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SOME ALTERNATE
CHARACTERIZATIONS OF
RELIABILITY DOMINATION

F.T. BoescH, " A..SATYANARAYANA, AND C.L. Sufrrert

Stevens Institute of Technalogy
Hoboken, New Jersey 07030

An impottant problem in reliability theory is 1o determine the reliabifity of a
svsieny from the reliability of its components. If £ is a finite set of components.
thea coiialin subsets of £ are prescribed to be the operating states of the system.
A formation is any collection F of minimal operating states whose union is £.
Reliability domination is defined as the total number of odd cardinality forma-
tions minus the to1al number of even cardinality formations. The purpose of
this paper is to establish some new results concerning reliabihiy domination. In
the speaind case where the syaem can bedentified with a graph or digraph,
these new cesults lead to soime new graph-theoretic properties and to simple
proo’s of certain known theorems. The pertinent graph-theotetic properties in-
clude spanning trees, acyche orientatons, Whitney's broken coycles, and Tutie’s
internal activity associated with the chromauc poiynomial.

1. INTRODUCTION

There have recently been several important advances in system reliability the-
ory. One of the major issues in reliability theory is the determination of the re-
liability of a given system from the reliabilities of its components. Sysiem
reliability includes a variety of network reliability problems that occur when the
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RELIABILITY DOMINATION 259

that by a groaph we mcan what Harary calls a pseudograph. Furthermore, in
what follows, by domifnation of a graph or a system we mean the reliability
domination.

Let £ be a finite set and P{E’) be the power set of £. A nonemply subset
C C P(E) iscalled a clutrer on E if for any two elements C, € Cand C, € C,
whenever €, € C,, then €, = C;. The pair (E,C) will be referred to as a sys-
e and the system is colrerens if each element of £ is contained in some element
of C. A subset A € E is called an operating stare of the sysiem (£,C) if A con-
tains an element of C. Let B(E£,C) ={AC E: C<c A forsome C € C} be the
collection of all operating states of the system (E,C). A formation F of a sys.
tem (E,C) is a subset of C with the propenty that UCeF C = E. The fosrmation
F is odd or even depending on whether its cardinality is odd or even, respec-
tively. The signed domination d(E,C) of a sysiem (£,C) is defined (o be the
number of odd formations minus the number of even formations of (£,C).

The notion of the signed domination was introduced in {13} in the context
of reliability analysis of directed networks. Suppose G = (V,E) is a digraph and
K € Vis a specified subset of points of G such that s € K. A subdigraph 7T of
G is a rooted tree, rooted at s, if in T the indeg(s) = 0 while the other points of
T have indegree = 1. A K-Iree, rooted at s, is a rooted tree, rooted at s, such
that (i) s€ K, (1) every point of K lies on the tree, and (iii) every point with out-
degree = 014s a K-point. Clearly, a A-tree rooted at s of a digraph G constitutes
a minimal cubgraph G with the property that there is a directed path from s to
each point of K. The subgraph is minimal, in the sense that deletion of any edge
from it results in the event that not all points in K can be reached from s,

A digraph G = (V,E) with K € V and s € K is called a K-digraph if every
edge of G lies in some K-tree, rooted at s, of G. Let 3,.(G) be the collection of
all the K-trees, rooted at s, of G. Clearly, Q. (G) constitutes a ¢lutter on E.
Furthermore, the system [ £, (G)) is coherent if and only if G is a K-graph.
A formation F of G is a collection of A-trecs, rooted at s, whose union consti-
tutes the set of edges £ of G. A formation F is odd or even depending on
whether F contains an odd or even number of trees, respectisely, The signed
domination of a digraph G = (V, E), with respect to a given subset K € 1 and
s € K, is the number of odd minus the number of cven formations of G. In this
instance, we write dy (G) instead of d{E.Q,(G)]. The absolute value of ¢ (G)
will be noted by D, (G).

The notions of K-irees, K-digraphs, formations, and the signed domination
are applicable to undirecied graphs as well. Suppose G = (V,E) is an undirected
graph and K € V. A K-tree of G is a tree of G containing all points of K such
that every leaf of the tree belongs to K. The notions of K-graph, fermation, and
the signed domination are similarly defined.

The invariant dy (G) has been used in the following directed network reli-
ability problem: We are given a directed network G = (V,E) with K € ¥V and
s € K. The elements (edges or points) of G, at a given instant of time, are in one
of two states, either failed or functioning. A point u is said 10 be able to com-
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RELIABILITY DOMINATION 261

We awnn refer to the digtaph example of Figure 1. Here £ = {x,, x:.0xs,
xo ok}, C =l xdd, 1y, v ko, Lag, Xl and xo= xy. Then, C_, = {Hxald,
{xsx i and €, = Hxy,xgd, txg,xs), fxs, 01}, Note that {£ = Jx},Co )i
the system associated with the communication from sto 1in G — x. On the other
hand, | £ - {x},C, ] docs not describe the same phenomenonin Gla; specif-
ically, Givdoes not describe the behavior of G when xis funciioning. Indeed,
{xs, v )18 an sto 7 pathin Gix but certainly does not represent a vahd pathin
G when aaas functioning. Finally, note that (EC) = 1, JtE - (x}.C. ) =
—~1, and dE - |x1.C,) = 0, so that S(E£.C) .. I(E ~ [x}.C.,} -~ dLE -~
X1,C ) in our example. The fact that HEC) = d(E - x],CL .y - d(E -~ [x].
C_,) holds for any cohcrent system (£,C) has been proved in Barlow {2]. We
note the following clementary consequence of the definition of dy (G).

