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ABSTRACT A, l

This work investigates the application of a stochastic search technique, evolutionary programming, for deselopine self-
organizing neural nerworks. The chosen stochastic search method is capable of simultancowsty evolving both netword
architecture and weights. The number of synapses and neurons are incorporated into an objective function so that nepwork
parameter optimization is done with respect to computational costs as well as mean pattern error. Experiments are conducted
using feedforward networks for simple binary mapping problems.

1. INTRODUCTION

The neural network design process is largely heuristic. The designer’s previous experience (or the work of other researchers)
oftentimes dictates an initial network configuration for the problem at hand. . the network can be trained to achieve the
designer’s goals, then the design process 1s termnated. [t success 15 not attained, then a testing phase which s largely tnial
and error ensues. The end result can often be : network with excess parameters and httle regard for computational costs.

This work attempts to incorporate the computatior.al costs associated with neural network configurations into the optimization
procedure. Potential benefits of a network which has an optimized architecture include increased throughput for real-time
signal processing applications as well as decreased memory requirements. Determining both network parameters and
structure simultaneously requires a search procedure which 1s amenable to combinatonial optimization tasks. The more
successful algorithms for these types of problems have generally been stochastic such as simulated anneahing, gencetic
algonthms and simulated evolution. The simulated evolution', or evolutionary programming (EP), paradigm has been shown
to have the desired attributes: combinatorial optimization capabilities’, the ability to train neural networks® as well as
determine model structure®. .

Many investigations have been undertaken in an effort to obtain desired /O mappings with variable contiguration networks,
Ash’® developed the dynamic node creation (DNC) algorithm which created new nodes in the hidden layer when the traming
error rate fell below an arbitrarily chosen critical value. Hirose et al.® use the same approach for node creation, but also
remove nodes when small error values are attained. Dow and Sietsma’® have developed post-processing algorithms which
remove or prune excess nodes from network hidden layers. These algorithms are implemented as a two stage process. The
first stage removes nodes which have constant outputs or are complimentary to other nodes. The second stage removes nodes
that are independent of the other nodes within the layer and whose output is not required to achieve a solution.

Li® has developed a generalization of the backpropagation algorithm which minimizes both the total system crior and the
aorm of the weights. In simulation, this approach yielded null portions of the weight space providing an implicit means of
network optimization (weights and structure).  Simulation results also resulted 1n nearly mvariant weight sets regardless of
the imitial weight values whereas straight backpropagation did not. Bailey'® gencrates neural network structure by evaluatyg
synapse importance and system error (synapse effectiveness) entenia. If both synapse effectiveness and importance become
fow then 1t becomes chgible tor removal. Tenono and Lee' have apphied simulated annealing to a group method data
handling (GMDH) scheme to obtain a self-orgamzing neural network (SONN). A hierarchical mimimum descoption fength
(MDL) function called the structure estimation critena s used as the objective function. The resulting network s sparsely
connected as cach node is arbitrartly himnted to two inpuis. Since a low order Kolmogorov-Gabor polyromial approximation
15 implemented for the node activation function, more werghts than connections exast. Hertz e al ' pive a concise overnvies
of other work on neuaral network constous ton and prupimye steonthms,




The premise of this work is that the designer can postulate an
objective function which, if optimized, will yield desirable results
for the task at hand. Further, the approach used in this study secks
to take advantage of computational resources dunng the
design/training phase thereby removing the burden of evaluation by o
trial-and-error from the designer. For purposes of discussion, Fig. P
1 illustrates the structure of a hypotheticatly evolved neural network. L Y

The connectivity and number of nodes in the hidden layer are / " variable
determined via a multi-agent stochastic search technique. The T U number of
application of EP to this task is investigated in three distinct phases. v T " hidden
Initially, the EP training algonthm for neural networks given in the i 1 Y umits

next sectiorris generalized so that connectivity between nodes can be - -

randomly <elected. In the next phase of the study, the number of ‘ ;

hidden units is 2 random variable which is incorporated into the LN
stochastic search. The final phase integrates methods employed in -
the previous phases into a single EP search algorithm to achieve a . outputs
petwork such as that shown in Fig. 1. N -

inputs

The evolutionary programming paradigm is outlined in the next Figure 1. A hypothetically
section along with applications of the EP search technique to fully-  ¢pyeture  with  variable
connected feedforward neural networks.  Subsequent sections coppectiviry.

