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This study concerns the mathematical analysis of constrained-layer damping of extensional
waves in plates of infinite extent, with and without fluid loading. Previous work was
mostly limited to flexural waves. Some aspects of fluid loading for flexural waves may be :ribution /
understood by means of thin-plate theory. Therefore, a similar theory was developed for
extensional waves. The description and examples presented here are based on three Avalabiltty Codes
models: The first is an extension of Kerwin's 1959 model [E. M. Kerwin, J. Acoust. Soc. Avat andlof
Am. 31, 952-962 (1959)], the second is a hybrid model in which the base plate is described by 1I Special
exact elasticity theory and the other two layers by Kerwin's concepts, and the third uses
exact elasticity theory for all three layers. It is shown that the extended Kerwin model is useful r•O
in the design of constrained-layer damping for extensional waves as well as for flexural 1; _____

waves.

PACS numbers: 43.40.Dx

•t"ic QUJALV ITN8PECTLD 8

INTRODUCTION results of the extended Kerwin model were greatly im-
proved, when wave speeds derived from thick-plate theory

The technique of constrained-layer damping (CLD) were used instead of the thin-plate speeds used by Kerwin.
of acoustic waves consists of attaching a thin elastomer This was true for both flexural and extensional waves.
layer with high viscoelastic loss plus a stiff covering layer In order to evaluate the properties of this extended
to a bar, plate, or structure. This stiff layer forces the elas- Kerwin model and to check the range of its validity, a
tomer into shear, with concomitant large loss, as compared model following from exact elasticity theory for all three
with purely extensional damping loss in the elastomer layer layers was developed. As an intermediate step, a hybrid
without the constraining layer. Although, for a soft elas- model was constructed that contains features of both the
tomer, the loss tangent of the shear modulus G is about the extended Kerwin and exact models.2 This model entails
same as the loss tangent of the Young's modulus E, the fewer mathematical operations than the exact model, and,
energy loss in the constrained layer is of the order I /kh 2 of as a consequence, it will produce results faster.
the loss in a comparable unconstrained layer, where k is The two types of freely propagating waves in an infi-
the wave number in the composite plate and h2 is the thick- nite plate indicated by the names flexural (antisymmetric)
ness of the elastomer layer. and extensional (symmetric), collectively named Lamb

This physical explanation of the effect is represented in waves, are mathematically distinguished by the parity of
a model described by E. M. Kerwin in a classical paper. ' In the functions representing the field variables with respect
this model the base plate is treated by thin-plate theory, to the z coordinate, perpendicular to the faces of the plate,
thus for small values of khI, where h, is the thickness of the with the origin halfway between the faces. It follows that
base plate. His model gives good results within the appli- these two types can each occur in a pure form, without
cable restrictions: flexural waves at low frequency in a base admixture of the other one, only in a situation that is
plate or bar with thin added layers. Extensional waves are strictly symmetric with respect to the z coordinate. Thus
not considered, and fluid loading is not accounted for. the plate should be single and homogeneous and it should

It is typiL.al fcr Kerwin's model that the attenuation be symmetrically loaded by the same type of fluid on both
constant a is given as an explicit algebraic eirpression in sides (including the unloaded case). This would appear to
terms of the physical and geometric parameters of the com- exclude 'he possibility of considering either one of these
posite structure. This is an advantage in studying the in- types separately when the plate is treated by constrained-
flueace of the various parameters on the attenuation. This layer damping on one side only and/or under one-sided
author2 attempted to construct an extension of Kerwin's fluid damping.
model that retained this advantage, whlie relieving some ot In stuaying the results from exact elasticity theory for
the restrictions. A short description of the extended Ker- fluid-loaded plates with constrained layer damping, when
win model is given in Appendix A, to serve as a basis for both types of waves are accounted for, it is found, though.
the examples in the following text. In order to include that these two types of waves preserve their own identity
extensional waves, it was necessary to account for inertia of even in a nonsymmetric situation. In the hybrid and fully
the constraining layer. Moreover, it became clear that the exact models the two types are always present and, at low
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values of kd, one finds two complex roots that are easily (c) With or without fluid loading.
recognized as to their designation, either mostly antisym- (d) Wave speed computed with proper account of
metric or mostly symmetric. In computational practice one nonsymmetric fluid-loading and influence of
finds one or the other wave by starting the iterative root added layers.
finder from a seed representing either type of wave, corn- In a previous study, the predictive capability of the
puted from thick-plate or exact theory for a single, not extended Kerwin model was studied for the case of flexural
fluid-loaded plate. The resulting wave speed computed waves and the effect of fluid loading) Preliminary results
from the complex root is affected by the presence of the of damping of extensional waves by CLD were given in
other type, but not to a large extent at low frequencies. For short form in Ref. 4. ".he present paper gives an expanded
high frequencies it is often difficult to find an adequate account of the application of the three models to damping
seed. In experimental realizations one may create the de- of extensional waves in infinite plates without and with
sired type of wave by the method of excitation, for instance fluid loading.
by means of two actuators on either side of the plate driven For flexural waves, valuable insight into the effect of
with opposite or equal phase. At certain values of the fre- fluid loading may be gainied from thin-plate theory with
quency, higher-order modes appear on the scene, deter- fluid loading.5 Therefore, i model was developed and pre-
mined by thickness-shear modes for flexural waves and sented in this study for extensional waves in a thin plate
thickness-dilatational modes for extensional waves, with under fluid loading. Some results are given, based on a
some influence by the other type. At higher values of kd, derivation (Appendix B) of this model. After this discus-
the two types may be difficult to distinguish since the roots sion, this paper continues with predictions from the three
are close together and cornsiderable accuracy was needed to models for extensional waves in constrained plates without
separate them. and with fluid loading. It is shown that the behavior of the

