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SOME ALTERNATE
CHARACTERIZATIONS OF
RELIABILITY DOMINATION

F.T. BOESCH,* A..SATYANARAYANA, AND C.L. SUFFELt

Stevens Institute of Technology
Hoboken, New Jersey 07030

An import ant problem in reliability theory is to determine the reliability of a
system from the reliability of its components. If E is a finite set of coniponents.
thL+cci tiii subsets of it are prescribed to be the operating states of the system.
A formation is any collection Fof minimal operating states %hosc union is E.
Reliability domination is defined as the total number of odd cardinaliky forma-
tions minus the total number of even cardinality formations. The purpose of
this paper is to establish sonic new results concmrnine reliahihta doman3tton. In
the spei,l cawe ,here the s~stem can be identified vith a graph or dieraph,
these nev. cesultss lead to some nev. graph-theoretic properties and to simple
proo s of certain knowvn theorems. The pertinent graph-theotetic properties in-
clude spanning trees, acychc orientations, Whitnev's broken c,,ls. e,-:.d Tutte's
internal ati\ ity associated vith the chromatic polnomial.

1. INTRODUCTION

There have recently been several important advances in system reliability the-
ory. One of the major issues in reliability theory is the determination of the re-
liability of a given system from the reliabilities of its components. System
reliability includes a variety of network reliability problems that occur when the
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RELIABILITY DOMINATION 259

that by a graph we mean what Harary calls a pjeudograph. Furthermore, in
wkhat folloxs, by domination of a graph or a system Ae mean the reliability
domination.

Let E be a finite set and P(E) be the power set of E. A nonempty subset
C E P(E) is called a clutter on E if for any two elements C, E C and C 2 E C,
whenever C, _ C., then C, = C.. The pair (E,C) %ill be referred to as a s)ys-
ten? and the system is coherewt if each element of E is contained in some element
of C. A subset A 9 E is called an operating state of the system (E,C) if A con-
rains an element of C. Let O(EC) = IA C E: C c A for some CE CI be the
collection of all opcrating states of the sysstem (E,C). A formation Fof a sys-
tem (E,C) is a subset of C with the property that U cE C = E. The formation
F is odd or even depending on whether its cardinality is odd or even, respec-
tively. The signed domination d(E,C) of a system (E,C) is defined to be the
number of odd formations minus the number of even formations of (E,C).

The notion of the signed domination ,as introduced in 1131 in the context
of reliability analysis of directed networks. Suppose G = (VE) is a digraph and
KS Vis a specified subset of points of G such that SE K. A subdigraph Tof
G is a rooted tree, rooted at s, if in Tthe indeg(s) = 0 while the other points of
Thave indegrce = I. A K-tree, rooted at s, is a rooted tree, rooted at s, such
that (i) s E K, (ii) every point of K lies on the tree, and (iii) every point sith out-
degree = 0 is a K-point. Clearly, a K-tree rooted at s of a digraph G constitutes
a minimal subgraph G with the property that there is a diTected path from s to
each point of K. The suograph is minimal, in the sense that deletion of any edge
from it results in the event that not all points in K can be reached from s.

A digraph G = (V, E) % ith K _ V and s E K is called a K-digraph if every
edge of G lies in some K-tree, rooted at s, of G. Let 3,(G) be the collection of
all the K-trees, rooted at s, of G. Clearly, ,IA (G) constitutes a clutter on E.
Furthermore, the sxstem I E,,',k, (G)) is coherent if and only if G is a K-graph.
A formation Fof G is a collection of K-trees, rooted at s, w% hose union consti-
tutes the set of edees E of G. A formation F is odd or even depending on
whether F contains an ndd or e'en number of trees, respectilcly. The signed
dominatioty of a dicraph G = (/, E), with respect to a given subset K _ I/and
sE K, is the number of odd minus the number of even formations of G. In this
instance, %%e N% rite dA (G) instead of d[E, _jK(G)]. The absolute value of dK (G)
will be noted by DA(G).

The notions of K-trees, K-digraphs, formations, and the signed domination
are applicable to undirected graphs as well. Suppose G = (V,E) is an undirected
graph and K _ V. A K-tree of G is a tree of G containing all points of K such
that every leaf of the tree belongs to K. The notions of K-graph, formation, and
the signed domination are similarly defined.

The invariant dA-(G) has been used in the following directed network reli-
ability problem: We are given a directed network G = (VE) with K q V and
s E K. The elements (edges or points) of G, at a given instant of time, are in one
of two states, either failcd or functioning. A point u is said to be able to com-
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RELIABILITY DOMINATION 261

%%e aa.in refer to the divtaph example of Figure I Here E = lx,, %,,
x,,x"} C = 11x, ,x,41, I'xj ',x , jx:,.vx 1, and x = A. Then, C, =- lx ,• l,

Ix.,x.fl and C,, _ lx,,x,1, =x,,x~l, lx.,%,fl. Note that IE - lxl.C_, is

the system associated ,Nith the communication from s to tin G - x. On the other
hand, fE - I.I ,C., ] does not desciibc the saame phenomenon in G'.x; specif-

ica!lv. G; % does not dcscribe the bcha-,ior of G ",,hen x is funcit ioinc. Indeed.

