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Abstract

A computational procedure has been developed which solves the steady-state incompressible
Navier-Stokes (or Reynolds) equations for axisymmetric flows through turbomachinery. The
solution of the Navier-Stokes equations allows for the prediction of recirculating flow regions that
may be due to either throuch-flow geometry or ofl-design operating conditions. The eflects of
the blade rows are represented in an approximate manner by replacing the forces they impart to
the fluid in the axial, radial, and tangential directions with body forces.

In order to provide an algorithm which can be applied to arbitrary turbomachinery geome-
tries, the grid covering the flow domain is mapped into a computational plane in which the nodal
spacing becomes unity. The Navier-Stokes equations are transformed so that they become a
spatial function of the generalized curvilinear coordinates that describe the computational plane.
However, changing the spatial dependence of the governing equations does not alter the con-
served quantities. Local flux conservation is ensured by expressing the system of equations in
conservative form and discretizing them using a control volume approach. Also, expressing the
governing equations in a general form allows the same program to treat flows in both axisymmet-
ric and Cartesian coordinate systems. Modifications making the Pressure-Weighted Interpolation
Method (PWIM) aprlicable to cylindrical based coordinate systems are presented. PWIM, cou-
pled with the SIMPLEC algorithm, is used to iteratively solve the discretized equations on a
nonstaggered grid.

A revised version of the quadratic upwind diflerencing scheme is presented, which allows the
high level of accuracy that the scheme provides to be maintained consistently throughout the
flow domain, including the areas near the boundaries. The modification entails neither additional

memory overhead .ior computational outlays.
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Two new differencing schemes have also been developed for axisymmetric applications. These
schemes reflect the coupling of the magnitude of the transported quantities with the radial loca-
tion in the cylindrical coordinate system and in the corresponding computational domain. Both
the lower and higher-order cylindrical differencing schemes differ from their Cartesian counter-
parts when the flow has a radial component. Neither scheme was found to cause any stability
problems.

The computer code was thoroughly validated against analytical results for flow in a pipe
and radial diffuser. Test cases were run showing the increased accuracy resulting from the ability
of the cylindrical differencing schemes to account for the radial dependence of the convected
quantities. The quadratic upwind differencing scheme is shown to reduce numerical diffusion,
and the modifications to the scheme extend this capability to the boundaries of the flow domain.

Through-flow calculations of flow in a centrifugal impeller over a wide range of operating
conditions are presented and compared against experimental results. For ofl-design operating
conditions the computer program was found to successfully predict recirculation zones within the
blade rows. Calculated velocity profiles display the same trends as the measured data at both
design and off-design conditions. With the original estimated parameters in the blade model, the
overall impeller performance characteristics were predicted with varied success over the range of
operating conditions investigated. No attempts were made to improve the performance prediction

by modifying the parameters in the blade model.

Accesion For \
NTIS CRA& Vi
[

DTIC TAD
Unziouneed
Justihcaion
T
Distribution | - OTIALTTY INSPRCTED 8

o St s ot A - e At e e ame———
Availability Uooes
) Avail anaor
Dist Special




Table of Contents

List Of FIgUIES  oouuiiniiiiiii ittt it e e et e viii
o) 0T 101 £ A T O xi
Acknowledgements ...t e e e e xvii
Chapter 1 Introduction  ...o.iniriiiiiiiin i in ittt ittty 1
Chapter 2 Governing Conservation Equations  ...........ooooiiiiiiiiiiiiiiiiiean, 9

2.1 Conservation of Mass and Momentum for

Steady-State Incompressible Axisymmetric Flows ... ... ... ... ...l 9
2.2 Nondimensionalization of the Governing Equations  .......................... .. 11
2.3 Conservative Form of the Governing Equations  ............c.occiiiiaae. 13

2.4 Comparison of the Cylindrical and Cartesian

Forms of the Conservation Equations ..., 16
Chapter 3 Mapping from the Physical to the Computational Plane .................. 18
3.1 Specification of the Mapping Operation  ........covviiiiiiiiiiiiiiiiniinne.., 19

3.2 Transformation of the Governing Equations into
Generalized Curvilinear Coordinates .........c.coiiiiiiiiiiiiiiiiiiiiinnannn. 23
Chapter 4 Numerical Solution Method ... ... .. o it 28
4.1 Control Volume and Grid Definition ... ...t 33
4.2 Discretizing the General Transport Equation  ............ ... i, 37
4.3 Discretizing the Momentum Equations ..., 41
4.4 Pressure-Weighted Interpolation of Facial Contravariant Velocities ............. 43
4.5 Pressure Corrector EQuation  ..........coeitiiiieeniiiiiiiieianiniinans ... 47
4.6 Boundary Conditions ... .ottt e i e e aaaans 51
4.6.1 Momentum Boundaiy Conditions .......cvvvieiiiiiiiiiiiiiiiiii e 51

4.6.2 QUICKR Boundary Conditions ...........coiiiiriiiiiiiiairnnininannns 85




4.6.3 Pressure Corrector Boundary Conditions ................................. 55

4.7 Steps in the PWIM Algorithm ... 56
Chapter 5 Turbulence Model  ....iii.ii it i e 58
Chapter 6 Blade Model ..ottt i e et i 64
6.1 Repesentation of the Blade .. ... ... i ittt e 65

6.2 Determination of the Deviation Angles  ........ ... ... .. il 67

6.3 Specification of the Streamline and Flow Angles in the Blade Passage .......... 70

6.4 Determination of the Tangential Velocities and Body Forces

from the Flow Angles ... ... i 73

6.5 Implementation of the Blade Model within the PWIM Algorithm .............. 78
Chapter 7 Code Validation ... ... .. .iiiiiiiiiieeiiiirnrrnerarerneeaaaaeaaeeeanans, 80
7.1 Flowina Straight Pipe ... o i 83
T.1.1 Uniform Grid ... e e ey 84

7.1.2 Nonuniform Grids and Turbulence Model Test  ............. ... L, 87

7.1.3 Skewed Gridlines and Differencing Scheme Comparisons .................. 94

7.1.4 Verification of Conservation of Angular Momentum  ..................... 102

7.2 Flow in a Radial Diffuser .........iciiiniiiiiiiiiiiiii i 108
Chapter 8 Mixed-Flow Centrifugal Impeller Through-Flow Calculations ............ 119
8.1 Comparison of Calculated and Measured Flow Fields ......................... 124
8.1.1 Design-Point Calculation ... .cociiiiiiiiiiiiii i i e 125

8.1.2 Above Design-Point Caleulation ... ... ..o i, 126

8.1.3 Below Design-Point Calculation ... 132

8.1.4 Shutoff Flow Calculation ....... ..ottt iiiianenennans 138

8.2 Comparison of Calculated and Measured Pump Performance Parameters ...... 138
Chapter 9 Ccnclusions and Recommendations  .........oiiiiiiiiiiiiiniaannan., 146

References




Appendix Differencing Schenmies  .......oiiiiiiiii i e
A.l Lower-Order Differencing Schemes ...,
A2 QUICKR Differencing  .......vvvvivrinrainuannrniiriiesisnecnrnoraracenren,

A.3 Differencing Schemes for Cylindrical Coordinate System Applications




List of Figures

1.1 Two-Dimensional Solution Surfaces .. ....ovviiiiiiriiiii i
2.1 Elemental Segment of Control Volume Wall  ............. .o,
4.1 Control Volumes in Computational Space ... .o,
4.2 Control Volumes in Physical Space ......ociiiiiiiiininiiiiiiiiiiiiiiei i

4.3 Control Volumes Mapped into Unit Squares in Cor , utational Space .............
4.4 Grid in Physical Space .. ... . i e
6.1 Streamline Layout in the Transformed Blade-to-Blade Plane .................. ...

7.1 Pipe Flow Velocity Field in the Inlet Region
(Uniform Inlet Profile, Uniform Grid) .........ooiiiiiiiiii

7.2 Effect of Inlet Profile on Axial Pressure Gradient (Uniform Grid) .................

7.3 Nonuniform Grid, Az and Ar Changing  .......ocioiiiiiiiiiniiiiie i,
7.4 Effect of G-id Nonuniformity on Axial Pressure Gradient .........................
7.5 Effect of Grid Nonuniformity on Pressure ... .. ... .0 . coiiiiiiiiiiiiiiiiianian.

7.6 Comparison of Experimental and Calculated Axial Velocity Profiles
for Turbulent Flow in a Pipe . ..coiiiiiiii it

7.7 Uniformly Spaced Grid with Skewed £ Gridlines ......... ... ... .ot

7.8 Pipe Flow Velocity Field on Uniformly Spaced Grid with
Skewed € Gridlines .. ..o.vniiein i e

7.9 Effect of £ Gridline Skew on Axial Pressure Gradient for
Various Nodal Densities (Hybrid Differencing) ...,

7.10 Effect of £ Gridline Skew on Axial Pressure Gradient for Various

Diflerencing Schemes ... ... it e




7.11 Comparison cf Results from QUICKR (Various Grid Densities)
and the Lower-Order Schemes (Finest Grid) ...............c.. i,

7.12 Uniformly Spaced Grid with Skewed € and n Gridlines ... .. ... . ... ... ...
7.13 Effect of Gridline Skew on Axial Pressure Gradient (QUICKR Differencing) .....
7.14 Shear Driven Pipe vy Field on a Grid with Skewed € and n Gridlines ............
7.15 Effect of Gridline Skew on Radial Pressure Gradient  ............................
7.16 Uniformly Spaced Radial Diffuser Grid with Skewed £ and n Gridlines ...........

7.17 Radial Diffuser Velocity Field on a Uniformly Spaced Grid with
Skewed £ and n Gridlines ... oot e e e

7.18 Radial Pressure Gradient for Various Nodal Densities
(QUICKR Differencing)  ...covvineeriineiiit it aieieeeanannnss

7.19 Radial Pressure Gradient for Various Nodal Densities and
Differencing Schemes ... .. .. i e e

7.20 Radial Pressure Gradient for Cylindrical and Cartesian

Differencing Schemes ... .. . i
7.21 Effect of Gridline Skew on Radial Pressure Grad}ent ...........................
7.22 Velocity Field for a Viscous Fluid in a Radial Diffuser ...........................
8.1 Centrifugal Impeller Test Facility Geometry

and Boundary Conditions .........co . ittt i i i
8.2 Through-Flow Calculation Grid ... it i it eein s
8.3 Convergence Rate for Design-Point Caleulation ............... ...l

8.4 Calculated Through-Flow Velocity Vector Field ($ =0.28) ......................

8.5 Calculated Pressure Contours ($ = 0.28) ....ooviiiiiiiiiiiiiii i
8.6 Comparison of Calculated and Measured Radial and Tangential

Velocity Profiles (P = 0.28) ... ittt it e e,
8.7 Calculated Through-Flow Velocity Vector Field ($=1032) ............ocoion...
8.8 Calculated Pressure Contours ( =0.32) ... ...,
8.9 Comparison of Calculated and Measured Radial and Tangential

Velocity Profiles (@ = 0.32) ... i e
8.10 Calculated Through-Flow Velocity Vector Field (& =0.14) ... ..................

8.11 Calculated Pressure Contours (® = 0.14) ... ..o,




8.12 Comb;ri;on of Calculated and Measured Radial and Tangential

Velocity Profiles (¢ =0.14) ... .. ...t ..
8.13 Calculated Through-Flow Velocity Vector Field (& = 0.00) .....
8.14 Calculated Pressure Contours ($ =0.00) ............cocoion.n.

8.15 Comparison of Calculated and Measured Static Head Coefficients

8.16 Comparison of Calculated and Measured Efficiencies ...........
8.17 Comparison of Calculated and Measured Power Coefficients ...

A.1 QUICK Differencing Stencils ..........coooviiiiininiiiiiien...

A.2 Flow Conditions which Permit QUICK Diflerencing

on the Control Volume Faces .................ccooiiiviinn.

A3 QUICKR Differencing Stencils  ...........coiiiiiiiniiiininnn




Nomenclature

mbols

a Coefficient multiplying a nodal quantity in the discretized total flux term, or
QUICK differencing coefficient

A Coeflicient multiplying a nodal quantity in the discretized transport equation, or
Blade surface area

At Turbulence model coustant

b QUICK differencing coefficient

c QUICK differencing coefficient

C Convective flux component factor

Ccp Turbulence model constant

Cp Coeflicient of drag

CkLEB Turbulence model constant

Cwk Turbulence model constant

d QUICK diflerencing coefficient

D Diffusive flux component factor, or
Drag, or
Impeller diameter at the inlet

f Harmonic mean interpolation factor

Frresly) Turbulence model function

Fm Meridional force per unit volume

Fr:0 Body force per unit volume in the specified cylindrical coordinate direction

Fwaxe Turbulence model factor




F¢

9ik

NNT

NNJ

Re
Receq

Re»

Flux through north/south control volume face
Flux through east/west control volume face
Metric factor in viscous diffusion term

Memory array index denoting £ location, or
Incidence angle

Memory array index denoting 5 location
Jacobian of mapping operation
Turbulence model constant

Turbulence model constant

Eddy viscosity mixing length

Length of flat plate

Meridional coordinate

Mass source

Mass flow rate

Number of blaaes, or
Rotational speed of the impeller

Number of grid nodes in the £ direction

Number of grid nodes in the 5 direction

Fluid pressure

Power coefficient

Radial coordinate

Radial separation betweer. nodes or control volume walls
Direction cosine between radial and meridional directions
Vector extending from a point on the grid to a point on the blade
Residual of linear equation

Reynolds number

Local, or cell, Reynolds number

Reynolds number based on the distance from the leading edge of a flat plate

xu



Uprr

Uy
v,

Vg

<m

ﬂl

Source term in conservation equations, or
QUICK switching factor

Implicit source term
Explicit source term
Time

Torque

Horizontal Cartesian velocity component, or
Velocity parallel to the wall in the turbulence model

Difference between maximum and minimum velocities within a profile

Scaled contravariant velocity component normal to {=constant line, or
Wheel speed

Vertical Cartesian velocity component

Scaled contravariant velocity component normal to n=constant line, or
Volume of the control volume swept around the centerline

Meridional velocity

Radial velocity component
Axial velocity component
Tangential velocity component
Velocity relative to the blade

Horizontal Cartesian coordinate, or
Distance from the leading edge of a flat plate, or

Coordinate in the conformal plane corresponding to the angular coordinate

Vertical Cartesian coordinate, or
Normal distance from the wall in the turbulence model, or

xiii

Coordinate in the conformal plane corresponding to the meridional coordina’»

Scaled normal distance from the wall in the turbulence model
Axial coordinate

Axial separation between nodes or control volume walls
Direction cosine between axial and meridional directions

Blade angle




(1

Flow angle

Ratio of relative velocities

Coeflicient of diffusivity in the general transport equation
Deviation angle

Cross-stream computational domain coordinate, or
Efficiency

Separation in 7 direction between nodes or control volume walls
Angular coordinate

Effective fluid viscosity

Laminar fluid viscosity

Turbulent eddy viscosity

Streamwise computational domain coordinate

Separation in £ direction between nodes or control volume walls
Fluid density

Slip factor

Shear

Transported quantity in general transport equation, or
Flow coefficient

Global flow coefficient
Static head rise coefficient
Under-relaxation factor, or
Vorticity, or

Angular velocity of the blade

FORTRAN MAX function

Xiv



Hlam

B

A

(1

Flow angle

Ratio of relative velocities

Coeflicient of diffusivity in the general transport equation
Deviation angle

Cross-stream computational domain coordinate, or
Efficiency

Separation in 1 direction between nodes or controi volume walls
Angular coordinate

Effective fluid viscosity

Laminar fluid viscosity

Turbulent eddy viscosity

Streamwise computational domain coordinate

Separation in £ direction between nodes or control volume walls
Fluid density

Slip factor

Shear

Transported quantity in general transport equation, or
Flow coefficient

Global flow coefficient
Static head rise coefficient
Under-relaxation factor, or
Vorticity, or

Angular velocity of the blade

FORTRAN MAX function

Xiv




Subseripts

erossover

0.k

inner

LE
TE

1,2,3

XV

Transition point between inner and outer portion of the boundary layer
Quantity related to the eastern face of the control volume

Quantity related to the node east of the central node

Tensor notation indices

Inner portion of the boundary layer

Quantity related to the northern face of the control volume

Quantity related to the node north of the central node

Outer portion of the boundary layer

Quantity related to the central node

Quantity related to the central coefficient based only on the flux discretization
Derivative with respect to the radial coordinate, r

Quantity related to the southern face of the control volume

Quantity related to the node south of the central node

Quantity related to the western face of the control volume, or
Quantity evaluated on a no-slip wall in the turbulence model

Quantity related to the node west of the central node

Derivative with respect to the axial coordinate, z

Derivative with respect to the n computational domain coordinate
Derivative with respect to the £ computational domain coordinate
Leading edge of impeller blade

Trailing edge of impeller blade

Measurement stations for experimental data collection




xvi

Convective flux

Diffusive flux

Hybrid, lower-order, differencing scheme

Inner loop iteration level

Outer loop iteration level

Pressure corrector equation

QUICK, higher-order, differencing scheme
Quantity related to radial momentum equation
Quantity related to axial momentum equation
Quantity related to angular momentum equation
Dimensional quantity

Reference quantity for nondimensionalization
Positive flow direction

Reversed flow direction

Correction term, or
Quantity used in revised QUICK (QUICKR) differencing scheme




Chapter 1

Introduction

In order to describe the flow within a turbomachine, a number of highly complex flow phe-
nomena must be understood. Turbulence, boundary layer separation, large recirculating flow
regions, secondary flows, tip leakage, nnd vortex shedding are examples of flow phenomena that
are difficult to quantify, yet strongly influence machine performance. The relative importance of
these different phenomena can increase or decrease as the operating conditions of the turboma-
chine change. For example, at off-design conditions the flow incidence angles can become large
enough to cause separated flows and stalled blades. Off-design conditions can also lead to large
variations in the hub-to-tip blade loading, which may induce large recirculating regions within
the blade rows. Turbulence and boundary layer effects also complicate the flow, even at the
design point.

One of the objectives of work in the field of turbomachinery is to predict the behavior of
the flow through blade passages and the resulting performance of the mechanical component.
The subject of the present research is the prediction of turbomachinery performance as indicated
by the flow in the through-flow, or axisymmetric, plane. Successfully predicting turbomachine
performance depends on the ability to predict the significance of the complex flow phenomena
and the ability to model the phenomena themselves when necessary.

The goal of this project was to develop a computer program for predicting incompressible
steady-state axisymmetric flow, with special emphasis on turbomachinery applications. Only
incompressible flows are considered, because there is a large family of turbemachines in which

compressibility eflects are negligible, and because numerical algorithms cannot be applied equally
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well to both incompressible and compressible flows. Only steady-state conditions are considered,
because transient behavior is relatively unimportant in a number of turbomachinery applications.
Turbomachines are composed of rotating blades or varnes that either impart energy to the fluid or
extract energy from the flow. In through-flow turbomachinery analyses, the effects of the blades
can be introduced by estimating the forces that the blades exert on the flow and by applying
these forces within the blade rows as body forces. Using this approach, the effects of the blades
can be accounted for in the axisymmetric plane. Thus, the performance of the turbomachine can
be calculated without having to make difficult and costly three-dimensional analyses. Making
the assumption of axial symmetry implies that the variations of the flow fields in the angular
direction are zero. However, the tangential velocity is nonzero and remains a function of the
axial and radial coordinates.

Collecting experimental data inside high-speed rotors and small twisting fluid passages is a
formidably expensive and hardware-intensive process. Therefore, relying solely on experimental
evaluation can be costly and time consuming during the design and development of a turboma-
chine. Numerical algorithms which have been verified against experimental or analytical results
can be used to supplement experimental data and to provide a means by which performance
can be estimated during the design process. Throughout the development of turbomachinery
design and analysis methods, numerous simplifying assumptions have been utilized to render the
design problem tractable. However, modern numerical techniques have enabled many of the more
complex flow phenomena to be analyzed in detail. Discrete mathematics must be used to solve
for flow fields of practical interest, because the governing equations of fluid flow are coupled,
nonlinear, partial differential equations and analytic solutions exist for only the ~o0st primitive
geometries and flow conditions.

Numerical techniques combined with the digital computer have presented the turbomachin-

ery field with a powerful tool. With an eventual goal of completely predicting the flow behavior
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throughout the entire operating range of a turbomachine, numerous advances in the field of Com-
putational Fluid Dynamics (CFD) have been made over the past two decades. Because of slow
computer processing speeds and insufficient memory, early investigators were often required to
make many simplifying assumptions regarding the flow. Tremendous increases in computer ca-
pabilities coupled with improvements in modern algorithms now allow more realistic calculations
to be made.

Hardware and software limitations forced the assumption of inviscid flow upon early numer-
ical investigators of the flow in turbomachines. Methods such as streamline curvature [1} and
inviscid cascade analyses cannot predict the important contribution that viscosity makes to the
flow behavior. At the design point, inviscid approximations may be acceptable for determin-
ing pressure distributions and flow angles. However, inviscid analyses cannot determine total
pressure losses and the efficiency of turbomachinery components. At off-design conditions, the
inviscid approximation is even less valid.

Even if the viscosity of the fluid is accounted for, there are still approximations which can be
made which will greatly simplify the governing equations. The first three-dimensional calculations
of a centrifugal impeller were made using the partially-parabolic Navier-Stokes equations (PPNS)
[2]. Adopting the PPNS assumptions greatly restricts the applicability of the results. Off-design
conditions or flows with recirculating regions in the streamwise direction cannot be predicted,
because in these cases the equations are no longer parabolic in nature, but become elliptic.

Over the past few years, reports of fully elliptic three-dimensional turbomachinery calcu-
lations have been published for axial flow turbines (3], linear turbine cascades [4], axial flow
compressors [5], and centrifugal impellers [6]). The results are promising, considering the coarse-
ness of the grids that were used. Turbulence was modeled, and recirculation was predicted, but
the results can only be said to be accurate in a qualitative rather than quantitative sense. In 1988,
Hah et al. [7] stated that no successful viscous three-dimensional calculations had been made

for a centrifugal impeller at of-design conditions. Their results, too, show only a fair agreement
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with experimental data. The errors are seemingly due to two fundamental causes. The first is an
inability to accurately quantify turbulent phenomena. The second is due to the use of upwind
differencing on the coarse grids. This report proposes a way of decreasing this latter error by
treating the convection in a manner that is consistent with its radial dependence in cylindrical
coordinate systems. Solving three-dimensional flows in a reasonable amount of time, even with a
modest size grid, requires the use of supercomputers or high-speed mainframes. These, however,
are too expensive and unavailable for widespread use in design applications,

Reducing spatial dimensional dependence from three to two greatly decreases the computa-
tional expense and memory requirements needed to solve the flow. In rotating turbomachinery
applications, the dimensional cutback means that the flow is solved in either the through-flow
plane (S surface) or the blade-to-blade plane (S surface), see Fig. 1.1. Only the through-flow
plane, in which axisymmetry is assumed, is treated in this project because of the abundance of
information pertaining to the performance of the turbomachine that flow on this surface pro-
vides. Efficiency, head rise, total pressure changes, and velocity profiles can all be determined
from solutions to the axisymmetric equations, and these solutions can be found in reasonable
amounts of computational time. Because viscosity strongly affects turbomachine performance at
certain operating conditions, the viscous axisymmetric flow equations are soived. The result is
that streamwise recirculating regions, including those within the blade rows can be calculated.
To this researcher’s knowledge, no one has as yet published a successful calculation of this type
of recirculating zone.

In three-dimensional geometries, rotating turbomachine blades are treated using the typical
no-slip boundary conditions. However, in the axisymmetri¢c frame, the blades are not part of the
flow domain boundary. The geometry for an axisymmetric fiow is a pipe or annular section with
walls of arbitrary shape. Nowhere in this geometry are blade passages present. The geometry is
the same whether analyzing duct fiow or turbomachinery through-fiow. However, the flows for

these two cases are vastly different. Because the geometries are identical, the effects of the blades
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can only be brought into the momentum equations as external influences. Thus, by applying
body forces in the regions where the blade is projected onto the axisymmetric plane, the flow will
be effected as though blades are physically present. Axisymmetric flow does not restrict the fluid
to motion within a single axial-radial plane, so the external effect of the blades can be thought
of as determining the rate that the fluid moves relative to the blade for a given velocity vector
in the axisymmetric plane. Specifying the flow angle in this manner is effectively identical to
determining the amount of force that is required to turn the flow.