investigate evolving the connectivity structure of the network and the

number of nodes in the hidden layer(s). These methods are then

combined to yield self-organizing neural networks.

evolved network
hidden units and

2. APPLYING EVOLUTIONARY PROGRAMMING TO NEURAL NETS

2.1. Evolutionary Programming

Evolutionary programming is a neo-Darwinian search paradigm first suggested by Fogel of al’ This stochastic search
method is typicaily applicd as a global optimizer. EP has been successfully applied to a vanety of optimuzation probiens
including the traveling salesman problem, parameter estimation and system 1D, and neural net traning.

"]
The EP optimization algorithm for locating extrema of any general function can be described by the tollowing steps

1. Form an initial population P,y (x) of size 2N. The parameters x associated with parent element P, are randomly
initialized from a user specified search domain.

Assign a fitness score Si(x) to each element Pyx) in the population.

Reorder the population based on the number of wins generated from a stochastic competition process.

Generate offspring (Py ... Py,) of the highest ranked N elements (P, ... Py, i the popudation.

Loop to step 2.

oA NN

The generality of this algorithm lends power (o its implementation besides providing a svstematic means of stochastic search
The user is not bound to any particular coding structure nor mutation strategy.  As previowsly stated, BP s used m this
nvestigation since 1t 1s well suited for simultaneously evolving model structure and parameters

2.2. Training Neural Networks with EP
2.2.1. Determining Network Weights
Swnce EP s a general purpose optimization procedure, 1t van be readily used tor detenmming nenral network onacction

strengths. The objective function of the EP trammyg approach tor fully connected feedtonsand netwinrke 1s the e as that

used 1 backpropagation: nuninuze the sum-squared error function LY o A common mretrn st noraadige




E by the number of training patterns presented. This section applies the algonthm given in the previous section to neural
networks and then sbows results for sample training runs using simple binary mappings. It should be noted tha! the examples
given are by no means statistically significant and are primarily shown for exemplary purposes.

Each fully-connected feedforward network ¢, in the population P of networks may be represented by the weight array
¢, = wfijllayer][from_node}llio_node]

For this application, the initial population was instantiated with weights chosen from a U{-0.5, 0.5] distribution. Next, a
cost is assigned to each network in the configuration. The N members of the population generate offspring (perturbed weipht
sets) according the equation

. W, =W, + oW,

where typically W, ¢ N(0, S¢-E) with a scaling coefficient S;. The scaling factor is a probabilistic analog to the stepsize
used in gradient descent methods and may also be treated as a random variable within the EP search strategy. The vanance
of the weight perturbations is bound by the total system error in this application. To emulate the probabilistic nature of
survival, a pairwise competition is held where individual elements compete against randomly chosen members of the
population. For example, if network ¢; is randomly selected to compete against network &, then a win is awarded to
network &; if E; < E. Another approach would be to let the probability of network $; winning be E/(E,+E). The N
networks with the most wins are then used to generate offspring and the process is repeated.

Figures 2-4 shows the effect of varying different parameters in traming a 2-2- neural net for the XOR mapping. Iig. 2
shows the best mean sum-squared pattern error for various scaling factors from a population with 10 parent networks. As
shown, modifying the scalfing factor effects the convergence rate of the training. The smaller scaling factors tend to produce
smoother curves (smaller changes) while the larger scaling factors yield more dramatic results due to larger step sizes. The
number of networks over which the search is conducted is generally user defined. However, the population size need not
be a static parameter as it can increase or decrease over the generations of the search. Training results with a 5x increase
in population size 1s shewn in Fig. 3 for a scaling factar of S, = 100. Fig. 4 shows successful training is possiblc with a
randomly chosen scaling factor for Sy € Uf0,1000] and N = 10. The training run shown did not converge as fast as other
runs, but it did produce a smoother scaling factor sequence.
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Figure 2. EP training of a 2-2-1 XOR mapping network for various scaling factors, N 10,
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2.2.2. Hard-limited Activations

