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Multiresolution analysis of SAR Data

Final Report

Robert Hummel
New York University

1. Overview
The "Multiresolution Analysis of SAR Data" project (Contract F33615-89-1087, reference (BAA)

87-02-PMRE), has supported research work in five areas:

(1) Geometric hashing foundations and theory for model-based vision;

(2) Parallel implementations of geometric hashing;

(3) Motion parameter estimation algorithms for egomotion;

(4) Uncertainty reasoning and evidential reasoning studies; and

(5) The use of wavelets for SAR image construction.

All of the items except (3) are reasonably part of the original SOW. Item (3) developed due to the work
of V. Sundareswaran, who was supported by this grant after I. Rigoutsos won support from an IBM Fel-
lowship.

The following are the principal advances that have been made in each of these areas:

(1) Geometric hashing theory can now be viewed as a Bayesian approach to object recognition. False
alarm rates can be greatly reduced by using certain enhancements and modifications developeu
under this project.

(2) Geometric hashing algorithms now exist for the Connection Machine. Recognition of
synthetically-produced dot arrays has been demonstrated using a model base of 1024 objects. The
work represents a substantial advance over existing model-based vision capabilities.

(3) We have developed new algorithms for determining the translation and rotation of a sensor given
only the image flow field data. These are new algorithms, and are much more stable than existing
computer vision algorithms for this task. The work has been accepted for publication in a major
journal. The algorithms might provide independent verification of gyroscopic data, or might be
used to compute relative motion with respect to a moving scene object, or may be useful for
motion-based segmentation.

(4) Our theories explaining the Dempster/Shafer calculus and developing new uncertainty reasoning
calculi have been extended, and presented at a conference, and were incorporated into the B.ye-
sian interpretation of geometric hashing (see (1) above).

(5) We have developed a "Wavelet Slice Theorem," in several different versions, any of which
yields an alternate approach to image formation. The result may well provide a more stable
approach to image formation than the standard Fourier-based projection slice theorem, since
interpolation of unknown spectral values is better-founded. Moreover, we have made consider-
able progress on an alternative approach to SAR image formation that avoids the computationally
expensive steps of rerasterizing return data, and Fourier transforms, using instead a more complex
chirp function. The method suggests a simple real-time implementation that builds up the final
image incrementally, during the fly-by.

The list of significant technical reports and publications produced as a result of the research support of
this grant are listed below.

(1] R. Hummel, "Geometric Hashing Methods for Object Recognition," NYU Proposal to DARPA in
response to BAA 90-15, submitted October 1990, reviewed and approved (for future funding),
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January, 1991.
[21 1. Rigoutsos and R. Hummel, "Several Results on Affine Geometric Ha.,hing," Proceedingx of the

8th Israeli Conference on Artificial Intelligence and Computer Vision, pp. 1-12, December 1991,
Tel Aviv, Israel.

[31 1. Rigoutsos and R. Hummel, "A Bayesian Approach to Model Matching with Geometric Hash-
ing," NYU Technical Report, 1991, available by anonymous ftp from cs~nyu.edu under
/pub/local/hummel/papers/bayeshashing.

[4] I. Rigoutsos and R. Hummel, "Robust Similarity Invariant Matching in the Presence of Noise: A
Data Parallel Approach," Proceedings 8th Israeli Conference on Artiflicial Intelligence and Com-
puter Vision, pp. 27-43, December 1991, Tel Aviv, Israel.

[5] Y. Lamdan and H. Wolfson, "On the Error Analysis of Geometric Hashing," IEEE Computer
Society Conference on Computer Vision and Pattern Recognition, CVPR9I, 1991, pp. 22-27.

[6) H. Wolfson and Y. Larndan, "Transformation Invariant Indexing," in Invariance in Computer
Vision, (Eds. J. Mundy and A. Zisserman), pp. 335-353, MIT Press, 1992.

[7] H. Wolfson, "Articulated Object Recognition, or, How to Generalize the Generalized Hough
Transform," (with A. Beinglass), Proceeedings of the 1991 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, pp. 461-466, June 1991.

[81 1. Rigoutsos and R. Hummel "Massively Parallel Model Matching: Geometric Hashing on the Con-
nection Machine," IEEE Computer, pp. 33-42, February 1992.

[91 I. Rigoutsos and R. Hummel, "Implementation of Geometric Hashing on the Connection
Machine," Proceedings IEEE Workshop on Directions in Automated CAD-based Vision Systems,
June 1991, Maui, Hawaii.

[101 1. Rigoutsos and R. Hummel, "On a Parallel Implementation of Geometric Hashing on the Connec-
tion Machine," CIMS Technical Report #554, April 1991 (Extended version of the previous paper).

[1I! R. Hummel and V. Sundareswaran, "Motion estimation using global image flow velocities,"
ARVO Abstract, 1991.

[12] V. Sundareswaran, "Egomotibn from global flow field data," Proceedings of the Workshop on
Image Motion Analysis, Princeton, N.J., October, 1991.

[13] R. Hummel and V. Sundareswaran, "Motion parameters from global flow field data," To Appear in
IEEE Transactions on Pattern Analysis and Machine Intelligence, May 1993.