Fact 2.1: Let G = (V,E) be a graph or a digraph and K a subset of V. If u s
an isolated point of G which is not in K, then dy (G ~ u) = dy(G).

In view of the above fact it is henceforth assumed, unless stated otherwise, that
the graphs or digraphs we deal with have no i<olated points w such that

1€ 2 » 13, then deletaon and cortracticn o o3 yeld
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Figure 1. An example digraph G, G ~ x, and Glx.
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202 K. 1. beesch, AL ddlyandrayanad, and . L. dullet

u € V — K. We conclude the preliminaries with two uscful propositions, the
proofs of which may be found in Satyanarayana and Chang [10].

ProrosiTION 2.1: Let G = (V, E) be an undirected graph such that |V > §, and
K € V. Then G is not a K-graph if and only if one of the following holds:

(i) G contains two connected components, each of which has an edge,
(ii) G contains two connecled components, each of which has a K-point,
(iti) G is connected with | K| < 2,
(iv) G has a cuipoint u such that G — u has a component with no point
Srom K,
(v} G has a self-loop.

ProrosiTiON 2.2: Suppose C = (V,E) is an undirected graph, and K € V. Then
d,(G)Y % 0ifand only if G is a K-graph.

3. DOMINATION AND SUBSTRUCTURES

Theorem 3.1 of this section, first proved by Huesby {S], provides a character-
ization of domination for systems. This result is used to establish some new re-
sults concerning domination of graphs and digraphs. This section also includes
simple proofs of some of the well-known results.

Let C be a clutter on the set E, and let © (E,C) be the collection of all oper-
ating states S of the associated system. We can partition the set © (E,C) of oper-
ating states into two classes, depending upon the cardinality of the states, as
follows:

O(E.C) =(S€O(KC): |S|isodd] and

0. (E,C) =|S€ O(EC): |§] 15 even].
THEOREM 3.1: For any system (E,C), d{E,C) = (-1'f' (16,(E.C)| -
|60 (E,CH).

Proof of Theorem 3.1 can be found in Huscby [5).

Note that Theorem 3.1 holds for any arbitrary clutier and, in particular,
reaffirms the fact that the domination of a noncoherent system is zero. A spe-
cial case of this theorem was discovered first by Rodriguez {7] for undirected
graphs. -
Corotrary 3.1: {f G =(V,E)isagraphoradigraph, K<V, and s € K, then
di(G) = (—DIFY(|6,(E3x (G} ~ |9qLE,3A'(G))|),

where G5 (G) is the set of K-trees of G, if G is a graph, and 3x(G) is the set of
K-trees, rooted at s, if G is a digraph.

A consequence of Theorem 3.1 is the following well-known resuls.
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CorOLLARY 3.2 {Signed domination theorem). If (E,C)is a system, x € E and
C,,and C_, are the minors of C with respect 10 x, then d{E,C) = d(E - {x],
C+x) - d(E - Ix‘tc—-x)-

Proor: We first claim that |Go(E,C)| = |8u(E — [x1,C_) + |O,(E - [x},
C,), and |9 (E, Q) =[O (E — [x),C_) + |Q(E - {x1,C, ).

Indced, if S€ Eand x & Sthen S € 6,(E,C)if and onlv if there is an ele-
ment C € C which is a subset of § and consequently does not include x, that is,
ifandonly if S€ Qg(E — {x].C_,). If x€ §, then SE G, (E,C) if and only if
there is an element C € C such that C C §, thatis, C— {x} € S — {x]}. Hence,
ifx€S,Se0u(E,C)if andonly if S — {x] € O, (E - {x].C. ) and the first
equation is established. The second is proved in the same manner. We may
therefore write

d(E,C) = (-1)'F(16, (E,C)] ~ |84(E,CH)
= (=110, (€ = (x},C_)| = (B(E ~ [x}.C_,)|
+ 10o(£ — 1x],CL)| — 16,(E - {x].C, )}
= (=DF NG AE = (x),Co)] = [B(E — fx],C, )
~ (= DETEBUE = [x),C_)| ~ [8o(E - [x],C_,))
=d{F - {x},C,,} — d(E - [x},C_}).
where the first and the last equalities are justified by Theorem 3.1. ]

The first version of Corollary 3.2 was originally established by Satyana-
rayana {8] for the all-terminal domination of graphs. Satyanarayana and Chang
{10] later extended is 10 the K-terminal domination of a graph. Subsequently,
Barlow {2} has shown that the signed domination theorem holds for all coher-
ent systems and this result was later extended to general clutters by Huseby
{5.6].

If the system (E.C) represents an undirected eraph G = (V, £) such that the
clutter C is the collection of the K-trees of G, K € V, then it is easy 1o see that
Corollary 3.2 reduces 10 the following:

CorotLary 3.3: If G = (V,E) is an undirected graph, K€ ¥, and x € E then
di(G) = di) (Gix) — di (G ~ x).

CoroLLARY 3.4: Let G = (V,E) be an undirecied graph, and K < V be a
nonempty subset. If G has i isolated points that are not in' K, then D, (G) =
(_l)lE|~|t’y+:+l dA(G) R

Proor: The proof is by induction on |E|. For the basis step, suppose that
JE| = 0. If |K| = 1 then d\(G) = +1. On the other hand if |K} > 1, then
di(G) = 0. In either case the basis step is established.