The extended Kerwin model is limited by the fact that attenuation as a function of frequency is strongly affected
a wave speed for a purely flexural wave or a purely exten- by the ratio of the extensional wave speed in the constrain-
sional wave has to be entered into the computation, with- ing layer relative to that in the base plate.
out accounting for the possible effect of the other type. The
hybrid model uses exact elasticity theory for the base plate
and, therefore, the wave speed and attenuation are both I. THIN-PLATE THEORY FOR EXTENSIONAL WAVES
part of the root finding effort, with proper account of the IN A FLUID-LOADED PLATE
other type, in asymmetric situations. It shares this aspect
with the fully exact model. The fully exact model allows In this paper it is assumed that a straight-crested, har-
waves with such a large value of kd that even the elastomer monic wave propagates in the x direction parallel to the
layer and the constraining layer do not behave like "thin" faces of the plate, with time and space dependence accord-
layers. Some examples of this are given in this paper; the ing to exp i(kx-wot). The complex wave number k is writ-
number of possible waves increases greatly and exceeds the ten as k = k'-ia, where a is the attenuation constant.
range for which the notions of constrained-layer damping In Appendix B, the following dispersion relation is
are practical. Except for these large values of kd, the wave derived for extensional waves in a fluid-loaded plate, for
speeds as computed by the fully exact model do not differ thin-plate theory. This equation is given in terms of a corn-
significantly from the thick-plate or exact values computed plex variable r, which is related to the wave number k in
for a single, unloaded plate. the plate by (ko-r) 2 =k 2-k o, where k0 is the wave number

The following outline lists the three models for in the medium, with wave speed Co:

constrained-layer damping used in this study, with their -- +.r[ I - (CdCp)
2

] - fl[ 1- -(CoCd) 2 ] =0. (1)
characteristic properties.

1. Extended Kerwin model: Here, c. is the thin-plate extensional wave speed in the

(a) Flexural or extensional waves. plate, and Cd the dilatational wave speed in the plate ma-

(b) Inertia of constraining layer, terial. A characteristic frequency co. and a corresponding

(c) Complex shear parameter. dimensionless frequency fi are introduced by &o)ý (p/

(d) Wave speed derived from thick-plate theory for po)cý/(cod) and l =w/c,; p, and Po are the densities of

single unloaded plate. the plate material and medium, respectively; and d is the
half-thickness of the plate.

2. Hybrid model: The characteristic frequency wo, for brass in water is
(a) Exact elasticity theory for base plate. 1.63 X 106 rad/s, and thus for the (low-) frequency region
(b) Other i~v layers as in extended Kerwin model. where thin-plate theory may be applied, the nondimen-
(c) Simultaneous flexural and extensional waves. sional frequency il is ver) small. As a consequence, taOie
(d) With or without fluid Woading. exists a small real root, for small fl, analogous to the real
(e) Wave speed computed as part of the complex root for the corresponding equation for flexural waves,5

rootfinding process. namely,

3. Exact model: I - (Co/C ) 2

(a) Exact elasticity theory for all three layers. rM,1 (2)
(b) Simultaneous flexural and extensional waves. _-(Co/C,)2
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S.TABLE 1. Material parameters and derived quantities.

