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ABSTRACT W9-

This work investigates the application of a stochas'tic search technique, evolutionary progranning,, jor deelop.nrK' svei/
organizing neural networks. 7he chosen stochastic search method is capable of .sinuh.ico.o v o!t.r, io'th tolh .
architecture and weightr. The number of synapses and neurons are incorporated into an objective fiinction so tihat network
parameter optimization is done with respect to computational costs as well as mean pattern error. Experiments arc conducted
using feedforward networks for simple binary mapping problems.

1. INTRODUCTION

The neural network design process is largely heuristic. The designer's previous experience (or the work of other researchers)
oftentimes dictates an initial network configuration for the problem at hand. A" the network can be trained to 3,h111"% th.-

designer's goals, then the design process is terminated. It success is not attained, then a testing phase which i.,, largels trial
and error ensues. The end result can often be; network with excess parameters and little regard for computational costs.

This work attempts to incorporate the computatioi.al costs associated with neural network configurations into the opt imi zation
procedure. Potential benefits of a network which has an optimized architecture include increased throughput for rea-l-time
signal processing applications as well as decrea5ed memory requirements. Determining both network parameter', and
structure simultaneously requires a search procedure which is amenable to combinatorial optimization tasks. The morc
successful algorithms for these types of problems have generally been stochastic such as simulated annealine, gcncti:
algorithms and simulated evolution. The simulated evolution', or evolutionary programming (EP), paradigm htas been KMho'A

to have the desired attributes: combinatorial optimization capabilities-, the ability to train neural networks' a, vcll vS
determine model structure'.

Many investigations have been undertaken in an effort to obtain desired I/O mappings with variable configuration networks.
Ash' developed the dynamic node creation (DNC) algorithm which created new nodes in the hidden layer when the training
error rate fell below an arbitrarily chosen critical value. Hirose et al.' use the same approach for node creation, but also
remove nodes when small error values are attained. Dow and Sietsma1 '8 have developed post-processing algorithmis which
remove or prune excess nodes from network hidden layers. These algorithms are implemented as a two stage process. The
first stage removes nodes which have :onstant otupui. )or arc complimentaiyv t other n des The se, oid staic res ,ts i -

that are independent of the other nodes within the layer and whose output is not required to achieve a solution.

Li9 has developed a generalization of the backpriopagation algorithm which minimizes both th,. total ,Y-tem ct,(oi and the-
aormt of the weights- In simulation, this approach yielded null portions of the weight space providing an implicit meirrs ot
network optimization (weights and structure). Simulation results also resulted in nearly invariant weight sets regardless it
the initial weight values whereas straight backpropagation diid not. BIailey"0 generates neural network sructture by evaluating
synapse importance and system error (synapse eflc4 tivencss) criteria. If both synapse effectiveness and importance heco:me

low then it becomes eligible for removal. Tenorio and 1lee" have applied simulated annealing to a group method dat.i
handling (GM DII) scheme to obtain a self-organ izmug new al network (SONN) A hierarchical minimum dcscrlpton lCIngth
(MDL) function called the structure estimation criteria is used as the oblective tunction. The resulting network i•' sp;u••s,
connected as each node. is arhitrarily limmted to two inputs Since a low order Kolmo gorovG(.Gahor polyrinal app~rOxxiniatio
is implemented for the node ativalloill flnclr) 'i, more welt, is ihlan connections e.ist1 I lett rt "I W] rlisct, 3 Coticie, Ovkc\ W'.

oif other work on necural networik ,utow.tru, mun;vd pirinur a'rrthrm'.11T



The premise of this work is that tire des:igner can postulate- an
objective function which, if' optimized, will yield desirable results
for the task at hand. Further, the approach used in this Study seeks

to take advantage of computational resources duri'ng the
design/training phase thereby re-moving the burden of evaluation by
trial-and-error from the designer. For purposes of discussion, Fig.
I illustrates the structure of a hypothetically evolved neural network.
The connectivity and number of nodes in the hidden layer are /* ~
determined via a multi-agent stochastic search technique. The 1 iurinrU
application of EP to this task is inve-stigated in three distinct phases. (Iddo,
Initially, the EP training algorithm for neural networks given in the t
next section' is generali1zed so that connectivity between nodes can be
randomly -elected. In the next phase of the study, the number of
hidden units 'is P'. random variable which is incorporated into the
stochastic search. The final phase integrates methods employed in
the previous phases into a single EP search algorithm to achieve a oilt jml
network swuch Ls that vsbiýwn in Fig. 1.