For the inductive step, let G be a graph such that |K| > 0and |E{ > 0, and
assume that the corollary holds for all graphs with fewer edges than G. Pick an
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edge x € E. If x is a self-loop, then dy (G) = 0. Likewise, if x has an endpoint
u € V — K such that u is a degree-one noint of G, then d,{G) = 0 and the re-
sult follows in either case. Hence, assume that the endpoints of x are distinct
and if x has an endpoint whose degree is one in G then it is a K-point. By Coral-
lary 3.3, we have ds (G) = dy,, (G!x) — dy (G ~ x). Note that the choice of x
implies that the number of isolated points in ¥ — & is the same as that in
Vix-- K|x. Since G — x and G|x have fewer edges than G, using the induction
hypothesis, we obtain

di(G) = ("l)iE'-‘wH”lDA'u(GlX) — (=1YEI-IY D (G - x)
= (= D)ETI DL (Gx) + Dy (G = x)).

Now if |E| — JV| + i+ 1 is odd then, since Dy, (G|x) and Dy (G — x) are
non-negative, di (G) < 0 and &y (G) = —Dy(G) = (—1)E-1V+ 1D (G).
On the other hand, if |E} — |V] + i+ 1 is even, then do(G) = D (G) =
(—-l)IEI'I"H'HDK(G). B

The following corollary is immediate from the proof of Corollary 3.4,

CoROLLARY 3.5: Let G = (V,E) be an undirected graph, and K € V be a
nonempty subset. Suppose x € E is un edge such thar (i) x is not a self-loop,
and (i) if x has an endpoint win 'V — K, then u is not a degree-one point of G.
Then Dy(G) = Dy, (Glx) + Dx(G — x).

Corollaries 3.3 through 3.5 were proved in Satvanarayana and Chang
[10} for undirected K-graphs. Since Corollary 3.5 does not hold for any arbi-
trary edge x, it is of interest to ask that if the equality D, (G) = Dy, (Gix) +
D, (G - x) does not hold for some edge x of an undirected graph G, then what
can we say about G and x? The following corollary answers this question.

COROLLARY 3.6: Let G = (V,E) be an undirected graph, and K < V. Then
Dy(G) # Dy (G) + Dy(G ~ x) if and only if (i) x is a self-loop and G - x
is a K-graph, or (i) x is incident on a degree-one poini u € V — Kand G ~ x
is a N-graph.

Proor: If either (i) or (i) holds, then D,.(G) = 0 by Proposition 2.1. But
D, (G — x) > 0, by Proposition 2.2, since G — xis a K-graph.

Conversely, suppose that neither (i) nor (ii) holds, then we show that
Dx(G) = Dk (Glx) + Dy (G — x). First, suppose that x is a self-loop. Then,
as (i) does not hold, G — x is not a K-graph. Since G|lx = G — x in this case,
it fo' wvs that Dy (G) = Dy (G — x) + Dy, (Glx). Next, suppose that x is
not a self-loop. If x is not incident on a degree-one point ¥ € V — K, then by
Corollary 3.5, Dx(G) = Dy (G|x) + Dy (G — x). Hence, assume that x is
incident on a degree-one point ¥ € V — K. Then, as (ii) does not hold, G — x
is not a K-graph and Dy (G — x) = 0 by Proposition 2.2. But by Corollary 3.3,
dy(G) = dy 1, (G)x) — dx (G — x) and it follows that D, (G) = D (G — x) +
Dy (G]x). n
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Our next corollary yictds a characterization for the K-teriminal domination
of undirected graphs G = (¥, £) with K € V, in terms of certan spanning con-
nected subgraphs of G. We denote by ¢(G, K) the number of connected com-
ponents of G which contain at least one point of K. Let $,(G,K) denote the
number of spanning subgraphs § of G such that each § has an odd number of
edges and ¢(S,K) = 1. Similarly, §,(G,K) is the number of spanning sub-
graphs with evenly many edges and ¢(S$,KX) = }. The following is an immedi-
ate consequence of Theorem 3.1, and the facts that |Og(E.Jx(G))] = Se(GLR)
and |O (E.Q4 (G = S (G,K).

CoROLLARY 3.7: For any undirected graph G = (V, E) with a specified subset
K—C— V) DA(G) = 'SI(G’K) - SG(GvA,)l'

Corollary 3.7 specialized to the ali-terminal domination yiclds the charac-
terization of Dy (G) in terms of spanning connected subgraphs of G. More
specifically, So(G, V) and S, (G, V) are the number of spanning connected sub-
graphs with odd and cven number of edges, respectively. However, we can par-
tition the spanning connected subgraphs of G into two classes based on the
nullity of the subgraphs rather than the number of edges in the subgraph. Spe-
cifically, let 8(G) denote the collection of spanning connected subgraphs of G.
If He O(G), and n(H), e(H) denate the number of points and edges of H,
respectively, then let S,(G) = {H € O(G): (e(H) — n(H) + 1) 15 0odd}| and
S(G) = |[IHEO(G): (e[H) — n(H) + 1) is even]|. Itis clear that, in gen-
eral, So(G, V) # Se(G) and S,(G, V) # $,(G). The following corollary pro-
vides another characterization of D, (G) in terms of Sp(G) and S, (G). It
follows from the observation that either Sy(G, V) = S¢(G) and S, (G, V) =
S, (G)Yor Sp(G, V) =S,(G) and S,(G, V) = S4{G) together with an application
of Corollaries 3.1 and 3.4,

COROLLARY 3.8: For any undirected graph G = (V,E), D;(G) = S(G) -
S.40).