A. Brass B Aluminum C Silver
10, 2

- Young's modulus E 104 GPa 71 GPa 78 GPa
- - Poisson's ratio v 0.37 0 33 0,37

Density p 8500 kg/mr 2700 kg/nm' 10 500 kg/r•
Shear wave speed c, 2113 m/s 3149 rn/s 1647 m/s
Extkasional wave c, 3765 m/s 5462 m/s 2933 m/s

I (r4 speed (thin)
- Characteristic W, 1.63 Mrad/s 1.09 Mrad/s 1.22 Mrad/s

_ / frequency, for
10-cm plate

0.10" 10 ,00 )o0 Dim. less freq. kd 1.49 100 1.07

FrEQUENCY (WN) k=2orf/cc,

d=0.05 m; f= 10 kHz

FIG. 1. Attenuation factor a relative to the real part of the wave number Viscoelastic layer (hypothetical)
k' as a function of frequency f, for a single 10-cm-thick brass plate, Real part of shear modulus G; = IOMPa
loaded by water. Solid curves are computed according to exact elasticity Loss tangent of shear moduius 13= 1
theory, dashed curves according to thin plate theory. Curves I are for Bulk modulus K, =I GPa
water on both sides, curves 2 for water on one side.

Fluid, water
Density p0= 9 9 8 kg//mr

By division one determines the quadratic equation for Wave speed c,- 148 m/s

the two remaining complex conjugate roots,

'+ a-r+b= O, (3) It appears that for extensional waves the wave energy

where moves to the side of the fluid, opposite to the behavior for

-c~ Cd)2  d - 2. flexural waves. 3

_ (c0/c_)2- (Co_/Ca nd (C/\ There is a characteristic difference between the influ-
-- -c-c) "C ence of fluid loading in flexural versus extensional waves.

One of these roots leads to a wave number with positive The phase speed of flexural waves increases with frequency

attenuation constant a. (The other root, with negative at- from zero to the Rayleigh wave speed. Thus, for most

tenuation constant, has no physical significance.) cases, there will be a frequency, named the coincidence

For small values of fl the phase speed is very close to frequency,5 for which the flexural wave speed is equal to

cp, and the attenuation a relative to the real part of the the wave speed in the fluid. This plays an important role in
wave number k' is approximated by the occurrence of radiation. In contrast, for most combi-

nations of plate material and fluid, the extensional wave

a P0 cod (Co/Cp) 2- (CO/Cd) 2  speed will be larger than the wave speed in the medium for

k'- p, cs [(l- (co/cp)2 ]I/ 2  (4) all frequencies.

In Fig. 1 a comparison is shown of the relative atten- 11. DAMPING OF EXTENSIONAL WAVES
uation ca/k' for a single fluid-loaded plate, according to
thin-plate theory (dashed curves) and to exact elasticity In order to show the relative merits of the three mod-
theory (solid curves). The plate is 10-cm-thick brass. The els described before, various combinations of material and
curves indicated by 1 correspond to two-sided loading by geometric parameters are chosen. The generality of the
water. One may observe that the agreement between the results would be more clearly revealed by expressing all
two models is excellent, except at higher frequencies. Al- parameters in dimensionless form, including the abscissa of
though the boundary conditions for extensional waves can- the curves shown. The representation of parameters and
not be satisfied for one-sided fluid loading without addi- results in dimensional form, though, offers a more concrete
tional flexural waves, one might adapt the thin-plate theory feeling for the phenomena. It is remarkable that dimen-
by taking half the value of the total fluid stress term q' sionless representation of wave speeds or wave numbers for
(equal to the sum of the stresses on the two faces of the Lamb waves in unloaded plates is very similar for different
plate), as given for two-sided loading, and carrying this materials; the graphs depend only slightly on Poisson's
value for q' through the analysis. The results are shown in ratio (see Ref. 6). A useful expression for the frequency in
Fig. 1 by the curves marked 2. It shows that the attenua- dimensionless form is the product ksd, where k, is the wave
tion for one-sided fluid-loading thus computed does not number for shear waves in the plate material and d the
compare well with the exact-elasticity result. half-thickness of the plate. To appreciate its relationship to

One may observe in Fig. 1 that the two solid curves the frequency, the value of k4 for the various materials
marked 1 and 2 differ by a factor of two over most of the and a plate of 0. 1--m thickness is shown in Table I. The
frequency range. At the high-frequency end the two curves wave speeds in the hybrid and fully exact models are in
merge, thus indicating that the radiation in the plate each case computed from the complex wave number found
loaded on one side is the same as for loading on both sides. by the complex root finder. The wave speeds are only
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slightly influenced by the added layers and by fluid loading '''

at small valaes of kd. Only a: large values of kd do sizable
deviations occur (as one seen in Fig. 8). At these large
frequencies the situation become- complicated and is dc-
pendent on the given combination of materials and thick- - --

nesses. • ,o-• /
The study of the algebraic expression for the extended

Kerwin model shows some peculiar structures, as is dis-
cussed below. These same features show up in the hybrid
and fully exact models. In addition, these two latter models •
show features at high frequency that are not contained in
the ,xtended Kerwin model. Insofar as a physical interpre- .10FUENCY (kH,)0

tation is found (e.g. concerning Fig. 8), these phenomena
are considered to be general in nature, and not a product ofthe chosen combination of specific parameters. FIG. 2. Attenuation factor a relative to the real part of the wave numberk' as a function of frequency f, for a constrained plate in vacuum. TheA major point in the development of the extended physical parameters for the three layers are given in Table I. The base
Kerwin model is the introduction of inertia of the con- plate is 10-cm brass, the elastomer layer is 1.24 mm thick, the constrain-

straining layer. This corresponds to the appearance of the ing layer is 2.48-mm aluminum. The solid curve is computed according to

factor [1 - (c/c 3) 2] in the right-hand side of Eq. (Al) of the exact model, the dashed curve according to the hybrid model, and the