A variety of blade models that approximate the fluid-blade interaction have been presented
by previous researchers. Novak and Hearsey (8] solve inviscid quasi-3-D flows by alternating
between a through-ﬂdw calculation and a blade-to-blade analysis, using the latter to provide flow
angles to the through-flow calculation. This approach involves a great deal of computational
expense, because it alternately solves two types of flow problems. Multiple blade-to-blade caleu-
lations are performed on various radial surfaces of volution, and these data are coupled to the
solution in the through-flow plane. This technique is not applicable to viscous flows at off-design
conditions, because strong three-dimensional blade-to-blade eflects violate the assumptions made
in transferring information between the blade-to-blade and through-flow solutions. Another way
of accounting for the presence of the blades is to replace them by the forces they impart to the
fluid. Martelli and Michelassi [9] use a single inviscid blade-to-blade calculation to provide the
pressures on the suction and pressure sides of the blades. This loading distribution is then used
to specify body forces for a viscous through-flow calculation. For ofl-design operating conditions
their approach is not valid, because the assumptions that are used to arrive at the blade loading
no longer hold. Jackson e al. [10] use a more reasonable approach in which the flow angles are
prescribed. They examined flow past a stator, which simplifies the calculation since the increase
of total pressure along the streamline does not need to be modeled.

The blade modei developed in this investigation is related to the approach of Jackson el al,,

in that a flow angle is extracted from an estimated mean streamline. Because the geometry of the
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blade passage is known, it provides a good basis for estimating the streamline shape. To make
the flow solver applicable to general turbomachines, a method for predicting the energy input
along the blade row was formulated. The force required to conserve momentum in the m.eridional
direction, in addition to creating an estimated pressure change due to the energy input of the
blade, represents the effect the blade has on the conservation of axial and radial momentum.

An analysis tool must be general enough to be useful in a variety of situations. In the field
of turbomachinery computational fluid dynamics (CFD), this means that the flow solver must
be able to handle drastically different geometries. Towards this end, the governing equations are
transformed from the physical plane into a computational plane, which is defined by a set of
body-fitted or generalized curvilinear coordinates.

In the chapters that follow, the computer program that performs the through-flow calcula-
tions is explained. The governing equations for a viscous, steady-state, incompressible, axisym-
metric flow are formally stated in Chapter 2. An explanation of the mapping operation is given
in Chapter 3, and its use in transforming the governing equations into the computational plane
is presented. Details of Rhie and Chow’s [11] Pressure-Weighted Interpolation Method (PWIM)
are given in Chapter 4, along with justifications for employing this algorithm in the program.
Modifications to their approach have been made, and these are also discussed. The process of dis-
cretizing the governing equations is also explained in Chapter 4, along with other considerations
arising from the numerical solution algorithm. Special attention is paid to the intricacies brought
about by the use of the cylind-ical polar coordinate system. To this author’s knowledge, no re-
searchers to date have presented modifications to PWIM that specifically adapt the algorithm to
cylindrical coordinate based applications. The turbulence model used in the program is explained
in Chapter 5. A full explanation of the blade model is contained in Chapter 6. The procedure
for verifving the computer program is documented in Chapter 7. Additionally, the results for a
number of test cases are given. Through-flow calculations of flow in a centrifugal impeller over

a range of operating conditions are presented in Chapter 8. The numerically calculated velocity
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profiles and overall perforinance characteristics are compared to experimental data. The calcu-
lated results are shown to successfully predict a number of important phenomena at off-design
flow conditions. The numerical result< consistently capture the trends of the velocity profiles
shown in the experimental data, although overall performance paramecters are not as accurately
predicted. Modifications to the blade model to improve the performance predictions were not
made. Conclusions supported by the research are stated in Chapter 9, and recommendations for
future rescarch are also given. The differencing schemes used in the discretization of the momen-
tum flux terms are discussed in the Appendix. An explanation of a new procedure for extending
Leonard’s higher-order differencing scheme {12] all the way to the boundaries is also included in
this section. Additionally, two new differencing schemes that reflect flow characteristics in the

cylindrical polar coordinate system are also presentzd in the Appendix.




Chapter 2

Governing Conservation Equations

By accounting for inertial, pressure, and shear forces, Navier-Stokes based solvers are able
to reflect the physics of the flow of a real fluid inside a turbomachine. The Navier-Stoker equa-
tions are a set of coupled, nonlinear, elliptic equations. They are also known as the equations of
motion or conservation equations, because their solution yields a flow pattern that is consistent
with physical conservation laws of mass and momentum. For flows in which density changes can
be considered negligible, i.e. incompressible flows, the energy conservation equation is decoupled
from the momentum equations. Therefore, the energy equation is not considered in this inves-
tigation. Typically, an equation of state closes the system of equations, but the assumption of

incompressibility also eliminates the need for this type of relationship.

2.1. Conservation of Mass and Momentum for

Steadv-State Incompressible Axisymmetric Flows

Turbomachinery flow passages involve some type of rotating mechanical component that
is comprised of blades or vanes. The cylindrical polar coordinate system is naturally associated
with such geometries. As the rotary device acts on the fluid media, it changes the flow properties.
Unless there are an infinite number of blades, the flow properties will vary in the angular direction.
If this variation is neglected or assumed negligible, (-5—’; = 0), then the flow is independent of the

orientation of the viewing plane about the centerline and is axisymmetric.
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The governing equations for conservation of mass and momentum [13, 14] are shown in

Egs. 2.2-5. These are the nonconservative forms of the steady-state equations for flow that is

axisymmetric and incompressible. Fluid acceleration is given by the substantial derivative, -g;.
Diruensional quantities are denoted by a “ ~ " superscript.

Substantial Derivative:

L2 »;;f’; (2.1)

Continuity:

+ =0 (2.2)

z - momentum:

18 (.. (00 80,
?E[‘" (3 + '5*)] 23)

r - momentum:

- -.‘2 -
ﬁ[Dv' - -"—9—] =-2 ks

ar

K

oz

Di 4
o (.0, di, 89, 25 (89, O\
5 (%) + w1 (T + 7))+ 2(F-%) 24

# - momentum:

.| Dvs £y Up S
— = = F,
P [ Di z ] s +

0 (oY, B[ (% ], % (% o
3 ("as)*af[“(af r)} + r‘(ai—f) (2.5)

Axial symmetry removes the tangential component of velocity from the continuity equation,

e

but vy is still coupled to the other velocity components through the momentum equations. Sym-
metry also removes the explicit effects of pressure from the angular momenium equation, but
vg remains coupled to the pressure field through the centripetal acceleration term (v2/r) in the

radial momentum equation. The bulk viscosity does not appear in the momentum equations
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because the divergence of the velocity is zero for incompressible flows. Spatially varying viscosity
is permitted with the form of the equations given. This is necessary since turbulence modeling is
implemented by supplemeniing the laminar viscosity with a local turbulent viscosity (- Chapter
5). Body forces per unit volume, F in the respective directions, provide a means by which the
presence of external entities, such as turbomachine blades, can be introduced into the momentum
equations. A complete discussion of the model which replaces the blades with the forces they

impart to the fluid is given in Chapter 6.

2.2 Nondimensionalization of the Governing Equations

It is beneficial to express the governing equations in terms of nondimensional groups so
that the flow may be characterized by standard parameters. Dimensionless variables are also
advantageons from a numerical standpoint, because the values are usually scaled so that they lie
between zero and one, thereby reducing floating point errors associated with very large or small
numbers.

The first step in nondimensionalizing the equations is to select reference values. Bucking-
ham’s Pi theory allows for the specification of four reference quantities. All other terms are
scaled by combinations of these values. The “~" superscript in Eq. 2.6 indicates a characteristic

dimensional quantity.

K=iz (2.6a)
b=y (2.65)
6=pp (2.6¢)
p=pp (2.6d)




12

p=pp=(p?°) p (2.6¢)
s _pro (PN

.--FF...(f)F. (2.61)
Rc:p—-;: (2~69)

The flow geometry determines the reference length, and the flow conditions set the appropriate
characteristic velocity. For incompressible flow, the reference density is equal to the fluid density,
which is a constant. Therefore, the nondimensional density is unity, but it is retained in the
equations for clarity. The fluid’s molecular viscosity is the most convenient reference value for
the viscosity. Thus, for laminar flow the nondimensional viscosity is also one.

The Reynolds number, Re, which represents the ratio of inertial to viscous forces, appears
naturally in the momentum equations when they are nondimensionalized. Turbomachines operate
in the high Reynolds number regime. Thus, to minimize floating point errors during the numerical
solution, it is better to divide the viscous terms by Re rather than multiply the inertial terms by
the paraméter. The resulting nondimensional equations are listed in Eqs. 2.8-11.

Substantial Derivative:

D 8 8
B? = Ux'a—z' + Uré"; (2'7)
Continuity:
dpv:) | O(prve) _
3 + B =0 (2.8)
z - momentum:
Dv, _ Op
D =T tRY
1 a v, 18 v, v,
Re [2-5; (M.BT) + r Or ("'(az + or ))] (2.9)
r - momentum:
Dv, vi] _ Op
p[Dt - r] =% Fr+

1 a v, o v, v, 2u {Ov, v,
7 m (v5) + 2 (0 (3 5)) + 2(5 -1)] o
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6 - momentum:

Dvp VpUg _
P[ﬁ' + - ] = Fs +

1 [8 dvs 8 vy vy 2 3&_‘2
E’[E‘(“—a") + 5:("('5: - ")) t T (ar )} (2.11)

The form of the continuity equation, Eq. 2.8, is not altered by the nondimensionalization

because, it contains only nonviscous terms,
2.3 Conservative Form of the Governing Equations

The fundamental difference between the governing equations in cylindrical and Cartesian
coordinates is that surface area is dependent upon the radial displacement in the cylindrical frame
of reference. When rotating an area in the r — z plane about the centerline, the volume swept
out is a function of the radius of the centroid of the area. In control volume (CV) formulations,
this is manifested as a radial dependence of the surface area through which the flux is carried
into the control volume.

Consider an elemental line segment whose midpoint is displaced from the centerline by r,
as shown in Fig. 2.1. When rotated about the centerline, the line segment forms a frustum of a

cone. The mass flow rate across the segment is equal to:
m = 2xpr(v,dr — v, dz) (2.12)

The factor of 27 is neglected in further discussions, since it will appear in the integral of every
axisymmetric term and can, therefore, be factored out.

In the control volume formulation, four such segments are joined together to form a quadri-
lateral which serves as a control volume. Thus, the mass flux into the CV is dependent only on

the facial properties and their radial locations. This presents a problem concerning the form in



Figure 2.1

Elemental Segment of Control Volume Wall
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which the conservation equations are posed. The inertial terms in Egs. 2.8-11 do not contain the
convective velocities multiplied by the radius, but these terms can be algebraically manipulated
to yield the desired form. These new expressions are described as being conservative. An equa-
tion is said to be in conservative form if the coeflicients of the derivatives are either constant, or if
variable, their derivatives do not appear anywhere in the equation {15, p. 16]. Algebraically, the
equations are identical regardless of their form; however, the solution to the equations given in
Section 2.2 is not found using exact analytical techniques. Discrete mathematics is used to solve
these nonlinear equations, and the final solution is dependent upon the form of the discretized
governing equations. By solving the equations in their conservative form, the flux crossing one
control volume face will be the same for each of the adjacent control volumes that share that face.
Global, as well as local, flux conservation is ensured by expressing the equations in conservative
form. Flux conservation is one aspect of control volume formulations which yields meaningful
results, even on coarse grids [16, p. 31].

The essential relationships for changing from nonconservative to conservative form are shown
in Eq. 2.13. Because the cylindrical coordinate system is orthogonal, r is independent of the

axial coordinate and may be brought inside the derivatives with respect to z.

v, v, _ 10(rv,)

Tty T e (2.13q)
v, _ 10(rv,)
il v (2.13b)

Eqs. 2.14-17 present the conservative form of the governing equations. Not only are the
convection terms written in conservative fashion, but several viscous terms have been restructured
into this more convenient format. Each equation has been multiplied through by r to remove the
1/r factors which are present in Eq. 2.13. Continuity was used in conjunction with Eq. 2.13 to
eliminate the substantial derivative from the momentum equations.

Continuity:

Olprv.)  Olprve) _
= T -0

(2.14)
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z - momentum:

8(prvav:) + d(prvev.)
oz or -

1148 v, 8 Ov, 1 8 _t?_ v, kA v,
‘EZ[S‘ (“’Ta?) + F(“T)} + E[az ("'7;:) t o ("' 32 )] (2.15)

r - momentum:

Op
"75; + TF,+

d(prvsv,) d(prv-v,) 2 _ Op “Lzl"v’r
a2 + Br PV = = + rF, Re 7 +

118 v, 8 8v, 1[8 dv; a dv,
‘fz‘[é’ ('"‘a?) + a—(“‘a—)] + '&‘[5’ (""5:) + 5;("’ a)] (2.16)

¢ - momentum:

8(prv.ve) + 3{prv,ve) 1 vy 8(ur)

92 g T = rh s T e
118 v 8 v
% o (r5e) + 2 ()] @1
mparison of ¢ indrical and Cartesian Forms of the Conservation

The two-dimensional conservation equations in Cartesian coordinates for steady-state incom-
pressible flow [17, p. 64] can be nondimensionalized and expressed in conservative fashion using
an approach similar to that given in the previous sections. In the Cartesian coordinate system
there is no counterpart to the radial distance, so relationships analogous to those in Eq. 2.13 are
not used. Instead, the continuity equation is enough to transform the substantial derivative into
conservative form. The resulting continuity and momentum equations are given in Egs. 2.18-20.
Continuity:

d(pu) + 9(pv)

e

- 5 =0 (2.18)

z - momentum:

Ipuu)  S(pvu} _  Op
oz + dy =~ Oz + F

113 Bu (i) du 18 Ou a v
'é’[a_ ("5‘) + 5‘5("5;)] * E[é" (v52) + 55("5‘)] (219)
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¥ - momentum:

8(puv) | d(pvv) o
Oz + dy = ay + Fy4

LE62) - 268 - £1268) - £08)] oo

Since the orientation of the plane in which the axisymmetric equations are viewed is arbi-

trary, the centerline is specified to run horizontally and the radial axis vertically. This is the
most convenient arrangement because it aligns the directions of the cylindrical polar (z,r) and
Cartesian (z,y) base vectors. The velocity components v; and u are parallel, as are v, and v.

Egs. 2.14-16 and Eqs. 2.18-20 are equivalent when three conditions are met:

1. The tangential velocity is zero everywhere.

2. The radius is unity wherever it appears as a multiplicative factor.

3. The radius is infinity wherever it appears in the denominator,
Under these conditions the axisymmetric equations are identical to those in the two-dimensional
Cartesian coordinate systemn. In the absence of blades or moving boundaries, the first condition
is met by setting the inlet swirl velocity, vg, equal to zero. In addition, setting r = 1 and 1/r = C,
enables the axisymmetric flow solver to solve flows in a Cartesian coordinate system as well. The
cost of implementing this capability is one extra memory array which allows r and 1/r to be

stored separately.




Chapter 3

Mapping from the Physical to the Computational Plane

For the complex flow geometries that are typically found in turbomachinery, it is often diffi-
cult or even impossible to generate quality orthogonal grids to cover the physical domain. Also,
for a grid to provide quality solutions, nodes must be concentrated in regions v here severe gradi-
ents are to be resolved. From a numerical standpoint nonorthogonality and nonuniformity each
create difficulties. Only orthogonal grids possess the desirable feature of having each contravari-
ant velocity convect fluid across only one family of gridlines. Diffusion terms are more easily
evaluated when the gridlines intersect at right angles, because the gradient along one gridline is
independent of the gradient along the other gridline. Solving the governing equations discretely
also creates problems associated with the spacing of the nodes. Unequally spaced grids cause
large increases in the computational expense and memory associated with the discretization pro-
cess. Even when a control volume, rather than finite difference, approach is used, Taylor series
approximations are still employed in the evaluation of gradients. Uniform grids enable high-order
Taylor series approximations to be made with less computational eflort than with nonuniform
grids.

The benefits of uniform orthogonal grids can be achieved on a grid that is neither orthogonal
nor uniform. This is accomplished by mapping the physical domain into a computational domain
in which the grid is orthogonal and has unit spacing. The governing equations are actually
solved on this computational grid. Since the grid on which the equations are solved lies in a new
plane, the governing equations must also be transformed so that they insure conservation in the

computational plane. In general, the transformation increases the complexity of the governing
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equations by introducing additional terms which are not present in the governing equations
expressed in the physical space. All of the information concerning the nonorthogonality and
nonuniformity of the grid in the physical space appears as fixed multiplicative factors in these
additional terms. The overall solution of the more complex equations in the computational space
is much less involved than the solution of the simpler equations directly on the physical space
grid.

In the physical coordinate system in which the grid is generated, the contours of the geometric
boundaries may not conform to curves of a constant coordinate. Thus, there can exist regions
where the discretized boundary lies a finite distance away from the true boundary. Solving the
governing equations on this type of grid would prevent an accurate application of the boundary
conditions. Thus, the b.ody-ﬁt.ted coordinates or generalized curvilinear coordinates are employed.
After transforming the body-fitted coordinates into the computational domain, the boundaries
of the computational grid correspond precisely to the geometric boundaries, so an accurate
application of the boundary conditions is possible.

The mapping operation is defined in the next section. This is followed by an explanation
of how the governing equations are transformed from the physical space into the computational

domain.

3.1 Specification of the Mapping Operation

The transformation from cylindrical to generalized curvilinear coordinates is a simple chain

rule expansion of the axial and radial coordinates (z,7) in terms of the £ and n coordinates in

(£) - (& () o

the computational plane.

ol
Sl
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If the grid on which the problem is to be solved is mapped into a computational plane, the
governing equations must also be transformed. After solving the system of equations, the results
must be referenced back to the corresponding locations of the grid nodes in the physical space.
Therefore, the mapping procedure must produce a set of points in the computational space for
which there is a one-to-one correspondence with the points in the physical space. To achieve this

one-to-one correspondence, the inverse transformation defined by Eq. 3.2 must exist.

(£) - (¢ (@) @2

Equating the coefficient matrix of the inverse mapping function (from Eq. 3.2) to the inverse
of the mapping function coefficient matrix {from Eq. 3.1) yields the closed description of the

transformation process.

(Zf 7'() - (E! 7):)'1 (3.3)
25 Ty 38 Nr

N = —=refJ, 0= z/J (3.4)
J = zgry — 21 3.9)

The Jacobian, J, of the system represents the ratio of the local physical space area to the
corresponding computational plane area. As long as J is nonzero, the inverse mapping function
will exist. If the value of the Jacobian vanishes, it indicates that a point in the physical space
corresponds to a region in the computational domain, a violation of the one-to-one condition of
the mapping. Positive area in the computational plane is assured by definition; therefore, if the
Jacobian is negative, the physical grid possesses locally overlapping gridlines. This indicates that
the original grid is inadequate to describe the physical system and must be changed. Otherwise,

the numerical solver will inevitably fail to function or fail to yield meaningful results.
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The terms in Eq. 3.4 are known as metrics. The subscript denotes partial differentiation
with respect to the coordinate variable. Since the spacing between nodes in the computational
grids is defined as unity, the metrics re, z¢, z,, and r, can be evaluated using finite difference
approximations. Second-order accuracy in the metrics is achieved by using central differencing in
the interior of the grid and one-sided differencing at the boundaries. The curvilinear coordinates
are not directly known as functions of (z,r); therefore, the inverse formulations, Eq. 3.4, must
be used to evaluate the metrics £;,&,,7,, and 7,.

In an eflort to minimize the complexity of the representation of the transport equations,
tensor summation notation is adopted and used throughout this work. Repeated indices indicate

a summation over the index from one to two, with the following equalities specifying the indicial

correspondence:
i} a a 8
Be T Br B 3.8)
8 i} 8 ij
= =2 —_— 3.7
5% = % 3 = o @0
Thus, the mapping operation is defined as follows:
g _0¢ o
8z; ~ 0z af,- (3.8)

In the computational plane, it is desirable to express the terms in the governing equations
in strongly conservative form. To do this, the metrics must be brought inside the derivatives.
As shown in the resulting identity given in Eq. 3.11, this can be accomplished by bringing
the Jacobian into the derivatives along with the metrics. In this development, the symbol ¢
represents a general transport quantity for which the derivative is to be determined. Starting
with the application of the chain rule, Eq. 3.9 is obtained.

9 (]Qf:iq}) - _1.¢_q_( gg.i) (3.9)

1
85, - 736, ¢ J 65,- 0z

9% _ 1(&&)@; _
6:; - J 6.’..'
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By expanding over repeated indices, it is shown in Eq. 3.10 that the last term in Eq. 3.9 is equal

to zero for =; equaling both = and r.

1,2 (2) 2y (222
7¢'€j( 6:)'J¢(agar, dn O¢ =0 {3.10a)
12 (s85) L 1y(22_205)
J¢afj (Jar ”Jq) o dy Onof =0 (3.108)

After interchanging the order of differentiation, which is permissible because ¢ and 7 are smooth,
continuous functions of z and r, the terms within the parentheses cancel. Thus, the desired

identity is obtained:

9 _ 19 (,8 )
5e = TE (J 5 (3.11)

When the conservatién equations a.e transformed from the physical plane to the computa-
tional domain, metric invariance with respect to the order of differentiation is required so that
Eq. 3.10 is valid. This can be accomplished analytically by making use of the identity shown in
Eq. 3.11 during the transformation < { the governing equations, or it can be done numerically by

insuring the finite difference forms of the metrics satisfy:

9 0: 80z
-é-ga—r’ - 5;52- (312(1)
d0r 8 or

Actually, Eq. 2 12 should be met regardless of the approach taken to prevent the metric in-
variance from effecting the governing equations, because it ensures more accurate expressions of
the metrics. As long as the metrics are evaluated on a local scale, Eq. 3.12 will hold. 1t will
not hold if the metrics are interpolated using quantities at neighboring regions. This type of
interpolation destroys the meaning of the Jacobian, which, as previously stated, is the ratio of

the local physical space area to that in the computational plane.
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3.2 Transformation of the Governing Equations into

neralized Curvilinear Coordinat

If the governing axisymmetric equations are to be solved in the computational space, then
they must be transformed to an equivalent form in that plane. A discussion of this transformation
is given in this section.

On the left hand side of each of the four conservation equations (Eq. 2.14-17) there exists a

convection term of the form:

8(prv;¢)
0z;

(3.13)
where ¢ represents the transported quantity. For the continuity equation, ¢ = 1. For the mo-
mentum equations, ¢ is simply the corresponding velocity components. This term is transformed

by reexpressing the derivatives in terms of gradients with respect to (£, 7). The metrics are then

brought inside, using the identity in Eq. 3.11.

d(prvjé) _ a_fia(prv-gﬁ) _ _1"_3— .35!_ . )
az; ~ 03 86: = T8 (”r (J 3z, v,) ¢ (3.14)

The velocities and metrics within the derivative can be combined to form scaled contravariant

velocities in the computational plane, (U, V), defined by the following equations:

U=J(v: +&vr) = rpvs ~ 290, (3.150)

V =J(nv: + nrvr) = zgve ~ rev, (3.15b)
_ 19

U; = JaZg v (3.15¢)

Throughout this paper U and V are referred to as contravariant or convective velocities.
Actually, they are the Jacobian times the rate the fluid particles travel in the £ and 5 directions,

respectively. The J scaling factor is explicitly ignored in the name, but it remains implied.
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Substituting Eq. 3.15¢ into Eq. 3.14 yields the transformed convection term:

d(prv;i¢) _ 18(prU;¢)
8.’,;‘ - J E)'

(3.16)

To verify that U; is a contravariant velocity, consider once again the elemental segment
shown in Fig. 2.1. If it is mapped into a segment of constant £ or 7, the metrics become the

ratio of the lengths. Multiplying the contravariant velocities by the radius and the density gives:

prl = pr(v, Ar — v, Az)/An (3.170)

prV = pr(v, Az — v, Ar)/AE (3.17%)

Recalling that the nodal spacing in the computational plane is unity, the A and An factors can
be ignored. Comparing these relationships with those of the mass flow rate in Eq. 2.12, it can be
seen that the contravariant velocities are responsible for transporting all mass across a control
volume face. This is proof that I/ and V are contravariant rather than covariant velocities; more
importantly, it demonstrates the reason for using the conservative form of the equations. The
transformed continuity equation contains the prlU/ and prV terms. When integrated over the
area, the transformed continuity equation states that the net mass accumulation in the control
volume is zero. Thus, the transformation to computational space has not changed the eflective
meaning of the continuity equation. This would not be the case if the nonconservative form of

the continuity equation (Eq. 3.18) had been transformed.

d(pv,) dpvr)  pur
Oz + ar + r

=0 (3.18)

The body force terms are not aflected by the transformation, since no spatial derivatives
are involved. The same holds true for the centripetal acceleration term in the radial momentum
equation and its counterpart in the angular momentum equation. A direct applicaticn of the
mapping equations is used to transform the pressure gradients

Each momentum equation contains a diffusion term which appears in the general transport

equation. In keeping with convention, ¢ is substituted for the transported quantities, and the
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diffusive coefficient, T', replaces the viscosity. This term is transformed by applying Eq. 3.8 to

the inner gradient and 3.11 to the outer gradient.

a 8¢ as; o ( a6 643) 1 4 ( (35,' 651) Bé)
—_ = [ Tr—— === | TP | 2~} — 3.19
3z (r 'az;) 0z 06 \| 0x 9/ T 32 92 ) 36 (3.19)
After transforming the derivatives with respect to the physical space coordinates, all that remains
are gradients with respect to the computational plane coordinates and terms involving the trans-
formation metrics. A new variable, gji, is created to represent the combination of metrics which
appear in the diffusion terms. This variable is defined in Eq. 3.20 for each indicial permutation.