Since I, (G) > 0 for any connccted loopless graph G, the following is an
immecdiate consequence of Corollary 3.8.

CoROLLARY 3.9: If G is @ connected undirecied graph wvithout self-loops then
S( (G) > S")(G)

Now the fact that |8(G)| = S,(G) + So(G) clearly implies that |8(G)] is
odd if and only if Dy (G) is odd. Indeed, our next theorem characterizes
graphs G for which D,.(G) is odd.

TueoreM 3.2: If G = (V,E) is an undirected graph, then Dy(G) is odd if and
only if G is a connected bipartite graph.

Proor: First note that if G is disconnected or has a self-loop (cycle of length
1), then D, (G) = 0. Conversely, if Dy(G) = 0 then, by Proposition 2.1, it fol-
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lows that G is either disconnected or has a self-loop. Hence, ascume that G is
connected and loopless. We proceed by induction on |E}.

For the basis step, suppose that [ £] = 0. Since G 15 connected, we must
have | V| = 1. In this case G has no odd cycles with D, (G) = | and the basis
step is established. For the inductive step, 'et G = (V,E) be a connecied loop-
less graph with | E| > 0 and assumc that the thecorem holds for ali graphs with
fewer edges than G. If G is a tree, then it has no odd ¢ycles and D, (G) = L.
Hence, assume that G has at least one cycle. Since G has no self-loops, we can
pick any arbitrary edge x € E, and by Corollary 3.5 we have D, (G) =
D;'I,(G'X) + Dy(G - X).

Suppose that G has no cycizs of odd length, then G necessarily hus an even
cycle and et x be an edge on such a cycle. Clearly G|xis conrected but has an
odd cycle. Since G|x has one fewer edge than G, by induction hypothesis
Dy, (G} X) is even. On the othr hand, G — x is connected and has no odd cy-
cles. Since G — x has |E} — 1 edges, D (G — x) is odd by the hypothesis.
Hence, we conclude that D, (G) is odd whenever G is connected and has no
odd cycles. )

Conversely, if G has a cycle of odd length, then we claim that D, (G) is
even. First if G is unicyclic with an odd cycle, then Dy (G = x) and Dy (Glx)
are both odd since G — x and G}x have no odd cycles. Finally consider the case
where G has more than one cycle. Let ¢ be a cycle of odd length in G. Pick cdge
xsuch that x is not on c. Then Gixand G - x have a cycle of odd length {even
if x is a chord of ¢) so that Dy, {Gjx) and Dy (G — x) arc even. Therefore,
D,.(G) is even as well. ]

CoroLLARY 3.10: The complete bipartite graph K, ,, is the only graph among
the simple graphs on 2p points and p’ edges with an odd all-terminal domina-
tion. Likewise, K, ., is the only graph with 2p + 1 poimnis and p{p + 1) edges
having odd ali-terminal domination.

Proor: By the theorem of Turan [sce page 17, 4] every other graph under con-
sideration has a triangle. [ ]

in the remcinder of this section we deal with directed graphs. The nature
of the invariant domination differs strikingly acpending on whether G is a graph
or a digraph. As noted in Section 2, the assertion that the clutier 3, (G)., is
obtained from G|x if G is undirected, is no longer valid if G is directed. Due
to this anomaly the graph version of Corollary 3.2, namely Corollary 3.3, holds
only for graphs and not digraphs. Furthermore, d,((o\'Tgcnerally can assume
any integer value and is never zero if G is an undirected K-graph. On the con-
trary, for digraphs d,(G) is 0, +1, or —1. Indeed, a surprising fact is that
dy(G) = + 1if and only if G is an acyclic K-digraph, and d,(G) = 0, other-
wise {9].

Our first result on digraphs G relates dy (G) either 1o dy |, (G]x) or tc
d, (G - x), depending upon the nature of x.
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| HEOREM 3.3: Suppose G = (V,EYis a digraph, KS V, s € K, and x = {(s,u)
is an edge of G. Then:

(i) if the indeg(u) > 1, then d, (G) = —d, (G — x),

(i1) if theindeg{u) = | and x lies on some K-tree rooted at s, then d, (G) =
dA'I A (Gll ) .

Proor: (1) Suppose indeg(w) > 1, and et x* # x be an edge directed into u.
First we show that the system (E - [x},C,,) is not coherent and therefore
d{E — {at,C,,) = 0. Indeed, if 7' is a K-trce rooted at s which includes x’
then (T° — x") + xis a rooted tree that includes all K points. By deleting pen-
dant points which are not in A, i necessary, we may reduce 7" 1o a K-tree 7
which includes x. Thus, {7 —x} € [T" - x"{ and since [T" — x’) is a proper sub-
set of T, it follows that x* does not lie jn any of the elements of C,,. If no
K-tree of G contains &, then no clemnenm of C,, | can contain x". Hence, the re-
sult follows from an application of Corollary 3.2. .