Besides yielding only locally optimal solutions, it is necessary that activation functions be continuously differentiable when
gradient descent methods are employed for training multi-layer perceptrons (MLPsY. The continuity condition is not a
requirement when stochastic methods such as simulated annealing”, genetic algorithms™ or EP are used. An interesting
method has been developed by Winter and Widrow' for training MLPs with bipolar activation functions. This method,
termed the Madaline Rule 1I, consists of applying the minimal disturbance principle to weights associated with individual
ADALINES. If better results are obtained, then the new weight values afe kept; otherwise, the new weights are ignored.
If the training process exbausts trials involving a single ADALINE, pairwise (or higher) adaptations are attempted.

The 3-bst parity problem has been chosen as an example for training MLPs with hard-limited activation functions using EP.
Fig. 5 compares training results when sigmoidal and binary activation functions and are used in a 3-3-1 netwcrk. As shown,
the discrete system error states which result when using a binary activation function are quite pronounced. The concept of
a different activation function for different neurons can also be easily employed within an EP search.  Each different
activation function could be treated as a random variable and be discretely indexed within a neuron structure.

2.2.3. Combining Backpropagation and EP

It 15 possible to do a local and global search in parallel.  Such a strategy has been investigated by Waagen er al’® 1n the
development of the Stochastic Direction Set (SDS) methad. This method maintains the integrity of searching for a solution
set of parameters without explicitly requiring the analytical function or empirically determined derivatives. The SDS method
uses an augmented (with orthogonal decomposition) Hooke-Jeeves technique for the local search while EP s used for finding
the global solution neighborhood. The vartance of the stochastic step size is held constant over the duration of the search
Two oftspring are generated for cach base point: one locally and one globally. A local offspning replaces its parent 1f 1t
achieves a better fitness score,  EP and backpropagation training can be implemented together in a sirmtar parallel fashion
Fig. 6 shows a serial implementation wherein a 3-3-7 network s first trained with EP and then refined using hackpropagation
for the 3-brt parity mappmg. This sample run was generated with 10 parent networks and a scaling factor S, J4 0 The
backpropagation parameters mcluded a stepsize of n- 0.9 and a momentum cocfhicent ot ¢ 0.2
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3. EVOLVING CONNECTIVITY

This portion of the investigation addresses reducing the number of synapses between the neurons. Typically, work in this
area incorporates a function of the weight magnitudes in the objective function. Hertz et al.”?, for example, discuss
optimizing an objective function J described by

?

1 W
J=E+_'yi .-_.T_‘fz
277 1+ w;;

where E is the mean sum-squared pattern error. Weigend er al.'’ implement a similar modification with the weights
normalized by an arbitrary parameter w,

JE ¥ W, /w)
= + "Y
7 1+ (wwnvo)2

This study investigates modifying the object function according to

‘] = GE + BNrwmzctioru

whereby the cost associated with the number of connections, V..., ..., bEtwWeen neurons is scaled and incorporated into the
cost function. For these studies 2 value of # = 0.000] was used with = /. A heunistic which might be employed would
be tolet § = aF /N, thereby incorporating the desired training error and the maximum number of connections possible
over the specificd domain to reasonably weight the cost associated with the number of connections.
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Figure 7. Evolving connectivity for the XOR mapping.  Figure 8. The final evolved connectivity for the XOR
The final architecture is shown to the right. mapping network.

To implement this capability, a connectivity array has been utilized where cfi/flayer]/from nodel{tc_nodef = 1 1f 2
connection exists and O if no connection is present. Al the start of the run, the connectivity array is set to 1 giving a fully-
connected feedforward network. The designer must specify the number of neurons over which the search 1s conducted. This
determines the maximum number of connections. From the range of connections, a synapse 1s chosen at random and
modified based on its current state. It is connected if it has been disconnected or disconnected if w1s currently connected.
Essentially, the bit is flipped. The number of connections which may be affected at each mutation 15 arbitranly set by the
designer or determined in a random fashion. The connection array is incorporated in the neuron tnput dot product term
thereby nulling any signals between disconnected neurons. As before, weights are continually modifted in the event that a
neuron pair is reconnected.