[141 V. Sundareswaran, "A fast method to estimate sensor translation," in Proceedings of the Second
European Conference on Computer Vision, Santa Margherita, Italy, May 1992.

[151 R. Hummel and L. Manevitz, "Statistical approaches to fusion with uncertainty," Session MB4,
Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics, Charlotts-
ville, Virginia, October, 1991.

We next give technical details on the progress in each area.

2. Geometric Hashing

Geometric hashing is an approach to model-based object recognition that is analogous to the hash-
ing approach to data retrieval in computer science. The idea is that collections of object features are
encoded in such a way that recognition of a few features may enable indexing into a table that then desig-
nates a list of possible objects. The intent is to reduce the complexity of search processing by allowing
scene features to index into the model database, rather than positing matches between scene features and
model features and then searching for a hypothesis that can be verified.

The initial idea is due to Jack Schwartz, who applied the idea to curve matching for robotic applica-
tions. In this form, the idea was related to, but somewhat dissimilar from, the idea of R-tables in the



generalized Hough transform. Subsequently, Haim Wolfson and his students, working with Professor
Schwartz, extended the idea to other object-recognition tasks, including 3-D curve matching, affine-
invariant object matching based on point sets, affine-invariant matching based on curves using concavi-
ties as primitive features, matching using convex curve portions for recognition, and matching of objects
based on line extrac:ions. A milestone was reached with the publication of the thesis of Y. Lamdan, at
NYU, who studied hashing methods for 3-D object recognition from 2-D projections. His thesis is
tecommeikied reading for an understanding of the basis of the idea and the many variations and possibili-
ties. The idea has been taken up by other groups, and has been studied by researchers at the University of
Washington, MIT, Syracuse University, and in Europe, especially at INRIA-Rocqencourt.

With that background, and support from AFAL, we have subsequently developed the theory of
geometric hashing, with the following intents:
(1) We have analyzed the stability and false alarm rates, both experimentally and theoretically;
(2) Concentrating on rigid-transformation and similarity-transformation invariance, we have imple-

mented systems using thousands of models of dot patterns;
(3) In order to improve the efficiency of the method, we have developed a number of enhancements,

including (1) Hash table equalization, (2) Improved hash functions and use of symmetries in the
hash table, and (3) folding of the hash table.

(4) We have developed a Bayesian interpretation of geometric hashing that permits a well-founded
basis for weighted voting in the evidence-gathering phase of geometric hashing.

(5) We have developed the application of geometric hashing to articulated object recognition, which
should facilitate recognition of models which cm vary according to one or a few parameters.

All of this work is described in detail in the publications [1-7] (from the list of references in Section
1).

The application of geomreric hashing to ATR problems, both with SAR data and IR sensor data, is
clear. However, we have not pursued these issues extensively in this project, because the development of
such applications is critically dependent on stable feature extraction methods. Such algorithms are being
extensively developed by DoD contractors, but require large databases for evaluation. Much of our work
has used synthetic data, based on point feature sets, with noise added, in order to evaluate the power of
the indexing methods. Recently, we have begun to experiment with recognition of military air'raft from
silhouettes and extracted edge features. However, even in this application, our data comes from freely-
available pictures and sketches. Rigoutsos will also use images of automobiles in his continuing thesis
work. These objects are somewhat more difficult because of their more rotationally symmetric shapes.
That is, the military aircraft tend to be elongated with distinguishing marks. To date, we achieve
extremely good results for similarity recognition of military aircraft using side-views, employing a stan-
dard edge detector and automatic point extraction.

Most of the developments are incremental, with the possible exception of the Bayesian-
interpretation work, which might be considered more revolutionary. Accordingly, we explain the Baye-
sian interpretation in general terms here.

In similarity-invariant matching of point sets using geometric hashing (which we use here as an
example), pairs of points are chosen from the scene as a basis pair. For each basis pair, a coordinate sys-
tem is defined, and the other scene points can be expressed as coordinate pairs in any given coordinate
system. For a given basis, each point thereby hashes to a location in a two-dimensional hash space. In
classical geometric hashing, as it has been described heretofore, the hash location is regarded as landing
within a bin, and each entry that landed within that bin during a preprocessing phase receives a vote.
However, during the preprocessing phase, each entry is associated with a position within the two-
dimensional hash space. Rather than regarding the entries as belonging to bins, we regard them as fixed
points in the hash space. Accordingly, when a point hashes into the space, it should vote for nearby
entries. Further, it seems reasonable that the weighted degree of vote should depend on the distance
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between the hash point and the entry. The larger the d!stance, the smnaller the vote should be. The rate of
fall-off of the vote should depend on the expected degree of noise in the location of the hash points,
which in turn depends on the expected noise in the placement of the points in the scene, and in the dis-
tance between the points in the basis pair. When one applies a strict Bayesian analysis to the situation,
the result is a precise formula for the weighted contribution that a hash to location (u,v) should make to
an entry for model k using basis (i,j) located at a point (x,y) in hash space. The contribution depends on
the standard deviation of the noise o in the scene, and the basis separation D. In this case, the contribu-
tion is:

(u2+v2+3) 2  e -41(uv-x'y)112  1(4(x 2+y2)+3).o•./D 2 'exp (4(x 2+y2)+3),a2 /D2

Figure I shows an example of recognition of a military aircraft from a database of 15 aircraft. The scene
comes from a grayscale image of one of the aircraft types, but is not taken from the same data that are
used to construct the model database. The points in the scene are extracted automatically in this
example. The results are easily extended to affine invariant matching.