When j and k are not equal, the resulting diffusion is known as cross-diffusion, because it arises

out of the grid nonorthogonality.

g =E+E=(5+r)/)? (3.20a)

922 =73 + n;’ = (s +19)/J? (3.208)

912 = ga1 = £ + Eenle = —(2¢29 + 1T/ J? (3.20¢)
oy = %f;:;%fz_: (3.20d)

Substituting g;i for the rietric combinations yields the following final form of the diffusion
term:
d 0¢ 10 daé
— (Tre—) =5 — 2
0z; (I‘ra:j J I8 (r”g’kﬁ&) (3.21)
Another term has a structure common to both the radial and axial momentum equaticns.

It is of the form:

6 6!1,'
2 (%)

where 2; indicates which momentum equation is under consideration. This term is mapped using

the same steps shown in Eq. 3.19. The metrics from the outer derivative cannot be brought
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into the inner derivative and combined with v; to create the contravariant velocities, because the

indices Jo niot conform to those appearing in the identity of Eq. 3.11.

()-SR
53}'(”'6:;)'152:(1(]3:,- Y50 ) 7 (.23)

When expanded over repeated indices, eight separate terms are formed. The inability to reexpress
this quantity in a simplified form has a negative impact from the standpoint of computational
efficiency. However, the inefficiency is lessened by the appearance of some of these gradients in
the cross-diffusion terms of Eq. 3.21.

The remaining terms in the momentum equations are coordinate specific, each of which is
transformed by a direct application of the mapping functions. Gathering together each compo-
nent term in the continuity and momentum equations and multiplying through by the Jacobian
gives the conservative form of the nondimensional governing equations in generalized curvilinear
coordinates.

Continuity:

A(prl) + dprV) _
o¢ én

0 (3.24)

z -~ momentum:

BorlUv,) | HprVos) _ oo Jaf:‘)?f_+

o3 an r 3
L0 (g 8 & 2 (B (fOe) (88 0y
L2 (i) + 2 (2(02) (2) )]

r - momentum:

dprUv,) (prVv,) . _ ( %)@
B¢ <+ B = Jpv; + rJF, riJ +

1]9 OveN 6 (pr (06 (_5'_6_:)@) ‘2uJu,]
Re [66; (" 'Jg’*a&) * 5% (J (J a:,-) T ) % L2l (3.26)

# - momentum:

’
OprUve)  BlprVve) _ ~Jpvevg + rJFo +
¢ dn

118 JOu) v ge_,_) a(f,,)] )
Re [a&] (lir-]g)ka‘sk) - r (J or ————as’ (3.2‘)
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Although the governing equations are transformed, the quantity which is conserved is not
altered. Eqgs. 3.25-27 contain the cylindrical coordinate velocity components (v;,v,, and vp)
and represent conservation of momentum ‘n the axial, radial, and tangential directions, respec-
tively. It is possible to combine the momentum relationships to yield formulations which co... crve
momentum in the £ and 5 directions [18), but this makes the solution algorithm much more com-
plicated due io the fact that the mapping is carried out on a local scale and the directions of
(€, m) with respect to (z,r) are constantly changing. The following chapter describes the numer-

ical method used for solving Eqs. 3.24-27.




Chapter 4

Numerical Solution Method

The only type of general equation, or system of equations, that can be solved is a linear
equation, or set thereof. However, the Navier-Stokes equations are nonlinear as a result of the
convection terms. Thus, continuous analytic solutions to the closed system cannot, in general, be
found. To get the equations into a solvable form, they are discretized via a linearization process,
and solved at distinct points, called grid nodes. An iterative solution is employed to make the
solution of the linear discretized equations reflect the nonlinearity of the system of equations they
are describing.

Although discretization is a fundamental process in the iterative solution scheme, the partic-
ular steps in the discretization process are not determined by a given solution algorithm. Rather,
the solution algorithm is dependent upon the discretization process. The Navier-Stokes equations
were derived in terms of conserving a quantity within an infinitesimally small volume. Thus, it is
considered that the control volume approach is more closely tied to the physics of the flow than
is the finite difference approach.

For incompressible, steady-state, axisymmetric flow there are four unknown flow field vari-
ables (v,,vr,vs, and p) and four conservation equations, making the problem well posed. The
three momentum equations are used to solve for the velocities, and the pressure field is extracted
indirectly from the continuity equation. A fifth variable, the effective viscosity, u, must be eval-
uated in turbulent flows. Chapter 5 provides an explanation of the turbulence model used to
determine this quantity. If the flow is laminar, u is simply the molecuiar fluid viscosity, which is

a fluid property and is known independent of the flow. The solution algorithm is independent of
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the means for determining the spatially varying turbulent viscosity; thus, any turbulence model
may be used to approximate the eflective viscosity.

In addition to the complexity associated with the nonlinearity of the momentum equations,
the appearance of the first derivatives of pressute in the relations causes additional numerical
difficulties. If central differencing is used to discretize the pressure gradient on a uniform grid,
the pressure at the central node becomes decoupled from the approximation to the momentum
equations. Referring to the uniform control volumes illustrated in Fig. 4.1, the gradients at the

central node can be expressed, using second-order accurate central differencing, as:

Op PE ~ Pw
—af o SAE (4.1a)
op| _ pn-—ps
3|, = ~2A7 (4.13)

These relationships are referred to as “2 — §” gradients, since the component terms span two
control volume widths. Because po does not appear in Eq. 4.1, the pressure field experiences
“even-odd” decoupling, wherein a physically unrealistic checkerboard or oscillatory field can
satisfy the discretized governing equations {16, pp. 115-118]. The problem stems from the need
to use central difierencing to evaluate the pressure gradients. One-sided differencing does not
accurately represent the elliptic nature of pressure, thus it is not a viable approach for eliminating
the even-odd decoupling. On a nonuniform grid the central pressure would appear in the central
difference approximations to the gradients. However, the coupling this provides is very weak and
only gets stronger as the grid Lecomes less uniform.

Staggered grids are frequently employed to alleviate the even-odd decoupling and prevent
an oscillatory pressure field. Scalar and vector component fields are solved on separate grids in
this type of treatment. The vector component nodes are offset in the direction of the component
by one half of a control volume width from the scalar nodes. Patankar and Spalding's SIMPLE
{19], Patankar’s SIMPLER [20], and Issa’s PISO [21] are a few of the algorithms that employ the

staggered grid approach. On a nonorthogonal grid, the gridlines are not along the coordinate axes,
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Control Volumes in Computational Space
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s0 the nodes cannot be staggered in the coordit.ate directions. Therefore, staggered grids cannot
efficiently prevent pressure oscillations on nonorthogonal grids {22]. In order to use staggered
grids with curvilinear coordinates, Karki and Patankar {18] had to transform the governing
equations to reflect conservation in the direction of the computational plane axes. This approach
complicates matters without providing an exonerating computational advantage.

Rhie and Chow {11} proposed an algorithm which prevents the occurrence of an oscillatory
pressure field on a nonstaggered grid. Their algorithm, dubbed “the pressure-weighted interpola-
tion method (PWIM)” by later researchers Miller and Schmidt [23], combines “2—- 6" and “1 4"
central differencing approximations to the pressure gradients to eliminate oscillations in the pres-
sure field. Like SIMPLE, PWIM is a predictor-corrector scheme, in which the continuity equaticn
is used to derive a pressure correction equation. The pressure corrector is used both to update
the pressure and to correct the velocity components to satisfy continuity. When convergence
is reached with this iterative solution scheme, both momentum and mass are simultaneously
conserved.

The reasoning behind Rhie and Chow’s development will be discussed later, but the incen-
tive for creating this method is to eliminate the complexity and inefficiency of staggered grids.
Computational fluid dynamics techniques such as curvilinear coordinates and multilevel algo-
rithms, which have been actively researched in the vears following the initial proporal of the
staggered approach, are cumbersome when applied to noncollocated grids. Nonstaggered grid
solvers generally require less storage than their staggered counterparts. Peric et al. [24] found
that PWIM was usually fasicr than staggered grid methods, even without the SIMPLEC en-
hancement (see Section 4.4). Miller and Schmidt [23] demonstrated that the nonstaggered grid
solver is more accurate than staggered grid algorithms. Also, the accuracy of solutions obtained
using the 'WIM algorithm are not reduced by interpolation errors during post-processing, since

the flow quantities are already defined at the same points.
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The PWIM algorithm exhibits a robustness which is further enhanced by the transforma-
tion to generalized curvilinear coordinates and the use of the finite control volume formulation
to discretize the equations. The use of generalized coordinates allows the same computer code to
treat the vastly different geometries that appear in various types of turbomachines and fluid pas-
sages. A control volume approach, rather than finite a difference representation of the governing
equations, allows the discretized form of the equations to remain conservative.

Rhie and Chow’s nonstaggered solution algorithm, PWIM, was chosen as the technique
best suited to solving the incompressible turbomachinery flows that are the subject of this work.
However, to optimize the flow solver to the particular applications, some changes have been made.
Most of them are based on the difference between cylindrical and Cartesian coordinate systems.
Since the initial publication of the PWIM algorithm in 1983, several researchers have proposed
minor modifications. Lapworth [22] has formulated a scheme in which pressure, rather than a
pressure correction, is computed. This variation is algebraically equivalent to the original PWIM,
where an error in continuity still drives the convergence of the pressure field. This approach was
not incorporated into the present scheme, because a change in pressure also enables corrections
to the nodal velocities to be made. Lapworth does not bother making updates to the nodal
quantities, since continuity is assured by updating only the facial convective velocities. However,
the minor computational expense incurred by updating nodal velocities according to the pressure
correction relationships yields a more robust algorithm. It is especially helpful in preventing
divergence early in the iterative process when the solution is rapidly evolving from the initial
guess towards a converged solution. By updating the nodal velocities, the explicit source terms
in the momentum equations are evaluated using more realistic quantities, and thus stability is
enhanced. Rhie and Chow [11] use linear interpolation in the physical plane to arrive at facial
values of the contravariant velocities. Lapworth [22] used simple averaging in the computational
domain. Miller and Schmidt [23] developed a more accurate, albeit costlier, approach that is

based on conservation of momentum. Their approach, which degenerates to simple averaging for
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some flow conditions, is adopted here, because it more accurately represents the physics of the
flow.

The remainder of this chapter is devoted to giving a detailed explanation of how the modified
PWIM algorithm s used to solve the discretized axisymmetric equations in generalized curvilinear
coordinates. The description begins with a statement of the nomenclature associated with the
grid and control volumes. This is followed by a discussion of how the governing equations are
discretized. To simplify the presentation of concepts which are pertinent to all three momentum
equations, the discretization is first carried out in terms of a general transport equation. Then, the
individual momentum equations are treated. As previously mentioned the discretization process
is not unique to PWIM. After it has been presented, the way in which PWIM is specifically used

to solve the discretized equations is discussed.

4.1 Control Volume and Grid Definition

Fig. 4.2 shows a typical control volume in physical space. Fig 4.3 illustrates the same control
volume when 1t is mapped into a unit square in the computational domain. Each of these figures
indicates the notation utilized throughout this work. The directions east, west, north, and south
correspond to various directions with respect to the central (o) node. An uppercase directional
subscript (g, w, w~, s) refers to a quantity at a neighboring node. A lowercase directional
subseript (¢, w, n, +) cOrresponds to a quantity evaluated on a control volume face. Repeated
directional subscripts indicate quantities in the direction of the latter subscript with respect to
that indicated by the first.

An entire grid in the physical plane is shown in Fig. 4.4. When the grid is generated,
only the coordinates of the control volume corners are computed. Vertical and horizontal face

coordinates (denoted in Fig. 4.3 by + and x, respectively) are positioned at the midpoints
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between adjacent corners. Nodes, indicated by circles in Fig. 4.4, are located at the intersection
of the line segment connecting the vertical face coordinates with the line segment connecting the
horizonta! face coordinates. Additional nodes are placed on the grid boundaries for convenience
in implementing the boundary conditions. The size of the grid in Fig 4.3 is 11 x 9. The number
of nodes in the £ direction, NNI, is equal to 11. The number of nodes in the 7 direction, NNJ, is
equal to 9. Nodes with indices i = 2 or NNJ/=1 or j = 2 or NNJ— 1 have control volume faces
which lie on the boundary of the computational domain. These points are referred to as near
boundary nodes. By placing additional nodes along the boundary, iterative solvers can treat the
near boundary nodes without a change in programming logic.

The geometric relationships between the nodes and control volumes corners are described,
because the discretization process requires that assumptions be made concerning the flow field

distribution between a node and its neighbors.

4.2 Discretizing the General Transport Equation

For two-dimensional control volume formulations, the transport equations are integrated
over the control volume area. In the computational plane this corresponds to integrating over
dA = dfdn. All of the conservation equations can be expressed in the form of a single general

transport equation:

Urth®) _ 2. (1rs,22)
3 3 I‘rlma& + S(&.m) (4.2)

The source term, S, contains ali terms not in the form of either the convection or diffusior. terms.
The differential form of the governing equation (Eq. 4.2) is integrated by assuming that

quantities are constant over control volume faces.

(erUsAn), + (prV@AS)] — (TrigndeAn)i — (Trlgxné,Af); = § (4.3a)




S = (TrJgiz¢,8n), + (CrJgndeAE)) + //S(E.U)dfdv (4.3b)

Although the nodal separations, A{ and Ar, are equal to unity, they are explicitly retained in
the formulations to clarify the nature of the discretized equations. For convenience, the cross-
diffusion terms are absorbed into the source term on the right hand side of the equation. The
standard diffusion terms were brought over to the left hand side of Eq. 4.3a. The diffusive and

convective flux can then be combined into a total flux, F, as shown in Eq. 4.4.

(FE-F) + (FI-F) = § (44)
Ff = (nprUé)e — (nTrJg11dbe)e (4.50)
F;’ = (5P"V¢)n - (srr-]g22¢n)n (45b)

A specification of the total flux across the western and southern face is not given in Eq.
4.5. Due to geometric similarity there are often similar expressions which relate the eastern
and western, or .orthern and southern, or eastern and northern, or western and southern facial
quantities. Throughout this work, whenever only two relationships are formally stated, those for
the remaining edges are found by evaluating the quantity using the relationship corresponding
to the face of geometric similarity.

The total flux terms in Eq. 4.5 are composed of a linear combination of convective and
diffusive fluxes. This form is desirable, because it allows for the solution of the transported
quantity despite the presence of multiplicative factors, such as U or V, which might be a function
of the transported quantity itself (this is the case for the axial and radial momentum equations,
where I/ and V are dependent on v, and v,.). Eq. 4.5 is a solvable linear equation in ¢. Geometric
quantities appearing in the flux terms are fixed, known functions of the grid geometry. Fluid
properties are considered to be known while the transport equation is being solved. Contravariant

velocities at the control volume face are known, as these quantities are used to satisfy continuity
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on the nonstaggered grid (this will be further discussed in Section 4.5). Any qu. r.tities that nay
depend on the transported quantity are considered fixed while a particular transport equation is
being solved. When the iterative process converges, all of the coupling between ¢ and the other
variables is incorporated into the multiplicative {actors and source terms. The remainder of this
section explains how Eq. 4.5 is solved for ¢.

The difflusive gradients are expressed with second-order accuracy on the uniform grid ac-

cording to the relationships shown in Eq. 4.6.

bele = (d£ — ¢0)/AE (4.6a)

énln = (d~ — d0)/ A7 (4.65)

Evaluating the convective terms is a more difficult task, because it requires the knowledge of the
transported quantity at the control volume face (¢,, ¢n). The transported quantity, however, is
only defined at the nodes of the nonstaggered grid. A variety of ways of using the nodal quantities
to approximate the facial value are discussed in the Appendix. The method used to express the
total flux in terms of nodal quantities is known as a differencing scheme or interpolation scheme.
Within the Appendix three new differencing schemes that were developed during the course
of this investigation are presented. One involves a revision to Leonard’s QUICK differencing
scheme [12}, and the other two were formulated to reflect the inherent differences between flows
in cylindrical and Cartesian coordinate systems. “The reader can refer to the Appendix for a
complete discussion of these differencing schemes. For now, it is sufficient to say that they
determine how the transported guantities at the nodes are combined to give an expression for
the total flux at the control volume faces. The differencing schemes define the linear function in

Eq. 4.7.
Fé = f(¢0.9, ) 4.7
Linear equations for the total flux for each of the terms in Eq. 4.4 are combined to yield

Eq. 4.8.

(Ap — Spléo = ApdE + Awodw + ANdN + Asds + Su (4.8)
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The particular differencing scheme determines the values of the coefficients, A;, multiplying the
nodal values. These coeflicients contain the geometric, fluid property, and nonlinear factors
influencing the values of ¢ at the nodes. Sy contains all of the explicitly evaluated source term
integrals, while Sp corresponds to the dependent or implicit sources. Iterative solvers diverge
if the system is not positive definite, meaning the coefficients do not all have the same sign.
Therefore, care must be taken to make Sp negative. For stability purpcses, Patankar [16, p. 49)
suggests using the following rclationships to break up a source term that is a simple function of

the transported quantity. If S is not a function of ¢, then the entire source term is evaluated

explicitly.
as
Sp = —a-; (4.94a)
- a5
Sy = S(¢) - 5; (4.9b)

The five-point stencil format of Eq. 4.8 is chosen so that a variety of efficient iterative
solvers may be applied to the system. It is a linear system which results in a banded matrix that
can be efficiently stored and can also be solved using noniterative techniques. Gauss-Seidel or
Jacobi iterative schemes are suitable for systems in which the source term dominates. Because
convection transmits information in the direction of flow, the momentum equations are solved
more quickly by using a tridiagonal solver to solve the field column by column or row by row
sweeping from the inlet of the geometry to the outlet. The pentadiagonal system is turned into
a tridiagonal system by treating the eastern and western influences explicitly when viewing a
column, or by handling the northern and southern influences explicitly when isolating a row. For
stiff equations, such as the pressure correction equation which will be discussed in Seciion 4.5,
Stone’s strongly implicit solver [25] can be used. The convergence rate of Stone’s method does
not decay as quickly as other iterative schemes as a converged solution is approached, because it

treats the equations in a more implicit manner.
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Setting Ao = Ap — Sp give .he general format of the linear system:
Aoo bt =) Aigft 45" (4.10)
o

The superscript on the transported quantity corresponds to the iteration or time level. The
most recent, or current, level is indicated by a “ *+1 » superscript. The last point in the iterative
process where all the remaining quantities have been updated is denoted by an “ ™ ™ superscript.
Implicit treatment is indicated by “ *+! » Explicit evaluation is shown by “ " .” The subscript
under the summation sign denotes a sum over the eastern, western, northern, and southern
neighbors with respect to the central node.

The nonlinearity of the momentum equations may cause the iterative solution procedures to
diverge. Therefore, under-relaxation is used to stabilize the solution. The relaxation factor w,
where 0 < w < 1, specifies a fractional weighting between the new and old values, as seen in Eq.

4.11a. Eq. 4.11b shows the under-relaxed linearized equation.

o = w (Zo Adit 4 57

Ao ) + (1 ~w)dp (4.11a)

HAoodst = 3 Mgt 4[5 + 1(1 - w) o, 47 (4.118)
o]

Now that the discretization process for the general transport equation has been discussed,
the individual discretized momentum equations can be obtained by substituting the velocity

components for ¢ and introducing the relevant source term.
4.3 Discretizing the Momentu uations

The discretized momentum equations are found by integrating the transformed axisymmet-
ric incompressible steady-state momentum equations (Eqs. 3.25-27) over the control volume

according to the method outlined in Section 4.2. The multiplicative coefficients, A, are the same



42
for all of the momentum equations, because they are a function of the .ontrol volume geometr,,
the mass flow rate into the CV, and the fluid viscosity. All three of these properties are the same
for each of the momentum equations. The under-relaxed momentum equations are expressed in
standard form in Eqs. 4.12-17. All of the pressure gradients are evaluated using known pressures.
Every viscous terr not matching the form shown in Eq. 4.5 is evaluated explicitly as part of the
source term. The centripetal and body forces are evaluated explicitly soc A remains the same
for each of the three momentum equations. The terms 5%, §, and S? are the integrals of source

term with the pressure gradients extracted.

LA0ovidt =) Akt — AbAnro((rape)d — (repa)d) + [Sh + 2(1 — w) Aoy 1T, ) (4.12)
0

LAooupdt =Y At — BEANro((2¢py)B — (20Pe)d) + [S + (1 —w) Ao, v, ] (4.13)
o

Lhoovptt =D At + [Sh + 1(1 - w)Ao,vh,) (4.14)
o}

So = (rJF:)oA8An + (urJgrov,,An)s, + (urignv, A€)7 +

[ 1

{A'V‘I-‘5 ("n ("n”zz - "E”z.) - 2y ("n"'fz - "E""n))] +

w

[Afrp‘} (=re (ravsy = reve,) + z¢ (rove, — rfv..'))]: (4.15)

So = (Jpv]), ALAN + (rJF,)oAEAR +
(urdgrove, An)g, + (urdgnve A£)} + (J2pv /r)ofn +
[Anrud (rq (=20, + 2zevs,) — 24 (—2qvr, + zi”r-))].: +

(Agruy (—re (=amus + revs,) + 2z (=zqvr, + rev,))]] (4.16)

Sg) = —(Jpurug)p AEAD + (rJFy)oALAD +

(urdgizve,An);, + (prJgaive AL — [2veALAn(=zq(ur)e + z¢(ur)y))o (4.17)
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Egs. 4.12-14 each constitute a system of linear equations, where each CV con.ributes an
equation to the system. The solution of each set of equations is referred to as an inner loop,
because it is assumed that all quantities but the relevant one are fixed. In contrast, the outer
loop iteration is comprised of all the steps that are taken to update each and every flow field.
The remainder of this section outlines the steps comprising PWIM, listing the order in which
the flow fields are updated within a particular outer loop iteration. This list is not detailed. Its
purpose is to initiate the reader to the overall approach used to solve the governing equations.

1. Begin with an initial estimate for the flow fields.

2. Solve the momentum equations using the known values to construct the multiplicative coef-
ficients and the source terms.

3. Calculate new values for the facial contravariant velocities (discussed in Section 4.4).

4. Use the failure of the velocities from Step 3 to satisfy to continuity to arrive at a correction

for the pressure (discussed in Section 4.5).

5. Use the pressure correction from Step 4 to correct the facial contravariant velocities so they

satisfy continuity, and to correct the nodal velocities (discussed in Section 4.5).

6. Return to Step 2 until convergence is reached.

Solving the momentum equations does not lead to the correct velocity distributions unless
the correct U, V, and p fields are known. Iterating between Steps 2 and 6, referred to as cycling
over the outer loop, drives the solution toward convergence. As a better pressure field is returned
from Step 4, the successive velocities in Step 2 will violate continuity by a smaller degree. This

continues until eventually at all of the governing equations are satisfied.