The results of evolving connectivity using a network with 8 hidden units for the XOR mapping s shown in Figures 7 and
8. After 1000 generations, the network with the lowest cost function has 12 connections as shown in Fig. 8. Although the
structure can be reduced to replicate a fully—connected 2-2-] feedforward architecture, it must be done through post-
processing.

In an effort to place greater emphasis on signal propagation through the network, an alternative strategy has been deveioped
though not yet implemented. This strategy assigas a probability of connection from &

[x» Deuron k n layer j, to subsequent
layers contingent on inputs to all the neurons in level §

PANYD = = o

This technique assumes a random connection process exists between the input layer and tirst hidden layer. Poor solutions
{such as excess emphasis on a single node) will not he sustained unless the fitness value 15 competitive with other member
of the population.




4. EVOLVING HIDDEN NODES

The standard backpropagation approach to training neural networks entails specifying the number of fayers and the number
of nodes in each layer. This portion of the investigation allows the number of nodes in the hidden fayer(s) to be treated as
a random variable. The EP training technique given in section 2.2. 1 is still used although other training methods (such s
backpropagation) may be applicable.

The method outlined in section 2.2.1 1s slightly moditied to allow for a variable number of hidden nodes. The naximum
number of hidden nodes specified in the program is the domain over which the search is conducted. This has the ebvious
shortcoming that it is still possible to under estimate the number of nodes which may be required to solve a particular
problem. This portion of the investigation maintains a fully-connected feed-forward architecture. The cost tunction used
is given by~

J =ab +yN

nodes
where ¢ = ] and y = 0.01. A scaling factor of y=0.01 allows smaller networks with larger mean sum-squared pattern error

terms to be selected. At each weight perturbation, the number of hidden nodes is randomly selected from a user specified
domain.

Fig. 9 shows the results for the XOR mapping problem with varying hidden units. The maximum number of hidden units
possible was arbitranly set at 20. After 200 generations the network has evolved a 2-2-7 structure as well as an appropnate
set of weight parameters. At the end of 500 generations a mean sum-squared pattern crros of 0 00003 )< attnned Fioo 10
shows the results for the XOR mapping problem if the search domain is increased to 50 hidden units. In this case, a 2-2-/
structure is also evolved simultaneously with the weight parameters. At 500 generations @ mean sum-squared pattern error
of 0.0001 is achieved. Both sets of experiments were conducted with Sp = 100 and 10 parents.

GENERATION

Figure 9. Evolving hidden units for the XOR mapping.

The search was conducted over 20 possible hidden units.

Figure 10.
The search

GENFEATIONS

Evolving hidden units for the XOR mapping.

was conducted over 3) possible hidden units.
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5. EVOLVING STRUCTURE: A SELF-ORGANIZING NETWORK

A nicety of using the EP search technique 1s that additional terms can be incorporated 1o the objective tunction without
requiring a major programuung modincation. An exampie of this feature 1s the muiti-dimensional path planping work done
by Page er al.**. Wah and Kriplam' have icorporated traiminy time tnto their objective funstion

J A -Bx Trauning Time (' x Cost

where A, B and C are constants. The Cost term 1s a tunction of the network size and number of werghts und s piven by

PRSI

Cost N v 0. vf N

neurons wergils

An investigation very similar to this work has been conducted by Bornholdt and Graudenz™. A major difference between
the methods is that Bornholdt and Graudenz used genetic algonthms for evolviug the nctwork structure. Further, the
networks implemented 1n the referenced work can have asynchronous updates and recurrent structure in the hidden Laver.
Bornholdt and Graudenz define a dilutionratio D = N,___,../N°__ .. Forexample, the dilution ratio for the network shown
in Fig. 8 1s D = 0.33. This result does not have the small dilution ratios found using recurrent idden structure. For the
simple XOR mapping, it does not take as many generations to tran since the stabdity issues assoctated with recurrent
structure does not effect the system.

