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Abstract

Ilere we report on development of a high order finite elcment code for the solution of the
shallow water equations on the massively parallel computer MP-1104. We have compared
the parallel code to the one available on the Amdahl serial computer. It is suggested that
one uses a low order finite element to reap the benefit of the massive number of processors
available.

1 Introduction

The .:ballow water equations are first order nonlinear hyperbolic partial differential equations
having many applications in Meteorology and oceanography. These equations can be used
in studies of tides and surface water run-off. They may also be used to study large-scale
waves in the atmosphere and ocean if terms representing the effects of the Earth's rotation
are included. See review article by Neta (1992).

Indeed, it had become customary, in developing new numerical methods for weather
prediction or oceanography, to study first the simpler nonlinear shallow water equations,
which possess the same mixture of slow and fast waves as the more complex baroclinic
three-dimensional primitive equations. One of the issues associated with the numerical
solution of the shallow water equations is how to treat the nonlinear advective terms (Cullen
and Morton, 1980, Navon, 1987). In this paper the two-stage Galerkin method combined
with a high accuracy compact approximation to the first derivative is used. The method
was developed by Navon (1987). See also Navon (1979., 1 9 7 9 b, 1983). Our work here is to
discuss porting issues of finite element onto a massively parallel machine. Section 2 discusses
the algorithm, section 3 discusses the MasPar hardware and software. In section 4 we detail
our numerical experiments and compare the results to the code running on the Amdahl serial
computer.

2 Finite Element Solution

The barotropic nonlinear shallow-water equations on a limited-area domain of a rotating
earth (using the P6-plane assumption) have the following form:

ut + uu +vuV+-(P.-fv=O

vt + uv,+vvY+Wo+fu=O O<x<L,•O<y<D,t>O

~c~+ (VU). +( ),0.

Here u and v are the velocity components in the x and y directions respectively, f is the

Coriolis parameter approximated by the # plane as
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where 6, fo, are constants and ý = gh is the geopotential height. Periodic boundary
conditions are assumed in the x direction and rigid boundary conditions (v = 0) are imposed
in the y-direction. The domain is a cylindrical channel simulating a latitude belt around

the earth (see e.g. Hinsman, 1975). The finite element approximation leads to systems of

ODES which can be finite differenced in time (see e.g. Douglas and Dupont, 1970). In the

two stage Galerkin (originally proposed by Cullen, 1974), we let any of the 4 derivatives in

the nonlinear terms be approximated by the compact Numerov scheme, i.e. for

.9u

we have

O[z,+2 + 16z,+l + 36z, + 16z,.- + z, 2 ] =

141-51i-2 - 32ui_1 + 32uji 1 + 5U4 21

Similarly for z,, zu and zy,.Tbe approximation of 8 requires an interpolation of the bound-
ary values VO, vN+i

vo = 4v1 - 6V2 + 4V3 - V4

VN+1 = 4 VN - 6 VN. I + 4 vN_2 - VN-3

I -25v, + 48v 2 - 36V3 + 16v 4 - 3v5

12h
19v 3 VN.-4 - ]6t'v_3 + 36v,-._2 -

4 8VN,1 + 2 5VN

aY IN 12h

This stage will require a solution of a pentadiagonal system. For the second stage, we let w

be any of the four nonlinear terms and we solve a tridiagonal system. For

W = vz

we have

ý(jj+ 4w, + wj,+) = (vi-lzj- + v~z,... + vi-lz,+

v1+Iz, + v z,+a + v,+Iz,,+ + 6vjz,)

This two stage approximation yields 0 (h8) approximation to the derivatives uu,,v, and
Vty.

Now the approximation of the shallow water equations becomes

M(u'!+' - U') + At[(uz~u)* + (vzyu)* -fj,] At'21

M(V,7' - V) + At[(VZy,) + U"+(Z,.), + ÷,] = AtK3-
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+ - lAtK,•+ + +•) = 0M ~20

where

721 = ,+K1

7
31 = K + K3

S= V, V, dA

Klj= F11 V, V;E-dA+El I V, Vkv-;- 2 dAkk

S:x

Sav

K2" + IdA

= AJL -- i dA

K n+1= fLaVk Vj dA

and where Vj are the finite element shape functions.

