIMD machine, it matters not
whether the multiply is the scaliar broadcast vilue
(SAXPY) or not (SDOT). Al six cases are essentially
the same.

5. CONCLUSION

The HAsP approach outlined here is intended
to provide a flexible. comprehensive paradigm for
computation on heterogencous systcms of supercom-
puters. The paradigm is applicable to all levels of
computing (rom single hclerogencous computers
to homogencous local arca networks on up to large
nation wide heterogencous nctworks. The system is
designed to minimize data movement and communi-
cation overhead and therefore maximize throughput
and exccution speed. The initiai formulas for code
execution modeling have been developed and verified.
The concept that data as well as code must be profiled
was developed and verified by experiment. The next
aim is to develop a prototype HAsP system with
two or three levels of VHAM in a heterogencous
environment,

Acknowledgements—This work is sponsored by the Office
of Naval Technology, the U.S. Navy-ASEE Summer
Fellowship Program, Kent State University and the Nava.
Command, Control and Ocean Surveillance Center.

REFERENCES

1. R. F. Freund, “SuperC or distributed heterogencous
HPC", Computing Systems in Engineering 2(4), 349-35S
(1991).

2. R, F. Freund, J. L. Potter and H. J. Sicgel, “Avoiding
unnatural acts”, Supercomputing Review, in press.

3. M. Arango, D. Berndt, N. Carriero, D. Gelertner
and D. Gilmore, “Adventures with network Linda™,
Supercomputing Review, 42-46, October (1990).

4. G. Agha, Actors, The MIT Press, Cambridge.
Massachusetts, 1986,

5. J. L. Potter, Associative Computing, Plenum Press,
New York, 1992

6. J. Gustafson, D. Rover, S. Elbert and M. Carter,
“Slalom update™, Swuperconductivity Review, $6-61,
March (1991).

7. R. F. Freund and L. J. Petorson, “If the ‘network is
the computer’, then. . .", Supercomputing Review, July
(1991).

8 O. M. Lubeck, “Supcrcomputer performance: the

theory, practice, and results™, ddvances in Compuiers

27, Y09 (1988).

J. J. Dongarra, F. G. Gustafson and A. Karp, “lmple-

menting lincar algebra algorithms for dense matrices

on a vector pipeline machine™, SIAM Review 26(1),

1111 (1984),

b