The evolutionary progranuming paradigm is outlined in the next Figure 1. A4 hypotheticaiN- evolved network
section along with applications of the EP search technique to fully- structure with, variable htidde n units and
connected feedforward neural networks. Subsequent sections con nectivitv.
investigate evolving the connectivity structure of the network and 'he
number of nodes in the hidden layer(s). These methods are then
combined to yield self-organizing neural networks.

2. APPLY[NG EVOLUTIONARY PROGRAMMING TO NEURAL NETS

2. 1. Evolutionary Programming

Evolutionary programming is a neo-Darwinian search paradigm first suggested by Fo 'i -el et a!. [ 1his -,to'hash, c.ear~h
method is typicall applie~d as a global optimizer. EP has been successfully applied to a var-IeIti t optiml,'lztoln prt)WL,11w
including the trave.ling salesman problem, parameter estimation and system ID, and neural net trairriIne.

The EP optimization algorithm for locating extrema of any general function can be described by the followine tp

1. Form an initial population P,,, (x) oýf size 2N. The paraneters r associated with parent rlcine'm P, arc random/v-
initialized from a user specified search domain.

2. Assign a fitness score S,(x) to each element P,(x) in the population.
3. Reorder the population based on the number of wins generated from a1 StocIatiC COMI)Ctiti~'n puc
4. GenerCate rW/%-pring~ (P,... P2,,) of the highestv ranked N elements ( .P, : en the /' ý'Uhl?,11.M

5. Loop to step 2.

The generality of this algorithmi lends power to it~s miplem~rentation be-sides providing a systteJilait Illf-al's 0 '~to wlua.t 'k-atc
,,he user is not bound to any particular coding structure nor mutation strategy. A\s previtoisly siated. I-T is niwd In (1he,
investigation since it is well suited for simultaneously evolving model sti-lcture and IpaiawitctS

2.2. Training Neural Networks with I'P

2.2. L Determining Network Weights

Sinceu IT is a general purpose optimizaition p~rocedure,. it call be readily ulsed to[ de1e 1u ItC ne I .I T IeI)twl I T1In~ tI I

strengths. [1C hjekohctiv ILunctio)n of the 1:11 trainingv appro~ach hr hilly tonnecAted Owdav trt~tK. ~ h 11 .I.. thjt
uIsedJ In hackpiopagation inuinniror the. siitols,(11airt-I crrol Ion-( (il F 1A 1.' ' (r ,1) N "roo1i o!t



E by the number of training patterns presented. This section applies the algorithm given in the previous section to rineural
networks and then shows results for sample training tuns using simple binary mappings. It should be noted thal the examnplc(s
given are by no means statistically significant and are primarily shown for exemplary purposes.

Each fully-connected feedforward network 4, in the population P of networks may be represented by the weight array

"4x = w[if[layerl/fromnode][ionode]

For this application, the initial population was instantiated with weights chosen from a U(-0.5, 0.5/ distribution. Next, a
cost is assigned to each network in the configuration. The N members of the population generate offspring (perturbed weio.'ht
sets) according the equation

W/, = W" + 6W,

where typically 6WP e N(O, SE'E) with a ,scaling coefficient S,. The scaling factor is a probabilistic analog to the stepsize
used in gradient descent methods and may also be treated as a random variable within the EP search strategy. The variance
of the weight perturbations is bound by the total system error in this application. To emulate the probabilistic nature of
survival, a pairwise competition is held where individual elements compete against randomly chosen members of the
population. For example, if network 4,j is randomly selected to compete against network 4,', then a win is awarded to
network 4,, if E, < E,. Another approach would be to let the probability of network 4,P winning be Ej/(E +E). The N
networks with the most wins are then used to generate offspring and the process is repeated.

Figures 2-4 shows the effect of varying different parameters in training a 2-2-! neural net for the XOR mapping. ig. 2
shows the best mean sum-squared pattern error for various scaling factors from a population with 10 parent networks- As
shown, modifying the scaling factor effects the convergence rate of the training. The smaller scaling factors tend to produce
smoother curves (smaller changes) while the larger scaling factors yield more dramatic rtýjlts due to larger step sizes. The
number of networks over which the search is conducted is generally user defined. However, the population size need not
be a static parameter as it can increase or decrease over the generations of the search. Training results with a 5x incre~a.se
in population size is shown in Fig. 3 for a scaling factor of S, = 100. Fig. 4 shows successful training is possible .v!!h a
randomly chosen scaling factor for S, E U[0,1000] and N - 10. The training run shown did not converge as fast as other
runs, but it did produce a smoother scaling factor sequence.
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Figure 3. EP training of XOR mapping network Figure 4. EP training of XOR mapping network with
with different population sizes, S, = 100. variable S,.