71= +1/2 =_ 3U un1 +0At2)

and similarly for v*.
Schuman (1957) filter was applied every 12 time steps to the v component of velocity in

order to recover the higher accuracy of the method.
Since the two-stage Galerkin method does not conserve integral invariants (Cullen [1979])

we apply an aposteriori technique using an augmented Lagrangian nonlinearly constrained
optimization approach for enforcing the conservation of integral invariants of the shallow
water equations (see Navon and deVilliers (1983) and Navon (1983)).

3 System Overview

The MasPar family of massively parallel processing systems consists of arrays of 1K to 16K
processing elements (PE), a scalar control unit (ACU) and a UNIX subsystem. Architec-
turally, each PE is a custom 64-bit RISC processor with 48 32-bit registers and 64 KB of data
memory. All PEs execute instructions which are broadcast from the ACU on data stored in
their local memory. Although there is only a single instruction stream, the processors have
a number of autonomies, including the ability to generate independent addresses for indirect
loads and stores to memory.
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The PEs share data using two communication mechanisms: the xnet and the router.
The xnet is an eight-way nearest neighbor mesh that is used for structured communications
such as stencil operations in finite difference codes. The router is a multi-stage circuit-
switched network for global or random communication patterns. I/O to and from the PEs is
transferred via the router to an external memory buffer called I/O RAM. From I/O RAM,
data %an asynchronously be transferred to a wide variety of devices such as disk arrays,
frame buffers, or other machines. The MasPar Disk Array (MPDA) provides up to 22
GB of formatted capacity as a true UNIX file system. The UNIX subsystem provides the
programming and run-time environment to users.

3.1 MasPar Software

The MasPar system is programmed in either MPL, a parallel extension to ANSI C, or Mas-
Par Fortran, an implementation of Fortran 90. In MasPar Fortran (MPF) parallel operations
are expressed with the Fortran 90 (F90) array extensions which treat entire arrays as manip-
ulatable objects, rather than requiring them to be iterated through one element at a time.
F90 has also added a significant number of intrinsic libraries; operations such as matrix
multiplication and dot product are part of the language. Since Fortran 90 is a standard
defined by the ANSI/ISO committees, programs are architecture independent and can be
transparently moved to other platforms.

Fortran 77 Fortran 90

doi = 1,256 a = b+ c
doj = 1,256
a(i,j) = b(i,j) + c(i,j)

enddo
enddo

The Fortran 90 code can be run on any computer with a F90 compiler. On a scalar machine
such as a workstation, the arrays will be added one element at a time; just as if it had been
written in Fortran 77. Oa a vector machine, the number of elements added at a time is
based on the vector length; a machine with a vector length of 64 will add 64 array elements
at once. The MasPar machine acts like a vector machine with a very long vector. On a 16K
MasPar machine, 16384 arrays elements are added simultaneously.

MasPar provides key routines in math, signal, image, and data display libraries. The
Math Library (MPML) contains a number of high-level linear algebra solvers, including
a general dense solver with partial pivoting, a Cholesky solver, a conjugate solver with
preconditioning, and an out-of-core solver. MPML also includes a set of highly-tuned linear
algebra building blocks, analogous to BLAS on vector machines, from which the user can
develop additional solvers. The Data Display Library provides a convenient interface to
graphically display data from within a program as it is executing.

The MasPar Programming Environment (MPPE) is an integrated, graphical environment
for developing, debugging, and tuning applications. MPPE provides a rich set of graphical
tools that allow the user to interactively control and visualize a program's behavior. The
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statement level profiler allows the user to quickly identify the compute-intensive sections of
the program while the machine visualizer details the use of hardware resources. Each of
these tools are continuously available without having to recompile, even if a program has
been compiled with optimizations.