We believe that this work forms the leading-edge of the object recognition research domain, as was
evidenced by the results presented at the 1991 Workshop on Automated CAD-based vision systems. The
theoretical advantages of the geometric hashing method are clear, and the issue remains as to verify the
applicability through experiments and through refinements. Most other researchers are working with
databases consisting of one or two objects, and most work remains in the realm of geometric reasoning
and hypothesis-and-verify. Some groups have begun using geometric hashing methods and their variants,
and we have benefited from their work, but the NYU work remains more advanced in terms of both appli-
cations and generality.

3. Parallel algorithms for geometric hashing
A major advantage of the geometric hashing approach to object recognition is its parallelizability.

However, there are many different ways to parallelize the algorithm. Chosing an appropriate parallel
implementation can be very subtle.

Rigoutsos, as part of his thesis work, has implemented a number of versions of geometric hashing
for execution on the Thinking Machines Inc. Connection MachineTh. We have gained access to various
Connection Machines by making use of the DARPA "Network Server" program. He is currently com-
pleting an updated implementation of one of the versions which will support the weighted voting as
described in the Bayesiar intetpiet ,i above, and w•oi be used f,•, l rapid recognition, of military air-
craft and automobiles.

As is very typical, there is an interesting and subtle parallel approach which has good asymptotics,
and there is a much simpler and less sophisticated algorithm that is likely to present the more practical
approach in gencral. The sophisticated approach uses a "connectionist" view of geometric hashing,
whereas the simpler version is based on a "hash location broadcast" model. The two approaches are best
understood from the paper that will appear in IEEE Computer (Reference [8]). This paper, which wth be
a very high-profile presentation of the geometric hashing paradigm and the parallelizability of the
methods, is a relatively short and "popular" description, intended for a very broad audience (all members
of the IEEE Computer Society receive the journal). References [91 and [10] further describe aspects of
the parallel implementation.

The fundamental choice in our parallelizations of geometric hashing is to continue to serialize over
choices of basis pairs in the scene, but to maintain the entire hash table data base in the memory of the
parallel machine, and to make sure that the search over model/basis pairs is done in parallel, This choice
is motivated by the fact that the advantage of geometric hashing is that it makes the search over
model/basis pairs fast, whereas it retains the need to search over the image for a basis set. However logi-
cal this choice seems, all other parallel implementations of geometric hashing of which we are aware
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Figure 1. Recognition of a military aircraft. The database consists of 15 military aircraft types, where
points were selected manually from scanned images of side-view drawings of each aircraft. The scene is
a photograph of one of the aircraft types, in flight. The photograph comes from a different book than the
sketches that are used for tLc model base. Edges and points are extracted automatically from the scene,
and the Bayesian version of the geometric hashing method is used for recognition. The nine top
model/basis pairs are shown; the one receiving the greatest weight is the correct recognition of the air-
craft. Bars over the sketches indicate the degree of support for each model/basis.

(including the Martin Marietta Denver approach as of last summer), pa,-allelize over a different data set.

Allow us tn explain in somewhat greater detail the broadcast approach. We have, from the prepro-
cessing phase, a large number of records of the form (Mk,B,l,x,y,C), where Mk is a model number. B is a
basis, within the model, I is another point in the model (not in the basis), (x,y) is the location to which the
point hashes under the basis B, and C is a covariance matrix which, based on expected noise of placement
of points in the scene, predicts the covariance of the distribution of the location of the hash value of the
point I about the location (x,y) under the basis B. The hash table is no longer organized as a table, but
rather as simply a large collection of such records.

5



During the recognition phase, a basis is chosen and fixed. We operate sequentially over th( other
points in the scene. It is this degree of scrialism that one would like to parallelize, and leads to IhN more
complicated connectionism algorithm, -'I the hroadcast algorithm, each point in the scene successiicly is
hashed to a location (u,v) in the , table, and the location (u,v) is broadcast to all the records stored in
the hash table. (Some saving. :-i be obtained by broadcasting to only those records that lie near (u. ' ).
which means that the recoras must be organized in a suitable manner in advance.) Each record computes
the distance between its (x,y) and the location (u,v), and uses the predicted covariance C to compute the
degree of contrib'vion that the scene point should lend to the associated information (Mk..I). Votes are
accumulated mnd after cycling through all appropriate scene points, votes are summed for model/ha',is
pairs (MA , ). These form the desired evidence values.

Figure 2 shows an example of a recognition that takes place using the broadcast algorithm, as
implemented on a 16K-processor Connection Machine.