2.2.2. Hard-limited Activations

Besides yielding only locally optimal solutions, it is necessary that activation functions be continuously differentiable when
gradient descent methods are employed for training multi-layer perceptrons (MLPs. The continuity condition is nit a
requirement when stochastic methods such as simulated annealing"3 , genetic algorithoLt4 or EP are used. An interesting
method has been developed by Winter and Widrow15 for training MLPs with bipolar activation functions. This method,
termed the Madaline Rule 11, consists of applying the minimal disturbance principle to weights associated with individual
ADALINES. If better re-suits are obtained, then the new weight values ale kept; otherwise, the new weights are ignored.
If the training process exhausts trials involving a single ADALINE, pairwise (or higher) adaptations are attempted.

The 3-bit parity problem has been chosen as an example for training MLPs with hard-limited activation functions using EP.
Fig. 5 compares training results when sigmoidal and binary activation functions and are used in a 3-3-1 netwerk. As shown,
the discrete system error states which result when using a binary activation function are quite pronounced. The concept of
a different activation function for different neurons can also be easily employed within an EP search. Each different
activation function could be treated as a random variable and be discretely indexed within a neuron structure.

2.2.3. Combining Backpropagation and EP

It is possible to do a local and global search in parallel. Such a strategy ha.s been investigated by Waagen et al. ' in thc
development of the Stochastic Direction Set (SDS) method. This method maintains the integrity of searching for a solution
set of parameters without explicitly requiring the analytical function or empirically determined derivatives. The SDS method
uses an augmented (with orthogonal decomposition) I looke-Jeeves te,.chnique for the local search while EP is used for tinding
the global solution neighborhood. The variance of the stochastic step size is held constant over the duration of the seoarch
rwo offspring are generated for each base point: one locally and onen globally- A local offsprinl. replaces its parent it it
achieve.,s a better fitness score, 1PP and backpropagation training can be iiplemented together in a similar parallel tash"hoi
Fig. 6 shows a serial implementation wherein a 3-3-1 network is first trained with FP and then retined using backpiopagation
for th, 3 -bit parity mapping. This sample ni was generated with W0 parent nctork's and a ýcahnl.i' ac'tor IS 3.? lie'
ha, I,: gr,,pa t't in parameters inchidi d a stepsi.e ot ý 0.9 arld a ii& Ilientuit ni t Iocfitciilt ll of t 2
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Figure 5. EP training for 3-bit parity mapping with Figure 6. A serial EP-BP training session for the 3-bit
both sigmoidal and binary activation functions. parity mapping.

3. EVOLVING CONNECTIVITY

This portion of the investigation addresses reducing the number of synapses between the neurons. Typically, work in this
area incorporates a function of the weight magnitudes in the objective function. Hertz et al. ", for example, discuss
optimizing an objective function J described by

2

J = E + WIJ
|+ wd?

where E is the mean sum-squared pattern error. Weigend et al."7 implement a similar modification with the weights
normalized by an arbitrary parameter w,

ii 1 4 (wý/I)'

"This study investigates modifying the object function according to

J = +

whereby the cost associated with the number of connections, N,_,,_, between neurons is scaled and incorporated into the
cost function. For these studies a value ofO fi 0.0001 was used with a = 1. A heuristic which might be employed would
be to letfl a cEY/N,,N thereby incorporating the desired training error and the maximum number of connections possible
over the specified domain to reasonably weight the cost associated with the number of connections.
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Figure 7. Evolving connectivity for the XOR mapping. Figure 8. The final evolved connectivity for the XOR
The final architecture is shown to the right, mapping network.

To implement this capability, a connectivity array has been utilized where c[i][layer]/fromnode][tonode] l- I if a
connection exists and 0 if no connection is present. At the start of the run, the connectivity array is set to 1 giving a fully-
connected feedforward network. The designer must specify the number of neurons over which the search is conducted. This
determines the maximum number of connections. From the range of connections, a synapse is chosen at random and
modified based on its current state. It is connected if it has been disconnected or disconnected if it is currently connected.
Essentially, the bit is flipped. The number of connections which may be affected at each mutation is arbitrarily set by the
designer or determined in a random fashion. The connection array is incorporated in the neuron input dot product term
thereby nulling any signals between disconnected neurons. As before, weights are (:ontinually modified in the event th:at .ý1

neuron pair is reconnected.

