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Dear George:

Th.s letter is meant to be a progress icpo,": for the period March 1, 1992 to February 28, 1993

of our grant with ONR #N00014-92-J-1752. I am also enclosing a PPPH report for your records.

Although this is the first year of this proposal, we have already made significant progress

towards our goal to be able to accurately theoretically model and understand the strengths of

Matrix/Second-phase-particle Interfaces. Our accomplishments have been along two directions.

The first involves using our state-of-the-art ab-initio dynamics approach to calculate the properties

of the bare Cu(100) surface. This is needed as a test before we may begin to study the interfaces

with the second-phase-particles. The results of our calculations of some structural properties are

summarized in Table I.

Table I

Comparison between theory and experiment of various ground state
properties of bulk Cu and its (100) surface

Properties of Cu Theory Experiment

Lattice constant in bulk (A) 3.63 3.60

Bulk modules (M Bu) 1.56 1.42

Bulk cohesive energy (eV/atom) 3.91 3.50

Surface layer relaxation -4% -3%

Surface energy (eV/atom) 0.84 0.74 ± .2



As you can see the agreement between theory and experiment is excellent. This is particularly

true when you consider that no experimental input enters the theory except for the atomic number

of Cu. The electronic charge density of the (100) surface is shown at the top panel of Fig. 1. In

order to get a better understanding of the effects of the s-electron and d-electron contributions to

this density we show at the bottom of Fig. I the density obtained by subtracting off the atomic d-

electrons. The s-electrons are seen to be very nearly uniformly spread out, almost as if they were

free-electron like. This feature could be used in modeling the region away from the Cu interface as

a jellium system.

As far as the details of the interface are concerned, we have discovered that we can

theoretically design a Cu(100) - TiO2 interface that is lattice-matched to less than 0.5%! The

interface supercell is 4I3 x '113 for Cu and 2x2 for TiO 2. This system will than provide a

tractable and interesting interface to study using our ab-initio techniques, and is also possibly an

interface that could be made experimentally. We are consistently in contact with Professor Warren

Garrison and his group at Carnegie-Mellon and have suggested this new interface as an interesting

system to study. Professor Garrison has recently finished some interesting studies of secondary

crystallization and most recently has gone on to prepare materials that are internally oxidized. It

appears that both theory and experiment are now at the point to begin studies of the interphase

interfaces.

The second accomplishment this past year involves the introduction of a new theoretical

method that appears to be extremely promising for performing ab-initio calculations of complex

material systems. Although the technique is still in a very preliminary form, and not yet capable of

studies of the types of material systems of interest for this proposal, it has great potential. The

technique involves the introduction of Wavelet Theory and Multi-resolution Analysis to the

electronic structure aiena. Test calculations on reproducing the Is states of all the atoms in the

periodic table, as well as the ground state of the hydrogen molecule ion, successfully demonstrate

the potential power of this new technique. The results for the hydrogen molecule ion are show in

Fig. 2. Here the open circles represent tne exact solution. We nave aiready written a



paper on this subject and sent it out for publication, a copy of which is enclosed with this letter.

We are very excited about the prospects of this new approach, and plan to pursue it vehemently.

I hope this is sufficient. If you need any additional information please let me know.

Sincerely,

John D. Joannopoulos
Professor of Physics

JDJ:ia
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Wavelets in Electronic Structure Calculations

K. Cho, T. A. Arias, and J. D. Joannopoulos

Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139

Pui K. Lam

Department of Physics and Astronomy, University of Hawaii, Honolulu, Itl 96822

A three dimensional (3D) wavelet analysis is employed to develop a new formal-

ism for electronic structure calculations. The wavelet formalism provides a systemati-

cally improvable and tractable description of electronic wavefunct ions and overcomes

limitations of conventional basis expansions. The potential power of the wavelet

formalism for ab initio electronic structure calculations is demonstrated by a calcu-

lation of Is states for all the naturally occurring nuclei on the periodic table and the

interaction energies of the hydrogen molecule ion.