Many variations are possible. However, as stated, the algorithm is able to work efficiently and
rapidly on an 8K-processor CM-2 with 16 models, with approximately 20 points in each model, using
scenes of roughly 100 points. Currently, each probe takes about 2 seconds, and typically 30 probes are
needed (i.e., 30 choices of basis pairs) in order to find the model. Approximately linear speedup can be
achieved on a larger Connection Machine, (e.g., a 64K model), either a much more complicated algo-
rithm must be used, or the problem must be scaled up. The current implementation on the 8K-proccsor
machine can handle 32 models in the database without any degradation in processing time.

KOODI I

K , BROADCAST ALGORPfIM* • . s NO OF Pf's: 16394

" ,NO Of PROMS ISO

• CM TIA- 158.10

""" li'"f, 1. "1

ROATON -3.0 .;de" g.

*i' " '' °

iACTIONS I40 o °.

ROTAT'IOW: -38.01 degn ° .•
I IRANSIATION: -40 pRlg I,,
Y TRANSLATION: 40 pz* °
CUTTrR: 184 pti s ,

Figure 2. An example recognition using the broadcast algorithm on a Connection Machine. There arc
1024 models in the database. Each model consists of 16 points. The scene contains 200 points. Approxi-
mate 0.8 second was required for each probe on a 16K-processor CM. By using symmetries in the hash
table, this time could easily be halved. A roughly fourfold speedup would be expected by using a 64K-
processor CM. For this example, 150 probes were required before the model was found. However, fewer
probes are typically required when the data is not based on synthetic models.
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Using the connectionist parallel approach, and databases of 512 objects, with 16 points in cah
object, and scenes of 200 points, we have achieved probe times of under 300 milliseconds on i 32-
processor CM-2.

In any case, we are able to perform recognition of models in less than a minutc, with dozcni of
modets in the database, which is considerably beyond the state of the art in model-based object recogni-
tion, and we are satisfied that real-time recognition using these methods is possible with the appropriatc
parallel hardware.

4. Motion parameter estimation from optical flow
This work is considerably unrelated to the Statement of Work of the contract, and was only lightly

supported by the contract. However, because student V. Sundareswaran became interested in analyzing
sensor motion, and because we wished to develop global methods that support a greater degree of stabil-
ity than existing algorithms, we pursued the topic of motion parameter estimation.

This is a problem that has concerned the IU community for more than a decade. Immense amounts
of effort have been expended on motion analysis. There are two aspects to the problem. First, giver- an
image sequence, we typically wish to understand the image motion from p xel to pixel. The result is a
vector field, called the image flow field or the optical flow field. The idea is that every pixel points to the
corresponding pixel in the next frame, which moves according to the motion of the sensor (and poten-
tially the motion of the object imaged at the pixel). Second, there is the problem of determining the
motion parameters from the optical flow field. This is an inverse problem, in that the optical flow is
determined by the instantaneous translation and rotation of the sensor (and objects). In addition, there is a
dependence on the distance from the object to the sensor. Accordingly, one can hepe to reconstruct the
motion (translation and rotation) parameters, and the depths to the objects.

What has interested most researchers in this topic is the depth dependence. "I heoretically, one can
determine the optical flow, analyze the result mathematically, and determine the parameters of motion of
the sensor, the depth to scene points, and identify moving objects. The last two objectives are useful for
image segmentation and for object identification, both of which are fundamental to ATR applications.

Alas, all of the algorithms are terribly unstable. There is some hope of being able to segment out
moving objects, using work recently developed at Samoff Research Labs, but the task of extracting
depths from image mo'",3n flow alone, using any of the existing algorithn s, is completely hopeless. The
lack of stability is not usually admitted or discussed prominently, but is evideni from the methods. The
difficulty is that the depths must be determined from local data, whereas the optical flow field can only be
determined approximately, sparsely, (for example where there are moving point features), and onl) 'ith
noise. If one is to have any hope of making use of optical flow field data, then the algorithm must be glo-
bal.

Globally, only the motion parameters can be determined. However, once motion parameters for the
sensor are determined, it should be considerably easier to extract moving objects (providing they arc
small, and thus have not significantly degraded the motion parameter estimation), and the depths,
Accordingly, we have developed global methods for motion parameter estimation from optical flow
fields.