4.4 Pressure-Weighted Interpolation of Facial Contravariant Velocities

It is evident from the equations in the previous sections that the values of (I, V') are needed

only at the control volume faces. This section is devoted to explaining how these quantities
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are evaluated. Each of these contravariant velocities is a function of v; and v, on the CV face.
However, the cylindrical velocity components are known only at the nodes. The momentum
equations are used to arrive at accurate expression for the nodal velocities, so Miller and Schmidt
[23) extend this idea and state that an accurate expression for the facial velocity can be determined
by formulating the momentum equation about the control volume face. The axial momentum

equation expressed at the nodes surrounding the eastern face and at the face itself are shown in

Eqgs. 4.18-20.

LAoo vt =) Ak = AEAN ro((rape)d — (repa)d) + [Sh + 2(1 - w) Ao, v], ] (4.18)
o]

$Aogvitt =) Akt — ALAN rp((rape)E — (rePn)E) + [SE + 2(1 = w) Ao, v7, ] (4.19)
E

2A0,upt = A — ALAn re((rape)? — (repa)?) + [SE + 2(1 = w)do, vl ] (4:20)

Two types of gradients are present in these equations; p¢[7 is a “1 — 8" gradient and p¢{3 g
are “2 — §” gradients. The appearance of both types of gradients is the key to the success of
PWIM. Together, they are used to eliminate the occurrence of oscillating pressure fields that can
appear on nonstaggered grids.

Eq. 4.20 shows the momentum equation expressed about a cell face, and it contains coef-
ficients calculated at the face. These cell face coefficients are not known. Miller and Schmidt

suggest using the following relationships to approximate their values.

LAt 1 150 AwiH 13 p Aiwg (4.21a)
AO. 2 AOo AOS
1 1 1 1
_1 4.21b
Ao, 2 (AOo * Ao;) ( )

In the cylindrical coordinate system, surface area is directly proportional to the radius, so
as the radius increases, velocity must decrease in order to conserve mass. Miller and Schmidt’s
approximation reverts to the assumption that each nodal! velocity equally contributes to the
value at the face. However, as stated in the Appendix during the discussion of the diflerencing

schemes for cylindrical flow applications, a better assumption for axisymmetric flows is to use
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radial weighting to determine Lhe relative contribution of the nodal values to the facial quantities.
Thus, in the current cylindrical adaptation of the PWIM algorithm, the following approximations

are made:

Te Ze A.vf'“ _ l ro ZO A,-vfl*'l + re EE A;v;ﬁ (422“)
Ao. 2 AOo AOB
re 1{ro rE )
—t == + 4.220
o. 2 (AOO Aog ( )

Substituting these approximations into Eqs. 4.18-20 results in the following expression for

vs,:
vfj" =(1-wh?, + ((rovf;" + rgvf:l) — (1 ~w)(rovy, + r;;v?e)) /(2re) +

wAEAn ( ro re
SRR (0 v (rape)B = (repa)B) + FEore (rap)} = repa))) =

r
wAMnﬁ ((rope)e — (repn)2) +

w [ TO re
—8 - — (-—mS’ + ——-S‘) 4.23
AO. ¢ 2re AOo o AOs E ( )

The radial momentum equation at the eastern face is handled is a similar manner.

viH =(1—w)ol + ((rovid! 4 rpvf}?) — (1=w)(rovl, +revl)) /(2re) +

WAEA T E
-——-—nf U ( g 10 ((2¢Pa)5 — (24P€)0) + rE ({2¢pa)E = ("ﬂpf)'é)) -
D, \Aoo AOs

r n
UA{A'IE% ((zfpn): = (zap¢)e) +

W w To TE
Ao, St 2r, (Aoo So+ Aog SE) (4.24)

The other faces are treated in a similar manner.

Substituting Eqs. 4.23 and 4.24 into Eq. 3.15 yields the expression for the contravariant
velocities in terms of facial and neighboring nodal values. Making the approximation that the
facial coefficients (Eq. 4.22) are a function of radius results in an expression for the contravariant
velocities that is consistent with the cylindrical convection approximation that is outlined in the

Appendix.
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Ue =(1 =w)UT = (1= w) (rplrovl, +rev],) — zm.(rovr, + TEYS)) /(Ore) +
(ro (rovEXt 4 revf}t) — 2o, (revfdt 4 rpvf}t))/(2re) -

wAfAr)

A n. .)pf l: - (rn.rfa + :'70 :6' )p') I:) +

ro ro
UAfAU re Aoy ((2q.2n0 + Tn.To )Pelo — (Tn.Teo + 20,260 )Pal0) +

Tg T
wAEANZE 2 (sn g + oo JPelE = (Fneres + 20, 7ee)Pol2) +
e
w
A_o,(r"' e = =0.5.) -
L (Ie : s TE_ : . ST 4.25
o (52 (4055 = 20.5%) + 2= (rn.SE = .55 (4.25)

Va =(1=w)V,? = (1-w) (2. (rovl, + ravl,) = re.(rovi, + ravl,)) /(2ra) +

(zen(rovi}® + TNv"“) - rea(rovidt + eyl ) /(2rs) -

“’AfA'?A ((zc.. + "g..)Pr;fn (2ga 2n. + reatadpeln) +

2 A (260260 + T¢uTe0 )Pn10 — (26a2no + TeuTno )Pel0) +
n

™ TN
“AfA’l - Aon ((zeazew + Teaten)Poliy = (2ga20n + TeaTon JPelN) +

[#)
Fo. 2.5, = 16.5a) —

w (ro
2r, \ Ao,

Because the facial source terms would require excessive computational effort to evaluate,

- (e, 5% = . sm) (4.26)

So ~r¢.50) + 2

the underlined terms are assumed to cancel. This approximation is equivalent to an assumption
that the contribution of the facial source term to the contravariant velocity is equal to the
average contribution of the nodal sources. Dropping only these terms is more accurate than the
simple averaging used by Rhie and Chow [11] and Lapworth [22] to evaluate the facial velocities.

There are both “1 ~ 6" and “2 — §” pressure gradients forming the contravariant velocities. If
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any oscillations arise in the pressure field, the difference between the gradients acts to remove
them. As previously mentioned, the Ao coeflicients are the same for both the axial and radial
momentum equations. Therefore, they can be combined without having to distinguish them in
the equations for the contravariant velocities.

Miller and Schmidt {23] have warned of the possibility that an incorrect development of the
contravariant velocities can lead to a solution which is dependent upon the relaxation factor, w.
Dividing Eqs. 4.25 and 4.26 by w and canceling terms which are equal at convergence shows that

the formulations are independent of the relaxation factor.

4.5 Pressure Corrector Equation

The manner in which the velocities are determined has been explained, leaving the pressure
as the only flow field variable for which a relationskip must be derived. This sections explains
how the continuity equation is used to determine the pressure.

The discretized control volume formulation of the continuity eqﬁat.ion is:
(prUdn), + (prVAL)T = 0 (4.27)
If the pressure field at a particular level during the solution procedure is incorrect, then U
and V will not satisfy continuity. Therefore, a correction is needed. Corrections refer to changes

in quantities between particular iteration levels. The quantities which are corrected are given in

Eq. 4.28, and the levels to which the corrections correspond are indicated by the superscripts.

oIt = Rt gy (4.28q)
T N (4.28%)
yrtl = gt 4y (4.28¢)
yntl o R Ly (4.284)

"= +p (4.28¢)
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1f the axial and radial momentumrelations, Eqs. 4.12 and 4.13, are expressed at the corrected

and uncorrected time levels and then subtracted, expressions for the corrections to v,, and Vro
arise. The source terms completely cancel out of these relations, becnuse they always involve

quantities at time level n.

2A0oV,, = Y Ay, + AEARro (=(rarg)o + (rep))o) (4.29)
(o]

LAoovr, = Z Aiv;, + ALAnro (—(2¢P,)o + (20Pf)0) (4.30)
Q

In the SIMPLE algorithm, the 3", A;v} terms are neglected. But, such a treatment requires
under-relaxation of the pressure update, because the neglected terms make up a significant por-
tion of the overall correction equations (16, p. 128). Van Doormaal and Raithby [26) proposed
the SIMPLEC modification in an effort to improve the ability of p’ to cotrect the pressure field
without affecting its ability to satisfy the continuity equation. In this algorithm the magnitude
of the neglected term is lessened by subtracting 3 Aivp from each side and then ignoring the
resulting net summation over the neighboring nodes. The final step in formulating the velocity

coriections is to make the following approximation:

Aoo =) Aitmen ) A (4.31a)
o o}

1400 =Y Ai = (1 -w)Ao, (4.310)
(o]

This approximation is not exact, even at convergence, when the cylindrical differencing schemes
are used. However, this does not affect the final results. The velocity corrections go to zero at
convergence, so it does not matter how the interim results are reached.

The corrections to the axial and radial velocity components are given in Eqs 4.32 and 33.
The tangential velocity component, vg, does not enter into the axisymmetric continuity equation,

so it requires no correction.

, wAfAn . .
Yio = T w)Aos (=(rape)o + (repy)o) (4.32)
, _ wlAfAn

ro = T woydgs® (=(zeph)o + (20P¢)0) (4.33)
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When the SIMPLEC modification is used, a fully implicit (w = 1) solution to the discrete
linearized momentum equatioas cannot be made. With w = 1, the quantity that is subtracted
from each side of Egs. 4.54 and 4.55 is equal to the left hand side of the same equation. This
makes the system homogeneous, and the resulting velocity correction field trivial.

Van Doormaal and Raithby report that SIMPLEC, compared to SIMPLE and SIMPLER,
significantly decreases the amount of time required to solve the governing equations. The en-
hancement to PWIM proposed by Acharya and Moukalled [27] was not adopted, as the savings
they reported were not as dramatic.

Expressions for the nodal velocity corrections have been derived, but it is the facial con-
travariant velocities which appear in the continuity equation. Equations for the correction of the
cylindrical velocities at the faces are given in Eqs. 4.34-37. The relationships for these corrections
are derived using the same logic that produced the corrections for the nodal velocities. Eq. 4.22b

is used to approximate Ag, and Ao, .

i, = S50 ((rupf)e + (reri)e) (434
v, = %A:%Z)Z;rj: (=(z¢Py)e + (z0Pg)e) (4.35)
v, = ‘(ilé:f%;"z%'-_' (=(rape)n + (repy)n) (4.36)
i, = TR (< dn + (o)) (4.37)

Evaluating p; | and pgla is less convenient than evaluating p¢|. and p)|» due to the nonstag-
gered nature of the grid. Therefore, the former terms are omitted from the correction equations.
This omission has no effect on the converged solution, since the correction terms are zero at
convergence.

Converting the cylindrical velocity components into (U, V), via Eq. 3.15, gives the form of

the contravariant velocity corrections used in the present scheme:

AfAn r
Ue' = —%——:E‘-:)—;lt 2'2'. -+ T:.)péie (438)
wA{An o ’
Vi=-— (=0) Aes (2. +rE) Poln (4.39)
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The pressure correction equation is formulated by substituting Eqgs. 4.28¢-e, 4.38 and 4.39

into the continuity equation.

Abpo = Alpe + Ay piy + APy + AlPs + S (4.40)
e pacon (82) 07 oo
At/ , Ao,
AR = pALAY (2—3" fé—:rﬁ(zg_ +7Z.) (4.41b)
Ap = AL + AS, + AR + A% (4.42)
Sh = —(1 - w)[(AnprU)e — (Anprl)y + (AbprV)a — (ALprV),] (4.43)

Continuity is satisfied at convergence, at which time the pressure correction equation becomes
homogeneous and all corrections are zero.

The pressure correction equation yields a stiff linear system. Iterative solvers are slow to
converge, making the solution difficult to obtain. Banded matrix solvers can be employed to
find the solution, but their lower/upper decomposition has memory requirements on the order
of 2 x NNI'x NNJ 2, and the solution time for large grids is very long. Despite these problems,
the flow solver will still converge if only a partially converged solution to the pressure corrector
equation is found during the iterative process. A few sweeps of Stone’s method gets the p'
field going in the right direction, sending the velocities towards continuity-satisfying fields. This
holds for all but the most drastic cases. If the momentum equations are utilizing an unrealistic
pressure field, the resulting velocities may give large mass sources. Should these mass sources
not be made sufficiently small, the perturbation to the velocity field may cause the solution
to diverge. Flows in which centripetal forces come into play are especially susceptible to this
phenomenon, because these terms are not lessened by a Reynolds number in the denominator nor
are they differenced across a control volume. In such a situation, simply increasing the number

of sweeps of the Stone solver will not necessarily alleviaie the problem. Thic is because the .ate
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of convergence decays as all of the high frequency errors are removed {28]. During this research it
was found that turbomachinery flows, which contain centripetal acceleration effects, compounded
by recirculating flow regions, and added instabilities caused by the sudden introduction of body
forces in portions of the flow domain, required the use of a direct solver. This maintained realistic

velocities throughout the iterative process and prevented the solution from diverging.

4.6 Boundary Conditions

Boundary conditions (BC’s) make the solution to the governing equations unique, and one
of the chief advantages to using body-fitted coordinates is that the BC’s can be accurately
enforced. Each type of equation has its own proper boundary conditions, as determined by the
flow geometry and conditions. This section explains how the BC's are incorporated into the
formulation of the discretized equations. Care is taken to ensure that the initial guess of the

pressure and velocity fields satisfies the boundary conditions.

4.6.1 Mcmentum Boundary Conditions

The flux through the CV faces which lie on a boundary is evaluated by applying the boundary
conditions. Thus, for near boundary nodes, the coefficient in the direction of the boundary is set
equal to zero, and the differencing scheme contributions to the central coefficient come only from
faces that do not lie on the boundary. TL- boundary concitions are enforced after the initial
formulation of Ap and A; by supplementing the central coefficient and source terms according

to the particular boundary condition.
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There are as many equations in the linear system as there are control volumes on the grid,
but the number of unknowns present in the discretized stencils is equal to the number of nodes.
The system becomes well posed by considering the boundary values to be known for a given
outer loop iteration. Setting the coefficients that multiply them to zero removes the boundary
nodes from the stencil, but this essentially alters the equation that is discretized. Modifying the
scurce term and central coefficient returns the equation to proper form and allows it to reflect
the proper BC.

There are four boundary conditions which arise in through-flow calculations: no-slip wall,
plane of symmetry, parallel outflow, and specified velocity distribution. Each of the boundary
condition (BC) modifications that follow are given for the eastern and western boundaries without
loss of generality.

Two of the BC’s are implemented in identical fashion. During any given outer loop iteration,
both the transported quantity and convective flux are known on a no-slip wall and on a specified
velocity boundary. Therefore, tke convective portion of the flux is treated explicitly. The diffusive
flux component is approximated using a second-order Taylor series expansion. This truncated
series consists of three nodes; the central one is handled implicitly by moving its contribution
into Ap, and the boundary and opposite boundary terms are placed in Sy for explicit treatment.
The symbolic implementation of these BC’s is given in Eqs. 4.44 and 4.45. The sign of the
convective term supplementing Sy is dependent on the boundary in question, because positive

flow through the face can mean either mass flow into or out of the control volume.

Ap =0 (4.44a)
Ap = Ap + 3D, (4.44b)
Sy =Suv—-C.ég + D.(86F + ¢w)/3 (4.44¢)
Aw =0 (4.45a)
Ap = Ap + 3Dy (4.45b)

Sy =Sy +Cuér + Dy (8w + d£}/3 (4.45¢)
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On a plane or line of symmetry, both the convective flux and the diffusive fux are known.
The diffusive flux is zero, because the gradient of the transported quantity normal to the plane of
symmetry is zero. The convective term is also zero since no flow may cross a plane of symmetry.
Therefore, no chang.s in the coefficients are necessary to implement this BC.
For the exit boundary, the assumption is usually made that the streamlines of the flow are
straight and normal to the exit plane. This means that the gradients in th ...eamwise ditection
are zero (5‘% = (). Quantities on the outflow face are simply those at the node upstream of the

boundary convected to the boundary.

Ap =0 (4.46a)

Ap = Ap +C, (4.46b)

In many flow cases the outflow boundary is a nonphysical boundary which was defined to make
the computational domain either finite, or small enough to allow solutions within reasonable
computational times. When this boundary is not real, it must be placed such that the chosen
boundary conditions will not unduly influence the flow in the region of interest. For the turbo-
machinery calculations that were made during this research, a straight extension was added to
the physical domain, which allowed the fiow to achieve a negligible level of streamline curvature
at the exit boundary. This extension was long enough to allow the closure of any recirculating
regions which may have developed. No stable BC was found that could be applied to an exit
with reversed flow. Therefore, the eflective viscosity had to be increased in the neighborhood of
the exit to allow separated flow to reattach.

When the outflow direction has a radial component to it, the change in area makes the
58? = 0 assumption invalid. Therefore, this type of boundary is considered to be a specified
velocity boundary during a particular outer loop iteration. However, at high Reynolds numbers

this leaves the Ap coefficient upwind of the boundary without a convection term to supplement it.

Thus, the central coefficient goes to zero, which causes divide by zero errors. To prevent this error
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from terminating the execution of the program, without affecting the converged results, C.¢o
is added to each side of the equation. One side is treated explicitly and the other implicitly,

according to Eq. 4.47.

AE=0 (4.470)
Ap=Ap+3D. +C, (4.47%)
Su =Sy —Cebg + De(8¢6£ + ¢w)/3 + Cedo (4.47¢)

After the momentum equations are solved, the cutlet flow quantities are calculated so as to
enforce global mass conservation. Physically, no mass may accumulate in the flow field domain,
but this may not be the case for intermediate solutions. The net mass flux through the inlet,
upper, and lower boundaries is calculated, as is the mass flux past the gridline just upstream of the
outlet boundary. The outlet contravariant velocity is then calculated according to the relationship
shown in Eq. 4.48, which ensures zero net mass flux into the Qomain. At convergence, the ratio
of mass flux into and out of the grid is equal to unity, so (prU). equals (prU),,. This is consistent
with the parallel outflow boundary condition, as well as the cylindrical upwind approximation

that is discussed in the Appendix.

Ue = (proUs )(Thinr/"hw )/(P"C) (4'48)

The cylindrical velocities at the outlet are found using the inverse of the definition of the
contravariant velocities, as given in Eqs. 4.49 and 4.50. The 1 contravariant velocity component,

V, equals zero, because the outgoing flow is normal to the exit plane.

v, = (2¢U + 2, V)/J (4.49)

ve = (reU + 1 V)/J (4.50)

The tangential velocity component does not appear in the continuity equation, so the angular

velocity at the exit is set equal to the near outlet vy times the ratio of the near boundary radius
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to the boundary radius. This is equivalent to conserving angular momentum in the absence of
viscosity.

At a plane of symmetry, v, is updated at the end of each outer loop iteration. A second-order
accurate Taylor series expansion is used to evaluate v,, such that the gradient of v, norr.al to

the plane of symmetry is equal to zero.

4.6.2 QUICKR Boundary Conditions

QUICKR (see Appendix) is treated in a manner identical to the other differencing schemes
when it comes to implementing the boundary conditions. The flux through the boundary is
not allowed to contribute to either the central or neighboring coefficients. However, this does
not mean that the boundary coefficients are zero, since the differencing scheme for the CV face
opposite the boundary is dependent on the boundary value.

Because the BC’s are placed into the central coefficieat for both the higher and lower-order
differencing schemes, the QUICKR source term, S9, must be calculated before the BC’s changes

are incorporated into Ap. Otherwise, the BC’s will be removed by the (A — Ag) term in S9.

4.6.3 Pressure Corrector Boundary Conditions

Boundary conditions for the pressure corrector equations are enforced by setting the bound-
ary coefficients equal to zero. The mass flux at a boundary is a fixed quantity during a given
outer loop iteration. This is necessary, because there are no additional conservation equation
from which the flux can be computed. Thus, the mass flux evolution must lag the velocity calcu-

lations, unless it is initially specified as a given boundary condition. Consequently, the boundary
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mass flux does not require a correction. If the correction at the boundary is zero, then the pres-
sure gradient normal to the boundary must also be zero. Therefore, the boundary node does not
appear in the stencil, and the pressure corrector boundary conditions are enforced by setting the
boundary coeflicients at the near boundary nodes equal to zero.

In incompressible flow the pressure field is unique to within an additive constant. Therefore,
the system of linear p’ equations is underdetermined. Iterative solvers will still converge on this
type of equation set. Patankar {16, p. 131] states that iterative solvers converge faster if allowed
to seek their own level than if pressure at a particular node is fixed. Direct solution procedures,
such as banded matrix algorithms, cannot handle underdetermined systems, so the pressure must
be specified at one node. The particular node and the pressure level it is given is immaterial

since the whole field can be referenced to any pressure after the final solution is obtained.

4.7 Steps in the PWIM Algorithm

Now that the modified PWIM algorithm developed during this research has been thoroughly
explained, a more detailed list of the steps in the solution process is given. This list provides the

reader with an outline of the architecture of the computer program.

1. Read in a grid that covers the physical domain.

2. Map the grid into the computational plane, calculating the transformation metrics and the
Jacobians at the nodes and control volume faces.

3. Make an initial guess of the velocity and pressure fields.

4. If the flow is considered to be turbulent, use the turbulence model to evaluate the effective
nodal viscosities. Use the harmonic mean interpolation to calculate the facial viscosities.
See Chapter 5 for details.

5. Conserve momentum.
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Calculate the integrated momentum source terms.

. Supplement the source terms with the pressure gradients.

Evaluate the momentum equation multiplicative coefficients, using the desired differ-

encing scheme.

. Implement QUICKR differencing if desired.

. If a through-flow calculation is being made, use the blade model to evaluate the flow

angles and resulting body forces for the nodes within the blade region. See Chapter 6

for details.

. Implement the boundary conditions.
. Calculate the residuals of the momentum equations.
. Under-relax the momentum equations.

. Begin the calculation of the facial contravariant velocities using the current pressure

and velocity values.

. Solve the momentum equations to yield new velocity fields.

. Complete the calculation of the facial contravariant velocities using the newly deter-

mined axial and radial velocities.

. Calculate the outflow velocities.

6. Conserve mass.

g

. Calculate the pressure corrector equation coefficients.

Calculate the mass sources and the source .erm for the pressure corrector equations.

. Solve the pressure correction equations.
. Update the pressure field.

. Update the facial contravariant velocities.

Update the nodal axial and radial velocity components.

Update the plane of symmetry velocities.

7. If convergence has not been reached, return to Step 4.




Chapter 5

Turbulence Model

The thin layer approximation algebraic turbulence model of Baldwin and Lomax {29]) was
adapted to estimate the turbulence effects in the axisymmetric flow. Originally proposed to
handle separated flows in Cartesian coordinates, the model was formulated by assuming e priors
that the layer of fully turbulent flow near a vorticity generating wall is thin. The justification for
this assumption is that the number of nodes required to properly resolve the actual streamwise
diffusion is so prohibitively large that the highly stretched control volumes that are typically
placed about the boundaries yield to this assumption by default. In so far as the high aspect
ratio control volumes. prevent the resolution of the true streamwise gradients, Navier-Stokes
solvers contain the thin layer approximation at high Reynolds numbers even though they are not
explicitly coded in this manner.

One of the chief advantages realized by using this model is that knowledge of the boundary
layer thickness is not needed. For the complex geometries and separated flows associated with
turbomachinery, automating the boundary layer thickness calculation within the flow solver is
exceedingly difficult. Baldwin and Lomax proposed using the distribution of vorticity as an
indication of the length scale associated with the boundary layer. In convection dominated flow
domains vorticity is neither created nor destroyed, but diffusion increases near the wall in physical
situations, generating vorticity.

The algebraic model, while not as rigorous as the two equation x — e model, is more reflective
of the actual physicr than zero egquation mixing length models. Actually, the model of Baldwin

and Lomax does make use of the mixing length formulation, but the specification of the eddy size
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is not done a priori. Because of the severe problem dependence limitations of the x — ¢ model
and the amount of CPU time its use entails, this scheme was dropped in favor of the simpler
algebraic model. A brief survey of publications in the field of turbomachinery CFD shows that
the Baldwin-Lomax scheme is a widely used turbulence model [9,22,30).

The Baldwin-Lomax model utilizes a number of nondimensional constants, the values used

by the originators of the model are:

At =26
Ccp=156

Crrep =0.3

Cwi = 0.25
k=04
K = 0.0168 (5.1)

Schlichting [17, pp. 602-604] uses the values A* = 26 and k = 0.4 when calculatiug flow over a
flat plate and when calculating axisymmetric, turbulent pipe flow. In this research this proposal
is extended so that all of the parametric constants used in the Baldwin-Lomax model are the
same for flows in both axisymmetric and Cartesian frames of reference.