4 Program

The program is modular and is complemented with easily reachable switches controlling
print and plot options. The Input to the program consists of a single line containing the
following six parameters:

DT - the time step in seconds (F5.2)
NLIMIT - total number of time steps (15)
MF - number of time steps between printing solution (IM)
NOUTU - to print (1) or not to print (0) the u-component
NOUTV - to print (1) or not to print (0) the v-component
NPRINT - to print (1) or not to print (0) the global nodal numbers of each triangular

elements and the indices and node coordinates of the nonzero entries of the global matrix.
The main program initializes all variables and then reads the only data card of the

program. It then proceeds to index and label the nodes and the elements, thus setting up
the integration domain. This is done by subroutine NUMBER.

Subroutine CORRES determine the nonzero locations in the global matrix and stores
them in array LOCAT. The initial fields of height and velocity are set up by subroutine
INCOND. The derivatives of the shape functions (Vj) are calculated in AREAA. A compact
storage scheme for the banded and sparse global matrices is implemented in subroutine
ASSEM. The method is based on the fact that the maximum number of triangles supporting
any node is six. Three different types of element matrices (3 x 3) will be required for assembly
in the global matrices.

A switch, denoted NSWITCH is set for selecting between the different types of elemo!nt
matrices. After setting up 11ce time indepeadent gloLVl rmatrices the program proceeds to
the main do-loop which performs the time-integration and which is executed once for every
new time-step.

As the solution of the nonlinear constrained optimization problem of enforcing conser-
vation of the nonlinear integral invariants requires scaling of the variables, the scaling is
performed in the main program as well as in subroutine INCOND.

In the main integration loop the simulation time is set up and adjusted and then the
subroutines ASSEM and MAMULT set up and assemble the global matrices which then are
added up in a matrix equation, first for the continuity equation and in a similar manner for
the u and v-momentum equations.

Subroutine SOLVER then is called to solve the resulting system of linear equations (of
block tridiagonal form) by the conjugate gradient square.

The new field values for the geopotential and velocities, 0,,, v! ':+ respectively, are
used immediately as obtained in solving the coupled shallow-water equations system. For
the u and v-momentum equations, the new two-stage Numerov-Galerkin scheme is imple-
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mented. Separate routines are set up for the x and y-derivatives advection terms, DX and
DY respectively. Subroutine DX implements the two-stage Numerov-Galerkin algorithm de-
scribed previously for the advective terms in the u and v-momentum equations involving the
x-derivative.

In the first stage it calculates the 0(h') accurate generalized-spline approximation to
the (au/aix) first derivative by calling upon subroutine CYCPNT which solves a periodic
pentadiagonal system of linear equations generated by the spline approximation.

In the second stage it implements the second part of the Numerov-Galerkin algorithm
for the nonlinear advective term u(au/ax) and solves a cyclic tridiagonal system by calling
upon subroutine CYCTRD. Subroutine DY implements the two-stage Numerov-Galerkin
algorithm described previously for the advective terms in the u and v-momenturm equations
involving the y- derivative. In its first stage it calculates the 0(h') accurate generalized-
spline approximation to the (a9u/fy) first derivative by calling upon subroutine PENTDG
which solves the usual pentadiagonal system of linear equations generated by the generalized-
spline approximation.

In the second stage subroutine DY implements the second part of the Numerov-Galerkin
algorithm for the nonlinear advective term u(au/a9y) and solves the Galerkin product by
calling upon subroutine NCTRD to solve a special tridiagonal system.

The boundary conditions are implemented by subroutine BOUND. Periodically, a Schu-
man filtering procedure is implemented for the v-component of velocity only, by calling
subroutine SMOOTH. The integral invariants are calculated at each time-step by calling
subroutine LOOK. If the variations in the integral invariants exceed the allowable limits
brSH, or 6z, the Augmented-Lagrangian nonlinear constrained optimization procedure is
activated. The unconstrained optimization uses the conjugate-gradient subroutine E14DBF
of the NAG(1982) scientific library. Subroutine EI4DBF calls a user-supplied subroutine
FUNCT which evaluates the function value and its gradient vector as well as subroutine
MONIT whose purpose is merely to print out different minimization parameters.

After a predetermined number of steps, subroutine OUT is called, which in turn calls
upon the subroutines LOOK to calculate the integral invariants. Practically 4-5 augmented-
Lagrangian minimization cycles were determined to be sufficient.