Appendix A, where c3 is the extensional wave speed in the dotted-dashed curve according to the extended Kerwin model

constraining layer, at low frequency given by the thin-plate
extensional speed, and c is the pertinent wave speed in the ters were chosen such that the maximum damping was

near 1000 Hz, for flexural waves. Then h2 = 1.24 mm, and
base plate. For fexural waves at low frequency it is gener- h3 = 2.48 mm. This set of geometric parameters is also used
ally true that c g c3, and this factor is then close to one. For for the first set of extensional wave examples, denoted as

extensional waves at low frequency, c is equal to c., the
case A. To demonstrate the application of the extended

thin-plate extensional wave speed of the base plate mate- case A, employsticn of the
rial Ths i folow tht, t lo frquecyextnsinal Kerwin model, the next case, B, employs thicknesses of the

rial. Thus it follows that, at low frequency, extensional cntann n lsoe aesta rdc aiu

waves are not damped by the constrained-layer technique if damping of extensional waves near 1000 Hz. Again de-

the constraining plate is made of the same material as the maing a ratio of ne at 10 Hz. mmand

base plate, since then this factor reduces to zero. Further, ha = 15.5 mm.

the maximum value of the third factor in the right-hand h3=15.5 MM.

side of Eq. (Al), given by Eq. (A3), is dependent on the III. MAXIMUM DAMPING AT 6200 HZ (CASE A)
algebraic sign of [1--(c/c3) 2]. It will be shown that this
leads to a considerable increase of the maximum damping A. Constrained plate In vacuum, aluminum

for extensional waves, if the extensional wave speed in the constraining layer

constraining layer is less than that in the base plate, other In Fig. 2, a threefold comparison is shown for the
factors being equal. relative attenuation constant a/k' for extensional waves

In the first set of examples, the materials and layer propagating in a constrained plate, without fluid loading,
thicknesses are identical to those in the previous work on for the three models. The physical parameters for the three
flexural waves. 2' 3 There the base plate was chosen to be layers are given in Table I. They are the same as those for
brass, the elastomer layer was given hypothetical values, the flexural wave examples in Ref. 3. The thicknesses of the
independent of frequency, and the constraining layer was elastomer and constraining layers were chosen such that
aluminum. The physical parameters of these and other ma- the maximum relative attenuation for flexural waves was
terials used in the following examples are given in Table I. near 1000 Hz, while h3=2h.
The thickness of the base plate is 10 cm in all cases. Equa- One sees that the maximum relative attenuation for
tion (A2) of Appendix A shows that the maximum damp- extensional waves has shifted to about 6200 Hz. This is
ing is found for a given value of the real part of the shear due, first, to the fact that the numerator in the right-hand
parameter g', depending on the wave speeds in base plate side of Eq. (A2) is smaller for extensional waves than for
and constraining layer and the loss tangent of the shear flexural waves. Second, according to the definition for the
modulus of the elastomer. According to the definition of g shear parameter g in Appendix A, it is inversely propor-
this maximum can be moved to a desired frequency by the tional to the square of the wave number k'. In order to
choice of the product of the thicknesses of elastomer and maintain a given value for g at the larger extensional wave
constraining layers h2h3. The second factor in the right- speed, as compared with the flexural wave speed, the fre-
hand side of Eq. (Al) shows that the damping increases quency will have to be accordingly higher.
with increasing thickness h3. Of course, there are practical The sharp dip in attenuation near 15 kHz is due to an
limitations to a large h3, apart from the restriction to a thin "equivoluminal mode,",7 whereby the tangential velocity
constraining layer, implicit in the model. The ratio of the component at the faces of the plate is zero; thus no shear
thickness of the constraining layer h3 to that of the elas- exists in the elastomer layer, and thus no viscoelastic
tomer layer h2 is set equal to 2 (arbitrarily). The parame- damping. Of course, this feature does not show up in the
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FIG. 3. Attenuation factor a relative to the real part of the wave number FIG. 4. Attenuation factor a relative to the real part of the wave number
k' as a function of frequency f, for a constrained plate loaded by water. k' as a function of frequency f, for a constrained nlate in vacuum, ac-
according to exact elasticity theory. The physical parameters for the three cording to the extended Kerwin model. The physical parameters for the
layers are given in Table I. The base plate is 10-cm brass, the elastomer three layers are given in Table 1. The base plate is 10-cm brass, the
layer is 1.24 mm thick, the constraining layer is 2.48-mm aluminum. Solid elastomer layer is 1.24 mm thick. Solid curve: extensional wave. con-
curve: water on both sides; dashed curve: water on constrained side; straining layer 2.48-mm aluminum; dashed curve: extensional wave, con-
dotted-dashed curve: water on opposite side. straining layer is 2.48-mm silver; dotted-dashed curve: flexural wave. con-