The results of evolving connectivity using a net'xork with 8 hidden units for the XOR mapping is shown in Figures 7 and
8. After 1000 generations, the network with the lowest cost function has 12 connections as shown in Fig. 8. Although the
structure can be reduced to replicate a fully-connected 2-2-I feedforward architecture, it must be done through post-
processing.

In an effort to place greater emphasis on signal propagation through the network, an alternraive strategy has been devuloped
though not yet implemented. This strategy assigns a probability of connection from N"v, neuron k in layerj, to subsequent
layers contingent on inputs to all the neurons in level j

0, W

This technique assumes a random connection process exists between the input layer and tirst hldden layer. Poor soluhati
(such as exce.ss emphasis on a single node) will not he sustained unless the fitness value i.s competitive with other nme1bor
Of the population.



4. EVOLVING iHIDDEN NODES

The standard backpropagation approach to training neural networks entails specifying the nunlber of layers and the number
of nodes in each layer. This portion of the investigation allows the number of nodes in the hidden layer(s) to be tre-atd aw,
a random variable. The EP training technique given in section 2.2. 1 is still used although other training incth•, (dNlh ;et
backpropagation) may be applicable.

The method outlined in section 2.2.1 is slightly moditied to allow for a variable number if hidden node-s. Thet maximum
number of hidden nodes specified in the program is the domain over which the search is conducted. This tlhas the ()!bV)\lous
shortcoming that it is still possible to under estimate the nwrnher of nodes which may be required to solve i 1)artliular
problem. This portion of the investigation maintains a fully-connected feed-forward arIlluiectue.+ Te cost tuntn t\•,.d
is given by-

where ct = I andy = 0.01. A scaling factor of-y=0.01 allows smaller networks with larger mean sum-squared pattern error
terms to be selected. At each weight perturbation, the number of hidden nodes is randomly selected from a user ,pccified
domain.

Fig. 9 shows the results for the XOR mapping problem with varying hidden units. The maximum number of hidden unit.,;
possible was arbitrarily set at 20. After 200 generations the network has evolved a 2-2-1 structure as well as an appropriate
set of weight parameters. At the end of 500 generations i meian sum-squared pattLer) o'fr •, 00)O0 1, attan•;•'I 1(1

shows the results for the XOR mapping problem if the search domain is increased to 50 hidd-n units. In this case, a 2-2-1
structure is also evolved simultaneously with the weight parameters. At 500 generations a mean sum-squired patte'rn error
of 0.0001 is achieved. Both sets of experiments were conducted with SF = 100 and 10 parents.
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Figure 9. Evolving hidden units for the XOR mapping. Figure 10. Evolving hidden (nits for the XOR mapping.
The search was conducted over 20 possible hidden unitf.. Vhe search was conducted over 50 possible hidden units.



5. EX'OLVIN(; sTRUC'l'1RI*: A SFLF-OR(,ANIZIN(1 NI. I VNORK

A nicety of using the FiP search tochniqjUe i.s that additional tcrtrm can lie int lrpt 'r:td lin 1ý the -tb.es tun e lIr twIthv.. t ii

requiring a maJor progiraninting moth tication_ An example of thIs feature is; the iiiu ii dienivn ýnal path p)Lanning ! ik4, d'lle

by Page et al."~. Wall and Kriplani'" have incorporated training timeW Into their oltn\. et Iurn ii,

J A -Ix Traininghtn 1m ('x ('ux

where A, R and C' are constants. The Cost tern is at fuinction of the( network sizc and nuiiiifer it we~wi,'i> and h"

Cost (

An investigation very similar to this work has been conducted by lBornholdt and Graudeoi)". A mnajor ditfirene be~t%%een
the methods is that [3ornholdt and 'Iraudenz used genetic algonithmis tor tevolva;,g the i.rkstruciutur. Fu-.1hi. Othe
networks implemented in the referenced work can have a-synchronous updates and rec-.irrcnt structure In the hiddenlsri
Bornholdt and Graudenz define a dilution ratio D = For example, the- dilution ratio for the netwurk Qohiwn
in Fig. 8 is D =0.33. This result does not have the small dilution ratios found using rect'rren, hidden structurt- For thr:
simple XOR mapping, it does not take as mrany generations to train since the stability i~sses assoetated with rctu rrerit
structure does not effeýct the system.