We ran thp program under MPPE and the following table shows the CPU time used by
some of the routines. All others require less than 5% each. Therefore we have decided to par-
allelize ASSEM, MAMULT, SOLVER (switching from Gauss Seidel to Conjugate Gradient
Square). Other subroutines we parallelized are:

CORRES, INCOND, LOOK, MONIT, NUMBER and AREAA.

After this, the most time consuming routines become E14DBF and FUNCT. These are
required only if the integral constraints are not conserved. Therefore if the mesh is fine,
these routines will not be called. Our numerical experiments confirmed that these two
routines were called only in the coarsest grid case.

The next set include: DX, DY, CYCTRD, CYCPNT, NCTRD, PENTDG, TRIDG, and
SMOOTH. We have decided not to try at this point to parallelize these or BOUND. We
have ran this program on the MP-1104 (4096 processors) on a variety of grid sizes. The
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Routines CPU

SOLVER 32%

ASSEM 25%

MAMULT 14%

CORRES 5%

BOUND 5%

Table 1: CPU time used by some routines

original program was also ran on the Amdahl 5990/500 serial computer. All computations
were performed in double precision. The domain is a rectangle 6000 km by 4400 km. The
coarsest mesh, Ax = Ay = 400km. This means that the number of grid points in the
x-direction, NC, is 15 and the number of grid points in the y-direction, NROW is 11. (At
will be adjusted for stability.) The number of time steps, NLIMIT, is 30.

NC NROW Ax(km) Ay(km) At(sec) Amdahl(sec) MP-1104(sec)

15 11 400 400 18. 1.14 14

48 45 133' 1331 5.51 13.52 31.3

63 62 93.75 70.97 4.22 24.8 44.3

88 85 51.76 51.76 3.03 48.32 80

128 125 46.87 46.87 2.10 - 164

Table 2: Total CPU time for several grids

The initial condition for the height field is given by

9(D/2 - y) H2  27rz
h(xy)=Ho+HItanh 2D + csh sin L

where
Ho = 2000m, HI = -220m, H2 = 133m,
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and
fo = 10 4sec-, 03 = 1.5 x lO- 11sec-Im- 1.

This initial condition is given in Grammeltveldt (1969) and tested by several researchers
(Cullen and Morton (1980), Gustafsson (1971), Navon (1987) etc.) The initial velocity fields
were derived from the initial height field via the geostrophic relationships

g Ah

g Ah

Table 2 gives the CPU time for each grid.
If we compare the CPU time for three of the subroutines we parallelized (to avoid the

difficulty that some parts are still running on the front end) we find that in MAMULT and
SOLVER we werp able to cut the CPU time. The resul'.s are summarized in Table 3.

Subroutine Problem size Amdahl (sec) MP-1104 (sec)
ASSEM 48 by 45 3.02 5.77

63 by 62 5.47 8.56
88 by 85 10.49 15.2

128 by 125 - 34.4
MAMULT 48 by 45 .42 .44

63 by 62 .74 .37
88 by 85 1.44 .88

128 by 125 - 1.53
SOLVER 48 by 45 7.21 5.97

63 by 62 13.14 4.87
88 by 85 25.38 10.6

128 by 125 - 17.9

Table 3: CPU time before and after parallelization

The code was ran under profiler and we found that now the CPU usage (in percent of
total CPU) is as given in table 4.

It is clear that one should parallelize DX,DY,PENTDG,TRIDG and LOOK. The first
four require that one parallelizes the subroutines NCTRD,CYCTRD and CYCPNT. This is
not done since the tridiagonal and pentadiagonal systems to be solved are of order NC. We
feel that one should approach this problem slightly differently. Instead of trying to parallelize
this code which is of high order, we should parallelize a low order finite element code for the
shallow water equations. The accuracy of the solution will be obtained by using an even finer
mesh than 46 km (NC=128) we used above. It will be interesting to compare the accuracy
and efficiency of the two codes on MP-1i04 machine.
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Subroutine 15byl1 44 by 45 88 by 85 128 by 125
FUNCT 36.8 - - -
DX 3.2 12.3 17.0 18.6
DY 3.2 12.8 16.6 20.0
ASSEM 10.2 17.9 16.0 14.3
PENTDG 2.5 12.0 13.7 11.4