IA.,, x, I is an s to : path in G T but ceitainly does not rept ,eCnt a valid path In

G \Nhen x, is functioning.:. Finally, note that d(E,C) = 1, d( E - vx .C_ ,C )

-1. and d(E - Ix KC.,) I= 0, so that d(/,C) .- d(E -. IxlC.,) - d(t

xl ,C ) in our eanplc. The fact that d(E.C)= d(E - xl ,C. ,) -.- d(E - IAx.
C_, ) holds for any coherent system (E,C) has been proved in Barlo,, 121. We
note the follo\%ine e!mentary consequence of the definition of dA (G).

FACT 2. 1: Let G = ( ,E) be a graph or a digraph and K a subcsct of t' If u is

an isolated point of G which is not in K(, then d, (G - u) = dA (G) -

In view of the aboe fact it is henceforth assumed, unless stated other\, ise, that
the graphs or digraphs \Ne deal Asith have no ;,,olaied points u such that

X3, the, ~- C tr.ty'tc- . tý
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u E V - K. We conclude the preliminaries with two useful propositions, the
proofs of which may be found in Satyanarayana and Chang 110].

PROPOSITION 2. 1: Let G = (V, E) be an undirected graph such that I VI > I. and
K 9 V. Then G is not a K-graph if and only if one of the folio wing holds:

(i) G contains two connected components, each of which has an edge,

(ii) G contains two connected components, each of which has a K-point,

(ini) G is connected wih I KI < 2,

(i') G has a cutpoint u such that G - u has a component with no point
from K.

(v) G has a self-loop.

PRoPOSITION 2.2: Suppose C = (VE) is an undirected graph, and K c V. Then
dA (G) # 0 if and only if G is a K-graph.

3. DOMINATION AND SUBSTRUCTURES

Theorem 3.1 of this section, first proved by Huesby [51, provides a character-
ization of domination for sysiems. This result is used to establish some new re-
stilts concerning domination of graphs and digraphs. This section also includes
simple proofs of some of the well-known results.

Let C be a clutter on the set E, and let 9 (E,C) be the collection of all oper-
ating states S of the associated system. We can partition the set O(E,C) of oper-
ating states into two classes, depending upon the cardinality of the states, as
follows:

00 (E,C) = ISE O(F,C): ISI is oddI and

O,(E,C) = ISE O(E,C): ISI is even1.

TnEOREM 3.1: For any systenm (E,C), d(E,C) = (- 1)QE• (IO,(E,C)I -

0 (o(E,C)I).

Proof of Theorem 3.1 can be found in Huscby 15).
Note that Theorem 3.1 holds for any arbitrary clutter and, in particular,

reaffirms the fact that the domination of a noncohercnt s)stem is zero. A spe-
cial case of this theorem was discovered first by Rodriguez [7] for undirected
graphs.

COROLLRY 3.1: If G = (V,E) is a graph or a digraph, K g V, and s - K, then

dK(G) = (-I)T •'(IO,(E,3A-(G))I - Ie(.E,cS.(G))I),

where ýA" (G) is the set of K-trees of G, if G is a graph, and Cx (G) is the set of
K-trees, rooted at s, if G is a digraph.

A consequence of Theorem 3.1 is the following well-known result.
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COROLLARY 3.2: (Signed domination theorem). If (E,C) is a systenl, Aý C E and
C., and C, are the minors of C with respect to x, then d(EC) = d(E - Ixl,
C..) - d(E - lxIC_,).

PRooF: We first claim that IO0(E,C)I = IOA(E - Ixl,Cj) + 1O,(E - x1,
C.,)f, and IO,(E,C)I = 10,(E- IxI,C_)1 + I O(E- Ixl,C,,)I.

Indeed, if S ý_ E and x V S then S E e0 (E,C) if and only if there is an ele-
ment CC C which is a subset of S and consequently does not include x, that is,
if and only ifSE Oo(E - IxI,C_,). IfxE S, then SC Oo(E,C) if and only if
there is an element CE C such that C 9 S, that is, C- txi 9 S - jxj. Hence,
ifxE S, SE 00 (E,C) if and only if S - Ixi C O,(E- lxi,C.j and the first
equation is established. The second is proved in the same manner. We may
therefore write

d(E,C) = (-I)iF1 (j0, (E,C)I - I0(E,C)1)

= (-I)`EI(IO,(E- [xI,C_,)j - 1(Oo(E- 1xi,C_.)1

+ IOo(E - Ixl,C+I,)l - JO,(E - lxlC.,)1)
= (--l)1E-1'11(j0,(E-- jIx,C..)j - 10o(E- jIvj,C÷j)D

- ((0,(E- lxl,C-,)I - 10o(E- IYx,C_ , )I)

= d(E - Ix1,C..) - d(E - Ix1,C-,).

where the first and the last equalities are justified by Theorem 3.1. U

The first version of Corollary 3.2 was originally e.rlablished by Satyana-
rayana 18] for the all-terminal domination of graphs. Satyanarayana and Chang
110] later extended it to the K-terminal domination of a graph. Subsequently,
Barlow 121 has sho%sn that the signed domination theore-n holds for all coher-
ent systems and this result was later extended to general clutters by Huseby
15,61.