We developed two methods for the determination of the parameters of motion of a sensor given the
vector flow field induced by an imaging system governed by a perspective transformation of a rigid scene.
We assume that the flow field V = (u(xy),v(xy)) is given. Both algorithms are new, and both are
extremely simple. The first algorithm is called the flow circulation algorithm, and determines the rota-
tionA parameteis. It uses the curl of the flow field, curl(V). We do not present details here, but we show
in our papers that under many conditions, the curl is approximately a linear function of the form g(x,y)
ax + by + c (where x and y are image coordinate values). The coefficients of the linear function, a, b. and
c, which may be determined by simple regression, are proportional to the desired rotational parameters of
motion. Circulation values may be used in place of curl values, resulting in less noise.
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The second algorithm, the FOE search algorit.mn, determines the translational para. Jers of the
motion independently of the first algorithm. This algorithm extends a recently introduced method of
Heeger and Jepson, giving a method for searching for the image focus of expansion. Specilically, for
every location (xoYo) in the image plane, we compute the function u.(-y+) o) + v.(x-xo), which is the
component of flow orthogonal to the radial direction scaled by the distance from the point. When t.xY),y))
is located at the focus of expansion. this function will be a quadratic polynomial (of a special form). The
algorithm determines for every (xo,yo) whether the computed function is a quadratic polynomial, in order
to locate the focus of expansion. We suggest several candidate methods for determining when the func-
tion has the appropriate form; onc method involves filtering the function by a collection of of circular-
surround zero-mean receptive fields. The other methods project the function onto a linear space of qua-
dratic polynomials. and measures the distance between the two functions. Each suggested method can be
formulated as the evaluation of a quadratic functional at each candidate point, and the first two methods
permit a quadratic search for the focus of expansion, yielding an especially rapid search.

It is this final point, the quadratic nature of the error surface, that is the most startling result of this
work. The fact that there exists a global method for the determination of motion parameter is not a
surprise -- it is only a surprise that these methods had not been previously developed and exploited.
How ever, the simplicity and reduction in cost due to projecting onto a space of quadrat,c polynomials are
great advantages of the method, and argue strongly for its viahility as part of a motion analysis system.

A• an example, Ae show a contour plot (together with gradient vectors) for the polynomial projec-
tion method for the FOE search algorithm applied to a synthetic flow field (see Figure 3).

Either algorithm may be used in isolation to obtain some parameters, from which the oher parame-
ters may then be easily determined. However, the two algorithms in combination provide multiple path-
ways for independent deteimination of motion parameters. In the paper accepted for publication in PAMI
(reference J 13]), we demonstrate the viability of both approaches with a number of calculations for typi-
cal situations, and a number of expleriments using synthetically-generated motion data. Presentation of
other details of the methods are given in references 111,12,14). Sundareswaran has since applied the
methods to real motion data sequences, and has investigated sources of error and noise in the system. We
are currently in touch with NASA-Ames researchers who will supply us with additional data.

Follow-up work would attempt to make use of the motion parameter estimation methods to locate
moving objects, or to estimate range values, so as to determine (for example) ground plane orientation.

5. Uncertainty reasoning

Continuing a longstmding interest in uncertainty reasoning, Professor Hummel has devoted some of
the time supported by the AFAL contract to pursue theories of information fusion and uncertainty calculi.

Although only one conference paper was presented (reference [15]), a major journal article is :n
preparation, and will be submitted soon. All the work is joint with Professor Larry Manevitz, at Haifa
University.

Reasoning with uncertainty is a field with many different approaches and viewpoints, with impor-
tant applications to sensor design and autonomous system development. We attempt to unify some of the
different approaches by introducing a common philosophical framework under which different calculi
may Kc developed. Each calculus reflects different design choices compatible with the philosophical
tenets. The tenets postulate that uncertainty in representations can be viewed as a degree of dispersion of
opinions, and that the space of opinions operates as a separate sample space distinct from the underlying
sample space on which probabilities are normally defined. Different calculi result when choices are made
for the representation of the opinions, the method for combining opinions, the method for juxtaposing
multiple sets of opinions, and the way of measuring the spread in the opinions.

Many sensor fusion systems make use of an evidential reasoning system, wherc evidence is com-
bined with current measurements in order to maintain states of belief and confidence in a set of
hypotheses. These systems are all motivated by the fact that the sensor is supposed to provide more than
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Figure 3. Contour and gradient plot of the error function E(xo,yo) obtained using the quadratic polyno-
mial projection method for the image flow field induced by a translational velocity of (5,2,20) and rota-
tional velocity of (0.1,0.025,-0.05) when imaging a corridor (four side walls and a back wall). The focus
of expansion is correctly located as the zero of the error surface. It can be seen that the error surface is
quadratic, and thus the zero can be found easily.

simple measurements, but also confidence levels in the measurements, and ultimately confidence levels in
propositions and hypotheses developed from those measurements. The fundamental concepts always
involve quantities related to the degree of validity of a proposition, such as a probability, and other quan-
tities related to the degree of certainty in the assertion of the degree of belief. Various calculi are used for
representing these concepts and performing the calculations, including Bayesian networks, fuzzy logic.
Kalman filtering, and the Dempster/Shafer theory of evidence. Each calculus has certain theoretical
underpinnings, although a universally accepted methodology is still lacking.

Our approach, and the unified treatment of calculi, is founded on certain fixed tenets. The tenets
are:

(1) That uncertainty can be represented by a distribution of opinions, whereas certainty is represented
by unanimity of multiple opinions.

(2) By an "opinion," we mean an estimate of a quantity that is functionally related to a (frequency-
based) probability, or is a subjective estimate of a conditional probability, or is an estimate of a
well-defined quantity representing the likelihood of a given proposition based upon given evi-
dence.