Currently, the feed-forward structure 1s maintained and the objective function s moditd toncorporate both et 0 e
with the number of connections and number of neurons
o0 4 PN
‘] (IE BN{mntcmm k Y Nnodrs

Initially, the weighting coefficients were kept the same: o= 1, $::0.000], y =0.0]. The methods used m sections 3 and 4
were combined and tested on the XOR mapptng. Fig. 11 shows the trarming resalts b g hadden Laver domam of 30 hidden
units. After 2500 generations, the network has evolved to a 2-2-7 structure. However o the mean sum-squared pattern e
has not been sufficiently reduced as shown i Figo T1(h). This s due to the manner i which oftopong are generated . Lok
new offspring contains 4 new structure as well as perturbed weight set. Chasves are, very Titde woeght adapteann 1
accomplished for any grven structure.

The adaptation problem became more apparent when the same approach was taken with the 3 hit panty mapping. 1o
overcome this limitation, two offspring are generated for each parent. The first otfspring 15 penerated with a perturbed
weight set and new structure. The second offspring is generated with a perturbed weight set and the same structure as s
parent. Results for the 3-bit panity mapping problem are shown in Fig. 12. This experiment was conducted with weighting
coefficients of a=1, $=0.0001, y=0.001. The hidden layer domain consisted of 25 ludden units.  After S00 generations,
the mean sum-squared pattern error has been sufficiently reduced for 11 hidden units as shown i Frgo 12(by Furthey
optimization occurs by reducing the number of connections as shown in Frg. 12{0). The final contiguration s shown i b
13. Obwviously, not all of the remaining hidden units are connected and the bras redundiancy can be climinated @ farthe
reduce the node count. The statistics at the end of 5000 generations are N I8, N PECFE 0os 7
0.012852 and a dilution ratio of D = 0.15.

R TR LRI

This modified approach was applied to the XOR mapping problem wath 10 parent networks For networks that were fulls
connected from the onset, this search techmique quickly found a fully-connected 2 207 stuctare amd weight adaptation
occurred over subsequent pencrations. To make the problem more challenging, vah network was instantiated waith 50
probability of any given connection being present. The resulting structure s shown i Fre 8 and the satertical data o
shown 1n Fig. 15. This expeniment was conducted with weighting coetticients ot « - 1.8 (0 x5y 0001 The lndden
layer domain consisted of 50 idden units. The statistics at the end of 1000 geacrabions are N I . .
E = 6G.000000, J - 0.0]12300 and a dilutonrato of D - 0.1]
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Figure 11. Evolving weights and structure for the XOR mapping: (a) cost function, (b} mean surm-
squared pattern error, (c) number of connections, and (d) the number of neurons.
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squared pattern error, (c) number of connections and (d) number of neurons.
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6. CONCLUSIONS

Experiments have shown that evolutionary programming can be used for simultancously deternuning both network
architecture and parameters. These results indicate that the EP search paradigm has bugh potential for automating the design
of neural networks. It has been demonstrated that the general architecture shown in Fig. 1 can be achieved for simple binary
mapping problems. However, some applications may be hindered by the excess memory requircinents needed by multi-agent
searches'? or the training time necessary to obtain adequate convergence. If the design process for a specific problem 1s not
capable of being fully automated, then this technique may prove useful in providing a designer with insight to the task at hand
as well as a reasonable starting point for further investigations.

Caution should be uscd in trying to obtain minimal size networks. As Sietsma and Dow™ point out, pruning nctworks
reduces thefr generalization capabilities if noise is present. £xperience has that shown that adding a slight amount of noise
to the training data will result in more robust classifiers. Since only binary mapping problems were investigated, it 1 not
clear how the approach given in this study will work on classification or continuous mapping problems. This remains an
area of further research.

Nevertheless, stochastic training techniques are becoming p.evalent in neurocomputing {especially in hardware
implementations?). Further research should allow for a more general connectivity structure including interconnections ameng
the hidden units as well as connections between input and output neurons. Since model structure is continually being
modified, it is incumbent that an information criteria { be addressed either expiv (tly or implicit in the ohjective function (e,
8.J

J = (X[.L * B;Vronnccmm_s t ’Yivmdes ! S’jil)

providing a viable approach for automated model selection based not only on error and computation cost, but on the
information content as well.
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