If the system (E.C) represents an undirected eraph G = (VE) such that the
clutter C is the collection of the ,'-trees of G, K _ If, then it is easy to see that
Corollary 3.2 reduces to the foliowine:

COROLLARY 3.3: If G = (t, E) is an undirected graph, K 9 V, and x E E then
dA (G) = dAl,,(G1x) - dA(G - x).

COROLLARY 3.4: Let G = (VE) be an undirected graph, and K 9 V be a
nonempty subset. If G has i isolated points that are not in-K. then DA (G) =

(-II~-ll*+ldK(G). "

PROOF: The proof is by induction on IE1. For the basis step, suppose that
[El = 0. If IKI = I then dA(G) = +L. On the other hand if IAK > 1, then
dK(G) = 0. In either case the basis step is established.

For the inductive step, let G be a graph such that IKI > 0and IE[ > 0, and
assume that the corollary holds for all graphs with fewer edges than G. Pick an
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edge x G E. If x is a self-loop, then dK(G) = 0. Likewise, ifx has an endpoint

u E V- K such that u is a degree-one point of G, then dA^(G) = 0 and the re-
sult follows in either case. Hence, assume that the cncdpoints of x are distinct
and ifx has an endpoint whose degree is one in G then it is a K-point. By Corol-

lary 3.3, we have d4(G) = dAi,(G!x) - dA (G - x). Note that the choice of x
implies that the number of isolated points in V - K is the same as that in

Vjx-- KJx. Since G - xand Gjx hase fewer edges than G, using the induction
hypothesis, we obtain

dK (G) = (- -fl- "I 'DI, 1, (GIx) - (-I)EI - ' 'DA (G - x)

= (-I)jEI-I$'+l* (DK.IZ(GIx) + DA(G - x)).

Now if JEl - JVJ + i + I is odd then, since DK,(Gjx) and DK(G -. x) are
non-negative, d4(G) <- 0 and dA(G) = -Dk(G) = (-,)iE -+'÷'D(G).

On the other hand, if IEI - IV/ + i + I is even, then d,, (G) = D,(G)
(- I )IEI-I 'Dx (G).

The following corollary is immediate from the proof of Corollary 3.4.

COROLLARY 3.5: Let G = (V,E) be an undirected graph, and K ý_ V be a
nonempt'y subset. Suppose x e E is an edge such that (i) x is not a self-loop,
and (ii) if x has an endpoint u in V - K, then u is not a degree-one point of G.

Then DA-(G) = DA'.x(GIx) + DA(G - x).

Corollaries 3.3 through 3.5 were proved in Satyanarayana and Chang

1101 for undirected K-graphs. Since Corollary 3.5 does not hold for any arbi-
trary edge x, it is of interest to ask that if the equality DA (G) = DAký (G Ix) +-
DA(G - x) does not hold for some edge x of an undirected graph G, then what

can we say about G and x? The following corollary answers this question.

COROLLARY 3.6: Let G = (V,E) be an undirected graph, and K 9 V. Then

DA(G) # D.I,,(G) + DA(G - x) if and only if (i) x is a self-loop and G - x
is a K-graph, or (ii) x is incident on a degree-one point u E V - K and G - x

is a K-graph.

PRooF: If either (i) or (ii) holds, then DA,(G) = 0 by Proposition 2.1. But
DO.G - x) > 0, by Proposition 2.2, since G -x is a K-graph.

Conver sely, suppose that neither (i) nor (ii) holds, then we show that

DA(G) = Dxl,(Glx) + DA-(G - x). First, suppose that x is a self-loop. Then,
es (i) does not hold, G - x is not a K-graph. Since Gix = G - x in this case,

it fc" v's that DK(G) = DA (G - x) + D 1xl(Glx). Ne,&t, suppose that x is
not a self-loop. If x is not incident on a degree-one point u E V - K, then by
Corollary 3.5, DA'(G) = D.I,(G!x) + DA (G - x). Hence, assume that x is
incident on a degree-one point u E V- K. Then, as (ii) does not hold, G - x

is not a K-graph and DK(G - x) = 0 by Proposition 2.2. But by Corollary 3.3,
dAI(G) = dK,.,(Glx) - d^.(G - x) and it follows that DK(G) = D.(G - x) +
DA',.(Glx). U



RELIABILITY DOMINATION 265

Our next corollary yields a characterization for the K-terininal domination
of undirected graphs G =: (VE) %.ith K C V, in terms of certain spanning con-
nected subgraphs of G. We denote by c(G.K) the number of connected com-
ponents of G which contain at least one point of K. Let So (G,K) denote the
number of spanning subgraphs S of G such that each S has an odd number of

edges and c(S,K) = i. Similarly, S, (G,K) is the number of spanning sub-
graphs with evenly many edges and c(S,K) = 1. The following is an immedi-
ate consequence of Theorem 3.1, and the facts that IOo(E,jA (G))j = SO(GA)
and 10,(E,,1(G))! = S,(G,K).