(i1) Suppose indeg(u) = 1 and x lies on some K-tree rooted at 5. In what fol-
lows we show that there exists a one-10-one correspondence between the K-trees
rooted 4t s of G and the AL v-trees rooied at s of Gixsuch that {7,: i€ T is
a formation of G f and oy if {T,}x: i & T} is a formation of G)x.

First we claim that if 7Tis a K-tree of Grooted at s, then 7Txis a K |x-tree
of Gix rocied at s. Clearly the indeg(s) = 0 in T|x for otherwise indeg(u) >
I, and 7{x contains all points of K|x. Also, the fact that every pendant point
in Tis a K-point implics that every pendant point in 7'x belongs to K{x. Fur-
thermore, the fact that every point other than s has indegree equal to | in Tim-
plies that every point other than sin T'|x has indegree equal to 1. Thus, Txis
a rooted tree, rooted at s. Since 7 |« contains all points ef K'lx, and its pendant
points are in A|x, T|xis a Nlx-tree.

Neat we show that the correspondence between the A-trees of G and K ix-
trees of Gjxis onc to one. To this end suppose that 7, and 7- are two A-trees
of G, and Tylxv = T-jx. If X lics in both T; and 7 or neither of these trees, then
T, = 7-. On the other hand. if x liesin 7> but not in 7, then v € K and the
outdeg(u) > 0. This 1s due to the fact that if w € A, since indeg(u) = 1in G.
x lies on every A-trec of G;if v € A and outdeg(w) = O then T; is not a K-tree.
Thus, from the facts that w @ A and outdeg(u) > 0, it fuilows that nonc of the
edges directed out of w can lic in Ty; this implies that none of these edges can
lie in T, cither because of our assumption that /j|x = T»|x. Sincev € v — K
is a pendant point in 7., we conclnde that 73 is not a K-tree of G. This con-
tradiction verifies the injectivity. .

To see that the correspondence is onto, suppose that 7' is a K|x-tree of
Glx. Il v € K, edge xis interserted into T’ to form a tree T as follows:

(a) I T~ contains edges directed out of s which arc originally directed out
of v in G, then add v 1o T, connect the tail ends of each of these edges
to u leaving the heads unchanged, and finally insert x = (s, ).
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(b) If 77 comains no edges which onginally directed out of v 1n G, then
merely add v and insert x = (s, u).

These constructions are illustrated in Figure 2. Clearly in either case Tjx =
T’ and Tis a K-tree of G. f u € K, then the construction used in (a) 15 required
whenever there are edges in 7 which originally emanated from v in G. If no
such edges existin 7, we observe that 77 niself isa K-tree of G, s0 T = T~ serves
our purpose.

Finally we prove the contention concerning the formations of G and Cix.
If{7.: 1€} then it is obvious that [7jx: i € '} is a formation of Glx. Con-
versely, if {7, |x: 1 € T} is a formation of G|x, then it is easy to see that U, T,
inciudes all edges x” = x. If ¥ € K then, since indeg(u) = 1 in G, every K-tree
of G includes x, whence x € U,7,. On the contrary, if ¥ @ K then, since v =
(s,u) belongs 10 some K-tree, there is an edge ) directed out of w. Since U, T, | x
is a formation of G|x, an index j € T exists such that y € T jx. Hence, y € T,
and so x € 7, as well. This concludes the proof of (ii). -

(b} %o cut-edges of s exanate from u in G

Ficure 2. An illustration for Theorem 3.3,
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Note that x = (s,v) being in some K-trec rooted at s is an ¢ssential condi-
tion for (ii) to be valic in the above theorem. To see this consider the digraph
with two points and one edge x = (5,u), and let K = {s}.

Theorem 3.3 affords a simple proof of the foliowing well-knuwn result orig-
inally established in {9,13].

COROLLARY 3.1 Suppose G = (V.E) s a digraph, K € V. s € K. Then
A (G) = (=1 EIYINYir G is an acyclic K-graph and d\(G) = 0 otherwise.

Proor: Since d, (G) = 0if Gis not a K-digraph, we prove the results for acy-
clic and cyclic K-graphs by induction on | EJ.

We begin by considering the validity of the result when [E] = 0. The sec-
ond assertion is vacuously true because there are no K-graphs with no edges
which also have a directed cycle. The first assertion is trivially true for the soh-
tary K-graph G = ({5},¢) with K = {s].

For the inductive step, let G = (V,E) be a K-digraph, K € V, s € K, and
JE] > 0 and assume that the theorem holds for all K-digraphs with fewer edges
than G. Consider an edge x = (s,u) in G. )

Suppose indeg{w) = 1. If G contains a directed cycle then, since indeg(s) =
0 in G, Glx has a directed cycle as well. If G|x is not a Alx-graph, then
dy . (Glx) =0.Onthe other hand, if G|xisa K|x-graph then by the induction
hy pothesis dy,, (G]x) = 0. Since indeg(«) = 1, it follows from Theorem 3.3,
that dy (G) = 0 whenever G is cyclic. Next if G is acyclic then, again by the
fact that indeg{s) = 0 in G, G|x is also acyclic. Furthermore, it is easy to see
that G being an acyclic K-graph implies that G)x is an acyclic K'|{x-graph. Thus,
by the induction hypothesis dy (G| x) = (—1)IE =D =Dl = (g Er-ipiet,
We therefore conclude, by Theorem 3.3, that dy(G) = (—1)'€ 71"+ whenever
G is an acyclic A-graph.