Baldwin and Lomax modify the dual-layer algebraic eddy viscosity model of Cebeci to pro-
vide a means of determining the turbulent viscosity. Two layers, the inner and outer, are assurned
to exist along the boundary, each region having a particular formulation for viscosity. Depending

upon the region in which the node lies, the viscosity is calculated as:

<
e = {I—‘l....,- Y S Yerossover (52)

Hlonteer ¥ > Yerossover

The parameter y is the distance normal from the wall to the node, and y.rossover is the smallest
value of y for which the inner and outer turbulent viscosities are equal. The vaiue of yeross0uer

cannot be determined analytically. By inspection, the inner turbulent viscosity {Eq. 5.3} is
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identically zero on the wall {y = 0), while p,,.,,. (Eq. 5.11) is not. Therefore, the transition
from inner to outer is marked by the point where the value of y,,_,,, first exceeds that of y,_,,,.

In the interior region, the Prandtl-Van Driest mixing length formulation is used; the nondi-

mensional form of which is:

Btiueer = Rep € || (5.3)
L=ky[l—exp(—y*/A")] (5.4)
du
Tw = Huw '6'3; (5.5)
R A (5.6)
P 0
lw| = [V x (5.7)

The eddy viscosity mixing length is represented by £. The Reynolds number appears because
nondimensionalized quantities are used throughout the description of the turbulence model. A
* w 7 subscript denotes a quantity evaluated at the wall. As previously stated, the turbulent
viscosity at the wall is zero; thus, u,, is equal to the laminar viscosity. The wall shear, 7, is
equal to the product of the wall viscosity and the derivative of the velocity parallel to the wall,

u, with respect to the distance from it. If the local inclination of the wall with respect to the

horizontal is a, then the expression for this derivative is given as follows:

u=v,co8a + v sina (5.8)

fu 0Oz0u  Ordu

. Ou 8u
= ~sinagz= + cos ags (5.98)
= -l-?ﬁ(ri sina + z¢ cos a) (5.9¢)

J 8n

Since the no-slip wall is mapped into a line of constant n, the derivative of u with respect to £ is
equal to zero. Thus, it drops out of the expression as Eq. 5.9b is transformed from the physical

to computational domain.
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The magnitude of the vorticity, |w], in axisymmetric flow is given by Eq. 5.10.

dv,  0v,\°2  [0ve\?  [18(rus)\?
lwlz\/(az "'5,-—) +(8:) +(; ar ) (5:10)

Expressed in terms of computational space derivatives, the magnitude of vorticity is a function

of eight different gradients.
o= 3| (o re B - r B s .‘?.‘11)2 N
“I=TFI\™8e "o T %oy T a8

1
Bve dve \? 1( 8(rvg) 3("!!0)))2 ’
R TSR

The formulation for the outer region turbulent viscosity is given in Eq, 5.12. The Klebanoff

intermittency factor, FxLeg(y), is calculated using Eq. 5.13. The multiplicative factor, FwsxE,
is evaluated according to Eq. 5.14. This factor is a function of the difference between maximum
and minimum total velocities within a profile, uprp. Typically, the minimum velocity is zero on
the wall and up;F can be set equal to the maximum speed. A profile is defined by the group of
nodes within a particular column of control volumes all closest to the same wall. Within a given
profile, F,2 is the value of F(y), Eq. 5.16, at its first local maximum away from the wall. The

value of y at which that maximum occurs is referred to as ymor-

Btouiee = Re K Ccpp Fwaxe FrkLEB(Y) (5.12)
Creen\°] ™

Fxres(y) = [1+5.5 (L’—‘L‘?P—) ] (5.13)

Fwake = min[ Ymaz Fmatv Cwk Ymar uzDI‘F/FﬂIGS] (514)

uprr = \Jv + v} + v} ~ o+ v+l (5.15)

F(y) = ylw|[1 —exp(-y*/AY)] (5.16)

Since the maximum value of F(y) cannot be found analytically, the exact location of the

transition from the inner to the outer layer cannot be evaluated before the inner and outer
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viscosities are calculated. Therefore, pinper and pourer must be compared to determine the
region in which the nodes lie.

As F(y) can only be evaluated discretely, there is a possibility that the maxima may vary
widely from one profile to the next. To smooth this variation, Baldwin and Lomax recommend
using a quadratic fit to the points about the maxima and extracting Finar and yma:z from the
curve fit. This parabolic fit is done as long as F.r does not occur at the endpoints of the profile.

Using the aforementioned relationships, the net viscosity, giom -+ 4, is found at each node.
Because the discretized form of the momentum equations requires the viscosity to be known at the
control volume faces, the nodal viscosities must be used to estimate these quantities. Patankar
(16, pp. 44-47) suggests using the harmonic mean of the nodal values as the interface value. This
assures a more accurate description of the flux across the face. The harmonic mean is calculated
using Eqgs. 5.17 with the relationships shown in Eqgs. 5.18 used to caleculate f. and f. in the
computational plane. The total, rather than turbulent, viscosity is interpolated because it is thg

net viscosity that appears in the momentum equations, not g, by itself.

— 1 - fe _.&_)-1
He = (——HO + P (5.17a)
-1
= (1 b L l'z_) (5.17b)
Bo BN

fe=2/A2 402 [ VA4 Ar,

=2/ 4+, / v+ (5.180)

n =281+ AR [ VA2 + AR,

=92 :§+r;",[n / \/z},’+r,ﬂN (5.18b)

Baldwin and Lomax state that grid nodes must be placed within the inner layer, and suggest
that the first node away from the wall be located such that y* ~ 2. Failure to place nodes in

the inner region results in a near zero turbulent viscosity throughout the profile. Since y* is
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proportional to the square root of the Reynolds number, the nodes must be closely clustered
near the wall for high Reynolds number flows.

A simple method was used to determine how far to place the first node from the wall (31].
For fully turbulent flow on a flat plate the wall shear is proportional to Rez i 5, where the length
scale in Re. is the distance from the leading edge, z. Solving for the velocity gradient in 7, in

terms of the nondimensional variables gives the empirical relationship shown in Eq. 5.19 [32].

%’5 = 0.02885 Re / Rel/® (5-19)

The gradient at the wall is evaluated as the ratio of Au to Ay, and Ay is equal to y at the first
node from the wall. Re; can be expressed as the product of the flow Reynolds number and the
ratio of the distance from the leading edge, z, to the plate length, £;,. The boundary layer grows
slowly, at a rate proportional to \’/;m , so the thickness at the midspan is representative of the
boundary layer thickness across the entire plate. Manipulating the equations, and substituting

z/lsp = 1/2 gives the distance from the wall for the second row of nodes.

1
— gt Re—-S/10,f___ 2
y=yRe 0.02885 (5.20)

To capture the true boundary layer profile, it is necessary to place a number of points within
the inner region. Transition from the inner layer to the outer layer occurs at y* ~ 50 [29], 50 a
rough estimate of the inner layer thickness is found by assuming Eq. 5.20 holds all the way to
the crossover point.

Without sacrificing accuracy, computational efficiency is increased by applying the model
only during intermittent outer loop iterations. This does not change the converged results, but

it lessens the significant expense of implementing the turbulence model.




Chapter 6

Blade Model

The ways in which convective, diflusive, and pressure influences on the fluid motion are
calculated have been explained in previous chapters. Within turbomachines, blade rows, which
are external to the fluid, join these factors in determining the fiuid dynamic characteristics. In
the following sections, the method of quantifying how the blades influence the flow is presented.
Axial symmetry has been assumed to this stage, but as will be discussed, the loading of the blade
can be used to approximate nonaxisymmetric effects.

The focus of the present research is on calculating the flow in a mixed-flow centrifugal
impeller. The blade model presented in the following sections reflects this type of turbomachine,
but the approach is valid for axial flow as well as radial flow turbomachines. Also, the approach
is not limited to use with single blade rows or single-stage turbomachines.

The effects of blade are introduced into the momentum equations via the body force terms
in Eq. 4.15-17. As mentioned in Chapter 1, these forces are only applied to control volumes
which lie within the region in which the blades are projected onto the axisymmetric plane. To
facilitate the distribution of the body force and to help determine which control volumes are
actually in the projection of the blade, referred to as control volumes that lie on the blade, a
restriction is placed on the grid when calculating turbomachinery through-flows. Gridlines must
be placed along the projections of the leading and trailing edges onto the axisymmetric plane.
Thus, every control volume lies either entirely on or entirely off the blade. Body forces appear

in the momentum equations in dimensions of force per unit volume. The volume of a CV is
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calculated by combining the volumes of the conical frustums formed by the sweeping the CV
faces around the centerline.

An overall outline of the blade model is given in the following list. It is provided to give the
reader a sense of the approach used, resulting in a betier understanding of the explanations of
the individual steps in the remaining sections in this chapter.

1. Convert the blade geometry to a form usable »a the grid.

2. Approximate the degree to which the blade fails to turn the fluid tangent to its surface at
the trailing edge. This is used to determine the blade loading near the trailing edge.

3. Specify a mean streamline in the blade-to-blade plane. This is used to determine the amount
that the blade must tu-n the flow.

4. Determine the tangential velocity and tangential body force required to keep the flow along
the specified streamline.

5. Estimate the static pressure rise along the blade

6. Determine the radial and axial body forces required to conserve momentum in the meridional

direction and provide the estimated pressure rise.

6.1 Representation of the Blade

The geometry of the blade is obviously a very important factor in determining what efiect
it will have on.the flow. Therefore, the first step in the blade model is to numerically represen:
the shape of the blade.

In the direct or analysis problem, the blade geometry is known prior to the calculation of
the flow. The geometry is defined in terms of coordinates of discrete points that lie on the blade
surface. These points are grouped according to design sections that form airfoil or vane sections

stacked up between the inner hub and outer shroud. Fig 1.1a shows the design section of each
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blade at a particular radial station. The other design sections are Jocated at the intersection of
the blades and a surface of revolution referenzed to a different base radius. Because the flow is
considered to be axisymmetric, all of the blades must have the same geometry, and thus only one
needs to be considered. A mean line or camberline can be determined along each design station
by bisecting the pressure and suction surfaces. 1n the blade model that has been developed, the
complexity of determining the proper loading distribution has been simplified by ignoring the
effects of blade thickness. Thus, for this model the blade is completely defined in terms of the
camberlines. The meridicnal direction for a particular design section is defined by the profile of
the surface of revolution, as shown in Fig. 1.1b. This meridional direction, m, is coincident with
the projection of the camberline onto the axial-radial plane.

One of the primary factors determining how the fluid reacts to the blade is the local blade
angle, #’, which is the angle of the blade camberline with respect to the meridional direction.
Since the blades are three-dimensional, the camberlines are actually curves that do not lie in
any one plane. To simplify the calculation of the blade angle, the camberlines are conformally
mapped, according to the operation defined in Eq. 6.1, into the transformed blade-to-blade plane
which is defined in terms of two coordinates (z,y). Because the mapping process is conformal,
angular measure is conserved and the local slope of the curve in the blade-to-blade plane is equal

to the negative tangent of the blade angle.

dzr = rppdf {6.1a}
dy = “£Edm (6.1¢)
r
# = tan~! <_E) (6.2)
dy

The conformal plane coordinates are scaled by the leading edge radius, rpp, of the particular
design section.
Once the coordinates of the camberline in the conformal plane have been determined, they

must be interpoluted to yield values at the grid nodes and east/west control volume faces. The
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design points describing the camberline are considered to form a mesh on the axisymmetric plane.
In this plane, the known axial and radial coordinates of both the grid and the blad are used to
relate blade characteristics from the design points to the positions on the grid. Four neighboring
design points are isolated by finding the ones that form a quadrilateral mesh cell inside which the
desired grid point lies. Blade angles, conformal plane coordinates, or any other quantity known
on the blade surface can be interpolated from these four points to the location on the grid.

The meridional directions along the blade are defined by the design sections, but these do
not exist on the grid. Instead, the £ gridiines are assumed to specify the meridional directions.
Metrics can be used to express meridional quantities in terms of axial and radial values. The
meridional velocity, Vi, is equal to the projection of the total velocity onto the meridional line,

or § gridline.

0 7] 7]
Fm = ima; +rmb—r (6.3)
8z 2 2\1/2
m =zm= z(/(.e + rf) (6.4a)
cT)a_r-:z— =rm = 1'5/(252 + 132 (6.48)
Vin = ZmV; + Tty (65)

6.2 Determination of the Deviation Angles

Typically, the fiow is not aligned with the blade as the fluid passes over the trailing edge. The
angular difference between the flow angle, 8, and the blade angle, #’, is known as the deviation
angle, §. This quantity is important from the standpoint of turbomachinery performance. If the
deviation angle is large, then the blade may not adequately turn the flow. The deviation angle

is a result of having only a finite number of blades, boundary layer development and possible
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separation, secondary flows, and for centrifugal machines the relative rotation of the fluid within
the blade row. The determination of the deviation angle provides a means of estimating the
blade loading near the trailing edge.

It would be desirable to allow the deviation angle to evolve as intermediate flow solutions
are determined in the iterative process. However, § is an important factor in the overall body
force distribution, so it is imperative that realistic values of § be maintained. This zannot be
assured if the deviation angle is calculated using potentially unrealistic intermediate solutions, so
the deviation angle is calculated at the outset of the solution process and held fixed to enhance
computational stability. At this stage in the understanding of the numerical modeling of blade
forces this is not an unreasonable simplification. A physically realistic iterative scheme based
on a uniform static pressure at the discharge is used to determine the deviation angles. This
procedure also prevents the solution from being dependent upon the initial guess of the velocity
field.

In the field of centrifugal turbomachines, the flow deviation from the blade direction is more
commonly expressed as a slip factor, ¢, rather than a deviation angle. A relationship for the slip

factor, based on a simple model of the relative fluid rotation within the blade row, was developed

by Stedola {33]:

% cos frp
o=l —bL 1= 6.6
1~ éretanfrp (6.6)

where N is the number of blades and ¢ is the flow coefficient defined as the ratio of the meridional
velocity to the wheel speed, U. The wheel speed is equal to the angular velocity of the blade
times the radius. In the impeller calculations of this investigation, the reference length used for
nondimensionalizing variables is equal to the diameter of the impeller shroud at the leading edge,
and the reference velocity is the wheel speed at this location. Therefore, Eq. 6.7 holds for the

nondimensional variables.

w= 2 (6.7)
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There is a distinct meridional path for each row of control volumes; thus, a separate slip
factor and resulting deviation angle are calculated for each row. The Stodola slip factor is only a
function of the outlet conditions, thus only a Vi, distribution at the trailing edge must be specified.
Experimental data indicates that the inlet meridional velocity profile is nearly uniform over a
wide range of operating conditions (see Section 8.3), making the leading edge V., distribution a
known function of the operating condition. The trailing edge Vj, distribution is calculated by
assuming that the static pressure rise, from the leading to trailing cdge, is the same for each row
of nodes. An initial estimate of the outlet profile is made, and this data is used to calculate the
change in static pressure for each grid row according to the Euler pump equation {Eq. 6.8). The

outlet vy (Eq. 6.9) and slip factors are calculated using known values.
Ap = r’pUTEvOTE - %p(vn?l-rg + vgrs - ‘/”21‘5) (6‘8)

Vore = 0(Urg — Vimy g tan B’TE) (6.9)

The efficiency of the pump, 1, is evaluated by the method described in Section 6.4. No preswirl is
imparted to the fluid, so the inlet tangential velocity is zero and does not appea- in Lhe equation.
The average static pressure rise over all of the gridlines is determined and used to calculate a
new outlet meridional velocity profile. An expression for Vi, is found by manipuluting Eq.
6.8. The resulting distribution of exit meridional velocities is scaled to satisfy continuity, and the
process is repeated until the meridional velocity profile converges.

The slip factor resulting from the converged Vi, distribution is used to calculate a deviation

angle by subtracting the blade angle from the flow angle.
Bre = tan"[(Urg - (Ut = Vinpe tanBre)) / Vinre) (6.10)

6= Bre - Bre (6.11)
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6.3 Spe:ification of the Streamline and Flow Angles in the Blade Passage

One effect that the blades have on the flow is to turn or deflect the flow from an axial-radial
plane, thereby changing its angular momentum. In other words, the blades impart swirl to the
flow. Axial symmetry is not violated by streamlines which do not lie within a single axial-radial
plane, the only requirement is that these streamnlines must represent some average curve that all
of the flow can be considered to follow. Determining the local turning provided by the blades
is the same as determining a component of the force that the blades exert on the fluid. In the
blade model developed in this investigation, the amount of turning is calculated by estimating
the shape of the streamline that the fluid follows as it moves through the blade passage. The
blade loading is then found by calculating the force required to have the flow follow the estimated
streamline.

The streamlines are laid out in conformal planes, where the slope of the path is equal to the
slope in the physical space. The deviation angle, determined in Section 6.2, fixes the slope of
the streamline at the trailing edge. The flow angle at the leading edge is determined from the

upstream velocity vector and the known blade speed as given in Eq. 6.12.

BLE = tan™! (E@L‘.”L.s.) (6.12)

VmLB

The tangential velocity at the leading edge, vs, . is typically zero because there is no preswirl.
However, when a recirculating flow is set up in the leading edge region, some swirl is convected
out of the blade row at the leading edge, then back into it at a different radial station. Therefore,
vs, . is retained in Eq. 6.12 and set equal to the tangential velocity at the node upstream of
the leading edge. A separate streamline is specified for each row of control volumes, because the
meridional direction follows the £ gridline which is unique for each row of nodes.

Within the mixed-flow impeller that is the focus of this research, the behavior of the flow in

the area of the leading edge is strongly dependent on the local inlet incidence angle. The incidence
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angle is the angular difference between the relative flow direction and the blade camberline at the
leading edge. In the trailing edge region, the fluid motion is primarily dependent on the blade
shape and the deviation angle. In between these two areas, the relatively long blades turn the
flow tangent to the blade. This behavior is modeled in the specification of the mean streamline
curve in the blade-to-blade plane. The control point curve fitting technique, as described by
Eiseman [34], is used to define a smooth streamline while specifying a minimal number of points.
This curve fitting technique was chosen because the resulting curve lies in the convex hull formed
by the control points, thereby preventing the occurrence of physically unrealistic oscillations in
the streamline.

Fig. 6.1 shows a representative blade passage in the conformal transformed plane and
the layout of the streamline. The thick, solid lines represent the blades, and the dashed line
corresponds to the center of the blade passage. Six control points, marked by dots, are used
to define the streamline. They are placed to assure that the flow enters and leaves the passage
with the correct flow angles and to guarantee that the flow is turned tangent to the blade at the
one-third chord point. The control point curve is characterized by a curve which passes through
the endpoints with a slope equal to that of the line segment connecting the endpoirt and the
adjacent point. Thus, the first and second points are placed to yield the desired S.g, and the
fifth and sixth points are located to give the required fBrg. The control point curve intersects
the line segment between consecutive interior control points with a slope equal to that of the
connecting segment. Therefore, the streamline, marked by the thin, solid line in Fig. 6.1, passes
tangent to the blade at the one-third chord point, because the third and fourth control points
are centered abou: the one-third chord location along the passage centerline.

The loca't.ion of the streamiine within the blade passage is arbitrary, only the curvature of the
streamnline affects tlie flow. But in keeping with the axisymmetric assumption, it is reasonable to
assume that the flow primarily remains centered within the blade passagc. As previously stated,

the blade model is capable of accounting for nonaxisymmetric eflects. The leading and trailing
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edges are the most sensitive regions of the blade, so the nonaxisymmetric effects will be focused
in these regions. Thus, the second and fifth control points are placed on the passage centerline,
making the departure of the mean streamline from the cei .erline minimal for the bulk of the
chord length. The first and last points are meridionally located at the leading and trailing edges
of the blade row and are positioned on the z axis in accordance with the inlet and outlet flow
angles. The fluid cannot cross from one blade passage to another, so the first and last points
are placed not farther than half of the width of the blade passage away from the centerline. The
second and fifth points are repositioned closer to the blade tips if the slopes would otherwise
result in the streamline crossing the channel boundary. Nominally, the second point is place at
the 1/6 chord location aﬁd the fifth point is set at the /10 chord location.

Control point curve interpolation functions are used to calculate the local slope of the stream-
line at each node and east/west CV face according to their meridional coordinate. The flow angle

is equal to the inverse tangent of the negative slope.

d
B = tan™! (—;5) (6.13)

6.4 Determination of the Tangential Velocities and Body Forces

from the Flow Angles

The streamline geometry does not directly enter into the momentum equations. Therefore,
in order to place the effects of the blade into the momentum equations, quantities which do
appear in the momentum equations must be extracted from the knowledge of the streamline
shape.

Dividing the differential distance in Eq. 6.13 by a small change in time results in an expres-

sion of the flow angle in terms of two velocities.

8 =tan™! (..%;::) (6.14)
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The velocity in the numerator is equal to the flow speed in the tangential direction relative to the
moving blade. The speed represented in the denominator of Eq. 6.14 is simply the meridional
velocity. For a known flow angle, the angular velocity in the absolute reference frame is therefore
calculated according to Eq. 6.15.

vo=U-V,tanp (6.15)

An angular velocity is calculated at the nodes and east/west CV faces from the flow angles
which have been calculated at these locations. Linear interpolation of the nodal velocities is used
to calculate the meridional velocity at the control volume face.

After the tangential velocity distribution is found over the entire blade, the tangential body
forces that will yield this distribution are determined. 'i‘hme forces are calculated for every
control volume on the blade according to the simple angular momentum balance shown in Eq.
6.16. The integral of the angular momentum source term (Eq. 4.17) with the body force term

removed is denoted by S,
AEANT] Fy = Aove, — 3 Aivs, — Sh (6.16)
o

Because the tangential velocities, calculated using Eq. 6.15, are used in the evaluation of Fy, the
velocity field that is returned by the solution of the discretized momentum equation will satisfy
the specified streamline at convergence. During intermediate solutions the changing axial and
radial velocities tend to perturb the flow from the streamline. However, as discussed in Section
6.5, the perturbation is kept to a minimum by updating vy and Fy after the A; momentum
coefficients are calculated, but before the equations are under-relaxed.

Determining the radial and axial blade loading is the final step in implementing the blade
model. F, and F, are the only remaining quantities that have not been evaluated. These forces

are found by resolving a force in the meridional direction into its cylindrical components.

Fi=znFn (6.17a)

Fr=rmFm (6.17b)
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In the blade model, the forces normal to the meridional direction in the axisymmetric plane are
assumed to be negligible. This approximation is not unreasonable as the normal force is usually
small compared to the centripetal forces and radial pressure gradients. The forces normal to the
meridional direction become more significant when the blades are highly skewed.

The primary effect of the meridional force is to propel the fluid through a region of adverse
pressure gradient. In a centrifugal pump, there is a large total pressure rise from the inlet to the
discharge of the impeller. By manipulating Euler’s pump equation, the increase in total pressure
can be shown to be comprised of two parts, a rise in static pressure and a rise in dynamic pressure.
The dynamic head rise goes directly into changing the kinetic energy of the fluid; therefore, it is
not affected by the blade efficiency. The change in static enthalpy from one meridional position

to the next is the result of centrifugal forces and the diffusion of the relative velocity.
Bp = 4p((U2 = UZ) + (w], - w)) (6.18)

w? = V2 4+ (U ~ v)? {(6.19)

The magnitude of relative velocity in the blade passage is denoted as w. The first term in this
equation represents the head rise due to the centrifugal forces exerted on the fluid. Because
centrifugal forces are present even in solid body rotation of a fluid (i.e. without motion of the
fiuid relative to the blades) it can be assumed that no losses are associated with this portion
oi the change in static pressure. Howevcr, total pressure losses do occur during the diffusion of
the relative velocity. Therefore, an efficiency, 7, is associated with this quantity. The resulting

expression for the static pressure rise is shown in Eq. 6.20.

Ap= 3p((UZ = U2) = n(wl - w?)) (6.20)

By coupling the efficiency to the existing flow conditions, a simple loss model is incorporated

into the blade model.
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There is no analytic expression for the efficiency, so an empirical model must be used. Viscous
losses throughout the blade passage and near the leading and trailing edges depend upon different
parameters; therefore, different expressions for the efficiency are used in each section of the blade.
Eq. 6.22 is used to calculate the efficiency in the first third of the blade. Eq. 6.25 is used in
the latter third of the blade. In the middle third of the blade, the efficiency varies linearly as a
function of chord length from the leading to trailing edge value.