COROLLARY 3.7: For any undirected graph 0 = (VE) with a specified subset

K C V, DA.(G) = IS,(G,K) - So(G,K)I.

Corollary 3.7 specialized to the all-terminal domination yields the charac-

terization of Dv(G) in terms of spanning connected subgraphs of G. More
specifically, So(G, V) and S, (G, V) are the number of spanning connected sub-
graphs xiih odd and even number of edges, respectively. However, we can par-
tition the spanning connected sUbgraphs of G into t\%o classes based on the
nullity of the subgraphs rather than the number of edges in the subgraph. Spe-

cifically, let O(G) denote thle collection of spanning connected subgraphs of G.
if H1 E 0(G), and n(H), e(H) denote the number of points and edges of H,
respectively, then let SO(G) = [IIIE 0(G): (e(H) - n(11) + I) is odd) and
S, (G) = 11H E 0 (G): (e'[H) - n(H) + 1) is even 11. It is clear that, in gen-
eral, So(G, V) t So(G) and S, (G, V) # 5, (G). The following corollary pro-
vides another characterization of Dp,(G) in terms of SO(G) and S,(G). It
follows from the observation that either 50(G, V) = So(G) and S,(G, V) =
S, (G) or So(G, V) = S, (G) and S, (G, V) = SO(G) together with an application

of Corollaries 3.1 and 3.4.

COROLLARN- 3.8: For any undirected graph G = (V,E), Dj (G) = S,(G) -

S,( G).

Since D, (G) > 0 for any connected loopless graph G, the following is an
immediate consequence of Corollary 3.8.

COROLLARY 3.9: JIfG is a connected undirected graph .-ifhout self-loops then

S,(G) > So(G).

Now the fact that I0(G)I = S,(G) + So(G) clearly implies that 1O(G)I is
odd if and only if Dr(G) is odd. Indeed, our next theorem characterizes

graphs G for which Dr,(G) is odd.

THEOREM 3.2: If G = (V, E) is on undirected graph, then Dv (G) is odd if and

only if G is a connected biparrtite graph.

PROOF: First note that if G is disconnected or has a self-loop (cycle of length
1), then Dr(G) = 0. Conversely, if Dv(G) = 0 then, by Proposition 2.1, it fol-
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lows that G is either disconnected or has a self-loop. Hence, asurme that G is
connected and loopless. We proceed by induction on IEl.

For the basis step, suppose that JEl = 0. Since G is connected, ,"e must
have IVI = I. In this case G has no odd cycles with D, (G) = )and the basis
step is established. For the inductive step, !ct G = (VE) be a connecied loop-
less graph with IEI > 0 and assume that the theorem holds for all graphs Aith
fewer edges than G, If G is a tree, then it has no odd c~cles and D, (G) = 1.
Hence, assume that G has at least one cycle. Since G has no self-loops, Ae can
pick any arbitrary edge x G E, and by Corollary 3.5 %e have D, (G) =

D1l,,(Glx) + Dl(G - x).

Suppose that C has no cycl-s of odd length, then G necessarily has an even
cycle and let x be an edge on such a cycle. Clearly Glx is conr,'cted but has an
odd cycle. Since GCx has one fewer edge than G, by induction hypothesis
Dvl,(GIX) is even. On the otbf hand, G - x is connectcd and has no odd cy-
cles. Since G - x has lEt - I edges, D,(G - x) is odd by the hypothesis.
Hence, we conclude that D0 (G) is odd whenever G is connected and has no
odd cycles.

Conversely, if G has a cycle of odd length, then we claim that D, (G) is
even. First if G is unicyclic sith an odd cycle, then D, (G - x) and D, ,(Gjx)
are both odd since G - x and GCx hae no odd cycles. Finally consider the case
%ý here G has more than one cycle. Let c be a cycle of odd length in G. Pick edge
xsuch that xis not on c. Then Glxand G - x have a cycle of odd length (even
if x is a chord of c) so that D'lA(Gix) and Dv(G - x) are even. Therefore,
D1-(G) is even as well. U

COROLLAiY 3. 10: The complete bipartite graph K,,, is the only graph among
the simple graphs on 2p points andp2 edges with an odd all-terminal domina-
tion. Likewise, K,.P, ii the only graph with 2p + I points and p (p + I) edges
hating odd al,-terminal domination.

PROOF: By the theorem of Turan (see page 17, 4] every o:her graph under con-
sideration has a triangle. N

In the reu-;'inder of this section v-e deal with dirccted graphs. Thc nature
of the invariant domination differs strikingly oepending on \%hether G is a graph
or a digraph. As noted in Section 2, the assertion that the clutter J, (G),, is
obtained from GCx if G is undirected, is no longer valid if G is directed. Due
to this anomaly the graph \ersion of Corollary 3.2, namely Corollary 3.3, holds
only for graphs and not digraphs. Furthermore, dK(G-generalhy can assume

"--- any integer value and is never zero if G is an undirected K-graph. On the con-
trary, for digraphs dA (G) is 0, +-1, or -!. Indeed, a surprising fact is that
dA(G) = ± I if and only if G is an acyclic K-digraph, and dA.(G) = 0, other-
ssise 191.