PACS numbers: 71.10.+x, 31 .15.+q, 02.70.Rw
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Spectral analysis using the Fourier transform (FT) is a powerful method for solv-

ing many problems in science and engineering. This method, however, is not appro-

priate for problems that require a localized description in real space awd in 'oIirier

space. Although several techniques, such as the windowed Fourier transform, have

been invented to attempt to overcome this limitation, by far the most promising ncw

technique is the wavelet transform (WT) [1]. Unlike the plane wave (PW) basis furic-

tions of the FT, the wavelet basis functions are localized both in real space and in

Fourier space [1-41. Furthermore, multiresolution analysis (MRA) of the WT pro-

vides a systematic successive approximation scheme for practical applications i1.21j

Applications of the WT have focussed primarily on digital signal processing (1D)),

compact image coding (2D), and related fast mathematical algorithms 131. Most re

cently the WT has been applied to the analysis of chaotic behavior and turbulence

:jl 2D, the coherent states of quantum optics and quantum field theory, and to real

space renormalization group theory [41.

In this letter, we introduce a new method for the application of W\T. iTT :?D. toý

electronic structure investigations of material properties. The traditional ab ?17ilm1

total energy density functional pseudopotentii.l methods for electronic structure cal-

culations use either LCAO-type (e.g. atomic, Gaussian, or Slater) basis sets or P1V

basis sets [5). LCAO-type basis sets typically are capable of describing the electronic

structure with a small number of basis functions, but lack an explicit and well-defined

procedure for systematic improvement [6], and generally complicate the calculation of

forces because of the presence of Pulay terms 173. On the other hand, P•\ basis sets

provide a systematic expansion of electronic wavefunctions, and simple itaIorilt hins for

calculating force, but suffler from the same limi tations as the FT ret'lm•t. Specifi

callv, the description of the rapid variations of the electronic wavefmi nr lin 01l cl )'," 0o

IOle Atlomic nuclei (ato011ic core) re(qiiires a largc niuml)er of P\V fnln-t im i s -entnl, H1,1101



the volume of the atomic core is only a small part of the total volume of the sys-

tem. In addition PW basis sets are, in prin iple, not well suited for the description

of isolated molecules and surfaces. This is because the periodic nature of the basis

introduces unnecessary periodic images and a redundant high resolution description

of the vacuum regions.

The "best of all worlds" then would be to have a basis set that, unlike a PW

basis, can zoom into the atomic core regions and does not introduce unnecessary

periodic images, and, unlike an LCAO-type basis, does not have Pulay terms and

provides an explicit prescription for complete expansion of the electronic wavefunrc-

tions. The wavelet basis has all these desired properties: multiscale decomposition of

the wavefunction, the localized description of the rapid variations, and systematically

complete expansion similar to the PW expansion. Therefore. as we demonstrate in

this letter, the wavelet basis overcomes the limitations of both conventional basis sets

and retains only their advantages.

We begin our discussion with a brief review of the basic concepts underlying

wavelets. We then extend the wavelet. formalism to the solution of the Schrbdinger

equation with the introduction of spherically symmetric basis functions. As a simple

example we apply our technique to the study of a hydrogen atom. We then dlemon-

strate that a single small basis set is capable of calculating accurately the Is states

of all the nuclei from Hydrogen through Uranium! Finally we demionstrate that a

wavelet basis can easily describe covalent bonding and illustr: Ile its use with the hy-

drogen molecule ion (H' ). We conclude with a discussion of the straightforward

extension of the current analysis to periodic systems and all electron calculatiOns.

The wavelct transform and multiresoluliou analysis. - Given a sqiUare intf-erable

function space L2 (fl 3 ), wavelets impose a hierarchical struclure of suhspaccs with

different resolutions which forms a multiresolution analysis. The space of fun:iins al



resolution 2-J (or more simply at resolution j) is represented by V,(R1), and spanned

by the basis set of scaling functions at resolution j, {*j,,(r)}, where n specifies the

center of the basis function. The hierarchical structure is then

• - 2 C VIC Voc Vi C 1C . (1)

The approximation space V< is decomposed into a sum of the coarser approximation

space I•_l and the wavelet space 14"j- which describes the detail at resolution j

(IV V,_ e W ) and is spanned by the basis set of the wavelet functzons at

resolution J, {4',,n(r)}. With a repetition of this decomposition, the L 2 ( 10) space

can be expressed as either the sum of the wavelet spaces of all resolutions or tlhe sum

of one approximation space and the wavelet spaces of higher resolutions:

~ ~v V ~y ~ (R3  (12
.7 Ii a

Therefore, any square integrable function f(r) can be expanded either as a su51 of the

wavelet functions of all resolutions or as a sum of the scaling functions at resolition

j j0 and the wavelet functions of all finer resolutions j > jo. In this- work. we

will use the latter expansion because it introduces approximations only at the high

resolution cutoff in practical applications.