straining layer is 2.48-mm aluminum.

extended Kerwin model, which does not account for any
structure of the wave fields in the base plate. Apart from
this phenomenon, there appears to be reasonable agree-
ment between the results of the three models in the middle- replaced with a silver layer of the same thickness. It is not

frequency range. claimed that silver is a good constraining-layer material in
practice, but it is used to provide a demonstration by
means of an existing material. Silver was chosen because it

B. Fluid-loaded constrained plate, aluminum has an extensional wave speed (2933 m/s) relative to that
constraining layer of brass (3765 m/s) that is about the inverse of the exten-

In Fig. 3, a comparison -s shown for the relative at- sional wave speed of aluminum (5462 m/s), relative to
tenuation constant a/k' as a function of frequency for a that of brass. In Fig. 4 a comparison is given for three
constrained plate loaded by water on both sides, on the side cases, based on the extended Kerwin model. In all cases the
of the constraining layer, and on the opposite side, com- thickness of the brass base plate is 10 cm. The solid line
puted by exact elasticity theory. One sees that, for a large gives the attenuation when the constraining layer is 2.48-
frequency range, the curves are practically identical to mm-thick aluminum. This may be compared with the at-
those of Fig. 1. The viscoelastic damping, which is much tenuation for flexural waves for the same system, the
smaller than the radiation damping, is apparently just dotted-dashed curve. When the constraining layer is 2.48-
added to the latter, without much influence of the fluid on mm-thick silver, the maximum relative attenuation in-
the composite plate. Only at the high-frequency end is creases by a factor of about 7, or 17 dB. This is due to the
there a structure different from the one in Fig. 1, which is ratio of the maximum of the third factor in Eq. (Al),
apparently due to this interaction. the two curves for load- given in Eq. (A3), for the two cases: sgn[l - (c/c 3) 2] is
ing on both sides and on the constrained side merge and minus and plus, respectively. The second factor in Eq.
show a decrease iat attenuation not observed in Fig. I. (Al) is practically the same in the two cases. The sharp

dip in the dashed curve is a consequence of the variation of
the extensional wave speed of the base plate with fre-layer quency, in thick-plate or exact theory. Considering the
third factor of Eq. (Al) as a function of c/c3, it has a

In Ref. 8 it was pointed out that the expression for the maximum for c/c 3 = [1 +g'( 1 +32 ]2/2 and a minimum
viscoelastic damping of extensional waves predicts in- (zero) for c/c 3= 1. These extrema are closely spaced in
creased damping when the extensional wave speed in the frequency for small g', as is the case in the present example
constraining layer is less than that in the base plate. The (see also Appendix A).
condition for optimum damping, Appendix A, Eq. (A2) Figure 5 shows the comparison for the aluminum-
appears in this case as silver combination between the extended Kerwin, hybrid,

[,c/c 3 ) 2 - 1+/( )2 (5) and exact models. One sees that up to about 10 kHz the
agreement is quite good. Above that frequency, the exact

the denominator of Eq. (A3) becomes small, due to the model shows a peculiar structure that has not been ex-
term 2 sgn[l - (c/c 3)2]. This amounts to a relaxation type plained physically. The dip apparent in the Kerwin curve is
of interaction between the base plate and the constraining masked in the hybrid curve by the wider equivoluminal
layer, with strong attenuation. dip, which occurs at about the same frequency.

1931 J. Acoust. Soc. Am., Vol. 93, No. 4, Pt. 1, April 1993 Pieter S. Dubbelday: Constrained layer damping analysis 1931
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FIG. 5. Attenuation factor a relative to the real part of the wave number FIG. 7. Attenuation factor a relative to the real part of the wave number
k' as a function of frequency f, for a constrained plate in vacuum. The k' as a function of frequency f. for a constrained plate in vacuum. The
physical parameters for the three layers are given in Table I. The base physical parameters for the three layers are given in Table I. The base
plate is 10-cm brass, the elastomer layer is 1.24 mm thick, the constrain- plate is 10-cm brass, the elastomer layer is 7.75 mm thick, the constrain-
ing layer is 2.48-mm silver. Solid curve: exact elasticity theory, dashed ing layer is 15.5-mm silver. Solid curve: exact model; dashed curve: hy-
curve: hybrid model, dotted-dashed curve: extended Kerwin model. brid model.