Currently, the feed- fo rva rd structure is maintained and the ohloetivo tunc-tion in dit,-4I -a .:

with the number of conne~ctionis and number of neurons

J = cE + ONr~clv -fN det

Initially, the weighting coefficients were kept the same: ce-- 1, f3 -0.00M, -Y -- 0.0]. Tlw riithidsý used in seclions i id A.
were combined and te~sted oin (he XOR mapping. Fig. I shows, the training re~sult< tor a hild-n cri dYc neomn ,I >0 idi
units. After 2500 g enerat ions, the network has evolved to a 2-2-1 structu re li wsi-the liieCut -. Ui -squared itt C:1-!

has not been sufficiently reduced as shown in Fig. I 1(b). 'Ih is usý diie to thet miannrc itihi< to -,1 pfi -gin areeu-r,-. j

new offspring contains a new. structure its well as per~tubed 'Weii'lttse bn:-iesi ,Cf Mii h! ext lii t ps

accomplished for any euveni structure.

The adaptation problem became mom apparent when the, samie approaOhWa taken -010 tik ith bit panltv nia.ppi-q I'

overcome this limitation, two offspring are generated for each parent. The first ottspruig isý ienerated with a pertul bed
weight set and new structure. The second offspring is generated with a perturbed weigtht set and thie same stnuctuie, &, it,
parent. Results for the 3-bit parity mapping problem are shown in Fig. 12. This experiment was conducted with xeili:hiinle
coefficients of at= ,Ji= 0,0001, -y=O.00I. The hidden layer domain consisted of 25 hidden units. After 500 generations.
the mean sum-squared pattern error has been sufficiently reduced for 11 hidden uninds as shown in FieýI.hlt F'irthii
optimization occurs by reducing the iiumbe~r of connections as shown in iigIe I 2(.t-11W 11i rol n 0s ioi '--a

13. Obviously, not all of the remaining hidden units arc corineetesi anti tho bias red io lir1'1anbeel niialted ~- t

reduce the node count. The statistics at the end of 5WXX generations ', ~,~.~ -tic PI- 0i.00h_', 1

0.01285 2 and a dilution ratio of'F) 0 15.

This modified approach was applied to the XOR mapping problemn with if() part'rt i1,01' I.- I- r nest ik- rha 1,11 crci

connected from the inset, this search techn ique qu icklIy 1t11und a fullys-.ti ic e 1 -.litii i i in'aiid rV ei p hi ai-1t r itt i

occurred (over subse~quent generations. To make the problemi more kchat len cit oc , It- Tw(-i ýe k vja -. i tiiad' ithi t "-

probability of any given connection being present. The resulting structume is hii iln Pu t I.: and th- tt ýto, daa I.,
shown in Fig, 15, This experiment was conducted with weighting, ctieflcicient> it it 1./ 00-1 0, 1 V) I~ '% I ih. luidllen

layer domain consisted itt 50 hidden unit.,, [he statistics at the end of tKA tilt i eie ut-'its an-. N % -

E - 0. 000000, J 0.0f1 23(X) and a dilution ratio of D) 0. 11
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6. CONCLUSIONS

Experiments have shown that evolutionary programming can be used for simultaneously determining both network

architecture and parameters. These results indicate that the EP search paradigm has high potential for automating the design

of neural networks. It has been demonstrated that the general architecture shown in Fig. I can he achieved for simple binary
mapping problems. However, some applications may be hindered by the excess memory requirements needed by multi-agent

searches"2 or the training time necessary to obtain adequate convergence. If the design process for a specific problem is not

capable of being fully automated, then this technique may prove useful in providing a de-signer with insight to the task at hand

as well as a reasonable starting point for further investigations.

Caution should be usd in trying to obtain minimal size networks. As Sietsina and Dow?-' point out, pruning nrivcorks

reduces their generalization capabilities if noise is present. Experience has that shown that adding a slight amount of noi'c

to the training data will result in more robust classifiers. Since only binary mapping problemrs were investigated, it v not

clear how the approach given in this .•tudy will work on classification or continuous mapping problems. This remains an

area of further research.

Nevertheless, stochastic training techniques are becoming p.evalent in neurocomputiig (especially in hardware
implementations2"). Further research should allow for a more general connectivity structure including intcrconnections amocng
the hidden units as well as connections between input and output neurons. Since model structure is continually being

modified, it is incumbent that an information ciiteria I be addressed either expi,,.'tly or implicit in •he objective function (e.
g.)

J -• uE N ,, IV, -

providing a viable approach for automated model selection based not only on error and computation cost, but on the
information content as well.
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