With the introduction of two projection operators., AJ (approximation operator)

and D/ (detail operator), which project a function into I', and I1, respectively. one

may express f(r) as

/(r) = A, 0f(r) 4- V bQf(r). (3

The approximation and the detail of a function f(r) at resolution j art, expanded-1 in

ternis of the basis functions,

110., f(r) =1 , t.,,, ,r .
it



Combination of Eqns. (3)-(5) and truncation at the finest resolution ) leads to

the wavelet expansion of f(r) as

f(r) = ajo.nflO n(r) + (6)

This expansion still contains an infinite number of basis functions associated with

the lattice {n}. Since the scaling functions aad the wavelet functions are spatially

localized, one may retain only the basis functions that have significantly large coeffi-

cients in Eqn (6) for the problem at hand. This leads to an expansion with a finite

number of basis functions and allows one to use different resolutions for different spa-

tially localized regions. In particular, for the description of ,he rapid oscillations of

the electronic wavefunction in an atomic core region, one need add higher resolution

scales only to the core region and thereby systematiclly improve the calculation.

C'onstruction of a wavelet basis set. - Although the wavelet and scaling functions

are far from unique, we found that the following forms are particularly convenient in

practical applications. The wavelet functions V,,n(r) are chosen to be the Mexican-

hat functions (the Laplacians of Gaussians) which form a fairly tight frame '11. The

scaling function bo.n(r)corresponding to the Mexican-hat function is chosen to be a

Gaussian function. Both the Mexican-hat functions and the Gaussian functions are

spherically symmetric. The relationship between the Gaussian scaling function and

the Mexican-hat wavelet function is not exact, but is quite a good approximation

as discussed in Ref. 1. These localized basis functions are spatially arranged so

that their centers form a simple cubic lattice 181. This is shown :;chematically in

the top panel of Fig. 1. The lattice spacing do at resolution j 0 is chosen small

enough to give a fairly tight frame 1t,9j. The basis functions witlh resolution j •re

arranged correspondingly on the lattice siles with lattice spacing d/,2-'. The centers

of hasis function-s for different resolutions are selected so as nol 1to overlap, awl ¶ he



centers of all the basis functions form a simple cubic lattice with spacing do/2"'-". li

order to construct a finite basis set we collect the most important basis functioni I,

introducing spheres of finite support radii at each nuclear center. This is illustrated

schematically at the bottom panel of Fig. 1. Correspondingly smaller support radii

are chosen for correspondingly higher resolutions so that deep core regions have more

resolution scales. We designate this finite basis set as {fbo,,(r), >'j,,,r);.rnar > ) > 0}

or more compactly as {bi(r)} where i is a simplified notation for {jn}.

Solution of Schr6dinger equation. - The Schr6dinger equation, HIqI > = cNI >,

for electronic structure calculations becomes a generalized eigenvalue problem in a

general nonorthogonal wavelet basis. Expansion of the wavefunction in terms of the

basis functior (j4' >= ZcF, ib, >) leads to the secular equation,

I b

With our choice of wavelet and scaling functions. -11 the matrix elemi1ents in L[ý (7S

can he calculated analytically. Solution of Eq. (7) niay then, proceed by a number

techniques including square root matrix diagonaltzaoion 10>, Choleskv deco'iUl,(,i-

tion 111], molecular dynamics [5], and conjugate gradients j5! approaches. In this

work we have used both square root matrix diagonalization and conjugate gradients

approaches.

The hydrogen atom. - In order to gain a sense of the optimal values of the various

parameters of the formalism, we chose to study the hydrogen atom as a siniple test

case. After performing calculations using many different resolution scales and diflerei i

support radii, we find ',at a satisfactory minimal basis set for the 1wd rogen atoml

contains 25 basis functions with four resolution scales: (7 scaling fulicf fot 7 0o.

plus G wavelets for j = 0, plus 6 wavelets ior j 1, plus 6 wavelets for ; 2) which

we designate simply as (7 4 three 6's). These correspond respr i vlx h)lo 5ipport

6

S• m mI



radii of lau, 0.5au, 0.25au, and 0.125au. The calculated Is eigenenergy is within 2%

of the exact value, and the calculated Is radial wavefunction is shown in Fig. 2 (top

panel). The calculated wavefunction ditiers from the exact one primarily near the

origin (within the resolution limit j.,,=)- The small difference at r = 2au is due to

the finite support radii used for the basis set. By increasing the support radii, the

difference at r = 2au disappears as shown in the bottom panel of Fig. 2. The result

in the bottom panel of Fig. 2 corresponds to a basis set of 85 basis functions with

three resolution scales (33 + two 26's) with support radii (2au, lau, and 0.hau), and

gives the Is eigenenergy to within 0.5% of the exact value.