IV. MAXIMUM DAMPING AT 1000 HZ (CASE B) corresponds to the first narrow peak in Fig. 5. The char-

A. Constrained plate In vacuum acter of the structure above 10 kHz may be made compre-
hensible by inspection of Fig. 8, where the wave speed is

In the following examples, the thickness of constrain- given as a function of frequency, together with the exten-
ing and elastomer layers are adjusted such that the maxi- sional wave speeds for a 10-cm brass plate and a 12.6-mm
mum viscoelastic damping for extensional waves is near silver plate. The wave speed in the constrained plate ap-
1000 Hz. In Fig. 6, the solid curve shows the result for the pears to mostly follow the brass curve up to the point of
relative attenuation when the constraining plate is alumi- intersection of brass and silver curves. From there it fol-
num, according to the Kerwin model. As before, for case lows the silver wave speed for a while, and then meanders
A, if one replaces the aluminum cover plate with a silver in the space between the silver and brass curves, to rejoin
one, a higher attenuation is reached. The dashed curve the brass curve at the next point of intersection. Fragments
shows the result from the extended Kerwin model, for a of other branches (not shown) were found, but were not
silver constraining layer. The hybrid model gives the followed throughout the frequency range.
dotted-dashed curve in Fig. 6 for this case, which is slightly
different from the extended Kerwin model result. B. Fluid-loaded constrained plate

The corresponding curve computed by the exact the-
ory displays quite a different picture above 4000 Hz, as the Figure 9 depicts the results according to the hybrid
solid curve in Fig. 7 shows, in comparison with the dashed model for a constrained plate loaded by water on both
curve for the hybrid model. The first large peak near 5 kHz sides, on the side of the constraining layer, and on the

IO -S ........... ~~5 00 1, 1 1 'I I • I I I I, I I I: I• I I I , , [ 1 I F l T I IT
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FIG. 6. Attenuation factor a relative to the real part of the wave number FIG. 8. Phase speed c as a function of frequency f for a constrained plate
k' as a function of frequency f, for a constrained plate in vacuum. The in vacuum, compared with phase speeds for single plates, according to
physical parameters for the three layers are given in Table 1. The base exact elasticity theory. The physical parameters for the three layers are
plate is 10-cm brass, the elastomer layer is 7.75 mm thick. Solid curve: given in Table I. Solid curve: base plate is 10-cm brass, the elastomer layer
extended Kerwin model, constraining layer 15.5-mm aluminum; dashed is 7.75 mm thick, the constraining layer is 15.5-mm silver; dashed curve
curve: hybrid model, constraining layer 15.5-mm silver; dotted-dashed # 1: 10-cm thick brass plate in vacuum; dashed curve #2: 15.5-mm-thick
curve: extended Kerwin model, constraining layer 15.5-mm silver, silver plate in vacuum.
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FIG. 9. Attenuation factor a relative to the real part of the wave number FIG. 11. Attenuation factor a relative to the real part of the wave number
k'as a function of frequency f, for a constrained plate, according to the k' as a function of frequency f, for a constrained plate, according to the

hybrid model. The physical parameters for the three layers are given in exact model. The physical parameters for the three layers are given ini

Table I. The base plate is 10-cm brass, the elastomer layer is 7.75 mm Table I. The base plate is 10-cm brass, the elastomer layer is 7.75 mm
thick, the constraining layer is 15.5-mm silver. Solid curve: water on both thick, the constraining layer is 15.5-mm silver. Solid curve: both sides
sides; short- and long-dashed curve: water on side of constraining layer or loaded by water; dashed curve: side of constraining layer loaded by water;
opposite side (these cases are indistinguishable at this scale); dashed dotted-dashed curve: opposite side loaded by water.
curve: no fluid loading.

opposite side. The latter two cases are indistinguishable at In Fig. I I the effect of fluid loading is demonstrated,
the scale of the figure. The dashed curve is for an unloaded for fluid loading on both sides, on the side of the constrain-
composite plate. One may clearly distinguish a lower fre- ing layer, and on the, opposite side, as computed by the

quency range, where viscoelastic damping dominates, and exact model. The result for the fluid loading on the side of

an upper range, where radiation is the main damping the constraining layer is strikingly different from the two

mechanism, and where the curves look very similar to other fluid-loading modes; it appears to reflect the behavior
those of Fig. 1 for a single plate. The exact model for fluid for the unloaded plate of Fig. 7, with an increasing radia-

loading on both faces shows a slightly different picture tion contribution added for increasing frequency. One is
(Fig. 10): a third peak appears between the two peaks of inclined to interpret this as an effect of the motion in the
Fig. 9, obviously related to the high peak identified in Fig. plate being drawn, at high frequencies, to the side of the