(3) When opinions are combined in order to make estimates that are conditioned on combinations of
evidence, a precise and well-defined combination formula should be used. In the case that the
opinions ame estimates of probabilities, Bayes' rule should be used to combine pairs of opinions to

9



yield a new opinion.
The propositions can relate to measurement values obtained from different sensors, or can be propositions
that are developed and based upon those measurements (such as the presence or absence of a target class).
For ATR applications, we might be combining information from different modalities, or from different
target recognition algorithms, or from different environment variables together with feature data.

A variety of different calculi are obtainable from these philosophical foundations, depending upon
the values that the opinions are supposed to represent, and depending upon the assumptions used in the
updating process. Each design choice leads to a different calculus, giving a Chinese menu of uncertainty
calculi. Different applications will require different design choices. One of the calculi that arises is pre-
cisely the Dempster/Shafer calculus. Another is the simplified Kalman filter.

We present here the formulas for yet another calculus that arises in our uniform framework. We
envision a collection of "experts" E, with each expert o) in E expressing an opinion x,(X) for every label
XE A. Suppose that the opinions are represented by the logarithms of values determined by the probabili-
ties for a particular proposition. The values, however, are not simply the logarithms of estimated condi-
tional probabilities based on the known observations, but rather the log of the ratio of the conditional pro-
bability and the prior probability. Specifically, we set:

S,,prob(XI Information)]

x(jx) Z log[ Prob(k.)__

where the "Information" is the information shared by the experts in E, and the denominator is the prior
probability of label X in the absence of any information. Note that these probabilities are defined over the
usual sample space of problem instances, and not the set of experts. The equations are approximate,
because each expert is m.,king an estimate. These values are the representation suggested by Chamiak for
probabilistic reasoning. Each expert will have a different estimate of this log-ratio, and the statistics that
we propose to maintain are the mean and variance of these values. Thus if an expert regards a proposition
as being 4 times as likely due to the given measurements as opposed to its probability in the absence of
information, then the expert contributes log(4) as the opinion in the set of opinions, from which we meas-
ure the mean and variance. Note that if the information has no influence on the prior probability, accord-
ing to an expert, then the expert's opinion will be log(l), i.e., zero.

The state of the system is thus represented by two vectors:

t) = (x0,(.)),

and:

a(X) = [ Av(x,(XL) - Ji(X))2] ,,2

Unlike the Dempster/Shafer representation, which requires 2 v values for the specification of the state, this
formulation requires only 2N values, where N is the number of possible labels (i.e., N = #A).

Now, if two such sets of opinions are to be combined, we chose to take the set product of the opin-
ions. If a composite opinion is to be formed from two individual opinions, and if we may suppose a con-
ditional independence between the information sources on which the two experts are basing their opin-
ions, then it can be shown that modulo a uniform additive constant, the two opinions may be summed.
This comes from Bayes formula, using conditional independence of the information sources, yielding:

Prob(X• Info,, Info2) Prob(Xj Info,) Prob(Xl Info2)

Prob(X) a Prob(X) Prob(X)
The two sides are equal, except for a proportionality constant, which is independent of X. Taking the log
of both sides, we see that it is logical to set:
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X woc.•)(X) =x ,(X) + X

The proportionality constant has been dropped, which means that the opinions can be off by a constant
additive amount (but the same constant for all the labels X). This skewing, it turns out, is unimportant,
since we are only concerned in the relative size of the components over different labels X. This then is
the updating method, and we can see that independence (conditioned on every label) is required for the
information. A mathematical statement of the independence assumptions says that

Prob(Infol I lnfo2, X)= Prob(Infol I X)

for all I in A. These are strong requirements, but potentially valid in some circumstances.
Using the product formulation for obtaining the the combination set of opinions, we find that the

following formulas hold. The mean and standard deviation of the opinions of the experts in set E1 are
denoted by (1±1,ot), and the opinions of the experts in set E 2 give rise to the state (g.t2 ,o2 ). Then

9(k) = W• (.) + 92(W),

That is, the resulting calculus can be specified by the statement that mean log-probability opinions should
be added, and variances also add. We look for a situation where the resulting mean opinion is either very
large positive, or very large negative, with a relatively tight variance (much less than the magnitude of the
opinion) in order to conclude that the corresponding proposition is true or false.

6. Wavelet slice theorem and variants
Our work on wavelet methods for SAR image formation has, to date, been mostly based on

mathematical explorations. The work was begun by postdoctoral student Jacques Froment, and has been
taken up by mathematics graduate student Jordan Mann. We announce here principal results. The first
two results are termed "Wavelet Slice Theorems," and they form wavelet analogs of the "Projection
Slice Theorem," which forms the basis of the SAR technology (as well as tomography technology). The
last two results are the most recent work, and suggest exciting new methods for practical SAR image for-
mation that might provide practical advantages over current methods.

The problem of reconstructing a function of n variables from its integrals along hyperplanes was
first studied by Radon. The problem, its two-dimensional version in particular, has found applications in
such diverse fields as radio astronomy, molecular biology, and computer-assisted tomography. More
recently the foundational mathematics has been applied to synthetic aperture radar (SAR).