Suppose indeg(w) > 1. If G contains a directed cycle, then G - x must
also have a directed cyvele, This is due 1o the fact that indeg(s) = 0 in G and
50 v can not lie on a directed cycle in G. Now if G — v is not a A-graph then
d, (G — x) = 0; on the contrary, if G — xisa A-graph, since #t is cyvelic, then
also d, (G) = 0 by the induction hypothesis. Hence, 11 follows, by Theosem
3.3, that 4, (G) = 0 whenevor G is a oyche K-graph. Finally, if G 1s an acychic
A-graph then we claim that G — x is one as well. That G - x 15 an acyclic A-
graph follows from the obsernvation that if Tis a A-trce rooted at s in an acy-
chic K-graph, then for any edge x' # x directed into v, either (T —x) + x"isa
K-tree or it can be cxtended to a K-fsee by adding the missing edges to cstab-
lish a directed path from s to the tail end of x*. Thus, by the induction hypoth-
esis, dy (G — x) = (—1)UEI-D=01+1°z _(_1)IEI-1Vi+i By Theorem 3.3 we
may conclude that dx (G) = (~1)1E1-1*V whenever G is an acvclic K-graph,
and the proof is complete. [ ]

Corollary 3.11 was first established for the case of K = {s,1) by Satya-
narayana and Prabhakar [13], and later extended 1o general K in Satyanara-
yana |9}.
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We conclude this section with a result analogous to that of Corollary 3.8,
Specifically, suppose G = (V,E) is a K-digraph, K€ V,ands € K. Let $*(C)
denote the collection of K-subgraphs of G. Il H € S*(G)and n(H)and e(H)
denote the number of points and edges of A, respectively, then SHG) = |H €
S¥(Gy: (e(H) — n{H) + 1) is odd} and S¥(G) = |H € SMG): (e(H) -
n(H) + 1)is even).

THEOREM 3.4: IfG_ ={(V,E)isanacyclic K-digraph, K< V,s€ K, thend, (G} =
(—DIEEVITASMG)Y - 1SE(G)) and Dy (G) = |SMGY - 1SLHGH.

Proor: We proceed by induction on | V|. Il |V} = 1 then there is only one acy-
clic K-graph, the one-point tree, for which the theorem is trivially true.

For the inductive step, let G = (1" E) be an acyclic K-digraph with {[V| >
1, K€ ¥, s € K and assume that the theorem holds for ali acyclic K-graphs with
fewer points than G. We now do the secondary induction on | E|. Since the un-
derlying undirected graph of G is connected, |Ej = [V} - LI {E} = |V =1,
then G must be identical to the only K-tree rooted at s of G. Thus, [SMG)i =
1, | S§(G)| = 0 and the theorem follows. For the secondary inductive step, let
G = (V,E)suchthat |E| > |V] — 1 and assume that the theorem holds for all
acyclic K-graphs with |17} points and fewer than | EY edges. Since G is acyclic,
either there are two parallel edges x = (s,u) and y = (s, ) such that x # y or
there is an edge x = (s5,1) such that indeg(u) =1 in G.

We begin with the first case. In this case, clearly G — x is an acyclic K-graph
with onc less edge than G, and therefore by the sccondary induction hypothe-
sis, dx (G — x) = (DUE-D=IVIRL A GK (G — x| — |S5(G ~ x)) and Dy (G ~
x) = |SX(G - x)| - |S§(G - x)]. Now, using the notation S<(H) and S§*(H)
to denote the K-subgraphs of H containing z and not containing z, respectively,
and SF(H), S§(H), ST (H), S5 (H) to denote the subclasses of even and odd
nullity, we may establish onc-t0-one correspondences as follows:

SH(G) ++ S3(G = x)
SH*(G) «+ SHG - x)
SENG) « S2(G — x)
ST(G) = 85 (G —x)
and

SP(G) » SHG - x)
S3*(G) « S5(G ~ x)
S§*(G)» SUG —x) ™
S§¥(G) « S3(G - x).

Now algebraic manipulation yiclds |SX(G)] — {S§(G)| = |SMG - x)| -
|S&(G) — x)|. But then, by Theorem 3.3,




RELIABILITY DOMINATION 2711

dy(G) = —dk(G = x} = = (=NEDTIHYSHG = ) = 158G - X))
(=DIEVISHGH ~ {SE(GD, and

Dy(G) = DA (G = x) = |SMG ~ x)| = |S§(G ~ x)| = |SKG) - |S$(G)].

i

H

In the second case, where there is an edge x = (s, 1) with indeg(w) = 1, we
establish a one-10-one correspondence between the K-suberaphs of G and Gix
as follows.

The fact that g{xis a K'|x-subgraph of Gix if and only if gis a A-subgraph
of G follows because in this instance, from the proof of Theorem 3.3, Tix s
a K|x-tree of Gixif and only if Tis a K-tree of G. Clearly, the nullities arc pre-
served by this correspondence and so the result follows from the equality
dx(G) = dy, (Glx). B

Theorem 3.4 does not hold for cyclic K-graphs. For example consider

the digraph G shown of Figure 3 in which K = {s,u,v]. Clearly $$(G) = 2,
"SX¥(G) =4, and dy (G) = 0. 1t is to be noted that, while Theorem 3.4 holds for
acyclic K-digraphs where K is arbitrary, Corollary 3.8 holds for undirected
graphs only if K = }.