* MAMULT 16.2 13.7 9.8 6.9
TRIDG 1.2 6.5 6.9 5.2
LOOK 9.1 4.1 4.4 8.4
NCTRD .7 3.2 3.3 2.5
CYCPNT .7 3.9 3.2 2.4
CYCTRD .8 2.6 2.1 1.5
SOLVER 8.0 4.0 1.9 1.1
SET STI 1.0 1.7 1.4 1.2
BOUND 1.8 1.7 1.0 3.9
VFEUDX 1.8 1.3 .6 .5
rest 2.8 2.1 2.1 2 1

Table 4: CPU time by sbroutine aftei parallelization

Conclusion

We have developed a high order finite element code to solve the shallow water equations
on the MasPar massively parallel computer NIP- 1104. It is believed that a low order finite
element code will be more efficient on the MP-1104 computer.

Acknowledgement
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funded by the Naval Postgraduate School.
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SUBROUTINE ASSOI (COMA,STI ,NSWTCH,CODI,AREA,tnod,tlocat)
INCLUDE 'PAR,
include 'inter-.info'
real COMA (7 ,NODEB),STI (NNDD,NNOD,NELE)
real CODI(NNOD,NELE)
integer itemp, t1, t2, t3, t4, tO, timel, time2

*real tgmat(7,NELE)
integer tlocat(6,NODE), tnod(NNOD,NELE), nsvtcb

CMPF ONDPU STI,CODI,COMA
cmpf map coma(memory,allbits)
cmpf map codi(memory,allbits)
cmpf map tgmat(memory,allbits)
cmpf map tlocat(memory,allbits)
cmpf map tnod(memory,allbits)
cxnpf map sti (memory,memory,allbits)

COMA s 0.0
C
C DECIDE WHICH ELEMNT MATRIX MUST BE CALCULATED

GOTO (100,200,500,600), NSWTCH
C
100 continue

call assem..sl(codi, tgmat, tlocat, tnod)
coma(:,:) =tgmat(:,:NODEB)
RETURN

C
200 continue

vrite(6,*) 'error for nsvitch - 2'
RETURN

C
500 continue

call assem..s2(area, tgmat, tlocat, tnod)
coma(:,:) - tginat(:,:NODEB)

RETURN
C
600 continue

call assem..s3(sti, tgmat, tlocat, tnod)
coma(:,:) -tgmat(:,:NODEB)

return
END



subroutine assem-.sl(codi, gmat, locat, nod)
include 'PAR'
real, intent~in) codi(NNQD, NELE)
real, intent(out) gmatC7,NELE)
integer, intent(in) ::locat(6,NODE), nod(NNOD,NELE)
real tcodi(NNOD,NELE)

cmpf map codi(memory,allbits)E
cmpf map gmat(memory,allbits)
cmpf map locat(memory,allbits)
cmpf map nod(memory,allbits)
cmpf map tcodi(memory~allbits)

integer irov(NELE), icol(NELE), i, k, j, I

gmat 0.
tcodi codi/6.

do 100 k =1, NNQD
irow =nod(k,:)

do 150 j -1, NNOD
icol - nod(j,:)
if( k .eq. j) then

cmpf collisions
gmat(7,irow)=gmat(7,irov)4tcodi(j,:)
goto 150

endif
do 200 1 -1, 6

vhere(locat(l,irov) .eq. icol)
cmpf collisions

gmat~l,irow) -gmat(l,irow) + tcodi(j,:)
end where

200 continue
150 continue
100 continue

return
end
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subroutine assem..s2(area, gmat, locat, nod)
include 'PAR'

real area, tarea12, tarea6
integer locat(6,NODE), nod(NNOD,NELE)
real gmat (7 ,NELE)

cmpf map gmat(memory,allbits)
cmpf map locat(memory,allbits)
cmpf map nod(memory,allbits)

integer irow(NELE), icol(NELE). i. k, j

gmat a 0
tare&l2 a area/12.
tarea6 -tarea12 * 2.