The efficiency for the region near the leading edge is assumned to depend solely on the
incidence angle, i. Beyond a 20° incidence, full separation of the fluid from the leading edge
is assumed, and the efficiency is given a minimum value. Up to an 8° incidence, the fluid is
considered to be fully attached and the leading edge is presumed to be working at maximum
efficiency. A linear variation between the extremes is used for intermediate incider~~ values. The
maximum and minimum efficiencies of 0.75 and 0.10, respectively, were selected based on typical

performance values for cascades. No attempt was made in this investigation to improve these

estimates.
i=fg~BLE (6.21)
0.75 if Ji] < 8%
_ Jo.10 if |i] > 20°;
nLE = e =Y (6.22)
0.75 - .65 (%.—:-88-;) otherwise.

The efficiency at the trailing edge is assumed to be a function only of the relative diffusion.
If the flow at the outlet has reversed, then the efficiency is assumed to be a minimum. Otherwise,
a piece-wise linear distribution is used which is a function of the ratio of the net change in relative
velocities to the leading edge relative velocity. The expression corresponding to the first satisfied
condition in Eq. 6.25 is used to calculate nrg. The constants in Eq. 6.25 were estimated based

on typical diffuser or nozzle performance.
v =(wre — wrg)/wLE (6.23)

Ymazr = (WLE — (Vrirg + U;‘E)llz)/wLE (6.24)
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0.1 if Vinpp < 0;

0.1 if v>0.9;
nre = ¢ 0.95 if wre > (V2. + UFp)/? {6.25)
0.95 - 0-2(7ma: - 7)/71710: ify<0
0.75 —~ 0.657/0.9 ify>0

The meridional and tangential velocities and the wheel speeds are known at the east/west
control volume faces. Therefore, the change in pressure along the meridional direction from the
western to the eastern face is found using Eq. 6.20. The meridional body force required to
produce this static pressure rise can now be computed by applying the momentum equations.

An expression for the meridional pressure gradient is found by combining the inviscid axial
and radial momentum equations according to Eq. 6.3. Some pressure changes will occur due
to the shear forces in the fluid. By neglecting these terms in the determination of the body
forces, the pressure correction equation will generate a pressure field that is consistent with both
the viscous and blade forces. If these terms were included, the body force would account for
the viscous eflects and there would be nothing left to drive the pressure corrector equation for
the control volumes in the blade. The meridional body force appears in the expression of the
meridional pressure gradient. The meridional momentum equation cau be manipulated to form

an expression for the meridional body force as shown in Eq. 6.26.

AbARrIFm = AfAr;rJad% — AfARTmIpv? +
zm [(AnprUv,);, + (AlprVv,)7] +

rm [(AnprUv, ), + (ALprin,)7] (6.26)

The meridional pressure gradient is evaluated as the ratio of the change in static pressure, as
given by Eq. 6.20, to the chz ge in meridional distance, which is equal to the denominator in Eq.
6.4. Linear interpolation of the nodal values of v, and v. is used to calculate the facial velocity
components.

If the meridional flow is reversed within a blade row, then a streamline cannot exist entirely

within a single row of control volumes. When this occurs the meridional body force is assumed to
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be caused by drag, acting counter to the flow, in the meridional direction. That drag force, which
is assumed to be negligible compared to the pressure rise in forward flow regimes, is calculated
as follows:

Fm = D = iCpuw?A/V (6.27)

where V is the volume of the CV, A is the surface area of the CV projected onto the blade,
and Cp is the coefficient of drag. A coefficient of drag of 0.5 was found to provide enough force
to prevent recirculating regions from growing unrealistically large. If the flow is reversed at the
leading or trailing edges, it is assumed that there is enough swirl to allow the fiuid to enter or

leave the blade row with a flow angle equal to the blade angle.

6.5 Implementation of the Blade Model within the PWIM Algorithm

The remainder of the chapter explains how the blade model is implemented within the
solution algorithm, while maintaining stability. As the outline in Section 4.7 shows, the blade
model is called after the viscous source terms and the A; coefficients have been calculated. This
sequence is followed because the blade model also requires these quantities. The model is called
before the under-relaxation is applied to the momentum equation coefficients, so that the iterative
solution results in the required strcamline as soon as possible. The tangential velocity is directly
affected by the blade model. The blade model affects the axial and radial velocities after the
momentum equations have been solved. The pressure is only affected by the presence of the
blades indirectly, and because PWIM is a pressure corrector scheme, the development of the
pressure field always lazs that of the velocity fields. If the pressure has not had a chance to
develop, physically unrealistic velocity fields will arise as there will be no centripetal pressure

forces and meridional pressure rise to counter the swirl and body forces. Thus, immediately
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introducing the full effect of the blade model into the momentum equations tends to destabilize
the solution. A number of stability enhancing measures are taken to preveni this destabilization.

The streamline geometry is updated only during intermittent outer loop iteration-, so the
flow fields have a chance to stabilize while adjusting to the current streamline. The tangen-
tial velocities and body forces are calculated every iteration so that the flow remains on the
streamlines. During the initial iterations of the solution, the tangential effects are estimated,
but the meridional body forces are not immediately calculated This allows a pressure field that
balances the centrifugai force of fluid to develop. After a few iterations, the meridional body
force is calculated and gradually introduced into the momentum equations. This permits a more
stable evolution of the pressure, which will typically increase significantly through the blade row.
Fourth order polynomial smoothing is used on the meridional body forces to avoid an unrealistic
blade ioading fluctuations which can cause the solution to diverge. The smoothing is applied
row-by-row and then column-by-column. Following the smoothing process, the body forces are

then scaled so that the total loading on the blade is not altered.




Chapter 7

Code Validation

Once the flow solver was written, it was thoroughly checked to insure that it correctly solves
the momentum and continuity equations. The code was written in modular form so that most
of the FORTRAN subroutines could be independently checked.

The first step in the solution algorithm is to inap the grid from the physical space into the
computational plane. This entails computing the metrics and the Jacobian of the transformation.
The block of code responsible for carrying out these calculations was checked by comparing the
results with hand calculations to verify that it works properly.

Both facial and nodal metrics are required. The quantities for the interior nodes are found
using second-order accurate central differencing of the vertical face midpoints (denoted by “+” in
Fig. 4.4) for the “€” gradients and of the horizontal face midpoints (denoted by “x” in Fig. 4.4)
for the 5 gradients. This keeps the mapping on as local a scale as possible. Any discontinuities
in the gridlines, such as those that appear in the streamwise lines in Fig. 4.4, are resolved by this
treatment of the mapping. These discontinuities appear at the control volume faces, rather than
at the nodes, because the grid was generated in terms of the CV corners. Quadrilateral control
volumes are formed by preventing the gridlines from changing direction at the midface. Nodal
coordinates are used to calculate z¢ and r¢ at the vertical faces and 2z, and r, at the horizontal
faces. The control volume corners are used to compute the remaining facial metrics. The nodes
are collocated with the facial coordinates at the boundaries, and there the metrics are evaluated

using second-order accurate one-sided differencing.
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Because the governing equations are solved in the computational plane, gradients with re-
spect to ¢ and 7 frequently appear. These gradients refer to the changes in the nodal quantities
(vs,vr,ve, and p), where the changes are evaluated at the nodes (o, £, w, N, s), at the vertical
faces (¢, w), or at the horizontal faces (n, ,). A number of gradient subroutines were written to
cover the various permutations. These subroutines were checked by verifying that they returned
the correct gradients on a linearly varying field.
The nonlinear system of equations that governs the fluid motion are solved iteratively as
sets of linear equations. The discretized momentum and pressure corrector equations (Eqs. 4.12-
14,40) each represent a system of linear equations. Four algorithms are employed to solve these
sets of equations. One solver sweeps the field row by row using the common Thomas tridiagonal
algorithm to solve a particular row. Another equation solver uses the same technique applied
column by column. A subroutine that uses Stone's strongly implicit method [23] is available
in the code. A direct, band¢d matrix solver is also available in the program to allow for a
noniterative solution to the pressure corrector equation. This banded matrix solver is based on
lower /upper matrix decomposition and was coded explicitly for pentadiagonal systems. All four
procedures can be checked independently of the means by which their coefficients are generated.
The equation residuals must go to zero for each linear system. Zeto residuals indicate that the
algorithms were properly coded.
The residual is a measure of the amount by which a field fails to satisfy the linear equations.
When the solution field, ¢, is found, the residuals are zero everywhere in the field. The residual

of Eq. 4.10 is given below.

R= Aodo — (Acde + Awdw + AndN + Asds + Su) (7.1)

There is a residual for each equation in the linear system. A number of ways of utilizing the
residuals of the individual equations to measure overall convergence can be used. The simplest

one, which is used in this work, is to monitor convergence in terms of the largest absoli te value
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of all of the residuals in the field. When the absolute values of R for the mass and momentum
equations all drop below a specified value, the flow is considered to be solved. If the convergence
limit is set low enough, then in addition to eliminating the residuals, the flow fields will stop
evolving. The mass source residual is scaled by the mass flux into the domain and the momentum
residuals are normalized by the incoming momentum. The normalization makes the convergen:e
¢riteria independent of geometry and flow conditions.

Verifying the proper working of the pressure correction scheme can be done independently
of the discretized momentum equations. The pressure corrector, ', can be found directly using
the banded matria solver. When this solver is employed and the necessary corrections Lo the
facial velocities are made, the mass sources must compictely vanish regardless of the velocity
field returned by the momertum equations. This is expected since the p’ equations were formu-
lated with the purpose of eliminating mass sources, and the direct solver assures that the set of
equations are solved to a high level of accuracy.

Keeping in mind the validation procedures already discussed, there are only two primary
sections left to check in the basic flow solver: the set of momentum equation solutions and the
functioning of the entire code as a whole. Unfortunately, there is no easy way to check the
conservation of momentum. Therefore, the code as a whole and momentum conservation are
verified simultaneously.

Two approaches are possible for code validation. First, an exact solution in a known geom-
etry may be input into the code to see if it immediately recognizes the solution as the converged
flow solution, or the flow may be solved on a specified geometry starting with an arbitrary initial
guess. A comparison may then be made between the calculated and known solutions. The latter
method was used, because it demonstrates that the converged solution is independent of the
initial guess.

Such phenomena as f{alse diffusion, caused by the multi-dimensionality of the flow and skew-
ness of the fluid velocity with respect to the gridlines, Taylor series truncation, arising in numer-

ous stages ~{ the discretization process, and floating point errors will contaminate the solution to
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varying degrees. Current theory cannot determine the amount of error a priori; however, experi-
ence and simple numerical experiments are helpful in determining when a solution is sufficiently
accurate. Floating point errors can never be completely eliminated, because digital computers
store numerical values to a limited number of significant figures. However, the iterative nature of
PWIM renders this type of error virtually negligible, as the errors are not compounded from one
iteration to the next. Properly choosing test case geometry and grid specification make some or
all of the remaining errnre regligihle. The folwing sections discuss the specific fiom cases Llial

were used to validate the code.

7.1 Flow in a Straight Pipe

Fully developed flow in an axisymmetric pipe or rectangular channel can be solved analyt-
ically. The resulting velocity is parallel to the walls, reaching a maximum at the centerline and
decreasing to zero as a parabolic function of the distance from the center. The pressure field, as
is always the case in incompressible flow where there is no equation of state to relate the thermo-
dynamic variables, is unique to within an additive constant. The streamlines are parallel to the
pipe, and the pressure is constant across the cross-section. A constant axial pressure gradient
is set up within the pipe to overcome the viscous effects. The dimensionless pressure drop is

dependent on the Reynolds number, as shown in Eq. 7.2.

% = —32/Re, for a circular pipe (7.2a)
op
3= —~12/Re, for a 2-D channel (7.2b)

The characteristic velocity and length in the Reynolds number are the average velocity and pipe

diameter (channel height), respectively.

N
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A variety of trials using this geometry were run so the solution returned by the code could

be checked against analytic results.

7.1.1 Uniform Grid

A uniform orthogonal grid was generated to cover the pipe, so that the performance of
the code in the absence of numerical diffusion and truncation errors could be tested. When a
parabolic, or fully developed, velocity profile is specified at the inlet, aligning the gridlines with
the pipe walls eliminates the effects of numerical diffusion, because the flow is always parallel
to the gridlines. Using a uniform physical space grid removes the truncation errors, because
flow fields are polynomials of no higher than second-order, and the discretization process was
carried out to second-order accuracy. For this type of grid, the spacing is constant, and the
mapping operation is a scaling of the grid in the axial and radial directions so as to make the
spacing unity. When a parabolic inlet profile was used, the resulting flow was the inlet profile
" convected unchanged all the way through the pipe and a constant pressure drop equal to the
value given by Eq. 7.2 resulted. This was tested over 3 wide range of Reynolds numbers for both
the cylindrical and Cartesian coordinate systems. When a uniform inlet velocity profile is used,
the velocity profile evolves toward a parabolic shape, and the pressure gradient approaches the
theoretical value. Fig. 7.1 shows a plot of the calculated velocity vectors in the neighborhood of
the inlet for an entrance flow at Re = 100. The lower boundary is the plane of symmetry (r = 0)
and the upper boundary is a no-slip wall. This convention is used throughout this work, unless
otherwise stated. The radial velocity near the inlet is due to the sudden appearance of the wall.
The boundary layer begins to form in the first column of control volumes, so a radial velocity
is needed to remove the mass from the region of slower flow. By the time tiie exit is reached, a

parabolic profile has formed. Fig. 7.2 shows the pressure drop along the axial line 2t the center
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of the physical grid (r = 0.25) for both parabolic and constant inlet velocity profiles. The profiles
correspond to equal mass flows into the pipe, hence the pressure drops eventually attain the fully
developed value. Flow from which these curves were taken is for a pipe with a nondimensional
outer radius of 0.5 and a length of 5.5. The grid was a very coarse 9 x 7. Despite the coarseness
the grid the analytical pressure gradient was attained, due primarily to the simplicity of the flow.

Calculating pipe flow in a uniform grid does not in itself validate the accuracy of the code, but
it does demonstrate that nonorthogonal terms arising from the mapping properly vanish when
the gridlines meet at right angles. This geometry also shows that all four types of boundary
conditions are accurately handled. Velocity is specified at the inlet, a plane of symmetry exists
at the lower boundary, the upper surf:a.ce is a no-slip wall, and the flow is assumed to be constant

in the axial direction and normal to tae boundary at the outlet.

7.1.2 Nonuniform Grids and Turbulence Model Test

The transformed equations are simplified if the grid is uniform. To determine if the program
can propetly handle a grid with nonuniform spacing, flow through a grid with control volumes
of alternating widths and/or heights was studied. Four test cases were run. The first test case
is for flow on a uniform grid. This case serves as a baseline for the numerical experiment. The
object of the experiment was to see how changing grid spacing affects the resuits; therefore, a
standard is needed from which the comparisons can be made. The control is further maintained
in each of the four trials, by using a fully developed inlet velocity profile to prevent the effects of
grid spacing from being confused with those of developing flow. In the second case, the widths of
the control volumes varied such that a 2,1,2,1... alternating pattern of neighboring CV length

ratios was formed. Height, rather than wiath, was varied in the third trial. Both CV height and
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width varied in a repeating pattern in the fourth case. Fig. 7.3 shows the grid for the last case.
Because a ratio of 2 was chosen for alternate CV thicknesses, the nodes are uniformly spaced.
Only the distance between the control volume faces varies.

Fig. 7.4 shows the plot of the axial gradients at the center of the grid (r = 0.25) for each of
the four cases. The pressure gradient for the uniform grid is equal to the analytic value. When
the axial spacings vary, the pressure gradient is oscillatory. This is caused by the cyclic behavior
of the metrics, primarily z¢ and J. If a plot of these functions was made as a function of the
axial distance from the inlet, the curve would look similar to that of the pressure gradient curve.
Central differencing is used to evaluate these metrics at the CV faces, and the Taylor series

expansion that yields their second-order accurate finite difference expression is shown in Eq. 7.3.

st (L(A) R (%) B 19
o€ A¢ 3T\ 2 o83 " B\ 2 o8

For a smooth function, the higher-order derivatives are small, and the second-order central dif-
ferencing approximation, which neglects the quantity in the parentheses, is accurate. However,
when the widths vary, the axial coordinate is not a smooth function of €, nor is r a smooth func-
tion of n when the heights vary; therefore, the terms in the parentheses are no longer negligible
and the truncaiion erruc contaminates the results.

A variation in CV height does not cause oscillations in the the pressure gradients, because
pressure is constant across the pipe. However, it does cause the calculated pressure drop to
rise slightly. This is due to the use of central differencing in t.he diffusive fluxes. Recause the
horizontal control volume faces are not located midway between the nodes, central differencing
is not an accurate approximation for the diffusive gradient of v, with respect to r.

Fig. 7.5 shows the pressure as a function of the axial location for each for the four test cases.
None of the trials have an oscillatory pressure field, because the nodes are uniformly spaced
even though the control volumes change in size. The pressure is very close to the analytical

distribution for all four cases, This demonstrates that the solution error is caused by truncation,
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not programming error, and the test illustrates how the calculated results can be distorted if the
control volume sizes vary too suddenly.

Pipe flow was also examined to check the accuracy of the Baldwin-Lomax turbulence model
[29]. Trial cases were run on grids with 25 nodes across the pipe. The nodes were clustered using
the technique described in Chapter 5, which upon inspection of the converged solution was seen
to yield accurate estimations of y* at the interior layer nodes. Five nodes were placed within
the inner layer.

The calculated fully developed outlet velocity profiles for laminar flow and for turbulent flow
at three different Reynolds numbers are shown in Fig. 7.6. Also shown, are experimental data for
the same flow conditions [17, p. 598]. As seen by the resolution of the calculated velocity profiles,
a sufficient number of nodes was used for the calculations. The calculated laminar velocity profile
shows that the solver is able to handle highly stretched grids. The turbulent calculations show a
tendency to underestima.e the velocity near the wall. The errors for the high Reynolds number
cases are within acceptable limits. However, the Re = 4000 case shows appreciable discrepancies
between the calculated and experimental results. This does not imply that there is a problem
with the way the turbulence model was implemented. Considering that Baldwin and Lomax only
published results for 1.33 x 10° < Re < 21 x 108, it is logical to assume that the assumptions that
led to the model, such as the premise that vorticity distribution is an indication of the boundary
layer length scale, are invalid at Reynolds numbers near the point of transition from laminar to
turbulent flow. This does not present a severe limitation as far as turbomachinery calculations
go, because turbomachine Reynolds numbers are more on the order of 1 x 10%, not 1000.

It is possible that the constants used in the turbulence model for axisymmetric flow should
not be equal to those used for Cartesian flows. However, in view of the ability of the model as it
stands to predict the effects of turbulence, a decision was made to forego surveying the eflect that

changing the values of one or more parameters would have on the velocity profile. Such a task
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would require a tremendous amount of time, and there is no evidence that the modifications could

be applied to yield more accurate results across a wide range of geometries and flow conditions.

7.1.3 Skewed Gridlines and Differencing Scheme Comparisons

It has been shown that the flow solver can treat orthogonal grids. The next step in the
validation procedure is to examine how nonorthogonal grids are treated. Nonorthogonal grids
can result from skewing either or both sets of gridlines. To help place a control on the numerical
experiment, the nonorthogonality is examined by skewing one family of gridlines at a time. In
the first series of tests, the £ gridlines are skewed with respect to the flow direction. To eliminate
truncation errors caused by nonuniform spacing near the boundaries, the edges of the flow domain
are also skewed. Skewing the gridlines with respect to the flow direction sets up the possibility
that the calculated results may be contaminated by numerical diffusion. This phenomenon is
discussed in more detail in the following text.

Because the boundary lines are skewed with respect to the flow direction, those boundaries
no longer correspond to the limits of the pipe, so new boundary conditions are necessary. The
grid and geometry chosen to act as the test case is shown in Fig. 7.7. Its nondimensional length
is 2.0. The lower corner of the inlet is located at the centerline, and the upper corner is placed at
r = 0.25, midway to the pipe wall. The top of the outlet boundary is on the pipe wall (r = 0.5)
and the bottom is at r = 0.25. Because pipe flow is axial, mass passes through the upper and
lower boundaries, a different phenomenon than that which occurs in the previously used grids.
The velocity is a known analytic function of the radius, so the BC is a specified velocity at all
four boundaries. Fig. 7.8 shows a plot of the velocity vectors for a converged solution. Notice

that each profile is parabolic, but the extrema change in response to the radial location of the
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nodes. Runs were made on this geometry for a number of different nodal concentrations and
using various differencing schemes.

For fully developed pipe flow the velocity profile is essentially determined by continuity,
thus the behavior of the pressure field provides more insight into the workings of the momentum
equations. To the eye, the velocity profiles for the various test cases are indistinguishable from
one another. However, the pressure field is strongly dependent on both the differencing scheme
and the number of nodes that make up the grid.

Fig. 7.9 shows a plot of the calculated pressure gradients on the skewed grid for three
different grid densities. The solid line is the control case. It was calculated using the same
specified velocity boundaries, except that the grid for this case extended from the centerline to
the pipe wall at the inlet and outlet, removing the skew and accompanying numerical diffusion.
The pressure drop for the control case is equal to the analytic value throughout the pipe. On the
skewed grids, the pressure drop can no longer refer to the gradient at a particular radial location,
so the curves on the graph refer to the value at the central node of each axial station. Hybrid
differencing was used for these calculations, and {or a cell Reynolds number greater than 2, this
scheme acts like pure upwind diflerencing, which is very prone to numerical diffusion. Numerical
diffusion causes the curves to deviate from the constant pressure drop. The error is lessened when
the number of nodes in the streamwise direction is increased. Adding nodes in the cross-stream
direction does not decrease the numerical diffusion.

The departure of the pressure drop from the analytic value is the greatest near the inlet
and outlet, because there is a discontinuity in the aceuracy of the discretized equations in these
regions. The known velocity boundary conditions are specified with second-order accurary, but
the differencing schemes are only first-order accurate. This sudden change in accuracy results in
larger errors in the results near the inlet and exit boundaries.

Fig. 7.10 shows a comparison of the calculated pressure gradients when hybrid differencing,

QUICK differencing with hybrid about the boundaries, and the fully higher-order QUICKR
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differencing .uneme are used. The sudden change in accuracy present when QUICK and hybrid
differencing are used in conjunction causes a large perturbaticn in the results. The location of
the perturbation lead to the initial conclusion that it was caused by an incorrect application of
the BC’s or an improper melding of the two differencing schemes. However, the same incongruity
appeared in a one-dimensional hand calculation using the dual differencing scheme. Whenever a
lower-order diflerencing scheme is used near the §oundary, the relatively inaccurate differencing
approximation is applied in the neighborhood of the precisely defined BC, resulting in a large
discrepancy between analytic and calculated pressure drops. Notice how this error is not present
at the outlet on the QUICK /hybrid curve. It is removed, because the positive flow direction
means that QUICK is used on the contro] volume face just upstream of the outlet boundary.
Consistently applying the higher-order differencing via the QUICKR scheme removes the large
error about both the inlet and outlet regions.

Various grid densities were examined using the QUICKR differencing scheme, and Fig. 7.11
shows the results compared to the those calculated using the lower-order differencing schemes on
the finest grid. The results using QUICKR on the 27 x 27 grid show that the pressure drop is
equal to the analytic value, demonstrating that the program correctly handles the nonorthogonal
terms arising from a skew of the £ gridlines. As hand calculations of i1viscid flow have shown,
QUICKR completely removes numerical diffusion from the pipe fiow calculation and thus enables
the ability of the code to handle nonorthogonal grids to be evaluated. Because QUICKR evaluates
convective fluxes with third-order accuracy, approximating the facial velocity with a second-order
polynomial, it accurately resolves the parabolic axial velocity distribution. The slight error in
pressure drop visible on the QUICKR curves in Fig. 7.11 is due to a failure on the part of central
diflerencing to capture the true viscous shear. QUICKR does not remove all errors from all
flow conditions, but it is much more accurate than the lower-order schemes. The answer 1o the
question of whether or not the added expense of QUICKR provides a sufficient payoff in terms

of higher accuracy is dependent on the needs of the investigator. However, it should be noted
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that the added accuracy could reduce the number of required grid nodes, and thereby more than
make up for the expense incurred by the use of QUICKR. The results for the 7 x 7 grid using
QUICKR are shown to as good as those of the lower-order differencing schemes on the 27 x 27
grid in Fig. 7.11.