Our first result on digraphs G relates dA:(G) either to dAlI(Glx) or te
dA.(G - x), depending upon the nature of x.
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iHEOREM 3.3: Suppose G = (VE) is a digraph, K _ V, sE K, and x = (s,u)
is an edge of G. Then:

(i) if Me indeg(u) > I, then dA (G) = -d, (G - x),

(ii) if the indeg(u) = I andx lies on soine K-tree rooted at s, then dA (G) =

dA, (G I A).
PROOF: (i) Suppose indcg(u) > 1, and let x' * x be an edge directed into u.
First we show that the s. stem (E - lxl,C,,) is not coherent and therefore
d(E - 1i(,C,,) = 0. Indeed, if T' is a K-tree Tooted at s which includes x'
then (T' - x') + x is a rooted tree that includes all K points. By deleting pen-
dant points wvhich are not in A', if necessary, we may reduce T' to a K-tree T
which includes x. Thus, IT - x) _ IT' - x'j and since IT' - x') is a proper sub-
set of T', it follows that x' does not lie in any of the elements of C,,. If no
K-tree of G contains x', then no deinent of C., can contain v'. Hence, the re-
sult follows from an application of Corollary 3.2.

(ii) Suppose indcg(u) = I and x lies on some K-tree rooted at s. In what fol-
lows %"e show that there exists a one-to-one correspondence betwveen the K-trees
rooted at s of G and the A' c-trecs ro1;ed at s of Gjx such that I T: i # PI is
a formation of G if and only if IT, x: i G 1,1 is a formation of GIx.

First we claim that if Tis a K-tree of G rooted at s, then Tjx is a KAx-tre;
of G)x rocited at s. Clearly the indeg(s) = 0 in TJx for otherwise indeg(u) >
1, and TIx contains all points of KI x. Also, the faic that every pendant point
in T'is a K-point implies that every pendant point in Tix belongs to Kix. Fur-
thermore, the fact that every point other than s has indegree equal to I in Tim-
plies that cecrv point other than s in Tjx has indegree equal to I. Thus, Tix is
a rooted tree, rooted at s. Since Tix contains all points of KAx, and its pendant
points are in KAx, Tlx is a KIx-tree.

Next \\c show that the correspondence beti\cen the /-trees of G and Klx-
trees of Gj.x is one to one. To this end suppose that T, and T, are two K-trees
of G, and T,1 x = T/A . If x lies in both T, and T, or neither of these trees, then

,= '.T. On the other hand, if x lies in T, but not in T, then u • K and the
outdee(u) > 0. This is due to the fact that if u C K, since indeg(u) = I in G
N hes on e.ery K-tree of G; if u •- K and outdeg(u) = 0 then T2 is not a K-tree.
Thus, from the facts that u • K and outdeg(u) > 0, it fuilo\,s that none of the
edges directed out of u can lie in T1; this implies that none of these edges can
lie in T2 either because of our assumption that ,1 Ix = TIx. S'.ce u E V - K
is a pendant point in T,, we conclude that T2 is not a K-tree of G. This con-

"-- tradiction verifies the injectivity.
To see that the correspondence is onto, suppose that T' is a Kix-tree of

Gix. If u C K, edge x is interserted into T' to form a tree Tas follows:

(a) If T' contains edges directed out of s which are original'. directed out
of u in G, then add u to T', connect the tail ends of each of these edges
to u leaving the heads unchanged, and finally insert x = (s,u).



(b) If T' contains no edges %hich originally directed out of u in G, then
merely add u and insert x = (s,u).

These constructions are illustrated in Figure 2. Clearly in either case Tjx
T' and T is a A-tree of G. If u e K, then the construction used in (a) is required
vhencver there are edges in T' which originally emanated from u in 0. If no
such edges exist in T', Ae observe that T' itself is a K-tree of G, so T= T' serves
our purpose.

Finally we prove the contention concerning the formations of G and C¶x.
If IT,: i C- rI then it is obvious that I Tjx: iE [l is a formation of GOx. Con-
versely, if I Tx: i E P I is a formation of GOx, then it is easy to see that U,T,
includes all edges x' * x. If u E K then, since indeg(u) = I in G, every K-tree
of G includes x, w%-hence x e UT,. On the contrary, if u V K then, since x
(s, iu) belongs to some K-tree, there is an edge y, directed out of u. Since U, T, x
is a formation of Gjx, an indexjC r esists such that y E TAx. Hence, 'E Ti
and so x E T as well. This concludes the proof of (ii). ,

------------
A A

Wbi No o~t-edqgt of I e.aaýate from v In, G

FIGu•RE 2. An illustration for Theorcm 3.3.
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We conclude this section with a result analogous to that of Corollary 3.8.
Specifically, suppose G (V.E) is a A'-digraph, K 9 V, and s E K_ Let S' (G)
denote the collection of K-subgraphs of G. If H C SA*(G) and n(H) and '(1I)
denote the number of points and edges of H, respecti~ely, then SA(G) =I /IE
SA(G): (e(H) - n(II) + 1) is odd I and Sýx(G) =l/fE S(G): (e(IY)
n(Hj) + 1) is eveni.