7 near 5 kHz, and thus indicative of viscoelastic damping. fluid loading the plate: if the fluid is at the constraining-

It is unexpected, though, that the radiation peak near 20 layer side, both viscoelastic and radiation damping effects

kHz is lower than predicted by the hybrid model (dashed are visible. Thus, the situation is, in a sense, complemen-

curve), which coincides at high frequency with the radia- tary to that for flexural waves, but caution is required.

tion damping by a single plate (dotted-dashed curve). This since the structure of the curves is more complicated for

would seem to be another manifestation of interaction of extensional waves.

radiation and viscoelastic damping.

10- T .. I... .... V. SUMMARY AND CONCLUSIONS

A thin-plate theory for extensional waves in a fluid-
loaded plate was presented that gives good agreement with
the exact theory in the case of loading by water on both

1 sides.
6 The damping of extensional waves in infinite con-

o./strained plates without and with fluid loading was analyzed
- - by three models: the extended Kerwin model, the hybrid

model, and the exact model.
The extended Kerwin model is of importance for de-

0.10 ,o0 FREQUENCY ...... 10 signing constrained-layer damping applications with spe-
(kot) (cific properties, since it expresses the attenuation constant

MIG. 10. Attenuation factor a relative to the real part of the wave number explicitly in terms of physical and geometric parameteis. It
k' as a function of frequency f, plate loaded by water on both sides. The is limited to cases where the elastomer and constraining
physical parameters for the three layers are given in Table I. The base layer are thin relative to the base plate, and it does not
plate is 10-cm brass. Solid curve (exact model) and dashed curve (hybrid account for fluid loading.
model) for constrained layer, with 7.75-mm-thick elastomer layer and
15,5-mm silver constraining layer; dotted-dashed curve (exact model) for The hybrid model is useful for predicting the effect of
single plate. fluid loading, and is reliable for most frequency ranges of
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practical importance. It requires fewer operations than the For high frequency, the extensional wave speed c -in
exact model. Both the hybrid and the exact model imply the base plate decreases rapidly as a function of frequency.
finding the complex roots of an equation formed by setting For the case where the thin-plate extensional wave speed of
the determinant value of a matrix equal to zero. For the the constraining layer is less than that in the base plate, the
hybrid model, this matrix has order 4 X 4, 5 x 5, or 6 x 6, third factor of Eq. (AlI) considered as a function of c/c,
depending on whether the constrained plate is in vacuum, has a minimum for c=c3, equal to zero, and a maximum
loaded by fluid on one side, or two sides, respectively. For for (c/c 3) 2 = I tg'( I + -2), equal to g'(1 +[632)/(4_132).
the exact model the order is 12 X 12, 13 X 13, or 14 X 14. The minimum and maximum are very close together, since

The exact model is the best model within the limita- g' is small in this frequency range.
tions of linear structural acoustics. It is recommdended as
a backup to the two other models, especially in situations
that differ from the traditional CLD conditions of metallic APPENDIX B: MODEL FOR EXTENSIONAL WAVES IN
plates with thin added layers at modest frequency- A FLUItJ-LOADED THIN PLATE
thickness products.

The constrained layer damping of extensional waves Thin-plate theory for flexural waves in a fluid-loaded
displays a few features not applicable to the damping of plate may be found in Ref. 5. In that reference a term q is
flexural waves, introduced into the equation for a beam 9 as a force per unit

(i) It is necessary to use a constraining layer of a length and by analogy appears in the equation for a plate as
material different front the base plate material. a force per unit area, equal to the pressure of the fluid. This

(ii) There is a peculiar relaxation-type behavior of the leads to the following wave equation for flexural wa'.es in a
damping when the extensional wave speed in the constrain- fluid-loaded plate5

ing layer is less than that in the base plate. a
2w

(iii) For one-sided fluid loading, there are indications DV4w + ph - -pI2 ..° (BI)
that the wave amplitude on the loaded side increases with

increasing frequency, contrary to the case of flexural where V4 is the biharmonic operator, D is the bending
waves, where the wave energy moves to the face opposite stiffness of the plate, D= (1/12)Eh3/( 1- V-2), F is Young's
to the loaded face. modulus, h is the plate thickness, v is Poisson's ratio, w is

the displacement perpendicular to the plate, p, the density

ACKNOWLEDGMENT of the plate material, and p the pressure in the fluid (fluid
on one side). For two-sided fluid loading the pressure term