The type of geometry used to test the effects of streamwise gridline skew demonstrates the
ability of the code to handle permeable boundaries. Specified boundary transpiration poses no
additional problems to the flow solver, nor does it require any special treatment.

To complete the verification that nonorthogonal grids are handled correctly by the code,
the n gridlines were also skewed, and then both families of gridlines were skewed. The inlet and
outlet boundaries were rotated for the grids with n gridline skew. This kept the grid spacing
uniform, as did rotating the upper and lower boundaries for the case of £ gridline skew. The
grid that was used to test dual gridline skew is shown in Fig. 7.12. The calculated pressure
drop at the central nodes for each gridline skew permutation is given in Fig. 7.13. The skew
for the 7 direction corresponds to the gridlines running 80° with respect to the horizontal. The
€ skew is 7.12°, the same as that used in in the previously discussed trials. Because the grid is
uniform and the flow is axial, the n skew does not introduce any errors into the flow. QUICKR
eliminates numerical diffusion, and the only error caused by the £ skew is dué to the inability of
central differencing to resolve the viscous gradients. The curves of Fig 7.13 are further evidence
that the flow solver is able to handle nonorthegonality and that the solution of the transformed

conservation equations is correctly implemented.

7.1.4 Verification of Conservation of Angular Momentum

The previous section dealt only with flows that had an axial component to the velocity.

Angular momentum did not enter into any of these flows. To validate the implementation of
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the angular momcntum equation, a test case analogous to the popular driven cavity is examined.
Consider a pipe with capped ends, whose outer wall is set spinning about the centerline. Viscosity
imparts swirl to the fluid, reaching the speed of the pipe at the wall and linearly dropping to
zero at the centerline. Because the ends of the pipe are capped, there are no endwall effects.
Axial and radial velocities are zero everywhere, and the conservation equations are satisfied if

the pressure field meets the two conditions specified in Eq. 7.4.

g‘f =0 (7.4a)
9 _ rv
3= T (7.4b)

If the reference velocity is taken as the rotational speed of the wall, then the analytic solution to

the flow is:

v, =0 (7.5a)
v, =0 (7.5%)
v =2r {(7.5¢)
op _ -

= 4r (7.5¢)

Unlike the other flows that have been examined, the steady state solution to shear-driven pipe
flow is independent of Reynolds number.

Fig. 7.14 shows a plot of the resulting angular velocity when the flow was solved using the
grid shown in Fig. 7.12. As expected, the vy profiles are a linear function of radius. The boundary
velocities were all specified, because the analytic solution of the velocity field is a known function
of the radius. Fig. 7.15 shows a plot of radial pressure gradient as a function of radius for the
same grids that were used in the final series of tests in Section 7.1.3. The pressure gradients were
evaluated along the column of nodes at the center of the grid. All test cases produce pressure

gradients equal to the theoretical values. This is strong evidence supporting the assertion that
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the flow solver is properly coded to yield a solution that conserves angular momentum, and that
the solver is properly treating the terms arising from grid nonorthogonality.

The proper coding of the centripetal acceleration terms in the momentum equations is vali-
dated by this test case. The pressure gradients, which arise out of the radial momentum equation,
are driven by the vy distribution that is returned by the angular morentum equation. Radial
and tangential velocities are coupled by the acceleration term, pv, vy, in the angular momentum
equation. Thus, the equations are discretized in a consistent manner. Otherwise, the iterative
solver would not have converged to a solution which eliminates the pu, vy term from the angular
momentum equation, as the radial velocity is not zero until convergence when the proper pressure

field is present.

7.2 Flow in a Radial Diffuger

Each of the previous test cases dealt with either primarily axial or purely angular flow.
These trials in themselves do not sufficiently demaonstrate the conservation of radial momentum,
nor do they provide an adequate forum to demonstrate the importance of using the cylindrical
differencing schemes. To emphasize this latter point, standard differencing schemes were used
in the axial geometries, and they still provided accurate results. Flow in a radial diffuser with
parallel walls was examined to help complete the validation process.

Unlike axial and angular flow, there is no geometry that is dominated by radial flow for
which an analytic solution can be found for a viscous fluid. However, all of the viscous terms
in the radia’ momentum equation, with a single exception, have a corresponding term in the
axial momentum equation. The flow solver evaluates the axial and radial viscous source terms
successively. For every line of code used to supplement the viscous terms in S, there is an

equivalent line for S.. Thus, there is little possibility that the viscous terms could be correctly




169
calculated for one equation, but not the other. Sections 7.1.1-3 demonstrate that the axial terms
are properly handled. The exception to the axial-radial viscous correspondence is the third term
on the right hand side of Eq. 2.16. This nonconservative term is present, because formulating the

entire equation in strongly conservative form causes the term in Eq. 3.19 to take the following

£64()

Discretizing a system of equations based on this format presents several problems, so this single

form:

viscous term is kept in nonconservative format. Comparisons with hand calculations verify that
this component is correctly handled by the flow solver.

A radial diffuser presents the solver with the need to deal with the radial dependence of area
through which the velocity passes. As fluid passes through a diffuser, the flow is slowed to satisfy
continuity. The static pressure rises as the velocity is reduced; dynamic pressure is converted
to a static pressure rise. For inviscid flow and no axial velocity, the radial velocity is inversely

proportional to r and the radial pressure gradient is inversely proportional to the radius cubed.

[~
k)
l

(7.7a)

o V1o

¥
I

(1.78)

nN
~4
w

The test cases for radial diffuser flows are similar to those used in Section 7.1.3. The ve-
locity is specified along the boundary according to Eq. 7.7a. Four uniformly spaced grids were
generated. One grid was orthogonal, one had skewed radial gridlines, another had skewed axial
gridlines, and the fourth grid had both sets of gridlines skewed to contribute to grid nonorthog-
onality. For each grid, the inlet radius is unity and the outlet radius is equal to 5. The width
of the diffuser is equal to unity, as is the constant ¢ in Eq. 7.7. When axial, 5, gridline skew is
considered, the gridlines are oriented at 10° with respect to the horizontal. For radial, £, gridline
skew, the inlet extends from the left corner of the diffuser to the midline, and the outlet extends

from the middle of the diffuser over to the right side. A typical grid possessing dual skew is
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shown in Fig. 7.16. The converged velocity field for this grid is presented in Fig. 7.17. It shows
how the velocity decreases as the radius increases.

Fig. 7.18 shows a comparison of the analytic and calculated radial pressure gradients along
the center of the grid for a variety of nodal densities. For this case, the flow was calculated on an
orthogonal grid with uniformly spaced nodes using noncylindrical QUICKR diflerencing. As the
number of nodes in the direction of the flow is increased, the pressure gradient approaches the
theoretical curve. However, the calculated values never attain the analytic values, because central
differencing cannot precisely resolve the gradients of the cubic pressure field, nor can QUICKR
differencing interpolate the nodal values to give the exact facial radial velocities which vary
inversely with r. This is the behavior that led to th- reed to develop a differencing scheme that
accounts for the differences between cylindrical and rectangular coordinate spaces. The problem
is further illustrated in Fig. 7.19. In this figure, the results given by QUICKR and hybrid
differencing are compared. The flow is parallel to the gridlines; therefore, numerical diffusion
is not present and the error can be traced back to the invalidity of the upwind approximation.
Notice that the larger errors appear at the lower radii. This is where the percent change in
surface area is largest and the fluid velocity is most rapidly decreased. Consequently, this is the
region where the Cartesian differencing schemes are least accurate.

Fig. 7.20 shows a comparison of the results obtained using standard and cylindrical differ-
encing schem-s. The results indicate that the lower-order cylindrical differencing scheme is as
accurate as the higher-order standard differencing scheme in this radial application, the former
being less expensive to implement. In this case cylindrical QUICKR is as accurate as standard
QUICKR differencing. For this simple flow, the errors arising from the higher-order approx-
imations to the convective flux are much less that the truncation errors that prevent central
differencing from precisely resolving the cubic pressure gradient.

No stability problems were caused by the fact that the central coefficient in the cylindrical

differencing schemes is not equal to the sum of the neighboring coeflicients.







Figure 7.17

Radial Diffuser Velocity Field on Uniformly Spaced Grid with
Skewed ¢ and n Gridlines
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Fig. 7.21 shows that gridline skew does not affect the ability of the code to treat nonorthog-
onal terms for radial flows. The absence of significant amounts of numerical diffusion is not
due to an inherent ability on the part of cylindrical upwind differencing to eliminate numerical
diffusion. Rather, it is due to the gradual change in the velocity fields within the radial diffuser.
Numerical diffusion is not as prevalent as it is in pipe flow, where the velocity varied with the
square of the radius. The slight variations in the curves are due to the fact that the truncation
errors in the finite difference evaluation of the flow field gradients are dependent on radius.
A viscous fluid flowing inside a radial diffuser with parallel no-slip walls was examined.
A parabolic inlet velocity profile was used, and the flow was assumed to be purely radia! at
the outlet. A converged solution for an orthogonal grid is shown in Fig. 7.22, displaying the
capability of the flow solver to handle a radial discharge without specifying the velocity profile.
There is no visual evidence that the viscous effects are misrepresented in the program.
Furthermore, a check of global radial momentum conservation was made by adding together the
pressure and wall shear forces and comparing those to the change in momentum between the
inlet and outlet. The net momentum loss decreased as the number of nodes increased, but the
net loss was never zero. A momentum balance was not obtained, because the pressures at the
inlet and outlet had to be interpolated from the interior nodes and the shear forces were krown
only at discrete locations. This gives further validation that the radial momentum equation is
solved correctly.
Now that a substantial amount of evidence has been presented to verify that the conserva-
tion equations are correctly solved, calculations of realistic flows within a mixed-flow centrifugal

impeller will be presented.
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Figure 7.22

Velocity Field for a Viscous Fluid in a Radial Diffuser




Chapter 8

Mixed-Flow Centrifugal Impeller Through-Flow Calculations

The primary application of the computer code is as an analysis tool for numerically predicting
fluid flow within existing and proposed turbomachinery and axisymmetric passages. In this
chapter, the results for through-flow calculations in a mixed-flow centrifugal impeller over a
wide range of operating conditions are presented. The impeller has been tested in the Applied
Research Laboratory centrifugal impeller test facility, and the calculated results are compared to
the experimental data.

The geometry of the test facility is shown in Fig. 8.1. This geometry is the physical space
flow domain for the axisymmetric flow solution. The thick dark lines, h-¢ and g-d, mark the
projection of the impeller blade leading and trailing edges onto the axisymmetric plane. The
control volumes that fall within these lines are considered to lie on the blade, and are thus the
CV’s for which body forces are calculated via the blade model. Appropriate boundary conditions
for the various sections of the geometry are indicated on the figure.

Pump performance was measured experimentally by collecting data at three different static
pressure taps. The first tap was located upstream of the impeller to measure the reference inlet
conditions. The second tap was located slightly past the discharge of the impeller, and the third
tap was placed at the end of the radial diffuser into which the impeller expels the fluid. The
locations of the pressure taps are labeled on Fig. 8.1 as stations 1, 2, and 3, respectively. Radial
and tangential velocity profiles were measured using Laser Doppler Velocimetry (LDV). The data
was collected along the path, referred to as the LDV traverse line, indicated by the dashed line

in Fig. 8.1
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After the experimental data was taken, it was converted into nondimensional performance
coefficients. Eqs. 8.1-8.4 give the expressions for the nondimensional pump performance coeffi-
cients. Experimental data is gathered in terms of dimensional quantities, so the first expressions
are used to reduce the data. The right-most equalities in these expressions represent the di-
mensionless variables used in the computer program. The inlet tip speed and diameter are the

reference velocity and length, respectively.

® = Vn/U = Vp (8.1)
S Bzh
Y12 = o TP n (82)
m(p2 — p1) M2
= = 8.3
M= RN T &3)
= 22NT _ _ 14 (8.4)
(27N)35D8
T = Z rFyVolume (8.5)

BLADE

The global flow coefficient, ¢, defines the operating condition. It is based on the net volume
flow rate through the impeller, and is distinct from the local flow coefficient, ¢. The static head
rise coefficient, ¥, indicates the increase in static pressure produced by the impeller and the
dynamic pressure recovery in the diffuser. The efficiency, 7, is the ratio of the actual head rise
to the maximum possible value. The maximum head rise is determined by the change in angular
momentum of the fluid, which is equal to the torque, T, on the impeller. In the program, T is
caiculated as the summation of the product of the radius, angular body force, and volume for
each CV on the blade. Efficiency and head rise are determined from a pressure change, where the
computed pressures are taken from the locations corresponding to the experimental measurement
stations. The power coefficient, P, is a dimensionless measure of the shaft power required to drive
the impeller.

Computer speed, rather than memory, was the most restrictive factor on the size of the

grid that could be used in the flow solver. The finest grid was used on which solutions could be
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found within a reasonable computation time. The same grid was used for all of the calculations,
because computational limits precluded adding nodes in regions of high flow gradients. The grid
quality was high, especially when considering the intricacy of the geometry and the several slope
discontinuities on the boundaries.

Fig. 8.2 shows most of the 175 x 32 grid that was used in the impeller through-flow calcula-
tions. An extension, equal in length to the diameter of the impeller, was added to the outlet of
the grid to allow the recirculating regions to close inside the computational domain. See Section
4.6.2 for a discussion of the need for this extension. An extension was also placed at the inlet to
prevent the specified inlet velocity profiles from distorting any recirculating regions originating in
the blade row. Gridlines were placed along the leading and trailing edges, the LDV measurement
line, and measurement stations 2 and 3.

Eiseman’s control point (CP) grid generation technique [34] was used to generate the grid
in the very irreguiar geometry of the pump facility. This algebraic method uses a sparse mesh of
control points and a series of interpolations, using the control point curve functions mentioned
in Chapter 6, to govern the placement and clustering of the nodes. Control point curves remain
in the convex hull of the CP’s, so the gridlines are smooth and free of superfluous oscillations. If
necessary, however, discontinuities can be resolved by collocating control points. Gridlines can be
placed along specified curves, such as the blade leading and trailing edges, by repeating the line
of control points along the desired curve. The spacing of nearby CP’s, over which the user has
complete control, determines the amount of clustering. Grid characteristics are determinad only
by the local control points; therefore, grid quality can be improved in specific regions by adjusting
the location of the nearest CP's. The flexibility of this technique makes .. a very powerful grid
generation tool, and yet the cost, in terms of computational expense and memory requirements,
is minimal. No iterative solutions are required to determine the coordinates of the grid points,
and the only significant memory allocations are for the arrays that held the coordinates of the

grid and control points.
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Through-Flow Calculation Grid
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The remainder of this chapter is dedicated to discussing the results of the through-flow
calculations. In the first section, the flow fields for each of the various operating conditions,
are compared with experimental data. Overall performance predictions are compared to the

measured performance in the last section.

8.1 Comparison of Calculated and Measured Flow Fields

Calculations were made at the design condition, above and below the design condition, as
well as at shutoff. This allowed an assessment to be made of the flow solver and blade model
over the entire range of operating conditions. The global Reynolds number was the same for
each calculation, 4.486 x 108, corresponding to a constant rotational speed in the experiments.
A uniform velocity profile was specified at the inlet, the magnitude of which depended upon
the flow coefficient. All results were found using single precision calculations on a VAX 8350
computer, which is significantly slower than most machines currently used in CFD applications.
The memory requirements are approximately 204 bytes per node and an additional 124 bytes for
every node on the blade. This does not include the additional memory requirement for the direct
solver, which was discussed in Section 4.5.

A few remarks concerning the overall performance of the flow solver during the through-flow
calculations are in order, before the results of the individual calculations are presented.

It was found that the use of the Baldwin-Lomax turbulence model was not appropriate
for the through-flow calculations that were made. That model required an excessive number
of nodes to be located close to the wall. With refined grids near the walls, convergence could
not be reached when the problems of geometry, flow conditions, and low computational speed
were compounded in the realistic flow cases. Therefore, a simple two-layer model was used

instead. The thickness of the laminar layer was set equal to the height of the row of nodes
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bordering the wall. Thus, the molecular viscosity was used within this laminar layer, whereas
the turbulent viscosity throughout the remainder of the flow was modeled as a constant (35 for
this investigation) times the laminar viscosity.

Because of the low computer speed, cylindrical QUICKR differencing could not be used. Its
explicit implementation decreases convergence speed. Cylindrical upwind differencing was uscd
instead.

Despite the numerous stability enhancing measures that were installed in the blade model,
it was found that the solution would not converge when the estimated blade-to-blade mean
streamline and blade loading were allowed to evolve with the iterative solution. Therefore,
the mean streamline shape was estimated at the start of the iterative solution and held fixed.
The meridional body forces were calculated at the same time and held fixed throughout the
solution. This is an serious deficiency on the part of the blade model. However, despite the blade
model deficiencies, useful results, that often times matched well with the experimental data, were
returned by the solver.

In some of the calculations that ate presented in the following sections, the residuals did
not drop to machine zero. The relaxation factor was not the cause of the instabilities. Rather,
the recirculating regions in the blade row caused the flow quantities in these regions to fluctuate
about a mean level. The residuals of the nodes outside these regions vanished and were not
aflected by the unsteady region. A sufficient number of iterations were run so that the data that

is presented did not change appreciably with further iterations.

8.1.1 Design-Point Calculation

The impeller was designed to perform at maximum efficiency at an operating condition of

¢ = 0.28. This flow condition was the one that was most most readily solved, because the blade
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loading did not set up any recirculating zones within the blade row. A plot of the convergen-e
rate is shown in Fig. 8.3. The sudden increase in the residuals at iteration 90, marks the point
where the meridiona} blade forces were introduced into the momentum equations. The total
calculation time was 24,000 seconds. Over 80% of that time was u.cd 1n solving the pressure
corrector equations with the banded matrix direct solver.

The velocity field in the axisymmetric plane is shown in Fig. 8.4. The precursor to a
separated region is present near the shroud and the midchord of the blade. This region plays a
key role in the recirculating regions that develop at ofl-design flow conditions. Fig. 8.5 shows
the pressure contours. The code confirms that the design-point criteria of a constant pressure
rise at the trailing edge has been met. Fig. 8.6 shows a comparison of the calculated and
measured velocity profiles. The trends in the calculated velocity profiles do not match those of
the experimental data. Fig. 8.4 shows that by the time fluid reaches the radial position of the LDV
measurement, it is aflected by the recirculating zone at the bend. The simple turbulence model
cannot accurately treat this recirculating zone, so it is possible that the discrepancies between
the calculated and measured profiles are caused by an inadequate turbulence model. Near the
impeller trailing edge, which is largely unaflected by the turbulence model, the calculated radial
profile is similar in shape to that of the experimental data. This is further evidence in support
of the supposition that the turbulence model, not the blade model, causes the poor agreement

with the measured data when no recirculating zones are present in the blade row.

8.1.2 Above Design-Point Calculation

The blades were designed so that there would be zero incidence at ¢ = 0.32. Calculated
velocity vectors in the meridional plane are shown in Fig. 8.7 for this flow coefficient. The blade

midchord area near the shroud contains a very small recirculating region. Since no experimental
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Calculated Through-
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data was collected inside the impeller, there is no experimental data to either confirm or deny the
existence of this separated region in the actual impeller. After 460 iterations and 34,700 seconds
of CPU time, the residuals in the recirculating region did not vanish, but the solution was not
changing noticeably. The pressure contours are given in Fig. 8.8. It shows that the pressure
rise is still fairly constant at the trailing edge. As indicated in Fig. 8.9, the calculated velocity
profiles still fail to match the measured data. The predicted profile at the LDV station decteases
in the direction from the shroud to hub walls, whereas the experimental data shows the opposite
trend. As in the previous case, the predicted velocity profile at the impeller discharge shows the
correct trend. It is again suspected that the inadequacies of the turbulence model destroy the

validity of the solution in the diffuser.

8.1.3 Below Design-Point Calculation

The calculated through-flow velocity field for the ofl-design operating condition of & = 0.14
is shown in Fig. 8.10. This solution was produced after 340 iterations and 26,000 seconds of
CPU time. The pressure contours for this flow are shown in Fig. 8.11. The recirculating region
predicted at the impeller inlet has been observed experimentally. To this author's knowledge,
no previous numerical studies have correctly predicted a through-flow plane recirculating region
that extends from the impeller to the upstream region. Fig. 8.12 shows that both the existence
and width of the separated region in the diffuser were also correctly predicted. The maximum
radial velocity at the impeller discharge was located on the hub side in each of the two high flow
coefficient cases. This low coefficient solution correctly shows that the location of the maximum

radial velocity has moved to the shroud side.
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8.1.4 Shutoff Flow Calculation

One of the most drastic operating conditions occurs when flow to the impeller is shutoff,
while the impeller continues to be driven at a constant rotational speed. No LDV data was
gathered for this type of flow, but video cameras did show a recirculating region upstream of the
leading edge of the impeller. The calculated velocity fields in the axisymmetric plane, Fig. 8.13,
show that the impeller sets up three recirculating regions. One passing through the Jeading edge,
one within the impeller near the leading edge at the hub, and another one passing through the
trailing edge. The flow in these regions rotate in different directions, which is consistent with the
need to have a zero net tangential component of vorticity. The pressure contours are shown in
Fig. 8.14. The high gradients indicate that the grid was inadequate for this calculation. This was
a contributing factor to the instability of this solution. The given results only indicate the nature
of the flow. The code was not able to stabilize the recirculating regions when the meridional
body forces were used. When the blade model was turned off and the tangential velocities within
the blade were set equal to the wheel speed, the solution did converge. Recirculating regions,

similar to the two larger ones in Fig. 8.13, were then predicted.

8.2 Comparison of Calculated and Measured Pump Performance Parameters

Global performance parameters are used to specify the overall operating performance of a
turbomachine. These parameters typically express the level of energy transfer which takes place
and the efficiency of the energy transfer process. The performance parameters are formulated by
considering the machine to be a single system, disregarding the spatial variations in the primitive
variable fields. A machine can alsc be considered to be made up of various components, each

with its own operating characteristics, acting as a subsystem of the whole. Referring to Fig. 8.1,
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the static head coefficient ;2 reflects the performance of the impeller, while ¢;3 indicates the
overall change in the fluid as it passed through the entire pump (impeller and diffuser).

Perhaps the most important performance parameter for a pump is the static head coeflicient,
¥. The primary purpose of a pump is to increase the static pressure of the fluid. The head
coefficient indicates the level of head or pressure rise in dimensionless form. Fig. 8.15 shows
a comparison of the calculated and measured head rises at two measurement stations. The
predicted values are very close to the experimental results for the two higher flow coefficient
cases. The other two static head coefficients are consistently high. For the control volumes
with reversed flow, the meridional body forces (drag) are possibly too high. Since the pressure
rise must counterbalance these forces, this would create a larger than expected pressure rise.
The radial diffuser recovers some of the dynamic head, as indicated by the rise in static head
coefficient from the second to third measuring station.

A pump works by transferring energy from the impeller to the fluid. The ratio of the useful
energy to the total energy transferred to the fluid is known as the efficiency, 1. Useful energy
delivered by a pump is in the form of a static pressure rise. The total energy delivered to the fluid
is related to the energy required to drive the impeller. This value is readily evaluated from the
torque and the rotational speed of the impeller. Fig. 8.16 shows a comparison of the calculated
and measured efficiencies at two measurement stations. For the efficiency, it is the two lower flow
coefficient cases that show a better agreement between the predicted and the measure results.
The error in ¢ for the low ¢ conditions would seem to indicate that the agreement between
the efficiencies for these two cases is merely a coincidence. Unresolved deficiencies in the blade
model still remain when a streamline, confined to a single row of nodes, is used for reversed flow.
Additional static pressure rise occurs in the diffuser, as indicated by the increase in efficiency
from station 2 to 3.

The power coefficient represents the dimensionless power required to drive the impeller. It

can be calculated directly using the torque on the impeller or it can be evaluated indirectly from
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the head coeflicient, flow coefficient, and efficiency. Since these coefficients have been presented
in Fig 8.15 and 8.16 the power coefficient does not provide any additional information. However,
the values of the power coefficient at the different operating conditions are given in Fig. 8.17 for

completeness.
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Chapter 9

Conclusions and Recommendations

This research has illustrated the usefulness of a Navier-Stokes, axisymmetric flow solver
using a non-staggered grid. The Pressure-Weighted Interpolation Method has been successfully
modified for the solution of the axisymmetric, steady-state, incompressible, viscous flow equations
in generalized curvilinear coordinates. A modified form (QUICKR, QUICK Revised) of Leonard’s
QUICK differencing has been shown to increase the accuracy of the solution by extending the
higher order differencing scheme to the boundaries and, thus, covering the entire flow domain.
A lower-order differencing scheme based on convective/diffusive decoupling and a higher-order
scheme based on QUICKR have been formulated for use in axisymmetric flows. These schemes
modify the standard upwind or convective assumption used in rectangular coordinate spaces
to form an analogous assumption that is consistent with the radial dependence of surface area
in cylindrical reference frames. Cylindrical upwind and cylindrical QUICKR differencing have
been shown to be more accurate than standard differencing schemes for radial flows. For axial
flows, they are algebraically equivalent to their Cartesian counterparts. Neither of the ¢ylindrical
differencing schemes have presented any stability problems.