ThiiOREm 3.4: If G = ( V,E) is an cyclic K-digraph. K 9 V, sE A', ihien d,(G)=
(~lIEIvIIIS,(G)l - fSo (G)[) ond DA(G) JSA(G)I -

PROOF: We proceed by induct ion on IVI. 1f I = I then Ithere is only one acv-
clic K-graph, the one-point iree, for Ahich the theorem is trivially true.

For the inductive step, let G = 0 V. E) be an acyclic K-digraph 'Aith IVI >
1, K 9 V, s C K and assume that the theorem holds for all acyclic K-graphs with
fewer points than G. WeN' now do the secondary induction on IEl- Since the un-
derlying undirected graph of G is connected, IEl > I V; - 11f I7 El= I V: - 1,
then G must be identical to the only K-tree rooted at s of C. Thus, 1SA(G)i
I, J.S0f(G)j = 0 and the theorem follows. For the secondary inducti\ve step, let
G = (VE) such that tEl > I VI - I and assume that the theorem holds for all
acyclic K-graphs with I Ilpoints and few\er than lEt edges. Since G is acyclic,
either there are two parallel edges x = (s,u) and y = (5, u) such that x #- Y or
there is an edge x = (s, u) such that indleg(u) =I in G.

We begin with the first case. In this case, clcarly GC x is an a~c~cic A'-graph
with one less edge than G, and therefore by the secondary induction hypothe-
sis, dx (G - x) = 1 (EI-V+ (I S,(G - x - I So'G - x)j) and DA (0 -

x) = I SK(G - x)l - I SK(G - x)I. Now, using the notation S(H) and S-*(H)
to denote the K-subgraphs of H containing z and not containing z, respectively,
and Sz(H), Soz(H), S,*(H), Sj'(1) to denote the subclasses of exen and odd
nullity, we may establish one-to-one correspondences as follo%\s:

S,''(G) -- ScBC( - x)

S,A Y( G) - -S~(C' - x)

S,x'(G) -- S/(G - x)

S"')(G) .- Sf;' (G - x)

and

Sr.(G) .- SJ(G - x)

So"'(G) .- Sol'(G - x)

SoJ' (G) ~- So'(G - x).

Now algebraic manipulation yields IS/I(G)I - ISo"(G)l IS.'(G -x)j-

I SOA(G) - x)j. But then, by Theorem 3.3,
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dA(G) = -dA(G -x) = -((-)(k-li-I' "(ISA(G -. ) - S(•(G -x)!ý

= (-I)IEI- 4' (IS ' (G )l - tS&(G)I), and

D,(G) =DA(G- x) = ISA(G- x)l - ISo(G-x)t = lS.A(G)l -ISoA(G)t.

In the second case, where there is an edge x = (s,u),N it h indeg(u) = I, Ae
establish a one-to-one correspondence betveen the K-subgraphs of G and Gix
as follows.

The fact that glx is a Kjx-subgraph of Gix if and only if g is a Ksubgraph
of G follows because in this instance, from the proof of Theorem 3.3, Tjx is
a Kjx-tree of Gix if and only if Tis a K-tree of G. Clearly, the nullities are pre-
served by this correspondence and so the result follovs from the equality
d4(G) = d.. (GIx). 0

Theorem 3.4 does not hold for cyclic K-graphs. For example consider
the digraph G shown of Figure 3 in which K = Is, u,v1. Clearly So(G) = 2,

'S,'(G) = 4, and dA*(G) = 0. It is to be noted that, \%hile Theorem 3.4 holds for
acyclic K-digraphs .hcre K is arbitrary, Corollary 3.8 holds for undirected
graphs only if K = I'.

4. DOMINATION AND SPANNING TREES

The all-terminal domination D•,(G) of an undirected graph G is, by definition,
related to the spanning trees of G since the K-trees of G in this case are the span-
ning trees. However, if K * V not all K-trees are spanning; thus there is no ob-
vious connection between DA(G) and the spanning trees of G. In this section
we show, in fact, that DA'(G), for any arbitrary K, is equal to the number of
spanning trees of a certain type. First we require some preliminaries culminat-
ine in the central notion of this section.