Hydrogen to Uranium. - By adding more resolution scales, one can calculate

the wavefunctions of heavier nuclei within the same accuracy as follows. As the

atomic number increases, the Coulomb potential becomes stronger, and consequently

higher resolution scales are needed in the core region. However, only one additional

resolution scale needs to be added each time the atomic number double,-,. Therefore,

for the description of is wavefunctions from Hydrogen to Uranium, one needs to use a

basis set with eleven resolution scales (7+ ten 6's). Using this fixed basis qet consisting

of only 67 basis functions, one can calculate (to within 3%) the Is eigenvalues of all

the naturally occurring nuclei on the periodic table! The results are shown in Fig. 3

and include, for simplicity, only the even nuclei. Note that the eigenvalue for each

nucleus is larger than the exact value by very nearly a constant percentage so that

the results appear to lie on a straight line as expected.

The hydrogen molecule ion. - We new investigate the efficiency of the wavelet basis

for the description of chemical bonds. As a simple example, we consider the energy

of an H' molecule as a function of the separation R between the two protons. The

total energy (electronic eigenenergy plus the Coulondb potential energy) is plotted as

a function of I? in Fig. 4. The basis set, for the calculation is selected using the same



support radii as for the hydrogen atom calculation with the larger basis set (Fig. 2

bottom panel), and the total number of basis functions varies between 141 and 167

[121 depending on R. It is important to note that the centers of the basis functions

are not following the nuclei as the separation R changes; i.e., the underlying infinite

basis set is not correlated to the ionic positions. Rather, it is the support spheres,

which are attached to each nucleus, that designate and determine the finite basis set

as illustrated in the bottom panel of Fig. 1. This property of the basis set does not

lead to Pulay forces, and allows the wavelet functions to overcome the limitations of

LCAO-type basis functions [7]. Finally we note that the calculated values in Fig. 4

are larger than the exact values 113] by a nearly constant amount of 1%. This implies

that the wavelet basis also gives an excellent representation of ionic forces.

Conclusions. - We have developed a 3D wavelet formalism that is applicable inl

general to electronic structure investigations of materials, and have denionstrated its

potential power by performing calculations of the deepest core states of all the nuclei

on the periodic table and the interaction energy of an H' molecule. The wavelet

expansion with a small number of basis functions gives an accurate description of

the wavefunction both in an atomic core region and in a chemical bond. To extend

this approach to many-electron systems within LDA, one can simply use traditional

techniques for inclusion of Hartree and exchange-correlation interactions, in partic

ular, schemes developed for localized basis sets 1141 provide one natural framework

for this extension. Finally, the extension of the current analysis to periodic systenis

is straightforwardly achieved by introducing a Bloch transformation of the wavelet

functions (151. With the extensions to many-electron systems and periodic svste(ms.

the wavelet formalism can open a completely new direction of the developmenl for (71)

mnitio total energy calculations.
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FIGURES

FIG. 1. Top panel shows a to dimensional arrangement of the centers of basis func-

tions on a simple square lattice. Open circles are the centers of the basis functions at

resolution j 0, and filled circles are the centers of the basis functions at resolution j =1

Bottom panel shows the basis functions that lie within each support radius that is centered

on an atomic position (diamond-symbol). The larger (smaller) radius corresponds to j = 0

(j 1 1) resolution.

FIG. 2. Top panel shows the is radial wavefunction of a hydrogen atom calculated

with 25 basis functions (7 + three 6's). Bottom panel shows the ls radial wavefunction of

a hydrogen atom calculated with 85 basis functions (33 + two 26's). The continuous lines

are from the wavelet calculations, and the broken lines are the exact wavefunctions.

FIG. 3. The filled circles are the Is eigenenergies of all the nuclei with even atomic

numbers on the periodic table (Z = 2, 4,...,92) calculated with the fixed 67 basis function

set.

FIG. 4. The total energy of a molecular hydrogen ion is shown as a function of the

separation between the nuclei. The filled circles are the calculations with 141 to 167 basis

functions depending on the separation R. The open circles are the exact values.
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