4. DOMINATION AND SPANNING TREES

The all-terminal domination D,.(G) of an undirected graph G is, by definition,
related to the spanning trees of G since the K-trees of G in this case are the span-
ning trees. However, if K # V not all K-trees are spanning; thus there is no ob-
vious connection between Dy (G) and the spanning trees of G. In this section
we show, in fact, that Dy (G), for any arbitrary X, is equal to the number of
spanning trees of a certain type. First we require some preliminaries culminat-
ing in the central notion of this scction.

Suppose G = (¥, E) is an undirecied graph and < 1s a strict hnear ordes on
E. Let T= (V,E'Ybe aspanning tree of G and x € £". Then the forest 7 - x

v

Ficure 3. An example cyclic digraph.
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has exactly two connected components with paints sets, say U and ¥V — U. The
collection of edges of G with one endpoint in U and the other in ¥~ U is called
the fundamental cut deternuned by x with respect 10 T. Likewise, if x € {E -
E’jis an edge, then T + x is unicyclic and the cycle in T + x is called the fun-
damental cycle determined by x with respect 10 T. An edge x € E’ 1s internally
active in Tif x < y for all y € C — x, where Cis the fundamenial cut determined
by x with respect to T. Finally, an edge x € £ is externally active relative to T
if x < y for all y € C — x, where C is the fundamental cycle determined by x with
respect to 7. The path of T obrained from the fundamental cycle determined by
an externally active edge x is called a broken cycle of G [17}.

Note that if a spanning tree T has j internally active and j externally active
edges, then0<i< |V} -land0< < |E| - |V|+ |

By T{(G) we mean the set of all spanning trees of G, while T, (G) denotes
the subcoliection of T(G) of trees having i internally active and J externally ac-
tive edges. Furthermore, 1(G) and 1,(G) denote the cardinalities of T(G) and
T,(G), respectively. The following is necded for our next definition.

ProPERTY K: If G = (V,E) is an undirected graph and K < V is a specified sub-
set, then each spanning tree T of G contains exactly one K-iree T* of G.

Proor: Each spanning tree which is not a K-tree may be reduced 10 a K-tree by
repeatedly pruning thosc leaves which are not K-points. a

Let T.o(G, K) consist of those trees T € T(G) satisfying the following con-
ditions:

(i) T has no exiernally active cdges, and

()3) if x s an internally active edge in T, then x is an edge of the unique X-
tree T* contained in T.

Finally, let 1.,(G, K) denote the cardinality of T.,(G,K). For example, con-
sider the labeled graph G = (1 E) shown in Figure 4, where the edge labels con-
stitute a strict finear order <. Then T(G) consists of the eight spanning trees 7,
through T, shown in Figure 4, and it follows from the table of Figure 4 that
Tor(G) = {15, ToolG) = {77, Ts}, T2(G) = ¢, cte. Tinally, il K = {u,v,wi,
then T.o(G,K) = [T, T2, 75} and 1,,(G,K) = 3.

THEOREM 4.): Let G = (V,E), a connected undirected graph with a nonempty
subset K € V, and let < be a strict linear order on E. Then Dy (G) =
l.o(G, K) N e »

Proor: Clearly, if G has a self-loop, then Dy (G) =0 and 1,,(G,K) = 0. We
claim that, if G has an edge x with an endpoint ¥ € V — K such that u is a
degree-one point in G, then Dy (G) = 1.,(G,K) = 0. In this case x is in no K-
tree of G, which implies that G has no formations and Dy (G) = 0. Since u is
a degree-one point of G, x lies in every spanning tree. It is easy 1o see that x is
also internally active in every spanning tree, and since it does not belong to any
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K-tree of G, it follows that 1,,(G,K) = 0. Hence, in the remainder of the
proof, we assume that G is loopless and contains no edges x with an cndpoint
u € V — K such that u is a degree-one point in G.

The proof is by induction, first on | V| and then on | E|. The result is ob-
vious wher |¥| = 1. For the primary inductive step, let G = (V,E) be a con-
nected graph with [F] > 1, K € V a nonempty subset, and assume that the
theorem holds for all graphs with fewer points than G. Since G is connected,
|E| =z |V} — L. If |E}] =|V]| - I then, as G has no degree-one points in V' ~
K, G must be a K-tree and we have Dy (G) = t.,(G. K) = 1. Thus, for the sec-
ondary inductive step, let G = (¥, E} be a graph with |E| > |V]| ~ 1, and as-
sume that the theorem holds for all graphs on [V points and fewer edges than
|E1.

Let x be the largest edge in the linear order < of G. There are two cases 10
consider; namely when x is or is not a bridge of G. Suppose x is a bridgeof G
so that x belongs to every spanning tree of G. Then, if G has a K-tree which does
not include x it follows that one of the components of G — x is devoid of K-
points. But then Dy {G) = 0 and, since x is internally active in every spanning
tree, £,o(G,K) = 0 as well. If every K-iree of G contains x, then the correspon-
dence between Too( G, K) and Too{Glx,K|x) is one 10 one and onto. Thus,
Lo{G,K) = 1.4 (Glx,K|x). But Dy (G) = Dy, . {Gix) and the result Tollows by
the primary induction hypothesis.

Next suppose that x is not a bridge of G so that, using Corollary 3.5, we
may write that Dy (G) = D (G - x) + Dy, (Glx). Utilizing both induction
hypotheses, we obtain that Dy (G) = 1,0(G — x,K) + 1,,(G|x, K| x). Hence, it
remains 1o show that £,o{G,K) = 1,o{G — x,K) + {,(Glx,K}x).