We have proposed several new formulae which hold particular promise for SAR, since they take
advantage of the convolution inherent in the transmission and reception of the radar signal. The first two
formulae are based on arbitrary wavelets and thus open the possibility of determining, analytically or
empirically, the wavelet or wavelets most effective for a given application. Notably, finely tuned orthogo-
nal wavelets are not needed in our methods.

Since these ideas are as yet unpublished, but may lead to exciting new methods for SAR image for-
mation, we present a mathematical summary of our work below.

We consider a function f (x,y), and define Pef (t) to be the Radon transform of the function at angle
0, given by

P of (t)=Lf (tcos0-'xsin0,tsinG+rcos0)dt.
For any particular t, Pef (t) is the integral of the function along a specified line in the coordinate plane.

Given a function f(x) of one variable and a 1-D wavelet W(x), we define WJf(u), the wavelet
tran:;form of f at location u and scale s by:
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WJf (u)= Y)U),
the convolution of the signal f and the wavelet, and where:

V (x) = 'Isi•(sx), and

x ) = V/(-x).
Given a function f (x,y) of two variables and a 2-D wavelet W(x,y), the wavelet transform Wj (u,v) of f
at location (u,v) and at the scale s, is defined by:

Wdf (u,v)=(f*'VA)u,v).

where V,(x,y) and Vi are defined similarly as above, but for two variables.

In spotlight mode SAR, if we "chirp" a function h(t) in a direction 0 toward an image g(x,y), the
return signal, in a certain sense, is essentially h*Peg(t). Accordingly, in the following results, we con-
sider g (x,y) to be the function for reconstruction.

Result 1. We have the following formula:

C•J0 W•Pog(U(0))-$-dsd0 = (m(tl,,)*g)(x,y)

where C is a multiplicative constant, m(l1,)(x,y) is the function whose Fourier transform is I/ 1+r1T,

and U(O) =xcosO+ysinO.
Since the convolution on the right side of the equation can be inverted, we can recover g. In fact. we
have:

g (x,y) = CfJH'WsPeg (U (0))T ds dO,
where H' denotes differentiation followed by the Hilbert transform.

The significance of this result is that we may use any 1-D wavelet to construct WsP9g by chirping a
collection of different signals at varying scales at each angle. The function g may then be recovered
through the indicated formula, which involves a Hilbert transform.

Compared with typical SAR analysis, a rasterization onto a coordinate grid is not necessary, since
all the processing is I-D before integrating over space. However, like regular SAR processing, FFTs (or
this case, Hilbert transforms) are necessary.
Result 2. Let V be any 2-D wavelet. By the wavelet transform inversion formula:

g(x,y) = J s'OV, *Wsg(x,y)ds

where C. is a constant associated with W -. *riting the convolution on the right side as the inverse
Fourier Transform of its own Fourier transform, and the convolution theorem, we find the the right side of
(1) is equal to:

I

The integral over d~dý may be easily transformed into a polar coordinate integral /p/dpdO.
By making the change of variables, and regrouping terms, (1) may be rewritten as follows. Let:

Cs,e(u)0=7lL,(pcos0,psin0) Wt(pcosO,psinO)/p/e'P" dp.

Then (1) becomes, after some algebra:I 1I *
(x,y) = 2 s JS(Pg *C,. )(xcosO+ysinO) dO ds (2)

2n 0
We see that g can be reconstructed using an extremely simple formula, providing we have available the
return signals from a spotlight mode radar that has emitted a collection of C,,9 signals. This leads us to
investigate properties of C,.e.
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Suppose we set Ce(u) to be equal to C,. 9(u) when s = 1. Then is is not hard to show that:

C1,9(u) = C e(su), and

C8(-u) = CO(u).
In the case when 1 is real (and real-valued wavelets are the normal situation), we have:

Ce(u) = \'2--/1 (pcosO,psino)/2 pcos(pu) dp.

Basically, Cse(u) is a function whose Fourier Transform is p./4,/ 2(pcosO,psinO) as a function of p.
Accordingly, we expect that for a suitable choice of W, the function C,,9 will be smooth and essentially
compactly supported, and thus a good choice for a chirp signal.

The problem with Result 2 is that an entire collection of different scales are needed at each angle.
The same situation occurs, of course, with standard SAR. The issue is whether there exists a method to
chirp a range of different frequencies, and sort out the necessary coefficients, as is done with standard
SAR processing. Amazingly, it is as simple, if not simpler, in the wavelet case.
Result 3. Let us suppose that g is wavelet-domain band-limited, by which we mean that there exists T>O
such that for all s>T, Wg (u,v) = 0 for all (u,v). This is conceptually similar to the familiar assumption
of band-limitedness. Then in formula (2) above, the integration with respect to s can be truncated at T
instead of going to infinity, and it is possible to change the order of integration and integrate with respect
to s first. Integrating with respect to s first, but making the change of variable u=sx, we find that:

g(x,y) = 2C o(Peg*he)(U(O))dO, (3)

where:

ho(v)= w"u.C9(u)du.

That is, rather than needing a collection of returns, it suffices to filter Peg by he, which is the return at
angle 0 that is obtained by chirping he.