Suppose G = (V',E) is an undirected graph and < is a strict linear order on
E. Let T= (V,E') be a spanning tree of G and x E F'. Then the forest T- x

U

FiCrUR 3. An example cyclic digraph.
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has exactly two connected components with points sets, say U and V - U. The
collection of edges of G with one endpoint in U and the other in V- Uis called

the fundamental cut determined by x with respect to T. Likewise, if x E IE -
E' is an edge, then T+ x is unicyclic and the cycle in T + x is called the fun-

damental cycle determined by x with respect to T. An edge x C E' is internally
active in T if x < y for all y G C - x, where C is the fundamental cut determined
by x with respect to T. Finally, an edge x E' is externally active rclative to T

if x < y for all y G C - x, where C is the fundamental cycle determined by x with

respect to T. The path of Tobtained from the fundamental cycle determined by

an externally active edge x is called a broken cycle of G [171.
Note that if a spanning tree Thas i internally active andj externally active

edges, then 0O5 i z: Il'- I and 0!_j tEl - IV1 + 1.
By T(G) we mean the set of all spanning trees of G, \ hile T,(G) denotes

the subcollection of T(G) of trees having i internally active and j externally ac-

tive edges. Furthermore, t(G) and t,,(G) denote the cardinalities of T(G) and

T,s(G), respectively. The following is needed for our next definition.

PROPERTY K: If G = (V,E) is an undirected graph and K 9 Vis a speofied sub-

set, then each spanning tree T of G contains exactly one K-i.ee T' of G.

PROOF: Each spanning tree which is not a K-tree may be reduced to a K-tree by

repeatedly pruning those leaves which are not K-points. a

Let T.o(G,K) consist of those trees TE T(G) satisfying the follo%%ing con-

ditions:

(i) T has no externally active edges, and

(ii) if x is an internally active edge in T, then x is an edge of the unique K-
tree TK contained in T.

Finally, let t.o(G,K) denote the cardinality of T. 3(G,K). For example, con-

sider the labeled graph G = (0/,E) shown in Figure 4, where the edge labels con-
stitute a strict linear order <. Then T(G) consists of the eight spanning trees Tj
through Tp shown in Figure 4, and it follows from the table of Figure 4 that
' 01 (G) = IT•l, To(G) TIT1, T, T12 (G) o, etc. Finally, if K ulu,,l,

then T.o(G,K) = IT,, T:, T51 and t.o(G,K) = 3.

THEIOREM 4. 1: Let G = (V, E), a connected undirected graph with a nonempty

subset K 9 V, and let < be a strict linear order on E. Then DA.(G) =

t.o(G,K).

PROOF: Clearly, if G has a self-loop, then DKA(G) +0 and t.0 (G,AK) = 0. We
claim thai, if G has an edge x with an endpoint u E V - K such that u is a

degree-one point in G, then DA.(G) = t. 0(G,K) = 0- In this case x is in no K-

tree of G, which implies that G has no formations and DA:(G) = 0. Since u is

a degree-one point of G, x lies in every spanning tree. It is easy to see that x is
also internally active in every spanning tree, and since it does not belong to any
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FIGURE 4. Illustration for internal and external activities.
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K-tree of G, it follows that t.o(G,K) = 0. Hence, in the remainder of the
proof, we assume that G is loopless and contains no edges x %kith an endpoint
u E V - K such that u is a degree-one point in G.

The proof is by induction, first on IV I and then on {El. The result is ob-
vious wher IV= I. For the primary inductive step, let G = (V, E) be a con-
nected graph with I VI > I, K _ V a nonempty subset, and assume that the
theorem holds for all graphs with fewer points than G. Since G is connected,

lEt >- I 1/ - 1. If JEl = IVI - I then, as G has no degree-one points in V" -
K, G must be a K-tree and we have DA'(G) = t.o(G,K) = 1. Thus, for the sec-
ondary inductive step, let G = (VE) be a graph with IEI > IVI - 1, and as-
sume that the theorem holds for all graphs on I Vj points and fewer edges than
IEt.

Let x be the largest edge in the linear order < of G. There are two cases to
consider; namely when x is or is not a bridge of G. Suppose x is a bridge of G
so that x belongs to ever), spanning tree of G. Then, if G has a K-tree which does
not include x it follows that one of the components' of G - x is devoid of K-
points. But then DA,(G) = 0 and, since x is internally active in every spanning
tree, t.o(G,K) = 0 as wveIl. If every K-tree of G contains x, then the correspon-
dence bctwveen T.o(G,K) and T.o(Gtx,Ktx) is one to one and onto. Thus,
t.o(G,K) = t.o(Glx,K Ix). But DK(G) = DAK,(GIAx) and the result follo\%s by
the primary induction hypothesis.

Next suppose that x is not a bridge of G so that, using Corollary 3.5, we
may write that Dv(G) = DA(G - x) + DAj,(Gjx). Utilizing both induction
hypotheses, we obtain that DA(G) = t.o(G - x,K) + t.o(GIx,Kjx). Hence, it
remains to show that t.o(G,K) = t.o(G - x,K) + i.O(Gjx,K)x).