Since x is not a bridge and has the largest value in the linear order <, it can-
not be internally active in any spanning tree. Thus, if Tis a spanning tree of G
which contains x, the internally active edges of T are the samie as those of 7Tix
in G|x. Furthermore, the unique K-tree T* contained in 7T is either the A x-
tree T|x* contained in T|x or is obtained from it by the addition of x, Thus,
every imernally active edge of T liesin TA if and only if every internally active
edge of T|xlies in T|x*. Hence, the correspondence between the elements of
T..(G, K) which include x and the elements of T,o(G|x, K|x) is one 10 one and
onto. Next observe that 7 is a spanning tree of G not containing x if and only
if Tis a spanning tree of G ~ x. Clearly, if an edge v is internally active in T,
considered as a spanning tree of G, it is also internally active in 7 where T is
considered as a spanning tree of G —~ x. Conversely, suppose y is internally ac-
tive in 7 of G|x. Since x is larger than y in <, y will remain internally active in
T when T is considered as a spanning tree of G. hence, the identity map estab-
lishes a one-10-one correspondence between those elements of T,,(G, K) which
do not include x and the elements of T,,(G — x,K). This concludes the proof.

]

CorotLarY 4.1 Let G = (V, E) be an undirected graph with a strict linear or-
der < on E. If x = {u,v) is the smallest edge of G, then D, ,,(G) = 1,,(G),
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where 1,5(G) is the number of spanning trees of G having exactly one internally
active edge and zero externally active edges.

Proor: If G has no edges the result is obvious; otherwise choose the smallest
edge x in the linear order <. Now if T is a spanning tree with no externally ac-
tive edges, then x must lie in T and the unique {w, v])-tree of G contained in T
is just x. Thus, the elements of T.o(G,{u, v']) are precisely those spanning trees
of G having x as the only internally active edge and no externally active edges.
Thus, to{(G.{u,v]) = 1ig(G,lu, ) = 1,,(G). ]

Let To(G) be the collection of spanning trees having no externally active
edges in a graph G = (V, E) with respect 10 a strict linear order < on £ and let
10(G) = | To(G)]. The following is an immediate consequence of Theorem 4.1,

CoRroOLLARY 4.2: For an undirected graph G = (V,E)Y, D,-(G) = 1,{G).

It is an obvious conscquence of these results that the quantities 7,,(G, K), and
1,(G) are invariant with respect 1o the lincar order < of the edges of G. In-
deed, Tutte [16], in his study of the chromatic polynomial of a graph, has noted
this fact for all parameters 1,(G). The value of the chromatic polynomial,
P(G;») of a graph G gives the number of proper A-colorings of G; that is, the
number of ways of assigning colors to the points of G, using X or fewer colors,
so that no two adjacent points are assigned the same color. Tutte [16] showed
that for any connected graph G, {P(G;M)}/(1 — M)|a=1| = 116(G) = 16, (C).
Hence, the next result follows directly from Corollary 4.1.

CoroLLarY 4.3: For any connected undirected graph G = (V,E) and any edge
x = (u,v) such that u # v, D;, (G) = [(P(G;N)/(1 = AN)|x=t]-

An immediate consequence of this corollary is that D,(G) = D,(G) for any
pair of edges x and y of G. Morcover, Whitney {17] showed that P(G:)\) =
S5 =1 Yo, (G)N where m,(G) is the number of spanning forests of G
with / connected components and having no externally active edges. Note that
an edge is externally active with respect 10 a given forest if and only if it is ey.
ternally active with respect to some tree of the forest. Clearly when i = 1, then
the spanning forests are the spanning trees of G; whence m, (G) = 1,(G). We
therefore have the following corollary.

CorotLarY 4.4: If G = (V,E) is an undirected graph, then |(P(G;N)/N)|x.ol =
Du(G). ™

[N

In a recent work, Satyanarayana and Tindell [15] introduced a polynomial
P(G,K;)\) in A determined by graph G = (V,E), K € V. Like the classical chro-
matic polynomial P(G;\}, this new polynomial has integer coefficients that al-
ternate in sign. Furthermore P(G,K;\) = P(G;\) if K is the entire point set
of G. This new polynomial has several interesting properties, and in particular,
it has been shown that (P(G,K;X)/N)ix.or = DA(G).
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Another interesting connection between D, (G) and the number of certain
orientations of G was discovered by Satyanarayana and Procesi-Ciampi {{4].
An orientation of an undirected graph is an assignment of direction to each edge
of the graph. Let G = (V, E) be a connected undirected graph, and suppose
K S V. A rooted oricntation, with respect 1o K and the root s € K, of G is an
orientation of G such that exactly one point of the orientation, namely s, has
indegree = 0 and every point of outdegree = 0 belongs to K. An orientation is
acyclic if it has no directed cycles and is cyclic otherwise. The result proved in
Satyanarayana and Procesi-Ciampi [14] asserts that if N (G, s} is the number
of rooted acyclic orientations of G, with respect to K and the rool s € K, then
D) (G) = Ny (G,s) for all s € K. An immediate consequence of this result is
the fact that, if i € K and j € K are two points of G, then Ng (G, i} = Ny (G, ))
and hence the number of rooted acyclic orientations of a graph, with respect to
a given K, is independent of the root selected from K.
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