It can be shown that he(v) is continuous at 0, and with proper choice of wavelet it can be made to
decay like I/v 2 . Thus it is entirely reasonable to expect that h8 can be implemented as a valid chirp.

We see that once the convolution has been performed, the only other computation needed is integra-
tion with respect to 0. Note that the desired chirp ho(v) depends on 0, so that potentially different signals
are needed for each position along the flight path. However, if the wavelet 4f is radially symmetric, then
Ce and he will be independent of 0. Although radially symmetric wavelets are known to exist, it is not
known if these wavelets have the other desirable properties required to make he a desirable chirp func-
tion.

Our final result is a generalization, and returns us to the domain of Fourier analysis, as opposed to
wavelet analysis. The result puts the previous result in perspective, showing the relationship between
existing reconstruction methods, and the proposed new method.
Result 4. The standard reconstruction formula for tomography, and implicitly for SAR image formation,
is:

g (x,y) = --L (H'POg)(xcosO+ysinO) dO.

The wavelet form of the same equation was given in Result 1. Here, the operator H' denotes differentia-
tion followed by the Hilbert transform. For arbitrary functions, H' cannot be implemented as a convolu-
tion filter in the spatial domain, and must be achieved by multiplication by /p/ in the Fourier domain.
However, if we suppose that f is band-limited in the usual sense, then application of H' to f can be
achieved by convolution with any function q, where q (x) is a function whose Fourier transform equals /p/
in support in the spectral domain off. That is:
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g(x,y) = -J• (Pog*q)(U(9))dO, (4)

where U is defined as before, and it is assumed that Pog is bandlimited (as a function of u), and q is suit-
ably defined. This result is known (for example, see A. Kak, "Computerized tomography with x-ray,
emission, an ultrasound sources," Proc. IEEE, September 1979), but not widely utilized. We see, how-
ever, that Eqn. (4) has the same form as Eqn. (3), and implies a simple method for SAR image formation,
as we discuss below. However, the assumptions are different: Eqn. (3) is based on wavelet-
bandlimitedness of g, which is a form of local-frequency limitation, whereas Eqn. (4) assumes the usual
bandlimitedness of Peg for all 0.

We now discuss the implementation of formulas of the form (3) and (4) for SAR image formation.
These formulas are very well-suited to SAR for the following reason. All existing Radon transform
Tconstruction techniques assume that the values of the Radon transform P 9g (x) or its Fourier transform
Pog(p) are known for at least some values of 0 and x or p. In SAR, however, this is not really the case;
the radar signal received from the reflecting object is not Psg but Pog*S, where S is is the transmitted
signal. Using a filter, it is possible to reconstruct Pqg(p) for some values of 0 and p from these values,
which can then be rerasterized to a coordinate grid, in order to obtain •(•,11), and then g (x,y). Clearly,
considerable processing is required on the return signals, and the data P g*S are data that are used for the
reconstruction, and not directly related to the image data in an untransformed state. With our methods,
however, convolution of Peg with another function, which we may call the convolving function, is the
first step in the reconstruction technique. We therefore recommend implementation of any of these three
methods by using its convolving function as the transmitted signal. In this way, the convolution of Peg

Flight path

ChrpImage region

-•t Accumulate returns along lines

Return F77K
Image is built up gradually

Figure 4. An outline of the computations required for each point of data collection in the SAR image for-
mation method suggested by Eqns. (3) and (4). For each value of 0, the return signal forms a line of data,
which is spread through an array of accumulators in a direction perpendicular to 0.
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first step in the reconstruction technique. We therefore recommend implementation of any of these three
methods by using its convolving function as the transmitted signal. In this way, the convolution of Pog
with the transmitted signal is no longer a nuisance that must be reverscd, but the first step in the solution!

Accordingly, the method for reconstruction is as follows. At each point along the flight path (see
Figure 4), a convolution function he(t) is sent, and the return signal f9(u) is recorded. For any given
(x.y), the contribution of fo toward the reconstructed value of g (x,y) depends on f 0 (xcosC iysin0). That
is, we have the formula:

g (x,y) = J0 f(xcos9+ysinO)d6.
Note that the contribution for any given f9(u) is constant along a line perpendicular to the direction
(cosO,sin0). Thus, for each appropnate value of u, an accumulator along a line perpendicular to the direc-
tion 0 is incremented by an amount f9(u). This can be done in parallel for different values of u.

To summarize, the suggested algorithm is as follows:

Initialize g (x,y)=O for all (x,y).

For all 0 in the range of available angles, do:
e Obtain a return signal f9(u) using a chirp h9 (t).
*For each value of u, do

Use Bresenham's algorithm to walk along a line in a direction perpendicular
to 0, (the line U(0) = u, and increment an each accumulator by
a portion of f9(u).
The portion should be computed using standard anti-aliasing methods.

We see that standard computer graphics techniques can be used to form the computations. The algo-
rithms are easily parallelized. The total complexity for each point of 0 is proportional to the number of
pixels in the image. With appropriate hardware, the accumulation could take place during the collection
of data, so that the final scene would be available by the time the final data point is collected.
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