do 100 k =1, NNOD
irow a nod(k,:)

do 150 j a1, NNOD
icol - nod(j,:)

if( k .eq. j) then
cmpf collisions

gmat (7, irow)-gmatC7, irow)+tarea6
goto 150

endif
do 200 1 a 1, 6

where(locat(l.irov) .eq. icol)
cmpf collisions

gmat(l,irow) - gmat(l,irov) + tarea12
end where

200 continue
150 continue
100 continue

return
end

13



subroutine assem-.s3(sti, gmat, locat, nod)
include 'PAR'
real, intent(out) ::gmat(7,NELE)
real, intent(in) ::sti(NNOD,NNOD,NE.E)
integer, intent(in) ::locat(6,NODE), nod(NNOD,NELE)

cmpf map gmat(memory,allbits)
cmpf map locat(memory,allbits)
cmpf map nod(memory,allbits)
cmpf map sti (meunory,memory,allbits)

integer irov(NELE), icol(NELE), i, k, j, 1

gmat a 0.
do 100 k =1, NNOD

irow - nod(k,:)
do 150 j a 1, NNOD

icol anod(j,:)
if( k .eq. j) then

cmpf collisions
gmat C7,irow)=gmat (7, irow)+sti(k,,j,:)
goto 150

endif
do 200 1 a 1, 6

vhere(locat(l,irow) .eq. icol)
cmpf collisions

gmat(l,irow) =gmat(l~irow) + sti(k,j,:)
end where

200 continue
150 continue
100 continue

return
end
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SUBROUTINE MAMULT (COMA ,VECTOR,RIGHT,locat)
INCLUDE 'PAR'

real, intent(in) ::COMA(7,NODEB), vector(:)
real, intent(out) ::RIGHT(:
integer, intent~in) ::locat(6,NODE)
integer nloc(NODE)
integer kr

cmpf map coma(memory,allbits)
cmpf map locat(memory,allbits)

right = 0.
RIGHT( :NODE) acoma(7, :node)*vector( :node)
DO 80 KRwl,6

nloc( :)ulocat(kr,:)
where(nloc(:) .ne.0)

& ~RIGHT(:node) - RIGHT(:node) + COMA(KR, :node)*VECTOR(nloc(:))
80 CONTINUE

RETURN
end

!Conjugate Gradient Square (CGS) method to solve non-symmetric
!positive definite metrix. Ax ab

coma a input matrix A
right a b
xsolv - x

subroutine my-.solver(coma,right,xsolv,eps,itermx,locat)
include 'PAR'
include 'mamult..if'

real coma(7NODEB), eps
real right(NODEB), xsolv(NODEB)
real, dimensionCNODE) ::r, rbar, p, p1, q, U, my
real*8, dimension(NODE) ::brbar, bpi
real beta, convi, conv2, resti, rest2
real delO, dell, alpha, residual(loo)
real*8 bdel0, bdell
integer locat(6,NDDE)
integer iterux, i, j
common/debug/ntime
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cmpf map coma(memory, alibits)
cmpf map locat(memory,allbits)

r -right (:node)
convi a dotproduct(r,r)
call mamult(coma, isolv, mv, locat)
r ar -my

rbar r
p r
u r
itermx =100
PI 0.
eps =1.5e-6

do 10 ,, - 1, itermx
call mamult(coma, p, p1, locat)
delO -dotproduct(rbar,p1)
deli - dotproduct(rbar,r)
alpha dell/delO
q =u -alpha*pl

Uu + q
xsolv(:node) - xsolv(:node) + alpha*u
call mainult(coma, u, p1., locat)
delO =dell
r a r -alpha*pl

conv2 adotproduct(r,r)
residual~i) - sqrt(conv2/convl)
if( residual(i) .1t. eps) then

return
endif
deli a dotproduct(rbar,r)
beta a dell/delOI u a r + beta*q
p n u + beta * (q + beta*p)

10 continue

PRINT 2001
2001 FORMAT (lX,'NO CONVERGENCE')

do 20 i a 1, itermx
vrite(6, *) i, I residual is '.residual~i)

20 continue
stop
END
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