Since x is not a bridge and has the largest value in the linear order <, it can-
not be internally active in any spanning tree. Thus, if Tis a spanning tree of G
'khich contains x, the internalI. active edges of Tare the same as those of Tix
in Glx. Furthermore, the unique K-tree T" contained in T is either the K x-
tree TIX l contained in Tix or is obtained from it by the addition of x. Thus,
eery internally active edge of Tlies in T' if and only if e~er) internally active
edge of Tix lies in TjxA. Hence, the correspondence between the elements of
T.((G, K) which include x and the elements of T.O(G x,Klx) is one to one and
onto. Next obser\e that Tis a spanning tree of G not containing x if and only
if T is a spanning tree of G - x. Clearly, if an edge y, is internally active in T,
considered as a spanning tree of G, it is also internally active in T where T is
considered as a spanning tree of G - x. Conversely, suppose y is internally ac-
tive in Tof GIx. Since x is larger than y in <, y will remain internally active in
Twhen Tis considered as a spanning tree of G. hence, the identity map estab-
lishes a one-to-one correspondence between those elements of T.o(G,K) which
do not include x and the elements of T.o(G - x,K). This concludes the proof.

0

COROLLARY 4.1: Let G = (K )E be an undirected graph with a strict linear or-
der < on E. If x = I u, v] is the smallest edge of G, then DI.., I(G) = tjo(G),
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where r1 0(G) is the number of spanning trees of G having exact/y one internollY
active edge and zero externally active edges.

PROOF: If G has no edges the result is obvious; otherwise choose the smallest
edgex in the linear order <. Now if Tis a spanning tree with no externally ac-
tive edges, then x must lie in Tand the unique I u, vi-tree of G contained in T
is just x. Thus, the elements of T.o(G, lu , I) are precisely those spanning trees
of G having x as the only internally active edge and no externally active edges.
Thus, t. 0 (Glu,vD) = t1o(G,ju,vJ) = tio(G). 2

Let To(G) be the collection of spanning trees having no externally active
edges in a graph G = (V,E) with respect to a strict linear order < on E and let
to(G) = jTo(G)f. The following is an immediate consequence of Iheorem 4.1.

COROLLARY 4.2: For an undirected graph G C (V,E), D (G) = to(G).

It is an obvious consequence of these results that the quantities t. 0 (G,K), and
t0(G) are invariant with respect to 1he linear order < of the edges of G. In-
deed. Tutte 116], in his study of the chromatic polynomial of a graph, has noted
this fact for all parameters t,.,(G). The value of the chromatic polynomial,
P(G; X) of a graph G gives the number of proper X-colorings of G; that is, the
number of ways of assigning colors to the points of G, using X or fever colors,
so that no two adjacent points are assigned the same color. Tutte [161 showed
that for any connected graph G, I(P(G;X)/(I - X))Ix=ll = 1o(G) = toý(G).
Hence, the next result follows directly from Corollary 4.1.

COROLLARY 4.3: For any connected undirected graph G (V, E) and an), edge
x = (u, v) such that u * v, D,,,.,, (G) = J(P(G;X)/(l - 1)),=1 -

An immediate consequence of this corollary is that D,(G) = D,(G) for an\
pair of edges x and v of G. Moreover, Whitney (171 showed that P(G;X) =
Z !"I (- I) 1"1'n,(G)X' \%here m,(G) is the number of spanning forests of G
with i connected components and ha% ing no externally active edges. Note that
an edge is externally acti\e with respect to a Fisez forest if and only if it is e,-
ternally active w, ith respect to some tree of the forest. Clearly \,,hen i = 1, then
the spanning forests are the spanning trees of G; whence in, (C) = to(G). We
therefore have the following corollary.

COROLLARY 4.4: If G = (V,E) is an undirected graph, then I(P(G; X)/X)I•. 0 l =
Dv(G).•

In a recent work, Salyanarayana and Tindell [15) introduced a polynomial
P(G,K;X) in X determined by graph G = (V,E), KXq V. Like the classical chro-
matic polynomial P(G; X), this new polynomial has integer coefficients that al-
ternate in sign. Furthermore P(GK;X) = P(G;X) if K is the entire point set
of G. This new polynomial has several interesting properties, and in particular,
it has been shown that t(P(G, K;X)/X)!.o DA (G)-
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Another imeresting connection between DA(G) and the number of certain
orieruations of G was discovered by Satyanarayana and Procesi-Ciampi {14J.
An orienlalion of an undirected graph is an assignment of direction to each edge
of the graph. Let C = (VE) be a connected undirected graph, and suppose
K � V A rooied orienfation, with respect to A' and the root s E A', of C is an
orientation of G such that exactly one point of the orientation, namely s, has
indegree 0 and every point of outdcgree 0 belongs to K. An orientation is
acyclic if it has no directed cycles and is cyclic other'�ise. The result proved in
Satyanarayana and Procesi-Ciampi f14j asserts that if N,, (Gs) is the number
of rooted acyclic orientations of C, with respect to K and the root s � K, then
DA(G) N,,-(Gs) for all s e K. An immediate consequence of this result is
the fact that, if i e K andj e K are two points of C, then N�(Gi) = N,,.(GJ)
and hence tac number of rooted acyclic orientations of a graph, with respcct to
a given K, is independent of the root selected from K.
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