This study iwas supported by the Office of Naval Re- is doubled.
search. The goal of the present derivation is to arrive at a

similar equation for extensional waves in a thin, fluid-

APPENDIX A: EXTENDED KERWIN MODEL loaded plate, in the form

In Ref. 2 the following expression was preposed as an E (Bw c9w

extension of the Kerwin model: (-i _7) j"+F=p, )-r (B2)

a EL h g g'[ I _(cc3)2]I where F is a fluid loading term, with the dimension of a
W-=(r13) - (c/c 3) 2 +g] 2 g,2 (Al) force per unit length cubed. There was no indication found

k' F;h I II - (C/c3)g 9in the literature how this term could be related to the fluid

where a/k' the attenuation constant a relative to the real pressure from first principles in the case of extensional
part of the wave number k'; 13=the loss tangent of the waves, in contrast to flexural waves as shown in Eq. (B I).
elastic shear modulus; c=the speed of flexural or exten- Therefore, the problem was approached by means of
sional waves from the thick-plate or exact theories; c 3= the thick-plate theory for extensional waves.4, 0 Thick plate
extensional wave speed in layer 3; E 1,3=the Young's mod- theory carries the approximation implied by thin-plate the-
ulus of layers I and 3; Ee=E/(1-v 2 ), where v is the ory to the next power of the dimensionless wave number
Poisson ratio; g= the shear parameter, g-- G2/(k' 2Elh2h 3 ), kd, where k is the wave number and d the half-thickness of
and g=g'(l +if); G2=the complex shear modulus of the the plate. The result for flexural waves is known as
elastomer, G2 = G( I + if); and hi=the thickness of layer Timoshenko-Mindlin plate theory." In this type of theory
i, i= 1,2,3; r= 3/4 for flexural waves and 1/2 for exten- the fluid loading appears naturally as a consequence of the
sional waves, introduction of the structural equations for the plate. Once

The third factor, considered as a function of the real the fluid-loading term has been introduced, thin-plate the-
part of the shear parameter g', has a maximum for ory with fluid loading follows by taking the limit kd-.O.

By integrating the differential equations of motion
g=I 1-(c/c,) 2 1(1+32 )" 2 ; (A2) from exact elasticity theory or the corresponding momen-

the maximum value of this factor is tum equations in the direction z perpendicular to the di-
/)21 rection of propagation x (parallel to the faces of the plate),

-(Wc/ 3
2 n (A3) one obtains the following structural equations for exten-

2(1+ ,'/21 sgn[1 -(c/c 3)2 Isional (symmetric) waves:";
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a2 U 0(7 thickness of the plate, and K is a coefficient accounting for
(A+2G) ±x+ +pA5U=0 (83) the varying shear in the plate. The fluid loading is repre-

and sented by the term q; the superscript s indicates exten-
sional waves, for which qV=a, +a , where a., are the

2 d 82 y 2U 2 2 2 normal stresses at the two faces of the plate, equal to the
3d G 7-92(i +2G) -2A ax +3PO dX=0, negative of the pressures on the faces.

(B4) Assuming a harmonic straight-crested wave with

where the displacement u in the direction of propagation x space and time dependence according to exp i(wot- kx),

is given by a z-independent function U(x), while the z where k is the (complex) wave number, k=k' -ia, one

displacement w is approximated by an antisymmetric lin- finds the dispersion relation by equating to zero the deter-
ear expression in z, w=zy(x). Here A and G are the Lam6 minant of the matrix Me of the coefficients of the ampli-
constants, (o is the angular frequency, d( = h/2) is the half- tudes U, X in the two Eqs. (B3) and (B4)

M -k 2(2+2G) +pto 2  -ikA (
Me--- 2ikA - ,d2 k'2G - 2 ( A + 2G) + -`pwt2dZ + q','X "(B

By manipulating the equation Det(Me) =0, one finds

(A+2G) -p.•c A
(A (+2G) +(kd)2G =0. (86)

The thin-plate model follows by dropping terms of r 3 -n7r2+r[ [ - (co/cP))2] -_[ I-- (Co/Cd) 2 ] =0,
order (kd) 2. By expanding the determinant one obtains (89)

(A+2G)2 - pc 2(,I +2G)-A 2  where cp is the wave speed for extensional waves in a thin
plate. A characte.isdc frequency w, and a dimensionless

-[(A{+2G)--psc 2 ]q7/(2X)=0. (87) frequency fl are introduced by tce=(p/po)c/l(c..d) and

If one divides this equation by (A + 2G) = pc2 and applies f = WA/o.
(A+2G)-A 2/(A+2G)-=E/(I-v 2 ), there results the
equation

El( I _-V,
2 ) 2 I (/ 2 2 =0, 188 F' E. M. Kerwin, "Damping of flexural waves by a constrained viscoelastic

- cc q/(2X) =0, (B8) layer," J. Acoust. Soc. Am. 31, 952-962 (1959).
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