The mixed-flow centrifugal impeller through-flow calculations demonstrate the usefulness of
the code in indicating overall trends in the flow fields for design and off-design flow conditions.
Recirculating regions passing across and out of the blade rows have been successfuily calculated.
The series of calculations indicates that a redesign of the impeller blades near the discharge may

improve the uniformity of the flow entering the diffuser.
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Integrating the experiences, both fruitful and unfruitful, undergone while carrying out the
research documented herein, yields severa! topics which are logical extensions of the work already
carried out. The most important ones are discussed in the following paragraphs.

A more robust blade model is the most pressing need in bringing the software package to
the point of a complete axisymmetric turbomachine design tool. The new model should depend
more strongly on the number of blades and incorporate blockage effects. A means for accounting
for the blade force normal to the meridional direction in the axisymmetric plane should also be
investigated. Reversed flows must also be treated more realistically.

An improved turbulence model should lead to improve results. This is a common need
throughout the computational fluid dynamics field, and because a great deal of research is be-
ing don. on this topic, the literature should be monitored for advances. Most of the more
sophisticated turbulence models currently available would also greatly enhance the prediction
capabilities. |

Solving the pressure corrector equations, a stiff linear system, takes the majority of the
computational effort expended in the solution process. A muitilevel solver was tested on this
set of equations to see if it could accelerate convergence. (Because the momentum equations
are easily solved using a tridiagonal algorithm, there seems to be little advantage in using a
full multilevel solver on the entire system of governing equations.) The anisotropicity of the
pressure corrector equation coefficients causes the multilevel solver to exhibit poor convergence
characteristics. Further research may yield insight into how information should be transferred
{from one level to the next when the coeflicient ampiitudes vary widely in the different directions.
Such an understanding should iead to a modified multilevel algorithm with increased convergence
rates.

In 1990, Hobson and Lakshminarayana {35,36,37] presented the pressure substitution method
(PSM) and presented evidence that it outperforms PWIM. Essentially, PSM treats the “2 — §”

pressure gradients in the facial contravariant velocities explicitly, and the “1 — &” impliatly.
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Thus, an expression for pressure, rather than pressure corrector, can be found, permitting the
simultaneous solution of all flow fields via a block solver.

Their papers do leave some questions unanswered. The PWIM solv.  hey usvd employed

a Gauss-Seidel iterative solution procedure for solving the sets of equations. A more efficient

iterative solver may lessen the advantage PSM has over PWIM. Neither did their PWIM use

SIMPLEC, which increases PWIM’s velocity-pressure coupling. Also absent from these papers

was a discussion as to whether the increased coupling makes , .or the added overhead associated

with block solvers. This is especially relevant because the momentum equations are easily solved.

Despite these questions, the potential benefits of PSM warrant further investigation.
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Appendix

Differencing Schemes

During the discussion of how the governing equations are discretized and solved using the
PWIM algorithm, it was stated that the integral form of the equations must be converted to
a linear, discretized equation. For a general transport quantity the equation took a five-point

stencil format:

(Ap — Sp)po = Apde + Awéw + AndN + Asds + Su (A.1)

The purpose of this appendix is to explain how these multiplicative coefficients, A;, are calculated.
The total flux across a control volume face is a linear combination of convective and diffusive
fluxes. The flux across a veMical face (Eq. A.2a) and a horizontal face (Eq. A.2b) were derived

in Chapter 4.

Fé = (nprUg). — (nTrg11e)e (A.20)

F = (£prVé)n — (ETrJg22¢0)n (A.20)

Second-order accurate central differencing can be used to evaluate the diffusive flux, but the
convective flux is difficult to evaluate as it is a function of the transported quantity at the control
volume face. Since the transported quantity is defined only at the nodes, the nodal values must
be used to approximate the facial value. The approximation process combined with the finite
diflerence expansion of the diff*=ive flux is called a diflerencing scheme.

Differencing schemes evaluate the total flux in terms of linear functions of the nodal quan-
tities. If only the two nodes surrounding the control volume face are used in the linear repre-

sentation of the flux, the flux can be represented according to Eq. A.3. The “¢” and “¢ "
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superscripts on the coefficients multiplying the nodal quantities correspond to convective and

diffusive influences, respectively.
Fé = (abdo — adE) + (abdo — 0t éE) (A.3)

Expressing the total flux through the remaining three control volume faces in a similar manner
and gathering common terms (i.e. a% and af) places the linear discretized equation in the

following format:
Apdo — Apdr — Awéw —~ Andn — Asés = S (A.4)

where the source terms have all been absorbed into S and the coefficient Ap is composed of
contributions from fluxes through each of the four CV faces. Moving all but the central node
terms to the right hand side of the equation yields the form given in Eq. A.1. The diflferencing
scheme can thus be described by the manner in which the coefficients A; are formed. The
remainder of the appendix is devoted to presenting various differencing schemes. The scheme
that is appropriate for any given flow calculation is dependent on the geometry, fineness of the
grid, and needs of the user.

Because the diffusive coefficient and the control volume over which the governing equations
are integrate are identical for each momentum equation, the A; coefficients are also identical. The
presence of only one type of control volume on the nonstaggered grid results in less computational
effort being expended in the discretization process, as compared to that required for staggered

grids.

A.l1 Lower-Order Differencing Schiemes

When only two nodal values appear in the linear expression for the total flux, the differencing

scheme is referred to as a lower-order scheme. Highzr-order diflerencing schem .5 use three or
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more nodal values to approximate the total flux through a particular CV face. These higher-
order schemes are discussed in Section A.2. In the present section, a number of lower-order
diflerencing schemes are presented in terms of the coefficients, A;. Only the coefficients for the
eastern, western, and central nodes are formally stated. Those for the northern and southern
nodes are evaluated in a manner analogous to the eastern and western coefficients, respectively.

Lower-order differencing schemes are conveniently expressed in terms of the local, or cell,

Reynolds number. The computational space cell Reynulds numbers are:

Recen =C/D (A.5)
C. = (prUAn), (A.6a)
D, = (IrJgnAn/AL). (A.66)
Cn = (prVAé), (A.7a)
D, = (T'rJg22A8/An)n (A7)

Evaluating the diffusive gradient using central differencing (i.¢. ¢¢le = (¢ — d0)/AE) yields the

following expression for the total flux:

Ff = D [Re.é. ~ ($£ — ¢0)] (A.8a)

Fr': = Dn [chd’n e (éN - ¢O)] (A.Sb)

By introducing the contravariant velocities and the transformation metrics, it is possible to define
the cell Reynolds numbers in the computational domain as given in Egs. 4.5-4.7. Therefore, any
differencing scheme based on a physical space Re.s can also be utilized in the computational
plane.

Upwind Differencing:

Ag = D.(1 + [~ Re.,0}) (A.9a)

Aw = Du(l + [Rew,0}) (A.9b)
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Upwind differencing [16, p. 105) states that the convected quantity is equal to the value

at the upstream node. The upstream direction is determined by the intrinsic FORTRAN MAX
function ([ ]). Upwind differencing is only first-order accurate in the sense of Taylor series
truncation error. However, the truncation error is not an indication of the overall accuracy of the
scheme. Instead, it indicates how quickly the error falls off when the grid size is changed. Upwind
differencing accurately reflects the true physics of convection dominated flows. For convection
dominated, one-dimensional flow, upwind differencing yields a solution which is much closer to
the analytic solution of the convection-diffusion equation (Eq. A.10) than that produced by

approximating the facial quantity using second-order accurate central differencing [16, p. 105].

However, for multi-dimensional applications, large amounts of numerical diffusion occur if the
flow is skewed with respect to the gridlines [16, pp. 105-109]. This diffusion can contaminate the
results with an unacceptable amount of error.

Central Differencing:

Ag = Do(1 ~ 1Re,) (A.11a)

Aw = Dy (1 + 1 Re,) (A.11b)

Averaging nodal quantities to arrive at an expression for the convective flux is known as
central differencing [16, pp. 103). Central differencing cannot be used for high Reynolds number
flows on coarse grids, because this scheme becomes unstable for cell Reynolds numbers greater
than 2. The instability is a result of the A; coefficients becoming negative. When a coefficient
becomes negative, positive definiteness is destroyed, physically unrealistic variable dependencies
are formed, and iterative solutions fail to converge {16, pp. 103-104]. Some differencing schemes
make use of central differencing when it is stable or add artificial dissipation to enhance stability.

It is included in this discussion for completeness.
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Hybrid Differenciag:

Ag = D.(l|3 Re.}, 1] - L Re.) (A.12a)

Aw = Dy ([13Rew |, 1] + { Rey) (A.12b)

Hybrid differencing [38] switches the scheme between central and upwind differencing. When
Re < 2, it is equivalent to centr.l differencing. When central differencing would become unstable,
the hybrid scheme switches to upwind differencing. Hybrid differencing is effectively a rough curve
fit approximation to the analytic solution of the one-dimensional convection-diffusion equaticn.
Hybrid differencing is a widely used scheme [23,38,39], because it is unconditionally stable, is
computationally inexpensive to use, and exhibits favorable convergence properties.

Power Law Differencing:

Ap =D, ([o,(1 - Tlo”“*”sl +[-Re., Q) (A.13a)

Aw = D, ([o,(1 - 1—10-[Re,,,[)5] + [Re..,,O]) (A.136)

Power law differencing {20] is a very close curve fit to the analytic solution of the one-
dimensional convection-diffusion equation. For Re < 10 a type of central differencing is used,
and for Re > 10 upwind differencing arises. Previous researchers [20, 39] have chosen power law
differencing over hybrid differencing, despite the fact that it is computationally more expensive,
because it yields more accurate results.

For all of the lower order differencing schemes, the central coefficient is equal to the sum of

the neighboring coeflicients plus the mass source.
Ap=Ap+Aw + AN + As +(Ce — Cu) +(Ca = C,) (A.14)

My = C, ~ Cy + Cn — C, (A.15)

The mass source goes to zero at convergence, so it may also be ignored during intermediate

solutions. However, retaining it prevents stability problems, because the individual mass flow
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rates arise from the linearization of the convective flux terms. For the stable differencing schemes,
upwind, hybrid, and power law, Ap will never drop below zero, even if the mass source is large and
negative. However, Ap can become zero with some differencing schemes if physically unrealistic

flow situations arise.

A.2 QUICKR Differencing

In an effort to maintain the description of the true physics of the flow provided by up-
wind differencing without incurring the corresponding numerical diffusion, Leonard [12] proposed
Quadratic Upwind Interpolation of Convective Kinematics (QUICK) differencing. Three-point
upwind-weighted differencing yields third-order accuracy in the expression of the facial values
(de, #5). This Taylor series expansion uses three nodal values, two upsirearn and one down-
stream. Which nodes are used depends upon the direction of the flow. Central differencing is
still used to evaluate the diffusive component of the flux, so the formal accuracy of QUICK is
reduced to second-order. This is not entirely indicative of the accuracy of the overall scheme,
because the diffusive and convective fluxes are rarely of the same order of magnitude.

Figs. A.la-h show which nodes are used with the QUICK differencing scheme for forward
and reversed flow through the eastern, western, northern, and southern control volume faces. If
the convective velocity is zero, then it is immaterial how the facial quantity is approximated, since
it will be multiplied by the null mass flux. For a representative eastern face with a positive (Eq.
A.16a) or negative (Eq. A.16b) convective velocity, the truncated Taylor series approximation

for the facial value is:

¢ = (3¢ + 6é0 — dw)/8 (A.164a)

¢e = (3¢0 + 66 — d££)/8 (A.16b)
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For this higher-order differencing scheme, not only are the neighboring nodes brought into

the expression, but the nodes two control volumes away from the central node also appear in
the stencil. Because of this, the implementation of this diflerencing scheme at nodes near the
boundaries is more involved. Fig. A.2 shows a typical computational space grid. The CV faces
on which QUICK can be used are indicated. A “ 1 ” superscript indicates that QUICK can only
be used at that face if the flow is in the positive direction. A “ = ” superscript denotes a face
for which QUICK can only be used if the flow is reversed. If QUICK can be used regardiess of
flow direction, no superscript is used. QUICK differencing cannot be used on the faces lying on
the boundary under any flow conditions, neither can the lower-order differencing schemes. These
faces are handled by an application of the boundary conditions (see Section 4.6). The problem
from the standpoint of QUICK lies in treating faces opposite the boundaries. These faces,
marked in Fig. A.2 as dependent on flow direction, bring in control volumes that lie outside of
the computational domain. To prevent this, Phillips and Schmidt [40) suggest turning off GUICK
differencing at the nodes whose stencil encompasses nodes which lie outside the computational
domain and using a lower-order scheme instead. However, this causes nonconservative solutions.
For example, the northern face of the grid node (3,3) is hybrid differenced, but the same face
acting as the southern wall of node (3,4) is treated using QUICK. The residual for a system
treated in this manner never goes to zero, making it more difficult to detect when a converged
solution is reached. Also, the accuracy drops near the wall, where flow gradients are most drastic
and precision most needed. Miller and Schmidt [23] report that mixing lower and higher order
differencing schemes produces imperceptible error. This is not surprising, since the primary case
they were studying was a driven cavity where the convective flux near all of the computational
boundaries is minimal. However, this author’s research has shown that this treatment causes a
significant amount of error when mass flux enters the computational domain {see Section 7.1.3).
The error does not appear in the data presented by Miller and Schmidt, because the error occurs

in the inlet region, and their data only shows the flow field at the center of the domain.
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In an effort to treat the problems of QUICK differencing near the boundary, two approaches
were investigated. The first was to adapt Phillips and Schmidts suggestion so that QUICK
was used wherever the flow directions allowed, and where it was prohibited, hybnd differrncing
was used. By basing the differencing on the control volume fac: rather than on the nodes, a
conservative differencing algorithm arises. This approach was not entirely successful because the
transition from regions using hybrid differencing into those using QUICK results a sudden change
in accuracy. The resulting flow fields have a corresponding discontinuity (see Section 7.1.3 for
further discussion of this phenomenon).

A second, and successful, solution to the problems caused by using QUICK differencing near
the boundary was to extend Leonard’s original approach so that it is applicable to C\ faces
that are opposite the boundary. Flow quantities are defined on the boundary, so the boundary
node is used in the Taylor series approximation of the convected quantity. Wherecs the standard
QUICK differencing uses only nodal values centered in contro! volumes to approximate the facial
quantity, the new differencing scheme uses the nodes on each side of the control volume face
and the node on the boundary. Figs. A.3a-h show the control volumes on the east, west. north
and south boundaries, and indicate the flow conditions which make use of the boundary node
in the new scheme. The acronym QUICKR (for QUICK, Revised) is used to distinguish the
new differencin; scheme from the original QUICK. QUICKR maintains higher-order accuracy
throughout the flow domain. whereas QUICK has higher-order accuracy only in the interior. A
"7 " s appended to the QUICKR symi’ols whet it is necessary to distinguish the new Tavlor
series approximation (Eq. A.17) from the standard QUICK series (Eq. A.16). The three-point
upwind-weighted Tavlor series approximation that is used in QUICKR for the control volume
faces opposite the boundaries 1s shown in Eq. A 17 for pesitive flow through the eastern face of

the control »olume that borders on the western boundary (Fig. A 3g).

¢, = {3ap +op - ow /3 (A1
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Using this approach, high accuracy is maintained throughout the flow domain, including the

vegions near the walls where large flow gradients make the additional accuracy very desirable.
Implementing QUICKR’s directional sensitivily is done through the use of switching factors

that become either positive or zero, depending on the flow direction. Defined in Eq. A.1B, these

switching factors are based on the convective flux component.
St =(IC.|+ C.)/2 ST = (ICe| - Ce)/2

Sk = (ICul+ Cu)/2 Se = (ICul - Cu)/2 (A.18)

For flow in the positive direction, the switches with a “ + ” superscript equal the mass flux, and

the * = 7 superscribed switches are zero. When the flow reverses, the former switches become

zero and the latter are equal to the absolute value of the mass flux.

Discretizing the flux terins for each of the four sides and collecting common nodal factors
yields the QUICKR differencing equations. For the face or faces which require the use of the
modified Taylor series expansion, (a',¥,¢’, and d’) of Eq. A.20 are substituted for (a,b,¢, and
d) of Eq. A.19. These faces are marked with either a “*+ ” or “ = ” superscript in Fig. A.2.

bt =

af=% bdt=F =-3 ar=} =1 di=-}
ai:% bzz% d$=-—% a;:% b":% d;:—é (A.19)
et =1 b'j:% c'::—% a'::% b, =1 d'::-—%
ab=4 ¥i=1 l=-1 o;=1 W¥;=1 (;=-1 (A.20)
A% = —b}SF 4+ 8757 - 2SI + D, (A21a)
AQ = bST - b7S; - FSY + D, (A.21b)
A, = d7 st (A.22a)
AQ. = dtSE (A.22b)
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AS =atSF - aIS; + D. - ¢St + a2S; + Do +

atSt — a;S; + Dn — afS} + o;S; + D, (A.23)

Unlike the lower-order differencing schemes, the central cocfficient is not equal to the sum
of the neighboring coefficients plus the mass source. Adding eight coeffici- nts together does not
give the central coefficient, either. Weighting the Taylor series expansion in the upwind direction
is the cause of this variance. Other schemes exhibit a symmetrical weighting about the face.
QUICKR, however, weights the relative importance towards the upstream nodes while retaining
a smaller dependence on the downstream value.

Eq. A.24 shows the linearized equation with the nine-point stencil that arises from QUICKR.

A8¢o = Ag¢£ + Aazéw + AS¢N + A§¢s +

Aggész + As,wéww + A,?wmwv + A?géss + 8 (~.24)

Inspection of the QUICKR equations shows that negative coefficients can appear. For certain
flow situations diagonal dominance can be lost and the influence of the neighboring nodes will
overcome that of the central one. To counter these problems, which can lead to the divergence
of iterative solvers, Phillips and Schmidt [40] proposed using hybrid differencing in combination
with QUICK. They treat the hybrid terms implicitly, and in the explicit terms they add the
difference between the hybrid and QUICK terms. The accuracy of QUICKR is achieved via the

convergence behavior of hybrid differencing by placing the QUICKR into the code as follows:
43¢0 = Afes + Albow + Allen + alflés + [§ + 59 (A.250)
59 = (48 ~ A3)d0 + (AL - Af)ee + (A} - All)éw +

(AQ - Afyon + (A% - AlhYos +

Apdre + AR woww + ARyonn + AYcdss (A 25b)
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The superscript on the nodal coeflicients denotes which type of differencing is used to evaluate
the factor. Any stable lower-order differencing operator, such as power law differencing, may be
used in place of the hybrid scheme. At convergence ¢” = ¢"*! and the hybrid terms cancel out,
leaving the fully QUICKR relationship shown in Eq. A.24. Under-relaxation of the equation is
not affected by the use of QUICKR if S is calculated prior to under-relaxation.

The negative coefficients make QUICKR susceptible to overshoot and undershoot {12}. Such
behavior during the early stage of convergence, when the flow fields are rapidly evolving, is likely
to cause the solution to diverge. To prevent this, the flow solution is allowed to stabilize over a

few outer loop iterations before QUICKR is turned on. QUICKR is turned off by setting S = 0.

A.3 Differencing Schemes for Cvlindrical Coordinate Svstem Applications

In the cylindrical coordinate system and the generalized curvilinear coordinate system de-
rived from it, the surface area is a function of radius. The transported quantity decreases as
the fluid moves in the radial direction, not due to shear forces within the fluid, but due to flux
conservation. In the discretization of the governing equations, this is manifested as an error in
the upwind approximation when there is a difference in radii between the two points across which
the differencing takes place.

An approximation, that is analogous to that used in rectangular coordinate spaces, concern-
ing the influence convection has on the transported quantity is made for ¢ylindrical coordinate
applications. This approximation is referred to as the cylindrical convection approximation. The
subtle difference between the two approaches lies in assuming that it is the product of the radius
and transported quantity that is unchanged by convection, rather than the transported quantity

itself. For purely convective flow in the positive direction, the facial quantity in Cartesian spaces
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would be found according to equation Eq. A.26.

$e = d0 (A.26)
The cylindrical convection approximation results in the following expression for the facial value:
rede = rodo (A.27q)

¢. = (ro/re)do (A.278)

This minor change increases the accuracy of the numerical model because it makes the discretized
equations reflect the dependence of the concentration of the transported quantity on the radial
location. Although the governing equations in cylindrical and rectangular coordinate systems
are often presented as subclasses of the same set of equations, no publications addressing this
characteristic of convection in cylindrical frames of reference have been found. Two differencing
schemes derived from this modification are presented and discussed in the remainder of this
section. The cylindrical convection approximation can be applied to any of the differencing
schemes in a similar manner.

Cylindrical Upwind Differencing:

Ag = [-C.,0}rg/re + D. (A.28a)

Aw =[Cu,0) rw/ry + Dy (A.28b)

AO = [CG-OB 7'0/": + De + ["Cwlol "O/Tw + Dw +

[Ca0) ro/ra + Dn + [~C.,,00 ro/r, + D, (A.29)

The convective and diffusive fluxes are treated separately in cylindrical upwind differencing.
Central differencing accurately reflects the physics of diffusion dominated flow, regardless of the
reference space, so no change is required for the diffusion terms. Using the cylindrical convection

approximation shown in Eq. A.27b, the facial quantity is approximated as the upwind nodal value
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multiplied by the ratio of the nodal radius to the facial radius. The FORTRAN MAX function is
used to determine the upwind node, just as it was in the upwind differencing scheme in Section
A.l. Dependence of the total flux on the local Reynolds number is modeled by the relative sizes
of the two component fluxes. The resulting differencing scheme reflects the dependence of the
transported quantity on the nodal location, making it more accurate than the other five-point
differencing schemes. However, it is formally described as a lower-order differencing scheme
because the upwind approximation is still only first-order accurate, even when it is consistent
with the cylindrical convection approximation.

Cylindrical QUICKR Diflerercing:

The higher-order differencing scheme presented in Section A.2 is formed by approximating
the facial quantity according to a three-point Taylor series approximation (Egs. A.16 and 17).
The cylindrical convection approximation assumes that the quantity that is conserved by convec-
tion is (r¢) rather than ¢. Thus, if the Taylor series expansions that form the QUICKR differ-
encing scheme are made consistent with the cylindrical convection approximation, a higher-order
differencing scheme that is suitable for cylindrical applications results. Representative modified

Taylor series are given in Eq. A.30 (corresponding to Eq. A.16) and Eq. A.31 (corresponding to

Eq. A.17).
ée = (3rgdg + 6rodo — rwéw)/(8re) {4.30a)
¢ = (3rodo + 6reée — recdee)/(Bre) (A.300)
¢ = (3rodo + rede — rwéw)/(3re) (A.31)

The resulting scheme is referred to as cylindrical QUICKR differencing. It is implemented
into the solution algorithm in the manner described for QUICKR. The expressions for the nodal

coefficients are listed in the following equations.

AD = (=bFS* + b7ST)rE/re — (c2SI)rE/rw + D (A.320)
AS = (bESE - bISIVrw/re — (cPSH)rw/re + Dy (A.32b)
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ARe = (dZS7)reE/Te (A.33a)

AYw = (dES)yrww/ry (A.33b)

Ag = (“:S: - a; S )ro/re + De ~ (a;ts‘t + az8g)ro/re + Dy +

(a,'.’[S,f - a.S7)ro/tn + Dn — (a,+.5',+ + a; 5 yro/rs + D, {A.34)

Despite the radii in the differencing coeflicients changing the diagonal dominance charac-
teristics, no stability problems were encountered when either cylindrical differencing scheme was
used. A discussion of the effects of the cylindrical convection approximation on solution accuracy
and stability is given in Section 7.2. Note that the cylindrical differencing schemes revert to the

Cartesian form when the radii involved are equal.




